WorldWideScience

Sample records for stormwater quality models

  1. Model-based monitoring of stormwater runoff quality

    DEFF Research Database (Denmark)

    Birch, Heidi; Vezzaro, Luca; Mikkelsen, Peter Steen

    2013-01-01

    Monitoring of micropollutants (MP) in stormwater is essential to evaluate the impacts of stormwater on the receiving aquatic environment. The aim of this study was to investigate how different strategies for monitoring of stormwater quality (combining a model with field sampling) affect the infor...

  2. Model based monitoring of stormwater runoff quality

    DEFF Research Database (Denmark)

    Birch, Heidi; Vezzaro, Luca; Mikkelsen, Peter Steen

    2012-01-01

    the information obtained about MPs discharged from the monitored system. A dynamic stormwater quality model was calibrated using MP data collected by volume-proportional and passive sampling in a storm drainage system in the outskirts of Copenhagen (Denmark) and a 10-year rain series was used to find annual...... average and maximum event mean concentrations. Use of this model reduced the uncertainty of predicted annual average concentrations compared to a simple stochastic method based solely on data. The predicted annual average obtained by using passive sampler measurements (one month installation...

  3. Source-Flux-Fate Modelling of Priority Pollutants in Stormwater Systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca

    quality management. The thesis provides a framework for the trustworthy application of models to estimate PP fluxes from their sources, and through stormwater drainage systems, and to the sink. This fills a knowledge gap regarding stormwater PP and it supplies urban water managers with modelling tools......The increasing focus on management of stormwater Priority Pollutants (PP) enhances the role of mathematical models as support for the assessment of stormwater quality control strategies. This thesis investigates and presents modelling approaches that are suitable to simulate PP fluxes across...... stormwater systems, supporting the development of pollution control strategies. This is obtained by analyzing four study areas: (i) catchment characterization, (ii) pollutant release and transport models, (iii) stormwater treatment models, and (iv) combination of the above into an integrated model. Given...

  4. Influence of rainfall and catchment characteristics on urban stormwater quality.

    Science.gov (United States)

    Liu, An; Egodawatta, Prasanna; Guan, Yuntao; Goonetilleke, Ashantha

    2013-02-01

    The accuracy and reliability of urban stormwater quality modelling outcomes are important for stormwater management decision making. The commonly adopted approach where only a limited number of factors are used to predict urban stormwater quality may not adequately represent the complexity of the quality response to a rainfall event or site-to-site differences to support efficient treatment design. This paper discusses an investigation into the influence of rainfall and catchment characteristics on urban stormwater quality in order to investigate the potential areas for errors in current stormwater quality modelling practices. It was found that the influence of rainfall characteristics on pollutant wash-off is step-wise based on specific thresholds. This means that a modelling approach where the wash-off process is predicted as a continuous function of rainfall intensity and duration is not appropriate. Additionally, other than conventional catchment characteristics, namely, land use and impervious surface fraction, other catchment characteristics such as impervious area layout, urban form and site specific characteristics have an important influence on both, pollutant build-up and wash-off processes. Finally, the use of solids as a surrogate to estimate other pollutant species was found to be inappropriate. Individually considering build-up and wash-off processes for each pollutant species should be the preferred option. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Chapter 5: Quality assurance/quality control in stormwater sampling

    Science.gov (United States)

    Sampling the quality of stormwater presents unique challenges because stormwater flow is relatively short-lived with drastic variability. Furthermore, storm events often occur with little advance warning, outside conventional work hours, and under adverse weather conditions. Therefore, most stormwat...

  6. Urban Stormwater Management Model and Tools for Designing Stormwater Management of Green Infrastructure Practices

    Science.gov (United States)

    Haris, H.; Chow, M. F.; Usman, F.; Sidek, L. M.; Roseli, Z. A.; Norlida, M. D.

    2016-03-01

    Urbanization is growing rapidly in Malaysia. Rapid urbanization has known to have several negative impacts towards hydrological cycle due to decreasing of pervious area and deterioration of water quality in stormwater runoff. One of the negative impacts of urbanization is the congestion of the stormwater drainage system and this situation leading to flash flood problem and water quality degradation. There are many urban stormwater management softwares available in the market such as Storm Water Drainage System design and analysis program (DRAINS), Urban Drainage and Sewer Model (MOUSE), InfoWorks River Simulation (InfoWork RS), Hydrological Simulation Program-Fortran (HSPF), Distributed Routing Rainfall-Runoff Model (DR3M), Storm Water Management Model (SWMM), XP Storm Water Management Model (XPSWMM), MIKE-SWMM, Quality-Quantity Simulators (QQS), Storage, Treatment, Overflow, Runoff Model (STORM), and Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). In this paper, we are going to discuss briefly about several softwares and their functionality, accessibility, characteristics and components in the quantity analysis of the hydrological design software and compare it with MSMA Design Aid and Database. Green Infrastructure (GI) is one of the main topics that has widely been discussed all over the world. Every development in the urban area is related to GI. GI can be defined as green area build in the develop area such as forest, park, wetland or floodway. The role of GI is to improve life standard such as water filtration or flood control. Among the twenty models that have been compared to MSMA SME, ten models were selected to conduct a comprehensive review for this study. These are known to be widely accepted by water resource researchers. These ten tools are further classified into three major categories as models that address the stormwater management ability of GI in terms of quantity and quality, models that have the capability of conducting the

  7. Evaluating stormwater micropollutant control strategies by the application of an integrated model

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Sharma, Anitha Kumari; Ledin, Anna

    2011-01-01

    and enhancement of existing treatment) for reducing heavy metals (copper, zinc) and organic MP (fluoranthene). The runoff quality model showed high uncertainty, with prediction bounds strongly affected by the exceptionally high measured concentrations. The model quantified the greater benefits of the source......The estimation of micropollutant (MP) fluxes in stormwater systems is a fundamental task to enable the elaboration of strategies to reduce stormwater MP discharge to natural waters. Dynamic models can represent important tools which can integrate the limited data provided by monitoring campaigns....... This study presents an application of an integrated dynamic model to estimate MP fluxes in stormwater systems in combination with stormwater quality measurements. MP sources were identified by using GIS land usage data. Runoff quality was simulated by using a conceptual accumulation/washoff model...

  8. Effectiveness of the stormwater quality devices to improve water quality at Putrajaya

    International Nuclear Information System (INIS)

    Sidek, L M; Basri, H; Puad, A H Mohd; Noh, M N Md; Ainan, A

    2013-01-01

    Development of Putrajaya has changed the character of the natural landform by covering the land with impervious surfaces. Houses, office buildings, commercial place and shopping centres have provided places to live and work. The route between buildings is facilitated and encouraged by a complex network of roads and car parks. However, this change from natural landforms and vegetative cover to impervious surfaces has major effect on stormwater which are water quality (non-point source pollution). This paper describes the effectiveness of the stormwater quality devices to improve water quality at selected Putrajaya for demonstration in order to evaluate low cost storm inlet type devices in the Putrajaya Catchment. Five stormwater quality devices were installed and monitored during the study. The devices include Ultra Drain Guard Recycle model, Ultra Curb Guard Plus, Ultra Grate Guard, Absorbent Tarp and Ultra Passive Skimmer. This paper will provide information on the benefits and costs of these devices, including operations and maintenance requirements. Applicability of these devices in gas stations, small convenience stores, residential and small parking lots in the catchment are possible due to their low cost.

  9. Air quality considerations for stormwater green street design

    International Nuclear Information System (INIS)

    Shaneyfelt, Kathryn M.; Anderson, Andrew R.; Kumar, Prashant; Hunt, William F.

    2017-01-01

    Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow. - Highlights: • Green streets can be used for both stormwater and air quality management. • Design considerations must be made to minimize human exposure to air pollutants. • Urban vegetation can improve air quality with careful selection and placement.

  10. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  11. Road traffic impact on urban water quality: a step towards integrated traffic, air and stormwater modelling.

    Science.gov (United States)

    Fallah Shorshani, Masoud; Bonhomme, Céline; Petrucci, Guido; André, Michel; Seigneur, Christian

    2014-04-01

    Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.

  12. Developing an ecosystem model of a floating wetland for water quality improvement on a stormwater pond.

    Science.gov (United States)

    McAndrew, Brendan; Ahn, Changwoo

    2017-11-01

    An ecosystem model was developed to assist with designing and implementing a floating wetland (FW) for water quality management of urban stormwater ponds, focusing on nitrogen (N) removal. The model is comprised of three linked submodels: hydrology, plant growth, and nitrogen. The model was calibrated with the data that resulted from a FW constructed and implemented as part of an interdisciplinary pedagogical project on a university campus, titled "The Rain Project", which raised awareness of stormwater issues while investigating the potential application of green infrastructure for sustainable stormwater management. The FW had been deployed during the summer of 2015 (i.e., May through mid-September) on a major stormwater pond located at the center of the Fairfax Campus of George Mason University near Washington, D.C. We used the model to explore the impact of three design elements of FW (i.e., hydraulic residence time (HRT), surface area coverage, and primary productivity) on the function of FW. Model simulations showed enhanced N removal performance as HRT and surface area coverage increased. The relatively low macrophyte productivity observed indicates that, in the case of our pond and FW, N removal was very limited. The model results suggest that even full pond surface coverage would result in meager N removal (∼6%) at a HRT of one week. A FW with higher plant productivity, more representative of that reported in the literature, would require only 10% coverage to achieve similar N removal efficiency (∼7%). Therefore, macrophyte productivity appears to have a greater impact on FW performance on N removal than surface area coverage or pond HRT. The outcome of the study shows that this model, though limited in scope, may be useful in aiding the design of FW to augment the performance of degraded stormwater ponds in an effort to meet local water quality goals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Air quality considerations for stormwater green street design.

    Science.gov (United States)

    Shaneyfelt, Kathryn M; Anderson, Andrew R; Kumar, Prashant; Hunt, William F

    2017-12-01

    Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling

    DEFF Research Database (Denmark)

    Dotto, C. B.; Mannina, G.; Kleidorfer, M.

    2012-01-01

    -UA), an approach based on a multi-objective auto-calibration (a multialgorithm, genetically adaptive multiobjective method, AMALGAM) and a Bayesian approach based on a simplified Markov Chain Monte Carlo method (implemented in the software MICA). To allow a meaningful comparison among the different uncertainty...... techniques, common criteria have been set for the likelihood formulation, defining the number of simulations, and the measure of uncertainty bounds. Moreover, all the uncertainty techniques were implemented for the same case study, in which the same stormwater quantity and quality model was used alongside...... the same dataset. The comparison results for a well-posed rainfall/runoff model showed that the four methods provide similar probability distributions of model parameters, and model prediction intervals. For ill-posed water quality model the differences between the results were much wider; and the paper...

  15. Calculation of intercepted runoff depth based on stormwater quality and environmental capacity of receiving waters for initial stormwater pollution management.

    Science.gov (United States)

    Peng, Hai-Qin; Liu, Yan; Gao, Xue-Long; Wang, Hong-Wu; Chen, Yi; Cai, Hui-Yi

    2017-11-01

    While point source pollutions have gradually been controlled in recent years, the non-point source pollution problem has become increasingly prominent. The receiving waters are frequently polluted by the initial stormwater from the separate stormwater system and the wastewater from sewage pipes through stormwater pipes. Consequently, calculating the intercepted runoff depth has become a problem that must be resolved immediately for initial stormwater pollution management. The accurate calculation of intercepted runoff depth provides a solid foundation for selecting the appropriate size of intercepting facilities in drainage and interception projects. This study establishes a separate stormwater system for the Yishan Building watershed of Fuzhou City using the InfoWorks Integrated Catchment Management (InfoWorks ICM), which can predict the stormwater flow velocity and the flow of discharge outlet after each rainfall. The intercepted runoff depth is calculated from the stormwater quality and environmental capacity of the receiving waters. The average intercepted runoff depth from six rainfall events is calculated as 4.1 mm based on stormwater quality. The average intercepted runoff depth from six rainfall events is calculated as 4.4 mm based on the environmental capacity of the receiving waters. The intercepted runoff depth differs when calculated from various aspects. The selection of the intercepted runoff depth depends on the goal of water quality control, the self-purification capacity of the water bodies, and other factors of the region.

  16. Source-Based Modeling Of Urban Stormwater Quality Response to the Selected Scenarios Combining Future Changes in Climate and Socio-Economic Factors

    Science.gov (United States)

    Borris, Matthias; Leonhardt, Günther; Marsalek, Jiri; Österlund, Heléne; Viklander, Maria

    2016-08-01

    The assessment of future trends in urban stormwater quality should be most helpful for ensuring the effectiveness of the existing stormwater quality infrastructure in the future and mitigating the associated impacts on receiving waters. Combined effects of expected changes in climate and socio-economic factors on stormwater quality were examined in two urban test catchments by applying a source-based computer model (WinSLAMM) for TSS and three heavy metals (copper, lead, and zinc) for various future scenarios. Generally, both catchments showed similar responses to the future scenarios and pollutant loads were generally more sensitive to changes in socio-economic factors (i.e., increasing traffic intensities, growth and intensification of the individual land-uses) than in the climate. Specifically, for the selected Intermediate socio-economic scenario and two climate change scenarios (RSP = 2.6 and 8.5), the TSS loads from both catchments increased by about 10 % on average, but when applying the Intermediate climate change scenario (RCP = 4.5) for two SSPs, the Sustainability and Security scenarios (SSP1 and SSP3), the TSS loads increased on average by 70 %. Furthermore, it was observed that well-designed and maintained stormwater treatment facilities targeting local pollution hotspots exhibited the potential to significantly improve stormwater quality, however, at potentially high costs. In fact, it was possible to reduce pollutant loads from both catchments under the future Sustainability scenario (on average, e.g., TSS were reduced by 20 %), compared to the current conditions. The methodology developed in this study was found useful for planning climate change adaptation strategies in the context of local conditions.

  17. Predicting nonpoint stormwater runoff quality from land use

    Science.gov (United States)

    2018-01-01

    Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters. PMID:29742172

  18. [Research on stormwater runoff quality of mountain city by source area monitoring].

    Science.gov (United States)

    Li, Li-Qing; Shan, Bao-Qing; Zhao, Jian-Wei; Guo, Shu-Gang; Gao, Yong

    2012-10-01

    Stormwater runoff samples were collected from 10 source areas in Mountain City, Chongqing, during five rain events in an attempt to investigate the characteristics of runoff quality and influencing factors. The outcomes are expected to offer practical guidance of sources control of urban runoff pollution. The results indicated that the stormwater runoff of Mountain City presented a strong first flush for almost all events and constituents. The runoff quality indices were also influenced by the rainfall intensity. The concentration of TSS, COD, TN and TP decreased as the rainfall intensity increased. The concentrations of COD and TP in stormwater runoff were highly correlated with TSS concentrations. Suspended solid matter were not only the main pollutant of stormwater runoff but also served as the vehicle for transport of organic matter and phosphorus. Organic matter and phosphorus in stormwatrer runoff were mainly bound to particles, whereas nitrogen was predominantly dissolved, with ammonia and nitrate. A significant difference of stormwater runoff quality was observed among the ten monitored source areas. The highest magnitude of urban stormwater runoff pollution was expected in the commercial area and the first trunk road, followed by the minor road, residential area, parking lot and roof. Urban surface function, traffic volume, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. Commercial area, the first trunk road and residential area with high population density are the critical sources areas of urban stormwater runoff pollution.

  19. Urban Stormwater Characterization, Control, and Treatment.

    Science.gov (United States)

    Moore, Trisha L; Rodak, Carolyn M; Vogel, Jason R

    2017-10-01

    A summary of 246 studies published in 2016 on topics related to the characterization and management of urban stormwater runoff is presented in the following review. The review is structured along three major topical areas: (1) general characterization of stormwater quantity and quality; (2) engineered systems for stormwater control and treatment, including erosion and sediment control practices, constructed stormwater ponds and wetlands, bioretention, permeable pavement, greenroofs, and rainwater harvesting and (3) watershedscale application of stormwater treatment and control practices. Common research themes and needs highlighted throughout this review include efforts to better understand stormwater transport and treatment mechanisms and their representation in models, advancements to optimize the design of stormwater control measures to meet specific hydrologic and/or water quality targets, and increasing understanding of the biophysical and social factors that influence watershed-scale implementation of low impact development and other stormwater control measures.

  20. Source-Based Modeling Of Urban Stormwater Quality Response to the Selected Scenarios Combining Future Changes in Climate and Socio-Economic Factors.

    Science.gov (United States)

    Borris, Matthias; Leonhardt, Günther; Marsalek, Jiri; Österlund, Heléne; Viklander, Maria

    2016-08-01

    The assessment of future trends in urban stormwater quality should be most helpful for ensuring the effectiveness of the existing stormwater quality infrastructure in the future and mitigating the associated impacts on receiving waters. Combined effects of expected changes in climate and socio-economic factors on stormwater quality were examined in two urban test catchments by applying a source-based computer model (WinSLAMM) for TSS and three heavy metals (copper, lead, and zinc) for various future scenarios. Generally, both catchments showed similar responses to the future scenarios and pollutant loads were generally more sensitive to changes in socio-economic factors (i.e., increasing traffic intensities, growth and intensification of the individual land-uses) than in the climate. Specifically, for the selected Intermediate socio-economic scenario and two climate change scenarios (RSP = 2.6 and 8.5), the TSS loads from both catchments increased by about 10 % on average, but when applying the Intermediate climate change scenario (RCP = 4.5) for two SSPs, the Sustainability and Security scenarios (SSP1 and SSP3), the TSS loads increased on average by 70 %. Furthermore, it was observed that well-designed and maintained stormwater treatment facilities targeting local pollution hotspots exhibited the potential to significantly improve stormwater quality, however, at potentially high costs. In fact, it was possible to reduce pollutant loads from both catchments under the future Sustainability scenario (on average, e.g., TSS were reduced by 20 %), compared to the current conditions. The methodology developed in this study was found useful for planning climate change adaptation strategies in the context of local conditions.

  1. Innovative Stormwater Quality Tools by SARA for Holistic Watershed Master Planning

    Science.gov (United States)

    Thomas, S. M.; Su, Y. C.; Hummel, P. R.

    2016-12-01

    Stormwater management strategies such as Best Management Practices (BMP) and Low-Impact Development (LID) have increasingly gained attention in urban runoff control, becoming vital to holistic watershed master plans. These strategies can help address existing water quality impairments and support regulatory compliance, as well as guide planning and management of future development when substantial population growth and urbanization is projected to occur. However, past efforts have been limited to qualitative planning due to the lack of suitable tools to conduct quantitative assessment. The San Antonio River Authority (SARA), with the assistance of Lockwood, Andrews & Newnam, Inc. (LAN) and AQUA TERRA Consultants (a division of RESPEC), developed comprehensive hydrodynamic and water quality models using the Hydrological Simulation Program-FORTRAN (HSPF) for several urban watersheds in the San Antonio River Basin. These models enabled watershed management to look at water quality issues on a more refined temporal and spatial scale than the limited monitoring data. They also provided a means to locate and quantify potential water quality impairments and evaluate the effects of mitigation measures. To support the models, a suite of software tools were developed. including: 1) SARA Timeseries Utility Tool for managing and processing of large model timeseries files, 2) SARA Load Reduction Tool to determine load reductions needed to achieve screening levels for each modeled constituent on a sub-basin basis, and 3) SARA Enhanced BMP Tool to determine the optimal combination of BMP types and units needed to achieve the required load reductions. Using these SARA models and tools, water quality agencies and stormwater professionals can determine the optimal combinations of BMP/LID to accomplish their goals and save substantial stormwater infrastructure and management costs. The tools can also help regulators and permittees evaluate the feasibility of achieving compliance

  2. Model-based comparison of strategies for reduction of stormwater micropollutant emissions

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Sharma, Anitha Kumari; Mikkelsen, Peter Steen

    to improve the recipient quality by reducing the fluxes of heavy metals (copper, zinc) and organic compounds (fluoranthene) to natural waters. MP sources were identified by using GIS land usage data. When comparing the different control strategies, the integrated model showed the greater benefits......Strategies for reduction of micropollutant (MP) emissions from stormwater systems require the comparison of different scenarios including source control, end-of-pipe treatment, or their combination. Dynamic integrated models can be important tools for this comparison, as they can integrate...... the limited data provided by monitoring campaigns and evaluate the performance of different strategies based on model simulation results. This study presents an example where an integrated dynamic model, in combination with stormwater quality measurements, was used to evaluate 6 different strategies...

  3. Effect of aquifer storage and recovery (ASR) on recovered stormwater quality variability.

    Science.gov (United States)

    Page, D W; Peeters, L; Vanderzalm, J; Barry, K; Gonzalez, D

    2017-06-15

    Aquifer Storage and Recovery (ASR) is increasingly being considered as a means of reusing urban stormwater to supplement available urban water resources. Storage of stormwater in an aquifer has been shown to affect water quality but it has also been claimed that storage will also decrease the stormwater quality variability making for improved predictability and management. This study is the first to document the changes in stormwater quality variability as a result of subsurface storage at four full scale ASR sites using advanced statistical techniques. New methods to examine water quality are required as data is often highly left censored and so traditional measures of variability such as the coefficient of variation are inappropriate. It was observed that for some water quality parameters (most notably E. coli) there was a marked improvement of water quality and a significant decrease in variability at all sites. This means that aquifer storage prior to engineered treatment systems may be advantageous in terms of system design to avoid over engineering. For other parameters such as metal(loids)s and nutrients the trend was less clear due to the numerous processes occurring during storage leading to an increase in variability, especially for geogenic metals and metalloids such as iron and arsenic. Depending upon the specific water quality parameters and end use, use of ASR may not have a dampening effect on stormwater quality variability. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Stormwater quality management in rail transportation--past, present and future.

    Science.gov (United States)

    Vo, Phuong Tram; Ngo, Huu Hao; Guo, Wenshan; Zhou, John L; Listowski, Andrzej; Du, Bin; Wei, Qin; Bui, Xuan Thanh

    2015-04-15

    Railways currently play an important role in sustainable transportation systems, owing to their substantial carrying capacity, environmental friendliness and land-saving advantages. Although total pollutant emissions from railway systems are far less than that of automobile vehicles, the pollution from railway operations should not be underestimated. To date, both scientific and practical papers dealing with stormwater management for rail tracks have solely focused on its drainage function. Unlike roadway transport, the potential of stormwater pollution from railway operations is currently mishandled. There have been very few studies into the impact of its operations on water quality. Hence, upon the realisation on the significance of nonpoint source pollution, stormwater management priorities should have been re-evaluated. This paper provides an examination of past and current practices of stormwater management in the railway industry, potential sources of stormwater pollution, obstacles faced in stormwater management and concludes with strategies for future management directions. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Modelling the fate of organic micropollutants in stormwater ponds

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna

    2011-01-01

    ). The four simulated organic stormwater MP (iodopropynyl butylcarbamate — IPBC, benzene, glyphosate and pyrene) were selected according to their different urban sources and environmental fate. This ensures that the results can be extended to other relevant stormwater pollutants. All three models use......Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia...... models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk assessment and a dynamic multimedia fate model (Stormwater Treatment Unit Model for Micro Pollutants — STUMP...

  6. Quantification of uncertainty in modelled partitioning and removal of heavy metals (Cu, Zn) in a stormwater retention pond and a biofilter

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna

    2012-01-01

    Strategies for reduction of micropollutant (MP) discharges from stormwater drainage systems require accurate estimation of the potential MP removal in stormwater treatment systems. However, the high uncertainty commonly affecting stormwater runoff quality modelling also influences stormwater trea...

  7. Green infrastructure retrofits on residential parcels: Ecohydrologic modeling for stormwater design

    Science.gov (United States)

    Miles, B.; Band, L. E.

    2014-12-01

    To meet water quality goals stormwater utilities and not-for-profit watershed organizations in the U.S. are working with citizens to design and implement green infrastructure on residential land. Green infrastructure, as an alternative and complement to traditional (grey) stormwater infrastructure, has the potential to contribute to multiple ecosystem benefits including stormwater volume reduction, carbon sequestration, urban heat island mitigation, and to provide amenities to residents. However, in small (1-10-km2) medium-density urban watersheds with heterogeneous land cover it is unclear whether stormwater retrofits on residential parcels significantly contributes to reduce stormwater volume at the watershed scale. In this paper, we seek to improve understanding of how small-scale redistribution of water at the parcel scale as part of green infrastructure implementation affects urban water budgets and stormwater volume across spatial scales. As study sites we use two medium-density headwater watersheds in Baltimore, MD and Durham, NC. We develop ecohydrology modeling experiments to evaluate the effectiveness of redirecting residential rooftop runoff to un-altered pervious surfaces and to engineered rain gardens to reduce stormwater runoff. As baselines for these experiments, we performed field surveys of residential rooftop hydrologic connectivity to adjacent impervious surfaces, and found low rates of connectivity. Through simulations of pervasive adoption of downspout disconnection to un-altered pervious areas or to rain garden stormwater control measures (SCM) in these catchments, we find that most parcel-scale changes in stormwater fate are attenuated at larger spatial scales and that neither SCM alone is likely to provide significant changes in streamflow at the watershed scale.

  8. Application Of Global Sensitivity Analysis And Uncertainty Quantification In Dynamic Modelling Of Micropollutants In Stormwater Runoff

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Mikkelsen, Peter Steen

    2012-01-01

    of uncertainty in a conceptual lumped dynamic stormwater runoff quality model that is used in a study catchment to estimate (i) copper loads, (ii) compliance with dissolved Cu concentration limits on stormwater discharge and (iii) the fraction of Cu loads potentially intercepted by a planned treatment facility...

  9. Development of an indicator for characterizing particle size distribution and quality of stormwater runoff.

    Science.gov (United States)

    Wang, Qian; Zhang, Qionghua; Dzakpasu, Mawuli; Lian, Bin; Wu, Yaketon; Wang, Xiaochang C

    2018-03-01

    Stormwater particles washed from road-deposited sediments (RDS) are traditionally characterized as either turbidity or total suspended solids (TSS). Although these parameters are influenced by particle sizes, neither of them characterizes the particle size distribution (PSD), which is of great importance in pollutant entrainment and treatment performance. Therefore, the ratio of turbidity to TSS (Tur/TSS) is proposed and validated as a potential surrogate for the bulk PSD and quality of stormwater runoff. The results show an increasing trend of Tur/TSS with finer sizes of both RDS and stormwater runoff. Taking heavy metals (HMs, including Cu, Pb, Zn, Cr, and Ni) as typical pollutants in stormwater runoff, the concentrations (mg/kg) were found to vary significantly during rainfall events and tended to increase significantly with Tur/TSS. Therefore, Tur/TSS is a valid parameter to characterize the PSD and quality of stormwater. The high negative correlations between Tur/TSS and rainfall intensity demonstrate that stormwater with higher Tur/TSS generates under low intensity and, thus, characterizes small volume, finer sizes, weak settleability, greater mobility, and bioavailability. Conversely, stormwater with lower Tur/TSS generates under high intensity and, thus, characterizes large volume, coarser sizes, good settleability, low mobility, and bioavailability. These results highlight the need to control stormwater with high Tur/TSS. Moreover, Tur/TSS can aid the selection of stormwater control measures with appropriate detention storage, pollution loading, and removal effectiveness of particles.

  10. Mapping Stormwater Retention in the Cities: A Flexible Model for Data-Scarce Environments

    Science.gov (United States)

    Hamel, P.; Keeler, B.

    2014-12-01

    There is a growing demand for understanding and mapping urban hydrological ecosystem services, including stormwater retention for flood mitigation and water quality improvement. Progress in integrated urban water management and low impact development in Western countries increased our understanding of how grey and green infrastructure interact to enhance these services. However, valuation methods that account for a diverse group of beneficiaries are typically not made explicit in urban water management models. In addition, the lack of spatial data on the stormwater network in developing countries makes it challenging to apply state-of-the-art models needed to understand both the magnitude and spatial distribution of the stormwater retention service. To fill this gap, we designed the Urban InVEST stormwater retention model, a tool that complements the suite of InVEST software models to quantify and map ecosystem services. We present the model structure emphasizing the data requirements from a user's perspective and the representation of services and beneficiaries. We illustrate the model application with two case studies in a data-rich (New York City) and data-scarce environment. We discuss the difference in the level of information obtained when less resources (data, time, or expertise) are available, and how this affects multiple ecosystem service assessments that the tool is ultimately designed for.

  11. Winter Performance of Inter-Locking Pavers—Stormwater Quantity and Quality

    Directory of Open Access Journals (Sweden)

    Angus Chu

    2012-12-01

    Full Text Available This study examined the effectiveness of open-joint inter-locking pavers in a permeable pavement in cold (winter conditions. A field-scale inter-locking paver cell (UNI Eco-Optiloc® was built to evaluate the hydraulic performance and water quality improvements experienced during freeze-thaw and frozen conditions in Calgary, Alberta, Canada. Hydraulic performance was assessed using stormwater runoff reduction (peaks and volumes and surface infiltration capacity. Water quality performance for removal of total suspended solids (TSS, total nitrogen (TN, total phosphorous (TP and three heavy metals: copper, lead and zinc, was assessed. Results from the study demonstrated that the inter-locking pavers were effective in attenuating stormwater runoff peak volumes. The surface infiltration capacity decreased significantly due to the deposition of sanding and de-icing materials on the pavement surface during winter operation. Infiltrated stormwater was stored and treated within the pavement structure, which showed removal rates of 91% for TSS, 78% for TP, 6% for TN, 68% for zinc, 69% for copper and 55% for lead.

  12. [Research on spatial differentiation of urban stormwater runoff quality by source area monitoring].

    Science.gov (United States)

    Li, Li-Qing; Zhu, Ren-Xiao; Guo, Shu-Gang; Yin, Cheng-Qing

    2010-12-01

    Runoff samples were collected from 14 source areas in Hanyang district during four rain events in an attempt to investigate the spatial differentiation and influencing factors of urban stormwater runoff quality. The outcomes are expected to offer practical guidance in sources control of urban runoff pollution. The results revealed that particle-bound proportion of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in stormwater runoff were 58% +/- 17%, 65% +/- 13% and 92% +/- 6%, respectively. The fractions of ammonia, nitrate and dissolved organic nitrogen were homogeneous in dissolved nitrogen composition. Urban surface function, traffic volume, land use, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. The highest magnitude of urban stormwater runoff pollution was expected in the old urban residential area, followed by general residential with restaurants, commercial and transport area, new developments and green land. In addition, the magnitude of road stormwater runoff pollution is positively correlated to traffic volume, in the following order: the first trunk road > the second trunk road > minor road. Street sweeping and critical source areas controls should be implemented to mitigate the adverse effects of urban stormwater runoff on receive waters.

  13. Hydrodynamic modelling of the influence of stormwater and combined sewer overflows on receiving water quality: Benzo(a)pyrene and copper risks to recreational water.

    Science.gov (United States)

    Björklund, Karin; Bondelind, Mia; Karlsson, Anna; Karlsson, Dick; Sokolova, Ekaterina

    2018-02-01

    The risk from chemical substances in surface waters is often increased during wet weather, due to surface runoff, combined sewer overflows (CSOs) and erosion of contaminated land. There are strong incentives to improve the quality of surface waters affected by human activities, not only from ecotoxicity and ecosystem health perspectives, but also for drinking water and recreational purposes. The aim of this study is to investigate the influence of urban stormwater discharges and CSOs on receiving water in the context of chemical health risks and recreational water quality. Transport of copper (Cu) and benzo[a]pyrene (BaP) in the Göta River (Sweden) was simulated using a hydrodynamic model. Within the 16 km modelled section, 35 CSO and 16 urban stormwater point discharges, as well as the effluent from a major wastewater treatment plant, were included. Pollutant concentrations in the river were simulated for two rain events and investigated at 13 suggested bathing sites. The simulations indicate that water quality guideline values for Cu are exceeded at several sites, and that stormwater discharges generally give rise to higher Cu and BaP concentrations than CSOs. Due to the location of point discharges and the river current inhibiting lateral mixing, the north shore of the river is better suited for bathing. Peak concentrations have a short duration; increased concentrations of the pollutants may however be present for several days after a rain event. Monitoring of river water quality indicates that simulated Cu and BaP concentrations are in the same order of magnitude as measured concentrations. It is concluded that hydrodynamic modelling is a useful tool for identifying suitable bathing sites in urban surface waters and areas of concern where mitigation measures should be implemented to improve water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of stormwater micropollutant source control and end-of-pipe control strategies using an uncertainty-calibrated integrated dynamic simulation model

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Sharma, Anitha Kumari; Ledin, Anna

    2015-01-01

    (copper, zinc) and organic compounds (fluoranthene). MP fluxes were estimated by using an integrated dynamic model, in combination with stormwater quality measurements. MP sources were identified by using GIS land usage data, runoff quality was simulated by using a conceptual accumulation/washoff model......The estimation of micropollutant (MP) fluxes in stormwater systems is a fundamental prerequisite when preparing strategies to reduce stormwater MP discharges to natural waters. Dynamic integrated models can be important tools in this step, as they can be used to integrate the limited data provided...... by monitoring campaigns and to evaluate the performance of different strategies based on model simulation results. This study presents an example where six different control strategies, including both source-control and end-of-pipe treatment, were compared. The comparison focused on fluxes of heavy metals...

  15. Integrated modelling of Priority Pollutants in stormwater systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Ledin, Anna; Mikkelsen, Peter Steen

    2012-01-01

    The increasing focus on urban diffuse sources of Priority Pollutants (PPs) has highlighted stormwater as an important contributor to contamination of natural water bodies. This study presents an example of an integrated model developed to be able to quantify PP loads discharged by stormwater...

  16. Impacts of using rainwater tanks on stormwater harvesting and runoff quality.

    Science.gov (United States)

    Khastagir, A; Jayasuriya, L N N

    2010-01-01

    The popularity of rainwater use in Australia depends completely on the individual householder's preference. The quality of reticulated water supplies in major cities of Australia is far superior to water stored in rainwater tanks. However, due to persistent drought and the implementation of stringent water restrictions, cities such as Melbourne have encouraged the use of rainwater harvesting within the property. The benefits of trapping stormwater within a property and using it effectively also reduce polluted runoff excess reaching receiving water. The study reported herein focuses on the effectiveness of rainwater tanks as a potential water sensitive urban design element used to manage stormwater using the MUSIC model. The study shows that the installation of a 3 kL tank reduces hydraulic loading by 75%, Total Suspended Solids by 97%, Total Phosphorous by 90% and Total Nitrogen by 81% if the rainwater stored in the tank is used to meet the indoor demand (toilet flushing and laundry use) as well as the outdoor demand (garden watering).

  17. Urban Stormwater Quality: Linking Pesticide Variability To Our Sustainable Water Future

    Science.gov (United States)

    Rippy, M.; Deletic, A.; Gernjak, W.

    2015-12-01

    Climate change and global population growth demand creative, multidisciplinary, and multi-benefit approaches for sustaining adequate fresh water resources and protecting ecosystem health. Currently, a driving factor of aquatic ecosystem degradation (stormwater) is also one of the largest untapped urban freshwater resources. This suggests that ecosystem protection and potable water security might both be achieved via treating and capturing stormwater for human use (e.g., potable substitution). The viability of such a scheme, however, depends on 1) initial stormwater quality (e.g., the contaminants present and their associated human/environmental health risks), 2) the spatial and temporal variability of contaminants in stormwater, and 3) the capacity of existing technologies to treat those contaminants to fit for purpose standards. Here we present results from a four year study of urban stormwater conducted across ten catchments and four states in Australia that addresses these three issues relative to stormwater pesticides. In total, 19 pesticides were detected across all sites and times. In general, pesticide concentrations were lower than has been reported in other countries, including the United States, Canada and Europe. This is reflected in few exceedences of public health (< 1%) and aquatic ecosystem standards (0% for invertebrates and fish, < 1% for algae and plants). Interestingly, pesticide patterns were found to be stable across seasons, and years, but varied across catchments. These catchment-specific fingerprints may reflect preferential commercial product use, as they map closely to co-occurrence patterns in registered Australian products. Importantly, the presence of catchment-specific pesticide variability has clear management implications; namely, urban stormwater must be managed at the catchment level and target local contaminant suites in order to best achieve desired human use and environmental protection standards.

  18. Nonstructural urban stormwater quality measures: building a knowledge base to improve their use.

    Science.gov (United States)

    Taylor, André C; Fletcher, Tim D

    2007-05-01

    This article summarizes a research project that investigated the use, performance, cost, and evaluation of nonstructural measures to improve urban stormwater quality. A survey of urban stormwater managers from Australia, New Zealand, and the United States revealed a widespread trend of increasing use of nonstructural measures among leading stormwater management agencies, with at least 76% of 41 types of nonstructural measures being found to be increasing in use. Data gathered from the survey, an international literature review, and a multicriteria analysis highlighted four nonstructural measures of greatest potential value: mandatory town planning controls that promote the adoption of low-impact development principles and techniques; development of strategic urban stormwater management plans for a city, shire, or catchment; stormwater management measures and programs for construction/building sites; and stormwater management activities related to municipal maintenance operations such as maintenance of the stormwater drainage network and manual litter collections. Knowledge gained on the use and performance of nonstructural measures from the survey, literature review, and three trial evaluation projects was used to develop tailored monitoring and evaluation guidelines for these types of measure. These guidelines incorporate a new evaluation framework based on seven alternative styles of evaluation that range from simply monitoring whether a nonstructural measure has been fully implemented to monitoring its impact on waterway health. This research helps to build the stormwater management industry's knowledge base concerning nonstructural measures and provides a practical tool to address common impediments associated with monitoring and evaluating the performance and cost of these measures.

  19. Multiobjective optimization of low impact development stormwater controls

    Science.gov (United States)

    Eckart, Kyle; McPhee, Zach; Bolisetti, Tirupati

    2018-07-01

    Green infrastructure such as Low Impact Development (LID) controls are being employed to manage the urban stormwater and restore the predevelopment hydrological conditions besides improving the stormwater runoff water quality. Since runoff generation and infiltration processes are nonlinear, there is a need for identifying optimal combination of LID controls. A coupled optimization-simulation model was developed by linking the U.S. EPA Stormwater Management Model (SWMM) to the Borg Multiobjective Evolutionary Algorithm (Borg MOEA). The coupled model is capable of performing multiobjective optimization which uses SWMM simulations as a tool to evaluate potential solutions to the optimization problem. The optimization-simulation tool was used to evaluate low impact development (LID) stormwater controls. A SWMM model was developed, calibrated, and validated for a sewershed in Windsor, Ontario and LID stormwater controls were tested for three different return periods. LID implementation strategies were optimized using the optimization-simulation model for five different implementation scenarios for each of the three storm events with the objectives of minimizing peak flow in the stormsewers, reducing total runoff, and minimizing cost. For the sewershed in Windsor, Ontario, the peak run off and total volume of the runoff were found to reduce by 13% and 29%, respectively.

  20. Toward city-scale water quality control: building a theory for smart stormwater systems

    Science.gov (United States)

    Kerkez, B.; Mullapudi, A. M.; Wong, B. P.

    2016-12-01

    Urban stormwater systems are rarely designed as actual systems. Rather, it is often assumed that individual Best Management Practices (BMPs) will add up to achieve desired watershed outcomes. Given the rise of BMPs and green infrastructure, we ask: does doing "best" at the local scale guarantee the "best" at the global scale? Existing studies suggest that the system-level performance of distributed stormwater practices may actually adversely impact watersheds by increasing downstream erosion and reducing water quality. Optimizing spatial placement may not be sufficient, however, since precipitation variability and other sources of uncertainty can drive the overall system into undesirable states. To that end, it is also important to control the temporal behavior of the system, which can be achieved by equipping stormwater elements (ponds, wetlands, basins, bioswales, etc.) with "smart" sensors and valves. Rather than building new infrastructure, this permits for existing assets to be repurposed and controlled to adapt to individual storm events. While we have learned how to build and deploy the necessary sensing and control technologies, we do not have a framework or theory that combines our knowledge of hydrology, hydraulics, water quality and control. We discuss the development of such a framework and investigate how existing water domain knowledge can be transferred into a system-theoretic context to enable real-time, city-scale stormwater control. We apply this framework to water quality control in an urban watershed in southeast Michigan, which has been heavily instrumented and retrofitted for control over the past year.

  1. MOBIDIC-U: a watershed-scale model for stormwater attenuation through green infrastructures design

    Science.gov (United States)

    Ercolani, G.; Masseroni, D.; Chiaradia, E. A.; Bischetti, G. B.; Gandolfi, C.; Castelli, F.

    2017-12-01

    Surface water degradation resulting from the effects of urbanization on hydrology, water quality, habitat as well as ecological and environmental compartments represents an issue of primary focus for multiple agencies at the national, regional and local levels. Many management actions are needed throughout urban watersheds to achieve the desired effects on flow mitigation and pollutant reduction, but no single standardized solution can be effective in all locations. In this work, the distributed hydrological model MOBIDIC, already applied for hydrological balance simulations and flood prevention in different Italian regions, is adapted to the urban context (MOBIDIC-U) in order to evaluate alternative plans for stormwater quality management and flow abatement techniques through the adoption of green infrastructures (GIs). In particular the new modules included in MOBIDIC-U allow to (i) automatically define the upstream flow path as well as watershed boundary starting from a selected watershed closure point on the urban drainage network and (ii) obtain suitable graphical outputs for the visualization of flow peak and volume attenuation at the closure point. Moreover, MOBIDIC-U provides a public domain tool capable of evaluating the optimal location, type, and cost of the stormwater management practices needed to meet water quantity and quality goals. Despite the scalability of the model to different urban contexts, the current version of MOBIDIC-U has been developed for the area of the metropolitan city of Milan, Northern Italy. The model is implemented on a GIS platform, which already contains (i) the structure of the urban drainage network of the metropolitan city of Milan; (ii) the database of actual geomorphological and meteorological data for the previous domain (iii) the list of potential GIs, their standard size, installation and maintenance costs. Therefore, MOBIDIC-U provides an easy to use tool to local professionals to design and evaluate urban stormwater

  2. Urban stormwater harvesting and reuse: a probe into the chemical, toxicology and microbiological contaminants in water quality.

    Science.gov (United States)

    Chong, Meng Nan; Sidhu, Jatinder; Aryal, Rupak; Tang, Janet; Gernjak, Wolfgang; Escher, Beate; Toze, Simon

    2013-08-01

    Stormwater is one of the last major untapped urban water resources that can be exploited as an alternative water source in Australia. The information in the current Australian Guidelines for Water Recycling relating to stormwater harvesting and reuse only emphasises on a limited number of stormwater quality parameters. In order to supply stormwater as a source for higher value end-uses, a more comprehensive assessment on the potential public health risks has to be undertaken. Owing to the stochastic variations in rainfall, catchment hydrology and also the types of non-point pollution sources that can provide contaminants relating to different anthropogenic activities and catchment land uses, the characterisation of public health risks in stormwater is complex, tedious and not always possible through the conventional detection and analytical methods. In this study, a holistic approach was undertaken to assess the potential public health risks in urban stormwater samples from a medium-density residential catchment. A combined chemical-toxicological assessment was used to characterise the potential health risks arising from chemical contaminants, while a combination of standard culture methods and quantitative polymerase chain reaction (qPCR) methods was used for detection and quantification of faecal indicator bacteria (FIB) and pathogens in urban stormwater. Results showed that the concentration of chemical contaminants and associated toxicity were relatively low when benchmarked against other alternative water sources such as recycled wastewater. However, the concentrations of heavy metals particularly cadmium and lead have exceeded the Australian guideline values, indicating potential public health risks. Also, high numbers of FIB were detected in urban stormwater samples obtained from wet weather events. In addition, qPCR detection of human-related pathogens suggested there are frequent sewage ingressions into the urban stormwater runoff during wet weather events

  3. Best practices for quality management of stormwater pipe construction : [summary].

    Science.gov (United States)

    2014-02-01

    Although largely unseen, stormwater pipe : systems are integral and important features : of the transportation network. Stormwater : systems support the safety and integrity of : roadways by directing stormwater away from : roadway structures to disc...

  4. The role of trees in urban stormwater management

    Science.gov (United States)

    Urban impervious surfaces convert precipitation to stormwater runoff, which causes water quality and quantity problems. While traditional stormwater management has relied on gray infrastructure such as piped conveyances to collect and convey stormwater to wastewater treatment fac...

  5. [Research on evaluation of water quality of Beijing urban stormwater runoff].

    Science.gov (United States)

    Hou, Pei-Qiang; Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Zhou, Xiao-Ping

    2012-01-01

    The natural rainwater and stormwater runoff samples from three underlying surfaces (rooftop, campus road and ring road) were sampled and analyzed from July to October, 2010 in Beijing. Eight rainfall events were collected totally and thirteen water quality parameters were measured in each event. Grey relationship analysis and principal component analysis were applied to assess composite water quality and identify the main pollution sources of stormwater runoff. The results show that the composite water quality of ring road runoff is mostly polluted, and then is rooftop runoff, campus road runoff and rainwater, respectively. The composite water quality of ring road runoff is inferior to V class of surface water, while rooftop runoff, campus road runoff and rainwater are in II class of surface water. The mean concentration of TN and NH4(+)-N in rainwater and runoff is 5.49-11.75 mg x L(-1) and 2.90-5.67 mg x L(-1), respectively, indicating that rainwater and runoff are polluted by nitrogen (N). Two potential pollution sources are identified in ring road runoff: (1) P, SS and organic pollutant are possibly related to debris which is from vehicle tyre and material of ring road; (2) N and dissolved metal have relations with automobile exhaust emissions and bulk deposition.

  6. An Open-Source Auto-Calibration Routine Supporting the Stormwater Management Model

    Science.gov (United States)

    Tiernan, E. D.; Hodges, B. R.

    2017-12-01

    The stormwater management model (SWMM) is a clustered model that relies on subcatchment-averaged parameter assignments to correctly capture catchment stormwater runoff behavior. Model calibration is considered a critical step for SWMM performance, an arduous task that most stormwater management designers undertake manually. This research presents an open-source, automated calibration routine that increases the efficiency and accuracy of the model calibration process. The routine makes use of a preliminary sensitivity analysis to reduce the dimensions of the parameter space, at which point a multi-objective function, genetic algorithm (modified Non-dominated Sorting Genetic Algorithm II) determines the Pareto front for the objective functions within the parameter space. The solutions on this Pareto front represent the optimized parameter value sets for the catchment behavior that could not have been reasonably obtained through manual calibration.

  7. Numerical modelling of hydro-morphological processes dominated by fine suspended sediment in a stormwater pond

    Science.gov (United States)

    Guan, Mingfu; Ahilan, Sangaralingam; Yu, Dapeng; Peng, Yong; Wright, Nigel

    2018-01-01

    Fine sediment plays crucial and multiple roles in the hydrological, ecological and geomorphological functioning of river systems. This study employs a two-dimensional (2D) numerical model to track the hydro-morphological processes dominated by fine suspended sediment, including the prediction of sediment concentration in flow bodies, and erosion and deposition caused by sediment transport. The model is governed by 2D full shallow water equations with which an advection-diffusion equation for fine sediment is coupled. Bed erosion and sedimentation are updated by a bed deformation model based on local sediment entrainment and settling flux in flow bodies. The model is initially validated with the three laboratory-scale experimental events where suspended load plays a dominant role. Satisfactory simulation results confirm the model's capability in capturing hydro-morphodynamic processes dominated by fine suspended sediment at laboratory-scale. Applications to sedimentation in a stormwater pond are conducted to develop the process-based understanding of fine sediment dynamics over a variety of flow conditions. Urban flows with 5-year, 30-year and 100-year return period and the extreme flood event in 2012 are simulated. The modelled results deliver a step change in understanding fine sediment dynamics in stormwater ponds. The model is capable of quantitatively simulating and qualitatively assessing the performance of a stormwater pond in managing urban water quantity and quality.

  8. Best practices for quality management of stormwater pipe construction.

    Science.gov (United States)

    2014-02-01

    Stormwater pipe systems are integral features of transportation construction projects. Pipe culverts : direct stormwater away from roadway structures and towards designated discharge areas. The improper : installation of a pipe culvert can result in ...

  9. Modelling heavy metals build-up on urban road surfaces for effective stormwater reuse strategy implementation

    International Nuclear Information System (INIS)

    Hong, Nian; Zhu, Panfeng; Liu, An

    2017-01-01

    Urban road stormwater is an alternative water resource to mitigate water shortage issues in the worldwide. Heavy metals deposited (build-up) on urban road surface can enter road stormwater runoff, undermining stormwater reuse safety. As heavy metal build-up loads perform high variabilities in terms of spatial distribution and is strongly influenced by surrounding land uses, it is essential to develop an approach to identify hot-spots where stormwater runoff could include high heavy metal concentrations and hence cannot be reused if it is not properly treated. This study developed a robust modelling approach to estimating heavy metal build-up loads on urban roads using land use fractions (representing percentages of land uses within a given area) by an artificial neural network (ANN) model technique. Based on the modelling results, a series of heavy metal load spatial distribution maps and a comprehensive ecological risk map were generated. These maps provided a visualization platform to identify priority areas where the stormwater can be safely reused. Additionally, these maps can be utilized as an urban land use planning tool in the context of effective stormwater reuse strategy implementation. - Highlights: • A model was developed to simulate heavy metal build-up loads on urban roads. • This model is based on artificial neural networks. • Land use fractions was used to model build-up loads on different particle sizes. • The maps of heavy metal spatial distribution and ecological risk were generated. • This model can be used for effective stormwater reuse strategy implementation. - Development of a robust modelling approach to mapping heavy metals build-up and their ecological risks for stormwater reuse safety.

  10. Monitoring of priority pollutants in dynamic stormwater discharges from urban areas

    DEFF Research Database (Denmark)

    Birch, Heidi

    The European Water Framework Directive (WFD) from 2000 has put focus on the chemical status of surface waters by the specified Environmental Quality Standard (EQSs) and the requirements for monitoring of surface water quality throughout Europe. When considering the water quality of urban stormwater...... runoff it is evident that surface waters receiving large amount of urban stormwater runoff will be at risk of failing to meet the EQSs. Therefore stormwater treatment is crucial. However, as stormwater quality varies orders of magnitude between sites, stormwater monitoring is important in order to design...... discharges. Sorption of pollutants to particulate matter and dissolved organic carbon is important for both the toxicity of the pollutants and for removal in stormwater treatment systems. Furthermore sorption is important for sampling using the most common types of passive samplers, which are based on uptake...

  11. Pollution from Urban Stormwater Infiltration

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Weyer, G.; Berry, C.

    1994-01-01

    Stormwater infiltration in urban areas gives cause for concern with regard to the risk of soil and groundwater pollution. Compared with conventional storm drainage, infiltration introduces different and widely unknown conditions governing the impacts and the fate of the pollutants......, and it is therefore difficult to assess the overall environmental impact. This paper gives a state of the art assessment of the water quality aspects of stormwater infiltration and proposes ways of managing the inherent problems. The major stormwater pollution sources are highlighted and the different processes...

  12. Stormwater infiltration and the 'urban karst' - A review

    Science.gov (United States)

    Bonneau, Jeremie; Fletcher, Tim D.; Costelloe, Justin F.; Burns, Matthew J.

    2017-09-01

    The covering of native soils with impervious surfaces (e.g. roofs, roads, and pavement) prevents infiltration of rainfall into the ground, resulting in increased surface runoff and decreased groundwater recharge. When this excess water is managed using stormwater drainage systems, flow and water quality regimes of urban streams are severely altered, leading to the degradation of their ecosystems. Urban streams restoration requires alternative approaches towards stormwater management, which aim to restore the flow regime towards pre-development conditions. The practice of stormwater infiltration-achieved using a range of stormwater source-control measures (SCMs)-is central to restoring baseflow. Despite this, little is known about what happens to the infiltrated water. Current knowledge about the impact of stormwater infiltration on flow regimes was reviewed. Infiltration systems were found to be efficient at attenuating high-flow hydrology (reducing peak magnitudes and frequencies) at a range of scales (parcel, streetscape, catchment). Several modelling studies predict a positive impact of stormwater infiltration on baseflow, and empirical evidence is emerging, but the fate of infiltrated stormwater remains unclear. It is not known how infiltrated water travels along the subsurface pathways that characterise the urban environment, in particular the 'urban karst', which results from networks of human-made subsurface pathways, e.g. stormwater and sanitary sewer pipes and associated high permeability trenches. Seepage of groundwater into and around such pipes is possible, meaning some infiltrated stormwater could travel along artificial pathways. The catchment-scale ability of infiltration systems to restore groundwater recharge and baseflow is thus ambiguous. Further understanding of the fate of infiltrated stormwater is required to ensure infiltration systems deliver optimal outcomes for waterway flow regimes.

  13. Summary of urban stormwater quality in Albuquerque, New Mexico, 2003-12

    Science.gov (United States)

    Storms, Erik F.; Oelsner, Gretchen P.; Locke, Evan A.; Stevens, Michael R.; Romero, Orlando C.

    2015-01-01

    Urban stormwater in the Albuquerque metropolitan area was sampled by the U.S. Geological Survey in cooperation with the City of Albuquerque, the Albuquerque Metropolitan Arroyo Flood Control Authority, the New Mexico Department of Transportation, and the University of New Mexico. Stormwater was sampled from a network of monitoring stations from 2003 to 2012 by following regulatory requirements for the National Pollutant Discharge Elimination System stormwater permit. During this period, stormwater was sampled in the Albuquerque metropolitan area at outfalls from nine drainage basins with residential, industrial, commercial, agricultural, and undeveloped land uses. Stormwater samples were analyzed for selected physical and chemical characteristics, nutrients, major ions, metals, organic compounds, and bacteria.

  14. Assessment of Drywells as Effective Tools for Stormwater Management and Aquifer Recharge: Results of a Two-Year Field and Numerical Modeling Study

    Science.gov (United States)

    Edwards, E.; Washburn, B.; Harter, T.; Fogg, G. E.; Nelson, C.; Lock, B.; Li, X.

    2016-12-01

    Drywells are gravity-fed, excavated pits with perforated casings used to facilitate stormwater infiltration and groundwater recharge in areas with low permeability soils or cover. Stormwater runoff that would otherwise be routed to streams or drains in urban areas can be used as a source of aquifer recharge, potentially mitigating the effects of drought and harm to natural water bodies. However, the potential for groundwater contamination caused by urban runoff bypassing surface soil and near surface sediment attenuation processes has prevented more widespread use of drywells as a recharge mechanism. A field study was conducted in Elk Grove, CA, to determine the effects of drywell-induced stormwater infiltration on the local hydrogeologic system. Two drywells 13.5 meters in depth were constructed for the project: one in a preexisting drainage basin fed by residential lots, and one at an industrial site. Both sites were outfitted with vegetated pretreatments, and upgradient and downgradient groundwater monitoring wells. Site stormwater and groundwater were sampled between November, 2014, and May, 2016, and analyzed for contaminants. Results of water quality sampling have been statistically analyzed for trends and used to determine the contaminants of interest and the concentrations of these contaminants in influent stormwater. The fate and transport of these contaminants have been simulated using a 1D variably saturated flow and transport model and site specific parameters to predict long-term effects of stormwater infiltration on the surrounding hydrogeologic system. The potential for remobilization of geogenic heavy metals from changes in subsurface hydrochemistry caused by drywell infiltration have also been assessed. The results of the field study and numerical modeling assessment indicate that the study's drywells do not pose a long-term threat to groundwater quality and may be an effective source of aquifer recharge and tool for urban stormwater management.

  15. Monitoring of stormwater between 2002 and 2010. What is the evolution of stormwater quality?

    OpenAIRE

    Deffontis, Stéphanie; Vialle, Claire; Sablayrolles, Caroline; Breton, Audrey; Vignoles, Christian; Montrejaud-Vignoles, Mireille

    2016-01-01

    The city of Toulouse with its separate storm sewer system is ideal for studying stormwater. That is why since 2002, three stormwater sampling campaigns were conducted. Samples were taken from the outlets of two storm drains located in heavily and moderately urbanized areas. Sampling was undertaken during wet weather and dry weather during the year 2002 for the first campaign, during the year 2007 for the second one and during the year 2010 for the last one. The overall pollution parameters we...

  16. Legacies in urban stormwater management and the effect on gully formation in a Piedmont region of the US Mid Atlantic

    Science.gov (United States)

    Claessens, L.; Wehner, C. E.; Santangelo, T.; Soroka, A.

    2013-12-01

    Impervious surfaces in urban areas lead to increased stormwater runoff and produce flashier hydrology which can lead to stream bank erosion and increased sediment delivery to downstream ecosystems. Since the early 1990s the EPA has enforced stormwater regulation and nowadays, practices must be implemented that minimize water quality impacts. However, legacies of stormwater management in pre-regulated areas could be an important factor in the degradation of water quality. From a larger watershed perspective there is therefore a disconnect between investments in newly developed areas where water quality deterioration is perhaps minor vs. minimal investments in pre-regulation areas where water quality deterioration is perhaps major. In this study we examine such legacies in urban stormwater management and the effect on gully formation, with the objective to identify hotspots of water quality degradation and optimal locations for reducing water quality impacts. Our research primarily focuses on older developments (pre-1990s) in the Piedmont region of the Christina River basin (CRB), a tributary of the Delaware River. Many of the streams in the CRB have impaired water quality. We used a combination of methodological approaches, including historical surveys (aerial imagery, land-use maps, stormwater design reports), field observations (WQ sampling, topographic surveys), hydrological modeling, and geospatial analysis. We developed a simple GIS-based model that predicts susceptibility for gully erosion. The model calculates runoff (using Curve Number method), performs hydrologic routing, and based on topographic indices it estimates gully susceptibility for stream reaches draining urban developments. Our results show that the gully susceptibility model produces accurate predictions, including the location of deeply incised gullies. Through geospatial analysis we also identify benefits of structural stormwater control measures and BMPs, and the role of spatial variable land

  17. Validating Stormwater system simulations in Edmonton Using MIKE URBAN

    Science.gov (United States)

    Gaafar, M.

    2016-12-01

    Many municipalities use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and the consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers and thus freshwater sources. This study was intended to investigate decay of NH2Cl in stormwater networks starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers. The presented work here is only the first stage of this study. The 30th Avenue basin in Edmonton was chosen as a case study, because it has various land-use types including commercial, industrial, residential and parks. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. However, this model was built to the trunk level where only the main drainage features were presented. Also, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating the real stormwater network. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. To calibrate and validate this model, data of two temporary pipe flow monitoring stations was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two

  18. Modelling heavy metals build-up on urban road surfaces for effective stormwater reuse strategy implementation.

    Science.gov (United States)

    Hong, Nian; Zhu, Panfeng; Liu, An

    2017-12-01

    Urban road stormwater is an alternative water resource to mitigate water shortage issues in the worldwide. Heavy metals deposited (build-up) on urban road surface can enter road stormwater runoff, undermining stormwater reuse safety. As heavy metal build-up loads perform high variabilities in terms of spatial distribution and is strongly influenced by surrounding land uses, it is essential to develop an approach to identify hot-spots where stormwater runoff could include high heavy metal concentrations and hence cannot be reused if it is not properly treated. This study developed a robust modelling approach to estimating heavy metal build-up loads on urban roads using land use fractions (representing percentages of land uses within a given area) by an artificial neural network (ANN) model technique. Based on the modelling results, a series of heavy metal load spatial distribution maps and a comprehensive ecological risk map were generated. These maps provided a visualization platform to identify priority areas where the stormwater can be safely reused. Additionally, these maps can be utilized as an urban land use planning tool in the context of effective stormwater reuse strategy implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Stormwater management impacts on urban stream water quality and quantity during and after development in Clarksburg, MD

    Science.gov (United States)

    Loperfido, J. V.; Noe, G. B.; Jarnagin, S.; Mohamoud, Y. M.; Van Ness, K.; Hogan, D. M.

    2012-12-01

    Urbanization and urban land use leads to degradation of local stream habitat and 'urban stream syndrome.' Best Management Practices (BMPs) are often used in an attempt to mitigate the impact of urban land use on stream water quality and quantity. Traditional development has employed stormwater BMPs that were placed in a centralized manner located either in the stream channel or near the riparian zone to treat stormwater runoff from large drainage areas; however, urban streams have largely remained impaired. Recently, distributed placement of BMPs throughout the landscape has been implemented in an attempt to detain, treat, and infiltrate stormwater runoff from smaller drainage areas near its source. Despite increasing implementation of distributed BMPs, little has been reported on the catchment-scale (1-10 km^2) performance of distributed BMPs and how they compare to centralized BMPs. The Clarksburg Special Protection Area (CSPA), located in the Washington, DC exurbs within the larger Chesapeake Bay watershed, is undergoing rapid urbanization and employs distributed BMPs on the landscape that treat small drainage areas with the goal of preserving high-quality stream resources in the area. In addition, the presence of a nearby traditionally developed (centralized BMPs) catchment and an undeveloped forested catchment makes the CSPA an ideal setting to understand how the best available stormwater management technology implemented during and after development affects stream water quality and quantity through a comparative watershed analysis. The Clarksburg Integrated Monitoring Partnership is a consortium of local and federal agencies and universities that conducts research in the CSPA including: monitoring of stream water quality, geomorphology, and biology; analysis of stream hydrological and water quality data; and GIS mapping and analysis of land cover, elevation change and BMP implementation data. Here, the impacts of urbanization on stream water quantity

  20. Summary and evaluation of the quality of stormwater in Denver, Colorado, 2006-2010

    Science.gov (United States)

    Stevens, Michael R.; Slaughter, Cecil B.

    2012-01-01

    Stormwater in the Denver area was sampled by the U.S. Geological Survey, in cooperation with the Urban Drainage and Flood Control District, in a network of 5 monitoring stations - 3 on the South Platte River and 2 on streams tributary to the South Platte River, Sand Creek, and Toll Gate Creek beginning in January 2006 and continuing through December 2010. Stormwater samples were analyzed at the U.S. Geological Survey National Water Quality Laboratory during 2006-2010 for water-quality properties such as pH, specific conductance, hardness, and residue on evaporation at 105 degrees Celsius; for constituents such as major ions (calcium, magnesium), organic carbon and nutrients, including ammonia plus organic nitrogen, ammonia, dissolved nitrite plus nitrate, total phosphorus, and orthophosphate; and for metals, including total recoverable and dissolved phases of copper, lead, manganese, and zinc. Samples collected during selected storms were also analyzed for bacteriological indicators such as Escherichia coli and fecal coliform at the Metro Wastewater Reclamation Laboratory. About 200 stormwater samples collected during storms characterize the quality of storm runoff during 2006-2010. In general, the quality of stormwater (2006-2010) has improved for many water-quality constituents, many of which had lower values and concentrations than those in stormwater collected in 2002-2005. However, the physical basis, processes, and the role of dilution that account for these changes are complex and beyond the scope of this report. The water-quality sampling results indicate few exceptions to standards except for dissolved manganese, dissolved zinc, and Escherichia coli. Stormwater collected at the South Platte River below Union Avenue station had about 10 percent acute or chronic dissolved manganese exceedances in samples; samples collected at the South Platte River at Denver station had less than 5 percent acute or chronic dissolved manganese exceedances. In contrast

  1. Probabilistic Determination of Green Infrastructure Pollutant Removal Rates from the International Stormwater BMP Database

    Science.gov (United States)

    Gilliom, R.; Hogue, T. S.; McCray, J. E.

    2017-12-01

    There is a need for improved parameterization of stormwater best management practices (BMP) performance estimates to improve modeling of urban hydrology, planning and design of green infrastructure projects, and water quality crediting for stormwater management. Percent removal is commonly used to estimate BMP pollutant removal efficiency, but there is general agreement that this approach has significant uncertainties and is easily affected by site-specific factors. Additionally, some fraction of monitored BMPs have negative percent removal, so it is important to understand the probability that a BMP will provide the desired water quality function versus exacerbating water quality problems. The widely used k-C* equation has shown to provide a more adaptable and accurate method to model BMP contaminant attenuation, and previous work has begun to evaluate the strengths and weaknesses of the k-C* method. However, no systematic method exists for obtaining first-order removal rate constants needed to use the k-C* equation for stormwater BMPs; thus there is minimal application of the method. The current research analyzes existing water quality data in the International Stormwater BMP Database to provide screening-level parameterization of the k-C* equation for selected BMP types and analysis of factors that skew the distribution of efficiency estimates from the database. Results illustrate that while certain BMPs are more likely to provide desired contaminant removal than others, site- and design-specific factors strongly influence performance. For example, bioretention systems show both the highest and lowest removal rates of dissolved copper, total phosphorous, and total nitrogen. Exploration and discussion of this and other findings will inform the application of the probabilistic pollutant removal rate constants. Though data limitations exist, this research will facilitate improved accuracy of BMP modeling and ultimately aid decision-making for stormwater quality

  2. Stormwater management and ecosystem services: a review

    Science.gov (United States)

    Prudencio, Liana; Null, Sarah E.

    2018-03-01

    Researchers and water managers have turned to green stormwater infrastructure, such as bioswales, retention basins, wetlands, rain gardens, and urban green spaces to reduce flooding, augment surface water supplies, recharge groundwater, and improve water quality. It is increasingly clear that green stormwater infrastructure not only controls stormwater volume and timing, but also promotes ecosystem services, which are the benefits that ecosystems provide to humans. Yet there has been little synthesis focused on understanding how green stormwater management affects ecosystem services. The objectives of this paper are to review and synthesize published literature on ecosystem services and green stormwater infrastructure and identify gaps in research and understanding, establishing a foundation for research at the intersection of ecosystems services and green stormwater management. We reviewed 170 publications on stormwater management and ecosystem services, and summarized the state-of-the-science categorized by the four types of ecosystem services. Major findings show that: (1) most research was conducted at the parcel-scale and should expand to larger scales to more closely understand green stormwater infrastructure impacts, (2) nearly a third of papers developed frameworks for implementing green stormwater infrastructure and highlighted barriers, (3) papers discussed ecosystem services, but less than 40% quantified ecosystem services, (4) no geographic trends emerged, indicating interest in applying green stormwater infrastructure across different contexts, (5) studies increasingly integrate engineering, physical science, and social science approaches for holistic understanding, and (6) standardizing green stormwater infrastructure terminology would provide a more cohesive field of study than the diverse and often redundant terminology currently in use. We recommend that future research provide metrics and quantify ecosystem services, integrate disciplines to

  3. Permeable pavement and stormwater management systems: a review.

    Science.gov (United States)

    Imran, H M; Akib, Shatirah; Karim, Mohamed Rehan

    2013-01-01

    Uncontrolled stormwater runoff not only creates drainage problems and flash floods but also presents a considerable threat to water quality and the environment. These problems can, to a large extent, be reduced by a type of stormwater management approach employing permeable pavement systems (PPS) in urban, industrial and commercial areas, where frequent problems are caused by intense undrained stormwater. PPS could be an efficient solution for sustainable drainage systems, and control water security as well as renewable energy in certain cases. Considerable research has been conducted on the function of PPS and their improvement to ensure sustainable drainage systems and water quality. This paper presents a review of the use of permeable pavement for different purposes. The paper focuses on drainage systems and stormwater runoff quality from roads, driveways, rooftops and parking lots. PPS are very effective for stormwater management and water reuse. Moreover, geotextiles provide additional facilities to reduce the pollutants from infiltrate runoff into the ground, creating a suitable environment for the biodegradation process. Furthermore, recently, ground source heat pumps and PPS have been found to be an excellent combination for sustainable renewable energy. In addition, this study has identified several gaps in the present state of knowledge on PPS and indicates some research needs for future consideration.

  4. Predicting Bacteria Removal by Enhanced Stormwater Control Measures (SCMs) at the Watershed Scale

    Science.gov (United States)

    Wolfand, J.; Bell, C. D.; Boehm, A. B.; Hogue, T. S.; Luthy, R. G.

    2017-12-01

    Urban stormwater is a major cause of water quality impairment, resulting in surface waters that fail to meet water quality standards and support their designated uses. Fecal indicator bacteria are present in high concentrations in stormwater and are strictly regulated in receiving waters; yet, their fate and transport in urban stormwater is poorly understood. Stormwater control measures (SCMs) are often used to treat, infiltrate, and release urban runoff, but field measurements show that the removal of bacteria by these structural solutions is limited (median log removal = 0.24, n = 370). Researchers have therefore looked to improve bacterial removal by enhancing SCMs through alterations in flow regimes or adding geomedia such as biochar. The present research seeks to develop a model to predict removal of fecal indicator bacteria by enhanced SCMs at the watershed scale in a semi-arid climate. Using the highly developed Ballona Creek watershed (290 km2) located in Los Angeles County as a case study, a hydrologic model is coupled with a stochastic water quality model to predict E. coli concentration near the outfall of the Ballona Creek, Santa Monica Bay. A hydrologic model was developed using EPA SWMM, calibrated for flow from water year 1998-2006 (NSE = 0.94; R2 = 0.94), and validated from water year 2007-2015 (NSE = 0.90; R2 = 0.93). This bacterial loading model was then linked to EPA SUSTAIN and a SCM bacterial removal script to simulate log removal of bacteria by various SCMs and predict bacterial concentrations in Ballona Creek. Preliminary results suggest small enhancements to SCMs that improve bacterial removal (<0.5 log removal) may offer large benefits to surface water quality and enable communities such as Los Angeles to meet their regulatory requirements.

  5. Urban Stormwater Governance: The Need for a Paradigm Shift.

    Science.gov (United States)

    Dhakal, Krishna P; Chevalier, Lizette R

    2016-05-01

    Traditional urban stormwater management involves rapid removal of stormwater through centralized conveyance systems of curb-gutter-pipe networks. This results in many adverse impacts on the environment including hydrological disruption, groundwater depletion, downstream flooding, receiving water quality degradation, channel erosion, and stream ecosystem damage. In order to mitigate these adverse impacts, urban stormwater managers are increasingly using green infrastructure that promote on-site infiltration, restore hydrological functions of the landscape, and reduce surface runoff. Existing stormwater governance, however, is centralized and structured to support the conventional systems. This governance approach is not suited to the emerging distributed management approach, which involves multiple stakeholders including parcel owners, government agencies, and non-governmental organizations. This incongruence between technology and governance calls for a paradigm shift in the governance from centralized and technocratic to distributed and participatory governance. This paper evaluates how five US cities have been adjusting their governance to address the discord. Finally, the paper proposes an alternative governance model, which provides a mechanism to involve stakeholders and implement distributed green infrastructure under an integrative framework.

  6. Effects of two stormwater management methods on the quality of water in the upper Biscayne aquifer at two commercial areas in Dade County, Florida

    Science.gov (United States)

    McKenzie, D.J.; Irwin, G.A.

    1988-01-01

    This study is part of a continued effort to assess the effects of urban stormwater recharge on the water quality of the Biscayne aquifer in southeast Florida. In this report, the water-quality effects on shallow ground water resulting from stormwater disposal by exfiltration trench and grassy swale were investigated at two small commercial areas in Dade County, Florida. One study area (airport ) was located near the Miami International Airport and had a drainage area of about 10 acres overlying a sandy soil; the other study area ( free zone ) was located at the Miami International Free Trade Zone and had a drainage area of about 20 acres overlying limestone. The monitoring design for each study area consisted of seven sites and included water-quality sampling of the stormwater in the catch basin of the exfiltration trench, ground water from two wells 1 foot from the trench (trench wells), two wells 20 feet from the trench, and ground water from two wells at the swale from April 1985 through May 1986. Eleven water-quality variables (target variables) commonly found in high levels in urban stormwater runoff were used as tracers to estimate possible changes in ground-water quality that may have been caused by stormwater recharge. Comparison of the distribution of target variables indicated that the concentrations tended to be greater in the stormwater in the exfiltration trench than in water from the two wells 1 foot from the trench at both study areas. The concentration difference for several target variables was statistically significant at the 5-percent level. Lead, for example, had median concentrations of 23 and 4 micrograms per liter, respectively, in stormwater and water from the two trench wells at the airport study area, and 38 and 2 micrograms per liter, respectively, in stormwater and groundwater at the free zone. Similar reductions in concentrations between stormwater and water from the two trench wells were indicated for zinc at both study areas and also

  7. Enhancing nitrogen removal in stormwater treatment facilities for transportation.

    Science.gov (United States)

    2015-01-01

    Stormwater from roadways is a point source of pollution. State DOTs must comply with Total Maximum : Daily Load (TMDL) regulations for nutrients such as nitrogen, which causes water quality impairment. Existing stormwater treatment technologies, such...

  8. Landscaping practices, land use patterns and stormwater quantity and quality in urban watersheds

    Science.gov (United States)

    Miles, B.; Band, L. E.

    2011-12-01

    Increasing quantity and decreasing quality of urban stormwater threatens biodiversity in local streams and reservoirs, jeopardizes water supplies, and ultimately contributes to estuarine eutrophication. To estimate the effects that present and alternative landscaping practices and land use patterns may have on urban stormwater quantity and quality, simulations of existing land use/land cover using the Regional Hydro-Ecologic Simulation System (RHESSys), a process-based surface hydrology and biogeochemistry model, were developed for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). The influence of land use patterns and landscaping practices on nutrient export in urban watersheds has been explored as part of the BES; this work has focused on improving our understanding of how residential landscaping practices (i.e. lawn fertilization rates) vary across land use and socioeconomic gradients. Elsewhere, others have explored the political ecology of residential landscaping practices - seeking to understand the economic, political, and cultural influences on the practice of high-input residential turf-grass management. Going forward, my research will synthesize and extend this prior work. Rather than pre-supposing predominant residential land use patterns and landscaping practices (i.e. lower-density periphery development incorporating high-input turf landscapes) alternate land use and landscaping scenarios (e.g. higher-density/transit-oriented development, rain gardens, vegetable gardens, native plant/xeriscaping) will be developed through interviews/focus groups with stakeholders (citizens, public officials, developers, non-profits). These scenarios will then be applied to the RHESSys models already developed for catchments in Baltimore and Durham. The modeled scenario results will be used to identify alternate land

  9. An urban runoff model designed to inform stormwater management decisions.

    Science.gov (United States)

    Beck, Nicole G; Conley, Gary; Kanner, Lisa; Mathias, Margaret

    2017-05-15

    We present an urban runoff model designed for stormwater managers to quantify runoff reduction benefits of mitigation actions that has lower input data and user expertise requirements than most commonly used models. The stormwater tool to estimate load reductions (TELR) employs a semi-distributed approach, where landscape characteristics and process representation are spatially-lumped within urban catchments on the order of 100 acres (40 ha). Hydrologic computations use a set of metrics that describe a 30-year rainfall distribution, combined with well-tested algorithms for rainfall-runoff transformation and routing to generate average annual runoff estimates for each catchment. User inputs include the locations and specifications for a range of structural best management practice (BMP) types. The model was tested in a set of urban catchments within the Lake Tahoe Basin of California, USA, where modeled annual flows matched that of the observed flows within 18% relative error for 5 of the 6 catchments and had good regional performance for a suite of performance metrics. Comparisons with continuous simulation models showed an average of 3% difference from TELR predicted runoff for a range of hypothetical urban catchments. The model usually identified the dominant BMP outflow components within 5% relative error of event-based measured flow data and simulated the correct proportionality between outflow components. TELR has been implemented as a web-based platform for use by municipal stormwater managers to inform prioritization, report program benefits and meet regulatory reporting requirements (www.swtelr.com). Copyright © 2017. Published by Elsevier Ltd.

  10. Stormwater management network effectiveness and implications for urban watershed function: A critical review

    Science.gov (United States)

    Jefferson, Anne J.; Bhaskar, Aditi S.; Hopkins, Kristina G.; Fanelli, Rosemary; Avellaneda, Pedro M.; McMillan, Sara K.

    2017-01-01

    Deleterious effects of urban stormwater are widely recognized. In several countries, regulations have been put into place to improve the conditions of receiving water bodies, but planning and engineering of stormwater control is typically carried out at smaller scales. Quantifying cumulative effectiveness of many stormwater control measures on a watershed scale is critical to understanding how small-scale practices translate to urban river health. We review 100 empirical and modelling studies of stormwater management effectiveness at the watershed scale in diverse physiographic settings. Effects of networks with stormwater control measures (SCMs) that promote infiltration and harvest have been more intensively studied than have detention-based SCM networks. Studies of peak flows and flow volumes are common, whereas baseflow, groundwater recharge, and evapotranspiration have received comparatively little attention. Export of nutrients and suspended sediments have been the primary water quality focus in the United States, whereas metals, particularly those associated with sediments, have received greater attention in Europe and Australia. Often, quantifying cumulative effects of stormwater management is complicated by needing to separate its signal from the signal of urbanization itself, innate watershed characteristics that lead to a range of hydrologic and water quality responses, and the varying functions of multiple types of SCMs. Biases in geographic distribution of study areas, and size and impervious surface cover of watersheds studied also limit our understanding of responses. We propose hysteretic trajectories for how watershed function responds to increasing imperviousness and stormwater management. Even where impervious area is treated with SCMs, watershed function may not be restored to its predevelopment condition because of the lack of treatment of all stormwater generated from impervious surfaces; non-additive effects of individual SCMs; and

  11. Evaluation of accuracy of linear regression models in predicting urban stormwater discharge characteristics.

    Science.gov (United States)

    Madarang, Krish J; Kang, Joo-Hyon

    2014-06-01

    Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R(2) and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Partitioning of fluoranthene between free and bound forms in stormwater runoff and other urban discharges using passive dosing

    DEFF Research Database (Denmark)

    Birch, Heidi; Mayer, Philipp; Lützhøft, Hans-Christian Holten

    2012-01-01

    to dissolved organic carbon was lower than partitioning to particulate organic carbon. Partitioning of fluoranthene to particulate organic matter in the 19 stormwater samples yielded a log KPOM of 5.18. The presented results can be used in stormwater quality modeling and assessment of efficiency of stormwater......Partitioning of fluoranthene in stormwater runoff and other urban discharges was measured by a new analytical method based on passive dosing. Samples were collected at the inlet (n = 11) and outlet (n = 8) from a stormwater retention pond in Albertslund (Denmark), and for comparison samples were...... of the different stormwater samples for carrying fluoranthene was 2–23 relative to pure water and decreasing during rain events. The enhanced capacity of stormwater showed a different relationship with suspended solid concentrations than the other types of urban discharges. Partitioning of fluoranthene...

  13. Understanding the role of land use in urban stormwater quality management.

    Science.gov (United States)

    Goonetilleke, Ashantha; Thomas, Evan; Ginn, Simon; Gilbert, Dale

    2005-01-01

    Urbanisation significantly impacts water environments with increased runoff and the degradation of water quality. The management of quantity impacts are straight forward, but quality impacts are far more complex. Current approaches to safeguard water quality are largely ineffective and guided by entrenched misconceptions with a primary focus on 'end-of-pipe' solutions. The outcomes of a research study presented in the paper, which investigated relationships between water quality and six different land uses offer practical guidance in the planning of future urban developments. In terms of safeguarding water quality, high-density residential development which results in a relatively smaller footprint would be the preferred option. The research study outcomes bring into question a number of fundamental concepts and misconceptions routinely accepted in stormwater quality management. The research findings confirmed the need to move beyond customary structural measures and identified the key role that urban planning can play in safeguarding urban water environments.

  14. The effects of flow-path modification on water-quality constituent retention in an urban stormwater detention pond and wetland system, Orlando, Florida

    Science.gov (United States)

    Gain, W.S.

    1996-01-01

    Changes in constituent retention in a wet stormwater-detention pond and wetland system in Orlando, Florida, were evaluated following the 1988 installation of a flow barrier which approximately doubled the flow path and increased detention time in the pond. The pond and wetland were arranged in series so that stormwater first enters the pond and overflows into the wetland before spilling over to the regional stream system. Several principal factors that contribute to constituent retention were examined, including changes in pond-water quality between storms, stormwater quality, and pond-water flushing during storms. A simple, analytical pond-water mixing model was used as the basis for interpreting changes in retention efficiencies caused by pond modification. Retention efficiencies were calculated by a modified event-mean concentration efficiency method using a minimum variance unbiased estimator approach. The results of this study generally support the hypothesis that changes in the geometry of stormwater treatment systems can significantly affect the constituent retention efficiency of the pond and wetland system. However, the results also indicate that these changes in efficiency are caused not only by changes in residence time, but also by changes in stormwater mixing and pond water flushing during storms. Additionally, the use of average efficiencies as indications of treatment effectiveness may fail to account for biases associated with sample distribution and independent physical properties of the system, such as the range and concentrations of constituents in stormwater inflows and stormwater volume. Changes in retention efficiencies varied among chemical constituents and were significantly different in the pond and wetland. Retention efficiency was related to inflow concentration for most constituents. Increased flushing of the pond after modification caused decreases in retention efficiencies for constituents that concentrate in the pond between storms

  15. The role of trees in urban stormwater management | Science ...

    Science.gov (United States)

    Urban impervious surfaces convert precipitation to stormwater runoff, which causes water quality and quantity problems. While traditional stormwater management has relied on gray infrastructure such as piped conveyances to collect and convey stormwater to wastewater treatment facilities or into surface waters, cities are exploring green infrastructure to manage stormwater at its source. Decentralized green infrastructure leverages the capabilities of soil and vegetation to infiltrate, redistribute, and otherwise store stormwater volume, with the potential to realize ancillary environmental, social, and economic benefits. To date, green infrastructure science and practice have largely focused on infiltration-based technologies that include rain gardens, bioswales, and permeable pavements. However, a narrow focus on infiltration overlooks other losses from the hydrologic cycle, and we propose that arboriculture – the cultivation of trees and other woody plants – deserves additional consideration as a stormwater control measure. Trees interact with the urban hydrologic cycle by intercepting incoming precipitation, removing water from the soil via transpiration, enhancing infiltration, and bolstering the performance of other green infrastructure technologies. However, many of these interactions are inadequately understood, particularly at spatial and temporal scales relevant to stormwater management. As such, the reliable use of trees for stormwater control depe

  16. Scientific Framework for Stormwater Monitoring by the Washington State Department of Transportation

    Science.gov (United States)

    Sheibley, R.W.; Kelly, V.J.; Wagner, R.J.

    2009-01-01

    The Washington State Department of Transportation municipal stormwater monitoring program, in operation for about 8 years, never has received an external, objective assessment. In addition, the Washington State Department of Transportation would like to identify the standard operating procedures and quality assurance protocols that must be adopted so that their monitoring program will meet the requirements of the new National Pollutant Discharge Elimination System municipal stormwater permit. As a result, in March 2009, the Washington State Department of Transportation asked the U.S. Geological Survey to assess their pre-2009 municipal stormwater monitoring program. This report presents guidelines developed for the Washington State Department of Transportation to meet new permit requirements and regional/national stormwater monitoring standards to ensure that adequate processes and procedures are identified to collect high-quality, scientifically defensible municipal stormwater monitoring data. These include: (1) development of coherent vision and cooperation among all elements of the program; (2) a comprehensive approach for site selection; (3) an effective quality assurance program for field, laboratory, and data management; and (4) an adequate database and data management system.

  17. Effect of climate change on stormwater runoff characteristics and treatment efficiencies of stormwater retention ponds; a case study from Denmark using TSS and Cu as indicator pollutants. SpringerPlus, 5:1984, 1-12

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Vezzaro, Luca; Birch, Heidi

    2016-01-01

    This study investigated the potential effect of climate changes on stormwater pollution runoff characteristics and the treatment efficiency of a stormwater retention pond in a 95 ha catchment in Denmark. An integrated dynamic stormwater runoff quality and treatment model was used to simulate two...... scenarios: one representing the current climate and another representing a future climate scenario with increased intensity of extreme rainfall events and longer dry weather periods. 100-year long high-resolution rainfall time series downscaled from regional climate model projections were used as input...... concentrations. Similar results are expected for other particle bound pollutants including metals and slowly biodegradable organic substances such as PAH. Acute toxicity impacts to downstream surface waters seem to be only slightly affected. A minor increase in yearly loads of sediments and particle...

  18. Are stormwater pollution impacts significant in life cycle assessment? A new methodology for quantifying embedded urban stormwater impacts.

    Science.gov (United States)

    Phillips, Robert; Jeswani, Harish Kumar; Azapagic, Adisa; Apul, Defne

    2018-09-15

    Current life cycle assessment (LCA) models do not explicitly incorporate the impacts from urban stormwater pollution. To address this issue, a framework to estimate the impacts from urban stormwater pollution over the lifetime of a system has been developed, laying the groundwork for subsequent improvements in life cycle databases and LCA modelling. The proposed framework incorporates urban stormwater event mean concentration (EMC) data into existing LCA impact categories to account for the environmental impacts associated with urban land occupation across the whole life cycle of a system. It consists of five steps: (1) compilation of inventory of urban stormwater pollutants; (2) collection of precipitation data; (3) classification and characterisation within existing midpoint impact categories; (4) collation of inventory data for impermeable urban land occupation; and (5) impact assessment. The framework is generic and can be applied to any system using any LCA impact method. Its application is demonstrated by two illustrative case studies: electricity generation and production of construction materials. The results show that pollutants in urban stormwater have an influence on human toxicity, freshwater and marine ecotoxicity, marine eutrophication, freshwater eutrophication and terrestrial ecotoxicity. Among these, urban stormwater pollution has the highest relative contribution to the eutrophication potentials. The results also suggest that stormwater pollution from urban areas can have a substantial effect on the life cycle impacts of some systems (construction materials), while for some systems the effect is small (e.g. electricity generation). However, it is not possible to determine a priori which systems are affected so that the impacts from stormwater pollution should be considered routinely in future LCA studies. The paper also proposes ways to incorporate stormwater pollution burdens into the life cycle databases. Copyright © 2018 Elsevier B.V. All

  19. Assessing Receiving Water Quality Impacts due to Flow Path Alteration in Residential Catchments, using the Stormwater and Wastewater Management Model

    Science.gov (United States)

    Wolosoff, S. E.; Duncan, J.; Endreny, T.

    2001-05-01

    The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.

  20. Adaptive Urban Stormwater Management Using a Two-stage Stochastic Optimization Model

    Science.gov (United States)

    Hung, F.; Hobbs, B. F.; McGarity, A. E.

    2014-12-01

    In many older cities, stormwater results in combined sewer overflows (CSOs) and consequent water quality impairments. Because of the expense of traditional approaches for controlling CSOs, cities are considering the use of green infrastructure (GI) to reduce runoff and pollutants. Examples of GI include tree trenches, rain gardens, green roofs, and rain barrels. However, the cost and effectiveness of GI are uncertain, especially at the watershed scale. We present a two-stage stochastic extension of the Stormwater Investment Strategy Evaluation (StormWISE) model (A. McGarity, JWRPM, 2012, 111-24) to explicitly model and optimize these uncertainties in an adaptive management framework. A two-stage model represents the immediate commitment of resources ("here & now") followed by later investment and adaptation decisions ("wait & see"). A case study is presented for Philadelphia, which intends to extensively deploy GI over the next two decades (PWD, "Green City, Clean Water - Implementation and Adaptive Management Plan," 2011). After first-stage decisions are made, the model updates the stochastic objective and constraints (learning). We model two types of "learning" about GI cost and performance. One assumes that learning occurs over time, is automatic, and does not depend on what has been done in stage one (basic model). The other considers learning resulting from active experimentation and learning-by-doing (advanced model). Both require expert probability elicitations, and learning from research and monitoring is modelled by Bayesian updating (as in S. Jacobi et al., JWRPM, 2013, 534-43). The model allocates limited financial resources to GI investments over time to achieve multiple objectives with a given reliability. Objectives include minimizing construction and O&M costs; achieving nutrient, sediment, and runoff volume targets; and community concerns, such as aesthetics, CO2 emissions, heat islands, and recreational values. CVaR (Conditional Value at Risk) and

  1. Consequential environmental and economic life cycle assessment of green and gray stormwater infrastructures for combined sewer systems.

    Science.gov (United States)

    Wang, Ranran; Eckelman, Matthew J; Zimmerman, Julie B

    2013-10-01

    A consequential life cycle assessment (LCA) is conducted to evaluate the trade-offs between water quality improvements and the incremental climate, resource, and economic costs of implementing green (bioretention basin, green roof, and permeable pavement) versus gray (municipal separate stormwater sewer systems, MS4) alternatives of stormwater infrastructure expansions against a baseline combined sewer system with combined sewer overflows in a typical Northeast US watershed for typical, dry, and wet years. Results show that bioretention basins can achieve water quality improvement goals (e.g., mitigating freshwater eutrophication) for the least climate and economic costs of 61 kg CO2 eq. and $98 per kg P eq. reduction, respectively. MS4 demonstrates the minimum life cycle fossil energy use of 42 kg oil eq. per kg P eq. reduction. When integrated with the expansion in stormwater infrastructure, implementation of advanced wastewater treatment processes can further reduce the impact of stormwater runoff on aquatic environment at a minimal environmental cost (77 kg CO2 eq. per kg P eq. reduction), which provides support and valuable insights for the further development of integrated management of stormwater and wastewater. The consideration of critical model parameters (i.e., precipitation intensity, land imperviousness, and infrastructure life expectancy) highlighted the importance and implications of varying local conditions and infrastructure characteristics on the costs and benefits of stormwater management. Of particular note is that the impact of MS4 on the local aquatic environment is highly dependent on local runoff quality indicating that a combined system of green infrastructure prior to MS4 potentially provides a more cost-effective improvement to local water quality.

  2. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse

    International Nuclear Information System (INIS)

    Liu, An; Liu, Liang; Li, Dunzhu; Guan, Yuntao

    2015-01-01

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a “fit-for-purpose” road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. - Highlights: • Heavy metal (HM) build-up varies with traffic and road surface conditions. • Traffic congestion and surface roughness exert a higher impact on HM build-up. • A “fit-for-purpose” strategy could suit urban road stormwater reuse

  3. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse

    Energy Technology Data Exchange (ETDEWEB)

    Liu, An [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); Cooperative Research and Education Centre for Environmental Technology, Kyoto University–Tsinghua University, 518055 Shenzhen (China); Liu, Liang; Li, Dunzhu [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); Guan, Yuntao, E-mail: guanyt@tsinghua.edu.cn [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-05-15

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a “fit-for-purpose” road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. - Highlights: • Heavy metal (HM) build-up varies with traffic and road surface conditions. • Traffic congestion and surface roughness exert a higher impact on HM build-up. • A “fit-for-purpose” strategy could suit urban road stormwater reuse.

  4. Evaluation of green roof as green technology for urban stormwater quantity and quality controls

    International Nuclear Information System (INIS)

    Kok, K H; Sidek, L M; Basri, H; Muda, Z C; Beddu, S; Abidin, M R Z

    2013-01-01

    Promoting green design, construction, reconstruction and operation of buildings has never been more critical than now due to the ever increasing greenhouse gas emissions and rapid urbanizations that are fuelling climate change more quickly. Driven by environmental needs, Green Building Index (GBI) was founded in Malaysia to drive initiative to lead the property industry towards becoming more environment-friendly. Green roof system is one of the assessment criteria of this rating system which is under category of sustainable site planning and management. An extensive green roof was constructed in Humid Tropics Center (HTC) Kuala Lumpur as one of the components for Stormwater Management Ecohydrology (SME) in order to obtain scientific data of the system. This paper evaluates the performance of extensive green roof at Humid Tropics Center with respect to urban heat island mitigation and stormwater quantity and quality controls. Findings indicate that there was a reduction of around 1.5°C for indoor temperature of the building after installation of green roof. Simulations showed that the peak discharge was reduced up to 24% relative to impervious brown roof. The results show an increment of pH and high concentration of phosphate for the runoff generated from the green roof and the runoff water quality ranged between class I and II under INWQS.

  5. Evaluation of green roof as green technology for urban stormwater quantity and quality controls

    Science.gov (United States)

    Kok, K. H.; Sidek, L. M.; Abidin, M. R. Z.; Basri, H.; Muda, Z. C.; Beddu, S.

    2013-06-01

    Promoting green design, construction, reconstruction and operation of buildings has never been more critical than now due to the ever increasing greenhouse gas emissions and rapid urbanizations that are fuelling climate change more quickly. Driven by environmental needs, Green Building Index (GBI) was founded in Malaysia to drive initiative to lead the property industry towards becoming more environment-friendly. Green roof system is one of the assessment criteria of this rating system which is under category of sustainable site planning and management. An extensive green roof was constructed in Humid Tropics Center (HTC) Kuala Lumpur as one of the components for Stormwater Management Ecohydrology (SME) in order to obtain scientific data of the system. This paper evaluates the performance of extensive green roof at Humid Tropics Center with respect to urban heat island mitigation and stormwater quantity and quality controls. Findings indicate that there was a reduction of around 1.5°C for indoor temperature of the building after installation of green roof. Simulations showed that the peak discharge was reduced up to 24% relative to impervious brown roof. The results show an increment of pH and high concentration of phosphate for the runoff generated from the green roof and the runoff water quality ranged between class I and II under INWQS.

  6. How much is enough? Minimal responses of water quality and stream biota to partial retrofit stormwater management in a suburban neighborhood.

    Directory of Open Access Journals (Sweden)

    Allison H Roy

    Full Text Available Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km(2 Shepherd Creek catchment in Cincinnati, Ohio (USA. In 2007-2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment and high total impervious levels (13.1% to 19.9% in experimental subcatchments, we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions. Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and

  7. Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.

    Science.gov (United States)

    Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E

    2017-09-05

    Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.

  8. Centralised urban stormwater harvesting for potable reuse.

    Science.gov (United States)

    McArdle, P; Gleeson, J; Hammond, T; Heslop, E; Holden, R; Kuczera, G

    2011-01-01

    Urban impervious areas provide a guaranteed source of runoff, especially in cities with high rainfall - this represents a source of water with low sensitivity to unfavourable climate change. Whilst the potential to reuse stormwater has long been recognised, its quality has largely limited usage to non-potable applications requiring the use of a third-pipe network, a prohibitively expensive option in established urban areas. Given recent advances in membrane filtration, this study investigates the potential of harvesting and treating stormwater to a potable standard to enable use of the potable distribution network. A case study based on the Throsby Creek catchment in Newcastle explores the issue. The high seasonally uniform rainfall provides insight into the maximum potential of such an option. Multicriterion optimisation was used to identify Pareto optimal solutions for harvesting, storing and treating stormwater. It is shown that harvesting and treating stormwater from a 13 km² catchment can produce yields ranging from 8.5 to 14.2 ML/day at costs ranging from AU$2.60/kL to AU$2.89/kL, which may become viable as the cost of traditional supply continues to grow. However, there are significant social impacts to deal with including alienation of public land for storage and community acceptance of treated stormwater.

  9. Impact of Roadway Stormwater Runoff on Microbial Contamination in the Receiving Stream.

    Science.gov (United States)

    Wyckoff, Kristen N; Chen, Si; Steinman, Andrew J; He, Qiang

    2017-09-01

    Stormwater runoff from roadways has increasingly become a regulatory concern for water pollution control. Recent work has suggested roadway stormwater runoff as a potential source of microbial pollutants. The objective of this study was to determine the impact of roadway runoff on the microbiological quality of receiving streams. Microbiological quality of roadway stormwater runoff and the receiving stream was monitored during storm events with both cultivation-dependent fecal bacteria enumeration and cultivation-independent high-throughput sequencing techniques. Enumeration of total coliforms as a measure of fecal microbial pollution found consistently lower total coliform counts in roadway runoff than those in the stream water, suggesting that roadway runoff was not a major contributor of microbial pollutants to the receiving stream. Further characterization of the microbial community in the stormwater samples by 16S ribosomal RNA gene-based high-throughput amplicon sequencing revealed significant differences in the microbial composition of stormwater runoff from the roadways and the receiving stream. The differences in microbial composition between the roadway runoff and stream water demonstrate that roadway runoff did not appear to have a major influence on the stream in terms of microbiological quality. Thus, results from both fecal bacteria enumeration and high-throughput amplicon sequencing techniques were consistent that roadway stormwater runoff was not the primary contributor of microbial loading to the stream. Further studies of additional watersheds with distinct characteristics are needed to validate these findings. Understanding gained in this study could support the development of more effective strategies for stormwater management in sensitive watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Hydrologic and Water Quality Model Development Using Simulink

    Directory of Open Access Journals (Sweden)

    James D. Bowen

    2014-11-01

    Full Text Available A stormwater runoff model based on the Soil Conservation Service (SCS method and a finite-volume based water quality model have been developed to investigate the use of Simulink for use in teaching and research. Simulink, a MATLAB extension, is a graphically based model development environment for system modeling and simulation. Widely used for mechanical and electrical systems, Simulink has had less use for modeling of hydrologic systems. The watershed model is being considered for use in teaching graduate-level courses in hydrology and/or stormwater modeling. Simulink’s block (data process and arrow (data transfer object model, the copy and paste user interface, the large number of existing blocks, and the absence of computer code allows students to become model developers almost immediately. The visual depiction of systems, their component subsystems, and the flow of data through the systems are ideal attributes for hands-on teaching of hydrologic and mass balance processes to today’s computer-savvy visual learners. Model development with Simulink for research purposes is also investigated. A finite volume, multi-layer pond model using the water quality kinetics present in CE-QUAL-W2 has been developed using Simulink. The model is one of the first uses of Simulink for modeling eutrophication dynamics in stratified natural systems. The model structure and a test case are presented. One use of the model for teaching a graduate-level water quality modeling class is also described.

  11. Modeling the eutrophication of two mature planted stormwater ponds for runoff control

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, A.H.; Hvitved-Jacobsen, Thorkild

    2013-01-01

    A model, targeting eutrophication of stormwater detention ponds was developed and applied to sim-ulate pH, dissolved oxygen and the development of algae and plant biomass in two mature plantedwetponds for run off control. The model evaluated algal and plant biomass growth into three groupsnamely;...

  12. Balancing the Ecological Function of Residential Stormwater Ponds with Homeowner Landscaping Practices

    Science.gov (United States)

    Monaghan, Paul; Hu, Shangchun; Hansen, Gail; Ott, Emily; Nealis, Charles; Morera, Maria

    2016-11-01

    Stormwater ponds are installed in urban developments to provide the ecosystem services of flood control and water treatment. In coastal areas, these ponds are connected to watersheds that can drain directly into protected estuaries, making their design, function, and maintenance critical to environmental protection. However, stormwater ponds in residential areas are increasingly managed as aesthetic amenities that add value to real estate rather than as engineered devices with special maintenance requirements. To help extend the life of neighborhood stormwater systems and improve ecosystem services, homeowners should follow best management practices for nutrient management and add shoreline plantings and non-invasive, beneficial aquatic plants to their ponds. This study used focus group and survey research to document the knowledge, behaviors, and attitudes of homeowners living near stormwater ponds in a master-planned community in Florida. The study was designed to use a social marketing research approach to promote Extension best practices. Findings indicate that many residents were aware of the functional components of stormwater systems and respondents' receptivity to best management practices was mediated by age, their attitudes about water quality and whether their home was adjacent to a pond. These findings can be used to target Extension audiences and improve adoption of stormwater pond best management practices for increased protection of water quality.

  13. Hydrologic and Water-Quality Responses in Shallow Ground Water Receiving Stormwater Runoff and Potential Transport of Contaminants to Lake Tahoe, California and Nevada, 2005-07

    Science.gov (United States)

    Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.

    2008-01-01

    Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were

  14. BMPs in urban stormwater management in Denmark and Sweden

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Viklander, M.; Linde, Jens Jørgen

    2002-01-01

    Best Management Practices (BMPs) for control of stormwater runoff include structural elemts (structural BMPs) that can be applied on the local scale (e.g. infiltration), the drainage catchment scale (e.g. ponds and treatment, or wetlands) and the receiving water scale (e.g. retrofitting of river ....... A review of recent experiences with selected stormwater BMPs in Denmark and Sweden is presented and discussed with respect to the current issues related to legislation and the forces driving future development in stormwater management.......Best Management Practices (BMPs) for control of stormwater runoff include structural elemts (structural BMPs) that can be applied on the local scale (e.g. infiltration), the drainage catchment scale (e.g. ponds and treatment, or wetlands) and the receiving water scale (e.g. retrofitting of river...... reaches), and non-structural BMPs, such as controls of chemicals or building materials, and street sweeping. The available knowledge of stormwater BMPs performance in pollution control is inconsistent and the effect of various BMPs on receiving water quality is either poorly understood, or not known...

  15. Using Agent-Based Modeling to Enhance System-Level Real-time Control of Urban Stormwater Systems

    Science.gov (United States)

    Rimer, S.; Mullapudi, A. M.; Kerkez, B.

    2017-12-01

    The ability to reduce combined-sewer overflow (CSO) events is an issue that challenges over 800 U.S. municipalities. When the volume of a combined sewer system or wastewater treatment plant is exceeded, untreated wastewater then overflows (a CSO event) into nearby streams, rivers, or other water bodies causing localized urban flooding and pollution. The likelihood and impact of CSO events has only exacerbated due to urbanization, population growth, climate change, aging infrastructure, and system complexity. Thus, there is an urgent need for urban areas to manage CSO events. Traditionally, mitigating CSO events has been carried out via time-intensive and expensive structural interventions such as retention basins or sewer separation, which are able to reduce CSO events, but are costly, arduous, and only provide a fixed solution to a dynamic problem. Real-time control (RTC) of urban drainage systems using sensor and actuator networks has served as an inexpensive and versatile alternative to traditional CSO intervention. In particular, retrofitting individual stormwater elements for sensing and automated active distributed control has been shown to significantly reduce the volume of discharge during CSO events, with some RTC models demonstrating a reduction upwards of 90% when compared to traditional passive systems. As more stormwater elements become retrofitted for RTC, system-level RTC across complete watersheds is an attainable possibility. However, when considering the diverse set of control needs of each of these individual stormwater elements, such system-level RTC becomes a far more complex problem. To address such diverse control needs, agent-based modeling is employed such that each individual stormwater element is treated as an autonomous agent with a diverse decision making capabilities. We present preliminary results and limitations of utilizing the agent-based modeling computational framework for the system-level control of diverse, interacting

  16. Green Roofs for Stormwater Runoff Control

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  17. Treatability Aspects of Urban Stormwater Stressors

    Science.gov (United States)

    Eleven years into the 21st century, pollution from diffuse sources (pollution from contaminants picked up and carried into surface waters by stormwater runoff) remains the nation's largest source of water quality problems. Scientists and engineers still seek solutions that will ...

  18. Lessons learned from over two decades of constructed wetland : use for urban stormwater in the Netherlands

    NARCIS (Netherlands)

    Boogaard, Floris; Vorenhout, Michel; Akkerman, Olof; de Lima, Rui; Blom, Johan

    Constructed wetlands are one type of Sustainable Urban Drainage System (SUDS) that have been used for decades in The Netherlands. They provide stormwater conveyance and improve stormwater quality. European regulations for water quality dictate lower and lower concentrations for an array of dissolved

  19. TREATMENT OF HEAVY METALS IN STORMWATER RUNOFF USING WET POND AND WETLAND MESOCOSMS

    Science.gov (United States)

    Urban stormwater runoff is being recognized as a major source of pollutants to receiving waters and a number of recent investigations have evaluated stormwater runoff quality and best management practices to minimize pollutant input to receiving waters. Particle-bound contaminant...

  20. Distribution of polycyclic aromatic hydrocarbons in urban stormwater in Queensland, Australia

    International Nuclear Information System (INIS)

    Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A.; Mostert, Maria M.M.

    2010-01-01

    This paper reports the distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in wash-off in urban stormwater in Gold Coast, Australia. Runoff samples collected from residential, industrial and commercial sites were separated into a dissolved fraction ( 150 μm). Patterns in the distribution of PAHs in the fractions were investigated using Principal Component Analysis. Regardless of the land use and particle size fraction characteristics, the presence of organic carbon plays a dominant role in the distribution of PAHs. The PAHs concentrations were also found to decrease with rainfall duration. Generally, the 1- and 2-year average recurrence interval rainfall events were associated with the majority of the PAHs and the wash-off was a source limiting process. In the context of stormwater quality mitigation, targeting the initial part of the rainfall event is the most effective treatment strategy. The implications of the study results for urban stormwater quality management are also discussed. - The presence of organic carbon on impervious surfaces and rainfall duration plays a dominant role in the distribution of PAHs in urban stormwater.

  1. Hydrologic impact of urbanization with extensive stormwater infiltration

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen

    2017-01-01

    This paper presents a novel modeling analysis of a 40-year-long dataset to examine the impact of urbanization, with widespread stormwater infiltration, on groundwater levels and the water balance of a watershed. A dataset on the hydrologic impact of urbanization with extensive stormwater...

  2. Stormwater management at the ARID INEL

    International Nuclear Information System (INIS)

    Walker, E.D.

    1994-01-01

    NPDES stormwater permits are required for stormwater discharges to waters of the US (WUS). The Idaho National Engineering Laboratory (INEL) applied for coverage under a general NPDES stormwater permit because there is some potential for stormwater discharge to the Big Lost River System, which could infiltrate to groundwater. The main requirements of the permit are to prevent contaminants from coming into contact with stormwater and prevent contaminated stormwater from running off of facilities into WUS or groundwater. All INEL major facility areas have prepared and implemented stormwater pollution prevention plans (SWPPPs). The INEL also applied for coverage under a separate NPDES general permit for stormwater discharges from construction sites. An INEL Generic SWPPP for construction activities was prepared and implemented for all construction projects at the INEL

  3. Stormwater quality of spring-summer-fall effluent from three partial-infiltration permeable pavement systems and conventional asphalt pavement.

    Science.gov (United States)

    Drake, Jennifer; Bradford, Andrea; Van Seters, Tim

    2014-06-15

    This study examined the spring, summer and fall water quality performance of three partial-infiltration permeable pavement (PP) systems and a conventional asphalt pavement in Ontario. The study, conducted between 2010 and 2012, compared the water quality of effluent from two Interlocking Permeable Concrete Pavements (AquaPave(®) and Eco-Optiloc(®)) and a Hydromedia(®) Pervious Concrete pavement with runoff from an Asphalt control pavement. The usage of permeable pavements can mitigate the impact of urbanization on receiving surface water systems through quantity control and stormwater treatment. The PP systems provided excellent stormwater treatment for petroleum hydrocarbons, total suspended solids, metals (copper, iron, manganese and zinc) and nutrients (total-nitrogen and total-phosphorus) by reducing event mean concentrations (EMC) as well as total pollutant loadings. The PPs significantly reduced the concentration and loading of ammonia (NH4(+)+NH3), nitrite (NO2(-)) and organic-nitrogen (Org-N) but increased the concentration and loading of nitrate (NO3(-)). The PP systems had mixed performances for the treatment of phosphate (PO4(3-)). The PP systems increased the concentration of sodium (Na) and chloride (Cl) but EMCs remained well below recommended levels for drinking water quality. Relative to the observed runoff, winter road salt was released more slowly from the PP systems resulting in elevated spring and early-summer Cl and Na concentrations in effluent. PP materials were found to introduce dissolved solids into the infiltrating stormwater. The release of these pollutants was verified by additional laboratory scale testing of the individual pavement and aggregate materials at the University of Guelph. Pollutant concentrations were greatest during the first few months after construction and declined rapidly over the course of the study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. δ(15)N and δ(18)O Reveal the Sources of Nitrate-Nitrogen in Urban Residential Stormwater Runoff.

    Science.gov (United States)

    Yang, Yun-Ya; Toor, Gurpal S

    2016-03-15

    Nitrogen (N) sources are widely distributed in the complex urban environment. High-resolution data elucidating N sources in the residential catchments are not available. We used stable isotopes of N and oxygen (O) of nitrate (δ(18)O-NO3(-) and δ(15)N-NO3(-)) along with δ(18)O and hydrogen (δD) of water (H2O) to understand the sources and transformations of N in residential stormwater runoff. Stormwater runoff samples were collected over 25 stormwater events at 5 min intervals using an autosampler installed at the residential catchment outlet pipe that drained 31 low-density homes with a total drainage area of 0.11 km(2). Bayesian mixing model results indicated that atmospheric deposition (range 43-71%) and chemical N fertilizers (range stormwater runoff and that there was a continuum of source changes during the stormwater events. Further, the NO3-N transport in the stormwater runoff from the residential catchment was driven by mixing of multiple sources and biotic (i.e., nitrification) processes. This work suggests that a better understanding of N transport and sources is needed to reduce N export and improve water quality in urban water systems.

  5. Green Roofs for Stormwater Runoff Control - Abstract

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  6. Distribution of polycyclic aromatic hydrocarbons in urban stormwater in Queensland, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Herngren, Lars; Goonetilleke, Ashantha [School of Urban Development, Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001 (Australia); Ayoko, Godwin A., E-mail: g.ayoko@qut.edu.a [Chemistry Discipline, Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001 (Australia); Mostert, Maria M.M. [Chemistry Discipline, Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001 (Australia)

    2010-09-15

    This paper reports the distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in wash-off in urban stormwater in Gold Coast, Australia. Runoff samples collected from residential, industrial and commercial sites were separated into a dissolved fraction (<0.45 {mu}m), and three particulate fractions (0.45-75 {mu}m, 75-150 {mu}m and >150 {mu}m). Patterns in the distribution of PAHs in the fractions were investigated using Principal Component Analysis. Regardless of the land use and particle size fraction characteristics, the presence of organic carbon plays a dominant role in the distribution of PAHs. The PAHs concentrations were also found to decrease with rainfall duration. Generally, the 1- and 2-year average recurrence interval rainfall events were associated with the majority of the PAHs and the wash-off was a source limiting process. In the context of stormwater quality mitigation, targeting the initial part of the rainfall event is the most effective treatment strategy. The implications of the study results for urban stormwater quality management are also discussed. - The presence of organic carbon on impervious surfaces and rainfall duration plays a dominant role in the distribution of PAHs in urban stormwater.

  7. Potential for Potable Water Savings in Buildings by Using Stormwater Harvested from Porous Pavements

    Directory of Open Access Journals (Sweden)

    Lucas Niehuns Antunes

    2016-03-01

    Full Text Available There is a growing concern about the scarcity of water resources due to population growth and increased demand for potable water. Thus, the rational use of water has become necessary for the conservation of such resources. The objective of this study is to estimate the potential for potable water savings in buildings of different sectors—residential, public and commercial—in the city of Florianópolis, southern Brazil, by using stormwater harvested from porous pavements. Models were constructed to assess infiltration and rainwater quality; samples of stormwater from a local road were collected to evaluate its quality; and computer simulation was performed to assess the potential for potable water savings and rainwater tank sizing. Draining asphalt concrete slabs with two types of modifiers were used, i.e., tire rubber and SBS polymer—styrene-butadiene-styrene. The Netuno computer programme was used to simulate the potential for potable water savings considering the use of rainwater for non-potable uses such as flushing toilets and urinals, cleaning external areas, and garden watering. Average stormwater infiltration was 85.4%. It was observed that stormwater is not completely pure. From the models, the pH was 5.4 and the concentrations of ammonia, phosphorus, nitrite, and dissolved oxygen were 0.41, 0.14, 0.002, and 9.0 mg/L, respectively. The results for the stormwater runoff of a paved road were 0.23, 0.11, 0.12, 0.08, 1.41, 2.11, 0.02, and 9.0 mg/L for the parameters aluminium, ammonia, copper, chromium, iron, phosphorus, nitrite, and dissolved oxygen, respectively; and the pH was 6.7. In the city of Florianópolis, which has a surface area of paved roads of approximately 11,044,216 m², the potential for potable water savings ranged from 1.2% to 19.4% in the residential sector, 2.1% to 75.7% in the public sector and 6.5% to 70.0% in the commercial sector.

  8. Stormwater quality calibration by SWMM: A case study in Northern ...

    African Journals Online (AJOL)

    2005-05-10

    May 10, 2005 ... Keywords: calibration, SWMM, sewage, first flush, stormwater runoff, event mean concentration, urban areas .... It is a single-family residential urban area, and has a population density of 100 inhabitants/ha. However, there is ...

  9. Micropollutants in stormwater runoff and combined sewer overflow in the Copenhagen area, Denmark

    DEFF Research Database (Denmark)

    Birch, Heidi; Mikkelsen, Peter Steen; Jensen, J.K.

    2011-01-01

    Stormwater runoff contains a broad range of micropollutants. In Europe a number of these substances are regulated through the Water Framework Directive, which establishes Environmental Quality Standards (EQSs) for surface waters. Knowledge about discharge of these substances through stormwater...... runoff and combined sewer overflows (CSOs) is essential to ensure compliance with the EQSs. Results from a screening campaign including more than 50 substances at four stormwater discharge locations and one CSO in Copenhagen are reported here. Heavy metal concentrations were detected at levels similar...

  10. The stormwater management manual for Malaysia

    International Nuclear Information System (INIS)

    Md Nasir Md Noh

    2006-01-01

    The government of Malaysia considers land and water as two very important natural resources. Consequently, the conservation practice of these natural resources remain top priority agenda with various laws and policies apart from manuals and guidelines available for practitioners to follow right from planning, design and implementation stages. Among the laws and regulations are national land code, land conservation act, local government act, street, drainage and building act, town and country planning act, and environmental quality act among others. In addition, stormwater management manual for Malaysia developed by department of irrigation and drainage, guidelines on the prevention and control of soil erosion and siltation in Malaysia developed by department of environment, standard specification for road works established by public works department, use of flood detention ponds as part of open space set up by department of town and country planning, and guideline for agricultural development at slope terrain published by department of agriculture are some of the established manuals and guidelines utilized around the country. The stormwater management manual for malaysia (msma) is the latest of the series of guidelines available in the country for inculcating up to date stormwater management apart from ensuring sustainable soil and water conservation practice in Malaysia. This manual has been published in 2000 and started to be utilized since 1 January 2001. Ever since msma has been widely used for the planning, design and implementation of various land development activities in the country. Among the key points highlighted in this manual are water quantity control and water quality control. Water quantity control focuses on the flash flood control technique due to the increase rate of water flowing out of developed areas while water quality control meant for the controlled of non-point source pollution generated by developed areas by contemplating on the best

  11. Combining the Power of Statistical Analyses and Community Interviews to Identify Adoption Barriers for Stormwater Best-Management Practices

    Science.gov (United States)

    Hoover, F. A.; Bowling, L. C.; Prokopy, L. S.

    2015-12-01

    Urban stormwater is an on-going management concern in municipalities of all sizes. In both combined or separated sewer systems, pollutants from stormwater runoff enter the natural waterway system during heavy rain events. Urban flooding during frequent and more intense storms are also a growing concern. Therefore, stormwater best-management practices (BMPs) are being implemented in efforts to reduce and manage stormwater pollution and overflow. The majority of BMP water quality studies focus on the small-scale, individual effects of the BMP, and the change in water quality directly from the runoff of these infrastructures. At the watershed scale, it is difficult to establish statistically whether or not these BMPs are making a difference in water quality, given that watershed scale monitoring is often costly and time consuming, relying on significant sources of funds, which a city may not have. Hence, there is a need to quantify the level of sampling needed to detect the water quality impact of BMPs at the watershed scale. In this study, a power analysis was performed on data from an urban watershed in Lafayette, Indiana, to determine the frequency of sampling required to detect a significant change in water quality measurements. Using the R platform, results indicate that detecting a significant change in watershed level water quality would require hundreds of weekly measurements, even when improvement is present. The second part of this study investigates whether the difficulty in demonstrating water quality change represents a barrier to adoption of stormwater BMPs. Semi-structured interviews of community residents and organizations in Chicago, IL are being used to investigate residents understanding of water quality and best management practices and identify their attitudes and perceptions towards stormwater BMPs. Second round interviews will examine how information on uncertainty in water quality improvements influences their BMP attitudes and perceptions.

  12. Design procedure for pollutant loadings and impacts for highway stormwater runoff (Macintosh version) (for microcomputers). Software

    International Nuclear Information System (INIS)

    1990-01-01

    The interactive computer program was developed to make a user friendly procedure for the personal computer for calculations and guidance to make estimations of pollutant loadings and impacts from highway stormwater runoff which are presented in the Publication FHWA-RD-88-006, Pollutant Loadings and Impacts from Highway Stormwater Runoff, Volume I: Design Procedure. The computer program is for the evaluation of the water quality impact from highway stormwater runoff to a lake or a stream from a specific highway site considering the necessary rainfall data and geographic site situation. The evaluation considers whether or not the resulting water quality conditions can cause a problem as indicated by the violations of water quality criteria or objectives

  13. Design procedure for pollutant loadings and impacts for highway stormwater runoff (IBM version) (for microcomputers). Software

    International Nuclear Information System (INIS)

    1990-01-01

    The interactive computer program was developed to make a user friendly procedure for the personal computer for calculations and guidance to make estimations of pollutant loadings and impacts from highway stormwater runoff which are presented in the Publication FHWA-RD-88-006, Pollutant Loadings and Impacts from Highway Stormwater Runoff, Volume I: Design Procedure. The computer program is for the evaluation of the water quality impact from highway stormwater runoff to a lake or a stream from a specific highway site considering the necessary rainfall data and geographic site situation. The evaluation considers whether or not the resulting water quality conditions can cause a problem as indicated by the violations of water quality criteria or objectives

  14. Treatability Aspects of Urban Stormwater Stressors - paper

    Science.gov (United States)

    Eleven years into the 21st century, pollution from diffuse sources (pollution from contaminants picked up and carried into surface waters by stormwater runoff) remains the nation's largest source of water quality problems. Scientists and engineers still seek solutions that will a...

  15. Treatability Aspects of Urban Stormwater Stressors - journal

    Science.gov (United States)

    Eleven years into the 21st century, pollution from diffuse sources (pollution from contaminants picked up and carried into surface waters by stormwater runoff) remains the nation's largest source of water quality problems. Scientists and engineers still seek solutions that will a...

  16. POLLUTION OF SHOKARSKI STORMWATER CANAL AND ITS INFLUENCE ON THE QUALITY OF THE VARNA BLACK SEA COASTAL AREA, BULGARIA

    Directory of Open Access Journals (Sweden)

    Anna Simeonova

    2012-03-01

    Full Text Available Pollution of Shokarski stormwater canal and its influence on the quality of the Varna Black Sea coastal area, Bulgaria. In the present study was investigated the pollution of Shokаrski stormwater canal, discharging its water into the Varna Black Sea coastal area. Monitoring was carried out during 2011 year at 5 sites along the canal water flow. The pollution was determined by organoleptic and physico- chemical characteristics, nutrients concentrations and the organic load. Critical levels of dissolved oxygen were measured at some of the monitoring sites ranging from 0,65 to 2,79 mg/dm3. Ammonium and nitrite concentrations were above the threshold limits at all sites. The phosphates’ concentrations varied very dynamically ranging from 0,18 to 11,8 mg/dm3 and in most of the cases exceeded the threshold limit. Very high levels of biochemically degradable organic pollutants were determined with biochemical oxygen demand values reaching- 68,96 mg/dm3. The Shokarski canal pollution could be considered as a tremendous thread for the quality of the Varna Black Sea coastal area, Bulgaria.

  17. Assessment of public health risk associated with viral contamination in harvested urban stormwater for domestic applications

    International Nuclear Information System (INIS)

    Lim, Keah-Ying; Hamilton, Andrew J.; Jiang, Sunny C.

    2015-01-01

    Capturing stormwater is becoming a new standard for sustainable urban stormwater management, which can be used to supplement water supply portfolios in water-stressed cities. The key advantage of harvesting stormwater is to use low impact development (LID) systems for treatment to meet water quality requirement for non-potable uses. However, the lack of scientific studies to validate the safety of such practice has limited its adoption. Microbial hazards in stormwater, especially human viruses, represent the primary public health threat. Using adenovirus and norovirus as target pathogens, we investigated the viral health risk associated with a generic scenario of urban stormwater harvesting practice and its application for three non-potable uses: 1) toilet flushing, 2) showering, and 3) food-crop irrigation. The Quantitative Microbial Risk Assessment (QMRA) results showed that food-crop irrigation has the highest annual viral infection risk (median range: 6.8 × 10 −4 –9.7 × 10 −1 per-person-per-year or pppy), followed by showering (3.6 × 10 −7 –4.3 × 10 −2 pppy), and toilet flushing (1.1 × 10 −7 –1.3 × 10 −4 pppy). Disease burden of each stormwater use was ranked in the same order as its viral infection risk: food-crop irrigation > showering > toilet flushing. The median and 95th percentile risk values of toilet-flushing using treated stormwater are below U.S. EPA annual risk benchmark of ≤ 10 −4 pppy, whereas the disease burdens of both toilet-flushing and showering are within the WHO recommended disease burdens of ≤ 10 −6 DALYs pppy. However, the acceptability of showering risk interpreted based on the U.S. EPA and WHO benchmarks is in disagreement. These results confirm the safety of stormwater application in toilet flushing, but call for further research to fill the data gaps in risk modeling as well as risk benchmarks. - Highlights: • Human health risks for three non-potable uses of treated stormwater are modeled. • Crop

  18. Catalyzing municipal stakeholder engagement for stormwater funding solutions

    Science.gov (United States)

    Stormwater runoff contributes to a range of water quality issues in coastal systems, including eutrophication, contamination of water resources, and reduced value to coastal residents. However, managing runoff sources and meeting permit requirements can be costly. Municipalities ...

  19. Stormwater Management Concept Information

    Data.gov (United States)

    Montgomery County of Maryland — A stormwater management concept is a statement or drawing, or both, describing the manner in which stormwater runoff from a proposed development will be controlled...

  20. Assessing the polycyclic aromatic hydrocarbon (PAH) pollution of urban stormwater runoff: a dynamic modeling approach.

    Science.gov (United States)

    Zheng, Yi; Lin, Zhongrong; Li, Hao; Ge, Yan; Zhang, Wei; Ye, Youbin; Wang, Xuejun

    2014-05-15

    Urban stormwater runoff delivers a significant amount of polycyclic aromatic hydrocarbons (PAHs), mostly of atmospheric origin, to receiving water bodies. The PAH pollution of urban stormwater runoff poses serious risk to aquatic life and human health, but has been overlooked by environmental modeling and management. This study proposed a dynamic modeling approach for assessing the PAH pollution and its associated environmental risk. A variable time-step model was developed to simulate the continuous cycles of pollutant buildup and washoff. To reflect the complex interaction among different environmental media (i.e. atmosphere, dust and stormwater), the dependence of the pollution level on antecedent weather conditions was investigated and embodied in the model. Long-term simulations of the model can be efficiently performed, and probabilistic features of the pollution level and its risk can be easily determined. The applicability of this approach and its value to environmental management was demonstrated by a case study in Beijing, China. The results showed that Beijing's PAH pollution of road runoff is relatively severe, and its associated risk exhibits notable seasonal variation. The current sweeping practice is effective in mitigating the pollution, but the effectiveness is both weather-dependent and compound-dependent. The proposed modeling approach can help identify critical timing and major pollutants for monitoring, assessing and controlling efforts to be focused on. The approach is extendable to other urban areas, as well as to other contaminants with similar fate and transport as PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Decision Support System (DSS) for MSMA Integrated Stormwater Management Ecohydrology for Sustainable Green Infrastructure

    Science.gov (United States)

    Sidek, L. M.; Mohiyaden, H. A.; Haris, H.; Basri, H.; Muda, Z. C.; Roseli, Z. A.; Norlida, M. D.

    2016-03-01

    Rapid urbanization has known to have several adverse impacts towards hydrological cycle due to increasing impervious surface and degradation of water quality in stormwater runoff. In the past, urban waterways have been confined to narrow river corridors with the channels canalised and concrete and other synthetic materials forming the bed and banks of the river. Apart from that, stormwater pollutants such as litter, debris and sediments in drainage system are common problems that can lead to flooding and the degradation of water quality. To solve this problem, implementing stormwater Best Management Practices (BMPs) proves very promising due to its near natural characteristics and multiple effects on the drainage of stormwater runoff in urban areas. This judgment of using BMPs depends on not only relevant theoretical considerations, but also a large amount of practical experience and the availability of relevant data, as well. To fulfil this task, the so-called Decision Support System (DSS) in MSMA Design Aid and Database system are able to assist engineers and developers in management and improvement of water quantity and quality entering urban rivers from urban regions. This system is also helpful when an expert level judgment procure some repetitive and large amount of cases, like in the planning of stormwater BMPs systems for an entire city catchment. One of the advantages of an expert system is that it provides automation of expert-level judgement using availability of checking tools system.

  2. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    Science.gov (United States)

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  3. Partition of pollution between dissolved and particulate phases: what about emerging substances in urban stormwater catchments?

    Science.gov (United States)

    Zgheib, Sally; Moilleron, Régis; Saad, Mohamed; Chebbo, Ghassan

    2011-01-01

    This paper presents results about the occurrence, the concentrations of urban priority substances on both the dissolved and the particulate phases in stormwater. Samples were collected at the outlet of a dense urban catchment in Paris suburb (2.30 km(2)). 13 chemical groups were investigated including 88 individual substances. Results showed that stormwater discharges contained 45 substances among them some metals, organotins, PAHs, PCBs, alkylphenols, pesticides, phthalates, cholorophenols and one volatile organic compound, i.e. methylene chloride. With respect to the European Water Framework Directive, these substances included 47% of the priority hazardous substances (n = 8), 38% of the priority substances (n = 10). The remaining substances (n = 27) belong to a list of others specific urban substances not included in the Water Framework Directive but monitored during this work. Finally, stormwater quality was evaluated by comparing the substance concentrations to environmental quality standards (EQS) and the particulate content to Canadian sediment quality guidelines. This showed that stormwater was highly contaminated and should be treated before being discharged to receiving waters in order to avoid any adverse impact on the river quality. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. An Evaluation of Current Stormwater Best Management Practice Relationships Between Design and Efficiency: A Series of Local and National Case Studies

    OpenAIRE

    Goodwin, Amanda Ann

    2013-01-01

    Water quality continues to be threatened by human development activities such as stormwater runoff from urbanization. This study addresses the question of how stormwater Best Management Practice (BMP) system design choices affect pollutant removal efficiency, through the examination of 12 case study sites (across five states) that use three common BMP system design types (detention, retention, and wetland channel). Water quality information was obtained from the International Stormwater Datab...

  5. A model library for dynamic transport and fate of micropollutants in integrated urban wastewater and stormwater systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Benedetti, Lorenzo; Gevaert, Veerle

    2014-01-01

    by using substance inherent properties, following an approach commonly used in large-scale MP multimedia fate and transport models. The chosen level of complexity ensures a low data requirement and minimizes the need for field measurements. Next to a synthesis of model applications, a didactic example......The increasing efforts in reducing the emission of micropollutants (MP) into the natural aquatic environment require the development of modelling tools to support the decision making process. This article presents a library of dynamic modelling tools for estimating MP fluxes within Integrated Urban...... Wastewater and Stormwater system (IUWS – including drainage network, stormwater treatment units, wastewater treatment plants, sludge treatment, and the receiving water body). The models are developed by considering the high temporal variability of the processes taking place in the IUWS, providing a basis...

  6. Methods of assessment of stormwater sediments quality

    Directory of Open Access Journals (Sweden)

    Sałata Aleksandra

    2017-01-01

    Full Text Available Concentration of heavy metal (cadmium, copper, chromium, nickel, lead and zinc in sediments collected from the stormwater treatment plant located in the urbanised catchment were investigated using geo-accumulation index and enrichment factor to determine metal accumulation and pollution status. Total metal concentrations varied widely in studied materials and the mean values were higher than their background values. The Igeo results indicate that tested sediments were uncontaminated with respect to Cd. The study area is moderately to strongly contaminated with Zn, Pb and Cu. The other elements are within the scope moderate contamination.

  7. NATIONAL STORMWATER CALCULATOR USER'S GUIDE ...

    Science.gov (United States)

    The National Stormwater Calculator is a simple to use tool for computing small site hydrology for any location within the US. It estimates the amount of stormwater runoff generated from a site under different development and control scenarios over a long term period of historical rainfall. The analysis takes into account local soil conditions, slope, land cover and meteorology. Different types of low impact development (LID) practices (also known as green infrastructure) can be employed to help capture and retain rainfall on-site. Future climate change scenarios taken from internationally recognized climate change projections can also be considered. The calculator provides planning level estimates of capital and maintenance costs which will allow planners and managers to evaluate and compare effectiveness and costs of LID controls.The calculator’s primary focus is informing site developers and property owners on how well they can meet a desired stormwater retention target. It can be used to answer such questions as:• What is the largest daily rainfall amount that can be captured by a site in either its pre-development, current, or post-development condition?• To what degree will storms of different magnitudes be captured on site?• What mix of LID controls can be deployed to meet a given stormwater retention target?• How well will LID controls perform under future meteorological projections made by global climate change models?• What are the relativ

  8. Assessment of public health risk associated with viral contamination in harvested urban stormwater for domestic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Keah-Ying [Department of Civil and Environmental Engineering, University of California, Irvine, CA 92617-2175 (United States); Hamilton, Andrew J. [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Dookie Campus, Currawa, VIC 3647 (Australia); Federation University Australia, Mt Helen Campus, VIC 3353 (Australia); Jiang, Sunny C., E-mail: sjiang@uci.edu [Department of Civil and Environmental Engineering, University of California, Irvine, CA 92617-2175 (United States)

    2015-08-01

    Capturing stormwater is becoming a new standard for sustainable urban stormwater management, which can be used to supplement water supply portfolios in water-stressed cities. The key advantage of harvesting stormwater is to use low impact development (LID) systems for treatment to meet water quality requirement for non-potable uses. However, the lack of scientific studies to validate the safety of such practice has limited its adoption. Microbial hazards in stormwater, especially human viruses, represent the primary public health threat. Using adenovirus and norovirus as target pathogens, we investigated the viral health risk associated with a generic scenario of urban stormwater harvesting practice and its application for three non-potable uses: 1) toilet flushing, 2) showering, and 3) food-crop irrigation. The Quantitative Microbial Risk Assessment (QMRA) results showed that food-crop irrigation has the highest annual viral infection risk (median range: 6.8 × 10{sup −4}–9.7 × 10{sup −1} per-person-per-year or pppy), followed by showering (3.6 × 10{sup −7}–4.3 × 10{sup −2} pppy), and toilet flushing (1.1 × 10{sup −7}–1.3 × 10{sup −4} pppy). Disease burden of each stormwater use was ranked in the same order as its viral infection risk: food-crop irrigation > showering > toilet flushing. The median and 95th percentile risk values of toilet-flushing using treated stormwater are below U.S. EPA annual risk benchmark of ≤ 10{sup −4} pppy, whereas the disease burdens of both toilet-flushing and showering are within the WHO recommended disease burdens of ≤ 10{sup −6} DALYs pppy. However, the acceptability of showering risk interpreted based on the U.S. EPA and WHO benchmarks is in disagreement. These results confirm the safety of stormwater application in toilet flushing, but call for further research to fill the data gaps in risk modeling as well as risk benchmarks. - Highlights: • Human health risks for three non-potable uses of treated

  9. Sustainable Approaches for Stormwater Quality Improvements with Experimental Geothermal Paving Systems

    Directory of Open Access Journals (Sweden)

    Kiran Tota-Maharaj

    2015-01-01

    Full Text Available This research assesses the next generation of permeable pavement systems (PPS incorporating ground source heat pumps (geothermal paving systems. Twelve experimental pilot-scaled pavement systems were assessed for its stormwater treatability in Edinburgh, UK. The relatively high variability of temperatures during the heating and cooling cycle of a ground source heat pump system embedded into the pavement structure did not allow the ecological risk of pathogenic microbial expansion and survival. Carbon dioxide monitoring indicated relatively high microbial activity on a geotextile layer and within the pavement structure. Anaerobic degradation processes were concentrated around the geotextile zone, where carbon dioxide concentrations reached up to 2000 ppm. The overall water treatment potential was high with up to 99% biochemical oxygen demand removal. The pervious pavement systems reduced the ecological risk of stormwater discharges and provided a low risk of pathogen growth.

  10. Principles for urban stormwater management to protect stream ecosystems

    Science.gov (United States)

    Walsh, Christopher J.; Booth, Derek B.; Burns, Matthew J.; Fletcher, Tim D.; Hale, Rebecca L.; Hoang, Lan N.; Livingston, Grant; Rippy, Megan A.; Roy, Allison; Scoggins, Mateo; Wallace, Angela

    2016-01-01

    Urban stormwater runoff is a critical source of degradation to stream ecosystems globally. Despite broad appreciation by stream ecologists of negative effects of stormwater runoff, stormwater management objectives still typically center on flood and pollution mitigation without an explicit focus on altered hydrology. Resulting management approaches are unlikely to protect the ecological structure and function of streams adequately. We present critical elements of stormwater management necessary for protecting stream ecosystems through 5 principles intended to be broadly applicable to all urban landscapes that drain to a receiving stream: 1) the ecosystems to be protected and a target ecological state should be explicitly identified; 2) the postdevelopment balance of evapotranspiration, stream flow, and infiltration should mimic the predevelopment balance, which typically requires keeping significant runoff volume from reaching the stream; 3) stormwater control measures (SCMs) should deliver flow regimes that mimic the predevelopment regime in quality and quantity; 4) SCMs should have capacity to store rain events for all storms that would not have produced widespread surface runoff in a predevelopment state, thereby avoiding increased frequency of disturbance to biota; and 5) SCMs should be applied to all impervious surfaces in the catchment of the target stream. These principles present a range of technical and social challenges. Existing infrastructural, institutional, or governance contexts often prevent application of the principles to the degree necessary to achieve effective protection or restoration, but significant potential exists for multiple co-benefits from SCM technologies (e.g., water supply and climate-change adaptation) that may remove barriers to implementation. Our set of ideal principles for stream protection is intended as a guide for innovators who seek to develop new approaches to stormwater management rather than accept seemingly

  11. How uncertain is model-based prediction of copper loads in stormwater runoff?

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Ahlman, S.; Mikkelsen, Peter Steen

    2007-01-01

    (runoff volumes and pollutant masses). We use the generalized likelihood uncertainty estimation (GLUE) methodology and generate posterior parameter distributions that result in model outputs encompassing a significant number of the highly variable measurements. Given the applied pollution accumulation......In this paper, we conduct a systematic analysis of the uncertainty related with estimating the total load of pollution (copper) from a separate stormwater drainage system, conditioned on a specific combination of input data, a dynamic conceptual pollutant accumulation-washout model and measurements...

  12. Stormwater management the American way: why no policy transfer?

    Directory of Open Access Journals (Sweden)

    David P. Dolowitz

    2015-09-01

    Full Text Available From the 1940s until the 1980s the federal government gradually extended its authority over the structure of the American stormwater management system. The goal was to improve the water quality of the nation’s waterways by regulating the pollution loads entering the system, primarily through the use of gray infrastructure. However during the1980s the Environmental Protection Agency (EPA began to explore new approaches toward the regulation of stormwater pollution. Instead of focusing only on gray mechanisms, the EPA began developing and promoting the use of low impact development (LID techniques as an element municipal governments could use to achieve their total maxim daily load of pollutants allowable under the National Pollutant Discharge Elimination System permit system. In light of the incentive offered by the EPA for the use of LID in the management of stormwater, it should be expected to provide a perfect area to observe policy transfer between federal, state and local governments; but it does not. This article will establish why the EPA began promoting a green approach to stormwater management and why this has not led to a widespread transfer of best management practices in the ways the literatures associated with federalism and policy transfer would suggest.

  13. Soil amendments for heavy metals removal from stormwater runoff discharging to environmentally sensitive areas

    Science.gov (United States)

    Trenouth, William R.; Gharabaghi, Bahram

    2015-10-01

    Concentrations of dissolved metals in stormwater runoff from urbanized watersheds are much higher than established guidelines for the protection of aquatic life. Five potential soil amendment materials derived from affordable, abundant sources have been tested as filter media using shaker tests and were found to remove dissolved metals in stormwater runoff. Blast furnace (BF) slag and basic oxygenated furnace (BOF) slag from a steel mill, a drinking water treatment residual (DWTR) from a surface water treatment plant, goethite-rich overburden (IRON) from a coal mine, and woodchips (WC) were tested. The IRON and BOF amendments were shown to remove 46-98% of dissolved metals (Cr, Co, Cu, Pb, Ni, Zn) in repacked soil columns. Freundlich adsorption isotherm constants for six metals across five materials were calculated. Breakthrough curves of dissolved metals and total metal accumulation within the filter media were measured in column tests using synthetic runoff. A reduction in system performance over time occurred due to progressive saturation of the treatment media. Despite this, the top 7 cm of each filter media removed up to 72% of the dissolved metals. A calibrated HYDRUS-1D model was used to simulate long-term metal accumulation in the filter media, and model results suggest that for these metals a BOF filter media thickness as low as 15 cm can be used to improve stormwater quality to meet standards for up to twenty years. The treatment media evaluated in this research can be used to improve urban stormwater runoff discharging to environmentally sensitive areas (ESAs).

  14. Stormwater Management Plan for the Arden Hills Army Training Site, Arden Hills, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Wuthrich, Kelsey K. [Argonne National Lab. (ANL), Argonne, IL (United States); Ziech, Angela M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bowen, Esther E. [Argonne National Lab. (ANL), Argonne, IL (United States); Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-03-01

    This stormwater management plan focuses on the cantonment and training areas of the Arden Hills Army Training Site (AHATS). The plan relates the site stormwater to the regulatory framework, and it summarizes best management practices to aide site managers in promoting clean site runoff. It includes documentation for a newly developed, detailed model of stormwater flow retention for the entire AHATS property and adjacent upgradient areas. The model relies on established modeling codes integrated in a U.S. Department of Defense-sponsored software tool, the Watershed Modeling System (WMS), and it can be updated with data on changes in land use or with monitoring data.

  15. Rainfall, runoff, and water-quality data for the urban storm-water program in the Albuquerque, New Mexico, metropolitan area, water year 2004

    Science.gov (United States)

    Kelly, Todd; Romero, Orlando; Jimenez, Mike

    2006-01-01

    Urbanization has dramatically increased precipitation runoff to the system of drainage channels and natural stream channels in the Albuquerque, New Mexico, metropolitan area. Rainfall and runoff data are important for planning and designing future storm-water conveyance channels in newly developing areas. Storm-water quality also is monitored in accordance with the National Pollutant Discharge Elimination System mandated by the U.S. Environmental Protection Agency. The Albuquerque Metropolitan Arroyo Flood Control Authority, the City of Albuquerque, and the U.S. Geological Survey began a cooperative program to collect hydrologic data to assist in assessing the quality and quantity of surface-water resources in the Albuquerque area. This report presents water-quality, streamflow, and rainfall data collected from October 1, 2003, to September 30, 2004 (water year 2004). Also provided is a station analysis for each of the 18 streamflow-gaging sites and 39 rainfall-gaging sites, which includes a description of monitoring equipment, problems associated with data collection during the year, and other information used to compute streamflow discharges or rainfall records. A hydrographic comparison shows the effects that the largest drainage channel in the metropolitan area, the North Floodway Channel, has on total flow in the Rio Grande.

  16. A Meta-Analysis to Evaluate Property Value Co-Benefits of Using Environmental Site Design for Stormwater Runoff Reduction

    Science.gov (United States)

    Practices to reduce stormwater runoff are implemented for several primary purposes: to protect and improve water quality and hydromorphology in water bodies that receive stormwater runoff, to prevent soil erosion, to maintain groundwater recharge volume, and to prevent increasing...

  17. Water quality, selected chemical characteristics, and toxicity of base flow and urban stormwater in the Pearson Creek and Wilsons Creek Basins, Greene County, Missouri, August 1999 to August 2000

    Science.gov (United States)

    Richards, Joseph M.; Johnson, Byron Thomas

    2002-01-01

    The chemistry and toxicity of base flow and urban stormwater were characterized to determine if urban stormwater was degrading the water quality of the Pearson Creek and Wilsons Creek Basins in and near the city of Springfield, Greene County, Missouri. Potentially toxic components of stormwater (nutrients, trace metals, and organic compounds) were identified to help resource managers identify and minimize the sources of toxicants. Nutrient loading to the James River from these two basins (especially the Wilsons Creek Basin) is of some concern because of the potential to degrade downstream water quality. Toxicity related to dissolved trace metal constituents in stormwater does not appear to be a great concern in these two basins. Increased heterotrophic activity, the result of large densities of fecal indicator bacteria introduced into the streams after storm events, could lead to associated dissolved oxygen stress of native biota. Analysis of stormwater samples detected a greater number of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) than were present in base-flow samples. The number and concentrations of pesticides detected in both the base-flow and stormwater samples were similar.Genotoxicity tests were performed to determine the bioavilability of chemical contaminants and determine the potential harmful effects on aquatic biota of Pearson Creek and Wilsons Creek. Genotoxicity was determined from dialysates from both long-term (approximately 30 days) and storm-event (3 to 5 days) semipermeable membrane device (SPMD) samples that were collected in each basin. Toxicity tests of SPMD samples indicated evidence of genotoxins in all SPMD samples. Hepatic activity assessment of one long-term SPMD sample indicated evidence of contaminant uptake in fish. Chemical analyses of the SPMD samples found that relatively few pesticides and pesticide metabolites had been sequestered in the lipid material of the SPMD; however, numerous PAHs and

  18. Simulated Benefits of Green Infrastructure for Urban Stormwater Management under Climate Change in Different Hydroclimatic and Archetypal Urban Settings

    Science.gov (United States)

    Johnson, T. E.; Butcher, J.; Sarkar, S.; Clark, C.

    2015-12-01

    Climate change could significantly alter the occurrence and management of urban stormwater runoff quantity and quality. Responding to this challenge requires an improved understanding of potential changes together with the effectiveness of management responses for reducing impacts under range of potential future climatic conditions. Traditional gray stormwater infrastructure generally uses single-purpose, hard structures including detention basins and storm sewers to dispose of rainwater. Green infrastructure (GI) uses vegetation and soil to manage rainwater where it falls. GI has been gaining in popularity, and has been shown to provide a number of benefits for adapting to climate change including effects on stormwater quantity, quality and carbon and nutrient biogeochemical cycling. Uncertainty remains, however, due to limited understanding of GI performance in different hydroclimatic and urban settings, and in response to changes in climate. In this study we use simulation modeling to assess the impacts of climate change on both gray (wet ponds) and green infrastructure practices (green roofs, swales, bioretention) in different hydroclimatic and urban settings. Simulations were conducted using RHESSYs, a mechanistic, hydrologic and biogeochemical model, for 36 characteristic urban "archetypes" (AUSs) representing different development patterns and GI practices found in typical U.S. cities. Climate change scenarios are based on dynamically and temporally downscaled, mid-21st century climate model output from the North American Regional Climate Change Assessment Program (NARCCAP). Results suggest altered mass and energy inputs will cause changes in performance of these practices for water quantity, water quality, and carbon sequestration that vary across the country. Infrastructure design should take these potential changes into consideration.

  19. Issues Affecting Community Attitudes and Intended Behaviours in Stormwater Reuse: A Case Study of Salisbury, South Australia

    Directory of Open Access Journals (Sweden)

    Zhifang Wu

    2012-10-01

    Full Text Available Stormwater has been recognised as one of the additional/alternative sources of water to augment freshwater supply and address the growing needs of humankind. South Australia has been a leader in the development of large-scale urban stormwater harvesting schemes in Australia for nearly 50 years and the Salisbury Local Government Area (LGA, in particular, is at the forefront of urban stormwater management and recycling, not only in the state of South Australia, but worldwide. This is mainly due to its pioneering achievements in stormwater capture and treatment through the managed aquifer recharge (MAR process. However, there are many challenges in implementing water reuse strategies and past studies have identified public health concerns and public acceptance as major challenges. In line with this, our team conducted an internet survey to gauge the attitude and intentions of Salisbury LGA residents to use stormwater treated through the MAR process for non-potable uses. We found that respondents’ emotions and perceptions of health risk, regarding the use of treated stormwater, were closely related to the proximity of the end use to human contact. In terms of quality indicators, colour, odour, and salt levels were all seen as being important. Quality preferences were also closely related to the proximity of the end use to human contact, and reflected the use of water for indoor/outdoor purposes.

  20. Effectiveness of a stormwater collection and detention system for reducing constituent loads from bridge runoff in Pinellas County, Florida

    Science.gov (United States)

    Stoker, Y.E.

    1996-01-01

    The quantity and quality of stormwater runoff from the Bayside Bridge were evaluated to determine the effectiveness of the stormwater collection and detention pond system of the bridge in reducing constituent loads to Old Tampa Bay. Water-quality samples of stormwater runoff from the bridge and outflow from the detention pond were collected during and after selected storms. These samples were used to compute loads for selected constituents. Stormwater on the Bayside Bridge drained rapidly during rain events. The volume of stormwater runoff from 24 storms measured during the study ranged from 4,086 to 103,705 cubic feet. Storms were most frequent during July through September and were least frequent from February through May. Concentrations of most constituents in stormwater runoff before the bridge opened to traffic were less than or equal to concentrations measured after the bridge was opened to traffic. However, concentrations of arsenic in the outflow from the detention pond generally were greater before the bridge opened than concentrations after, and concentrations of orthophosphorus in the stormwater runoff and outflow from the pond were greater before the bridge opened than during over half the sampled storms after the bridge opened. Concentrations of most constituents measured in stormwater runoff from the bridge were greatest at the beginning of the storm and decreased as the storm continued. Variations in suspended solids, nutrients, and trace element concentrations were not always concurrent with each other. The source of the measured constituent (rainfall or road debris) and the phase of the constituent (suspended or dissolved) probably affected the timing of concentration changes. The quality of stormwater runoff from the Bayside Bridge varied with total runoff volume, with the length of the dry period before the storm, and with season. Average concentrations of suspended solids, ammonia plus organic nitrogen, nitrite plus nitrate nitrogen

  1. Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges.

    Science.gov (United States)

    O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom

    2012-03-01

    Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.

  2. Sustainability Evaluation Framework of Urban Stormwater Drainage Options for Arid Environments Using Hydraulic Modeling and Multicriteria Decision-Making

    Directory of Open Access Journals (Sweden)

    Mohammad Alhumaid

    2018-04-01

    Full Text Available Stormwater drainage systems in urban areas located in arid environmental regions generally consist of storm-sewer networks and man-made ponds for the collection and disposal of runoff, respectively. Due to expansion in cities’ boundaries as a result of population growth, the capacity of existing drainage systems has been exhausted. Therefore, such systems overflow even during the smaller (than the design return period floods. At the same time, changing rainfall patterns and flash floods due to climate change are other phenomena that need appropriate attention. Consequently, the municipalities in arid environmental regions are facing challenges for effective decision-making concerning (i improvement needs for drainage networks for safe collection of stormwater, (ii selection of most feasible locations for additional ponds, and (iii evaluation of other suitable options, such as micro-tunneling. In this research, a framework has been developed to evaluate different stormwater drainage options for urban areas of arid regions. Rainfall-runoff modeling was performed with the help of Hydrological-Engineering-Centre, Hydrological-Modelling-System (HEC-HMS. To evaluate the efficacy of each option for handling a given design flood, hydraulic-modeling was performed using SewerGEMS. Meteorological and topographical data was gathered from the Municipality of Buraydah and processed to generate different inputs required for hydraulic modeling. Finally, multicriteria decision-making (MCDM was performed to evaluate all the options on the basis of four sustainability criteria, i.e., flood risk, economic viability, environmental impacts, and technical constraints. Criteria weights were established through group decision-making using the Analytic Hierarchy Process (AHP. Preference-Ranking-Organization-Method for Enrichment-Evaluation (PROMETHEE II was used for final ranking of stormwater drainage options. The proposed framework has been implemented on a case of

  3. Performance of an Underground Stormwater Detention Chamber and Comparison with Stormwater Management Ponds

    Directory of Open Access Journals (Sweden)

    Jennifer Drake

    2016-05-01

    Full Text Available The transportation of pollutants from impervious surfaces during runoff events to receiving water bodies is a serious environmental problem. Summer runoff is also heated by impervious surfaces, causing thermal enrichment in receiving water body systems and degradation of coldwater aquatic ecosystems. End-of-pipe stormwater management facilities that are open to the environment can result in further elevated temperatures due to exposure to solar radiation. Receiving water systems that provide coldwater habitat require cool water temperatures to sustain healthy conditions for cold water flora and fauna (e.g., trout, dace. Underground Stormwater Detention Chambers (USDC are a technology for the detention and treatment of stormwater runoff that can potentially solve the thermal issues associated with sun-exposed detention facilities while still providing an equivalent level of treatment services for stormwater pollutants. A field study of an USDC located in Southern Ontario was undertaken to characterize its treatment performance and effect on water temperature. The results were: the USDC was found to provide similar levels of stormwater treatment as wet detention ponds. On average, outlet maximum temperatures were 5 °C cooler than inlet maximum temperatures, and outlet water temperatures remained within the thermal regime for coldwater fish habitat throughout the evaluation period. There was little to no stratification of temperature, nor dissolved solids, but stratification of dissolved oxygen was observed mid-winter and into the spring.

  4. Stormwater Management in Urban Areas of South Korea

    Science.gov (United States)

    Memon, S. A.; Raja, O. S.; Kandhro, B.; Salim, I.; Lee, C.-H.

    2018-03-01

    In early start of monitoring, a pathway for high runoff volumes and peak flows during rainfall period towards downstream of a waterbody was provided from storm sewer network, but later on it was realized to deal with stormwater quantity and quality to develop new approaches and management techniques. In early 90’s NPS pollution issue was highlighted in korea, but only limited studies were conceded out up to the year 2000, however reasonably huge numbers of studies were directed for environmental science. After the recognition of NPS, Ministry of Environment in 1998 has introduced NPS as a major contributor in total maximum daily load management system (TPLMS) and waterbodies impairment, which is one of the guidelines of widespread water improvement strategies for main rivers. It contains a number of agendas that intention is to improve, maintain or restore the water quality in national water systems. It can be potted that stormwater management has evolved during the decades as of understanding with its impacts and it has been evolved from focusing on flood control to now incorporating control for volume, erosion and water quality, which is theoretically based on a watershed concept.

  5. International experiences in stormwater fee.

    Science.gov (United States)

    Tasca, F A; Assunção, L B; Finotti, A R

    2017-04-01

    Stormwater management (SWM) includes a wide range of services aimed at environmental protection, enhancement of water resources and flood control. Local governments are responsible for managing all these aspects within their jurisdiction, but they often present limitations in generating revenues. Thus, many municipalities have been seeking a dedicated funding source for these programs and practices. This publication provides a brief overview of current legal issues associated with stormwater funding focusing on the most used method: fees. It is a successful mechanism to fund legal obligations of municipalities; however, it must have a significant value to motivate the reduction of runoff. Through literature, we found stormwater fees in Australia, Brazil, Canada, Ecuador, France, Germany, Poland, South Africa and the United States (USA). France had the highest average monthly fee, but this financing experience was suspended in 2014. Brazil has the lowest fee by m², comparable to the US fee. While in Brazil overall SWM represents low priority investments, the USA represents one of the most evolved countries in stormwater funding practices. It was noticed by reviewing the international experience that charging stormwater fees is a successful mechanism to fund the legal obligations and environmental protection.

  6. Science in Action: National Stormwater Calculator (SWC) ...

    Science.gov (United States)

    Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Regulations that require the retention and/or treatment of frequent, small storms that dominate runoff volumes and pollutant loads are becoming more common. EPA has developed the National Stormwater Calculator (SWC) to help support local, state, and national stormwater management objectives to reduce runoff through infiltration and retention using green infrastructure practices as low impact development (LID) controls. To inform the public on what the Stormwater Calculator is used for.

  7. An urban observatory for quantifying phosphorus and suspended solid loads in combined natural and stormwater conveyances.

    Science.gov (United States)

    Melcher, Anthony A; Horsburgh, Jeffery S

    2017-06-01

    Water quality in urban streams and stormwater systems is highly dynamic, both spatially and temporally, and can change drastically during storm events. Infrequent grab samples commonly collected for estimating pollutant loadings are insufficient to characterize water quality in many urban water systems. In situ water quality measurements are being used as surrogates for continuous pollutant load estimates; however, relatively few studies have tested the validity of surrogate indicators in urban stormwater conveyances. In this paper, we describe an observatory aimed at demonstrating the infrastructure required for surrogate monitoring in urban water systems and for capturing the dynamic behavior of stormwater-driven pollutant loads. We describe the instrumentation of multiple, autonomous water quality and quantity monitoring sites within an urban observatory. We also describe smart and adaptive sampling procedures implemented to improve data collection for developing surrogate relationships and for capturing the temporal and spatial variability of pollutant loading events in urban watersheds. Results show that the observatory is able to capture short-duration storm events within multiple catchments and, through inter-site communication, sampling efforts can be synchronized across multiple monitoring sites.

  8. Rain Gardens: Stormwater Infiltrating Systems

    Science.gov (United States)

    The hydrological dynamics and changes in stormwater nutrient concentrations within rain gardens were studied by introducing captured stormwater runoff to rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey. The runoff used in these experiments was collected...

  9. Review on the quality of sediments from the stormwater drainage system in the urban area

    OpenAIRE

    Nawrot Nicole; Wojciechowska Ewa

    2017-01-01

    The main task of the stormwater drainage system (SDS) is a safe drainage of rainwater and snowmelt from the urban area to the receiver. The flow of rain water in the drainage pipes is directly related with the formation of sediments in the whole stormwater system. In addition, pollutants from land runoff get adsorbed to the sediments. The sludge is mainly formed in those elements of SDS, wherein the flow conditions allow for sedimentation. This article provides an overview of the literature c...

  10. Water Quality of Combined Sewer Overflows, Stormwater, and Streams, Omaha, Nebraska, 2006-07

    Science.gov (United States)

    Vogel, Jason R.; Frankforter, Jill D.; Rus, David L.; Hobza, Christopher M.; Moser, Matthew T.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the City of Omaha, investigated the water quality of combined sewer overflows, stormwater, and streams in the Omaha, Nebraska, area by collecting and analyzing 1,175 water samples from August 2006 through October 2007. The study area included the drainage area of Papillion Creek at Capeheart Road near Bellevue, Nebraska, which encompasses the tributary drainages of the Big and Little Papillion Creeks and Cole Creek, along with the Missouri River reach that is adjacent to Omaha. Of the 101 constituents analyzed during the study, 100 were detected in at least 1 sample during the study. Spatial and seasonal comparisons were completed for environmental samples. Measured concentrations in stream samples were compared to water-quality criteria for pollutants of concern. Finally, the mass loads of water-quality constituents in the combined sewer overflow discharges, stormwater outfalls, and streams were computed and compared. The results of the study indicate that combined sewer overflow and stormwater discharges are affecting the water quality of the streams in the Omaha area. At the Papillion Creek Basin sites, Escherichia coli densities were greater than 126 units per 100 milliliters in 99 percent of the samples (212 of 213 samples analyzed for Escherichia coli) collected during the recreational-use season from May through September (in 2006 and 2007). Escherichia coli densities in 76 percent of Missouri River samples (39 of 51 samples) were greater than 126 units per 100 milliliters in samples collected from May through September (in 2006 and 2007). None of the constituents with human health criteria for consumption of water, fish, and other aquatic organisms were detected at levels greater than the criteria in any of the samples collected during this study. Total phosphorus concentrations in water samples collected in the Papillion Creek Basin were in excess of the U.S. Environmental Protection Agency's proposed

  11. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, QUAL2E and similar models do not address a number of practical problems such as stormwater-flow events, nonpoint source pollution, and transient streamflow. Limitations in model formulation affect the ability to close mass balances, to represent sessile bacteria and other benthic processes......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  12. Modelling of stormwater infiltration for stream restoration. Beder (Aarhus) case study

    DEFF Research Database (Denmark)

    Locatelli, Luca; Bockhorn, Britta; Klint, K. E.

    to assess the impact of stormwater runoff infiltration on (1) the water balance; (2) stream flow of the local stream Hovedgrøften; and (3) the risk of polluting the primary aquifer. The hydrogeological model was developed in a deterministic groundwater model (MIKE SHE) which was coupled dynamically...... carried out by developing a hydrogeological model of the Beder area in Aarhus, Denmark. The model area is characterized by the presence of a secondary unconfined aquifer that partly contributes baseflow to the local streams and partly to recharge to the underlying primary aquifer. The model was applied...... to a hydrodynamic 1-D river model (MIKE 11). Geological data based on spear mapping, geophysical data and lithology from local boreholes were used to set up the geological model. Groundwater observation and stream flow measurements were used for model calibration and validation.Different scenarios were analyzed...

  13. Impact of green roofs on stormwater quality in a South Australian urban environment.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-02-01

    Green roofs are an increasingly important component of water sensitive urban design systems and can potentially improve the quality of urban runoff. However, there is evidence that they can occasionally act as a source rather than a sink for pollutants. In this study, the water quality of the outflow from both intensive and extensive green roof systems were studied in the city of Adelaide, South Australia over a period of nine months. The aim was to examine the effects of different green roof configurations on stormwater quality and to compare this with runoff from aluminium and asphalt roofs as control surfaces. The contaminant concentrations in runoff from both intensive and extensive green roofs generally decreased during the study period. A comparison between the two types of green roof showed that except for some events for EC, TDS and chloride, the values of the parameters such as pH, turbidity, nitrate, phosphate and potassium in intensive green roof outflows were higher than in the outflows from the extensive green roofs. These concentrations were compared to local, state, national and international water quality guidelines in order to investigate the potential for outflow runoff from green roofs to be reused for potable and non-potable purposes. The study found that green roof outflow can provide an alternative water source for non-potable purposes such as urban landscape irrigation and toilet flushing. © 2013.

  14. Research on Granular Media of Stormwater Sediments (On the Street and Stormwater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Ginta Cholomskytė

    2011-04-01

    Full Text Available In water management, to reach optimal exploitation of stormwater net it is required to value particle size witch accumulate on the roads and ways. The sediments from stormwater sedimentation tanks, sediments from Kalvarijų street and from the industrial area (Greičiūno street 35 were taken. Was established particle size of sediments. Research showed that the biggest part of sediments 80% in sedimentation tank (Verkiai ir Karoliniškės compose the smallest parts, size – 0,25 mm. Sample from the road that particles size 0,25 compose only 25-35%. To reduce negative effect to the stormwater net exploitation it is recommended to implement street sweeping.Article in Lithuanian

  15. Impervious surfaces and sewer pipe effects on stormwater runoff temperature

    Science.gov (United States)

    Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.

    2013-10-01

    The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.

  16. Pollution of soil and groundwater from infiltration of highly contaminated stormwater - a case study

    DEFF Research Database (Denmark)

    Mikkelsen, P.S.; Häfliger, M.; Ochs, M.

    1997-01-01

    and subsurface sediments and some even exceeded guidelines fixed to preserve the fertility of soil. However, the contamination decreased rapidly with depth. None of the measured metal concentrations in simulated soil solutions exceeded defined drinking water quality standards. Surprisingly, the surface......A surface and a sub-surface infiltration system that received runoff water from trafficked roads for several decades was dug up and the contamination with heavy metals, PAH and AOX was investigated. Most measured solid phase concentrations exceeded background concentrations in nearby surface soils...... contamination due to stormwater infiltration, but highlights that well absorbable contaminants readily available in urban stormwater runoff eventually build up in surface soils and sub-surface sediments to environmentally critical concentration levels. Thus, on the one hand stormwater infiltration systems may...

  17. Developing a stochastic conflict resolution model for urban runoff quality management: Application of info-gap and bargaining theories

    Science.gov (United States)

    Ghodsi, Seyed Hamed; Kerachian, Reza; Estalaki, Siamak Malakpour; Nikoo, Mohammad Reza; Zahmatkesh, Zahra

    2016-02-01

    In this paper, two deterministic and stochastic multilateral, multi-issue, non-cooperative bargaining methodologies are proposed for urban runoff quality management. In the proposed methodologies, a calibrated Storm Water Management Model (SWMM) is used to simulate stormwater runoff quantity and quality for different urban stormwater runoff management scenarios, which have been defined considering several Low Impact Development (LID) techniques. In the deterministic methodology, the best management scenario, representing location and area of LID controls, is identified using the bargaining model. In the stochastic methodology, uncertainties of some key parameters of SWMM are analyzed using the info-gap theory. For each water quality management scenario, robustness and opportuneness criteria are determined based on utility functions of different stakeholders. Then, to find the best solution, the bargaining model is performed considering a combination of robustness and opportuneness criteria for each scenario based on utility function of each stakeholder. The results of applying the proposed methodology in the Velenjak urban watershed located in the northeastern part of Tehran, the capital city of Iran, illustrate its practical utility for conflict resolution in urban water quantity and quality management. It is shown that the solution obtained using the deterministic model cannot outperform the result of the stochastic model considering the robustness and opportuneness criteria. Therefore, it can be concluded that the stochastic model, which incorporates the main uncertainties, could provide more reliable results.

  18. Characterization and environmental management of stormwater runoff from road-salt storage facilities.

    Science.gov (United States)

    2004-01-01

    The objectives of this study were to assess the quantity and quality of salt-contaminated water generated from stormwater runoff at VDOT's salt storage facilities and to evaluate management/treatment alternatives to reduce costs and better protect th...

  19. Review on the quality of sediments from the stormwater drainage system in the urban area

    Directory of Open Access Journals (Sweden)

    Nawrot Nicole

    2017-01-01

    Full Text Available The main task of the stormwater drainage system (SDS is a safe drainage of rainwater and snowmelt from the urban area to the receiver. The flow of rain water in the drainage pipes is directly related with the formation of sediments in the whole stormwater system. In addition, pollutants from land runoff get adsorbed to the sediments. The sludge is mainly formed in those elements of SDS, wherein the flow conditions allow for sedimentation. This article provides an overview of the literature concerning the characteristics of sediments from SDS, with a particular focus on heavy metals in sediments deposited in the urban catchment area.

  20. Managing Uncertainty in Runoff Estimation with the U.S. Environmental Protection Agency National Stormwater Calculator.

    Science.gov (United States)

    The U.S. Environmental Protection Agency National Stormwater Calculator (NSWC) simplifies the task of estimating runoff through a straightforward simulation process based on the EPA Stormwater Management Model. The NSWC accesses localized climate and soil hydrology data, and opti...

  1. Approach and case-study of green infrastructure screening analysis for urban stormwater control.

    Science.gov (United States)

    Eaton, Timothy T

    2018-03-01

    Urban stormwater control is an urgent concern in megacities where increased impervious surface has disrupted natural hydrology. Water managers are increasingly turning to more environmentally friendly ways of capturing stormwater, called Green Infrastructure (GI), to mitigate combined sewer overflow (CSO) that degrades local water quality. A rapid screening approach is described to evaluate how GI strategies can reduce the amount of stormwater runoff in a low-density residential watershed in New York City. Among multiple possible tools, the L-THIA LID online software package, using the SCS-CN method, was selected to estimate relative runoff reductions expected with different strategies in areas of different land uses in the watershed. Results are sensitive to the relative areas of different land uses, and show that bioretention and raingardens provide the maximum reduction (∼12%) in this largely residential watershed. Although commercial, industrial and high-density residential areas in the watershed are minor, larger runoff reductions from disconnection strategies and porous pavement in parking lots are also possible. Total stormwater reductions from various combinations of these strategies can reach 35-55% for individual land uses, and between 23% and 42% for the entire watershed. Copyright © 2017. Published by Elsevier Ltd.

  2. 0-6638: performance testing of coagulants to reduce stormwater runoff turbidity : [project summary].

    Science.gov (United States)

    2013-08-01

    During the last two decades, policy makers have : increasingly recognized that water quality is : adversely affected by sediment-laden : stormwater discharge from construction sites. : On December 1, 2009, the U.S. Environmental : Protection Agency (...

  3. Impacts of Changing Climate, Hydrology and Land Use on the Stormwater Runoff of Urbanizing Central Florida

    Science.gov (United States)

    Huq, E.; Abdul-Aziz, O. I.

    2017-12-01

    We computed the historical and future storm runoff scenarios for the Shingle Creek Basin, including the growing urban centers of central Florida (e.g., City of Orlando). Storm Water Management Model (SWMM 5.1) of US EPA was used to develop a mechanistic hydrologic model for the basin by incorporating components of urban hydrology, hydroclimatological variables, and land use/cover features. The model was calibrated and validated with historical streamflow of 2004-2013 near the outlet of the Shingle Creek. The calibrated model was used to compute the sensitivities of stormwater budget to reference changes in hydroclimatological variables (rainfall and evapotranspiration) and land use/cover features (imperviousness, roughness). Basin stormwater budgets for the historical (2010s = 2004-2013) and future periods (2050s = 2030-2059; 2080s = 2070-2099) were also computed based on downscaled climatic projections of 20 GCMs-RCMs representing the coupled model intercomparison project (CMIP5), and anticipated changes in land use/cover. The sensitivity analyses indicated the dominant drivers of urban runoff in the basin. Comparative assessment of the historical and future stormwater runoff scenarios helped to locate basin areas that would be at a higher risk of future stormwater flooding. Importance of the study lies in providing valuable guidelines for managing stormwater flooding in central Florida and similar growing urban centers around the world.

  4. Integrating Hydrology, Ecology, and Biogeochemistry in Stormwater Management: the Vermont Experience

    Science.gov (United States)

    Bowden, W. B.

    2005-12-01

    Although Vermont has had a stormwater management program since the 1970's, support for the program languished during a period intense suburban development in several counties in the state, most notably Chittenden County next to Lake Champlain. Beginning in 2000, the state renewed efforts to address concerns that stormwater runoff from suburban developments had significantly degraded streams in the area and threatened the health of the Lake. The state employs an extensive, EPA-approved biomonitoring program (based on macroinvertebrates and fish) to assess the health of streams. However, it is difficult to translate these data into targets for stormwater management or to predict how and especially when they will change as a result of future management practices. The challenge of managing stormwater in this area is further compounded by a complete lack of historical hydrologic monitoring data. Ultimately a stakeholder-driven process developed that has lead to an innovative partnership among state agencies, resource managers, NGO's, the US-EPA and scientists. Through this partnership a unique consensus evolved that management for hydrologic targets by themselves would address most of the stakeholders' concerns. The new regulations that are emerging are based on two components. The first component relies on flow-duration curves (FDC's) derived from a simple, widely-used stormwater model (P-8) for which adequate input data are available. The model was calibrated for streams in other areas for which long-term hydrologic data were available and then used to generate `synthetic' FDC's for the stormwater impaired and a suite of `attainment' (developing, but currently un-impaired) watersheds in Vermont. Statistical (cluster) analyses of synthetic FDC's provide watershed-wide targets for hydrologic reduction. Sub-watershed mapping linked to further multivariate analysis of the flow data identify specific locations to implement best management practices (BMP's) that will

  5. Stormwater impacts on a coldwater resource

    International Nuclear Information System (INIS)

    Johnson, K.

    1995-01-01

    The Kinnickinnic River in west-central Wisconsin is classified as a state outstanding resource water, and is a premiere Midwest trout stream, with a self-sustaining brown trout population. River Falls, Wisconsin (population 10,000), located in the heart of the Kinnickinnic River watershed, is developing rapidly because of its proximity to the Minneapolis/St. Paul, MN metropolis. With increasing residential, commercial, and industrial development, concerns about urban stormwater impacts on the Kinnickinnic River are also increasing. These impacts include higher stream flows, thermal pollution, and sedimentation, all of which pose threats to trout and aquatic habitat. In response to the concern about thermal pollution, the Kiap-TU-Wish Chapter of Trout Unlimited established a temperature monitoring network in 1992, at four Kinnickinnic River locations throughout River Falls. Data-logging thermometers continuously record stream temperatures at 10-minute intervals, clearly demonstrating stormwater-induced thermal changes. Rapidly-increasing stream temperatures are often evident at locations downstream from stormwater outfalls during summer rainfalls, and stormwater temperatures may exceed 80 F. The thermal impacts of two small municipal hydropower impoundments have also been documented. Storm event-based composite sampling of residential, commercial, and industrial areas of River Falls (1992) suggests that these areas are highly susceptible to soil erosion, with sediment concentrations greater than the NURP average. Concentrations of some sediment-associated metals are also high. In 1994, River Falls developed a stormwater management plan for the Kinnickinnic River. Plan recommendations include a limitation of 12% impervious area within the city, proper detention pond design to mitigate thermal impacts, stringent erosion control ordinances, additional stormwater BMP'S, and increased public awareness and involvement

  6. Characterization of roadway stormwater system residuals for reuse and disposal options

    International Nuclear Information System (INIS)

    Jang, Yong-Chul; Jain, Pradeep; Tolaymat, Thabet; Dubey, Brajesh; Singh, Shrawan; Townsend, Timothy

    2010-01-01

    The chemical characterization of sediments accumulated in catch basins and stormwater ponds provides important information for assessing risks associated with management of these residuals upon removal of accumulated deposits in stormwater systems. In this study, over a period of 15 months, more than 150 residual samples were collected from 77 catch basin units and 22 stormwater ponds from 16 municipalities throughout the state of Florida. Concentrations (mg/kg) of metals and metalloids (arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc) and trace organics (volatile organics, semi-volatile organics, herbicides, and pesticides) in the sediments were measured. In addition, the synthetic precipitation leaching procedure (SPLP) was utilized to evaluate pollutant leachability risk for a subset of the samples collected. Measured pollutant concentrations were compared to corresponding risk-based guidelines in Florida (i.e., Florida soil cleanup target levels) to assess potential human health risks of beneficial use of these residuals through land application. Leached concentrations were compared to risk-based water quality guidelines (i.e., Florida groundwater cleanup target levels) to examine the potential for groundwater contamination. Although several metals (arsenic, barium, chromium, copper, nickel, lead, and zinc) were routinely detected in the catch basin and stormwater pond sediments, their concentrations were generally lower than the Florida's risk-based cleanup target levels for soils. A small number of organochlorine compounds (e.g., 4,4'-DDE, 4,4'-DDT) were detected, but only in a limited number of the samples (less than 10%); leaching of trace organic pollutants above the Florida risk-based groundwater thresholds was rare. The results suggest that when land-applied or beneficially used, these residuals are not expected to pose a significant threat to human health or the environment and the results of this research

  7. The influence of temperature and salt on metal and sediment removal in stormwater biofilters.

    Science.gov (United States)

    Søberg, Laila C; Viklander, Maria; Blecken, Godecke-Tobias

    2014-01-01

    Stormwater biofilters are used to treat stormwater runoff. In countries with cold winter climates, biofilters are subject to low temperatures which, in some cases, are combined with potentially high salt concentrations from road de-icing, potentially affecting the biofilter's performance. Since stormwater biofilters have been developed without consideration of their critical winter use, a laboratory study was carried out to evaluate the performance of stormwater biofilters subjected to low and high temperatures, with and without salt. Both factors and their interaction had a significant effect on outflow concentrations and removal percentages. Salt had a negative impact on outflow concentrations, causing lower removal percentages for (especially dissolved) metals, this impact being most pronounced for Cu and Pb. The unrealistic combination of salt with high temperature seemed to further amplify the negative impacts of salt despite the fact that temperature alone did not cause significant differences in outflow concentrations and removal percentages. Still, biofilters showed the ability to treat stormwater efficiently under the simulated winter conditions; outflow concentrations for total metals as a minimum met the class 4 threshold value defined in the Swedish freshwater quality guidelines, while inflow concentrations clearly exceeded the threshold value for class 5. The relatively coarse filter material (which is recommended to facilitate infiltration during winter) did not seem to exacerbate biofilter performance.

  8. Impacts of Changing Climatic Drivers and Land use features on Future Stormwater Runoff in the Northwest Florida Basin: A Large-Scale Hydrologic Modeling Assessment

    Science.gov (United States)

    Khan, M.; Abdul-Aziz, O. I.

    2017-12-01

    Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.

  9. Green stormwater infrastructure eco-planning and development on the regional scale: a case study of Shanghai Lingang New City, East China

    Science.gov (United States)

    Xu, Haishun; Chen, Liang; Zhao, Bing; Zhang, Qiuzhuo; Cai, Yongli

    2016-06-01

    Urban underlying surface has been greatly changed with rapid urbanization, considered to be one of the major causes for the destruction of urban natural hydrological processes. This has imposed a huge challenge for stormwater management in cities. There has been a shift from gray water management to green stormwater management thinking. The green stormwater infrastructure (GSI) is regarded as an effective and cost-efficient stormwater management eco-landscape approach. China's GSI practice and the development of its theoretical framework are still in the initial stage. This paper presents an innovative framework for stormwater management, integrating green stormwater infrastructure and landscape security patterns on a regional scale based on an urban master plan. The core concept of green stormwater infrastructure eco-planning is to form an interconnected GSI network (i.e., stormwater management landscape security pattern) which consists of the location, portion, size, layout, and structure of GSI so as to efficiently safeguard natural hydrological processes. Shanghai Lingang New City, a satellite new town of Shanghai, China was selected as a case study for GSI studies. Simulation analyses of hydrological processes were carried out to identify the critical significant landscape nodes in the highpriority watersheds for stormwater management. GSI should be planned and implemented in these identified landscape nodes. The comprehensive stormwater management landscape security pattern of Shanghai Lingang New City is designed with consideration of flood control, stormwater control, runoff reduction, water quality protection, and rainwater utilization objectives which could provide guidelines for smart growth and sustainable development of this city.

  10. How Much Is Enough? Minimal Responses of Water Quality and Stream Biota to Partial Retrofit Stormwater Management in a Suburban Neighborhood

    Science.gov (United States)

    Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic eco...

  11. Modelling of sedimentation and remobilization in in-line storage sewers for stormwater treatment.

    Science.gov (United States)

    Frehmann, T; Flores, C; Luekewille, F; Mietzel, T; Spengler, B; Geiger, W F

    2005-01-01

    A special arrangement of combined sewer overflow tanks is the in-line storage sewer with downstream discharge (ISS-down). This layout has the advantage that, besides the sewer system, no other structures are required for stormwater treatment. The verification of the efficiency with respect to the processes of sedimentation and remobilization of sediment within the in-line storage sewer with downstream discharge is carried out in a combination of a field and a pilot plant study. The model study was carried out using a pilot plant model scaled 1:13. The following is intended to present some results of the pilot plant study and the mathematical empirical modelling of the sedimentation and remobilization process.

  12. Antimicrobial media for passive removal of pathogen by stormwater biofilters

    OpenAIRE

    Li, Yali

    2017-01-01

    Stormwater biofilters (designed primarily for nutrient and metal removal) are gaining popularity globally for the treatment of urban stormwater runoff. However, their reported faecal indicator removal efficiency varies from several log to net leaching, and the effluent concentrations rarely meet the requirements for stormwater harvesting. In order to improve the stormwater biofilter design for reliable pathogen treatment, research in three Stages is therefore conducted systematically: identif...

  13. Protecting Water Quality With Smart Growth Strategies and Natural Stormwater Management in Sussex County, Delaware

    Science.gov (United States)

    The report describes a technical assistance project that explored how smart growth and sustainable stormwater management approaches (known as green infrastructure) could be applied to Sussex County, DE.

  14. Enhanced Stormwater Contaminant Removal and Improved Runoff Quality Using Modified Sorbents in Tree Filters

    Science.gov (United States)

    Schifman, L. A.; Kasaraneni, V.; Boving, T. B.; Oyanedel-Craver, V.

    2013-12-01

    Stormwater runoff, particularly in urban areas, contains high concentrations of pathogens that are often cited as one of the main reasons for beach closings and other water quality issues in coastal areas. Commonly found contaminants in runoff are often addressed by structural best management practices (BMP) that capture and treat the runoff before discharging it. Many BMP, such as tree filters, act as primary filtration devices that attenuate total suspended solids, nutrients, and heavy metals from runoff, but typically these BMPs are not designed to treat bacteria and have only minor petroleum hydrocarbon (PH) treatment capabilities. To address this shortcoming, the contaminant retention of an alternative sorption material was compared to expanded shale that is usually used in tree filters. Red cedar wood chips were modified with either Quaternary Ammonium Silane (QAS) or Silver Nanoparticles (AgNPs) to provide antimicrobial properties to the matrix and/or exploit their affinity to sorb PH, particularly polycyclic aromatic hydrocarbons (PAH). Results show that the wood chips exhibit the highest sorption capacity for QAS, making this material favorable for treating bacteria, while at the same time attenuating PAH by sorption processes. In the case of AgNP amendment to wood, less AgNP uptake and more desorption from the wood matrix was observed, making this amendment less favorable for bacteria deactivation. Batch experiments show that wood chips modified with QAS can remove up to 3 orders of magnitude of bacteria and retain up to 0.1 mg/g of PAH compared to shale, which has very limited bacteria deactivation (less than one order of magnitude) a PAH retention capacity of 0.04 mg/g. In this talk, the contaminant removal efficiency of the modified and unmodified materials will be discussed on the background of how these materials may find use in enhanced treatment of stormwater in tree filter BMPs.

  15. Stormwater Controls for Pollutant Removal on GDOT Right-Of-Way

    Science.gov (United States)

    2012-04-11

    The Georgia Department of Transportation (GDOT) operates a large number of roadside stormwater treatment facilities to contain and treat roadside stormwater runoff. The stormwater best management practices (BMPs) were designed with an emphasis on the...

  16. Using game theory to analyze green stormwater infrastructure implementation policies

    Science.gov (United States)

    William, R. K.; Garg, J.; Stillwell, A. S.

    2017-12-01

    While green stormwater infrastructure is a useful approach in addressing multiple challenges facing the urban environment, little consensus exists on how to best incentivize its adoption by private landowners. Game theory, a field of study designed to model conflict and cooperation between two or more agents, is well-suited to address this policy question. We used a cooperative game theory framework to analyze the impacts of three different policy approaches frequently used to incentivize the uptake of green infrastructure by private landowners: municipal regulation, direct grants, and stormwater fees. The results indicate that municipal regulation leads to the greatest environmental benefits; however, the choice of "best" regulatory approach is dependent on a variety of different factors including political and financial considerations. Policy impacts are also highly dependent on agents' spatial positions within the stormwater network. This finding leads to important questions of social equity and environmental justice.

  17. Multiobjective Optimization Combining BMP Technology and Land Preservation for Watershed-based Stormwater Management

    Science.gov (United States)

    McGarity, A. E.

    2009-12-01

    linear segment of represents a different option for reducing stormwater runoff volumes and pollutant loadings. The solutions space is comprised of optimal levels of expenditure for categories of BMP's by land use category and optimal land preservation expenditures by drainage zone. To demonstrate the usefulness of the model, results from its application to the Little Crum Creek watershed in suburban Philadelphia are presented. The model has been used to assist a watershed association and four municipalities to develop an action plan for restoration of water quality on this impaired stream. References Lai, F., J. Zhen, J. Riverson, and L. Shoemaker (2006). "SUSTAIN - An Evaluation and Cost-Optimization Tool for Placement of BMPs," ASCE World Environmental and Water Resource Congress 2006. McGarity, A.E. (2006). A Cost Minimization Model to Priortize Urban Catchments for Stormwater BMP Implementation Projects. American Water Resources Association National Meeting, Baltimore, MD, November, 2006. Yu, S., J. X. Zhen, and S.Y. Zhai, (2002). Development of Stormwater Best Management Practice Placement Strategy for the Virginia Department of Transportation. Final Contract Report, VTRC 04-CR9, Virginia Transportation Research Council.

  18. Optimizing stormwater treatment practices a handbook of assessment and maintenance

    CERN Document Server

    Erickson, Andrew J; Gulliver, John S

    2013-01-01

    Optimizing Stormwater Treatment Practices: A Handbook of Assessment and Maintenance provides the information necessary for developing and operating an effective maintenance program for stormwater treatment. The book offers instructions on how to measure the level of performance of stormwater treatment practices directly and bases proposed maintenance schedules on actual performance and historical maintenance efforts and costs. The inspection methods, which are proven in the field and have been implemented successfully, are necessary as regulatory agencies are demanding evaluations of the performance of stormwater treatment practices. The authors have developed a three-tiered approach that offers readers a standard protocol for how to determine the effectiveness of stormwater treatment practices currently in place. This book also: Provides a standard protocol for how to determine the effectiveness of stormwater treatment practices Assists readers with identifying which assessment techniques to use for stormwa...

  19. Estimation of Stormwater Interception Rate for various LID Facilities

    Science.gov (United States)

    Kim, S.; Lee, O.; Choi, J.

    2017-12-01

    In this study, the stormwater interception rate is proposed to apply in the design of LID facilities. For this purpose, EPA-SWMM is built with some areas of Noksan National Industrial Complex where long-term observed stormwater data were monitored and stormwater interception rates for various design capacities of various LID facilities are estimated. While the sensitivity of stormwater interception rate according to design specifications of bio-retention and infiltration trench facilities is not large, the sensitivity of stormwater interception rate according to local rainfall characteristics is relatively big. As a result of comparing the present rainfall interception rate estimation method which is officially operated in Korea with the one proposed in this study, it will be presented that the present method is highly likely to overestimate the performance of the bio-retention and infiltration trench facilities. Finally, a new stormwater interception rate formulas for the bio-retention and infiltration trench LID facilities will be proposed. Acknowledgement This research was supported by a grant (2016000200002) from Public Welfare Technology Development Program funded by Ministry of Environment of Korean government.

  20. Controlling Stormwater Quality with Filter Soil—Event and Dry Weather Testing

    Directory of Open Access Journals (Sweden)

    Karin Cederkvist

    2016-08-01

    Full Text Available The use of filter soil is increasing for control of quality of stormwater runoff prior to infiltration or discharge. This study aimed to gain knowledge about treatment efficacy of filter soils at field scale. Percolate samples from swale-trench systems with filter soil based on agricultural till with/without limestone were monitored for 15 and 9 rain events respectively. Further, two curb extensions with filter soil based on landfill soil were monitored for 10 and 8 events. Pollutant concentrations in percolate were compared to influent samples from the catchment area. Additionally one of the curb extensions was tested twice by adding high-dose synthetic influent containing runoff pollutants of concern. Despite generally low influent pollutant levels, phosphorus, copper, zinc, lead and some polyaromatic hydrocarbons exceeded guiding criteria for protection of groundwater and freshwater. Concentrations in the percolate were in most cases reduced, but phosphorus increased and despite reduced concentrations copper, lead and benzo(apyrene still exceeded guiding criteria. Pollutants from the synthetic influent were efficiently retained, except the pesticide MCPA. Filter soil based on landfill soil tended to perform better than agricultural till. No impact of limestone was observed. Overall the filter soils performed well in retaining pollutants, despite simultaneous processes of mobilization and immobilization.

  1. Effect of urban stormwater runoff on ground water beneath recharge basins on Long Island, New York

    Science.gov (United States)

    Ku, H.F.; Simmons, D.L.

    1986-01-01

    Urban stormwater runoff was monitored during 1980-82 to investigate the source, type, quantity, and fate of contaminants routed to the more than 3,000 recharge basins on Long Island and to determine whether this runoff might be a significant source of contamination to the groundwater reservoir. Forty-six storms were monitored at five recharge basins in representative land use areas (strip commercial, shopping-mall parking lot, major highway, low-density residential, and medium-density residential). Runoff:precipitation ratios indicate that all storm runoff is derived from precipitation on impervious surfaces in the drainage area, except during storms of high intensity or long duration, when additional runoff can be derived from precipitation on permeable surfaces. Lead was present in highway runoff in concentrations up to 3300 micrograms/L, and chloride was found in parking lot runoff concentrations up to 1,100 mg/L during winter, when salt is used for deicing. In the five composite stormwater samples and nine groundwater grab samples that were analyzed for 113 EPA-designated ' priority pollutants, ' four constituents were detected in concentrations exceeding New York State guidelines of 50 micrograms/L for an individual organic compound in drinking water: p-chloro-m-cresol (79 micrograms/L); 2 ,4-dimethylphenol (96 micrograms/L); 4-nitrophenol (58 micrograms/L); and methylene chloride (230 micrograms/L in either groundwater or stormwater at the highway basin). One stormwater sample and two groundwater samples exceeded New York State guidelines for total organic compounds in drinking water (100 micrograms/L). The presence of these constituents is attributed to contamination from point sources rather than to the quality of runoff from urban areas. The median number of indicator bacteria in stormwater ranged from 0.1 to 10 billion MPN/100 ml. Fecal coliforms and fecal streptococci increased by 1 to 2 orders of magnitude during the warm season. The use of recharge

  2. Stormwater Impaired Watersheds

    Data.gov (United States)

    Vermont Center for Geographic Information — Stormwater impaired watersheds occuring on both the Priority Waters (Part D - Completed TMDL) and 303(d) list of waters (Part A - need TMDL) The Vermont State...

  3. Price Endogeneity and Marginal Cost Effects on Incentive Compatible Stormwater Management Policies

    OpenAIRE

    Huber, Matthew C.; Willis, David B.; Hayes, John C.; Privette, Charles V., III

    2010-01-01

    Incentive based stormwater management policies offer the prospect of reducing urban stormwater runoff while increasing developer profits. An incentive compatible Stormwater Banking Program (SBP) is presented that allows developers to build at higher residential densities in exchange for including low impact stormwater Best Management Practices (BMPs) in the development’s stormwater management infrastructure. Price endogeneity presents itself when the smaller residential lots created by buildi...

  4. A Review of Semivolatile and Volatile Organic Compounds in Highway Runoff and Urban Stormwater

    Science.gov (United States)

    Lopes, Thomas J.; Dionne, Shannon G.

    1998-01-01

    Many studies have been conducted since 1970 to characterize concentrations of semivolatile organic compounds (SVOCs) in highway runoff and urban stormwater. To a lesser extent, studies also have characterized concentrations of volatile organic compounds (VOCs), estimated loads of SVOCs, and assessed potential impacts of these contaminants on receiving streams. This review evaluates the quality of existing data on SVOCs and VOCs in highway runoff and urban storm- water and summarizes significant findings. Studies related to highways are emphasized when possible. The review included 44 articles and reports that focused primarily on SVOCs and VOCs. Only 17 of these publications are related to highways, and 5 of these 17 are themselves review papers. SVOCs in urban stormwater and sediments during the late 1970's to mid-1980's were the subject of most studies. Criteria used to evaluate data quality included documentation of sampling protocols, analytical methods, minimum reporting limit (MRL) or method detection limit (MDL), qualityassurance protocols, and quality-control samples. The largest deficiency in documenting data quality was that only 10 percent of the studies described where water samples were collected in the stream cross section. About 80 percent of SVOCs in runoff are in the suspended solids. Because suspended solids can vary significantly even in narrow channels, concentrations from discrete point samples and contaminant loads estimated from those samples are questionable without information on sample location or how well streamflow was mixed. Thirty percent or fewer of the studies documented the MRL, MDL, cleaning of samplers, or use of field quality-control samples. Comparing results of different studies and evaluating the quality of environmental data, especially for samples with low concentrations, is difficult without this information. The most significant factor affecting SVOC concentrations in water is suspended solids concentration. In sediment

  5. Simulation of the hydraulic performance of highway filter drains through laboratory models and stormwater management tools.

    Science.gov (United States)

    Sañudo-Fontaneda, Luis A; Jato-Espino, Daniel; Lashford, Craig; Coupe, Stephen J

    2017-05-23

    Road drainage is one of the most relevant assets in transport infrastructure due to its inherent influence on traffic management and road safety. Highway filter drains (HFDs), also known as "French Drains", are the main drainage system currently in use in the UK, throughout 7000 km of its strategic road network. Despite being a widespread technique across the whole country, little research has been completed on their design considerations and their subsequent impact on their hydraulic performance, representing a gap in the field. Laboratory experiments have been proven to be a reliable indicator for the simulation of the hydraulic performance of stormwater best management practices (BMPs). In addition to this, stormwater management tools (SMT) have been preferentially chosen as a design tool for BMPs by practitioners from all over the world. In this context, this research aims to investigate the hydraulic performance of HFDs by comparing the results from laboratory simulation and two widely used SMT such as the US EPA's stormwater management model (SWMM) and MicroDrainage®. Statistical analyses were applied to a series of rainfall scenarios simulated, showing a high level of accuracy between the results obtained in laboratory and using SMT as indicated by the high and low values of the Nash-Sutcliffe and R 2 coefficients and root-mean-square error (RMSE) reached, which validated the usefulness of SMT to determine the hydraulic performance of HFDs.

  6. Urban Hydrology and Water Quality Modeling - Resolution Modeling Comparison for Water Quantity and Quality

    Science.gov (United States)

    Fry, T. J.; Maxwell, R. M.

    2014-12-01

    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows. These hydrologic changes can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater represents a complex and dynamic component of the urban water cycle that requires careful mitigation. With the implementation of Phase II rules under the CWA, stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Large-scale patterns of stormwater runoff from urban environments are complex and it is unclear what the large-scale impacts of green infrastructure are on the water cycle. High resolution physically based hydrologic models can be used to more accurately simulate the urban hydrologic cycle. These types of models tend to be more dynamic and allow for greater flexibility in evaluating and accounting for various hydrologic processes in the urban environment that may be lost with lower resolution conceptual models. We propose to evaluate the effectiveness of high resolution models to accurately represent and determine the urban hydrologic cycle with the overall goal of being able to accurately assess the impacts of LID BMPs in urban environments. We propose to complete a rigorous model intercomparison between ParFlow and FLO-2D. Both of these models can be scaled to higher resolutions, allow for rainfall to be spatially and temporally input, and solve the shallow water equations. Each model is different in the way it accounts for infiltration, initial abstraction losses

  7. SWMM Modeling Methods for Simulating Green Infrastructure at a Suburban Headwatershed: User’s Guide

    Science.gov (United States)

    Urban stormwater runoff quantity and quality are strongly dependent upon catchment properties. Models are used to simulate the runoff characteristics, but the output from a stormwater management model is dependent on how the catchment area is subdivided and represented as spatial...

  8. Laboratory simulated transport of microcystin-LR and cylindrospermopsin in groundwater under the influence of stormwater ponds: implications for harvesting of infiltrated stormwater

    Science.gov (United States)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Loftin, Keith A.; Chang, Ni-Bin; Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias

    2011-01-01

    Water shortages in the southeastern United States have led to a need for more intensive management and usage of stormwater for beneficial uses such as irrigation. Harvesting of infiltrated stormwater from horizontal wells in sandy aquifer sediments beneath stormwater ponds has emerged as an alternative in need of evaluation. Cyanobacteria may proliferate in stormwater ponds; cyanotoxins produced by these organisms represent potential public health concerns. Results of two, saturated flow, sand column experiments indicate breakthrough of microcystin-LR (MCLR) and cylindrospermopsin (CYL) within 1―2 pore volumes indicating little removal attributable to sorption. Concentration-based MCLR removal efficiencies up to 90% were achieved, which we hypothesize were predominantly due to biodegradation. In contrast, CYL removal efficiencies were generally less than 15%. On the basis of these results, removal of sandy soil in the stormwater pond bottom and addition of sorption media with greater binding affinities to cyanotoxins may enhance natural attenuation processes prior to water withdrawal.

  9. Characterization of stormwater at selected South Carolina Department of Transportation maintenance yards and section shed facilities in Ballentine, Conway, and North Charleston, South Carolina, 2010-12

    Science.gov (United States)

    Journey, Celeste A.; Conlon, Kevin J.

    2014-01-01

    Increased impervious surfaces (driveways, parking lots, and buildings) and human activities (residential, industrial, and commercial) have been linked to substantial changes in both the quality and quantity of stormwater on a watershed scale (Brabec and others, 2002; Pitt and Maestre, 2005). Small-scale storage and equipment repair facilities increase impervious surfaces that prevent infiltration of stormwater, and these facilities accommodate activities that can introduce trace metals, organic compounds, and other contaminants to the facility’s grounds. Thus, these small facilities may contribute pollutants to the environment during storm events (U.S. Environmental Protection Agency, 1992). The South Carolina Department of Transportation (SCDOT) operates section shed and maintenance yard facilities throughout the State. Prior to this investigation, the SCDOT had no data to define the quality of stormwater leaving these facilities. To provide these data, the U.S. Geological Survey (USGS), in cooperation with the SCDOT, conducted an investigation to identify and quantify constituents that are transported in stormwater from two maintenance yards and a section shed in three different areas of South Carolina. The two maintenance yards, in North Charleston and Conway, S.C., were selected because they represent facilities where equipment and road maintenance materials are stored and complete equipment repair operations are conducted. The section shed, in Ballentine, S.C., was selected because it is a facility that stores equipment and road maintenance material. Characterization of the constituents that were transported in stormwater from these representative SCDOT maintenance facilities may be used by the SCDOT in the development of stormwater management plans for similar section shed and maintenance yard facilities throughout the State to improve stormwater quality.

  10. Stormwater runoff in watersheds: a system for prediciting impacts of development and climate change

    Science.gov (United States)

    Ann Blair; Denise Sanger; Susan Lovelace

    2016-01-01

    The Stormwater Runoff Modeling System (SWARM) enhances understanding of impacts of land-use and climate change on stormwater runoff in watersheds. We developed this singleevent system based on US Department of Agriculture, Natural Resources Conservation Service curve number and unit hydrograph methods. We tested SWARM using US Geological Survey discharge and rain data...

  11. Potential use of ionic species for identifying source land-uses of stormwater runoff.

    Science.gov (United States)

    Lee, Dong Hoon; Kim, Jin Hwi; Mendoza, Joseph A; Lee, Chang-Hee; Kang, Joo-Hyon

    2017-02-01

    Identifying critical land-uses or source areas is important to prioritize resources for cost-effective stormwater management. This study investigated the use of information on ionic composition as a fingerprint to identify the source land-use of stormwater runoff. We used 12 ionic species in stormwater runoff monitored for a total of 20 storm events at five sites with different land-use compositions during the 2012-2014 wet seasons. A stepwise forward discriminant function analysis (DFA) with the jack-knifed cross validation approach was used to select ionic species that better discriminate the land-use of its source. Of the 12 ionic species, 9 species (K + , Mg 2+ , Na + , NH 4 + , Br - , Cl - , F - , NO 2 - , and SO 4 2- ) were selected for better performance of the DFA. The DFA successfully differentiated stormwater samples from urban, rural, and construction sites using concentrations of the ionic species (70%, 95%, and 91% of correct classification, respectively). Over 80% of the new data cases were correctly classified by the trained DFA model. When applied to data cases from a mixed land-use catchment and downstream, the DFA model showed the greater impact of urban areas and rural areas respectively in the earlier and later parts of a storm event.

  12. Dynamics of dissolved organic carbon (DOC) through stormwater basins designed for groundwater recharge in urban area: Assessment of retention efficiency.

    Science.gov (United States)

    Mermillod-Blondin, Florian; Simon, Laurent; Maazouzi, Chafik; Foulquier, Arnaud; Delolme, Cécile; Marmonier, Pierre

    2015-09-15

    Managed aquifer recharge (MAR) has been developed in many countries to limit the risk of urban flooding and compensate for reduced groundwater recharge in urban areas. The environmental performances of MAR systems like infiltration basins depend on the efficiency of soil and vadose zone to retain stormwater-derived contaminants. However, these performances need to be finely evaluated for stormwater-derived dissolved organic matter (DOM) that can affect groundwater quality. Therefore, this study examined the performance of MAR systems to process DOM during its transfer from infiltration basins to an urban aquifer. DOM characteristics (fluorescent spectroscopic properties, biodegradable and refractory fractions of dissolved organic carbon -DOC-, consumption by micro-organisms during incubation in slow filtration sediment columns) were measured in stormwater during its transfer through three infiltration basins during a stormwater event. DOC concentrations sharply decreased from surface to the aquifer for the three MAR sites. This pattern was largely due to the retention of biodegradable DOC which was more than 75% for the three MAR sites, whereas the retention of refractory DOC was more variable and globally less important (from 18% to 61% depending on MAR site). Slow filtration column experiments also showed that DOC retention during stormwater infiltration through soil and vadose zone was mainly due to aerobic microbial consumption of the biodegradable fraction of DOC. In parallel, measurements of DOM characteristics from groundwaters influenced or not by MAR demonstrated that stormwater infiltration increased DOC quantity without affecting its quality (% of biodegradable DOC and relative aromatic carbon content -estimated by SUVA254-). The present study demonstrated that processes occurring in soil and vadose zone of MAR sites were enough efficient to limit DOC fluxes to the aquifer. Nevertheless, the enrichments of DOC concentrations measured in groundwater below

  13. Stream Responses to a Watershed-Scale Stormwater Retrofit

    Science.gov (United States)

    Green infrastructure can reduce stormwater runoff and mitigate many of the problems associated with impervious surfaces; however, the effectiveness of retrofit stormwater management for improving aquatic health is largely untested. In the suburban, 1.8 km2 Shepherd Creek catchmen...

  14. German experience in managing stormwater with green infrastructure

    Science.gov (United States)

    This paper identifies and describes experience with ‘green’ stormwater management practices in Germany. It provides the context in which developments took place and extracts lessons learned to inform efforts of other countries in confronting urban stormwater challenges. Our findi...

  15. Modeling green infrastructure land use changes on future air quality in Kansas City

    Science.gov (United States)

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also resu...

  16. Modeling and Optimization of Recycled Water Systems to Augment Urban Groundwater Recharge through Underutilized Stormwater Spreading Basins.

    Science.gov (United States)

    Bradshaw, Jonathan L; Luthy, Richard G

    2017-10-17

    Infrastructure systems that use stormwater and recycled water to augment groundwater recharge through spreading basins represent cost-effective opportunities to diversify urban water supplies. However, technical questions remain about how these types of managed aquifer recharge systems should be designed; furthermore, existing planning tools are insufficient for performing robust design comparisons. Addressing this need, we present a model for identifying the best-case design and operation schedule for systems that deliver recycled water to underutilized stormwater spreading basins. Resulting systems are optimal with respect to life cycle costs and water deliveries. Through a case study of Los Angeles, California, we illustrate how delivering recycled water to spreading basins could be optimally implemented. Results illustrate trade-offs between centralized and decentralized configurations. For example, while a centralized Hyperion system could deliver more recycled water to the Hansen Spreading Grounds, this system incurs approximately twice the conveyance cost of a decentralized Tillman system (mean of 44% vs 22% of unit life cycle costs). Compared to existing methods, our model allows for more comprehensive and precise analyses of cost, water volume, and energy trade-offs among different design scenarios. This model can inform decisions about spreading basin operation policies and the development of new water supplies.

  17. Statistical summary of selected physical, chemical, and microbial characteristics, and estimates of constituent loads in urban stormwater, Maricopa County, Arizona

    Science.gov (United States)

    Lopes, T.J.; Fossum, K.D.; Phillips, J.V.; Monical, J.E.

    1995-01-01

    Stormwater and streamflow in the Phoenix, Arizona, area were monitored to determine the physical, chemical, and microbial characteristics of storm- water from areas having different land uses; to describe the characteristics of streamflow in a river that receives urban stormwater; and to estimate constituent loads in stormwater from unmonitored areas in Maricopa County, Arizona. Land use affects urban stormwater chemistry mostly because the percentage of impervious area controls the suspended-solids concentrations and varies with the type of land use. Urban activities also seem to concentrate cadmium, lead, and zinc in sediments. Urban stormwater had larger concentrations of chemical oxygen demand and biological oxygen demand, oil and grease, and higher counts of fecal bacteria than streamflow and could degrade the quality of the Salt River. Most regression equations for estimating constituent loads require three explanatory variables (total rainfall, drainage area, and per- centage of impervious area) and had standard errors that were from 65 to 266 percent. Localized areas that appear to contribute a large proportion of the constituent loads typically have 40 percent or more impervious area and are associated with industrial, commercial, and high-density residential land uses. The use of the mean value of the event-mean constituent concentrations measured in stormwater may be the best way of estimating constituent concentrations.

  18. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.).

    Science.gov (United States)

    Lu, Qin; He, Zhenli L; Graetz, Donald A; Stoffella, Peter J; Yang, Xiaoe

    2010-01-01

    Water quality impairment by nutrient enrichment from agricultural activities has been a concern worldwide. Phytoremediation technology using aquatic plants in constructed wetlands and stormwater detention ponds is increasingly applied to remediate eutrophic waters. The objectives of this study were to evaluate the effectiveness and potential of water lettuce (Pistia stratiotes L.) in removing nutrients including nitrogen (N) and phosphorus (P) from stormwater in the constructed water detention systems before it is discharged into the St. Lucie Estuary, an important surface water system in Florida, using phytoremediation technologies. In this study, water lettuce (P. stratiotes) was planted in the treatment plots of two stormwater detention ponds (East and West Ponds) in 2005-2007 and water samples from both treatment and control plots were weekly collected and analyzed for water quality properties including pH, electrical conductivity, turbidity, suspended solids, and nutrients (N and P). Optimum plant density was maintained and plant samples were collected monthly and analyzed for nutrient contents. Water quality in both ponds was improved, as evidenced by decreases in water turbidity, suspended solids, and nutrient concentrations. Water turbidity was decreased by more than 60%. Inorganic N (NH(4) (+) and NO(3) (-)) concentrations in treatment plots were more than 50% lower than those in control plots (without plant). Reductions in both PO(4) (3-) and total P were approximately 14-31%, as compared to the control plots. Water lettuce contained average N and P concentrations of 17 and 3.0 g kg(-1), respectively, and removed 190-329 kg N ha(-1) and 25-34 kg P ha(-1) annually. Many aquatic plants have been used to remove nutrients from eutrophic waters but water lettuce proved superior to most other plants in nutrient removal efficiency, owing to its rapid growth and high biomass yield potential. However, the growth and nutrient removal potential are affected by many

  19. TRADING STORMWATER ABATEMENT CREDITS IN CINCINNATI'S SHEPHERD CREEK

    Science.gov (United States)

    The problem of stormwater runoff management grows apace with continued urbanization, yet the management tools for this growning non-profit source problem have not fully kept pace. The rapid growth of stormwater utilities around the nation is an important step toward providing an...

  20. VDOT manual of practice for planning stormwater management.

    Science.gov (United States)

    1992-01-01

    The final report is in the form of a manual of practice for the VDOT to use in planning its stormwater management strategies. The manual was proposed to aid in the selection and design of erosion control practices and stormwater control practices for...

  1. Water quality of stormwater generated from an airport in a cold climate, function of an infiltration pond, and sampling strategy with limited resources.

    Science.gov (United States)

    Jia, Yu; Ehlert, Ludwig; Wahlskog, Cecilia; Lundberg, Angela; Maurice, Christian

    2017-12-05

    Monitoring pollutants in stormwater discharge in cold climates is challenging. An environmental survey was performed by sampling the stormwater from Luleå Airport, Northern Sweden, during the period 2010-2013, when urea was used as a main component of aircraft deicing/anti-icing fluids (ADAFs). The stormwater collected from the runway was led through an oil trap to an infiltration pond to store excess water during precipitation periods and enhance infiltration and water treatment. Due to insufficient capacity, an emergency spillway was established and equipped with a flow meter and an automatic sampler. This study proposes a program for effective monitoring of pollutant discharge with a minimum number of sampling occasions when use of automatic samplers is not possible. The results showed that 90% of nitrogen discharge occurs during late autumn before the water pipes freeze and during snow melting, regardless of the precipitation during the remaining months when the pollutant discharge was negligible. The concentrations of other constituents in the discharge were generally low compared to guideline values. The best data quality was obtained using flow controlled sampling. Intensive time-controlled sampling during late autumn (few weeks) and snow melting (2 weeks) would be sufficient for necessary information. The flow meters installed at the rectangular notch appeared to be difficult to calibrate and gave contradictory results. Overall, the spillway was dry, as water infiltrated into the pond, and stagnant water close to the edge might be registered as flow. Water level monitoring revealed that the infiltration capacity gradually decreased with time.

  2. HSPF Modeling for Compliance and Enforcement: An Urban Case Study

    Science.gov (United States)

    Marshalonis, D.

    2017-12-01

    Stormwater runoff is one of the most significant challenges to water quality facing surface waters globally. In the United States, the Environmental Protection Agency (EPA) regulates stormwater flows through its National Pollutant Discharge Elimination System (NPDES) program permits. When egregious violations occur, EPA may develop its case and prove those violations through the legal dispute process. However, evidence in stormwater-related cases is ephemeral, difficult to collect due to unpredictable weather dynamics, and there are usually no witnesses. The work presented here illustrates an approach EPA takes for certain wet weather cases: introduce results from hydrologic and hydraulic models as evidence to meet legal burden of proof standards. The challenges and opportunities of using models in stormwater discharge modeling are highlighted.

  3. Effects of landscape-based green infrastructure on stormwater ...

    Science.gov (United States)

    The development of impervious surfaces in urban and suburban catchments affects their hydrological behavior by decreasing infiltration, increasing peak hydrograph response following rainfall events, and ultimately increasing the total volume of water and mass of pollutants reaching streams. These changes have deleterious effects on downstream surface waters. Consequently, strategies to mitigate these impacts are now components of contemporary urban development and stormwater management. This study evaluates the effectiveness of landscape green infrastructure (GI) in reducing stormwater runoff volumes and controlling peak flows in four subdivision-scale suburban catchments (1.88 – 12.97 acres) in Montgomery County, MD, USA. Stormwater flow rates during runoff events were measured in five minute intervals at each catchment outlet. One catchment was built with GI vegetated swales on all parcels with the goal of intercepting, conveying, and infiltrating stormwater before it enters the sewer network. The remaining catchments were constructed with traditional gray infrastructure and “end-of-pipe” best management practices (BMPs) that treat stormwater before entering streams. This study compared characteristics of rainfall-runoff events at the green and gray infrastructure sites to understand their effects on suburban hydrology. The landscape GI strategy generally reduced rainfall-runoff ratios compared to gray infrastructure because of increased infiltration, ul

  4. Group NPDES stormwater permit application: The Conoco experience

    International Nuclear Information System (INIS)

    Holler, J.D.

    1993-01-01

    The US Environmental Protection Agency (USEPA) has reported that stormwater runoff is a major cause of pollution and use impairment to waters of the nation. Diffuse pollution sources (stormwater runoff) are increasingly important as controls for industrial process dischargers. On November 16, 1990 the Federal Clean Water Act National Pollutant Discharge Elimination System (NPDES) rules governing the discharge of stormwater were published (56 FR 40948). These rules potentially affect every type of business enterprise conducting work ''associated with industrial activity.'' Dischargers of stormwater associated with industrial activity ar required to either seek coverage under a federal or state general permit using notice of intent, apply for an individual permit, or apply for a permit through a two-part group application process. Conoco, Inc. Supply and Transportation (S and T) elected the latter alternative to attempt to comply with these new evolving complex, broad-ranging permitting requirements. This paper discusses specific details of S and T's strategy, BMP designs, data acquisition activities, monitoring results, as well as economic impacts on the corporation as a result of storm water permit requirements. S and T operates approximately 170 unique wholly and jointly owned petroleum product storage and transport facilities across the nation. Approximately one-third of these facilities were subject to stormwater permit application requirements

  5. Klang River water quality modelling using music

    Science.gov (United States)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  6. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values.

    Science.gov (United States)

    Rooney, R C; Foote, L; Krogman, N; Pattison, J K; Wilson, M J; Bayley, S E

    2015-04-15

    Urban expansion replaces wetlands of natural origin with artificial stormwater management facilities. The literature suggests that efforts to mimic natural wetlands in the design of stormwater facilities can expand the provision of ecosystem services. Policy developments seek to capitalize on these improvements, encouraging developers to build stormwater wetlands in place of stormwater ponds; however, few have compared the biophysical values and social perceptions of these created wetlands to those of the natural wetlands they are replacing. We compared four types of wetlands: natural references sites, natural wetlands impacted by agriculture, created stormwater wetlands, and created stormwater ponds. We anticipated that they would exhibit a gradient in biodiversity, ecological integrity, chemical and hydrologic stress. We further anticipated that perceived values would mirror measured biophysical values. We found higher biophysical values associated with wetlands of natural origin (both reference and agriculturally impacted). The biophysical values of stormwater wetlands and stormwater ponds were lower and indistinguishable from one another. The perceived wetland values assessed by the public differed from the observed biophysical values. This has important policy implications, as the public are not likely to perceive the loss of values associated with the replacement of natural wetlands with created stormwater management facilities. We conclude that 1) agriculturally impacted wetlands provide biophysical values equivalent to those of natural wetlands, meaning that land use alone is not a great predictor of wetland value; 2) stormwater wetlands are not a substantive improvement over stormwater ponds, relative to wetlands of natural origin; 3) stormwater wetlands are poor mimics of natural wetlands, likely due to fundamental distinctions in terms of basin morphology, temporal variation in hydrology, ground water connectivity, and landscape position; 4) these

  7. Assessing roadway contributions to stormwater flows, concentrations, and loads with the StreamStats application

    Science.gov (United States)

    Stonewall, Adam; Granato, Gregory E.; Haluska, Tana L.

    2018-01-01

    The Oregon Department of Transportation (ODOT) and other state departments of transportation need quantitative information about the percentages of different land cover categories above any given stream crossing in the state to assess and address roadway contributions to water-quality impairments and resulting total maximum daily loads. The U.S. Geological Survey, in cooperation with ODOT and the FHWA, added roadway and land cover information to the online StreamStats application to facilitate analysis of stormwater runoff contributions from different land covers. Analysis of 25 delineated basins with drainage areas of about 100 mi2 indicates the diversity of land covers in the Willamette Valley, Oregon. On average, agricultural, developed, and undeveloped land covers comprise 15%, 2.3%, and 82% of these basin areas. On average, these basins contained about 10 mi of state highways and 222 mi of non-state roads. The Stochastic Empirical Loading and Dilution Model was used with available water-quality data to simulate long-term yields of total phosphorus from highways, non-highway roadways, and agricultural, developed, and undeveloped areas. These yields were applied to land cover areas obtained from StreamStats for the Willamette River above Wilsonville, Oregon. This analysis indicated that highway yields were larger than yields from other land covers because highway runoff concentrations were higher than other land covers and the highway is fully impervious. However, the total highway area was a fraction of the other land covers. Accordingly, highway runoff mitigation measures can be effective for managing water quality locally, they may have limited effect on achieving basin-wide stormwater reduction goals.

  8. Crowd Sourcing to Improve Urban Stormwater Management

    Science.gov (United States)

    Minsker, B. S.; Band, L. E.; Heidari Haratmeh, B.; Law, N. L.; Leonard, L. N.; Rai, A.

    2017-12-01

    Over half of the world's population currently lives in urban areas, a number predicted to grow to 60 percent by 2030. Urban areas face unprecedented and growing challenges that threaten society's long-term wellbeing, including poverty; chronic health problems; widespread pollution and resource degradation; and increased natural disasters. These are "wicked" problems involving "systems of systems" that require unprecedented information sharing and collaboration across disciplines and organizational boundaries. Cities are recognizing that the increasing stream of data and information ("Big Data"), informatics, and modeling can support rapid advances on these challenges. Nonetheless, information technology solutions can only be effective in addressing these challenges through deeply human and systems perspectives. A stakeholder-driven approach ("crowd sourcing") is needed to develop urban systems that address multiple needs, such as parks that capture and treat stormwater while improving human and ecosystem health and wellbeing. We have developed informatics- and Cloud-based collaborative methods that enable crowd sourcing of green stormwater infrastructure (GSI: rain gardens, bioswales, trees, etc.) design and management. The methods use machine learning, social media data, and interactive design tools (called IDEAS-GI) to identify locations and features of GSI that perform best on a suite of objectives, including life cycle cost, stormwater volume reduction, and air pollution reduction. Insights will be presented on GI features that best meet stakeholder needs and are therefore most likely to improve human wellbeing and be well maintained.

  9. Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale

    Science.gov (United States)

    Loperfido, J. V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-11-01

    Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011-September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested

  10. Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale

    Science.gov (United States)

    Loperfido, John V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-01-01

    Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011–September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested

  11. Nutrient Removal during Stormwater Aquifer Storage and Recovery in an Anoxic Carbonate Aquifer.

    Science.gov (United States)

    Vanderzalm, Joanne L; Page, Declan W; Dillon, Peter J; Barry, Karen E; Gonzalez, Dennis

    2018-03-01

    Stormwater harvesting coupled to managed aquifer recharge (MAR) provides a means to use the often wasted stormwater resource while also providing protection of the natural and built environment. Aquifers can act as a treatment barrier within a multiple-barrier approach to harvest and use urban stormwater. However, it remains challenging to assess the treatment performance of a MAR scheme due to the heterogeneity of aquifers and MAR operations, which in turn influences water treatment processes. This study uses a probabilistic method to evaluate aquifer treatment performance based on the removal of total organic C (TOC), N, and P during MAR with urban stormwater in an anoxic carbonate aquifer. Total organic C, N, and P are represented as stochastic variables and described by probability density functions (PDFs) for the "injectant" and "recovery"; these injectant and recovery PDFs are used to derive a theoretical MAR removal efficiency PDF. Four long-term MAR sites targeting one of two tertiary carbonate aquifers (T1 and T2) were used to describe the nutrient removal efficiencies. Removal of TOC and total N (TN) was dominated by redox processes, with median removal of TOC between 50 and 60% at all sites and TN from 40 to 50% at three sites with no change at the fourth. Total P removal due to filtration and sorption accounted for median removal of 29 to 53%. Thus, the statistical method was able to characterize the capacity of the anoxic carbonate aquifer treatment barrier for nutrient removal, which highlights that aquifers can be an effective long-term natural treatment option for management of water quality, as well as storage of urban stormwater. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Variation of microorganism concentrations in urban stormwater runoff with land use and seasons.

    Science.gov (United States)

    Selvakumar, Ariamalar; Borst, Michael

    2006-03-01

    Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three different land use areas based on local designation (high-density residential, low-density residential and landscaped commercial). The concentrations of microorganisms in the stormwater runoff were found to be similar in magnitude to, but less variable than, those reported in the stormwater National Pollutant Discharge Elimination System (NPDES) database. Microorganism concentrations from high-density residential areas were higher than those associated with low-density residential and landscaped commercial areas. Since the outfalls were free of sanitary wastewater cross-connections, the major sources of microorganisms to the stormwater runoff were most likely from the feces of domestic animals and wildlife. Concentrations of microorganisms were significantly affected by the season during which the samples were collected. The lowest concentrations were observed during winter except for Staphylococcus aureus. The Pearson correlation coefficients among different indicators showed weak linear relationships and the relationships were statistically significant. However, the relationships between indicators and pathogens were poorly correlated and were not statistically significant, suggesting the use of indicators as evidence of the presence of pathogens is not appropriate. Further, the correlation between the concentration of the traditionally monitored indicators (total coliforms and fecal coliforms) and the suggested substitutes (enterococci and E. coli) is weak, but statistically significant, suggesting that historical time series will be only a qualitative indicator of impaired waters under the revised criteria for recreational water quality by the US EPA.

  13. Development and Exploration of a Regional Stormwater BMP Performance Database to Parameterize an Integrated Decision Support Tool (i-DST)

    Science.gov (United States)

    Bell, C.; Li, Y.; Lopez, E.; Hogue, T. S.

    2017-12-01

    Decision support tools that quantitatively estimate the cost and performance of infrastructure alternatives are valuable for urban planners. Such a tool is needed to aid in planning stormwater projects to meet diverse goals such as the regulation of stormwater runoff and its pollutants, minimization of economic costs, and maximization of environmental and social benefits in the communities served by the infrastructure. This work gives a brief overview of an integrated decision support tool, called i-DST, that is currently being developed to serve this need. This presentation focuses on the development of a default database for the i-DST that parameterizes water quality treatment efficiency of stormwater best management practices (BMPs) by region. Parameterizing the i-DST by region will allow the tool to perform accurate simulations in all parts of the United States. A national dataset of BMP performance is analyzed to determine which of a series of candidate regionalizations explains the most variance in the national dataset. The data used in the regionalization analysis comes from the International Stormwater BMP Database and data gleaned from an ongoing systematic review of peer-reviewed and gray literature. In addition to identifying a regionalization scheme for water quality performance parameters in the i-DST, our review process will also provide example methods and protocols for systematic reviews in the field of Earth Science.

  14. Urban stormwater - greywater management system for sustainable urban water management at sub-watershed level

    Science.gov (United States)

    Singh Arora, Amarpreet

    2017-11-01

    Urban water management involves urban water supply (import, treatment and distribution of water), urban wastewater management (collection, treatment and disposal of urban sewage) and urban storm water management. Declining groundwater tables, polluted and declining sources of water, water scarcity in urban areas, unsatisfactory urban water supply and sanitation situation, pollution of receiving water bodies (including the ground water), and urban floods have become the concerns and issues of sustainable urban water management. This paper proposes a model for urban stormwater and sewage management which addresses these concerns and issues of sustainable urban water management. This model proposes segregation of the sewage into black water and greywater, and urban sub-watershed level stormwater-greywater management systems. During dry weather this system will be handling only the greywater and making the latter available as reclaimed water for reuse in place of the fresh water supply. During wet weather, the system will be taking care of (collection and treatment) both the storm water and the greywater, and the excess of the treated water will be disposed off through groundwater recharging. Application of this model in the Patiala city, Punjab, INDIA for selected urban sub-watersheds has been tried. Information and background data required for the conceptualization and design of the sub-watershed level urban stormwater-greywater management system was collected and the system has been designed for one of the sub-watersheds in the Patiala city. In this paper, the model for sustainable urban water management and the design of the Sub-watershed level Urban Stormwater-Greywater Management System are described.

  15. Improving the Hydraulic Performance of Stormwater Infiltration Systems in Clay Tills

    DEFF Research Database (Denmark)

    Bockhorn, Britta

    investigations on two typical Danish clay till sites, and one modeling study with the integrated surface water and groundwater model HydroGeoSphere. The saturated hydraulic conductivity (Ksat) is the most critical soil physical parameter when it comes to sizing stormwater infiltration systems. In the first study......, different field methods for Ksat estimation, the double ring infiltrometer, the Guelph permeameter and falling head infiltration tests in a small excavation, were compared and evaluated for their capability to return realistic Ksat values in tills. The double ring infiltrometer and the Guelph permeameter...... represent suitable methods for sizing stormwater infiltration systems if measurements are combined with geological knowledge from maps of near-surface deposits and borehole descriptions. If space allows, the more invasive infiltration tests in a small excavation are recommended, because measurements...

  16. Urban Stormwater Temperature Surges: A Central US Watershed Study

    Directory of Open Access Journals (Sweden)

    Sean J. Zeiger

    2015-10-01

    Full Text Available Impacts of urban land use can include increased stormwater runoff temperature (Tw leading to receiving water quality impairment. There is therefore a need to target and mitigate sources of thermal pollution in urban areas. However, complex relationships between urban development, stormwater runoff and stream water heating processes are poorly understood. A nested-scale experimental watershed study design was used to investigate stormwater runoff temperature impacts to receiving waters in a representative mixed-use urbanizing watershed of the central US. Daily maximum Tw exceeded 35.0 °C (threshold for potential mortality of warm-water biota at an urban monitoring site for a total of five days during the study period (2011–2013. Sudden increases of more than 1.0 °C within a 15 min time interval of Tw following summer thunderstorms were significantly correlated (CI = 95%; p < 0.01 to cumulative percent urban land use (r2 = 0.98; n = 29. Differences in mean Tw between monitoring sites were significantly correlated (CI = 95%; p = 0.02 to urban land use practices, stream distance and increasing discharge. The effects of the 2012 Midwest USA drought and land use on Tw were also observed with maximum Tw 4.0 °C higher at an urban monitoring site relative to a rural site for 10.5 h. The current work provides quantitative evidence of acute increases in Tw related to urban land use. Results better inform land managers wishing to create management strategies designed to preserve suitable thermal stream habitats in urbanizing watersheds.

  17. Modelling the impact of Water Sensitive Urban Design technologies on the urban water cycle

    DEFF Research Database (Denmark)

    Locatelli, Luca

    Alternative stormwater management approaches for urban developments, also called Water Sensitive Urban Design (WSUD), are increasingly being adopted with the aims of providing flood control, flow management, water quality improvements and opportunities to harvest stormwater for non-potable uses....... To model the interaction of infiltration based WSUDs with groundwater. 4. To assess a new combination of different WSUD techniques for improved stormwater management. 5. To model the impact of a widespread implementation of multiple soakaway systems at the catchment scale. 6. Test the models by simulating...... the hydrological performance of single devices relevant for urban drainage applications. Moreover, the coupling of soakaway and detention storages is also modeled to analyze the benefits of combining different local stormwater management systems. These models are then integrated into urban drainage network models...

  18. Potential effects of structural controls and street sweeping on stormwater loads to the lower Charles River, Massachusetts

    Science.gov (United States)

    Zarriello, Phillip J.; Breault, Robert F.; Weiskel, Peter K.

    2002-01-01

    The water quality of the lower Charles River is periodically impaired by combined sewer overflows (CSOs) and non-CSO stormwater runoff. This study examined the potential non-CSO load reductions of suspended solids, fecal coliform bacteria, total phosphorus, and total lead that could reasonably be achieved by implementation of stormwater best management practices, including both structural controls and systematic street sweeping. Structural controls were grouped by major physical or chemical process; these included infiltration-filtration (physical separation), biofiltration-bioretention (biological mechanisms), or detention-retention (physical settling). For each of these categories, upper and lower quartiles, median, and average removal efficiencies were compiled from three national databases of structural control performance. Removal efficiencies obtained indicated a wide range of performance. Removal was generally greatest for infiltration-filtration controls and suspended solids, and least for biofiltration-bioretention controls and fecal coliform bacteria. Street sweeping has received renewed interest as a water-quality control practice because of reported improvements in sweeper technology and the recognition that opportunities for implementing structural controls are limited in highly urbanized areas. The Stormwater Management Model that was developed by the U.S. Geological Survey for the lower Charles River Watershed was modified to simulate the effects of street sweeping in a single-family land-use basin. Constituent buildup and washoff variable values were calibrated to observed annual and storm-event loads. Once calibrated, the street sweeping model was applied to various permutations of four sweeper efficiencies and six sweeping frequencies that ranged from every day to once every 30 days. Reduction of constituent loads to the lower Charles River by the combined hypothetical practices of structural controls and street sweeping was estimated for a range

  19. Stormwater quality from extensive green roofs in a subtropical region

    Science.gov (United States)

    Onis Pessoa, Jonas; Allasia, Daniel; Tassi, Rutineia; Vaz Viega, Juliana; Fensterseifer, Paula

    2016-04-01

    . Thus, under the assessed conditions and time, the green roofs, in general, have not provided an improvement of water quality as indicated by some authors. However, it was found that some of the measured parameters showed a gradual improvement during the monitoring period. This suggests that the age of green roofs can affect efficiency in the qualitative control of water. In this regard, long-term research can contribute to a better understanding quality of stormwater runoff from green roofs, especially in regions such as Brazil, where the implementation of green roofs is incipient and in a phase of adaptation to the different environmental conditions of the country.

  20. Risk assessment of aquifer storage transfer and recovery with urban stormwater for producing water of a potable quality.

    Science.gov (United States)

    Page, Declan; Dillon, Peter; Vanderzalm, Joanne; Toze, Simon; Sidhu, Jatinder; Barry, Karen; Levett, Kerry; Kremer, Sarah; Regel, Rudi

    2010-01-01

    The objective of the Parafield Aquifer Storage Transfer and Recovery research project in South Australia is to determine whether stormwater from an urban catchment that is treated in a constructed wetland and stored in an initially brackish aquifer before recovery can meet potable water standards. The water produced by the stormwater harvesting system, which included a constructed wetland, was found to be near potable quality. Parameters exceeding the drinking water guidelines before recharge included small numbers of fecal indicator bacteria and elevated iron concentrations and associated color. This is the first reported study of a managed aquifer recharge (MAR) scheme to be assessed following the Australian guidelines for MAR. A comprehensive staged approach to assess the risks to human health and the environment of this project has been undertaken, with 12 hazards being assessed. A quantitative microbial risk assessment undertaken on the water recovered from the aquifer indicated that the residual risks posed by the pathogenic hazards were acceptable if further supplementary treatment was included. Residual risks from organic chemicals were also assessed to be low based on an intensive monitoring program. Elevated iron concentrations in the recovered water exceeded the potable water guidelines. Iron concentrations increased after underground storage but would be acceptable after postrecovery aeration treatment. Arsenic concentrations in the recovered water continuously met the guideline concentrations acceptable for potable water supplies. However, the elevated concentration of arsenic in native groundwater and its presence in aquifer minerals suggest that the continuing acceptable residual risk from arsenic requires further evaluation.

  1. Pollution Removal Performance of Laboratory Simulations of Sydney’s Street Stormwater Biofilters

    Directory of Open Access Journals (Sweden)

    James Macnamara

    2017-11-01

    Full Text Available The City of Sydney is constructing more than 21,000 square metres of street biofilter units (raingardens in terms of their Decentralised Water Master Plan (DWMP, for improving the quality of stormwater runoff to Port Jackson, the Cooks River, and the historical Botany Bay. Recharge of the Botany Sand Beds aquifer, currently undergoing remediation by extraction of industrial chlorinated hydrocarbon pollutants, is also envisaged. To anticipate the pollution removal efficiency of field biofilter designs, laboratory soil-column simulations were developed by Western Sydney University partnered with the City. Synthetic stormwater containing stoichiometric amounts of high-solubility pollutant salts in deionised water was passed through 104 mm columns that were layered to simulate monophasic and biphasic field designs. Both designs met the City’s improvement targets for total nitrogen (TN and total phosphorus (TP, with >65% median removal efficiency. Prolonged release of total suspended solids (SS on startup emphasised the need for specifications and testing of proprietary fills. Median removal efficiency for selected heavy metal ecotoxicants was >75%. The researchers suggested that Zinc be added to the targets as proxy for metals, polycyclic aromatic hydrocarbons (PAH and oils/greases co-generated during road use. Simulation results suggested that field units will play an important role in meeting regional stormwater improvement targets.

  2. Polycyclic aromatic hydrocarbons associated with road deposited solid and their ecological risk: Implications for road stormwater reuse

    International Nuclear Information System (INIS)

    Liu, Liang; Liu, An; Li, Yang; Zhang, Lixun; Zhang, Guijuan; Guan, Yuntao

    2016-01-01

    Reusing stormwater is becoming popular worldwide. However, urban road stormwater commonly contains toxic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), which could undermine reuse safety. This study investigated pollution level of PAHs and their composition build-up on urban roads in a typical megacity in South China. The potential ecological risk posed by PAHs associated with road deposited solid (RDS) was also assessed. Results showed that ecological risk levels varied based on different land use types, which could be significantly influenced by the composition of PAHs and characteristics of RDS. A higher percentage of high-ring PAHs, such as more than four rings, could pose higher ecological risk and are more likely to undermine stormwater reuse safety. Additionally, the degree of traffic congestion rather than traffic volume was found to exert a more significant influence on the generation of high-ring PAH generation. Therefore, stormwater from more congested roads might need proper treatment (particularly for removing high-ring PAHs) before reuse or could be suitable for purposes requiring low-water-quality. The findings of this study are expected to contribute to adequate stormwater reuse strategy development and to enhance the safety of urban road stormwater reuse. - Highlights: • PAHs build-up on road surfaces varies with traffic and land use conditions. • RDS characteristics and PAH composition were considered in ecological risk assessment. • ΣPAH concentration attached to RDS cannot represent their overall ecological risk. • Higher percentage of 5–6 rings PAHs can pose higher ecological risk. • TC exerts more important influences on 5–6 rings PAHs build-up compared with TV.

  3. Polycyclic aromatic hydrocarbons associated with road deposited solid and their ecological risk: Implications for road stormwater reuse

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liang [Graduate school at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Liu, An [College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060 (China); Li, Yang; Zhang, Lixun; Zhang, Guijuan [Graduate school at Shenzhen, Tsinghua University, Shenzhen 518055 (China); State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Tsinghua University, Shenzhen 518055, Guangdong (China); Guan, Yuntao, E-mail: guanyt@tsinghua.edu.cn [Graduate school at Shenzhen, Tsinghua University, Shenzhen 518055 (China); State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Tsinghua University, Shenzhen 518055, Guangdong (China)

    2016-09-01

    Reusing stormwater is becoming popular worldwide. However, urban road stormwater commonly contains toxic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), which could undermine reuse safety. This study investigated pollution level of PAHs and their composition build-up on urban roads in a typical megacity in South China. The potential ecological risk posed by PAHs associated with road deposited solid (RDS) was also assessed. Results showed that ecological risk levels varied based on different land use types, which could be significantly influenced by the composition of PAHs and characteristics of RDS. A higher percentage of high-ring PAHs, such as more than four rings, could pose higher ecological risk and are more likely to undermine stormwater reuse safety. Additionally, the degree of traffic congestion rather than traffic volume was found to exert a more significant influence on the generation of high-ring PAH generation. Therefore, stormwater from more congested roads might need proper treatment (particularly for removing high-ring PAHs) before reuse or could be suitable for purposes requiring low-water-quality. The findings of this study are expected to contribute to adequate stormwater reuse strategy development and to enhance the safety of urban road stormwater reuse. - Highlights: • PAHs build-up on road surfaces varies with traffic and land use conditions. • RDS characteristics and PAH composition were considered in ecological risk assessment. • ΣPAH concentration attached to RDS cannot represent their overall ecological risk. • Higher percentage of 5–6 rings PAHs can pose higher ecological risk. • TC exerts more important influences on 5–6 rings PAHs build-up compared with TV.

  4. Developing a Three Processes Framework to Analyze Hydrologic Performance of Urban Stormwater Management in a Watershed Scale

    Science.gov (United States)

    Lyu, H.; Ni, G.; Sun, T.

    2016-12-01

    Urban stormwater management contributes to recover water cycle to a nearly natural situation. It is a challenge for analyzing the hydrologic performance in a watershed scale, since the measures are various of sorts and scales and work in different processes. A three processes framework is developed to simplify the urban hydrologic process on the surface and evaluate the urban stormwater management. The three processes include source utilization, transfer regulation and terminal detention, by which the stormwater is controlled in order or discharged. Methods for analyzing performance are based on the water controlled proportions by each process, which are calculated using USEPA Stormwater Management Model. A case study form Beijing is used to illustrate how the performance varies under a set of designed events of different return periods. This framework provides a method to assess urban stormwater management as a whole system considering the interaction between measures, and to examine if there is any weak process of an urban watershed to be improved. The results help to make better solutions of urban water crisis.

  5. Artful rainwater design creative ways to manage stormwater

    CERN Document Server

    Echols, Stuart

    2015-01-01

    This beautifully illustrated, comprehensive guide explains how to design creative, yet practical, landscapes that treat on-site stormwater management as an opportunity to enhance site design. Stormwater management as art? Absolutely. Rain is a resource that should be valued and celebrated, not merely treated as an urban design problem—and yet, traditional stormwater treatment methods often range from ugly to forgettable. This book shows that it’s possible to effectively manage runoff while also creating inviting, attractive landscapes. It is a must-have resource for landscape architects, urban designers, civil engineers, and architects looking to create landscapes that celebrate rain for the life-giving resource it is-- and contribute to more sustainable, healthy, and even fun, built environments.

  6. TRADING ALLOWANCES FOR STORMWATER CONTROL: HYDROLOGY AND OPPORTUNITY COSTS

    Science.gov (United States)

    Excess stormwater runoff is a serious problem in a large number of urban areas, causing flooding, water pollution, groundwater recharge deficits and ecological damage to urban streams. It has been posited that to mitigate the effects of excess stormwater runoff, policy makers cou...

  7. Green Infrastructure and Stormwater Utility Credit Design for Sustainability

    Science.gov (United States)

    A current trend in funding urban stormwater programs relies on the issuance of stormwater utilities (i.e., fees) based on some measure of impervious surface (e.g., actual, estimated, average), and local programs vary greatly, dependent upon state law, municipal ordinances, and co...

  8. Engineering hyporheic zones for the attenuation of urban pesticides and other stormwater trace organic contaminants

    Science.gov (United States)

    Portmann, A. C.; Halpin, B. N.; Herzog, S.; Higgins, C.; McCray, J. E.

    2017-12-01

    The hyporheic zone (HZ) is a natural bioreactor that can provide in-stream attenuation of various nonpoint source contaminants. Main contributions of nonpoint source pollution are coming from urban stormwater and agricultural runoff, which both adversely impact aquatic life. Stormwater pollutants of concern commonly include nutrients, metals, pathogens, and trace organic contaminants (TOrCs). Despite substantial water quality challenges, current stormwater management typically focuses on water quantity issues rather than pollutant removal. Furthermore, current HZ restoration best management practices do not explicitly control HZ residence times, and generally only induce localized effects. To increase hyporheic exchange and therefore improving water quality, we introduced engineered streambeds featuring modifications to subsurface hydraulic conductivity (K) and reactivity - termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST modifications comprise subsurface modules that employ 1) low-permeability sediments to drive hyporheic exchange and control subsurface residence times, and 2) permeable reactive geomedia to change reaction rates within the HZ. Here we present performance data collected in constructed stream experiments, comparing an all-sand control condition with a stream containing BEST modules and a mixture of 70/30 sand/woodchips (v/v). We evaluated the attenuation of a suite of TOrCs in the BEST versus the control system for two different streambed media: a coarse sand with K = 0.48 cm/s and a fine sand with K = 0.16 cm/s. The range of TOrCs investigated comprises urban pesticides and other stormwater relevant TOrCs. Benefits of applying BEST include increased exchange between streamwater and HZ water, leading to diverse redox conditions that are beneficial for aquatic organisms and will facilitate in-stream pollutant transformation. Future work will focus on tailoring the BEST design for specific pollutants, thereby controlling HZ

  9. Functional nanostructured materials for stormwater runoff treatment

    DEFF Research Database (Denmark)

    Ko, Dongah

    Numerous heavy metal removal practices for stormwater runoff have been studied and applied; however, there is still room for improvement. Among these practices, adsorption has proven to be the most efficient way of removing heavy metals. Commonly used adsorbents have an innate sorption capacity...... in relation to high concentrations of heavy metal ions, but if they are to be used for stormwater runoff, high affinity with rapid sorption kinetics for low concentrations of heavy metals is necessary. Therefore, in this study, new types of functional nanostructured polymer sorbents for effective heavy metal...... removal from stormwater are suggested. First, comparison studies of several existing polymer sorbents were conducted, to find decisive functional groups for removing heavy metals from the solution. To enhance the sorption kinetics and affinity of polymer sorbents in the presence of competing ions, sulphur...

  10. Can urban tree roots improve infiltration through compacted subsoils for stormwater management?

    Science.gov (United States)

    Bartens, Julia; Day, Susan D; Harris, J Roger; Dove, Joseph E; Wynn, Theresa M

    2008-01-01

    Global land use patterns and increasing pressures on water resources demand creative urban stormwater management. Strategies encouraging infiltration can enhance groundwater recharge and water quality. Urban subsoils are often relatively impermeable, and the construction of many stormwater detention best management practices (D-BMPs) exacerbates this condition. Root paths can act as conduits for water, but this function has not been demonstrated for stormwater BMPs where standing water and dense subsoils create a unique environment. We examined whether tree roots can penetrate compacted subsoils and increase infiltration rates in the context of a novel infiltration BMP (I-BMP). Black oak (Quercus velutina Lam.) and red maple (Acer rubrum L.) trees, and an unplanted control, were installed in cylindrical planting sleeves surrounded by clay loam soil at two compaction levels (bulk density = 1.3 or 1.6 g cm(-3)) in irrigated containers. Roots of both species penetrated the more compacted soil, increasing infiltration rates by an average of 153%. Similarly, green ash (Fraxinus pennsylvanica Marsh.) trees were grown in CUSoil (Amereq Corp., New York) separated from compacted clay loam subsoil (1.6 g cm(-3)) by a geotextile. A drain hole at mid depth in the CUSoil layer mimicked the overflow drain in a stormwater I-BMP thus allowing water to pool above the subsoil. Roots penetrated the geotextile and subsoil and increased average infiltration rate 27-fold compared to unplanted controls. Although high water tables may limit tree rooting depth, some species may be effective tools for increasing water infiltration and enhancing groundwater recharge in this and other I-BMPs (e.g., raingardens and bioswales).

  11. Influence of land development on stormwater runoff from a mixed land use and land cover catchment.

    Science.gov (United States)

    Paule-Mercado, M A; Lee, B Y; Memon, S A; Umer, S R; Salim, I; Lee, C-H

    2017-12-01

    Mitigating for the negative impacts of stormwater runoff is becoming a concern due to increased land development. Understanding how land development influences stormwater runoff is essential for sustainably managing water resources. In recent years, aggregate low impact development-best management practices (LID-BMPs) have been implemented to reduce the negative impacts of stormwater runoff on receiving water bodies. This study used an integrated approach to determine the influence of land development and assess the ecological benefits of four aggregate LID-BMPs in stormwater runoff from a mixed land use and land cover (LULC) catchment with ongoing land development. It used data from 2011 to 2015 that monitored 41 storm events and monthly LULC, and a Personalized Computer Storm Water Management Model (PCSWMM). The four aggregate LID-BMPs are: ecological (S1), utilizing pervious covers (S2), and multi-control (S3) and (S4). These LID-BMPs were designed and distributed in the study area based on catchment characteristics, cost, and effectiveness. PCSWMM was used to simulate the monitored storm events from 2014 (calibration: R 2 and NSE>0.5; RMSE 0.5; RMSE runoff data and LULC change patterns (only 2015 for LID-BMPs) were used. Results show that the expansion of bare land and impervious cover, soil alteration, and high amount of precipitation influenced the stormwater runoff variability during different phases of land development. The four aggregate LID-BMPs reduced runoff volume (34%-61%), peak flow (6%-19%), and pollutant concentrations (53%-83%). The results of this study, in addition to supporting local LULC planning and land development activities, also could be applied to input data for empirical modeling, and designing sustainable stormwater management guidelines and monitoring strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Urban Stormwater Infiltration Perspectives

    DEFF Research Database (Denmark)

    Geldof, Govert; Jacobsen, Per; Fujita, Shoichi

    1994-01-01

    In urban areas there are many problems with water management: combined sewer overflows, peak flows, man-induced droughts, consolidation of the soil, damage from frost penetration, etc. It is preferable to look at all these problems in relation to each other, according the concept of integrated...... water management. This paper focuses on the possibilities for urban stormwater infiltration. The results of three studies are presented. The first study concerns the flooding of the Shirako River in Tokyo. It is shown that with the help of stormwater infiltration the floods can be reduced remarkably....... The second study concerns combined sewer overflows and the discharge from treatment plants for catchments in Denmark and the Netherlands. When looking at the total yearly discharge from the combined sewer and the treatment plant, it is shown that infiltration is more effective than detention. The third study...

  13. Dendritic Connectivity, Heterogeneity, and Scaling in Urban Stormwater Networks: Implications for Socio-Hydrology

    Science.gov (United States)

    Mejia, A.; Jovanovic, T.; Hale, R. L.; Gironas, J. A.

    2017-12-01

    Urban stormwater networks (USNs) are unique dendritic (tree-like) structures that combine both artificial (e.g., swales and pipes) and natural (e.g., streams and wetlands) components. They are central to stream ecosystem structure and function in urban watersheds. The emphasis of conventional stormwater management, however, has been on localized, temporal impacts (e.g., changes to hydrographs at discrete locations), and the performance of individual stormwater control measures. This is the case even though control measures are implemented to prevent impacts on the USN. We develop a modeling approach to retrospectively study hydrological fluxes and states in USNs and apply the model to an urban watershed in Scottsdale, Arizona, USA. Using outputs from the model, we analyze over space and time the network properties of dendritic connectivity, heterogeneity, and scaling. Results show that as the network growth over time, due to increasing urbanization, it tends to become more homogenous in terms of topological features but increasingly heterogeneous in terms of dynamic features. We further use the modeling results to address socio-hydrological implications for USNs. We find that the adoption over time of evolving management strategies (e.g., widespread implementation of vegetated swales and retention ponds versus pipes) may be locally beneficial to the USN but benefits may not propagate systematically through the network. The latter can be reinforced by sudden, perhaps unintended, changes to the overall dendritic connectivity.

  14. Stormwater Runoff Plumes in Southern California Detected with Satellite SAR and MODIS Imagery - Areas of Increased Contamination Risk

    Science.gov (United States)

    Trinh, R. C.; Holt, B.; Gierach, M.

    2016-12-01

    Coastal pollution poses both a major health and environmental hazard, not only for beachgoers and coastal communities, but for marine organisms as well. Stormwater runoff is the largest source of pollution in the coastal waters of the Southern California Bight (SCB). The SCB is the final destination of four major urban watersheds and associated rivers, Ballona Creek, the Los Angeles River, the San Gabriel River, and the Santa Ana River, which act as channels for runoff and pollution during and after episodic rainstorms. Previous studies of SCB water quality have made use of both fine resolution Synthetic Aperture Radar (SAR) imagery and wide-swath medium resolution optical "ocean color" imagery from SeaWiFS and MODIS. In this study, we expand on previous SAR efforts, compiling a more extensive collection of multi-sensor SAR data, spanning from 1992 to 2014, analyzing the surface slick component of stormwater plumes. We demonstrate the use of SAR data in early detection of coastal stormwater plumes, relating plume extent to cumulative river discharge, and shoreline fecal bacteria loads. Intensity maps of the primary extent and direction of plumes were created, identifying coastal areas that may be subject to the greatest risk of environmental contamination. Additionally, we illustrate the differences in the detection of SAR surface plumes with the sediment-related discharge plumes derived from MODIS ocean color imagery. Finally, we provide a concept for satellite monitoring of stormwater plumes, combining both optical and radar sensors, to be used to guide the collection of in situ water quality data and enhance the assessment of related beach closures.

  15. Distributed models coupling soakaways, urban drainage and groundwater

    DEFF Research Database (Denmark)

    Roldin, Maria Kerstin

    in receiving waters, urban flooding etc. WSUD structures are generally small, decentralized systems intended to manage stormwater near the source. Many of these alternative techniques are based on infiltration which can affect both the urban sewer system and urban groundwater levels if widely implemented......Alternative methods for stormwater management in urban areas, also called Water Sensitive Urban Design (WSUD) methods, have become increasingly important for the mitigation of urban stormwater management problems such as high runoff volumes, combined sewage overflows, poor water quality......, and how these can be modeled in an integrated environment with distributed urban drainage and groundwater flow models. The thesis: 1. Identifies appropriate models of soakaways for use in an integrated and distributed urban water and groundwater modeling system 2. Develops a modeling concept that is able...

  16. Modelling transport of storm-water pollutants using the distributed Multi-Hydro platform on an urban catchment near Paris

    Science.gov (United States)

    Hong, Yi; Bonhomme, Celine; Giangola-Murzyn, Agathe; Schertzer, Daniel; Chebbo, Ghassan

    2015-04-01

    Nowadays, the increasingly use of vehicles causes expanding contaminated storm-water runoff from roads and the associated quarters. Besides, the current utilization of city's separated sewer systems underlines the needs for evaluating precisely the growing impact of these polluted effluents on receiving water bodies. Nevertheless, traditional means of water quality modelling had shown its limits (Kanso, 2004), more accurate modelling schemes are hence required. In this paper, we found that the application of physically based and fully distributed model coupled with detailed high-resolution data is a promising approach to reproduce the various dynamics and interactions of water quantity/quality processes in urban or peri-urban environment. Over recent years, the physically based and spatially distributed numerical platform Multi-Hydro (MH) has been developed at Ecole des Ponts ParisTech (El-Tabach et al. , 2009 ; Gires et al., 2013 ; Giangola-Murzyn et al., 2014). This platform is particularly adapted for representing the hydrological processes for medium size watersheds, including the surface runoff, drainage water routing and the infiltrations on permeable zones. It is formed by the interactive coupling of several independent modules, which depend on generally used open-access models. In the framework of the ANR (French National Agency for Research) Trafipollu project, a new extension of MH, MH-quality, was set up for the water-quality modelling. MH-quality was used for the simulation of pollutant transport on a peri-urban and highly trafficked catchment located near Paris (Le Perreux-sur-Marne, 0.2 km2). The set-up of this model is based on the detailed description of urban land use features. For this purpose, 15 classes of urban land uses relevant to water quality modelling were defined in collaboration with the National Institute of Geography of France (IGN) using Digital Orthophoto Quadrangles (5cm). The delimitation of the urban catchment was then performed

  17. Urban Stormwater Runoff. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Simko, Robert A.

    Urban stormwater runoff collects pollutants from many parts of a city and is an important consideration in water quality planning. Presented is an instructor's guide for a learning session covering various aspects of urban runoff including pollutant sources, management practices, and regulatory programs. Intended for citizen advisory groups, this…

  18. Simulation of Groundwater Mounding Beneath Hypothetical Stormwater Infiltration Basins

    Science.gov (United States)

    Carleton, Glen B.

    2010-01-01

    Groundwater mounding occurs beneath stormwater management structures designed to infiltrate stormwater runoff. Concentrating recharge in a small area can cause groundwater mounding that affects the basements of nearby homes and other structures. Methods for quantitatively predicting the height and extent of groundwater mounding beneath and near stormwater Finite-difference groundwater-flow simulations of infiltration from hypothetical stormwater infiltration structures (which are typically constructed as basins or dry wells) were done for 10-acre and 1-acre developments. Aquifer and stormwater-runoff characteristics in the model were changed to determine which factors are most likely to have the greatest effect on simulating the maximum height and maximum extent of groundwater mounding. Aquifer characteristics that were changed include soil permeability, aquifer thickness, and specific yield. Stormwater-runoff variables that were changed include magnitude of design storm, percentage of impervious area, infiltration-structure depth (maximum depth of standing water), and infiltration-basin shape. Values used for all variables are representative of typical physical conditions and stormwater management designs in New Jersey but do not include all possible values. Results are considered to be a representative, but not all-inclusive, subset of likely results. Maximum heights of simulated groundwater mounds beneath stormwater infiltration structures are the most sensitive to (show the greatest change with changes to) soil permeability. The maximum height of the groundwater mound is higher when values of soil permeability, aquifer thickness, or specific yield are decreased or when basin depth is increased or the basin shape is square (and values of other variables are held constant). Changing soil permeability, aquifer thickness, specific yield, infiltration-structure depth, or infiltration-structure shape does not change the volume of water infiltrated, it changes the

  19. Promoting innovative stormwater solutions for coastal plain communities

    OpenAIRE

    Drescher, Sadie

    2010-01-01

    In 2008, the Center for Watershed Protection (CWP) surveyed seventy-three coastal plain communities to determine their current practices and need for watershed planning and low impact development (LID). The survey found that communities had varying watershed planning effectiveness and need better stormwater management, land use planning, and watershed management communication. While technical capacity is improving, stormwater programs are under staffed and innovative site designs ...

  20. Performance evaluation and modelling studies of gravel--coir fibre--sand multimedia stormwater filter.

    Science.gov (United States)

    Samuel, Manoj P; Senthilvel, S; Tamilmani, D; Mathew, A C

    2012-09-01

    A horizontal flow multimedia stormwater filter was developed and tested for hydraulic efficiency and pollutant removal efficiency. Gravel, coconut (Cocos nucifera) fibre and sand were selected as the media and filled in 1:1:1 proportion. A fabric screen made up of woven sisal hemp was used to separate the media. The adsorption behaviour of coir fibre was determined in a series of column and batch studies and the corresponding isotherms were developed. The hydraulic efficiency of the filter showed a diminishing trend as the sediment level in inflow increased. The filter exhibited 100% sediment removal at lower sediment concentrations in inflow water (>6 g L(-1)). The filter could remove NO3(-), SO4(2-) and total solids (TS) effectively. Removal percentages of Mg(2+) and Na(+) were also found to be good. Similar results were obtained from a field evaluation study. Studies were also conducted to determine the pattern of silt and sediment deposition inside the filter body. The effects of residence time and rate of flow on removal percentages of NO3(-) and TS were also investigated out. In addition, a multiple regression equation that mathematically represents the filtration process was developed. Based on estimated annual costs and returns, all financial viability criteria (internal rate of return, net present value and benefit-cost ratio) were found favourable and affordable to farmers for investment in the developed filtration system. The model MUSIC was calibrated and validated for field conditions with respect to the developed stormwater filter.

  1. Integral stormwater management master plan and design in an ecological community.

    Science.gov (United States)

    Che, Wu; Zhao, Yang; Yang, Zheng; Li, Junqi; Shi, Man

    2014-09-01

    Urban stormwater runoff nearly discharges directly into bodies of water through gray infrastructure in China, such as sewers, impermeable ditches, and pump stations. As urban flooding, water shortage, and other environment problems become serious, integrated water environment management is becoming increasingly complex and challenging. At more than 200ha, the Oriental Sun City community is a large retirement community located in the eastern side of Beijing. During the beginning of its construction, the project faced a series of serious water environment crises such as eutrophication, flood risk, water shortage, and high maintenance costs. To address these issues, an integral stormwater management master plan was developed based on the concept of low impact development (LID). A large number of LID and green stormwater infrastructure (GSI) approaches were designed and applied in the community to replace traditional stormwater drainage systems completely. These approaches mainly included bioretention (which captured nearly 85th percentile volume of the annual runoff in the site, nearly 5.4×10(5)m(3) annually), swales (which functioned as a substitute for traditional stormwater pipes), waterscapes, and stormwater wetlands. Finally, a stormwater system plan was proposed by integrating with the gray water system, landscape planning, an architectural master plan, and related consultations that supported the entire construction period. After more than 10 years of planning, designing, construction, and operation, Oriental Sun City has become one of the earliest modern large-scale LID communities in China. Moreover, the project not only addressed the crisis efficiently and effectively, but also yielded economic and ecological benefits. Copyright © 2014. Published by Elsevier B.V.

  2. Environmental impacts of stormwater management and pollutant discharges

    DEFF Research Database (Denmark)

    Brudler, Sarah; Arnbjerg-Nielsen, Karsten; Hauschild, Michael Zwicky

    in stormwater management systems. Often, an increase in global emission, e.g. through the construction of treatment facilities, will lead to reduced local impacts, and vice versa. By taking into account both local and global impacts, stormwater management systems can be optimized holistically to minimize......Stormwater management systems are necessary to protect people and assets from flooding and pollution, especially in densely built, sealed urban areas. The possible solutions range from underground pipes and basins, where rain water is often handled together with wastewater, to local and multi......-functional solutions, e.g. rain beds or retention lakes. Ideally, these solutions are not only economically, but also environmentally sustainable. Risk assessments are sometimes carried out, e.g. to determine the effect of discharges during extreme events, but they lack a holistic perspective: While pollutants...

  3. [Advances in low impact development technology for urban stormwater management].

    Science.gov (United States)

    Liu, Wen; Chen, Wei-ping; Peng, Chi

    2015-06-01

    Low impact development ( LID), as an innovative technology for stormwater management, is effective to mitigate urban flooding and to detain pollutants. This paper systemically introduced the LID technology system, and summarized the reduction effects of three typical LID facilities (i.e. , bio-retention, green roof and permeable pavement) on stormwater runoff and main pollutants in recent literature, as well as research outcomes and experiences of LID technology on model simulation, cost-benefit analysis and management system. On this basis, we analyzed the problems and limitations of current LID technology studies. Finally, some suggestions about future research directions, appropriate design and scientific management were put forth. This work intended to provide scientific basis and suggestions for widespread use and standard setting of LID technology in China by referencing overseas studies.

  4. Identification and induction of human, social, and cultural capitals through an experimental approach to stormwater management

    Science.gov (United States)

    Decentralized stormwater management is based on the dispersal of stormwater management practices (SWMP) throughout a watershed to manage stormwater runoff volume and potentially restore natural hydrologic processes. This approach to stormwater management is increasingly popular b...

  5. Application of a New Integrated Decision Support Tool (i-DST) for Urban Water Infrastructure: Analyzing Water Quality Compliance Pathways for Three Los Angeles Watersheds

    Science.gov (United States)

    Gallo, E. M.; Hogue, T. S.; Bell, C. D.; Spahr, K.; McCray, J. E.

    2017-12-01

    The water quality of receiving streams and waterbodies in urban watersheds are increasingly polluted from stormwater runoff. The implementation of Green Infrastructure (GI), which includes Low Impact Developments (LIDs) and Best Management Practices (BMPs), within a watershed aim to mitigate the effects of urbanization by reducing pollutant loads, runoff volume, and storm peak flow. Stormwater modeling is generally used to assess the impact of GIs implemented within a watershed. These modeling tools are useful for determining the optimal suite of GIs to maximize pollutant load reduction and minimize cost. However, stormwater management for most resource managers and communities also includes the implementation of grey and hybrid stormwater infrastructure. An integrated decision support tool, called i-DST, that allows for the optimization and comprehensive life-cycle cost assessment of grey, green, and hybrid stormwater infrastructure, is currently being developed. The i-DST tool will evaluate optimal stormwater runoff management by taking into account the diverse economic, environmental, and societal needs associated with watersheds across the United States. Three watersheds from southern California will act as a test site and assist in the development and initial application of the i-DST tool. The Ballona Creek, Dominguez Channel, and Los Angeles River Watersheds are located in highly urbanized Los Angeles County. The water quality of the river channels flowing through each are impaired by heavy metals, including copper, lead, and zinc. However, despite being adjacent to one another within the same county, modeling results, using EPA System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN), found that the optimal path to compliance in each watershed differs significantly. The differences include varied costs, suites of BMPs, and ancillary benefits. This research analyzes how the economic, physical, and hydrological differences between the three

  6. Characterisation and Treatment of Nano-sized Particles, Colloids and Associated Polycyclic Aromatic Hydrocarbons in Stormwater

    DEFF Research Database (Denmark)

    Nielsen, Katrine

    such as pH, Total Suspended Solid(TSS), turbidity, and electrical conductivity.The five sites where stormwater was sampled from used two different methods of stormwater treatment: settling and filtration, and four different treatment techniques: detention ponds, stormwater pond, disc filter and combined...... sedimentation tanks. From all sites, inlet and outlet stormwater were collected,and pollutant concentrations were quantified as well as the removal efficiencies calculated. The colloidal and nano-sized particle-enhanced transportation of pollutants was also scrutinised in the stormwater.The μm-range PSD...

  7. Charging for stormwater in South Africa | Fisher-Jeffes | Water SA

    African Journals Online (AJOL)

    Municipalities across South Africa charge their citizens for potable water and sewerage. Stormwater management, however, is generally funded through municipal rates. Competition with other pressing needs frequently results in the stormwater departments being significantly under-funded – at times only receiving a tenth ...

  8. Assessment of stormwater management options in urban contexts using Multiple Attribute Decision-Making

    DEFF Research Database (Denmark)

    Gogate, Nivedita G.; Kalbar, Pradip; Raval, Pratap M.

    2017-01-01

    This paper addresses the problem of selecting the most sustainable stormwater management alternative in developing countries in a dense urban context. Firstly, suitable Low Impact Development (LID) stormwater management measures for dense urban areas in developing countries were identified based...... sustainable stormwater management options in densely populated areas of developing countries....... on critical review of literature. Alternatives have been formulated as varying percentages (degree of adoption) of these suitable measures to manage the stormwater sustainably. Further, a novel decision-making framework is developed which generates the hierarchy for selection of the most sustainable...

  9. Influence of governance structure on green stormwater infrastructure investment

    Science.gov (United States)

    Hopkins, Kristina G.; Grimm, Nancy B.; York, Abigail M.

    2018-01-01

    Communities are faced with the challenge of meeting regulatory requirements mandating reductions in water pollution from stormwater and combined sewer overflows (CSO). Green stormwater infrastructure and gray stormwater infrastructure are two types of water management strategies communities can use to address water pollution. In this study, we used long-term control plans from 25 U.S. cities to synthesize: the types of gray and green infrastructure being used by communities to address combined sewer overflows; the types of goals set; biophysical characteristics of each city; and factors associated with the governance of stormwater management. These city characteristics were then used to identify common characteristics of “green leader” cities—those that dedicated >20% of the control plan budget in green infrastructure. Five “green leader” cities were identified: Milwaukee, WI, Philadelphia, PA, Syracuse, NY, New York City, NY, and Buffalo, NY. These five cities had explicit green infrastructure goals targeting the volume of stormwater or percentage of impervious cover managed by green infrastructure. Results suggested that the management scale and complexity of the management system are less important factors than the ability to harness a “policy window” to integrate green infrastructure into control plans. Two case studies—Philadelphia, PA, and Milwaukee, WI—indicated that green leader cities have a long history of building momentum for green infrastructure through a series of phases from experimentation, demonstration, and finally—in the case of Philadelphia—a full transition in the approach used to manage CSOs.

  10. Decision-Support Tools and Databases to Inform Regional Stormwater Utility Development in New England

    Science.gov (United States)

    Development of stormwater utilities requires information on existing stormwater infrastructure and impervious cover as well as costs and benefits of stormwater management options. US EPA has developed a suite of databases and tools that can inform decision-making by regional sto...

  11. Assessment of the Effectiveness of Green Infrastructure Stormwater Best Management Practices (BMPs) at the Small Watershed Scale

    Science.gov (United States)

    There have been numerous studies of the water quantity and quality functions of stormwater BMPs at the site scale, but relatively few assessments at the watershed scale. This presentation will present an overview and initial results of projects to evaluate the effectiveness of g...

  12. Studies and Analysis of the Effectiveness of Stormwater Runoff Purification Equipment in Vilnius

    Directory of Open Access Journals (Sweden)

    Egidija Jaruševičiūtė

    2011-02-01

    Full Text Available In order to protect the natural environment from pollution, pollutant reduction in the stormwater runoff of urban areas is a particularly relevant factor. Uneven surface water flow and changes in pollutant concentration complicate conventional matching techniques and processes as well as prolong the duration of time which requires a comprehensive study in this area. Therefore, experiments on inflow stormwater turbidity and impurity with suspended solids and petroleum products were carried out according to the prepared sample collecting methodology. The study evaluated the effectiveness of cleaning a stormwater treatment plant along the settlement chamber in the chosen points. The settling time of impurities found in stormwater was analyzed under the presence of ideal conditions in the laboratory. The conducted experiments established dependence between suspended solids and turbidity. Stormwater pollution by SS was reduced only to 21–35% after heavy rain or a snow melting period in treatment plants. Keywords: storm water runoff, cleaning stormwater treatment plant, pollutants, turbidity, suspended solids, petrol products.DOI: 10.3846/mla.2010.087

  13. Do salt and low temperature impair metal treatment in stormwater bioretention cells with or without a submerged zone?

    Science.gov (United States)

    Søberg, Laila C; Viklander, Maria; Blecken, Godecke-Tobias

    2017-02-01

    Although seasonal temperature changes and (road) salt in winter and/or coastal stormwater runoff might interfere with the metal treatment performance of stormwater bioretention cells, no previous study has evaluated the effect of these factors and their interactions under controlled conditions. In this 18week long study 24 well established pilot-scale bioretention columns were employed to evaluate the individual and combined effect(s) of low/high temperature, salt and presence of a submerged zone with an embedded carbon source on metal removal using a three factor, two-level full factorial experimental design. In most instances, the three factors significantly influenced the metal outflow concentrations and thus the treatment performance; the effect of temperature depended on the metal in question, salt had an overall negative effect and the submerged zone with carbon source had an overall positive effect. Despite these statistically significant effects, the discharge water quality was generally markedly improved. However, leaching of dissolved Cu and Pb did occur, mainly from bioretention cells dosed with salt-containing stormwater. The highest concentrations of metals were captured in the top layer of the filter material and were not significantly affected by the three factors studied. Overall, the results confirmed that bioretention provides a functioning stormwater treatment option in areas experiencing winter conditions (road salt, low temperatures) or coastal regions (salt-laden stormwater). However, validation of these results in the field is recommended, especially focusing on dissolved metal removal, which may be critically affected under certain conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Suburban watershed nitrogen retention: Estimating the effectiveness of stormwater management structures

    Science.gov (United States)

    Koch, Benjamin J.; Febria, Catherine M.; Cooke, Roger M.; Hosen, Jacob D.; Baker, Matthew E.; Colson, Abigail R.; Filoso, Solange; Hayhoe, Katharine; Loperfido, J. V.; Stoner, Anne M.K.; Palmer, Margaret A.

    2015-01-01

    Excess nitrogen (N) is a primary driver of freshwater and coastal eutrophication globally, and urban stormwater is a rapidly growing source of N pollution. Stormwater best management practices (BMPs) are used widely to remove excess N from runoff in urban and suburban areas, and are expected to perform under a wide variety of environmental conditions. Yet the capacity of BMPs to retain excess N varies; and both the variation and the drivers thereof are largely unknown, hindering the ability of water resource managers to meet water quality targets in a cost-effective way. Here, we use structured expert judgment (SEJ), a performance-weighted method of expert elicitation, to quantify the uncertainty in BMP performance under a range of site-specific environmental conditions and to estimate the extent to which key environmental factors influence variation in BMP performance. We hypothesized that rain event frequency and magnitude, BMP type and size, and physiographic province would significantly influence the experts’ estimates of N retention by BMPs common to suburban Piedmont and Coastal Plain watersheds of the Chesapeake Bay region.

  15. Impediments to integrated urban stormwater management: the need for institutional reform.

    Science.gov (United States)

    Brown, Rebekah R

    2005-09-01

    It is now well established that the traditional practice of urban stormwater management contributes to the degradation of receiving waterways, and this practice was more recently critiqued for facilitating the wastage of a valuable water resource. However, despite significant advances in alternative "integrated urban stormwater management" techniques and processes over the last 20 years, wide-scale implementation has been limited. This problem is indicative of broader institutional impediments that are beyond current concerns of strengthening technological and planning process expertise. Presented here is an analysis of the institutionalization of urban stormwater management across Sydney with the objective of scoping institutional impediments to more sustainable management approaches. The analysis reveals that the inertia with the public administration of urban stormwater inherently privileges and perpetuates traditional stormwater management practices at implementation. This inertia is characterized by historically entrained forms of technocratic institutional power and expertise, values and leadership, and structure and jurisdiction posing significant impediments to change and the realization of integrated urban stormwater management. These insights strongly point to the need for institutional change specifically directed at fostering horizontal integration of the various functions of the existing administrative regime. This would need to be underpinned with capacity-building interventions targeted at enabling a learning culture that values integration and participatory decision making. These insights also provide guideposts for assessing the institutional and capacity development needs for improving urban water management practices in other contexts.

  16. Urban stormwater source control policies: why and how?

    Directory of Open Access Journals (Sweden)

    G. Petrucci

    2014-09-01

    Full Text Available Stormwater source control is becoming a common strategy for urban stormwater management in many countries. It relies on regulations or other policy instruments compelling or inciting implementation, for each new urban development, of small-scale facilities to locally store and manage stormwater. Local authorities that pioneered source control since the 1980s have already observed that small-scale facilities systematically implemented over a catchment are able to influence its hydrological behaviour. This capability is the main strength of source control, as it allows compensation for the negative effects of urbanization. Yet, it also represents its main risk: if initial decision-making is not sufficiently accurate, source control can produce long-term negative effects. Because of its current spreading, source control will acquire an increasing role as a driver of hydrological changes in urban catchments, and the directions of these changes depend on current policy-making practices. This paper presents an analysis and a critical discussion of the main objectives that policy-makers attribute to stormwater source control. The investigation is based on a sample of French case studies, completed by a literature review for international comparison. It identifies four main objectives, some typical of urban stormwater management and some more innovative: flood reduction, receiving waters protection, sustainable development, costs reduction. The discussion focuses on how current policy-making practices are able to translate these objectives in concrete policy instruments, and on which knowledge and tools could improve this process. It is shown that for some objectives, basic knowledge is available, but the creation of policy instruments which are effective at the catchment scale and adapted to local conditions is still problematic. For other objectives, substantial lacks of knowledge exist, casting doubts on long-term effectiveness of current policy

  17. Preserving Medieval Farm Mounds in a Large Stormwater Retention Area

    NARCIS (Netherlands)

    Vorenhout, M.

    2016-01-01

    The Netherlands has denoted large areas as stormwater retention areas. These areas function as temporary storage locations for stormwater when rivers cannot cope with the amount of water. A large area, the Onlanden — 2,500 hectares — was developed as such a storage area between 2008 and 2013. This

  18. Compartment-based hydrodynamics and water quality modeling of a NorthernEverglades Wetland, Florida, USA

    Science.gov (United States)

    The last remaining large remnant of softwater wetlands in the US Florida Everglades lies within the Arthur R. Marshall Loxahatchee National Wildlife Refuge. However, Refuge water quality today is impacted by pumped stormwater inflows to the eutrophic and mineral-enriched 100-km c...

  19. Community Solutions for Stormwater Management: A Guide for Voluntary Long-Term Planning

    Science.gov (United States)

    This draft guide describes how to develop a comprehensive long-term community stormwater plan that integrates stormwater management with communities’ broader plans for economic development, infrastructure investment and environmental compliance.

  20. Interactions between copper(II) and DOM in the urban stormwater runoff: modeling and characterizations.

    Science.gov (United States)

    Zhao, Chen; Wang, Chong-Chen; Li, Jun-Qi; Wang, Peng; Ou, Jia-Qi; Cui, Jing-Rui

    2018-01-01

    Dissolved organic matter (DOM) can strongly interact with both organic and inorganic contaminants to influence their transportation, transformation, bioavailability, toxicity and even their ultimate fate. Within this work, DOM was extracted from urban stormwater runoff samples collected from a regular sampling site of a typical residential area in Beijing, China. Copper(II) ions were selected as model to investigate the interactions between DOM and typical heavy metals. Both ultraviolet (UV) absorbance and fluorescence titration methods were introduced to determine the complex capacities (C L ) and conditional stability constants (log K M ) of bonding between DOM and copper (II) ions, which revealed that the values of C L were 85.62 and 87.23 μmol mg -1 and the log K M values were 5.37 and 5.48, respectively. The results suggested the successful complexation between DOM and copper(II) ions. Furthermore, morphology of the DOM binding to copper(II) ions was confirmed by both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS), which can facilitate to clarify the corresponding mechanism. The Cu 2p 3/2 peak at 933.7 eV and the characteristic shake-up peaks of Cu-O were found in the XPS spectra, implying that copper(II) ions might coordinate with hydroxyl (aliphatic or phenolic) or carboxyl groups. With these profitable results, it can be concluded that DOM in urban stormwater runoff has a strong binding affinity with copper(II) ions, which may further lead to potentially significant influence on their migration and transformation.

  1. Biofilters for stormwater harvesting: understanding the treatment performance of key metals that pose a risk for water use.

    Science.gov (United States)

    Feng, Wenjun; Hatt, Belinda E; McCarthy, David T; Fletcher, Tim D; Deletic, Ana

    2012-05-01

    A large-scale stormwater biofilter column study was conducted to evaluate the impact of design configurations and operating conditions on metal removal for stormwater harvesting and protection of aquatic ecosystems. The following factors were tested over 8 months of operation: vegetation selection (plant species), filter media type, filter media depth, inflow volume (loading rate), and inflow pollutant concentrations. Operational time was also integrated to evaluate treatment performance over time. Vegetation and filter type were found to be significant factors for treatment of metals. A larger filter media depth resulted in increased outflow concentrations of iron, aluminum, chromium, zinc, and lead, likely due to leaching and mobilization of metals within the media. Treatment of all metals except aluminum and iron was generally satisfactory with respect to drinking water quality standards, while all metals met standards for irrigation. However, it was shown that biofilters could be optimized for removal of iron to meet the required drinking water standards. Biofilters were generally shown to be resilient to variations in operating conditions and demonstrated satisfactory removal of metals for stormwater-harvesting purposes. © 2012 American Chemical Society

  2. Characterization of polycyclic aromatic hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia River, Washington, DC, USA

    International Nuclear Information System (INIS)

    Hwang, H.-M.; Foster, Gregory D.

    2006-01-01

    To investigate the sources, fate, and transport dynamics of PAHs (polycyclic aromatic hydrocarbons) in stormwater runoff that is a leading source of pollution in urban watersheds, storm and base flow samples were collected in six branches along the lower Anacostia River. PAHs in storm flow (1510-12,500 ng/L) were significantly enriched in the particle phase, which accounted for 68-97% of the total PAHs. It suggests that reducing particles in stormwater using post-treatment system would decrease PAHs considerably. The solid-water distribution coefficients (K D ) of PAHs in the storm flow samples were up to 340 times higher than predicted values. A greater portion of high molecular weight PAHs and their distribution patterns indicate higher contribution of automobile originated pyrogenic PAHs. Total suspended solids in storm flow had a positive relationship with flow rates and exceeded benchmark level for the protection of aquatic biota in some samples. - PAHs in urban stormwater runoff degrade the quality of watersheds and need to be removed before runoff enters into receiving water bodies

  3. Velocity dependent passive sampling for monitoring of micropollutants in dynamic stormwater discharges

    DEFF Research Database (Denmark)

    Birch, Heidi; Sharma, Anitha Kumari; Vezzaro, Luca

    2013-01-01

    Micropollutant monitoring in stormwater discharges is challenging because of the diversity of sources and thus large number of pollutants found in stormwater. This is further complicated by the dynamics in runoff flows and the large number of discharge points. Most passive samplers are non......-ideal for sampling such systems because they sample in a time-integrative manner. This paper reports test of a flow-through passive sampler, deployed in stormwater runoff at the outlet of a residential-industrial catchment. Momentum from the water velocity during runoff events created flow through the sampler...... resulting in velocity dependent sampling. This approach enables the integrative sampling of stormwater runoff during periods of weeks to months while weighting actual runoff events higher than no flow periods. Results were comparable to results from volume-proportional samples and results obtained from...

  4. Green Roofs for Stormwater Management

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Results indicate that the green roofs are capable of removing 40% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively...

  5. Combining multimedia models with integrated urban water system models for micropollutants

    DEFF Research Database (Denmark)

    De Keyser, W.; Gevaert, V.; Verdonck, F.

    2009-01-01

    Integrated urban water system (IUWS) modelling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOs) and stormwater drainage systems. However, some micropollutants have the tendency to occur in more than one...... environmental medium. In this work, a multimedia fate and transport model (MFTM) is “wrapped around” a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment. The combined model was tested on a hypothetical catchment using two scenarios: a reference scenario...... and a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS). A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in a reduced surface water concentration for the latter scenario. However, the model also showed that this was at the expense...

  6. Stormwater Infrastructure Effects on Urban Nitrogen Budgets

    Science.gov (United States)

    Hale, R. L.; Turnbull, L.; Earl, S.; Moratto, S.; Shorts, D.; Grimm, N. B.

    2012-12-01

    The effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs and altered hydrology are well studied. Less is known, however, about nutrient transport and processing within urban watersheds. Previous research has focused on the roles of land cover and land use but drainage system design and configuration also are apt to play a significant role in controlling the transport of water and nutrients downstream. Furthermore, variability in drainage systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 10 watersheds ranging in size from 5 to 22,000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (density residential) but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or engineered washes, and retention basins. We quantified discharge and precipitation at the outflow of each subwatershed and collected stormwater and rainfall samples for analyses of dissolved nitrogen species and δ15N, δ18O and Δ17O isotopes of nitrate (NO3) over two years. We also measured potential denitrification rates in washes and retention basins within our sites, and collected soil and pavement samples to describe pools of N within our watersheds. We used these data in combination with literature data on soil N transformations to construct N budgets for each watershed for a single event and at annual scales. We found that stormwater infrastructure type strongly affects N retention. Watersheds with surface or pipe drainage were sources of N downstream, whereas watersheds drained by washes or retention basins retained 70-99% of N inputs in rainfall. Event scale N retention was strongly correlated with hydrologic connectivity, as measured by runoff coefficients. Differences in δ15N, δ18O, and Δ17O isotopes of NO3 suggested that watersheds with decreased

  7. Stormwater management: adaptation and planning under climate change

    International Nuclear Information System (INIS)

    Mailhot, A.

    2009-01-01

    'Full text:' Extreme rainfall events are expected to increase in intensity and frequency in a future climate. Such a change will have an impact on the level of service provided by stormwater infrastructures since the current capacity is based on statistical analyses of past events, assuming that past conditions are representative of future climate conditions. Therefore, an increase in the intensity and frequency of extreme events will result in increasing runoff volumes and peak discharges that will more frequently exceed the capacity of current systems. For that reason, it is important to look for adaptation measures and to review design criteria in order to maintain an acceptable level of service in the long term. One important challenge related to stormwater management and climate change (CC) is related to the time scale of both the expected lifespan of some system components (that can last up to 100 years) and the horizon of the actual CC projection (50 to 100 years). Pipes currently replaced or installed may consequently experience very different climatic conditions during their lifetime and a general degradation of the level of service may be expected according to the actual CC projections. Among others, this means that the design criteria currently used must be reviewed. This paper intends to review and describe the main issues related to adaptation and planning of stormwater management infrastructures under climate change. More precisely, the following topics will be presented and discussed: 1) what are the available projections for intense rainfall events and what are the main uncertainties related to these projections? (how reliable are they?); 2) what will be the impacts of CC on stormwater management according to available projections? 3) how do we revise design criteria in a changing climate and define the level of service in a context where the return period concept is no longer valid? 4) what kind of adaptation measures can be put forward

  8. Elemental Concentrations in Urban Green Stormwater Infrastructure Soils.

    Science.gov (United States)

    Kondo, Michelle C; Sharma, Raghav; Plante, Alain F; Yang, Yunwen; Burstyn, Igor

    2016-01-01

    Green stormwater infrastructure (GSI) is designed to capture stormwater for infiltration, detention, evapotranspiration, or reuse. Soils play a key role in stormwater interception at these facilities. It is important to assess whether contamination is occurring in GSI soils because urban stormwater drainage areas often accumulate elements of concern. Soil contamination could affect hydrologic and ecosystem functions. Maintenance workers and the public may also be exposed to GSI soils. We investigated soil elemental concentrations, categorized as macro- and micronutrients, heavy metals, and other elements, at 59 GSI sites in the city of Philadelphia. Non-GSI soil samples 3 to 5 m upland of GSI sites were used for comparison. We evaluated differences in elemental composition in GSI and non-GSI soils; the comparisons were corrected for the age of GSI facility, underlying soil type, street drainage, and surrounding land use. Concentrations of Ca and I were greater than background levels at GSI sites. Although GSI facilities appear to accumulate Ca and I, these elements do not pose a significant human health risk. Elements of concern to human health, including Cd, Hg, and Pb, were either no different or were lower in GSI soils compared with non-GSI soils. However, mean values found across GSI sites were up to four times greater than soil cleanup objectives for residential use. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Restoration of stormwater retention capacity at the allotment-scale through a novel economic instrument.

    Science.gov (United States)

    Fletcher, Tim D; Walsh, Chistopher J; Bos, Darren; Nemes, Veronika; RossRakesh, Sharyn; Prosser, Toby; Hatt, Belinda; Birch, Rhiannon

    2011-01-01

    Urbanisation results in changes to runoff behaviour which, if not addressed, inevitably degrade receiving waters. To date, most stormwater management has focussed on the streetscape and public open space. Given that much of the catchment imperviousness is located on private land, we developed and tested a novel economic instrument (a uniform price auction) for encouraging allotment-scale stormwater retention. We evaluated bids using an integrated environmental benefit index (EBI), based on the ability of the proposed works to reduce runoff frequency, pollutant loads and to reduce potable water demand. The uniform price auction resulted in 1.4 ha of impervious areas being effectively 'disconnected' from the stormwater system. The EBI provided an objective and transparent method of comparing bids, which varied in the type of works proposed (e.g. rainwater tank, rain-garden), the cost and the resulting environmental benefit. Whilst the pilot auction was a success, the public subsidy of works undertaken was around 85%, meaning that property owners a relatively small private benefit in the works. Future auction rounds will be revised to (i) test an EBI which is more focussed on the protection of streams (assessing changes to runoff frequency, baseflow volumes and water quality) and (ii) provide an auction process which is simpler to understand, and provides greater practical support for landholders who wish to undertake works.

  10. Some perspectives for environmental risk assessment of urban stormwater management

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Baun, Anders; Ledin, Anna

    2002-01-01

    Introduction of new technologies for disposing stormwater locally, e.g. via infiltration into the ground, implies that the 'traditional' list of key-substances is not exhaustive and consequently, consultants and authorities have difficulties deciding whether to approve new technologies for stormw...... and groundwater, in an integral and transparent manner. This paper reviews some concepts used within risk assessment of chemical substances and seeks to plot a course for further developments related to risk assessments of stormwater contaminants....... for stormwater disposal. The risk for contamination of surface waters also needs to be assessed, even though this contamination is silently accepted by society. A proper risk assessment needs to consider contamination of all environmental compartments within the urban environment, i.e. surface water, soil...

  11. Green roof stormwater retention: effects of roof surface, slope, and media depth.

    Science.gov (United States)

    VanWoert, Nicholaus D; Rowe, D Bradley; Andresen, Jeffrey A; Rugh, Clayton L; Fernandez, R Thomas; Xiao, Lan

    2005-01-01

    Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.

  12. Evaluation of the effects of Middleton's stormwater-management activities on streamflow and water-quality characteristics of Pheasant Branch, Dane County, Wisconsin 1975-2008

    Science.gov (United States)

    Gebert, Warren A.; Rose, William J.; Garn, Herbert S.

    2012-01-01

    Few long-term data sets are available for evaluating the effects of urban stormwater-management practices. Over 30 years of data are available for evaluating the effectiveness of such practices by the city of Middleton, Wis. Analysis of streamflow and water-quality data collected on Pheasant Branch, demonstrates the relation between the changes in the watershed to the structural and nonstructural best management practices put in place during 1975-2008. A comparison of the data from Pheasant Branch with streamflow and water-quality data (suspended sediment and total phosphorus) collected at other nearby streams was made to assist in the determination of the possible causes of the changes in Pheasant Branch. Based on 34 years of streamflow data collected at the Pheasant Branch at Middleton streamflow-gaging station, flood peak discharges increased 37 percent for the 2-year flood and 83 percent for the 100-year flood. A comparison of data for the same period from an adjacent rural stream, Black Earth at Black Earth had a 43 percent increase in the 2-year flood peak discharge and a 140-percent increase in the 100-year flood peak discharge. Because the flood peak discharges on Pheasant Branch have not increased as much as Black Earth Creek it appears that the stormwater management practices have been successful in mitigating the effects of urbanization. Generally urbanization results in increased flood peak discharges. The overall increase in flood peak discharges seen in both streams probably is the result of the substantial increase in precipitation during the study period. Average annual runoff in Pheasant Branch has also been increasing due to increasing average annual precipitation and urbanization. The stormwater-management practices in Middleton have been successful in decreasing the suspended-sediment and total phosphorus loads to Lake Mendota from the Pheasant Branch watershed. These loads decreased in spite of increased annual runoff and flood peaks, which are

  13. Stormwater runoff drives viral community composition changes in inland freshwaters

    Science.gov (United States)

    Williamson, Kurt E.; Harris, Jamie V.; Green, Jasmin C.; Rahman, Faraz; Chambers, Randolph M.

    2014-01-01

    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities. PMID:24672520

  14. Parking Lot Runoff Quality and Treatment Efficiency of a Stormwater-Filtration Device, Madison, Wisconsin, 2005-07

    Science.gov (United States)

    Horwatich, Judy A.; Bannerman, Roger T.

    2010-01-01

    To evaluate the treatment efficiency of a stormwater-filtration device (SFD) for potential use at Wisconsin Department of Transportation (WisDOT) park-and-ride facilities, a SFD was installed at an employee parking lot in downtown Madison, Wisconsin. This type of parking lot was chosen for the test site because the constituent concentrations and particle-size distributions (PSDs) were expected to be similar to those of a typical park-and-ride lot operated by WisDOT. The objective of this particular installation was to reduce loads of total suspended solids (TSS) in stormwater runoff to Lake Monona. This study also was designed to provide a range of treatment efficiencies expected for a SFD. Samples from the inlet and outlet were analyzed for 33 organic and inorganic constituents, including 18 polycyclic aromatic hydrocarbons (PAHs). Samples were also analyzed for physical properties, including PSD. Water-quality samples were collected for 51 runoff events from November 2005 to August 2007. Samples from all runoff events were analyzed for concentrations of suspended sediment (SS). Samples from 31 runoff events were analyzed for 15 constituents, samples from 15 runoff events were analyzed for PAHs, and samples from 36 events were analyzed for PSD. The treatment efficiency of the SFD was calculated using the summation of loads (SOL) and the efficiency ratio methods. Constituents for which the concentrations and (or) loads were decreased by the SFD include TSS, SS, volatile suspended solids, total phosphorous (TP), total copper, total zinc, and PAHs. The efficiency ratios for these constituents are 45, 37, 38, 55, 22, 5, and 46 percent, respectively. The SOLs for these constituents are 32, 37, 28, 36, 23, 8, and 48 percent, respectively. The SOL for chloride was -21 and the efficiency ratio was -18. Six chemical constituents or properties-dissolved phosphorus, chemical oxygen demand, dissolved zinc, total dissolved solids, dissolved chemical oxygen demand, and

  15. Combining multimedia models with integrated urban water system models for micropollutants

    DEFF Research Database (Denmark)

    De Keyser, W.; Gevaert, V.; Verdonck, F.

    2010-01-01

    Integrated urban water system (IUWS) modeling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOS) and stormwater drainage systems However, some micropollutants tend to appear in more than one environmental...... medium (air, water, sediment, soil, groundwater, etc) In this work, a multimedia fate and transport model (MFTM) is "wrapped around" a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment The combined model was tested on a hypothetical catchment using two scenarios...... on the one hand a reference scenario with a combined sewerage system and on the other hand a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS) A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in reduced surface water concentrations...

  16. Laboratory investigations of stormwater remediation via slag: Effects of metals on phosphorus removal

    International Nuclear Information System (INIS)

    Okochi, Nnaemeka C.; McMartin, Dena W.

    2011-01-01

    The use of electric arc furnace (EAF) slag for the removal of phosphorus (P) from various simulated stormwater blends was investigated in the laboratory. The form of P measured was the inorganic orthophosphate (PO 4 -P). The stormwater solutions used in this preliminary study were synthesized as blends of P and typical concentrations of some of the most common and abundant metals in stormwater (e.g. cadmium, copper, lead and zinc), and contacted with EAF slag to determine P removal efficiency and sorptive competition. Results showed that the presence of cadmium, lead and zinc had minimal effect on the removal process; copper was a significant inhibitor of P uptake by the EAF slag media. P removal was greatest in the metal-free and multi-metal stormwater solutions.

  17. Pollution loads from stormwater overflows

    International Nuclear Information System (INIS)

    Bonomo, L.

    1991-01-01

    The knowledge of the volume of combined effluents outflowing from overflows is not enough to allow a direct evaluation of polluting loads discharged into final receptors; the hypothesis of complete mixing between sewage and stormwater flow, fed in at a pollutant concentration level equal to zero, hasn't proved to be successful. The amount of the outflowing loads largely depends on the contamination of the stormwater runoff before inflow into the drainage system and on sedimentation and resuspension phenomena. This paper reports the main aspects connected with wet and dry atmospheric deposition of pollutants and with paved surface wash-out phenomena. The origin of pollutants flush, due to the resuspension and mass transport of polluting substances stored up in the sewer during draughts, is also described. Attention is drawn to the importance of the behaviour of the different pollutants with respect to the sedimentation phenomena. Reference is made to evaluations conducted on a drainage system for the recovery of a small pre-alpine lake

  18. A Fuzzy Control System for Reducing Urban Runoff by a Stormwater Storage Tank

    Science.gov (United States)

    Zhang, P.; Cai, Y.; Wang, J.

    2017-12-01

    Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. Most researches on SST were mainly the design, pollutants removal effect, and operation assessment. While there were few researches on the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormawter runoff. Firstly, the design of SST was investigated. A catchment area and return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff was analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

  19. TRADING ALLOWANCES FOR STORMWATER CONTROL: ACCOUNTING FOR CONTINUOUS HYDROLOGY AND OPPORTUNITY COSTS

    Science.gov (United States)

    Excess stormwater runoff is a serious problem in a large number of urban areas, causing flooding, water pollution, groundwater recharge deficits and ecological damage to urban streams. It has been posited that to mitigate the effects of excess stormwater runoff, policy makers cou...

  20. Management of stormwater facility maintenance residuals

    Science.gov (United States)

    1998-06-01

    Current research on stormwater maintenance residuals has revealed that the source and nature of these materials is extremely variable, that regulation can be ambiguous, and handling can be costly and difficult. From a regulatory perspective, data ind...

  1. Laboratory investigations of stormwater remediation via slag: Effects of metals on phosphorus removal

    Energy Technology Data Exchange (ETDEWEB)

    Okochi, Nnaemeka C. [Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); McMartin, Dena W., E-mail: dena.mcmartin@uregina.ca [Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)

    2011-03-15

    The use of electric arc furnace (EAF) slag for the removal of phosphorus (P) from various simulated stormwater blends was investigated in the laboratory. The form of P measured was the inorganic orthophosphate (PO{sub 4}-P). The stormwater solutions used in this preliminary study were synthesized as blends of P and typical concentrations of some of the most common and abundant metals in stormwater (e.g. cadmium, copper, lead and zinc), and contacted with EAF slag to determine P removal efficiency and sorptive competition. Results showed that the presence of cadmium, lead and zinc had minimal effect on the removal process; copper was a significant inhibitor of P uptake by the EAF slag media. P removal was greatest in the metal-free and multi-metal stormwater solutions.

  2. Stormwater Design Return Period Standards for U.S. Transportation Infrastructure: How Are States Approaching Resilience?

    Science.gov (United States)

    Samaras, C.; Lopez, T.

    2016-12-01

    Climate change is projected to increase the frequency and intensity of precipitation in many regions, which is relevant for stormwater engineering designs and resilience in the transportation sector. Existing and future stormwater infrastructure is generally designed for historical and stationary hydrologic conditions. For example, the design return period is based on statistical analysis of past precipitation events, often over a 50-year historical timeline. The design return period translates into how much peak precipitation volume a system is designed for in a state, and provides information about the performance of a drainage structure. The higher the design period used by an engineer for a given stormwater system, the more peak stormwater volume the system can convey. Therefore, design return periods can be associated with a design's near-term and long-term resilience. However, there is a tradeoff between the choice of design return period, the total infrastructure capital cost, and the resilience of a system to heavy precipitation events. This study analyzes current stormwater infrastructure design guidelines for state departments of transportation in the contiguous United States, in order to understand how stormwater design return periods vary across states and provide insight into the resilience of current stormwater systems design. The study found that the design return period varies considerably across the United States by roadway functional class and drainage classification, as well as within climate regions. Understanding this variation will help states identify possible vulnerabilities, highlight deficiencies across states and infrastructure types, and help in updating design return periods to increase the climate resilience of stormwater infrastructure.

  3. Behaviour of chromium(VI) in stormwater soil infiltration systems

    DEFF Research Database (Denmark)

    Cederkvist, Karin; Ingvertsen, Simon T.; Jensen, Marina B.

    2013-01-01

    mm in 2 h) and extreme (100 mm in 3 h) rain events. The objectives were to understand the behaviour of the anionic and toxic Cr(VI) in soil at neutral pH and to asses treatment efficiency towards Cr(VI). During normal rain events Cr(VI) was largely retained (more than 50, even though pH was neutral......The ability of stormwater infiltration systems to retain Cr(VI) was tested by applying a synthetic stormwater runoff solution with a neutral pH and high Cr(VI) concentrations to four intact soil columns excavated from two roadside infiltration swales in Germany. Inlet flow rates mimicked normal (10......, while under extreme rain events approximately 20% of Cr(VI) was retained. In both cases effluent concentrations of Cr(VI) would exceed the threshold value of 3.4 mu g/L if the infiltrated water were introduced to freshwater environments. More knowledge on the composition of the stormwater runoff...

  4. Adapting the social-ecological system framework for urban stormwater management: the case of green infrastructure adoption

    Directory of Open Access Journals (Sweden)

    Carli D. Flynn

    2016-12-01

    Full Text Available Stormwater management has long been a critical societal and environmental challenge for communities. An increasing number of municipalities are turning to novel approaches such as green infrastructure to develop more sustainable stormwater management systems. However, there is a need to better understand the technological decision-making processes that lead to specific outcomes within urban stormwater governance systems. We used the social-ecological system (SES framework to build a classification system for identifying significant variables that influence urban stormwater governance decisions related to green infrastructure adoption. To adapt the framework, we relied on findings from observations at national stormwater meetings in combination with a systematic literature review on influential factors related to green infrastructure adoption. We discuss our revisions to the framework that helped us understand the decision by municipal governments to adopt green infrastructure. Remaining research needs and challenges are discussed regarding the development of an urban stormwater SES framework as a classification tool for knowledge accumulation and synthesis.

  5. Stormwater pollution treatment BMP discharge structures.

    Science.gov (United States)

    2014-03-01

    Structural best management practices (BMPs) are used to capture and treat stormwater runoff. Most structural BMPs provide treatment by filtering : runoff through a filter media or collecting it in a detention basin and slowly discharging it over an e...

  6. Characterization of stormwater discharges from Las Flores Industrial Park, Rio Grande, Puerto Rico, 1998-99

    Science.gov (United States)

    Rodriguez, Jose M.

    2000-01-01

    Stormwater discharges from Las Flores Industrial Park, Rio Grande, Puerto Rico, were characterized from June 1998 to July 1999 by measuring the flow rate at two outfalls, delineating the drainage areas for each outfall, and calculating the volume of the stormwater discharges. Stormwater-discharge samples were collected and analyzed to determine the quality of the discharges. Constituent loads and loads per area were estimated for each drainage area. The studied drainage subareas covered approximately 46 percent of the total area of the Las Flores Industrial Park. Industrial groups represented in the study areas include manufacturers of textile, electronics, paper, fabricated metal, plastic, and chemical products. The concentrations of oil and grease (1 to 6 milligrams per liter), biochemical oxygen demand (4.7 to 16 milligrams per liter), total organic carbon (5.8 to 36 milligrams per liter), total suspended solids (28 to 100 milligrams per liter), and total phosphorous (0.11 to 0.78 milligrams per liter) from all the samples collected were less than the U.S. Environmental Protection Agency stormwater benchmark concentrations. Concentrations of chemical oxygen demand (15.8 to 157 milligrams per liter) and nitrate and nitrite (0.06 to 1.75 milligrams per liter) exceeded benchmark concentrations at one of the studied drainage areas. Total Kjeldahl nitrogen concentrations (1.00 to 3.20 milligrams per liter) exceeded the benchmark concentrations at the two studied drainage areas. Maximum concentrations for oil and grease, biochemical oxygen demand, chemical oxygen demand, total organic carbon, total Kjeldahl nitrogen, nitrate plus nitrite, and total phosphorous were detected in an area where electronics, plastics, and chemical products are currently manufactured. The maximum concentration of total suspended solids was detected at an area where textile, paper, plastic, chemical, and fabricated metal products are manufactured.

  7. Development of sustainable stormwater management using simulation-optimization approach under climate change

    Science.gov (United States)

    Huang, Yu-ru; Tung, Ching-pin

    2015-04-01

    the revised IDF curve. After that the storm water management model (SWMM) is used to simulate these strategies for a spectrum of design storms, the cost and the benefit can be analyzed to provide government an advice in developing stormwater management under uncertain conditions of climate change.

  8. Heavy metals, PAHs and toxicity in stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2011-01-01

    Concentrations of 6 different heavy metals and total Polycyclic Aromatic Hydrocarbons (PAH) were determined in stormwater runoff and in the pond water of two Danish wet detention ponds. The pond water samples were analyzed for toxic effects, using the algae Selenastrum capricornutum as a test...... organism. Stormwater and pond water from a catchment with light industry showed high levels of heavy metals, especially zinc and copper. The pond water showed high toxic effects and copper were found to be the main toxicant. Additionally, a large part of the copper was suspected to be complex bound......, reducing the potential toxicity of the metal. Another catchment (residential) produced stormwater and pond water with moderate concentration of heavy metals. The pond water occasionally showed toxic effects but no correlation between heavy metals and toxicity was identified. PAHs concentrations were...

  9. Use of modified pine bark for removal of pesticides from stormwater runoff

    Science.gov (United States)

    Mandla A. Tshabalala

    2003-01-01

    Pesticide entrainment in stormwater runoff can contribute to non-point source pollution of surface waters. Granular activated carbon has been successfully used for removing pesticides from wastewater. However, implementation of granular activated carbon sorption media in stormwater filtration systems comes with high initial capital investment and operating costs....

  10. Laboratory investigations of stormwater remediation via slag: Effects of metals on phosphorus removal.

    Science.gov (United States)

    Okochi, Nnaemeka C; McMartin, Dena W

    2011-03-15

    The use of electric arc furnace (EAF) slag for the removal of phosphorus (P) from various simulated stormwater blends was investigated in the laboratory. The form of P measured was the inorganic orthophosphate (PO(4)-P). The stormwater solutions used in this preliminary study were synthesized as blends of P and typical concentrations of some of the most common and abundant metals in stormwater (e.g. cadmium, copper, lead and zinc), and contacted with EAF slag to determine P removal efficiency and sorptive competition. Results showed that the presence of cadmium, lead and zinc had minimal effect on the removal process; copper was a significant inhibitor of P uptake by the EAF slag media. P removal was greatest in the metal-free and multi-metal stormwater solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. The influence of urbanisation on macroinvertebrate biodiversity in constructed stormwater wetlands.

    Science.gov (United States)

    Mackintosh, Teresa J; Davis, Jenny A; Thompson, Ross M

    2015-12-01

    The construction of wetlands in urban environments is primarily carried out to assist in the removal of contaminants from wastewaters; however, these wetlands have the added benefit of providing habitat for aquatic invertebrates, fish and waterbirds. Stormwater quantity and quality is directly related to impervious area (roads, sealed areas, roofs) in the catchment. As a consequence, it would be expected that impervious area would be related to contaminant load and biodiversity in receiving waters such as urban wetlands. This study aimed to establish whether the degree of urbanisation and its associated changes to stormwater runoff affected macroinvertebrate richness and abundance within constructed wetlands. Urban wetlands in Melbourne's west and south east were sampled along a gradient of urbanisation. There was a significant negative relationship between total imperviousness (TI) and the abundance of aquatic invertebrates detected for sites in the west, but not in the south east. However macroinvertebrate communities were relatively homogenous both within and between all study wetlands. Chironomidae (non-biting midges) was the most abundant family recorded at the majority of sites. Chironomids are able to tolerate a wide array of environmental conditions, including eutrophic and anoxic conditions. Their prevalence suggests that water quality is impaired in these systems, regardless of degree of urbanisation, although the causal mechanism is unclear. These results show some dependency between receiving wetland condition and the degree of urbanisation of the catchment, but suggest that other factors may be as important in determining the value of urban wetlands as habitat for wildlife. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Water Level Loggers as a Low-Cost Tool for Monitoring of Stormwater Control Measures

    Directory of Open Access Journals (Sweden)

    Laura Toran

    2016-08-01

    Full Text Available Stormwater control measures (SCMs are a key component of watershed health in urbanized areas. SCMs are used to increase infiltration and reduce discharge to streams or storm sewer systems during rain events. Monitoring is important for the evaluation of design and causes of failure in SCMs. However, the expense of monitoring means it is not always included in stormwater control planning. This study shows how low-cost water level loggers can be used to answer certain questions about SCM performance. Five case studies are presented that use water level loggers to evaluate the overflow of basins, compare a traditional stormpipe trench with an infiltration trench, monitor timing of blue roof storage, show the effects of retrofitting a basin, and provide long term performance data. Water level loggers can be used to answer questions about the timing and location of stormwater overflows, which helps to evaluate the effectiveness of SCMs. More expensive monitoring and modeling can be used as a follow up if needed to more thoroughly assess a site. Nonetheless, low-cost monitoring can be a first step in identifying sites that need improvement or additional monitoring.

  13. Identifying biogeochemical processes beneath stormwater infiltration ponds in support of a new best management practice for groundwater protection

    Science.gov (United States)

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin; Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias

    2011-01-01

     When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.

  14. Toxicity of stormwater treatment pond sediments to Hyallela azteca (Amphipoda)

    Science.gov (United States)

    Karouna-Renier, N.K.; Sparling, D.W.

    1997-01-01

    Stormwater wetlands are created to contain runoff from human developments and are designed to retain contaminants such as heavy metals, petroleum hydrocarbons, silt, pesticides, and nutrients before the runoff enter natural waterways. Because of this design, stormwater wetlands have a potential of becoming toxic sinks to organisms utilizing the wetlands for habitat. We conducted a 10-day sediment bioassay on Hyallela azteca as part of a larger study on the possible hazards of stormwater wetlands to aquatic invertebrates. Water and sediments from 10 wetlands separated into reference, residential, commercial, and highway land uses were used. No differences in survival were observed among land use categories, possibly because the ratio of acid volatile sulfides/simultaneously extractable metals (AVS/SEM) was > 1.0 for all of the ponds tested; values > 1 in this ratio are indications that toxic metals may not be bioavailable. Survival and growth rates correlated positively with AVS.

  15. Enlightenment from ancient Chinese urban and rural stormwater management practices.

    Science.gov (United States)

    Wu, Che; Qiao, Mengxi; Wang, Sisi

    2013-01-01

    Hundreds of years ago, the ancient Chinese implemented several outstanding projects to cope with the changing climate and violent floods. Some of these projects are still in use today. These projects evolved from the experience and knowledge accumulated through the long coexistence of people with nature. The concepts behind these ancient stormwater management practices, such as low-impact development and sustainable drainage systems, are similar to the technology applied in modern stormwater management. This paper presents the cases of the Hani Terrace in Yunnan and the Fushou drainage system of Ganzhou in Jiangxi. The ancient Chinese knowledge behind these cases is seen in the design concepts and the features of these projects. These features help us to understand better their applications in the contemporary environment. In today's more complex environment, integrating traditional and advanced philosophy with modern technologies is extremely useful in building urban and rural stormwater management systems in China.

  16. Sustainability assessment of stormwater management systems

    DEFF Research Database (Denmark)

    Brudler, Sarah; Arnbjerg-Nielsen, Karsten; Ammitsøe, Christian

    We quantify ecotoxicity impacts caused by different solutions to manage stormwater using life cycle assessment. As a novelty, we include emissions of a wide range of pollutants present in runoff. These emissions turn out to be of great importance, especially in decentralized, above surface systems....

  17. Evaluating the Effect of Green Infrastructure Stormwater Best Management Practices on New England Stream Habitat

    Science.gov (United States)

    The U.S. EPA is evaluating the effectiveness of green infrastructure (GI) stormwater best management practices (BMPs) on stream habitat at the small watershed (< HUC12) scale in New England. Predictive models for thermal regime and substrate characteristics (substrate size, % em...

  18. Perspectives on the use of green infrastructure for stormwater management in Cleveland and Milwaukee.

    Science.gov (United States)

    Keeley, Melissa; Koburger, Althea; Dolowitz, David P; Medearis, Dale; Nickel, Darla; Shuster, William

    2013-06-01

    Green infrastructure is a general term referring to the management of landscapes in ways that generate human and ecosystem benefits. Many municipalities have begun to utilize green infrastructure in efforts to meet stormwater management goals. This study examines challenges to integrating gray and green infrastructure for stormwater management, informed by interviews with practitioners in Cleveland, OH and Milwaukee WI. Green infrastructure in these cities is utilized under conditions of extreme fiscal austerity and its use presents opportunities to connect stormwater management with urban revitalization and economic recovery while planning for the effects of negative- or zero-population growth. In this context, specific challenges in capturing the multiple benefits of green infrastructure exist because the projects required to meet federally mandated stormwater management targets and the needs of urban redevelopment frequently differ in scale and location.

  19. Sustainability assessment of stormwater management systems and the importance of pollutants in runoff

    DEFF Research Database (Denmark)

    Brudler, Sarah; Arnbjerg-Nielsen, Karsten; Ammitsøe, Christian

    substance groups present in runoff, metals cause the highest impacts. To integrate this method into holistic sustainability assessment, we assess the complete life cycle of a complex stormwater management. We show that runoff discharges have a high relative importance: The impacts exceed the combined......We develop a method to systematically include impacts caused by runoff discharge into the sustainability assessment of stormwater management systems. By defining priority pollutants and calculating mean concentrations, an average ecotoxicity impact per litre of runoff is calculated. Of all assessed...... impacts of implementation, maintenance and decommissioning of the stormwater management system....

  20. Identification and Induction of Human, Social, and Cultural Capitals through an Experimental Approach to Stormwater Management

    Directory of Open Access Journals (Sweden)

    Hale W. Thurston

    2012-08-01

    Full Text Available Decentralized stormwater management is based on the dispersal of stormwater management practices (SWMP throughout a watershed to manage stormwater runoff volume and potentially restore natural hydrologic processes. This approach to stormwater management is increasingly popular but faces constraints related to land access and citizen engagement. We tested a novel method of environmental management through citizen-based stormwater management on suburban private land. After a nominal induction of human capital through an education campaign, two successive (2007, 2008 reverse auctions engaged residents to voluntarily bid on installation of SWMPs on their property. Cumulatively, 81 rain gardens and 165 rain barrels were installed on approximately one-third of the 350 eligible residential properties in the watershed, resulting in an estimated 360 m3 increase in stormwater detention capacity. One surprising result was the abundance of zero dollar bids, indicating even a limited-effort human capital campaign was sufficient to enroll many participants. In addition, we used statistical methods to illustrate the significant role of social capital in forming clusters of adjacent properties that participated in bidding. This indicated that as participants shared their experiences, neighbors may have become more willing to trust the program and enroll. Significant agglomerations of participating properties may indicate a shift in neighborhood culture regarding stormwater management with positive implications for watershed health through the sustained induction of alternate capitals.

  1. Analysis of quaternary ammonium compounds in urban stormwater samples

    International Nuclear Information System (INIS)

    Van de Voorde, Antoine; Lorgeoux, Catherine; Gromaire, Marie-Christine; Chebbo, Ghassan

    2012-01-01

    A method for benzalkonium analysis has been developed to measure benzalkonium concentration in dissolved and particulate fractions from urban runoff samples. The analysis was performed by liquid chromatography coupled with mass spectrometry (LC-MS/MS). The dissolved matrix was extracted by Solid Phase Extraction (SPE), with cationic exchange and the particles by microwave extraction with acidified methanol. Recovery percentages were closed to 100% for benzalkonium C12 and C14. The protocol was applied to roof runoff samples collected after a roof demossing treatment, and to separative stormwater samples from a 200 ha catchment. The results illustrate an important contamination of the roof runoff, with a maximum concentration close to 27 mg/L during the first rain. The benzalkonium concentration (sum of C12 and C14) stayed high (up to 1 mg/L) even 5 months after the treatment. Benzalkonium concentration measured in stormwaters was low (0.2 μg/L) but with contaminated suspended solids (up to 80 μg/g). - Highlights: ► In France roofs can be treated against moss growth with benzalkonium. ► First LC-MS/MS protocol developed to analyze benzalkonium in urban runoff. ► Dissolved fraction is extracted by cationic exchange, particles with soxwave. ► Roof treatment create a huge contamination of the runoff (>30 mg/L). ► First results showing benzalkonium presence in stormwater. - A protocol for benzalkonium analysis has been developed and adapted to urban runoff, then applied to roof runoff after de-mossing treatment, which represents an important source of benzalkonium in stormwaters.

  2. A game theory analysis of green infrastructure stormwater management policies

    Science.gov (United States)

    William, Reshmina; Garg, Jugal; Stillwell, Ashlynn S.

    2017-09-01

    Green stormwater infrastructure has been demonstrated as an innovative water resources management approach that addresses multiple challenges facing urban environments. However, there is little consensus on what policy strategies can be used to best incentivize green infrastructure adoption by private landowners. Game theory, an analysis framework that has historically been under-utilized within the context of stormwater management, is uniquely suited to address this policy question. We used a cooperative game theory framework to investigate the potential impacts of different policy strategies used to incentivize green infrastructure installation. The results indicate that municipal regulation leads to the greatest reduction in pollutant loading. However, the choice of the "best" regulatory approach will depend on a variety of different factors including politics and financial considerations. Large, downstream agents have a disproportionate share of bargaining power. Results also reveal that policy impacts are highly dependent on agents' spatial position within the stormwater network, leading to important questions of social equity and environmental justice.

  3. Raingarden Soil Bacteria Community Response to Lab Simulated Salt-Enriched Artificial Stormwater

    Science.gov (United States)

    Endreny, T. A.

    2014-12-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO3, PO4, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO3 and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO4 concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure.

  4. Monitoring, chemical fate modelling and uncertainty assessment in combination: a tool for evaluating emission control scenarios for micropollutants in stormwater systems

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Vezzaro, Luca; Birch, Heidi

    2012-01-01

    runoff and treatment systems under sparse data conditions. The framework was applied to an industrial/residential area in the outskirts of Copenhagen (Denmark), where stormwater is discharged in a separate channel system discharging to a wet detention pond. Analysis of economic activities and GIS data...... on land usage allowed characterizing the catchment and identifying the major potential sources of stormwater MP. Monitoring of the pond inlet and outlet, as well as sediment analyses, allowed assessing the current situation and highlighted potential risks for the downstream surface water environment...

  5. A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater

    DEFF Research Database (Denmark)

    Baun, Anders; Eriksson, Eva; Ledin, Anna

    2006-01-01

    The paper presents a novel methodology (RICH, Ranking and Identification of Chemical Hazards) for ranking and identification of xenobiotic organic compounds of environmental concern in stormwater discharged to surface water. The RICHmethod is illustrated as a funnel fitted with different filters...... in hazard/risk assessments, a justified list of stormwater priority pollutants which must be included in hazard/risk assessments, and a list of compounds which may be present in discharged stormwater, but cannot be evaluated due to lack of data. The procedure was applied to 233 xenobiotic organic chemicals...... with xenobiotic organic compounds (XOCs) found in urban stormwater, but it may be transferred to other environmental compartments and problems. Thus, the RICH procedure can be used as a stand-alone tool for selection of potential priority pollutants or it can be integrated in larger priority setting frameworks....

  6. Valuing environmental services provided by local stormwater management

    Science.gov (United States)

    Brent, Daniel A.; Gangadharan, Lata; Lassiter, Allison; Leroux, Anke; Raschky, Paul A.

    2017-06-01

    The management of stormwater runoff via distributed green infrastructures delivers a number of environmental services that go beyond the reduction of flood risk, which has been the focus of conventional stormwater systems. Not all of these services may be equally valued by the public, however. This paper estimates households' willingness to pay (WTP) for improvements in water security, stream health, recreational and amenity values, as well as reduction in flood risk and urban heat island effect. We use data from nearly 1000 personal interviews with residential homeowners in Melbourne and Sydney, Australia. Our results suggest that the WTP for the highest levels of all environmental services is A799 per household per year. WTP is mainly driven by residents valuing improvements in local stream health, exemptions in water restrictions, the prevention of flash flooding, and decreased peak urban temperatures respectively at A297, A244, A104 and A$65 per year. We further conduct a benefit transfer analysis and find that the WTP and compensating surplus are not significantly different between the study areas. Our findings provide additional support that stormwater management via green infrastructures have large nonmarket benefits and that, under certain conditions, benefit values can be transferred to different locations.

  7. Methodologies for pre-validation of biofilters and wetlands for stormwater treatment.

    Directory of Open Access Journals (Sweden)

    Kefeng Zhang

    Full Text Available Water Sensitive Urban Design (WSUD systems are frequently used as part of a stormwater harvesting treatment trains (e.g. biofilters (bio-retentions and rain-gardens and wetlands. However, validation frameworks for such systems do not exist, limiting their adoption for end-uses such as drinking water. The first stage in the validation framework is pre-validation, which prepares information for further validation monitoring.A pre-validation roadmap, consisting of five steps, is suggested in this paper. Detailed methods for investigating target micropollutants in stormwater, and determining challenge conditions for biofilters and wetlands, are provided.A literature review was undertaken to identify and quantify micropollutants in stormwater. MUSIC V5.1 was utilized to simulate the behaviour of the systems based on 30-year rainfall data in three distinct climate zones; outputs were evaluated to identify the threshold of operational variables, including length of dry periods (LDPs and volume of water treated per event.The paper highlights that a number of micropollutants were found in stormwater at levels above various worldwide drinking water guidelines (eight pesticides, benzene, benzo(apyrene, pentachlorophenol, di-(2-ethylhexyl-phthalate and a total of polychlorinated biphenyls. The 95th percentile LDPs was exponentially related to system design area while the 5th percentile length of dry periods remained within short durations (i.e. 2-8 hours. 95th percentile volume of water treated per event was exponentially related to system design area as a percentage of an impervious catchment area.The out-comings of this study show that pre-validation could be completed through a roadmap consisting of a series of steps; this will help in the validation of stormwater treatment systems.

  8. Social construction of stormwater control measures in Melbourne and Copenhagen:

    DEFF Research Database (Denmark)

    Madsen, Herle Mo; Brown, Rebekah; Elle, Morten

    2017-01-01

    Urban stormwater systems in cities around the world are challenged by urbanization and climate change, and a range of Stormwater Control Measures (SCMs) are being implemented as solutions to these challenges. We developed a conceptual framework of technological stabilization based on Social...... differences in their application due to different physical, organizational and cultural contexts in the two cities, drought being the main driver during the past decade in Melbourne (1997–2010) and pluvial flooding in Copenhagen (2007-). In Melbourne there is currently a strong integrated understanding...

  9. MARKET INCENTIVES AND NONPOINT SOURCES: AN APPLICATION OF TRADABLE CREDITS TO URBAN STORMWATER MANAGEMENT

    Science.gov (United States)

    Excess stormwater runoff can cause serious pollution, habitat degradation and flooding in cities where growth in impervious surface area (such as pavement, buildings, etc.) has created a situation where stormwater runoff routinely exceeds the normal capacity of natural and constr...

  10. Impact of stormwater infiltration basins on groundwater quality, Perth metropolitan region, Western Australia

    Science.gov (United States)

    Appleyard, S. J.

    1993-08-01

    Twelve bores were sunk adjacent to three stormwater infiltration basins in the Perth metropolitan area to examine the impact of runoff from a light industrial area, a medium-density residential area, and a major arterial road on groundwater quality, and to examine the hydrological response of the aquifer to runoff recharge. Automatic and manual water level monitoring between April and November 1990 indicated that groundwater levels responded within minutes to recharge from the infiltration basins. Peak water levels of up to 2.5 m above rest levels occurred 6 24 h after the commencement of ponding in the infiltration basins. There was a marked reduction in salinity and increase in dissolved oxygen concentrations in the upper part of the aquifer downgradient of the infiltration basins. Concentrations of toxic metals, nutrients, pesticides, and phenolic compounds in groundwater near the infiltration basins were low and generally well within Australian drinking water guidelines. However, sediment in the base of an infiltration basin draining a major road contained in excess of 3500 ppm of lead. Phthalates, which are US EPA priority pollutants, were detected in all but one bore near the infiltration basins. Their detection may be a sampling artifact, but they may also be derived from the plastic litter that accumulates in the infiltration basins. The concentration of iron in groundwater near the infiltration basins appears to be controlled by dissolved oxygen concentrations, with high iron concentrations occurring where dissolved oxygen concentrations are low. Pumping bores located near infiltration basins may suffer from iron encrustation problems caused by the mixing of shallow, oxygenated groundwater with water containing higher concentrations of iron from deeper in the aquifer.

  11. Screening-level ecological and human health risk assessment of polycyclic aromatic hydrocarbons in stormwater detention pond sediments of Coastal South Carolina, USA

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, John E., E-mail: john.weinstein@citadel.edu [Department of Biology, The Citadel, Charleston, SC (United States); Crawford, Kevin D. [Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, WI (United States); Garner, Thomas R. [Institute of Environmental Toxicology, Clemson University, Pendleton, SC (United States); Flemming, Alan J. [South Carolina Department of Health and Environmental Control, Charleston, SC (United States)

    2010-06-15

    Screening-level ecological and human health assessments were performed for polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of 19 stormwater detention ponds located in coastal South Carolina. For ecological screening benchmarks, we used threshold and probable effect concentrations (TEC and PEC) derived from consensus-based sediment quality guidelines for individual PAH analytes and equilibrium partitioning sediment benchmarks-toxic units ({Sigma}ESB-TU) derived for PAH mixtures. For human health benchmarks, we used preliminary remediation goals (PRGs). Sediments of five stormwater ponds (four commercial ponds and one residential pond with a large drainage area) exceeded PEC values for several PAH analytes and the {Sigma}ESB-TU safe value of 1 for PAH mixtures. These same five stormwater ponds also exceeded the PRG values for five carcinogenic PAH analytes. These results suggest that the PAH levels in sediments from certain commercial and residential ponds have the potential to pose moderate to high risks for adverse, chronic effects to benthic organisms in situ and an increased risk of cancer to humans ex situ following excavation and on-site disposal. We recommend that sediment from these stormwater ponds be tested prior to excavation to determine the appropriate method of disposal. We also recommend that regulatory agencies enforce guidelines for periodic sediment removal as this should reduce both in situ and ex situ risks resulting from sediment PAH exposure.

  12. Screening-level ecological and human health risk assessment of polycyclic aromatic hydrocarbons in stormwater detention pond sediments of Coastal South Carolina, USA

    International Nuclear Information System (INIS)

    Weinstein, John E.; Crawford, Kevin D.; Garner, Thomas R.; Flemming, Alan J.

    2010-01-01

    Screening-level ecological and human health assessments were performed for polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of 19 stormwater detention ponds located in coastal South Carolina. For ecological screening benchmarks, we used threshold and probable effect concentrations (TEC and PEC) derived from consensus-based sediment quality guidelines for individual PAH analytes and equilibrium partitioning sediment benchmarks-toxic units (ΣESB-TU) derived for PAH mixtures. For human health benchmarks, we used preliminary remediation goals (PRGs). Sediments of five stormwater ponds (four commercial ponds and one residential pond with a large drainage area) exceeded PEC values for several PAH analytes and the ΣESB-TU safe value of 1 for PAH mixtures. These same five stormwater ponds also exceeded the PRG values for five carcinogenic PAH analytes. These results suggest that the PAH levels in sediments from certain commercial and residential ponds have the potential to pose moderate to high risks for adverse, chronic effects to benthic organisms in situ and an increased risk of cancer to humans ex situ following excavation and on-site disposal. We recommend that sediment from these stormwater ponds be tested prior to excavation to determine the appropriate method of disposal. We also recommend that regulatory agencies enforce guidelines for periodic sediment removal as this should reduce both in situ and ex situ risks resulting from sediment PAH exposure.

  13. Green Retrofits to Bring Jobs, Stormwater Controls

    Science.gov (United States)

    Community-based public-private partnership fostered by EPA’s Mid-Atlantic Water Protection Division is underway in Prince George’s County, Maryland, to generate “faster, cheaper, greener” controls for stormwater and benefit the local economy and community.

  14. Watershed Scale Impacts of Stormwater Green Infrastructure on Hydrology, Nitrogen Fluxes, and Combined Sewer Overflows in the Baltimore, MD and Washington, DC area

    Science.gov (United States)

    Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, ...

  15. Pollution from urban development and setback outfalls as a catchment management measure for river water quality improvement

    Science.gov (United States)

    Allen, Deonie; Haynes, Heather; Arthur, Scott

    2016-04-01

    Urban development causes an increase in fine sediment and heavy metal stormwater pollution. Pollution load estimation theorises that stormwater pollutant load and type are strongly, directly influenced by contributing catchment land use. The research presented investigates the validity of these assumptions using an extensive novel field data set of 53 catchments. This research has investigated the relationships between land use and pollutant concentrations (Cu, Zn, Pb, Ni, Ca, Ba, Sn, Mn) in urban stormwater outfall sediments. Cartographic and aerial photography data have been utilised to delineate the surface and subsurface contributing catchment land use. A zoned sub-catchment approach to catchment characterisation of stormwater pollutant concentration has been defined and tested. This method effectively describes the specific land use influence on pollutant concentrations at the stormwater outfall, showing strong dependency with road length, brake points, impervious area and open space. Road networks and open space are found to influence land use, and thus stormwater pollution, closer to stormwater outfall/receiving waterbody suggesting storage, treatment, assimilation, loss or dilution of the land use influence further away from stormwater outfall. An empirical description has been proposed with which to predict outfall pollutant contributions to the receiving urban waterbody based on catchment land use information. With the definition and quantification of contributing catchment specific fine sediment and urban heavy metal pollutants, the influence of urban stormwater outfall management on the receiving watercourse has been considered. The locations of stormwater outfalls, and their proximity to the receiving waterway, are known as key water quality and river health influences. Water quality benefits from the implementation of stormwater outfalls set back from the receiving waterway banks have been investigated using the catchment case study. Setback outfalls

  16. Stormwater Management for Federal Facilities under Section 438 of the Energy Independence and Security Act

    Science.gov (United States)

    Federal agencies are required to reduce stormwater runoff from federal development and redevelopment projects to protect water resources. Options include a variety of stormwater management practices like green infrastructure or low impact development

  17. EPA RESEARCH IN URBAN STORMWATER POLLUTION CONTROL

    Science.gov (United States)

    This state-of-the-art on the Environmental Protection Agency' s research in urban stormwater and combined sewer overflow pollution control describes the major elements of the Urban Runoff Pollution Control Program. roblem definition, users assistance tools, management alternative...

  18. Urban wastewater and stormwater technologies in ancient Greece.

    Science.gov (United States)

    Angelakis, A N; Koutsoyiannis, D; Tchobanoglous, G

    2005-01-01

    The status of urban sewerage and stormwater drainage systems in ancient Greece is reviewed, based on the results of archaeological studies of the 20th century. Emphasis is given to the construction, operation, and management of sewerage and stormwater drainage systems during the Minoan period (2nd millennium B.C.). The achievements of this period in dealing with the hygienic and the functional requirements of palaces and cities, were so advanced that they can only be compared to modern urban water systems, developed in Europe and North America in the second half of the 19th century A.D. The advanced Minoan technologies were exported to all parts of Greece in later periods of the Greek civilization, i.e. in Mycenaean, Archaic, Classical, and Hellenistic periods.

  19. Economic Incentives for Stormwater Control (ISBN9781439845608)

    Science.gov (United States)

    Addressing a huge knowledge gap from a policy perspective, this book focuses on the economic tools available for stormwater runoff control. It provides case studies demonstrating the application of various incentives, such as tradable credits, fees with rebates, and auction mecha...

  20. Bioretention column study of bacteria community response to salt-enriched artificial stormwater.

    Science.gov (United States)

    Endreny, Theodore; Burke, David J; Burchhardt, Kathleen M; Fabian, Mark W; Kretzer, Annette M

    2012-01-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO, PO, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. A Flexible framework for forward and inverse modeling of stormwater control measures

    Science.gov (United States)

    Aflaki, S.; Massoudieh, A.

    2016-12-01

    Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated. The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and other custom-designed combinatory systems. Four demonstration applications covering a diverse range of systems will be presented. The example applications include a evaluating hydraulic performance of a complex bioretention system, hydraulic analysis of porous pavement system, flow colloid-facilitated transport, reactive transport and groundwater recharge underneath an infiltration pond and finally reactive transport and bed-sediment interactions in a wetland system will be presented.

  2. Nano- and microparticles and associated pollutants in stormwater runoff: effects of disc filtration with and without flocculant addition

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Mørch-Madsen, Andreas; Mikkelsen, Peter Steen

    2014-01-01

    Danish municipalities work towards separating stormwater and sewage. But stormwater runoff may be heavily polluted and therefore it is needed to find Best Available Technologies (BAT) to source separate and treat stormwater before discharge into surface waters. The aim here was to determine...... for treating stormwater runoff. The micro-sized particles were found to be mainly 2.1-19 μm in diameter and nano-sized particles were also observed (86-228 nm). Although the flocculant increased the observed volume of the micro-sized particles by 46%, the majority of the particles where still

  3. A review of stormwater management in karst

    Science.gov (United States)

    Stormwater management can be a challenge in any environment, but it is especially difficult in karst terrain. The characteristic dissolution of bedrock creates depressions in topography as well as voids in the subsurface, resulting in problems such as collapse sinkhole development, groundwater cont...

  4. Stormwater Infrastructure at Risk: Predicting the Impacts of Increased Imperviousness due to Infill Development in a Semi-arid Urban Neighborhood

    Science.gov (United States)

    Hogue, T. S.; Panos, C.; McCray, J. E.; Gilliom, R.

    2017-12-01

    This research investigates the impacts of infill development (or "redevelopment") on urban stormwater runoff and explores avenues for re-inventing stormwater management strategies for the City of Denver, Colorado. As a rapidly developing city, Denver is facing a cycle of increasing population and redevelopment in the form of infill (where under-utilized parcels within the City are redeveloped into high-density residential land uses). Infill development increases stormwater runoff by introducing more impervious surfaces, including roofs and driveways, which produce more runoff (additional stormwater). However, there is debate on the impact of infill patterns on runoff behavior, peak flows, and flood frequency events. We used a calibrated, high-resolution PCSWMM model to simulate three redevelopment scenarios within the 1000-acre Berkeley neighborhood of northwest Denver. The scenarios utilized future predictions of redevelopment to simulate increases in imperviousness by 1.1, 4.5, and 8.7 percent by 2024, 2034, and 2044, respectively, for a range of design storms. Results predict that, on average, for each 1% increase in impervious area due to infill development, surface runoff volume will increase by 1.28% in the Berkeley neighborhood. Results demonstrate the limitations of the existing storm sewer network as pipes throughout the catchment reach capacity for events larger than the 2-yr storm for all three scenarios. Spatial maps of the catchment pinpoint subcatchments and sewer nodes of concern, namely surrounding a rapidly growing business corridor and the local Interstate. Overall, results indicate the infrastructure of the Berkeley neighborhood may be at risk, and that current stormwater capture policies may need to be revisited to accommodate both future infill development and climate change. This research provides a quantitative basis for implementing potential changes as well as examining the possibility of using the additional stormwater from redevelopment

  5. Stormwater infrastructure controls runoff and dissolved material export from arid urban watersheds.

    OpenAIRE

    Hale, R.L.; Turnbull, L.; Earl, S.R.; Childers, D.L.; Grimm, N.B.

    2015-01-01

    Urbanization alters watershed ecosystem functioning, including nutrient budgets and processes of nutrient retention. It is unknown, however, how variation in stormwater infrastructure design affects the delivery of water and materials from urban watersheds. In this study, we asked: (1) How does stormwater infrastructure design vary over time and space in an arid city (Phoenix, Arizona, USA)?, and (2) How does variation in infrastructure design affect fluxes of dissolved nitrogen (N), phosphor...

  6. Adsorption of mixtures of nutrients and heavy metals in simulated urban stormwater by different filter materials.

    Science.gov (United States)

    Reddy, Krishna R; Xie, Tao; Dastgheibi, Sara

    2014-01-01

    In recent years, several best management practices have been developed for the removal of different types of pollutants from stormwater runoff that lead to effective stormwater management. Filter materials that remove a wide range of contaminants have great potential for extensive use in filtration systems. In this study, four filter materials (calcite, zeolite, sand, and iron filings) were investigated for their adsorption and efficiency in the removal of nutrients and heavy metals when they exist individually versus when they co-exist. Laboratory batch experiments were conducted separately under individual and mixed contaminants conditions at different initial concentrations. Adsorption capacities varied under the individual and mixed contaminant conditions due to different removal mechanisms. Most filter materials showed lower removal efficiency under mixed contaminant conditions. In general, iron filings were found effective in the removal of nutrients and heavy metals simultaneously to the maximum levels. Freundlich and Langmuir isotherms were used to model the batch adsorption results and the former better fitted the experimental results. Overall, the results indicate that the filter materials used in this study have the potential to be effective media for the treatment of nutrients and heavy metals commonly found in urban stormwater runoff.

  7. Interspecies variation in the susceptibility of adult Pacific salmon to toxic urban stormwater runoff.

    Science.gov (United States)

    McIntyre, Jenifer K; Lundin, Jessica I; Cameron, James R; Chow, Michelle I; Davis, Jay W; Incardona, John P; Scholz, Nathaniel L

    2018-07-01

    Adult coho salmon (Oncorhynchus kisutch) prematurely die when they return from the ocean to spawn in urban watersheds throughout northwestern North America. The available evidence suggests the annual mortality events are caused by toxic stormwater runoff. The underlying pathophysiology of the urban spawner mortality syndrome is not known, and it is unclear whether closely related species of Pacific salmon are similarly at risk. The present study co-exposed adult coho and chum (O. keta) salmon to runoff from a high traffic volume urban arterial roadway. The spawners were monitored for the familiar symptoms of the mortality syndrome, including surface swimming, loss of orientation, and loss of equilibrium. Moreover, the hematology of both species was profiled by measuring arterial pH, blood gases, lactate, plasma electrolytes, hematocrit, and glucose. Adult coho developed behavioral symptoms within a few hours of exposure to stormwater. Various measured hematological parameters were significantly altered compared to coho controls, indicating a blood acidosis and ionoregulatory disturbance. By contrast, runoff-exposed chum spawners showed essentially no indications of the mortality syndrome, and measured blood hematological parameters were similar to unexposed chum controls. We conclude that contaminant(s) in urban runoff are the likely cause of the disruption of ion balance and pH in coho but not chum salmon. Among the thousands of chemicals in stormwater, future forensic analyses should focus on the gill or cardiovascular system of coho salmon. Because of their distinctive sensitivity to urban runoff, adult coho remain an important vertebrate indicator species for degraded water quality in freshwater habitats under pressure from human population growth and urbanization. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Annual Report: 2010-2011 Storm Season Sampling For NON-DRY DOCK STORMWATER MONITORING FOR PUGET SOUND NAVAL SHIPYARD, BREMERTON, WA

    Energy Technology Data Exchange (ETDEWEB)

    Brandenberger, Jill M.; Metallo, David; Johnston, Robert K.; Gebhardt, Christine; Hsu, Larry

    2012-09-01

    This interim report summarizes the stormwater monitoring conducted for non-dry dock outfalls in both the confined industrial area and the residential areas of Naval Base Kitsap within the Puget Sound Naval Shipyard (referred to as the Shipyard). This includes the collection, analyses, and descriptive statistics for stormwater sampling conducted from November 2010 through April 2011. Seven stormwater basins within the Shipyard were sampled during at least three storm events to characterize non-dry dock stormwater discharges at selected stormwater drains located within the facility. This serves as the Phase I component of the project and Phase II is planned for the 2011-2012 storm season. These data will assist the Navy, USEPA, Ecology and other stakeholders in understanding the nature and condition of stormwater discharges from the Shipyard and inform the permitting process for new outfall discharges. The data from Phase I was compiled with current stormwater data available from the Shipyard, Sinclair/Dyes Inlet watershed, and Puget Sound in order to support technical investigations for the Draft NPDES permit. The permit would require storm event sampling at selected stormwater drains located within the Shipyard. However, the data must be considered on multiple scales to truly understand potential impairments to beneficial uses within Sinclair and Dyes Inlets.

  9. Engaging Social Capital for Decentralized Urban Stormwater Management

    Science.gov (United States)

    Decentralized approaches to urban stormwater management, whereby installations of green infrastructure (e.g., rain gardens, bioswales, and constructed wetlands) are dispersed throughout a management area, are cost-effective solutions with co-benefits beyond water abatement. Inste...

  10. Biofouling potential and material reactivity in a simulated water distribution network supplied with stormwater recycled via managed aquifer recharge.

    Science.gov (United States)

    Gonzalez, Dennis; Tjandraatmadja, Grace; Barry, Karen; Vanderzalm, Joanne; Kaksonen, Anna H; Dillon, Peter; Puzon, Geoff J; Sidhu, Jatinder; Wylie, Jason; Goodman, Nigel; Low, Jason

    2016-11-15

    The injection of stormwater into aquifers for storage and recovery during high water demand periods is a promising technology for augmenting conventional water reserves. Limited information exists regarding the potential impact of aquifer treated stormwater in distribution system infrastructure. This study describes a one year pilot distribution pipe network trial to determine the biofouling potential for cement, copper and polyvinyl chloride pipe materials exposed to stormwater stored in a limestone aquifer compared to an identical drinking water rig. Median alkalinity (123 mg/L) and colour (12 HU) in stormwater was significantly higher than in drinking water (82 mg/L and 1 HU) and pipe discolouration was more evident for stormwater samples. X-ray Diffraction and Fluorescence analyses confirmed this was driven by the presence of iron rich amorphous compounds in more thickly deposited sediments also consistent with significantly higher median levels of iron (∼0.56 mg/L) in stormwater compared to drinking water (∼0.17 mg/L). Water type did not influence biofilm development as determined by microbial density but faecal indicators were significantly higher for polyvinyl chloride and cement exposed to stormwater. Treatment to remove iron through aeration and filtration would reduce the potential for sediment accumulation. Operational and verification monitoring parameters to manage scaling, corrosion, colour, turbidity and microbial growth in recycled stormwater distribution networks are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. EPA Science Matters Newsletter: Stormwater Calculator Helps Communities Take Action to Reduce Runoff (Published April 2014)

    Science.gov (United States)

    Learn about the Stormwater Calculator that provides estimates for stormwater runoff from a specific site. Users can input any location within the U.S. and select different scenarios to see how it affects runoff volumes.

  12. Green Roof for Stormwater Management in a Highly Urbanized Area: The Case of Seoul, Korea

    Directory of Open Access Journals (Sweden)

    Muhammad Shafique

    2018-02-01

    Full Text Available Urbanization changes natural pervious surfaces to hard, impervious surfaces such as roads, buildings and roofs. These modifications significantly affect the natural hydrologic cycle by increasing stormwater runoff rates and volume. Under these circumstances, green roofs offer multiple benefits including on-site stormwater management that mimics the natural hydrologic conditions in an urban area. It can retain a large amount of rainwater for a longer time and delay the peak discharge. However, there is very limited research that has been carried out on the retrofitted green roof for stormwater management for South Korean conditions. This study has investigated the performance of retrofitted green roofs for stormwater management in a highly urbanized area of Seoul, the capital city of Korea. In this study, various storm events were monitored and the research results were analyzed to check the performance of the green roof with controlling the runoff in urban areas. Results also allowed us to conclude that the retention mainly depends on the intensity and duration of the rain events. From the analysis, average runoff retention on the green roof was 10% to 60% in different rain events. The application of an extensive green roof provides promising results for stormwater management in the highly urbanized area of Seoul.

  13. A GIS based screening tool for locating and ranking of suitable stormwater harvesting sites in urban areas.

    Science.gov (United States)

    Inamdar, P M; Cook, S; Sharma, A K; Corby, N; O'Connor, J; Perera, B J C

    2013-10-15

    There is the need to re-configure current urban water systems to achieve the objective of sustainable water sensitive cities. Stormwater represents a valuable alternative urban water source to reduce pressure on fresh water resources, and to mitigate the environmental impact of urban stormwater runoff. The selection of suitable urban stormwater harvesting sites is generally based on the judgement of water planners, who are faced with the challenge of considering multiple technical and socio-economic factors that influence the site suitability. To address this challenge, the present study developed a robust GIS based screening methodology for identifying potentially suitable stormwater harvesting sites in urban areas as a first pass for then more detailed investigation. The study initially evaluated suitability based on the match between harvestable runoff and demand through a concept of accumulated catchments. Drainage outlets of these accumulated catchments were considered as potential stormwater harvesting sites. These sites were screened and ranked under screening parameters namely demand, ratio of runoff to demand and weighted demand distance. The methodology described in this paper was successfully applied to a case study in Melbourne, Australia in collaboration with the local water utility. The methodology was found to be effective in supporting the selection of priority sites for stormwater harvesting schemes, as it provided the basis to identify, short-list and rank sites for further detailed investigation. The rapid identification of suitable sites for stormwater harvesting can assist planners in prioritising schemes in areas that will have the most impact on reducing potable water demand. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Life cycle assessment of stormwater management in the context of climate change adaptation

    DEFF Research Database (Denmark)

    Brudler, Sarah; Arnbjerg-Nielsen, Karsten; Hauschild, Michael Zwicky

    2016-01-01

    Expected increases in pluvial flooding, due to climatic changes, require large investments in the retrofitting of cities to keep damage at an acceptable level. Many cities have investigated the possibility of implementing stormwater management (SWM) systems which are multi-functional and consist...... of different elements interacting to achieve desired safety levels. Typically, an economic assessment is carried out in the planning phase, while environmental sustainability is given little or no attention. In this paper, life cycle assessment is used to quantify environmental impacts of climate change...... adaptation strategies. The approach is tested using a climate change adaptation strategy for a catchment in Copenhagen, Denmark. A stormwater management system, using green infrastructure and local retention measures in combination with planned routing of stormwater on the surfaces to manage runoff...

  15. Efficiency of stormwater control measures for combined sewer retrofitting under varying rain conditions: Quantifying the Three Points Approach (3PA)

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Lerer, Sara Maria; Arnbjerg-Nielsen, Karsten

    2016-01-01

    We present a method to assess and communicate the efficiency of stormwater control measures for retrofitting existing urban areas. The tool extends the Three Points Approach to quantitatively distinguish three rainfall domains: (A) rainwater resource utilisation, (B) urban stormwater drainage pipe......, stormwater drainage and flood risks....

  16. Temporal and spatial responses of Chironomidae (Diptera) and other benthic invertebrates to urban stormwater runoff

    Science.gov (United States)

    Susan E. Gresens; Kenneth T. Belt; Jamie A. Tang; Daniel C. Gwinn; Patricia A. Banks

    2007-01-01

    In a longitudinal study of two streams whose lower reaches received unattenuated urban stormwater runoff, physical disturbance by stormflow was less important than the persistant unidentified chemical impacts of urban stormwater in limiting the distribution of Chironomidae, and Ephemeroptera, Trichoptera and Plecoptera (EPT). A hierarchical spatial analysis showed that...

  17. USE OF NATURAL FILTER MEDIA FOR STORMWATER TREATMENT

    Science.gov (United States)

    The overall objective of this study ws to evaluate the feasibility of low-cost and readily available natural filter material for stormwater treatment. Previous research indicates that urban SW contributes a significant amount of contamination (including heavy metals and PAHs) to ...

  18. Framework for a National Testing and Evaluation Program Based Upon the National Stormwater Testing and Evaluation for Products and Practices (STEPP) Initiative (WERF Report INFR2R14)

    Science.gov (United States)

    Abstract:The National STEPP Program seeks to improve water quality by accelerating the effective implementation and adoption of innovative stormwater management technologies. Itwill attempt to accomplish this by establishing practices through highly reliable, and cost-effective S...

  19. From conventional drainage to sustainable stormwater management: Beyond the technical challenges.

    Science.gov (United States)

    Goulden, Shula; Portman, Michelle E; Carmon, Naomi; Alon-Mozes, Tal

    2018-08-01

    Countries and cities are increasingly recognizing the value of adopting Sustainable Stormwater Management (SSWM) goals and measures. SSWM serves multiple hydrological, ecological, social and economic goals and can replace substantial parts of conventional drainage infrastructure. Following international experience in the socio-technical nature of transitions in stormwater management, this research investigates how socio-institutional factors enable the transition from conventional to sustainable stormwater management over time. The research is based on analysing available relevant documents, semi-structured interviews and focus groups, all in a single country case study (Israel). We found significant changes in professional awareness and discourse, some advances in professional standards of work and changes to the regulative system, supporting infiltration practices in particular. We concluded that the three-pillared socio-institutional framework, composed of cultural-cognitive, normative and regulative changes, was insightful for mapping factors supporting transition from conventional drainage to SSWM. Elements within the three pillars can work simultaneously and synergistically to achieve widespread change. At the same time, while SSWM always strives to achieve multiple goals, the order of priority of the various goals may differ from place to place and may change over time. Thus the transition process across the socio-institutional pillars should be renewed if and when the priority of goals changes. The urban and regional planning system can play a crucial role in enhancing the transition process from conventional to sustainable stormwater management. These conclusions may be relevant to other localities and countries that are struggling with such transitions to sustainability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Innovative use of lamella clarifiers for central stormwater treatment in separate sewer systems.

    Science.gov (United States)

    Weiss, Gebhard

    2014-01-01

    Lamella settlers have been used in the past few years for the sedimentation of particles in wastewater and stormwater applications. A new and very innovative approach for the treatment of stormwater flows is proposed which extends the portfolio of solutions beyond traditional settling tanks. Surface runoff is stored in a sewer or a basin and finally treated in a small but continuously operated lamella clarifier. The low throughput flow will yield good treatment efficiency at a small footprint. The possibilities of using existing storage volume in a storm sewer, as well as the structural flexibility of the arrangement are decisive benefits. As a large operational advantage, the lamellae may be cleaned mechanically, e.g. by pivoting under water. Finally, the flow and the sludge which will be sent to the downstream treatment plant will be minimized. A new comparative simulation method is proposed in order to assess an equivalent degree of stormwater treatment, either by achieving an equal annual volume of treated stormwater or, more directly, an equal amount of spilled pollutant load. The new solution is compared with a traditional settling tank according to current German design rules. Additionally, a case study from a real installation will be presented.

  1. Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters

    Science.gov (United States)

    Parker, E.; Rippy, M.; Mehring, A.; Winfrey, B.; Ambrose, R. F.; Levin, L. A.; Grant, S. B.

    2017-12-01

    Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. Here we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.

  2. Satellite Remote Sensing Detection of Coastal Pollution in Southern California: Stormwater Runoff and Wastewater Plumes

    Science.gov (United States)

    Trinh, R. C.; Holt, B.; Gierach, M.

    2016-02-01

    Coastal pollution poses a major health and environmental hazard, not only for beach goers and coastal communities but for marine organisms as well. Stormwater runoff is the largest source of environmental pollution in coastal waters of the Southern California Bight (SCB) and is of great concern in increasingly urbanized areas. Buoyant wastewater plumes also pose a marine environmental risk. In this study we provide a comprehensive overview of satellite remote sensing capabilities in detecting buoyant coastal pollutants in the form of stormwater runoff and wastewater effluent. The SCB is the final destination of four major urban rivers that act as channels for runoff and pollution during and after rainstorms. We analyzed and compared sea surface roughness data from various Synthetic Aperture Radar (SAR) instruments to ocean color data from the Moderate Imaging System (MODIS) sensor on board the Aqua satellite and correlated the results with existing environmental data in order to create a climatology of naturally occurring stormwater plumes in coastal waters after rain events, from 1992 to 2014 from four major rivers in the area. Heat maps of the primary extent of stormwater plumes were constructed to specify areas that may be subject to the greatest risk of coastal contamination. In conjunction with our efforts to monitor coastal pollution and validate the abilities of satellite remote sensing, a recent Fall 2015 wastewater diversion from the City of Los Angeles Hyperion Treatment Plant (HTP) provided the opportunity to apply these remote sensing methodologies of plume detection to wastewater. During maintenance of their 5-mile long outfall pipe, wastewater is diverted to a shorter outfall pipe that terminates 1-mile offshore and in shallower waters. Sea surface temperature (SST), chlorophyll-a (chl-a) fluorescence, remote sensing reflectance and particulate backscatter signatures were analyzed from MODIS. Terra-ASTER and Landsat-8 thermal infrared data were also

  3. Field data analysis of active chlorine-containing stormwater samples.

    Science.gov (United States)

    Zhang, Qianyi; Gaafar, Mohamed; Yang, Rong-Cai; Ding, Chen; Davies, Evan G R; Bolton, James R; Liu, Yang

    2018-01-15

    Many municipalities in Canada and all over the world use chloramination for drinking water secondary disinfection to avoid DBPs formation from conventional chlorination. However, the long-lasting monochloramine (NH 2 Cl) disinfectant can pose a significant risk to aquatic life through its introduction into municipal storm sewer systems and thus fresh water sources by residential, commercial, and industrial water uses. To establish general total active chlorine (TAC) concentrations in discharges from storm sewers, the TAC concentration was measured in stormwater samples in Edmonton, Alberta, Canada, during the summers of 2015 and 2016 under both dry and wet weather conditions. The field-sampling results showed TAC concentration variations from 0.02 to 0.77 mg/L in summer 2015, which exceeds the discharge effluent limit of 0.02 mg/L. As compared to 2015, the TAC concentrations were significantly lower during the summer 2016 (0-0.24 mg/L), for which it is believed that the higher precipitation during summer 2016 reduced outdoor tap water uses. Since many other cities also use chloramines as disinfectants for drinking water disinfection, the TAC analysis from Edmonton may prove useful for other regions as well. Other physicochemical and biological characteristics of stormwater and storm sewer biofilm samples were also analyzed, and no significant difference was found during these two years. Higher density of AOB and NOB detected in the storm sewer biofilm of residential areas - as compared with other areas - generally correlated to high concentrations of ammonium and nitrite in this region in both of the two years, and they may have contributed to the TAC decay in the storm sewers. The NH 2 Cl decay laboratory experiments illustrate that dissolved organic carbon (DOC) concentration is the dominant factor in determining the NH 2 Cl decay rate in stormwater samples. The high DOC concentrations detected from a downstream industrial sampling location may contribute to a

  4. Characterization of stormwater at selected South Carolina Department of Transportation maintenance yard and section shed facilities in Ballentine, Conway, and North Charleston, South Carolina, 2010-2012

    Science.gov (United States)

    Journey, Celeste A.; Conlon, Kevin J.

    2013-01-01

    The South Carolina Department of Transportation operates section shed and maintenance yard facilities throughout the State. The U.S. Geological Survey conducted a cooperative investigation with the South Carolina Department of Transportation to characterize water-quality constituents that are transported in stormwater from representative maintenance yard and section shed facilities in South Carolina. At a section shed in Ballentine, S.C., stormwater discharges to a retention pond outfall (Ballentine). At the Conway maintenance yard, stormwater in the southernmost section discharges to a pipe outfall (Conway1), and stormwater in the remaining area discharges to a grass-lined ditch (Conway2). At the North Charleston maintenance yard, stormwater discharges from the yard to Turkey Creek through a combination of pipes, ditches, and overland flow; therefore, samples were collected from the main channel of Turkey Creek at the upstream (North Charleston1) and downstream (North Charleston2) limits of the North Charleston maintenance yard facility. The storms sampled during this study had a wide range of rainfall amounts, durations, and intensities at each of the facilities and, therefore, were considered to be reasonably representative of the potential for contaminant transport. At all facilities, stormwater discharge was significantly correlated to rainfall amount and intensity. Event-mean unit-area stormwater discharge increased with increasing impervious surface at the Conway and North Charleston maintenance yards. The Ballentine facility with 79 percent impervious surface had a mean unit-area discharge similar to that of the North Charleston maintenance yard (62 percent impervious surface). That similarity may be attributed, in part, to the effects of the retention pond on the stormwater runoff at the Ballentine facility and to the greater rainfall intensities and amounts at the North Charleston facility. Stormwater samples from the facilities were analyzed for multiple

  5. High spatial-temporal resolution and integrated surface and subsurface precipitation-runoff modelling for a small stormwater catchment

    Science.gov (United States)

    Hailegeorgis, Teklu T.; Alfredsen, Knut

    2018-02-01

    Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is

  6. Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems

    International Nuclear Information System (INIS)

    Grover, Samantha P.P.; Cohan, Amanda; Chan, Hon Sen; Livesley, Stephen J.; Beringer, Jason; Daly, Edoardo

    2013-01-01

    Designed, green infrastructures are becoming a customary feature of the urban landscape. Sustainable technologies for stormwater management, and biofilters in particular, are increasingly used to reduce stormwater runoff volumes and peaks as well as improve the water quality of runoff discharged into urban water bodies. Although a lot of research has been devoted to these technologies, their effect in terms of greenhouse gas fluxes in urban areas has not been yet investigated. We present the first study aimed at quantifying greenhouse gas fluxes between the soil of stormwater biofilters and the atmosphere. N 2 O, CH 4 , and CO 2 were measured periodically over a year in two operational vegetated biofiltration cells at Monash University in Melbourne, Australia. One cell had a saturated zone at the bottom, and compost and hardwood mulch added to the sandy loam filter media. The other cell had no saturated zone and was composed of sandy loam. Similar sedges were planted in both cells. The biofilter soil was a small N 2 O source and a sink for CH 4 for most measurement events, with occasional large emissions of both N 2 O and CH 4 under very wet conditions. Average N 2 O fluxes from the cell with the saturated zone were almost five-fold greater (65.6 μg N 2 O–N m −2 h −1 ) than from the other cell (13.7 μg N 2 O–N m −2 h −1 ), with peaks up to 1100 μg N 2 O–N m −2 h −1 . These N 2 O fluxes are of similar magnitude to those measured in other urban soils, but with larger peak emissions. The CH 4 sink strength of the cell with the saturated zone (− 3.8 μg CH 4 –C m −2 h −1 ) was lower than the other cell (− 18.3 μg CH 4 –C m −2 h −1 ). Both cells of the biofilter appeared to take up CH 4 at similar rates to other urban lawn systems; however, the biofilter cells displayed occasional large CH 4 emissions following inflow events, which were not seen in other urban systems. CO 2 fluxes increased with soil temperature in both cells, and

  7. Method for assessment of stormwater treatment facilities – Synthetic road runoff addition including micro-pollutants and tracer

    DEFF Research Database (Denmark)

    Cederkvist, Karin; Jensen, Marina Bergen; Holm, Peter Engelund

    2017-01-01

    Stormwater treatment facilities (STFs) are becoming increasingly widespread but knowledge on their performance is limited. This is due to difficulties in obtaining representative samples during storm events and documenting removal of the broad range of contaminants found in stormwater runoff...

  8. Lightweight Aggregate Made from Dredged Material in Green Roof Construction for Stormwater Management

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2016-07-01

    Full Text Available More than 1.15 million cubic meters (1.5 million cubic yards of sediment require annual removal from harbors and ports along Ohio’s Lake Erie coast. Disposing of these materials into landfills depletes land resources, while open water placement of these materials deteriorates water quality. There are more than 14,000 acres of revitalizing brownfields in Cleveland, U.S., many containing up to 90% impervious surface, which does not allow “infiltration” based stormwater practices required by contemporary site-based stormwater regulation. This study investigates the potential of sintering the dredged material from the Harbor of Cleveland in Lake Erie to produce lightweight aggregate (LWA, and apply the LWA to green roof construction. Chemical and thermal analyses revealed the sintered material can serve for LWA production when preheated at 550 °C and sintered at a higher temperature. Through dewatering, drying, sieving, pellet making, preheating, and sintering with varying temperatures (900–1100 °C, LWAs with porous microstructures are produced with specific gravities ranging from 1.46 to 1.74, and water absorption capacities ranging from 11% to 23%. The water absorption capacity of the aggregate decreases as sintering temperature increases. The LWA was incorporated into the growing media of a green roof plot, which has higher water retention capacity than the conventional green roof system.

  9. Green-roof as a solution to solve stormwater management issues? Assessment on a long time period at the parcel scale

    Directory of Open Access Journals (Sweden)

    P.-A. Versini

    2014-09-01

    Full Text Available Experimental green-roof rainfall–runoff observations have shown a positive impact on stormwater management at the building scale; with a decrease in the peak discharge and a decrease in runoff volume. This efficiency of green-roofs varies from one rainfall event to another depending on precipitation characteristics and substrate antecedent conditions. Due to this variability, currently, green-roofs are rarely officially used as a regulation tool to manage stormwater. Indeed, regulation rules governing the connection to the stormwater network are usually based on absolute threshold values that always have to be respected: maximum areal flow-rate or minimum retention volume for example. In this context, the aim of this study is to illustrate how a green-roof could represent an alternative to solve stormwater management issues, if the regulation rules were further based on statistics. For this purpose, a modelling scheme has been established at the parcel scale to simulate the hydrological response of several roof configurations: impervious, strictly regulated (in terms of areal flow-rate or retention volume, and covered by different types of green-roof matter. Simulations were carried out on a long precipitation time period (23 years that included a large and heterogeneous set of hydrometeorological conditions. Results obtained for the different roof configurations were compared. Based on the return period of the rainfall event, the probability to respect some regulation rules (defined from real situations was assessed. They illustrate that green-roofs reduce stormwater runoff compared to an impervious roof surface and can guarantee the respect of the regulation rules in most of the cases. Moreover, their implementation can appear more realistic than that of other infrastructures strictly complying with regulations and demanding significant storage capacity.

  10. Assessment of copper removal from highway stormwater runoff using Apatite II(TM) and compost : laboratory and field testing.

    Science.gov (United States)

    2015-03-01

    -Stormwater runoff introduces heavy metals to surface waters that are harmful to aquatic organisms, : including endangered salmon. This work evaluates Apatite II, a biogenic fish bone based adsorbent, for removing metal : from stormwater. The meta...

  11. Impacts of stormwater runoff in the Southern California Bight: Relationships among plume constituents

    Science.gov (United States)

    Reifel, K.M.; Johnson, S.C.; DiGiacomo, P.M.; Mengel, M.J.; Nezlin, N.P.; Warrick, J.A.; Jones, B.H.

    2009-01-01

    The effects from two winter rain storms on the coastal ocean of the Southern California Bight were examined as part of the Bight '03 program during February 2004 and February-March 2005. The impacts of stormwater from fecal indicator bacteria, water column toxicity, and nutrients were evaluated for five major river discharges: the Santa Clara River, Ballona Creek, the San Pedro Shelf (including the Los Angeles, San Gabriel, and Santa Ana Rivers), the San Diego River, and the Tijuana River. Exceedances of bacterial standards were observed in most of the systems. However, the areas of impact were generally spatially limited, and contaminant concentrations decreased below California Ocean Plan standards typically within 2-3 days. The largest bacterial concentrations occurred in the Tijuana River system where exceedances of fecal indicator bacteria were noted well away from the river mouth. Maximum nitrate concentrations (~40 ??M) occurred in the San Pedro Shelf region near the mouth of the Los Angeles River. Based on the results of general linear models, individual sources of stormwater differ in both nutrient concentrations and the concentration and composition of fecal indicator bacteria. While nutrients appeared to decrease in plume waters due to simple mixing and dilution, the concentration of fecal indicator bacteria in plumes depends on more than loading and dilution rates. The relationships between contaminants (nutrients and fecal indicator bacteria) and plume indicators (salinity and total suspended solids) were not strong indicating the presence of other potentially important sources and/or sinks of both nutrients and fecal indicator bacteria. California Ocean Plan standards were often exceeded in waters containing greater than 10% stormwater (variables can be used as proxies to provide at least a qualitative, if not quantitative, evaluation of the distribution of the dissolved, as well as the particulate, components of stormwater plumes. In this context

  12. Enhanced Stormwater Contaminant Removal Using Tree Filters And Modified Sorbents

    Science.gov (United States)

    Schifman, L. A.; Kasaraneni, V. K.; Boving, T. B.; Oyanedel-Craver, V.

    2012-12-01

    Stormwater runoff, particularly in urban areas, contains several groups of contaminants that negatively impact surface- and groundwater quality if left untreated. Contaminants in runoff are often addressed by structural best management practices (BMP) that capture and treat runoff before discharging it. Many BMPs, such as tree filters, act as primary filtration devices that attenuate total suspended solids, nutrients, and heavy metals from runoff; but typically these BMPs are not designed to treat bacteria and have only minor petroleum hydrocarbon (PH) treatment capabilities. To address this shortcoming, three materials (red cedar wood chips, expanded shale, and crushed concrete) were modified with either Quaternary Ammonium Silane (QAS) or Silver Nanoparticles (AgNPs) to provide antimicrobial properties to the matrix and/or exploit their affinity to sorb PH, particularly polycyclic aromatic hydrocarbons (PAH). Results show that of the three materials investigated, wood chips exhibit the highest sorption capacity for QAS, making this material favorable for treating bacteria, while at the same time attenuating PAHs by sorption processes. In case of AgNP amendments to wood, less uptake and more desorption from the wood matrix was observed. Relative to wood, expanded shale and crushed concrete exhibited less affinity for QAS (results for AgNPs are pending). Currently, batch isotherm and unsaturated flow column studies are under way to determine the performance of the amended materials with regard to removal of bacteria, nutrients, heavy metals, and PAH from artificially contaminated runoff. In this presentation, the contaminant removal efficiency of all modified and unmodified materials will be discussed on the background of how these materials may find use in enhanced treatment of stormwater in tree filter BMPs.

  13. Cost-Benefit Analysis of Green Infrastructures on Community Stormwater Reduction and Utilization: A Case of Beijing, China.

    Science.gov (United States)

    Liu, Wen; Chen, Weiping; Feng, Qi; Peng, Chi; Kang, Peng

    2016-12-01

    Cost-benefit analysis is demanded for guiding the plan, design and construction of green infrastructure practices in rapidly urbanized regions. We developed a framework to calculate the costs and benefits of different green infrastructures on stormwater reduction and utilization. A typical community of 54,783 m 2 in Beijing was selected for case study. For the four designed green infrastructure scenarios (green space depression, porous brick pavement, storage pond, and their combination), the average annual costs of green infrastructure facilities are ranged from 40.54 to 110.31 thousand yuan, and the average of the cost per m 3 stormwater reduction and utilization is 4.61 yuan. The total average annual benefits of stormwater reduction and utilization by green infrastructures of the community are ranged from 63.24 to 250.15 thousand yuan, and the benefit per m 3 stormwater reduction and utilization is ranged from 5.78 to 11.14 yuan. The average ratio of average annual benefit to cost of four green infrastructure facilities is 1.91. The integrated facilities had the highest economic feasibility with a benefit to cost ratio of 2.27, and followed by the storage pond construction with a benefit to cost ratio of 2.14. The results suggested that while the stormwater reduction and utilization by green infrastructures had higher construction and maintenance costs, their comprehensive benefits including source water replacements benefits, environmental benefits and avoided cost benefits are potentially interesting. The green infrastructure practices should be promoted for sustainable management of urban stormwater.

  14. Verification, validation, and field testing the USEPA National Stormwater Calculator

    Data.gov (United States)

    U.S. Environmental Protection Agency — We used this dataset to verify and validate functions in the USEPA National Stormwater Calculator, and then applied field data and commonly-available datasets to...

  15. Field and Evaluation Methods Used to Test the Performance of a Stormceptor® Class 1 Stormwater Treatment Device in Australia

    Directory of Open Access Journals (Sweden)

    Peter Nichols

    2015-12-01

    Full Text Available Field testing of a proprietary stormwater treatment device was undertaken over 14 months at a site located in Nambour, South East Queensland. Testing was undertaken to evaluate the pollution removal performance of a Stormceptor® treatment train for removing total suspended solids (TSS, total nitrogen (TN and total phosphorous (TP from stormwater runoff. Water quality sampling was undertaken using natural rainfall events complying with an a priori sampling protocol. More than 59 rain events were monitored, of which 18 were found to comply with the accepted sampling protocol. The efficiency ratios (ER observed for the treatment device were found to be 83% for TSS, 11% for TP and 23% for TN. Although adequately removing TSS, additional system components, such as engineered filters, would be required to satisfy minimum local pollution removal regulations. The results of dry weather sampling tests did not conclusively demonstrate that pollutants were exported between storm events or that pollution concentrations increased significantly over time.

  16. Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: Variation in sensitivity among species

    Energy Technology Data Exchange (ETDEWEB)

    Snodgrass, Joel W. [Department of Biological Sciences, Towson University, 8000 York Road, Towson, MD 21252 (United States)], E-mail: jsnodgrass@towson.edu; Casey, Ryan E. [Department of Chemistry, Towson University, 8000 York Road, Towson, MD 21252 (United States); Joseph, Debra; Simon, Judith A. [Department of Biological Sciences, Towson University, 8000 York Road, Towson, MD 21252 (United States)

    2008-07-15

    Stormwater ponds have become common features of modern development and often represent significant amounts of open space in urbanized areas. Although stormwater ponds may provide habitat for wildlife, factors responsible for producing variation in wildlife use of ponds have received limited attention. To investigate the role of variation in species tolerances of pollutants in structuring pond-breeding amphibian assemblages, we exposed species tolerant (Bufo americanus) and not tolerant (Rana sylvatica) of urbanization to pond sediments in laboratory microcosms. Pond microcosms had elevated sediment metal levels and chloride water concentrations. Among R. sylvatica embryos, exposure to pond sediments resulted in 100% mortality. In contrast, B. americanus embryos and larvae experienced only sublethal effects (i.e., reduced size at metamorphosis) due to pond sediment exposure. Our results suggest variation in pollutant tolerance among early developmental stages of amphibians may act in concert with terrestrial habitat availability to structure amphibian assemblages associated with stormwater ponds. - Variation among species in sensitivity to pollutants can influence stormwater pond amphibian assemblages.

  17. Assessing the effectiveness of green infrastructure stormwater best management practices in New England at the small watershed scale.

    Science.gov (United States)

    Methods are needed to evaluate the effectiveness of existing Stormwater Best Management Practices (BMPs) and Low Impact Development and to predict the relative effectiveness of proposed stormwater management plans in maintaining the habitat and biotic integrity of streams in New ...

  18. Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Samantha P.P., E-mail: samantha.grover@monash.edu [Department of Civil Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Cohan, Amanda, E-mail: acoh5@student.monash.edu [Department of Civil Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Chan, Hon Sen, E-mail: hon.sen.chan@gmail.com [Department of Civil Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Livesley, Stephen J., E-mail: sjlive@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, Richmond, Victoria, 3121 (Australia); Beringer, Jason, E-mail: jason.beringer@monash.edu [School of Geography and Environmental Science, Monash University, Clayton, Victoria, 3800 (Australia); Monash Water for Liveability, Monash University, Clayton, Victoria, 3800 (Australia); Daly, Edoardo, E-mail: edoardo.daly@monash.edu [Department of Civil Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Monash Water for Liveability, Monash University, Clayton, Victoria, 3800 (Australia)

    2013-11-01

    Designed, green infrastructures are becoming a customary feature of the urban landscape. Sustainable technologies for stormwater management, and biofilters in particular, are increasingly used to reduce stormwater runoff volumes and peaks as well as improve the water quality of runoff discharged into urban water bodies. Although a lot of research has been devoted to these technologies, their effect in terms of greenhouse gas fluxes in urban areas has not been yet investigated. We present the first study aimed at quantifying greenhouse gas fluxes between the soil of stormwater biofilters and the atmosphere. N{sub 2}O, CH{sub 4}, and CO{sub 2} were measured periodically over a year in two operational vegetated biofiltration cells at Monash University in Melbourne, Australia. One cell had a saturated zone at the bottom, and compost and hardwood mulch added to the sandy loam filter media. The other cell had no saturated zone and was composed of sandy loam. Similar sedges were planted in both cells. The biofilter soil was a small N{sub 2}O source and a sink for CH{sub 4} for most measurement events, with occasional large emissions of both N{sub 2}O and CH{sub 4} under very wet conditions. Average N{sub 2}O fluxes from the cell with the saturated zone were almost five-fold greater (65.6 μg N{sub 2}O–N m{sup −2} h{sup −1}) than from the other cell (13.7 μg N{sub 2}O–N m{sup −2} h{sup −1}), with peaks up to 1100 μg N{sub 2}O–N m{sup −2} h{sup −1}. These N{sub 2}O fluxes are of similar magnitude to those measured in other urban soils, but with larger peak emissions. The CH{sub 4} sink strength of the cell with the saturated zone (− 3.8 μg CH{sub 4}–C m{sup −2} h{sup −1}) was lower than the other cell (− 18.3 μg CH{sub 4}–C m{sup −2} h{sup −1}). Both cells of the biofilter appeared to take up CH{sub 4} at similar rates to other urban lawn systems; however, the biofilter cells displayed occasional large CH{sub 4} emissions following

  19. Stormwater quality performance of a macro-pervious pavement car park installation equipped with channel drain based oil and silt retention devices.

    Science.gov (United States)

    Newman, Alan Paul; Aitken, Douglas; Antizar-Ladislao, Blanca

    2013-12-15

    This paper reports the results of a two year field monitoring exercise intended to investigate the pollution abatement capabilities of a novel system which offers an alternative to the, now well established, pervious pavement system as a source control device for stormwater management. The aim of this study was to determine the effectiveness of a live installation of a macro-pervious pavement system (MPPS) (operated as a visitors' car park at a prison in Central Scotland) in retaining and treating a range of pollutants which originate from automobile use or become concentrated on the parking surface from the wider environment. The MPPS is a sub-class of pervious pavement system where the vast majority of the surface is impermeable. It directs stormwater into a pervious sub surface storage/attenuation zone through a series of distinct infiltration points fast enough to prevent flooding during the design storm. In the particular system studied here the infiltration points consist of a network of oil/silt separation devices with extensive further pollutant retention/degradation provided during the passage of stormwater through the sub surface zone. Approximately 12 months after the car park was completed a sampling regime was instigated in which grab samples were collected at intervals from each of the three sub catchments whilst, simultaneously, samples were collected directly from the, pollutant retaining, infiltration devices. Through investigation of samples collected at the upstream end of the system, the retention of significant amounts of hydrocarbons and heavy metals in the initial collection devices has been illustrated and the analysis of effluent samples collected at the outlet points indicate that the system is capable of producing effluent which is of a standard comparable to that expected from a traditional pervious pavement system and is acceptable for direct release into a surface water receptor. The system offers the opportunity to accrue the benefits

  20. Spatial connectivity, scaling, and temporal trajectories as emergent urban stormwater impacts

    Science.gov (United States)

    Jovanovic, T.; Gironas, J. A.; Hale, R. L.; Mejia, A.

    2016-12-01

    Urban watersheds are structurally complex systems comprised of multiple components (e.g., streets, pipes, ponds, vegetated swales, wetlands, riparian corridors, etc.). These multiple engineered components interact in unanticipated and nontrivial ways with topographic conditions, climate variability, land use/land cover changes, and the underlying eco-hydrogeomorphic dynamics. Such interactions can result in emergent urban stormwater impacts with cascading effects that can negatively influence the overall functioning of the urban watershed. For example, the interaction among many detention ponds has been shown, in some situations, to synchronize flow volumes and ultimately lead to downstream flow amplifications and increased pollutant mobilization. Additionally, interactions occur at multiple temporal and spatial scales requiring that urban stormwater dynamics be represented at the long-term temporal (decadal) and across spatial scales (from the single lot to the watershed scale). In this study, we develop and implement an event-based, high-resolution, network hydro-engineering model (NHEM), and demonstrate an approach to reconstruct the long-term regional infrastructure and land use/land cover conditions of an urban watershed. As the study area, we select an urban watershed in the metropolitan area of Scottsdale, Arizona. Using the reconstructed landscapes to drive the NHEM, we find that distinct surficial, hydrologic connectivity patterns result from the intersection of hydrologic processes, infrastructure, and land use/land cover arrangements. These spatial patters, in turn, exhibit scaling characteristics. For example, the scaling of urban watershed dispersion mechanisms shows altered scaling exponents with respect to pre-urban conditions. For example, the scaling exponent associated with geomorphic dispersion tends to increase for urban conditions, reflecting increased surficial path heterogeneity. Both the connectivity and scaling results can be used to

  1. Influence of the land use pattern on the concentrations and fluxes of priority pollutants in urban stormwater.

    Science.gov (United States)

    Zgheib, S; Moilleron, R; Chebbo, G

    2011-01-01

    This paper presents the results of the concentrations (μg/L) and fluxes (g/ha) of priority substances in stormwater from three watersheds with different land use patterns (namely, residential, urban dense, high urban density). Samples were collected at the outlet of these watersheds. Thirteen chemical groups were investigated corresponding to 88 individual substances before treatment. Results showed that stormwater discharges contained 55 substances, among them some metals, organotins, PAHs, PCBs, alkylphenols, pesticides, phthalates, cholorophenols and volatile organic compounds. Therefore, stormwater was highly contaminated. However, this contamination was often comparable from site to site, since no significant difference of the pollutant load was observed between the land use patterns.

  2. Bioaccumulation of heavy metals in fauna from wet detention ponds for stormwater runoff

    DEFF Research Database (Denmark)

    Stephansen, Diana; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2012-01-01

    Stormwater detention ponds remove pollutants e.g. heavy metals and nutrients from stormwater runoff. These pollutants accumulate in the pond sediment and thereby become available for bioaccumulation in fauna living in the ponds. In this study the bioaccumulation was investigated by fauna samples...... from 5 wet detention ponds for analyses of heavy metal contents. Five rural shallow lakes were included in the study to survey the natural occurrence of heavy metals in water-dwelling fauna. Heavy metal concentrations in water-dwelling fauna were generally found higher in wet detention ponds compared...

  3. Watershed Scale Impacts of Stormwater Green Infrastructure ...

    Science.gov (United States)

    Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Baltimore County, MD, Montgomery County, MD, and Washington, DC, were selected based on the availability of data on SGI, water quality, and stream flow. The watershed scale impact of SGI was evaluated by assessing how increased spatial density of SGI correlates with stream hydrology and nitrogen exports over space and time. The most common SGI types were detention ponds (58%), followed by marshes (12%), sand filters (9%), wet ponds (7%), infiltration trenches (4%), and rain gardens (2%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI (>10% SGI) have 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff than watersheds with lower SGI. Watersheds with more SGI also show 44% less NO3− and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in combined sewer overflows in watersheds with greater SGI. Based on specific SGI types, infiltration trenches (R2 = 0.35) showed the strongest correlation with hydrologic metrics, likely due to their ability to attenuate flow, while bioretention (R2 = 0.19) and wet ponds (R2 = 0.12) showed stronger

  4. Investigation of heavy metal removal from motorway stormwater using inorganic ion exchange

    International Nuclear Information System (INIS)

    Pitcher, Sarah

    2002-01-01

    Stormwater runoff from motorway surfaces contains toxic heavy metals that are not sufficiently removed by current treatment systems. This research has investigated the potential use of inorganic ion exchange materials to further reduce the levels of dissolved heavy metals. Candidate materials (synthetic/natural zeolites, clay/modified clay, hydrotalcite, lignite) were tested by a shaking procedure (mixed 5 mg dm -3 of each heavy metals, shaken for 10 min) and analysed by atomic absorption spectrometry. The synthetic zeolites MAP and Y showed 100% heavy metal removal and were investigated further by a series of batch experiments. The zeolites exhibited a selectivity sequence Pb > Cu > Cd ∼ Zn. Zeolite MAP has a high capacity for heavy metal uptake (4.5 meq g -1 ), but is not practical for use in a treatment facility owing to its low particle size (3 μm). However, large zeolite pellets (∼ 2 mm) were found to have a low heavy metal uptake (∼ 44 %) due to diffusion limitations. Selected materials (zeolites MAP, Y, mordenite, and carbon-based lignite) were tested in actual and spiked motorway stormwater. The synthetic zeolites effectively remove heavy metals (∼ 100 %) but change the environmental chemistry of the stormwater by releasing high concentrations of sodium, removing calcium ions and increasing the solution pH. The presence of other dissolved contaminants in motorway stormwater inhibited the uptake of heavy metals by the natural zeolite mordenite (34 % less removal). Alkali/alkaline-earth metals (Na, Ca) in solution compete for exchange sites in lignite and mordenite, reducing the heavy metal uptake. Chloride in solution forms complexes with cadmium, severely reducing its uptake by zeolite Y. The presence of dissolved road salt is a potentially serious concern as it causes previously exchanged heavy metals to be re-eluted, especially zinc and cadmium. Zeolite MAP as an exchanger is relatively unaffected by road salt. There is potential for the use of

  5. Further insight into the mechanism of heavy metals partitioning in stormwater runoff.

    Science.gov (United States)

    Djukić, Aleksandar; Lekić, Branislava; Rajaković-Ognjanović, Vladana; Veljović, Djordje; Vulić, Tatjana; Djolić, Maja; Naunovic, Zorana; Despotović, Jovan; Prodanović, Dušan

    2016-03-01

    Various particles and materials, including pollutants, deposited on urban surfaces are washed off by stormwater runoff during rain events. The interactions between the solid and dissolved compounds in stormwater runoff are phenomena of importance for the selection and improvement of optimal stormwater management practices aimed at minimizing pollutant input to receiving waters. The objective of this research was to further investigate the mechanisms responsible for the partitioning of heavy metals (HM) between the solid and liquid phases in urban stormwater runoff. The research involved the collection of samples from urban asphalt surfaces, chemical characterization of the bulk liquid samples, solids separation, particle size distribution fractionation and chemical and physico-chemical characterization of the solid phase particles. The results revealed that a negligible fraction of HM was present in the liquid phase (less than 3% by weight), while there was a strong correlation between the total content of heavy metals and total suspended solids. Examinations of surface morphology and mineralogy revealed that the solid phase particles consist predominantly of natural macroporous materials: alpha quartz (80%), magnetite (11.4%) and silicon diphosphate (8.9%). These materials have a low surface area and do not have significant adsorptive capacity. These materials have a low surface area and do not have significant adsorptive capacity. The presence of HM on the surface of solid particles was not confirmed by scanning electron microscopy and energy dispersive X-ray microanalyses. These findings, along with the results of the liquid phase sample characterization, indicate that the partitioning of HM between the liquid and solid phases in the analyzed samples may be attributed to precipitation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Sorption media for stormwater treatment - A laboratory evaluation of five low-cost media for their ability to remove metals and phosphorus from artificial stormwater

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn H.; Hvitved-Jacobsen, Thorkild

    2012-01-01

    states. The sorbents were tested towards phosphorus, arsenic, cadmium, chromium, copper, nickel, lead and zinc at concentration and conditions relevant for typical stormwater. The materials were tested for sorption capacity and kinetics. Desorption was tested under neutral and alkaline conditions...

  7. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.

    Science.gov (United States)

    Geronimo, F K F; Maniquiz-Redillas, M C; Tobio, J A S; Kim, L H

    2014-01-01

    Particulates, inorganic and toxic constituents are the most common pollutants associated with urban stormwater runoff. Heavy metals such as chromium, nickel, copper, zinc, cadmium and lead are found to be in high concentration on paved roads or parking lots due to vehicle emissions. In order to control the rapid increase of pollutant loads in stormwater runoff, the Korean Ministry of Environment proposed the utilization of low impact developments. One of these was the application of tree box filters that act as a bioretention treatment system which executes filtration and sorption processes. In this study, a tree box filter located adjacent to an impervious parking lot was developed to treat suspended solids and heavy metal concentrations from urban stormwater runoff. In total, 11 storm events were monitored from July 2010 to August 2012. The results showed that the tree box filter was highly effective in removing particulates (up to 95%) and heavy metals (at least 70%) from the urban stormwater runoff. Furthermore, the tree box filter was capable of reducing the volume runoff by 40% at a hydraulic loading rate of 1 m/day and below.

  8. Using a geographic information system and hillslope runoff modeling to support decision-making for managed aquifer recharge using distributed stormwater collection

    Science.gov (United States)

    Teo, E. K.; Beganskas, S.; Young, K. S.; Weir, W. B.; Harmon, R. E.; Lozano, S.; Fisher, A. T.

    2017-12-01

    Many aquifer systems in central coastal California face a triple threat of excess demand, changing land use, and a shifting climate. These last two factors can contribute to reductions in groundwater recharge. Managed aquifer recharge using distributed stormwater collection (DSC-MAR) is an adaptation technique for collecting excess stormwater runoff from hillslopes for infiltration into underlying aquifers, before that water reaches a "blue line" stream. We are developing a decision support system (DSS) that combines surface and subsurface hydrogeological data with high-resolution predictions of hillslope runoff, with specific application to Santa Cruz and northern Monterey Counties. Other studies presented at AGU will focus on the northern and southern parts of our study region (San Lorenzo River Basin, Lower Pajaro River Basin). This presentation focuses on mid-Santa Cruz County, including the Soquel-Aptos Groundwater Basin. The DSS uses a geographic information system to compile and merge data from numerous local, state, and federal sources to identify locations on the landscape where DSC-MAR may be most suitable. This requires classification of disparate data types so that they can be combined. Stormwater runoff for individual river basins in the study region was simulated using historical streamflow data for calibration and validation. Both analyses were completed with relatively fine resolution, from 10 m2 pixels for elevation to 0.1-1.0 km hydrologic response units for properties such as soil and vegetation properties. Future climate is uncertain, so we used historical data to create a catalog of dry, normal, and wet hydrologic conditions, then created synthetic future climate scenarios for simulation. The DDS shows that there are numerous regions in mid-Santa Cruz County where there is a confluence of MAR suitability and the generation of stormwater runoff that could supply recharge projects (with a nominal target of 100 ac-ft/yr of infiltration), even

  9. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks

    OpenAIRE

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian N. L.; Revitt, D. Mike

    2010-01-01

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelin...

  10. Life-cycle Economic and Environmental Effects of Green, Gray and Hybrid Stormwater Infrastructure

    Science.gov (United States)

    Stokes-Draut, J. R.; Taptich, M. N.; Horvath, A.

    2016-12-01

    Cities throughout the U.S. are seeking efficient ways to manage stormwater for many reasons, including flood control, pollution management, water supply augmentation and to prepare for a changing climate. Traditionally, cities have relied primarily on gray infrastructure, namely sewers, storage and treatment facilities. In these systems, urban runoff, its volume increasing as impervious surfaces expand, is channeled to a wastewater plant where it is mixed with raw sewage prior to treatment or it is discharged, generally untreated, to local water bodies. These facilities are inflexible and expensive to build and maintain. Many systems are deteriorating and/or approaching, if not exceeding, their design capacity. Increasingly, more innovative approaches that integrate stormwater management into the natural environment and that make sense at both local and regional scales are sought. Identifying the best stormwater solution will require evaluating the life-cycle economic costs associated with these alternatives, including costs associated with construction, operation, and maintenance including regulatory and permitting costs, financing, as well as other indirect costs (e.g., avoided wastewater processing or system capacity expansion, increased property value) and non-economic co-benefits (i.e, aesthetics, habitat provision). Beyond conventional life-cycle costing, applying life-cycle assessment (LCA) will contribute to more holistic and sustainable decision-making. LCA can be used to quantitatively track energy use, greenhouse gas emissions, and other environmental effects associated with constructing, operating, and maintaining green and gray infrastructure, including supply chain contributions. We will present the current state of knowledge for implementing life-cycle costing and LCA into stormwater management decisions for green, gray and hybrid infrastructure.

  11. EVALUATION OF RETENTION POND AND CONSTRUCTED WETLAND BMPS FOR TREATING PARTICULATE-BOUND HEAVY METALS IN URBAN STORMWATER RUNOFF - 2007

    Science.gov (United States)

    The sources of heavy metals in urban stormwater runoff are diverse (e.g., highways, road surfaces, roofs) and the release of metals into the environment is governed by several complex mechanisms. Heavy metals in stormwater are associated with suspended particulate materials that ...

  12. Moving Stormwater Infrastructure from Real-time Control to Smart Systems

    Science.gov (United States)

    Wadzuk, B.; Bryant, S.; Lewellyn, C.; Zaremba, G.; Traver, R.

    2017-12-01

    Urban areas, especially combined sewer communities, are using green infrastructure (GI) systems (e.g. rain gardens, green roofs) to mitigate stormwater runoff volume, rate, and quality issues. Most municipal guidance and regulation limits these systems to static, passive designs that neither fully utilize the active hydrology of a GI system during and after a rainfall event, nor enable dynamic operational control. Real-time control (RTC) applied to GI is emerging, and under ideal model conditions has shown improved performance (i.e., greater volumes managed while minimizing downstream impact). There are a few RTC pilot field projects with promising results, such as on a cistern - green roof system there were only 30 overflow events out of 126 rain events and at a rain garden - cistern system only 1 of 81 events resulted in overflow. However, RTC does not get to a fully dynamic system as the initiation and consequent action is preset and static. In stormwater RTC systems, the initiation is typically a rain forecast or a sensor reading. At a rain garden - cistern system, a cistern that fills when raining is hard set to pump water to the rain garden 24 hours after the predicted rain ends. There have been instances where there is rain occurring or only a minimal amount of dry time for the rain garden to reestablish capacity for the pumped stored water. There is also no mechanism to automatically change the pump initiation time based on season or ambient conditions. A cistern - green roof system that uses stored water in an upstream cistern for green roof irrigation is initiated on a set soil moisture reading or a set irrigation volume daily. The soil moisture reading was rarely reached, so irrigation was often not initiated and the set daily irrigation volume did not vary over season. Moving from RTC to a smart system uses longer term and/or historical data to inform decisions beyond what a short-term forecast or real-time sensor can provide to give more context and

  13. Performance of Elaeis Guineensis Leaves Compost in Filter Media for Stormwater Treament Through Column Study

    Science.gov (United States)

    Takaijudin, H.; Ghani, A. A.; Zakaria, N. A.; Tze, L. L.

    2016-07-01

    Compost based materials arv e widely used in filter media for improving soil capability and plant growth. The aim of this paper is to evaluate different types of compost materials used in engineered soil media through soil column investigation. Three (3) column, namely C1 (control), C2 and C3 had different types compost (10%) which were, commercial compost namely PEATGRO, Compost A and Compost B were prepared with 60% medium sand and 30% of topsoil. The diluted stormwater runoff was flushed to the columns and it was run for six (6) hour experiment. The influent and effluent samples were collected and tested for Water Quality Index (WQI) parameters. The results deduced that C3 with Elaeis Guineensis leaves compost (Compost B) achieved 90.45 (Class II) better than control condition which accomplished 84 (Class II) based on WQI Classification. C3 with Compost A (African Mahogany Leaves Compost) obtained only 59.39 (Class III). C3 with the composition of Compost B effectively removed most pollutants, including Chemical Oxygen Demand (COD, Ammoniacal Nitrogen (NH3-N), were reduced by 89±4% and 96.6±0.9%, respectively. The result concluded that Elaeis Guineensis leaves compost is recommended to be used as part of engineered soil media due to its capabilities in eliminating stormwater pollutants.

  14. Efficiency of stormwater control measures for combined sewer retrofitting under varying rain conditions: Quantifying the Three Points Approach (3PA)

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Lerer, Sara Maria; Arnbjerg-Nielsen, Karsten

    2016-01-01

    We present a method to assess and communicate the efficiency of stormwater control measures for retrofitting existing urban areas. The tool extends the Three Points Approach to quantitatively distinguish three rainfall domains: (A) rainwater resource utilisation, (B) urban stormwater drainage pip...

  15. Evaluation of the environmental effects of stormwater pollutants for Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, R.L.; Southworth, G.R.; Stewart, A.J.; Filson, M.J.

    1995-07-01

    Despite Best Management Practices (BMP), total suspended solids (TSS) and oil and grease (O and G) concentrations in stormwater runoff frequently have been above the National Pollutant Discharge Elimination System (NPDES) Permit effluent limits at ORNL. Although the effects of stormwater pollutants to aquatic ecosystems are of concern regionally and nationally, NPDES permit violations at ORNL are best addressed on a site-specific basis. This document explores several key questions to determine whether the TSS and O and G noncompliances at ORNL are primarily a regulatory problem (i.e., Category 1 and 2 effluent limits are neither reasonably achievable nor effective in achieving environmental protection), or a legitimate ecological concern that will require effective remediation. The three tasks outlined in the study plan were to (1) clarify the degree of TSS and O and G noncompliances at ORNL, (2) provide guidance as to appropriate limits for TSS and O and G in Category 1 and 2 discharges, and (3) provide information about the effectiveness of possible mitigation or remediation measures for TSS and O and G in stormwater releases, assuming that such measures are needed for one or more ORNL Category 1 or 2 outfalls.

  16. Evaluation of the environmental effects of stormwater pollutants for Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Hinzman, R.L.; Southworth, G.R.; Stewart, A.J.; Filson, M.J.

    1995-07-01

    Despite Best Management Practices (BMP), total suspended solids (TSS) and oil and grease (O and G) concentrations in stormwater runoff frequently have been above the National Pollutant Discharge Elimination System (NPDES) Permit effluent limits at ORNL. Although the effects of stormwater pollutants to aquatic ecosystems are of concern regionally and nationally, NPDES permit violations at ORNL are best addressed on a site-specific basis. This document explores several key questions to determine whether the TSS and O and G noncompliances at ORNL are primarily a regulatory problem (i.e., Category 1 and 2 effluent limits are neither reasonably achievable nor effective in achieving environmental protection), or a legitimate ecological concern that will require effective remediation. The three tasks outlined in the study plan were to (1) clarify the degree of TSS and O and G noncompliances at ORNL, (2) provide guidance as to appropriate limits for TSS and O and G in Category 1 and 2 discharges, and (3) provide information about the effectiveness of possible mitigation or remediation measures for TSS and O and G in stormwater releases, assuming that such measures are needed for one or more ORNL Category 1 or 2 outfalls

  17. VARIATION OF PATHOGEN DENSITITES IN URBAN STORMWATER RUNOFF WITH LAND USE

    Science.gov (United States)

    Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three land use areas (high-density residential, low-density residential, and landscaped commercial). The concentrations of organisms in ...

  18. VARIATION OF PATHOGEN DENSITIES IN URBAN STORMWATER RUNOFF WITH LAND USE

    Science.gov (United States)

    Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three land use areas (high-density residential, low-density residential, and landscaped commercial). The concentrations of organisms in ...

  19. Extreme Precipitation, Stormwater, and Flooding in King County: Co-producing Research to Support Adaptation

    Science.gov (United States)

    Mauger, G. S.; Lorente-Plazas, R.; Salathe, E. P., Jr.; Mitchell, T. P.; Simmonds, J.; Lee, S. Y.; Hegewisch, K.; Warner, M.; Won, J.

    2017-12-01

    King County has experienced 12 federally declared flood disasters since 1990, and tens of thousands of county residents commute through, live, and work in floodplains. In addition to flooding, stormwater is a critical management challenge, exacerbated by aging infrastructure, combined sewer and drainage systems, and continued development. Even absent the effects of climate change these are challenging management issues. Recent studies clearly point to an increase in precipitation extremes for the Pacific Northwest (e.g., Warner et al. 2015). Yet very little information is available on the magnitude and spatial distribution of this change. Others clearly show that local-scale changes in extreme precipitation can only be accurately quantified with dynamical downscaling, i.e.: using a regional climate model. This talk will describe a suite of research and adaptation efforts developed in a close collaboration between King County and the UW Climate Impacts Group. Building on past collaborations, research efforts were defined in collaboration with King County managers, addressing three key science questions: (1) How are the mesoscale variations in extreme precipitation modulated by changes in large-scale weather conditions? (2) How will precipitation extremes change? This was assessed via two new high-resolution regional model projections using the Weather Research and Forecasting (WRF) mesoscale model (Skamarock et al. 2005). (3) What are the implications for stormwater and flooding in King County? This was assessed by both exploring the statistics of hourly precipitation extremes in the new projections, as well as new hydrologic modeling to assess the implications for river flooding. The talk will present results from these efforts, review the implications for King County planning and infrastructure, and synthesize lessons learned and opportunities for additional work.

  20. Sustainable stormwater management at Fornebu--from an airport to an industrial and residential area of the city of Oslo, Norway.

    Science.gov (United States)

    Astebøl, Svein Ole; Hvitved-Jacobsen, Thorkild; Simonsen, Oyvind

    2004-12-01

    The Oslo Airport at Fornebu was closed in 1998 after 60 years of operation. An area of 3.1 km(2) was made available for one of Norway's biggest property development projects. Plans include 6000 residences and 20,000 workplaces. Fornebu is situated on a peninsula in the Oslo Fjord just outside the city of Oslo and is regarded as a very attractive area for both urbanisation and recreation. The residential area located centrally at Fornebu surrounds a centrally located park area. In the planning process, there was an expressed interest in using water as a life-giving element within the vegetation structure of the park. In Norway, stormwater in urban areas has traditionally been collected and transported in pipe systems to adjacent watercourses. However, there is an increasing interest in alternative "green" solutions for the management of stormwater. The paper presents a concept for sustainable stormwater management at Fornebu. A main objective is to improve the recreational and ecological value of stormwater while achieving a cost-effective solution. This objective is reached by replacing conventional urban drainage pipes with swales, filter strips, wetlands and ponds as collection, storage and treatment systems designed for natural processes. The paper thereby addresses integrated systems for stormwater management by approaching nature's way and sustainable development principles.

  1. Developing the evidence base for mainstreaming adaptation of stormwater systems to climate change.

    Science.gov (United States)

    Gersonius, B; Nasruddin, F; Ashley, R; Jeuken, A; Pathirana, A; Zevenbergen, C

    2012-12-15

    In a context of high uncertainty about hydro-climatic variables, the development of updated methods for climate impact and adaptation assessment is as important, if not more important than the provision of improved climate change data. In this paper, we introduce a hybrid method to facilitate mainstreaming adaptation of stormwater systems to climate change: i.e., the Mainstreaming method. The Mainstreaming method starts with an analysis of adaptation tipping points (ATPs), which is effect-based. These are points of reference where the magnitude of climate change is such that acceptable technical, environmental, societal or economic standards may be compromised. It extends the ATP analysis to include aspects from a bottom-up approach. The extension concerns the analysis of adaptation opportunities in the stormwater system. The results from both analyses are then used in combination to identify and exploit Adaptation Mainstreaming Moments (AMMs). Use of this method will enhance the understanding of the adaptive potential of stormwater systems. We have applied the proposed hybrid method to the management of flood risk for an urban stormwater system in Dordrecht (the Netherlands). The main finding of this case study is that the application of the Mainstreaming method helps to increase the no-/low-regret character of adaptation for several reasons: it focuses the attention on the most urgent effects of climate change; it is expected to lead to potential cost reductions, since adaptation options can be integrated into infrastructure and building design at an early stage instead of being applied separately; it will lead to the development of area-specific responses, which could not have been developed on a higher scale level; it makes it possible to take account of local values and sensibilities, which contributes to increased public and political support for the adaptive strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Organic micropollutants discharged by combined sewer overflows - Characterisation of pollutant sources and stormwater-related processes.

    Science.gov (United States)

    Launay, Marie A; Dittmer, Ulrich; Steinmetz, Heidrun

    2016-11-01

    To characterise emissions from combined sewer overflows (CSOs) regarding organic micropollutants, a monitoring study was undertaken in an urban catchment in southwest Stuttgart, Germany. The occurrence of 69 organic micropollutants was assessed at one CSO outfall during seven rain events as well as in the sewage network at the influent of the wastewater treatment plant (WWTP) and in the receiving water. Several pollutant groups like pharmaceuticals and personal care products (PPCPs), urban biocides and pesticides, industrial chemicals, organophosphorus flame retardants, plasticisers and polycyclic aromatic hydrocarbons (PAHs) were chosen for analysis. Out of the 69 monitored substances, 60 were detected in CSO discharges. The results of this study show that CSOs represent an important pathway for a wide range of organic micropollutants from wastewater systems to urban receiving waters. For most compounds detected in CSO samples, event mean concentrations varied between the different events in about one order of magnitude range. When comparing CSO concentrations with median wastewater concentrations during dry weather, two main patterns could be observed depending on the source of the pollutant: (i) wastewater is diluted by stormwater; (ii) stormwater is the most important source of a pollutant. Both wastewater and stormwater only play an important role in pollutant concentration for a few compounds. The proportion of stormwater calculated with the conductivity is a suitable indicator for the evaluation of emitted loads of dissolved wastewater pollutants, but not for all compounds. In fact, this study demonstrates that remobilisation of in-sewer deposits contributed from 10% to 65% to emissions of carbamazepine in CSO events. The contribution of stormwater to CSO emitted loads was higher than 90% for all herbicides as well as for PAHs. Regarding the priority substance di(2-ethylhexyl)phthalate (DEHP), this contribution varied between 39% and 85%. The PAH

  3. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin.

    Science.gov (United States)

    O'Reilly, Andrew M; Chang, Ni-Bin; Wanielista, Martin P

    2012-05-15

    A stormwater infiltration basin in north-central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O(2) and NO(3)(-) showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O(2) and NO(3)(-) reduction concluded, Mn, Fe and SO(4)(2-) reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO(3)(-)-N less than 0.016 mg L(-1), excess N(2) up to 3 mg L(-1) progressively enriched in δ(15)N during prolonged basin flooding, and isotopically heavy δ(15)N and δ(18)O of NO(3)(-) (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO(3)(-) leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO(3)(-) leaching to groundwater by replicating the biogeochemical

  4. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin

    Science.gov (United States)

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.

    2012-01-01

    A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3- showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3- reduction concluded, Mn, Fe and SO42- reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3-–N less than 0.016 mg L-1, excess N2 up to 3 mg L-1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3- (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3- leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3- leaching to groundwater by replicating the biogeochemical conditions under the observed basin.

  5. Quantifying mobile and immobile zones during simulated stormwater infiltration through a new permeable pavement material.

    Science.gov (United States)

    Bentarzi, Y; Ghenaim, A; Terfous, A; Wanko, A; Poulet, J B

    2015-01-01

    We have designed a new eco-material for use in permeable pavements in view to ensuring the sustainable management of stormwater in urban areas. The specific characteristic of this material is that it allows the infiltration of rainfall, storing the infiltrated water and trapping the pollutants carried by runoff such as engine oil and heavy metals. This new material is composed of a mixture of crushed concrete , resulting from inert construction waste, and organic material (compost). We performed tracing experiments in view to monitor the flow of the water within this material in order to study its hydrodynamics under heavy rainfall (rain with a return period of 10 years). The experimental results revealed preferential flows due to the heterogeneity of the material and liable to act as a major vector for the mobility of the pollutants transported within the material by stormwater. The work presented in this article consists in quantifying these preferential flows by determining their water contents in mobile (θm) and immobile (θim) water during infiltration. To do this, we used the (NON-EQUILIBRIUM Convection-Dispersion Equation) model, in order to evaluate mobile and stagnant zones in the framework of tracing experiments.

  6. Nutrient and metal uptake in wetland plants at stormwater detension ponds

    DEFF Research Database (Denmark)

    Istenic, Darja; Arias, Carlos Alberto; Brix, Hans

    2011-01-01

    Nutrients and metals were analysed in tissues of various wetland plants growing in stormwater detention ponds in Denmark. Nutrient and metal concentrations in below and aboveground tissues were compared to the concentrations of the adjacent sediment. The results showed accumulation of heavy metal...

  7. The Green Experiment: Cities, Green Stormwater Infrastructure, and Sustainability

    OpenAIRE

    Christopher M. Chini; James F. Canning; Kelsey L. Schreiber; Joshua M. Peschel; Ashlynn S. Stillwell

    2017-01-01

    Green infrastructure is a unique combination of economic, social, and environmental goals and benefits that requires an adaptable framework for planning, implementing, and evaluating. In this study, we propose an experimental framework for policy, implementation, and subsequent evaluation of green stormwater infrastructure within the context of sociotechnical systems and urban experimentation. Sociotechnical systems describe the interaction of complex systems with quantitative and qualitative...

  8. Metal removal efficiency, operational life and secondary environmental impacts of a stormwater filter developed from iron-oxide-amended bottom ash.

    Science.gov (United States)

    Ilyas, Aamir; Muthanna, Tone M

    2017-12-06

    The aim of this paper was to conduct pilot-scale column tests on an alternative treatment filter designed for the treatment of highway stormwater in cold climates. The study evaluated adsorption performance of the filter with regard to the four most commonly found metals (Cu, Ni, Pb, and Zn) in highway stormwater. An alternative method was used to estimate the operational life of the filter from the adsorption test data without a breakthrough under high hydraulic loads. The potential environmental impact of the filter was assessed by comparing desorption test data with four different environmental quality standards. The proposed filter achieved high adsorption (over 90%) of the target metals. The comparisons of desorption and leaching data with the environmental standards indicated that iron-oxide/bottom ash was non-hazardous, reusable and without serious environmental risks. The operational life and filter dimensions were highly dependent on rainfall depth, which indicated that the filter design would have to be adapted to suit the climate. To fully appreciate the performance and environmental aspects, the filter unit should be tested in the field and the testing should explicitly include ecotoxicological and life cycle impacts.

  9. Storm Water Management Model Climate Adjustment Tool (SWMM-CAT)

    Science.gov (United States)

    The US EPA’s newest tool, the Stormwater Management Model (SWMM) – Climate Adjustment Tool (CAT) is meant to help municipal stormwater utilities better address potential climate change impacts affecting their operations. SWMM, first released in 1971, models hydrology and hydrauli...

  10. Confirmation of putative stormwater impact on water quality at a Florida beach by microbial source tracking methods and structure of indicator organism populations.

    Science.gov (United States)

    Brownell, M J; Harwood, V J; Kurz, R C; McQuaig, S M; Lukasik, J; Scott, T M

    2007-08-01

    The effect of a stormwater conveyance system on indicator bacteria levels at a Florida beach was assessed using microbial source tracking methods, and by investigating indicator bacteria population structure in water and sediments. During a rain event, regulatory standards for both fecal coliforms and Enterococcus spp. were exceeded, contrasting with significantly lower levels under dry conditions. Indicator bacteria levels were high in sediments under all conditions. The involvement of human sewage in the contamination was investigated using polymerase chain reaction (PCR) assays for the esp gene of Enterococcus faecium and for the conserved T antigen of human polyomaviruses, all of which were negative. BOX-PCR subtyping of Escherichia coli and Enterococcus showed higher population diversity during the rain event; and higher population similarity during dry conditions, suggesting that without fresh inputs, only a subset of the population survives the selective pressure of the secondary habitat. These data indicate that high indicator bacteria levels were attributable to a stormwater system that acted as a reservoir and conduit, flushing high levels of indicator bacteria to the beach during a rain event. Such environmental reservoirs of indicator bacteria further complicate the already questionable relationship between indicator organisms and human pathogens, and call for a better understanding of the ecology, fate and persistence of indicator bacteria.

  11. Stormwater Management Model

    Science.gov (United States)

    SWMM is a model for urban hydrology. It has a long history and is relied upon by professional engineers in the US and around the world. SWMM provides both gray and green Infrastructure modeling capabilities. As such, it is a convenient tool for understanding the tradeoff between ...

  12. Increasing sustainable stormwater management adaption through transdisciplinary research

    Science.gov (United States)

    Wingfield, Thea; Potter, Karen; Jones, Gareth; Spees, Jack; Macdonald, Neil

    2016-04-01

    The Ribble Rivers Trust leads a partnership of land and water management organisations that use a holistic approach to water management in the Ribble catchment. They are interested in incorporating sustainable stormwater systems, into their program of delivery with a view to ensuring that their activities to improve the environments and habitats of the catchment also contribute to reducing flood risk. A methodology, to locate interventions that would slow water within the catchment are identified; however partner buy in, institutional caution and economic barriers are felt to be hindering delivery. In response a transdisciplinary research project in which both the academics of the University of Liverpool and the practitioners of The Ribble Rivers Trust are active investigators has been established. The project aims to increase the uptake of sustainable stormwater management techniques through the analysis of the institutional, experiential and governance processes and their interactions with the physical hydrological processes governing stormwater systems. Research that is transdisciplinary must integrate academic knowledge with practitioner, local understanding and practice. Furthermore methodologies belonging to different academic fields must be blended together to collect, analyse and interpret data in order to examine complex problems through different disciplinary lenses in an integrated way. This approach has been developed in response to the complex relationships of cause and effect of contemporary inter-related economic, environmental and societal challenges. There have been a number of challenges to overcome as transdisciplinary researchers, the first and most important was to understand the different research philosophies and theoretical assumptions behind various natural science and social science research methods. Without this understanding research methodologies could be flawed and would not be effectively integrated and the data would not be

  13. Toxicity of water and sediment from stormwater retarding basins to Hydra hexactinella

    DEFF Research Database (Denmark)

    Rosenkrantz, Rikke Tjørnhøj; Pollino, Carmel A.; Nugegoda, Dayanthi

    2008-01-01

    of 50 ml/L and 100 ml/L, while the 7 h pulse exposure caused a significant increase in the mean population growth rate compared to the control. Water samples from the two other retarding basins were found non-toxic to H. hexactinella. This is the first study to employ sediment tests with Hydra spp....... on stormwater sediments and a lower population growth rate was observed for organisms exposed to sediment from the Avoca St retarding basins. The behavioral study showed that H. hexactinella tended to avoid the sediment-water interface when exposed to sediment from all retarding basins, compared...... to the reference sediment. Further work is needed to determine the long-term effects of stormwater polluted sediments and acute effects due to organism exposure to short-term high concentrations during rain events. (C) 2008 Elsevier Ltd. All rights reserved....

  14. Effect of Disc Filtration with and without Addition of Flocculent on Nano- and Micro-Particles and Their Associated Polycyclic Aromatic Hydrocarbons in Stormwater

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Mørch-Madsen, Andreas; Mikkelsen, Peter Steen

    2015-01-01

    Many municipalities in Denmark and around Europe currently work towards separating stormwater and sewage. In existing urban areas this may imply disconnecting stormwater from the old combined sewer systems suffering from hydraulic overloading and discharging directly to nearby surface waters...... the size of the particles and thereby increase the removal efficiency of a 10 µm woven polyester disc filter. The samples were collected in connection with a project testing a pilot scale disc filter for treating stormwater runoff. The micro-sized particles were found to be mainly below 10 µm (6.9–19 µm...

  15. Build-up and wash-off dynamics of atmospherically derived Cu, Pb, Zn and TSS in stormwater runoff as a function of meteorological characteristics.

    Science.gov (United States)

    Murphy, Louise U; Cochrane, Thomas A; O'Sullivan, Aisling

    2015-03-01

    Atmospheric pollutants deposited on impermeable surfaces can be an important source of pollutants to stormwater runoff; however, modelling atmospheric pollutant loads in runoff has rarely been done, because of the challenges and uncertainties in monitoring their contribution. To overcome this, impermeable concrete boards (≈ 1m(2)) were deployed for 11 months in different locations within an urban area (industrial, residential and airside) throughout Christchurch, New Zealand, to capture spatially distributed atmospheric deposition loads in runoff over varying meteorological conditions. Runoff was analysed for total and dissolved Cu, Zn, Pb, and total suspended solids (TSS). Mixed-effect regression models were developed to simulate atmospheric pollutant loads in stormwater runoff. In addition, the models were used to explain the influence of different meteorological characteristics (e.g. antecedent dry days and rain depth) on pollutant build-up and wash-off dynamics. The models predicted approximately 53% to 69% of the variation in pollutant loads and were successful in predicting pollutant-load trends over time which can be useful for general stormwater planning processes. Results from the models illustrated the importance of antecedent dry days on pollutant build-up. Furthermore, results indicated that peak rainfall intensity and rain duration had a significant relationship with TSS and total Pb, whereas, rain depth had a significant relationship with total Cu and total Zn. This suggested that the pollutant speciation phase plays an important role in surface wash-off. Rain intensity and duration had a greater influence when the pollutants were predominantly in their particulate phase. Conversely, rain depth exerted a greater influence when a high fraction of the pollutants were predominantly in their dissolved phase. For all pollutants, the models were represented by a log-arctan relationship for pollutant build-up and a log-log relationship for pollutant wash

  16. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff.

    Science.gov (United States)

    Paule-Mercado, M A; Ventura, J S; Memon, S A; Jahng, D; Kang, J-H; Lee, C-H

    2016-04-15

    While the urban runoff are increasingly being studied as a source of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in watershed with mixed land use and ongoing land use and land cover (LULC) change. In this study, Escherichia coli (EC) and fecal streptococcus (FS) were monitored from 2012 to 2013 in agricultural, mixed and urban LULC and analyzed according to the most probable number (MPN). Pearson correlation was used to determine the relationship between FIB and environmental parameters (physicochemical and hydrometeorological). Multiple linear regressions (MLR) were used to identify the significant parameters that affect the FIB concentrations and to predict the response of FIB in LULC change. Overall, the FIB concentrations were higher in urban LULC (EC=3.33-7.39; FS=3.30-7.36log10MPN/100mL) possibly because of runoff from commercial market and 100% impervious cover (IC). Also, during early-summer season; this reflects a greater persistence and growth rate of FIB in a warmer environment. During intra-event, however, the FIB concentrations varied according to site condition. Anthropogenic activities and IC influenced the correlation between the FIB concentrations and environmental parameters. Stormwater temperature (TEMP), turbidity, and TSS positively correlated with the FIB concentrations (p>0.01), since IC increased, implying an accumulation of bacterial sources in urban activities. TEMP, BOD5, turbidity, TSS, and antecedent dry days (ADD) were the most significant explanatory variables for FIB as determined in MLR, possibly because they promoted the FIB growth and survival. The model confirmed the FIB concentrations: EC (R(2)=0.71-0.85; NSE=0.72-0.86) and FS (R(2)=0.65-0.83; NSE=0.66-0.84) are predicted to increase due to urbanization. Therefore, these findings will help in stormwater monitoring strategies, designing the best management practice for FIB removal and as input data for stormwater models. Copyright © 2016 Elsevier B

  17. Statistical analysis of vegetation and stormwater runoff in an urban watershed during summer and winter storms in Portland, Oregon, U.S

    Science.gov (United States)

    Geoffrey H. Donovan; David T. Butry; Megan Y. Mao

    2016-01-01

    Past research has examined the effect of urban trees, and other vegetation, on stormwater runoff using hydrological models or small-scale experiments. However, there has been no statistical analysis of the influence of vegetation on runoff in an intact urban watershed, and it is not clear how results from small-scale studies scale up to the city level. Researchers...

  18. [Bioretention Media Screening for the Removal of Phosphorus in Urban Stormwater].

    Science.gov (United States)

    Li, Li-qing; Gong, Yan-fang; Yan, Zi-qin; Shan, Bao-qing

    2015-07-01

    Urban runoff is an increasingly important source of excess phosphorus (P) to local receiving waters. Bioretention, a promising technology for urban stormwater pollution treatment, was investigated to determine whether the mixture of purple soil and sand could adsorb sufficient P at low concentrations in urban stormwater. The TP concentrations of urban runoff from variously impervious areas in Chongqing City ranged from 0. 04 to 7. 00 mg . L-1 (mean ± S. D. = 0. 75 mg . L-1 ± 1. 08 mg . L-1); the TDP concentrations ranged from 0. 02-0. 46 mg . L-1 ( mean ± S. D. = 0. 15 mg . L-1 ± 0. 10 mg . L-1). The media adsorption benchmark was determined for a bioretention facility sized at 10% of the 100% impervious catchment area and having 10 years of capacity according to annual rainfall pattern and the runoff TDP range. The media benchmark for adsorption was calculated as 7. 5 mg . kg-1 at soluble P concentration of 0. 30 mg . L-1 which provided the necessary stormwater treatment. The oxalate-extractable aluminum and iron content influenced the P sorption capacity for neutral and acid purple soils. A strong positive linear relationship was observed between the oxalate ratio [OR = (Alox + Feox)/Pox] and media P sorption capacity. The media mixture of 20% purple soil and 80% sand showed excellent P removal, meeting the developed benchmark for adsorptive behavior. The media mixture in a large-scale (60 cm) column consistently produced soluble reactive phosphorus effluent event with mean concentrations soil and sand can be used as a bioretention media to treat low-concentration phosphorus in urban runoff under various hydrologic and pollutant concentration conditions.

  19. Literature Review of Low Impact Development for Stormwater Control

    Science.gov (United States)

    2015-05-30

    stormwater generated at Navy industrial facilities are metal contaminants , such as zinc (Zn), lead (Pb), and copper (Cu). Other pollutants, such as... contaminating receiving waters. Jessop & Turner studied the leaching of copper and zinc from small particles of boat paint into rainwater (2011). They found...Karami et al. tested the ability of biochar to immobilize copper when used to amend highly contaminated soils , and found that the addition of biochar

  20. Effective post-construction best management practices (BMPs) to infiltrate and retain stormwater runoff.

    Science.gov (United States)

    2017-06-01

    Performance analyses of newly constructed linear BMPs in retaining stormwater run-off from 1 in. precipitation in : post-construction highway applications and urban areas were conducted using numerical simulations and field : observation. A series of...

  1. Stormwater Tank Performance: Design and Management Criteria for Capture Tanks Using a Continuous Simulation and a Semi-Probabilistic Analytical Approach

    Directory of Open Access Journals (Sweden)

    Flavio De Martino

    2013-10-01

    Full Text Available Stormwater tank performance significantly depends on management practices. This paper proposes a procedure to assess tank efficiency in terms of volume and pollutant concentration using four different capture tank management protocols. The comparison of the efficiency results reveals that, as expected, a combined bypass—stormwater tank system achieves better results than a tank alone. The management practices tested for the tank-only systems provide notably different efficiency results. The practice of immediately emptying after the end of the event exhibits significant levels of efficiency and operational advantages. All other configurations exhibit either significant operational problems or very low performances. The continuous simulation and semi-probabilistic approach for the best tank management practice are compared. The semi-probabilistic approach is based on a Weibull probabilistic model of the main characteristics of the rainfall process. Following this approach, efficiency indexes were established. The comparison with continuous simulations shows the reliability of the probabilistic approach even if this last is certainly very site sensitive.

  2. Multiple modes of water quality impairment by fecal contamination in a rapidly developing coastal area: southwest Brunswick County, North Carolina.

    Science.gov (United States)

    Cahoon, Lawrence B; Hales, Jason C; Carey, Erin S; Loucaides, Socratis; Rowland, Kevin R; Toothman, Byron R

    2016-02-01

    Fecal contamination of surface waters is a significant problem, particularly in rapidly developing coastal watersheds. Data from a water quality monitoring program in southwest Brunswick County, North Carolina, gathered in support of a regional wastewater and stormwater management program were used to examine likely modes and sources of fecal contamination. Sampling was conducted at 42 locations at 3-4-week intervals between 1996 and 2003, including streams, ponds, and estuarine waters in a variety of land use settings. Expected fecal sources included human wastewater systems (on-site and central), stormwater runoff, and direct deposition by animals. Fecal coliform levels were positively associated with rainfall measures, but frequent high fecal coliform concentrations at times of no rain indicated other modes of contamination as well. Fecal coliform levels were also positively associated with silicate levels, a groundwater source signal, indicating that flux of fecal-contaminated groundwater was a mode of contamination, potentially elevating FC levels in impacted waters independent of stormwater runoff. Fecal contamination by failing septic or sewer systems at many locations was significant and in addition to effects of stormwater runoff. Rainfall was also linked to fecal contamination by central sewage treatment system failures. These results highlight the importance of considering multiple modes of water pollution and different ways in which human activities cause water quality degradation. Management of water quality in coastal regions must therefore recognize diverse drivers of fecal contamination to surface waters.

  3. Engaging Social Capital for Decentralized Urban Stormwater Management (Paper in Non-EPA Proceedings)

    Science.gov (United States)

    Decentralized approaches to urban stormwater management, whereby installations of green infrastructure (e.g., rain gardens, bioswales, constructed wetlands) are dispersed throughout a management area, are cost-effective solutions with co-benefits beyond just water abatement. Inst...

  4. Effects of selected low-impact-development (LID) techniques on water quality and quantity in the Ipswich River Basin, Massachusetts-Field and modeling studies

    Science.gov (United States)

    Zimmerman, Marc J.; Barbaro, Jeffrey R.; Sorenson, Jason R.; Waldron, Marcus C.

    2010-01-01

    During the months of August and September, flows in the Ipswich River, Massachusetts, dramatically decrease largely due to groundwater withdrawals needed to meet increased residential and commercial water demands. In the summer, rates of groundwater recharge are lower than during the rest of the year, and water demands are higher. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of low-impact-development (LID) enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of (1) replacing an impervious parking lot surface with a porous surface on groundwater quality, (2) installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and (3) installing a 3,000-square foot (ft2) green roof on the quantity and quality of stormwater runoff. In addition, the effects of broad-scale implementation of LID techniques, reduced water withdrawals, and water-conservation measures on streamflow in large areas of the basin were simulated using the U.S. Geological Survey's Ipswich River Basin model. From June 2005 to 2007, groundwater quality was monitored at the Silver Lake town beach parking lot in Wilmington, MA, prior to and following the replacement of the conventional, impervious-asphalt surface with a porous surface consisting primarily of porous asphalt and porous pavers. Changes in the concentrations of the water-quality constituents, phosphorus, nitrogen, cadmium, chromium, copper, lead, nickel, zinc, and total petroleum hydrocarbons, were monitored

  5. Development of MCESC software for selecting the best stormwater erosion and sediment control measure in Malaysian construction sites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hadu, Ibrahiem Abdul Razak; Sidek, Lariyah Mohd [Civil Engineering Universiti Tenaga Nasional, Kajan, Selangor (Malaysia); Desa, Mohamed Nor Mohamed; Basri, Noor Ezlin Ahmad [Civil and Structural Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia)

    2012-07-01

    Malaysia located in a tropical region which is interested with a heavy rainfall through the whole seasons of the year. Construction stages usually associated with soil disturbing due to land clearing and grading activities, this combined with the tropical climate in Malaysia, will generate an enormous amount of soil to be eroded and then deposited into the adjacent water bodies. There are many kinds of mitigation measures used so as to reduce the impact of erosion and sedimentation that are generated due to the stormwater in construction sites. This paper aims to develop and apply Multi Criteria Analysis (MCA) software called Multi Criteria Erosion and Sediment Control (MCESC) software in which it can be applied in selecting the best stormwater control measure by depending on specified criteria and criterion weight. Visual Basic 6 was adopted as a development tool. This software can help the engineers, contractors on site and decision makers to find the best stormwater control measure in any construction site in Malaysia. Users of the MCESC software are given the opportunity to select the best stormwater control measure via expert's judgments that are built in the system or via their own expertise. MCESC software has many benefits since the experts are not always available and the consultancy is a costly issue which add further financial allocations to the project.

  6. VARIATIONS OF MICROORGANISM CONCENTRATIONS IN URBAN STORMWATER RUNOFF WITH LAND USE AND SEASONS

    Science.gov (United States)

    Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three different land use areas based on local designation (high-density residential, low-density residential, and landscaped commercial)....

  7. Highway-runoff quality, and treatment efficiencies of a hydrodynamic-settling device and a stormwater-filtration device in Milwaukee, Wisconsin

    Science.gov (United States)

    Horwatich, Judy A.; Bannerman, Roger T.; Pearson, Robert

    2011-01-01

    The treatment efficiencies of two prefabricated stormwater-treatment devices were tested at a freeway site in a high-density urban part of Milwaukee, Wisconsin. One treatment device is categorized as a hydrodynamic-settling device (HSD), which removes pollutants by sedimentation and flotation. The other treatment device is categorized as a stormwater-filtration device (SFD), which removes pollutants by filtration and sedimentation. During runoff events, flow measurements were recorded and water-quality samples were collected at the inlet and outlet of each device. Efficiency-ratio and summation-of-load (SOL) calculations were used to estimate the treatment efficiency of each device. Event-mean concentrations and loads that were decreased by passing through the HSD include total suspended solids (TSS), suspended sediment (SS), total phosphorus (TP), total copper (TCu), and total zinc (TZn). The efficiency ratios for these constituents were 42, 57, 17, 33, and 23 percent, respectively. The SOL removal rates for these constituents were 25, 49, 10, 27, and 16 percent, respectively. Event-mean concentrations and loads that increased by passing through the HSD include chloride (Cl), total dissolved solids (TDS), and dissolved zinc (DZn). The efficiency ratios for these constituents were -347, -177, and 20 percent, respectively. Four constituents—dissolved phosphorus (DP), chemical oxygen demand (COD), total polycyclic aromatic hydrocarbon (PAH), and dissolved copper (DCu)—are not included in the list of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Event-mean concentrations and loads that decreased by passing through the SFD include TSS, SS, TP, DCu, TCu, DZn, TZn, and COD. The efficiency ratios for these constituents were 59, 90, 40, 21, 66, 23, 66, and 18, respectively. The SOLs for these constituents were 50, 89, 37, 19, 60, 20, 65, and 21, respectively. Two constituents—DP and

  8. The influence of stormwater management practices on denitrification rates of receiving streams in an urban watershed

    Science.gov (United States)

    Cronenberger, M. S.; McMillan, S. K.

    2011-12-01

    denitrification rates. We are continuing to investigate these spatial (e.g. BMPs, streams) and temporal (e.g. storm pulse, delayed wetland release) patterns, particularly in the context of factors that influence the specific drivers of denitrification. Understanding these patterns is critical to managing stormwater in urban landscapes as we aim to improve water quality while enhancing ecosystem functions.

  9. Water quality requirements for sustaining aquifer storage and recovery operations in a low permeability fractured rock aquifer.

    Science.gov (United States)

    Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul

    2011-10-01

    A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. URBAN RUNOFF QUALITY MANAGEMENT (BOOK REVIEW)

    Science.gov (United States)

    This manual of practice is geared toward a technical audience but the first four chapters can be understood by anyone interested in stormwater issues and the use of best management practices (BMPs) to mitigate urban stormwater effects. These chapters outline the stormwater probl...

  11. Uncertainty analysis of pollutant build-up modelling based on a Bayesian weighted least squares approach

    International Nuclear Information System (INIS)

    Haddad, Khaled; Egodawatta, Prasanna; Rahman, Ataur; Goonetilleke, Ashantha

    2013-01-01

    Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality datasets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares regression and Bayesian weighted least squares regression for the estimation of uncertainty associated with pollutant build-up prediction using limited datasets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling. - Highlights: ► Water quality data spans short time scales leading to significant model uncertainty. ► Assessment of uncertainty essential for informed decision making in water

  12. Stormwater Pollution Prevention Plan TA-60 Asphalt Batch Plant Revision 2: January 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Leonard Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    The Stormwater Pollution Prevention Team (PPT) is applicable to operations at the Technical Area (TA)- 60 Asphalt Batch Plant (ABP) located on Eniwetok Drive/Sigma Mesa, in Los Alamos County, New Mexico at Los Alamos National Laboratory (LANL).

  13. Characterisation of diffuse pollutions from forested watersheds in Japan during storm events - its association with rainfall and watershed features.

    Science.gov (United States)

    Zhang, Zhao; Fukushima, Takehiko; Onda, Yuichi; Mizugaki, Shigeru; Gomi, Takashi; Kosugi, Ken'ichirou; Hiramatsu, Shinya; Kitahara, Hikaru; Kuraji, Koichiro; Terajima, Tomomi; Matsushige, Kazuo; Tao, Fulu

    2008-02-01

    Forest areas have been identified as important sources of nonpoint pollution in Japan. The managers must estimate stormwater quality and quantities from forested watersheds to develop effective management strategies. Therefore, stormwater runoff loads and concentrations of 10 constituents (total suspended solids, dissolved organic carbon, PO(4)-P, dissolved total phosphorus, total phosphorus, NH(4)-N, NO(2)-N, NO(3)-N, dissolved total nitrogen, and total nitrogen) for 72 events across five regions (Aichi, Kochi, Mie, Nagano, and Tokyo) were characterised. Most loads were significantly and positively correlated with stormwater variables (total event rainfall, event duration, and rainfall intensity), but most discharge-weighted event concentrations (DWECs) showed negative correlations with rainfall intensity. Mean water quality concentration during baseflow was correlated significantly with storm concentrations (r=0.41-0.77). Although all pollutant load equations showed high coefficients of determination (R(2)=0.55-0.80), no models predicted well pollutant concentrations, except those for the three N constituents (R(2)=0.59-0.67). Linear regressions to estimate stormwater concentrations and loads were greatly improved by regional grouping. The lower prediction capability of the concentration models for Mie, compared with the other four regions, indicated that other watershed or storm characteristics should be included in the prediction models. Significant differences among regions were found more frequently in concentrations than in loads for all constituents. Since baseflow conditions implied available pollutant sources for stormwater, the similar spatial characteristics of pollutant concentrations between baseflow and stormflow conditions were an important control for stormwater quality.

  14. Implementation of reactive and predictive real-time control strategies to optimize dry stormwater detention ponds

    Science.gov (United States)

    Gaborit, Étienne; Anctil, François; Vanrolleghem, Peter A.; Pelletier, Geneviève

    2013-04-01

    here increased the pond's TSS (and associated pollution) removal efficiency from 46% (current state) to between 70 and 90%, depending on the pond's capacity considered. The RTC strategies allow simultaneously maximizing the detention time of water, while minimizing the hydraulic shocks induced to the receiving water bodies and preventing overflow. A constraint relative to a maximum time of 4 days with water accumulated in the pond was thus respected to avoid mosquito breeding issues. The predictive control schemes (taking rainfall forecasts into consideration) can further reinforce the safety of the management strategies, even if meteorological forecasts are, of course, not error-free. With RTC, the studied pond capacity could thus have been limited to 1250 m3 instead of the 4000 m3 capacity currently used under static control. References Marsalek, J. 2005. Evolution of urban drainage: from cloaca maxima to environmental sustainability. Paper presented at Acqua e Citta, I Convegno Nazionale di Idraulica Urbana, Cent. Stud. Idraul. Urbana, Sant'Agnello di Sorrento, Italy, 28- 30 Sept. Middleton, J.R. and Barrett, M.E. 2008. Water quality performance of a batch-type stormwater detention basin. Water Environment Research, 80 (2): 172-178. Doi: http://dx.doi.org/10.2175/106143007X220842 Muschalla, D., Pelletier, G., Berrouard, É., Carpenter, J.-F., Vallet, B., and Vanrolleghem, P.A. 2009. Ecohydraulic-driven real-time control of stormwater basins. In: Proceedings 8th International Conference on Urban Drainage Modelling (8UDM), Tokyo, Japan, September 7-11. National Research Council, 1993. Managing Wastewater in Coastal Urban Areas. Washington, DC: National Academy Press. Shammaa, Y., Zhu, D.Z., Gyürék, L.L., and Labatiuk C.W. 2002. Effectiveness of dry ponds for stormwater total suspended solids removal. Canadian Journal of Civil Engineering, 29 (2): 316-324 (9). Doi: 10.1139/l02-008

  15. Risk management, financial evaluation and funding for wastewater and stormwater reuse projects.

    Science.gov (United States)

    Furlong, Casey; De Silva, Saman; Gan, Kein; Guthrie, Lachlan; Considine, Robert

    2017-04-15

    This paper has considered risk management, financial evaluation and funding in seven Australian wastewater and stormwater reuse projects. From the investigated case studies it can be seen that responsible parties have generally been well equipped to identify potential risks. In relation to financial evaluation methods some serious discrepancies, such as time periods for analysis, and how stormwater benefits are valued, have been identified. Most of the projects have required external, often National Government, funding to proceed. As National funding is likely to become less common in the future, future reuse projects may need to be funded internally by the water industry. In order to enable this the authors propose that the industry requires (1) a standard project evaluation process, and (2) an infrastructure funders' forum (or committee) with representation from both utilities and regulators, in order to compare and prioritise future reuse projects against each other. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Multi criteria analysis in environmental management: Selecting the best stormwater erosion and sediment control measure in Malaysian construction sites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hadu, Ibrahiem Abdul Razak; Sidek, Lariyah Mohd; Desa, Mohamed Nor Mohamed [Civil Engineering, Universiti Tenga Nasional, Kajang, Selangor (Malaysia); Basri, Noor Ezlin Ahmad [Civil and Structural Engineering, Universiti Kebangsaan Malyasia, Bangi, Selangor (Malaysia)

    2011-07-01

    Malaysia located in a tropical region which is interested with a heavy rainfall through the whole seasons of the year. Construction stages usually associated with soil disturbing due to land clearing and grading activities, this combined with the tropical climate in Malaysia, will generate an enormous amount of soil to be eroded and then deposited in the adjacent water bodies. There are many kinds of mitigation measures used so as to reduce the impact of erosion and sedimentation that are generated due to the stormwater in construction sites. This paper presents the application of Multi Criteria Analysis (MCA) tool in choosing the best stormwater control measure by depending on specified criteria and criterion weight. The results obtained from the application of MCA in stormwater pollution control have many benefits to the contractors, consultants and decision makers by making them able to select the best control measure for every stage of construction.

  17. Can There Ever Be Enough to Impact Water Quality? Evaluating BMPs in Elliot Ditch, Indiana Using the LTHIA-LID Model

    Science.gov (United States)

    Rahman, M. S.; Hoover, F. A.; Bowling, L. C.

    2017-12-01

    Elliot Ditch is an urban/urbanizing watershed located in the city of Lafayette, IN, USA. The city continues to struggle with stormwater management and combined sewer overflow (CSO) events. Several best-management practices (BMP) such as rain gardens, green roofs, and bioswales have been implemented in the watershed, but the level of adoption needed to achieve meaningful impact is currently unknown. This study's goal is to determine what level of BMP coverage is needed to impact water quality, whether meaningful impact is determined by achieving water quality targets or statistical significance. A power analysis was performed using water quality data for total suspended solids (TSS), E.coli, total phosphorus (TP) and nitrate (NO3-N) from Elliot Ditch from 2011 to 2015. The minimum detectable difference (MDD) was calculated as the percent reduction in load needed to detect a significant change in the watershed. The water quality targets were proposed by stakeholders as part of a watershed management planning process. The water quality targets and the MDD percentages were then compared to simulated load reductions due to BMP implementation using the Long-term Hydrologic Impact Assessment-Low Impact Development (LTHIA-LID) model. Seven baseline model scenarios were simulated by implementing the maximum number of each of six types of BMPs (rain barrels, permeable patios, green roofs, grassed swale/bioswales, bioretention/rain gardens, and porous pavement), as well as all the practices combined in the watershed. These provide the baseline for targeted implementation scenarios designed to determine if statistically and physically meaningful load reductions can be achieved through BMP implementation alone.

  18. Evaluation of the Effectiveness of Stormwater Decision Support Tools for Infrastructure Selection and the Barriers to Implementation

    Science.gov (United States)

    Spahr, K.; Hogue, T. S.

    2016-12-01

    Selecting the most appropriate green, gray, and / or hybrid system for stormwater treatment and conveyance can prove challenging to decision markers across all scales, from site managers to large municipalities. To help streamline the selection process, a multi-disciplinary team of academics and professionals is developing an industry standard for selecting and evaluating the most appropriate stormwater management technology for different regions. To make the tool more robust and comprehensive, life-cycle cost assessment and optimization modules will be included to evaluate non-monetized and ecosystem benefits of selected technologies. Initial work includes surveying advisory board members based in cities that use existing decision support tools in their infrastructure planning process. These surveys will qualify the decisions currently being made and identify challenges within the current planning process across a range of hydroclimatic regions and city size. Analysis of social and other non-technical barriers to adoption of the existing tools is also being performed, with identification of regional differences and institutional challenges. Surveys will also gage the regional appropriateness of certain stormwater technologies based off experiences in implementing stormwater treatment and conveyance plans. In additional to compiling qualitative data on existing decision support tools, a technical review of components of the decision support tool used will be performed. Gaps in each tool's analysis, like the lack of certain critical functionalities, will be identified and ease of use will be evaluated. Conclusions drawn from both the qualitative and quantitative analyses will be used to inform the development of the new decision support tool and its eventual dissemination.

  19. Microbiological risks of recycling urban stormwater via aquifers.

    Science.gov (United States)

    Page, D; Gonzalez, D; Dillon, P

    2012-01-01

    With the release of the Australian Guidelines for Water Recycling: Managed Aquifer Recharge (MAR), aquifers are now being included as a treatment barrier when assessing risk of recycled water systems. A MAR research site recharging urban stormwater in a confined aquifer was used in conjunction with a Quantitative Microbial Risk Assessment to assess the microbial pathogen risk in the recovered water for different end uses. The assessment involved undertaking a detailed assessment of the treatment steps and exposure controls, including the aquifer, to achieve the microbial health-based targets.

  20. Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?

    Science.gov (United States)

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Deletic, Ana; Hatt, Belinda E; Fletcher, Tim D

    2017-04-04

    Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N 2 O) and methane (CH 4 ) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH 4 and N 2 O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N 2 O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH 4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N 2 O accounted for nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N 2 O or CH 4 in biofilter effluent appears relatively low.

  1. Transport, speciation, toxicity, and treatability of highway stormwater discharged to receiving waters in Louisiana.

    Science.gov (United States)

    2013-01-01

    Stormwater from transportation land uses is a complex heterogeneous mixture of particulate matter, nutrients (phosphorus and nitrogen), heavy metals, inorganic, and organic compounds with variations in flow and mass loadings by orders of magnitude du...

  2. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems.

    Directory of Open Access Journals (Sweden)

    Emily G I Payne

    Full Text Available The long-term efficacy of stormwater treatment systems requires continuous pollutant removal without substantial re-release. Hence, the division of incoming pollutants between temporary and permanent removal pathways is fundamental. This is pertinent to nitrogen, a critical water body pollutant, which on a broad level may be assimilated by plants or microbes and temporarily stored, or transformed by bacteria to gaseous forms and permanently lost via denitrification. Biofiltration systems have demonstrated effective removal of nitrogen from urban stormwater runoff, but to date studies have been limited to a 'black-box' approach. The lack of understanding on internal nitrogen processes constrains future design and threatens the reliability of long-term system performance. While nitrogen processes have been thoroughly studied in other environments, including wastewater treatment wetlands, biofiltration systems differ fundamentally in design and the composition and hydrology of stormwater inflows, with intermittent inundation and prolonged dry periods. Two mesocosm experiments were conducted to investigate biofilter nitrogen processes using the stable isotope tracer 15NO3(- (nitrate over the course of one inflow event. The immediate partitioning of 15NO3(- between biotic assimilation and denitrification were investigated for a range of different inflow concentrations and plant species. Assimilation was the primary fate for NO3(- under typical stormwater concentrations (∼1-2 mg N/L, contributing an average 89-99% of 15NO3(- processing in biofilter columns containing the most effective plant species, while only 0-3% was denitrified and 0-8% remained in the pore water. Denitrification played a greater role for columns containing less effective species, processing up to 8% of 15NO3(-, and increased further with nitrate loading. This study uniquely applied isotope tracing to biofiltration systems and revealed the dominance of assimilation in stormwater

  3. Evaluation of Biochar to Enhance Green Infrastructure for Removal of Heavy Metals in Stormwater

    Science.gov (United States)

    The changes in the natural North American drainage system over the centuries have given rise to significant modern ecological impacts during high precipitation events. Contaminated stormwater runoff is of particular concern during these events. Urban development increases imperme...

  4. Water quality facility investigation report : final summary of project and evaluation of monitoring plan implementation.

    Science.gov (United States)

    2005-07-05

    The Oregon Department of Transportation (ODOT) has installed several stormwater : treatment facilities throughout the State to improve the quality of runoff discharged from : highways. These facilities include a variety of both above ground and below...

  5. Robust Decision Making to Support Water Quality Climate Adaptation: a Case Study in the Chesapeake Bay Watershed

    Science.gov (United States)

    Fischbach, J. R.; Lempert, R. J.; Molina-Perez, E.

    2017-12-01

    The U.S. Environmental Protection Agency (USEPA), together with state and local partners, develops watershed implementation plans designed to meet water quality standards. Climate uncertainty, along with uncertainty about future land use changes or the performance of water quality best management practices (BMPs), may make it difficult for these implementation plans to meet water quality goals. In this effort, we explored how decision making under deep uncertainty (DMDU) methods such as Robust Decision Making (RDM) could help USEPA and its partners develop implementation plans that are more robust to future uncertainty. The study focuses on one part of the Chesapeake Bay watershed, the Patuxent River, which is 2,479 sq km in area, highly urbanized, and has a rapidly growing population. We simulated the contribution of stormwater contaminants from the Patuxent to the overall Total Maximum Daily Load (TMDL) for the Chesapeake Bay under multiple scenarios reflecting climate and other uncertainties. Contaminants considered included nitrogen, phosphorus, and sediment loads. The assessment included a large set of scenario simulations using the USEPA Chesapeake Bay Program's Phase V watershed model. Uncertainties represented in the analysis included 18 downscaled climate projections (based on 6 general circulation models and 3 emissions pathways), 12 land use scenarios with different population projections and development patterns, and alternative assumptions about BMP performance standards and efficiencies associated with different suites of stormwater BMPs. Finally, we developed cost estimates for each of the performance standards and compared cost to TMDL performance as a key tradeoff for future water quality management decisions. In this talk, we describe how this research can help inform climate-related decision support at USEPA's Chesapeake Bay Program, and more generally how RDM and other DMDU methods can support improved water quality management under climate

  6. Mechanisms Involved in the Removal of Heavy Metals from Stormwater via Lignocellulosic Filtration Media

    Science.gov (United States)

    2018-01-01

    This report aims to supplement our previous report (Yonge et al. 2016; WA-RD 816.3) that assessed copper and zinc adsorption to lignocellulosic filtration media using laboratory tests and field-scale column tests for urban stormwater remediation. The...

  7. Effects of urbanization and stormwater control measures on streamflows in the vicinity of Clarksburg, Maryland, USA

    Science.gov (United States)

    Rhea, Lee; Jarnagin, Taylor; Hogan, Dianna; Loperfido, J. V.; Shuster, William

    2015-01-01

    Understanding the efficacy of revised watershed management methods is important to mitigating the impacts of urbanization on streamflow. We evaluated the influence of land use change, primarily as urbanization, and stormwater control measures on the relationship between precipitation and stream discharge over an 8-year period for five catchments near Clarksburg, Montgomery County, Maryland, USA. A unit-hydrograph model based on a temporal transfer function was employed to account for and standardize temporal variation in rainfall pattern, and properly apportion rainfall to streamflow at different time lags. From these lagged relationships, we quantified a correction to the precipitation time series to achieve a hydrograph that showed good agreement between precipitation and discharge records. Positive corrections appeared to include precipitation events that were of limited areal extent and therefore not captured by our rain gages. Negative corrections were analysed for potential causal relationships. We used mixed-model statistical techniques to isolate different sources of variance as drivers that mediate the rainfall–runoff dynamic before and after management. Seasonal periodicity mediated rainfall–runoff relationships, and land uses (i.e. agriculture, natural lands, wetlands and stormwater control measures) were statistically significant predictors of precipitation apportionment to stream discharge. Our approach is one way to evaluate actual effectiveness of management efforts in the face of complicating circumstances and could be paired with cost data to understand economic efficiency or life cycle aspects of watershed management. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  8. International study on the long-term efficiency of stormwater infiltration by permeable pavements

    NARCIS (Netherlands)

    Boogaard, Floris; Lucke, T.; Dierkes, Carsten; Wentink, Ronald; Akkerman, Olof

    2015-01-01

    Although permeable pavements have been used all over the world in recent years to infiltrate and treat stormwater, only limited research has been undertaken to investigate and compare the long-term performance of these sustainable urban drainage system devices. This paper presents the results of an

  9. Who governs climate adaptation? Getting green roofs for stormwater retention off the ground

    NARCIS (Netherlands)

    Mees, H.L.P.; Driessen, P.P.J.; Runhaar, H.A.C.; Stamatelos, J.

    2013-01-01

    Green roofs are an innovative solution for urban stormwater management. This paper examines governance arrangements for green roofs as a ‘no-regrets’ climate adaptation measure in five cities. We analysed who governs green roofs, why and with what outcome. Our results show that hierarchical and

  10. The impact of green stormwater infrastructure installation on surrounding health and safety

    Science.gov (United States)

    Michelle C. Kondo; Sarah C. Low; Jason Henning; Charles C. Branas

    2015-01-01

    We investigated the health and safety effects of urban green stormwater infrastructure (GSI) installments. We conducted a difference-in-differences analysis of the effects of GSI installments on health (e.g., blood pressure, cholesterol and stress levels) and safety (e.g., felonies, nuisance and property crimes, narcotics crimes) outcomes from 2000 to 2012 in...

  11. A flexible tool for hydraulic and water quality performance analysis of green infrastructure

    Science.gov (United States)

    Massoudieh, A.; Alikhani, J.

    2017-12-01

    Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. To be used to evaluate the effect design configurations on the long-term performance of GIs, models should be able to consider processes within GIs with good fidelity. In this presentation, a sophisticated, yet flexible tool for hydraulic and water quality assessment of GIs will be introduced. The tool can be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media employed in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biogeochemical processes affecting contaminants such as evapotranspiration, plant uptake, reactions, and particle-associated transport accurately while maintaining a high degree of flexibility to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated. The process-based model framework developed here can be used to model a diverse range of GI practices such as stormwater ponds, green roofs, retention ponds, bioretention systems, infiltration trench, permeable pavement and other custom-designed combinatory systems. An example of the application of the system to evaluate the performance of a rain-garden system will be demonstrated.

  12. Considerations for the implementation and operation of stormwater control measure (SCM) performance monitoring systems

    Science.gov (United States)

    Green infrastructure (GI) studies are needed to make informed decisions about whether or not to select GI technologies over traditional urban drainage control methods and to assist in the timing of effective maintenance. Two permeable pavement infiltration stormwater control meas...

  13. An integrated approach to place Green Infrastructure strategies in marginalized communities and evaluate stormwater mitigation

    Science.gov (United States)

    Garcia-Cuerva, Laura; Berglund, Emily Zechman; Rivers, Louie

    2018-04-01

    Increasing urbanization augments impervious surface area, which results in increased run off volumes and peak flows. Green Infrastructure (GI) approaches are a decentralized alternative for sustainable urban stormwater and provide an array of ecosystem services and foster community building by enhancing neighborhood aesthetics, increasing property value, and providing shared green spaces. While projects involving sustainability concepts and environmental design are favored in privileged communities, marginalized communities have historically been located in areas that suffer from environmental degradation. Underprivileged communities typically do not receive as many social and environmental services as advantaged communities. This research explores GI-based management strategies that are evaluated at the watershed scale to improve hydrological performance by mitigating storm water run off volumes and peak flows. GI deployment strategies are developed to address environmental justice issues by prioritizing placement in communities that are underprivileged and locations with high outreach potential. A hydrologic/hydraulic stormwater model is developed using the Storm Water Management Model (SWMM 5.1) to simulate the impacts of alternative management strategies. Management scenarios include the implementation of rain water harvesting in private households, the decentralized implementation of bioretention cells in private households, the centralized implementation of bioretention cells in municipally owned vacant land, and combinations of those strategies. Realities of implementing GI on private and public lands are taken into account to simulate various levels of coverage and routing for bioretention cell scenarios. The effects of these strategies are measured by the volumetric reduction of run off and reduction in peak flow; social benefits are not evaluated. This approach is applied in an underprivileged community within the Walnut Creek Watershed in Raleigh, North

  14. Neighborhood change and the role of environmental stewardship: a case study of green infrastructure for stormwater in the City of Portland, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Vivek Shandas

    2015-09-01

    Full Text Available Throughout the history of cities, the ecological landscape has often been buried, removed, or taken for granted. A recent recognition that humans are part of the global ecosystem, and that human actions both cause and are affected by ecological change, brings with it an awareness of the value of nature in cities and of natural systems on which cities depend. The feedbacks between humans and their environment within an urban context can have profound implications for the growth of and change in cities, yet there is a limited understanding of the interactions between biophysical changes in cities and the implications of these changes on the quality of life for residents. The application of a coupled human and natural systems (CHANS framework provides a timely and fruitful opportunity to enrich the theory, methods, and understanding of these feedbacks and interconnections. Here, I integrated biophysical and social dimensions relevant to managing urban stormwater by examining a case study of Portland, Oregon, USA. I used empirical data from a pre-post survey (2-yr span of residents in eight urban neighborhoods to describe feedbacks and interactions between a localized biophysical change in the form of a large-scale decentralized stormwater program and the resulting changes in resident's perceptions in neighborhoods undergoing rapid change. My findings corroborate earlier findings suggesting that people with higher income and education levels are more likely to participate in stewardship actions. The results also suggest an overall and initial negative perception of neighborhoods facilities and services immediately following the construction of decentralized stormwater facilities, but conversely, high levels of anticipation for their construction. By describing these findings through a CHANS framework, I make explicit the importance of integrating scientific understanding, governance efforts, and human behaviors to address acute urban environmental

  15. Streamflow, water quality, and contaminant loads in the lower Charles River Watershed, Massachusetts, 1999-2000

    Science.gov (United States)

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2002-01-01

    Streamflow data and dry-weather and stormwater water-quality samples were collected from the main stem of the Charles River upstream of the lower Charles River (or the Basin) and from four partially culverted urban streams that drain tributary subbasins in the lower Charles River Watershed. Samples were collected between June 1999 and September 2000 and analyzed for a number of potential contaminants including nitrate (plus nitrite), ammonia, total Kjeldahl nitrogen, phosphorus, cadmium, chromium, copper, lead, and zinc; and water-quality properties including specific conductance, turbidity, biochemical oxygen demand, fecal coliform bacteria, Entero-coccus bacteria, total dissolved solids, and total suspended sediment. These data were used to identify the major pathways and to determine the magnitudes of contaminants loads that contribute to the poor water quality of the lower Charles River. Water-quality and streamflow data, for one small urban stream and two storm drains that drain subbasins with uniform (greater than 73 percent) land use (including single-family residential, multifamily residential, and commercial), also were collected. These data were used to elucidate relations among streamflow, water quality, and subbasin characteristics. Streamflow in the lower Charles River Watershed can be characterized as being unsettled and flashy. These characteristics result from the impervious character of the land and the complex infrastructure of pipes, pumps, diversionary canals, and detention ponds throughout the watershed. The water quality of the lower Charles River can be considered good?meeting water-quality standards and guidelines?during dry weather. After rainstorms, however, the water quality of the river becomes impaired, as in other urban areas. The poor quality of stormwater and its large quantity, delivered over short periods (hours and days), together with illicit sanitary cross connections, and combined sewer overflows, results in large contaminant

  16. Mathematical Modeling of Fate and Transport of Aqueous Species in Stormflow Entering Infiltration Basin.

    Science.gov (United States)

    Massoudieh, A.; Sengor, S. S.; Meyer, S.; Ginn, T. R.

    2004-12-01

    The State of California is evaluating the role of passive stormwater detention facilities for the purpose of attenuating potential dissolved and suspended chemical species that may originate in roadway runoff of rainfall. The engineering design of such infiltration basins requires tools to quantify their performance as recipients of stormwater runoff from roadways, and as filters of aqueous chemical species. For this purpose a one-dimensional unsaturated flow and transport model is developed to estimate the efficiency of storm-water infiltration basins in treating roadway generated metallic and organic pollutants. Kinematic wave approximation is used along with van Genuchten water retention model to simulate water percolation thorough the infiltration basin. For metals a Langmuir type nonlinear competitive sorption isotherm is used for transport of chemicals and a kinetic reversible linear sorption model is considered for organics. The model is applied to known roadway born metallic contaminations such as copper, zinc, lead, chromium, nickel and cadmium, as well as organic species such as diazinon, diuron, ghlyphosate and pyrene, for several representative soil and precipitation condition for California within a period of five years. Representative soil parameters and precipitation patterns are extracted from frequency distributions extracted from a recent study. In addition sensitivity analysis has been done to evaluate the effect of soil property values on the performance of infiltration basins. The results can be used to evaluate the performance of infiltration basins in improving the water quality as well as being used in providing guidelines in design and maintenance of infiltration basins.

  17. Elimination and accumulation of polycyclic aromatic hydrocarbons (PAHs) in urban stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Istenič, Daria; Arias, Carlos Alberto; Matamoros, Victor

    2011-01-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of seven wet detention ponds receiving urban stormwater were investigated. The ponds comprised traditional wet detention ponds with a permanent wet volume and a storage volume as well as ponds that were expanded...

  18. Using Value-Focused Thinking to Evaluate the Use of Innovative Stormwater Management Technologies on Air Force Installations

    National Research Council Canada - National Science Library

    Falcone, Jeffrey T

    2007-01-01

    .... It also prevents contaminants from being naturally filtered out of stormwater flows. As a result, centralized conveyance systems can cause flooding, erosion, and terrestrial/aquatic habitat degradation...

  19. Bacteria Removal from Stormwater Runoff Using Tree Filters: A Comparison of a Conventional and an Innovative System

    Directory of Open Access Journals (Sweden)

    Laura A. Schifman

    2016-03-01

    Full Text Available Non-point source pollution of stormwater contributes high contaminant loads into surface water bodies and poses a threat to the ecosystem, public health and economy. Although (pretreatment standards have not been introduced at the federal level, Rhode Island (RI has set minimal contaminant reduction standards for stormwater using structural best management practices (BMP. As BMP performance depends highly on geographical location and climate, and the Northeastern United States experiences broad ranges of temperatures throughout the year along with long intermittent periods between precipitation events, stormwater treatment can be challenging. In this field study, two tree filters were evaluated: a conventional unit (CTF with sand/shale mix as filter media, and a modified tree filter (ITF with an added layer of red cedar wood chips amended with 3-(trihydroxysilylpropyldimethyloctadecyl ammonium chloride. Both BMPs were monitored for 346 days primarily for Escherichia coli and polycyclic aromatic hydrocarbons (PAH. Both tree filters met or outperformed RI’s standards for bacteria removal (60% and TSS (85%, making them a good choice for BMP use in this climate. Total suspended solids, E. coli, PAHs, nitrate, and phosphate removal is higher in ITF. A controlled field scale tracer test using E. coli confirmed these results.

  20. Investigation of stormwater quality improvements utilizing permeable friction course (PFC).

    Science.gov (United States)

    2010-09-01

    This report describes research into the water quality and hydraulics of the Permeable Friction Course (PFC). : Water quality monitoring of 3 locations in the Austin area indicates up to a 90 percent reduction in pollutant : discharges from PFC compar...

  1. Modeling framework for representing long-term effectiveness of best management practices in addressing hydrology and water quality problems: Framework development and demonstration using a Bayesian method

    Science.gov (United States)

    Liu, Yaoze; Engel, Bernard A.; Flanagan, Dennis C.; Gitau, Margaret W.; McMillan, Sara K.; Chaubey, Indrajeet; Singh, Shweta

    2018-05-01

    Best management practices (BMPs) are popular approaches used to improve hydrology and water quality. Uncertainties in BMP effectiveness over time may result in overestimating long-term efficiency in watershed planning strategies. To represent varying long-term BMP effectiveness in hydrologic/water quality models, a high level and forward-looking modeling framework was developed. The components in the framework consist of establishment period efficiency, starting efficiency, efficiency for each storm event, efficiency between maintenance, and efficiency over the life cycle. Combined, they represent long-term efficiency for a specific type of practice and specific environmental concern (runoff/pollutant). An approach for possible implementation of the framework was discussed. The long-term impacts of grass buffer strips (agricultural BMP) and bioretention systems (urban BMP) in reducing total phosphorus were simulated to demonstrate the framework. Data gaps were captured in estimating the long-term performance of the BMPs. A Bayesian method was used to match the simulated distribution of long-term BMP efficiencies with the observed distribution with the assumption that the observed data represented long-term BMP efficiencies. The simulated distribution matched the observed distribution well with only small total predictive uncertainties. With additional data, the same method can be used to further improve the simulation results. The modeling framework and results of this study, which can be adopted in hydrologic/water quality models to better represent long-term BMP effectiveness, can help improve decision support systems for creating long-term stormwater management strategies for watershed management projects.

  2. Nutrient removal using biosorption activated media: Preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    International Nuclear Information System (INIS)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 23 ha predominantly residential watershed in north-central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop an innovative stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO 3 − /Cl − ) ratios for the shallow groundwater indicates that prior to using BAM, NO 3 − concentrations were substantially influenced by nitrification or variations in NO 3 − input. In contrast, for the new basin utilizing BAM, NO 3 − /Cl − ratios indicate minor nitrification and NO 3 − losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest that NO 3 − losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by the increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO 4 3− ) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO 4 3− /Cl − ratios for shallow

  3. Evaluation of the Role of Public Outreach and Stakeholder Engagement in Stormwater Funding Decisions in New England

    Science.gov (United States)

    A detailed report examining the role of public outreach and stakeholder engagement in stormwater funding decisions based on the experiences of eleven small and medium-sized communities in New England.

  4. Stormwater Pollution Prevention Plan TA-60 Roads and Grounds Facility and Associated Sigma Mesa Staging Area

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Leonard Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    This Stormwater Pollution Prevention Plan (SWPPP) is applicable to operations at the Technical Area -60 (TA-60) Roads and Grounds Facility and Associated Sigma Mesa Staging Area off Eniwetok Drive, in Los Alamos County, New Mexico.

  5. TREATMENT OF URBAN STORMWATER FOR DISSOLVED POLLUTANTS: A COMPARATIVE STUDY OF THREE NATURAL ORGANIC MEDIA

    Science.gov (United States)

    The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...

  6. Efficiency of blue-green stormwater retrofits for flood mitigation - Conclusions drawn from a case study in Malmö, Sweden.

    Science.gov (United States)

    Haghighatafshar, Salar; Nordlöf, Beatrice; Roldin, Maria; Gustafsson, Lars-Göran; la Cour Jansen, Jes; Jönsson, Karin

    2018-02-01

    Coupled one-dimensional (1D) sewer and two-dimensional (2D) overland flow hydrodynamic models were constructed to evaluate the flood mitigation efficiency of a renowned blue-green stormwater retrofit, i.e. Augustenborg, in Malmö, Sweden. Simulation results showed that the blue-green stormwater systems were effective in controlling local surface flooding in inner-city catchments, having reduced the total flooded surfaces by about 70%. However, basement flooding could still be a potential problem depending on the magnitude of the inflows through combined sewer from upstream areas. Moreover, interactions between blue-green retrofits and the surrounding pipe-system were studied. It was observed that the blue-green retrofits reduced the peak flows by approximately 80% and levelled out the runoff. This is a substantial advantage for downstream pipe-bound catchments, as they do not receive a cloudburst-equivalent runoff from the retrofitted catchment, but a reduced flow corresponding to a much milder rainfall. Blue-green retrofits are more effective if primarily implemented in the upstream areas of a pipe-bound catchment since the resulting reduced runoff and levelled out discharge would benefit the entire network lying downstream. Implementing blue-green retrofits from upstream towards downstream can be considered as a sustainable approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of Urban Stormwater Infrastructure and Spatial Scale on Nutrient Export and Runoff from Semi-Arid Urban Catchments

    Science.gov (United States)

    Hale, R. L.; Turnbull, L.; Earl, S.; Grimm, N. B.

    2011-12-01

    There has been an abundance of literature on the effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs as well as hydrology. Less is known, however, about nutrient transport processes and processing in urban watersheds. Engineered drainage systems are likely to play a significant role in controlling the transport of water and nutrients downstream, and variability in these systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 12 watersheds ranging in scale from 5 to 17000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (density residential), but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or modified washes, and retention basins. At the outlet of each of these catchments we monitored rainfall and discharge, and sampled stormwater throughout runoff events for dissolved nitrogen (N), phosphorus (P), and organic carbon (oC). Urban stormwater infrastructure is characterized by a range of hydrologic connectivity. Piped watersheds are highly connected and runoff responds linearly to rainfall events, in contrast to watersheds drained with retention basins and washes, where runoff exhibits a nonlinear threshold response to rainfall events. Nutrient loads from piped watersheds scale linearly with total storm rainfall. Because of frequent flushing, nutrient concentrations from these sites are lower than from wash and retention basin drained sites and total nutrient loads exhibit supply limitation, e.g., nutrient loads are poorly predicted by storm rainfall and are strongly controlled by factors that determine the amount of nutrients stored within the watershed, such as antecedent dry days. In contrast, wash and retention basin-drained watersheds exhibit transport limitation. These watersheds flow less frequently than pipe

  8. Using Value-Focused Thinking to Evaluate the Use of Innovative Stormwater Management Technologies on Air Force Installations

    National Research Council Canada - National Science Library

    Falcone, Jeffrey T

    2007-01-01

    ...., buildings, parking lots, streets) that increase runoff volume and flow rate. Conventional stormwater management practices focus on collecting runoff into centralized channels and conveying it as quickly as possible to local bodies of water...

  9. Temporal and spatial patterns of internal phosphorus recycling in a South Florida (USA) stormwater treatment area

    Science.gov (United States)

    Large constructed wetlands, known as stormwater treatment areas (STAs), have been deployed to remove phosphorus (P) in drainage waters before discharge into the Everglades in South Florida, USA. Their P removal performance depends on internal P cycling under typically hydrated, b...

  10. Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers.

    Science.gov (United States)

    Sidhu, J P S; Ahmed, W; Gernjak, W; Aryal, R; McCarthy, D; Palmer, A; Kolotelo, P; Toze, S

    2013-10-01

    The concurrence of human sewage contamination in urban stormwater runoff (n=23) from six urban catchments across Australia was assessed by using both microbial source tracking (MST) and chemical source tracking (CST) markers. Out of 23 stormwater samples human adenovirus (HAv), human polyomavirus (HPv) and the sewage-associated markers; Methanobrevibacter smithii nifH and Bacteroides HF183 were detected in 91%, 56%, 43% and 96% of samples, respectively. Similarly, CST markers paracetamol (87%), salicylic acid (78%) acesulfame (96%) and caffeine (91%) were frequently detected. Twenty one samples (91%) were positive for six to eight sewage related MST and CST markers and remaining two samples were positive for five and four markers, respectively. A very good consensus (>91%) observed between the concurrence of the HF183, HAv, acesulfame and caffeine suggests good predictability of the presence of HAv in samples positive for one of the three markers. High prevalence of HAv (91%) also suggests that other enteric viruses may also be present in the stormwater samples which may pose significant health risks. This study underscores the benefits of employing a set of MST and CST markers which could include monitoring for HF183, adenovirus, caffeine and paracetamol to accurately detect human sewage contamination along with credible information on the presence of human enteric viruses, which could be used for more reliable public health risk assessments. Based on the results obtained in this study, it is recommended that some degree of treatment of captured stormwater would be required if it were to be used for non-potable purposes. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  11. Characteristic Rain Events: A Methodology for Improving the Amenity Value of Stormwater Control Measures

    DEFF Research Database (Denmark)

    Smit Andersen, Jonas; Lerer, Sara Maria; Backhaus, Antje

    2017-01-01

    Local management of rainwater using stormwater control measures (SCMs) is gaining increased attention as a sustainable alternative and supplement to traditional sewer systems. Besides offering added utility values, many SCMs also offer a great potential for added amenity values. One way...... of achieving amenity value is to stage the rainwater and thus bring it to the attention of the public. We present here a methodology for creating a selection of rain events that can help bridge between engineering and landscape architecture when dealing with staging of rainwater. The methodology uses......; here we show its use for Danish conditions. We illustrate with a case study how CREs can be used in combination with a simple hydrological model to visualize where, how deep and for how long water is visible in a landscape designed to manage rainwater....

  12. Missing the link: urban stormwater quality and resident behaviour

    African Journals Online (AJOL)

    the linkages between what they do on the land and impacts on urban rivers. The findings suggest ... the impact of poorly-treated wastewater being discharged into urban river ..... discharge, water quality, ecological conditions) that is balanced.

  13. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    Science.gov (United States)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 22.7 ha predominantly residential watershed in central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop a prototype stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO3-/Cl-) ratios for the shallow groundwater indicate that prior to using BAM, NO3- concentrations were substantially influenced by nitrification or variations in NO3- input. In contrast, for the prototype basin utilizing BAM, NO3-/Cl- ratios indicate minor nitrification and NO3- losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest NO3- losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO43-) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO43-/Cl- ratios for shallow groundwater indicate predominantly minor increases and

  14. Transport and fate of viruses in sediment and stormwater from a managed aquifer recharge site

    Science.gov (United States)

    Enteric viruses are one of the major concerns in water reclamation and reuse at managed aquifer recharge (MAR) sites. In this study, the transport and fate of bacteriophages MS2, PRD1, and FX174 were studied in sediment and stormwater (SW) collected from a MAR site in Parafield, Australia. Column ex...

  15. The impact of green stormwater infrastructure installation on surrounding health and safety.

    Science.gov (United States)

    Kondo, Michelle C; Low, Sarah C; Henning, Jason; Branas, Charles C

    2015-03-01

    We investigated the health and safety effects of urban green stormwater infrastructure (GSI) installments. We conducted a difference-in-differences analysis of the effects of GSI installments on health (e.g., blood pressure, cholesterol and stress levels) and safety (e.g., felonies, nuisance and property crimes, narcotics crimes) outcomes from 2000 to 2012 in Philadelphia, Pennsylvania. We used mixed-effects regression models to compare differences in pre- and posttreatment measures of outcomes for treatment sites (n=52) and randomly chosen, matched control sites (n=186) within multiple geographic extents surrounding GSI sites. Regression-adjusted models showed consistent and statistically significant reductions in narcotics possession (18%-27% less) within 16th-mile, quarter-mile, half-mile (P<.001), and eighth-mile (P<.01) distances from treatment sites and at the census tract level (P<.01). Narcotics manufacture and burglaries were also significantly reduced at multiple scales. Nonsignificant reductions in homicides, assaults, thefts, public drunkenness, and narcotics sales were associated with GSI installation in at least 1 geographic extent. Health and safety considerations should be included in future assessments of GSI programs. Subsequent studies should assess mechanisms of this association.

  16. Invertebrates in stormwater wet detention ponds — Sediment accumulation and bioaccumulation of heavy metals have no effect on biodiversity and community structure

    International Nuclear Information System (INIS)

    Stephansen, Diana Agnete; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Pedersen, Morten Lauge; Vollertsen, Jes

    2016-01-01

    The invertebrate diversity in nine stormwater wet detention ponds (SWDP) was compared with the diversity in eleven small shallow lakes in the western part of Denmark. The SWDPs and lakes were chosen to reflect as large a gradient of pollutant loads and urbanization as possible. The invertebrates as well as the bottom sediments of the ponds and shallow lakes were analyzed for copper, iron, zinc, cadmium, chromium, lead, aluminum, nickel, arsenic and the potentially limiting nutrient, phosphorus. The Principal Component Analysis showed that invertebrates in SWDPs and lakes differed with respect to bioaccumulation of these elements, as did the sediments, albeit to a lesser degree. However, the Detrended Correspondence Analysis and the TWINSPAN showed that the invertebrate populations of the ponds and lakes could not be distinguished, with the possible exception of highway ponds presenting a distinct sub-group of wet detention ponds. The SWDPs and shallow lakes studied seemed to constitute aquatic ecosystems of similar taxon richness and composition as did the 11 small and shallow lakes. This indicates that SWDPs, originally constructed for treatment and flood protection purposes, become aquatic environments which play a local role for biodiversity similar to that of natural small and shallow lakes. - Highlights: • Biota of stormwater ponds had higher levels of metals compared to natural lakes. • Bioaccumulation of metals did not affect the biodiversity of the water bodies. • Biota composition in stormwater ponds and natural lakes was indistinguishable. • Stormwater ponds can play a role for biodiversity similar to natural lakes.

  17. Invertebrates in stormwater wet detention ponds — Sediment accumulation and bioaccumulation of heavy metals have no effect on biodiversity and community structure

    Energy Technology Data Exchange (ETDEWEB)

    Stephansen, Diana Agnete, E-mail: das@civil.aau.dk [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark); Nielsen, Asbjørn Haaning [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark); Hvitved-Jacobsen, Thorkild [Department of Environmental Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9200 Aalborg East (Denmark); Pedersen, Morten Lauge; Vollertsen, Jes [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark)

    2016-10-01

    The invertebrate diversity in nine stormwater wet detention ponds (SWDP) was compared with the diversity in eleven small shallow lakes in the western part of Denmark. The SWDPs and lakes were chosen to reflect as large a gradient of pollutant loads and urbanization as possible. The invertebrates as well as the bottom sediments of the ponds and shallow lakes were analyzed for copper, iron, zinc, cadmium, chromium, lead, aluminum, nickel, arsenic and the potentially limiting nutrient, phosphorus. The Principal Component Analysis showed that invertebrates in SWDPs and lakes differed with respect to bioaccumulation of these elements, as did the sediments, albeit to a lesser degree. However, the Detrended Correspondence Analysis and the TWINSPAN showed that the invertebrate populations of the ponds and lakes could not be distinguished, with the possible exception of highway ponds presenting a distinct sub-group of wet detention ponds. The SWDPs and shallow lakes studied seemed to constitute aquatic ecosystems of similar taxon richness and composition as did the 11 small and shallow lakes. This indicates that SWDPs, originally constructed for treatment and flood protection purposes, become aquatic environments which play a local role for biodiversity similar to that of natural small and shallow lakes. - Highlights: • Biota of stormwater ponds had higher levels of metals compared to natural lakes. • Bioaccumulation of metals did not affect the biodiversity of the water bodies. • Biota composition in stormwater ponds and natural lakes was indistinguishable. • Stormwater ponds can play a role for biodiversity similar to natural lakes.

  18. Recycling of salt-contaminated stormwater runoff for brine production at Virginia Department of Transportation road-salt storage facilities.

    Science.gov (United States)

    2008-01-01

    A large part of the Virginia Department of Transportation's (VDOT's) maintenance effort comprises the implementation of its snow removal and ice control program. Earlier research confirmed that VDOT captures significant volumes of salt-laden stormwat...

  19. Model Performance Evaluation and Scenario Analysis (MPESA)

    Science.gov (United States)

    Model Performance Evaluation and Scenario Analysis (MPESA) assesses the performance with which models predict time series data. The tool was developed Hydrological Simulation Program-Fortran (HSPF) and the Stormwater Management Model (SWMM)

  20. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    Science.gov (United States)

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

  1. Stormwater runoff plumes in the Southern California Bight: A comparison study with SAR and MODIS imagery.

    Science.gov (United States)

    Holt, Benjamin; Trinh, Rebecca; Gierach, Michelle M

    2017-05-15

    Stormwater runoff is the largest source of pollution in the Southern California Bight (SCB), resulting from untreated runoff and pollutants from urban watersheds entering the coastal waters after rainstorms. We make use of both satellite SAR and MODIS-Aqua ocean color imagery to examine two different components of runoff plumes, the surface slick and the sediment discharge. We expand on earlier satellite SAR studies by examining an extensive collection of multi-platform SAR imagery, spanning from 1992 to 2014, that provides a more comprehensive view of the plume surface slick characteristics, illustrated with distribution maps of the extent and flow direction of the plumes. The SAR-detected surface plumes are compared with coincident rain and runoff measurements, and with available measured shoreline fecal bacteria loads. We illustrate differences in the detection of SAR surface plumes with the sediment-related discharge plumes derived from MODIS imagery. A conceptual satellite stormwater runoff monitoring approach is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Removal of dissolved heavy metals from pre-settled stormwater runoff by iron-oxide coated sand (IOCS)

    DEFF Research Database (Denmark)

    Møller, J.; Ledin, Anna; Mikkelsen, Peter Steen

    2002-01-01

    (Pb=20, Cu=40, Zn=110, and Cr=15 ppb). Column experiments were conducted to test the influence of the infiltration rate (1 or 3 m/h) and the type of iron(hydr)oxide mineral (amorphous ferrihydrite and goethite coated sand). The results show that at least 90% of lead, copper and zinc can be removed......Sorption to iron-oxide coated sand (IOCS) is a promosing technology for removal of the dissolved heavy metal fraction in stormwater runoff. The development of a new technology is necessary since studies of stormwater runoff from traffic areas indicate that an oil separator and detention pond may...... by IOCS after 480 pore volumes. Control columns with uncoated filter sand show that lead, copper and zinc were removed with >95%, 35% and 5%, respectively. The removal of the negative metaloxy-ion, CrO4-3 was insignificant in both IOCS and sand columns at pH=7.7. Destruction of the columns after...

  3. Quality Model Based on Cots Quality Attributes

    OpenAIRE

    Jawad Alkhateeb; Khaled Musa

    2013-01-01

    The quality of software is essential to corporations in making their commercial software. Good or poorquality to software plays an important role to some systems such as embedded systems, real-time systems,and control systems that play an important aspect in human life. Software products or commercial off theshelf software are usually programmed based on a software quality model. In the software engineeringfield, each quality model contains a set of attributes or characteristics that drives i...

  4. Designing Green Stormwater Infrastructure for Hydrologic and Human Benefits: An Image Based Machine Learning Approach

    Science.gov (United States)

    Rai, A.; Minsker, B. S.

    2014-12-01

    Urbanization over the last century has degraded our natural water resources by increasing storm-water runoff, reducing nutrient retention, and creating poor ecosystem health downstream. The loss of tree canopy and expansion of impervious area and storm sewer systems have significantly decreased infiltration and evapotranspiration, increased stream-flow velocities, and increased flood risk. These problems have brought increasing attention to catchment-wide implementation of green infrastructure (e.g., decentralized green storm water management practices such as bioswales, rain gardens, permeable pavements, tree box filters, cisterns, urban wetlands, urban forests, stream buffers, and green roofs) to replace or supplement conventional storm water management practices and create more sustainable urban water systems. Current green infrastructure (GI) practice aims at mitigating the negative effects of urbanization by restoring pre-development hydrology and ultimately addressing water quality issues at an urban catchment scale. The benefits of green infrastructure extend well beyond local storm water management, as urban green spaces are also major contributors to human health. Considerable research in the psychological sciences have shown significant human health benefits from appropriately designed green spaces, yet impacts on human wellbeing have not yet been formally considered in GI design frameworks. This research is developing a novel computational green infrastructure (GI) design framework that integrates hydrologic requirements with criteria for human wellbeing. A supervised machine learning model is created to identify specific patterns in urban green spaces that promote human wellbeing; the model is linked to RHESSYS model to evaluate GI designs in terms of both hydrologic and human health benefits. An application of the models to Dead Run Watershed in Baltimore showed that image mining methods were able to capture key elements of human preferences that could

  5. Heavy metal composition in stormwater and retention in ponds dependent on pond age, design and catchment type

    DEFF Research Database (Denmark)

    Egemose, Sara; Sønderup, Melanie J.; Grudinina, Anna

    2015-01-01

    Heavy metals have toxic effects on flora and fauna in the aquatic environments and are of great concern in stormwater. Heavy metal runoff was studied in 37 stormwater ponds in Denmark with varying heavy metal load, catchment type and pond design. The studied metals were Cu, Cr, Cd, Pb, Ni and Zn...... difficult to retain. The removal efficiency in the ponds varied considerably, with the highest retention of Pb, Ni and Zn due to higher particulate fraction. The retention increased with increased pond volume-to-reduced catchment area ratio. In addition, the pond age affected the efficiency; whereas ponds...... less than 1-2 years efficiently removed all metals, 30-40-year-old ponds only removed Pb, Ni and Zn, but steeply decreasing over the years. Physical parameters such as pond size, age and sedimentation patterns were found to play a more significant role in the removal compared with chemical parameters...

  6. Attention modeling for video quality assessment

    DEFF Research Database (Denmark)

    You, Junyong; Korhonen, Jari; Perkis, Andrew

    2010-01-01

    averaged spatiotemporal pooling. The local quality is derived from visual attention modeling and quality variations over frames. Saliency, motion, and contrast information are taken into account in modeling visual attention, which is then integrated into IQMs to calculate the local quality of a video frame...... average between the global quality and the local quality. Experimental results demonstrate that the combination of the global quality and local quality outperforms both sole global quality and local quality, as well as other quality models, in video quality assessment. In addition, the proposed video...... quality modeling algorithm can improve the performance of image quality metrics on video quality assessment compared to the normal averaged spatiotemporal pooling scheme....

  7. Runoff of particle bound pollutants from urban impervious surfaces studied by analysis of sediments from stormwater traps

    International Nuclear Information System (INIS)

    Jartun, Morten; Ottesen, Rolf Tore; Steinnes, Eiliv; Volden, Tore

    2008-01-01

    Runoff sediments from 68 small stormwater traps around the harbor of urban Bergen, Norway, were sampled and the concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), heavy metals, and total organic carbon (TOC) were determined in addition to grain size. Our study provides empirical data from a large area in the interface between the urban and marine environment, studying the active transport of pollutants from land-based sources. The results of the analyses clearly demonstrate the importance of the urban environment representing a variety of contamination sources, and that stormwater runoff is an important dispersion mechanism of toxic pollutants. The concentrations of different pollutants in urban runoff sediments show that there are several active pollution sources supplying the sewage systems with PCBs, PAHs and heavy metals such as lead (Pb), zinc (Zn) and cadmium (Cd). The concentration of PCB 7 in the urban runoff sediments ranged between 16 , the concentration range was < 0.2-80 mg/kg, whereas the concentration ranges of Pb, Zn and Cd were 9-675, 51.3-4670 and 0.02-11.1 mg/kg respectively. Grain size distribution in 21 selected samples varied from a median particle diameter of 13 to 646 μm. However, several samples had very fine-grained particles even up to the 90 percentile of the samples, making them available for stormwater dispersion in suspended form. The sampling approach proposed in this paper will provide environmental authorities with a useful tool to examine ongoing urban contamination of harbors and similar recipients

  8. [Research of the Stormwater Runoff and Pollution Characteristics in Rural Area of Yuhang District, Hangzhou].

    Science.gov (United States)

    Duan, Sheng-hui; Zhao, Yu; Shan, Bao-qing; Tang, Wen-zhong; Zhang, Wen-qiang; Zhang, Shu-zhen; Lang, Chao

    2015-10-01

    In order to investigate the pollution characteristics of stormwater runoff in the southern developed rural region, the runoff samples were collected from four different underlying surfaces during three storm events in Caoqiao and Pujia Tou, which are two typical villages and are located in Yuhang District of Hangzhou. The content of nutrition (nitrogen and phosphorus) and heavy metals (Mn, Cu, Zn, Ni, Cr, Cd, As, Pb) in the simples were analyzed, and the difference of EMC ( event mean concentration) and pollution load of the contaminants in the runoff on different underlying surfaces were compared. The results showed that the EMC of TSS, COD, NH4(+)-N, TP and TN were 16.19, 21.01, 0.74, 1.39 and 2.39 mg x L(-1) in the Caoqiao, respectively; as to Pujia Tou, they were 3.10, 15.69, 0.90, 0.78 and 3.58 mg x L(-1), respectively. The content of heavy metals was all lower than the national surface water quality of two type water in the runoff. Compared with the quality standards for surface water, the EMC of TP was 9 times and 3. 5 times higher and TN was 1. 8 times and 1. 2 times higher in two areas. Besides, the pollution loads of TSS and COD were the highest in farmland.

  9. Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City

    Science.gov (United States)

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries. PMID:25774922

  10. Stormwater runoff pollutant loading distributions and their correlation with rainfall and catchment characteristics in a rapidly industrialized city.

    Science.gov (United States)

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries.

  11. Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery

    Science.gov (United States)

    Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.

    2010-04-01

    Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.

  12. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices - Inter-site comparison.

    Science.gov (United States)

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Branchu, Philippe; Kovacs, Yves; Gromaire, Marie-Christine

    2017-02-01

    Stormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation. Highest metal accumulation was found in a relatively narrow area near the water inflow zone, from which concentrations markedly decreased with increasing distance. Maximum enrichment ratios amounted to >20 in the most contaminated sites. Heavy metal patterns give a time-integrated vision of the non-uniform infiltration fluxes, sedimentation processes and surface flow pathways within the devices. This element indicates that the lateral extent of contamination is mainly controlled by hydraulics. The evidenced spatial structure of soil concentrations restricts the area where remediation measures would be necessary in these systems, and suggests possible optimization of their hydraulic functioning towards an easier maintenance. Heterogeneous upper boundary conditions should be taken into account when studying the fate of micropollutants in infiltration facilities with either mathematical modeling or soil coring field surveys. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater.

    Science.gov (United States)

    Voisin, Jérémy; Cournoyer, Benoit; Vienney, Antonin; Mermillod-Blondin, Florian

    2018-05-16

    Stormwater infiltration systems (SIS) have been built in urban areas to reduce the environmental impacts of stormwater runoff. Infiltration basins allow the transfer of stormwater runoff to aquifers but their abilities to retain contaminants depend on vadose zone properties. This study assessed the influence of vadose zone thickness (VZT) on the transfer of inorganic nutrients (PO 4 3- , NO 3 - , NH 4 + ), dissolved organic carbon (total -DOC- and biodegradable -BDOC-) and bacteria. A field experiment was conducted on three SIS with a thin vadose zone (zone (>10 m). Water samples were collected at three times during a rainy period of 10 days in each infiltration basin (stormwater runoff), in the aquifer impacted by infiltration (impacted groundwater) and in the same aquifer but upstream of the infiltration area (non-impacted groundwater). Inorganic nutrients, organic matter, and dissolved oxygen (DO) were measured on all water samples. Bacterial community structures were investigated on water samples through a next-generation sequencing (NGS) scheme of 16S rRNA gene amplicons (V5-V6). The concentrations of DO and phosphate measured in SIS-impacted groundwaters were significantly influenced by VZT due to distinct biogeochemical processes occurring in the vadose zone. DOC and BDOC were efficiently retained in the vadose zone, regardless of its thickness. Bacterial transfers to the aquifer were overall low, but data obtained on day 10 indicated a significant bacterial transfer in SIS with a thin vadose zone. Water transit time and water saturation of the vadose zone were found important parameters for bacterial transfers. Most bacterial taxa (>60%) from impacted groundwaters were not detected in stormwater runoff and in non-impacted groundwaters, indicating that groundwater bacterial communities were significantly modified by processes associated with infiltration (remobilization of bacteria from vadose zone and/or species sorting). Copyright © 2018 Elsevier B

  14. A tale of two rain gardens: Barriers and bridges to adaptive management of urban stormwater in Cleveland, Ohio

    Science.gov (United States)

    Green infrastructure installations such as rain gardens and bioswales are increasingly regarded as viable tools to mitigate stormwater runoff at the parcel level. The use of adaptive management to implement and monitor green infrastructure projects as experimental attempts to man...

  15. Polycyclic aromatic hydrocarbon contamination in stormwater detention pond sediments in coastal South Carolina.

    Science.gov (United States)

    Weinstein, John E; Crawford, Kevin D; Garner, Thomas R

    2010-03-01

    The purpose of this study was to characterize the polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of stormwater detention ponds in coastal South Carolina. Levels of the sum of PAH analytes were significantly higher in the sediments of commercial ponds compared to that of reference, golf course, low-density residential, and high-density residential ponds. Isomer ratio analysis suggested that the predominant source of PAHs were pyrogenic; however, many ponds had a PAH signature consistent with mixed uncombusted and combusted PAH sources. PAH levels in these sediments could be modeled using both pond drainage area and pond surface area. These results demonstrate that the sediment from most commercial ponds, and a few residential and golf course ponds, were moderately contaminated with PAHs. PAH levels in these contaminated ponds exceeded between 42% and 75% of the ecological screening values for individual PAH analytes established by US EPA Region IV, suggesting that they may pose a toxicological risk to wildlife.

  16. Water quality mitigation banking : final report, December 2009.

    Science.gov (United States)

    2009-12-01

    Current practice in New Jersey for mitigating stormwater impacts caused by transportation infrastructure : projects is established by NJDEP Stormwater Regulations (N.J.A.C. 7:8). These rules outline specific : processes to offset impacts to water qua...

  17. The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine.

    Science.gov (United States)

    Tilburg, Charles E; Jordan, Linda M; Carlson, Amy E; Zeeman, Stephan I; Yund, Philip O

    2015-07-01

    Faecal pollution in stormwater, wastewater and direct run-off can carry zoonotic pathogens to streams, rivers and the ocean, reduce water quality, and affect both recreational and commercial fishing areas of the coastal ocean. Typically, the closure of beaches and commercial fishing areas is governed by the testing for the presence of faecal bacteria, which requires an 18-24 h period for sample incubation. As water quality can change during this testing period, the need for accurate and timely predictions of coastal water quality has become acute. In this study, we: (i) examine the relationship between water quality, precipitation and river discharge at several locations within the Gulf of Maine, and (ii) use multiple linear regression models based on readily obtainable hydrometeorological measurements to predict water quality events at five coastal locations. Analysis of a 12 year dataset revealed that high river discharge and/or precipitation events can lead to reduced water quality; however, the use of only these two parameters to predict water quality can result in a number of errors. Analysis of a higher frequency, 2 year study using multiple linear regression models revealed that precipitation, salinity, river discharge, winds, seasonality and coastal circulation correlate with variations in water quality. Although there has been extensive development of regression models for freshwater, this is one of the first attempts to create a mechanistic model to predict water quality in coastal marine waters. Model performance is similar to that of efforts in other regions, which have incorporated models into water resource managers' decisions, indicating that the use of a mechanistic model in coastal Maine is feasible.

  18. Stormwater Pollutant Process Analysis with Long-Term Online Monitoring Data at Micro-Scale Sites

    Directory of Open Access Journals (Sweden)

    Dominik Leutnant

    2016-07-01

    Full Text Available Stormwater runoff quality was measured with online turbidity sensors at four common types of small urban subcatchments: (i a flat roof; (ii a parking lot; (iii a residential catchment; and (iv a high-traffic street. Samples were taken to estimate site-specific correlations between total suspended solids (TSS and turbidity. Continuous TSS time series were derived from online turbidity measurements and were used to estimate event loads and event mean concentrations. Rainfall runoff event characteristics were subjected to correlation analysis to TSS loads. Significant correlations were found for rainfall intensities at sites with high imperviousness and decrease with increasing catchment size. Antecedent dry weather periods are only correlated at the parking lot site. Intra-event TSS load distributions were studied with M (V-curves. M (V-curves are grouped at runoff quantiles and statistically described with boxplots. All sites show, in general, a more pronounced first-flush effect. While wash-off of the flat roof tends to be source-limited, the parking lot and high-traffic street sites show a more transport-limited behavior. Wash-off process of the residential catchment appears to be influenced by a composition of different subcatchments.

  19. Geochemical and isotopic tracers of recharge and reclamation of stormwater in an urban aquifer: Adelaide, South Australia

    International Nuclear Information System (INIS)

    Herczeg, A.L.; Rattray, K.J.; Dillon, P.J.; Pavelic, P.C.; Barry, K.J.

    2002-01-01

    Artificial recharge and reclamation of stormwater into groundwater is a newly developing strategy to augment water resources in the Adelaide metropolitan area of South Australia. Mixing between injected storm water and native groundwater can be most effectively using naturally occurring chloride ion. Stable isotopes of the water molecule are used more effectively during short term tests (i.e., immediately following injection events), and requires frequent monitoring of the surface water end-member. Biogeochemical processes involving geochemical reactions such as organic matter oxidation, carbonate mineral dissolution and sulfide mineral oxidation are very effectively traced by δ 13 C and 14 C (of TDIC) and δ 34 S (of SO 4 2- ). The most important processes occurring in the Tertiary limestone aquifer in Adelaide were carbonate mineral dissolution which is induced largely by CO 2 production during organic matter oxidation. Sulfide mineral oxidation is a minor process, and is accompanied by an equivalent amount of sulfate reduction after injection of the stormwater. (author)

  20. Effects of combined sewer overflow and stormwater on indicator bacteria concentrations in the Tama River due to the high population density of Tokyo Metropolitan area.

    Science.gov (United States)

    Ham, Young-Sik; Kobori, Hiromi; Takasago, Masahisa

    2009-05-01

    The indicator bacteria (standard plate count, total coliform, and fecal coliform bacteria) concentrations have been investigated using six ambient habitats (population density, percent sewer penetration, stream flow rate (m(3)/sec), percent residential area, percent forest area and percent agricultural area) in the Tama River basin in Tokyo, Japan during June 2003 to January 2005. The downstream and tributary Tama River showed higher concentrations of TC and FC bacteria than the upstream waters, which exceeded an environmental quality standard for rivers and a bathing water quality criterion. It was estimated that combined sewer overflow (CSO) and stormwater effluents contributed -4-23% to the indicator bacteria concentrations of the Tama River. The results of multiple regression analyses show that the indicator bacteria concentrations of Tama River basin are significantly affected by population density. It is concluded that the Tama River received a significant bacterial contamination load originating from the anthropogenic source.

  1. Integrated Hydrological Model-Based Assessment of Stormwater Management Scenarios in Copenhagen’s First Climate Resilient Neighbourhood Using the Three Point Approach

    Directory of Open Access Journals (Sweden)

    Sara Maria Lerer

    2017-11-01

    Full Text Available The city of Copenhagen currently pursues a very ambitious plan to make the city ‘cloudburst proof’ within the next 30 years. The cloudburst management plan has the potential to support the city’s aim to become more green, liveable, and sustainable. In this study, we assessed stormwater system designs using the Three Point Approach (3PA as a framework, where an indicator value for each domain was calculated using state-of-the-art modelling techniques. We demonstrated the methodology on scenarios representing sequential enhancements of the cloudburst management plan for a district that has been appointed to become the first climate resilient neighbourhood in Copenhagen. The results show that if the cloudburst system is exploited to discharge runoff from selected areas that are disconnected from the combined sewer system, then the plan leads to multiple benefits. These include improved flood protection under a 100-years storm (i.e., compliance with the new demands in domain C of the 3PA, reduced surcharge to terrain under a 10-years storm (i.e., compliance with the service goal in domain B of the 3PA and an improved yearly water balance (i.e., better performance in domain A of the 3PA.

  2. Using a Geographic Information System to Assess Site Suitability for Managed Aquifer Recharge using Stormwater Capture

    Science.gov (United States)

    Teo, E. K.; Harmon, R. E.; Beganskas, S.; Young, K. S.; Fisher, A. T.; Weir, W. B.; Lozano, S.

    2015-12-01

    We are completing a regional analysis of Santa Cruz and northern Monterey Counties, CA, to assess the conditions amenable to managed aquifer recharge using stormwater runoff. Communities and water supply agencies across CA are struggling to mitigate the ongoing drought and to develop secure and sustainable water supplies to support long-term municipal, agricultural, environmental and other needs. Enhanced storage of groundwater is an important part of this effort in many basins. This work is especially timely because of the recently enacted "Sustainable Groundwater Management Act" (SGMA), which requires the development of groundwater sustainability agencies and implementation of basin management plans in coming decades. Our analysis focuses specifically on the distributed collection of stormwater runoff, a water source that has typically been treated as a nuisance or waste, from drainages having an area on the order of 40-160 hectares. The first part of this project is a geographic information system (GIS) analysis using surface and subsurface data sets. Developing complete and accurate datasets across the study region required considerable effort to locate, assemble, co-register, patch, and reconcile information from many sources and scales. We have complete spatial coverage for surface data, but subsurface data is more limited in lateral extent. Sites that are most suitable for distributed stormwater capture supporting MAR have high soil infiltration capacity, are well-connected to an underlying aquifer with good transmissive and storage properties, and have space to receive MAR. Additional considerations include method of infiltration, slope, and land use and access. Based on initial consideration of surface data and slope, 7% of the complete study region appears to be "suitable or highly suitable" for MAR (in the top third of the rating system), but there is considerable spatial heterogeneity based on the distribution of shallow soils and bedrock geology.

  3. Quality models for audiovisual streaming

    Science.gov (United States)

    Thang, Truong Cong; Kim, Young Suk; Kim, Cheon Seog; Ro, Yong Man

    2006-01-01

    Quality is an essential factor in multimedia communication, especially in compression and adaptation. Quality metrics can be divided into three categories: within-modality quality, cross-modality quality, and multi-modality quality. Most research has so far focused on within-modality quality. Moreover, quality is normally just considered from the perceptual perspective. In practice, content may be drastically adapted, even converted to another modality. In this case, we should consider the quality from semantic perspective as well. In this work, we investigate the multi-modality quality from the semantic perspective. To model the semantic quality, we apply the concept of "conceptual graph", which consists of semantic nodes and relations between the nodes. As an typical of multi-modality example, we focus on audiovisual streaming service. Specifically, we evaluate the amount of information conveyed by a audiovisual content where both video and audio channels may be strongly degraded, even audio are converted to text. In the experiments, we also consider the perceptual quality model of audiovisual content, so as to see the difference with semantic quality model.

  4. Optimal design of stormwater basins with bio-sorption activated media (BAM) in karst environments - phase I : site screening and selection.

    Science.gov (United States)

    2015-12-01

    Anthropogenic activities within the Silver Springs springshed over recent decades may have contributed : to elevated nutrient concentrations in stormwater runoff and groundwater, leading to the eutrophication : of Silver Springs. To remove the nutrie...

  5. Determining the Chemical and Biological Availability of Zinc in Urban Stormwater Retention Ponds

    Science.gov (United States)

    Camponelli, K.; Casey, R.; Lev, S. M.; Landa, E. R.; Snodgrass, J.

    2005-12-01

    Highway runoff has the potential to negatively impact receiving systems due to transport of contaminants that accumulate on road surfaces. Metals such as copper and zinc are major components of automobile brake pads and tires, respectively. As these automobile parts are degraded, these metal containing particulates are deposited on the roadway and are washed into storm water retention ponds and surface water bodies during precipitation events. It has been estimated that 15 to 60% of the Zn in urban stormwater runoff comes from tire wear and that tire wear is a significant source of Zn to the environment with release inventories comparable to waste incineration sources. In urban and sub-urban systems, this large source of Zn can accumulate in stormwater retention ponds which serve as habitat for a variety of species. Understanding the chemical and biological availability of Zn to biota is integral to assessing the habitat quality of retention ponds. This study is a first effort to relate the amount and speciation of Zn in a retention pond to Zn inputs through highway-derived runoff events. In addition, results suggest that the chemical speciation and availability of particulate Zn can be related to the bioavailability and toxicity of Zn to pond organisms (i.e. larval amphibians). The study site in Owings Mills, MD is located next to a four-lane highway from which it receives runoff through a single culvert. Five species of anurans are known to utilize the pond as a breeding site and Zn in amphibian tissues and retention pond sediments were highly elevated at this site in 2001 and 2002. A recent analysis of pond sediments, soils, roadway dust and storm water collected at this site suggests that roadway particulate matter transported during runoff events is the dominant source of Zn in this system. Overall, Zn and other trace metals were found to be most abundant in the clay sized faction of pond sediments and soils. The pond cores were found to have higher Zn and Cu

  6. Study on Storm-Water Management of Grassed Swales and Permeable Pavement Based on SWMM

    Directory of Open Access Journals (Sweden)

    Jianguang Xie

    2017-10-01

    Full Text Available Grassed swales and permeable pavement that have greater permeable underlying surface relative to hard-pressing surface can cooperate with the city pipe network on participating in urban storm flood regulation. This paper took Nanshan village in Jiangsu Province as an example, the storm-water management model (SWMM was used to conceptualize the study area reasonably, and the low-impact development (LID model and the traditional development model were established in the region. Based on the storm-intensity equation, the simulation scene employed the Chicago hydrograph model to synthesize different rainfall scenes with different rainfall repetition periods, and then contrasted the storm-flood-management effect of the two models under the condition of using LID facilities. The results showed that when the rainfall repetition period ranged from 0.33a to 10a (a refers to the rainfall repetition period, the reduction rate of total runoff in the research area that adopted LID ranged from 100% to 27.5%, while the reduction rate of peak flow ranged from 100% to 15.9%, and when the values of unit area were the same, the combined system (permeable pavement + grassed swales worked more efficiently than the sum of the individuals in the reduction of total runoff and peak flow throughout. This research can provide technical support and theoretical basis for urban LID design.

  7. Risk-based enteric pathogen reduction targets for non-potable and direct potable use of roof runoff, stormwater, and greywater

    Science.gov (United States)

    This paper presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., locally-collected greywater, roof runoff, and stormwater). A probabilistic Quantitative Microbial Risk Assessment (QMRA) was use...

  8. Water quality improvement policies: lessons learned from the implementation of Proposition O in Los Angeles, California

    Science.gov (United States)

    Mi-Hyun Park; Michael Stenstrom; Stephanie Pincetl

    2009-01-01

    This article evaluates the implementation of Proposition O, a stormwater cleanup measure, in Los Angeles, California. The measure was intended to create new funding to help the city comply with the Total Maximum Daily Load requirements under the federal Clean Water Act. Funding water quality objectives through a bond measure was necessary because the city had...

  9. Water Quality Improvement through Reductions of Pollutant Loads on Small Scale of Bioretention System

    Science.gov (United States)

    Elyza Muha, Norshafa; Mohd Sidek, Lariyah; Jajarmizadeh, Milad

    2016-03-01

    Bioretention system is introduced as an important topic namely Urban Storm Water Management Manual for Malaysia (MSMA) by the Department of Irrigation and Drainage Malaysia (DID) in May 2012. The main objective of this paper is to evaluate the performance of water quality for small scale bioretention system under tropical climate via MUSIC model. Two bioretention systems 1 and 2 are observed based on the difference media depth. The result of bioretention system is compared with a reference model which has infrastructure with Urban Stormwater Improvement Conceptualisation (MUSIC) for pollutants load reduction and water quality results. Assessment of results via MUSIC software indicates a significant percentage of reduction for Total Suspended Solid (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). The prediction of pollutant reduction via using MUSIC has the harmony for requirement in MSMA. TSS pollutant reduction is more than 80%, while for TP and TN more than 50%. The outcome of this study can be helpful for improvement of the existing MSMA guidelines for application of bioretention systems in Malaysia.

  10. Hydrology and water quality of isolated wetlands: Stormflow changes along two episodic flowpaths

    Directory of Open Access Journals (Sweden)

    James B. Deemy

    2017-12-01

    Full Text Available The Dougherty Plain in southwest Georgia is a flat, karstic, depressional-landscape dominated by irrigated and dry-land agriculture devoted to row-crops and pasture with interspersed wetlands and forests. Stormwater runoff rarely discharges into perennial rivers and streams, except during large storms that induce hydrologic connectivity between fields, wetlands, and streams (event return period is less than one per year.We report the hydrologic and water-quality effects of a 173-mm rainfall event that generated three weeks (Feb 15 to Mar 9, 2014 of continuous flows through and between three normally isolated wetlands. A suite of water-quality parameters (physical, nutrients, and pathogen indicators was monitored daily from offsite (agricultural and onsite (forested sources at two sites along one flowpath and five sites along a second at the Joseph W Jones Ecologic Research Center at Ichauway.Decreasing sediment, nutrient, and pathogen concentrations were observed as water moved across the forested landscapes with embedded wetlands. Two physical parameters (specific conductance and turbidity were strongly-to-moderately correlated (r > 0.8, 0.5, respectively with laboratory-measured parameters (e.g., nutrients, suspended solids, pathogens, which suggest their utility for routine stormwater monitoring and prioritizing sample collection for laboratory analyses at this site. Keywords: Longleaf-pine, Isolated wetlands, Stormflow, Agricultural runoff, Water quality, Dougherty plain, Nutrients, Pathogens

  11. Evaluating and Predicting the Effectiveness of Green Infrastructure on a Small Watershed Scale - Emphasis on Water Quality, Flow, Thermal Regime, Substrate Integrity, and Biological Condition

    Science.gov (United States)

    Assessments of the effectiveness of stormwater best management practices (BMPs) have focused on measurement of load or concentration reductions, which can be translated to predict biological impacts based on chemical water quality criteria. However, many of the impacts of develo...

  12. Environmental monitoring of selected pesticides and organic chemicals in urban stormwater recycling systems using passive sampling techniques.

    Science.gov (United States)

    Page, Declan; Miotliński, Konrad; Gonzalez, Dennis; Barry, Karen; Dillon, Peter; Gallen, Christie

    2014-03-01

    Water recycling via aquifers has become a valuable tool to augment urban water supplies in many countries. This study reports the first use of passive samplers for monitoring of organic micropollutants in Managed Aquifer Recharge (MAR). Five different configurations of passive samplers were deployed in a stormwater treatment wetland, groundwater monitoring wells and a recovery tank to capture a range of polar and non-polar micropollutants present in the system. The passive samplers were analysed for a suite of pesticides, polycyclic aromatic hydrocarbons (PAHs) and other chemicals. As a result, 17 pesticides and pesticide degradation products, 5 PAHs and 8 other organic chemicals including flame retardants and fragrances were detected in urban stormwater recharging Aquifer Storage and Recovery (ASR) and an Aquifer Storage Transfer and Recovery (ASTR) system. Of the pesticides detected, diuron, metolachlor and chlorpyrifos were generally detected at the highest concentrations in one or more passive samplers, whereas chlorpyrifos, diuron, metolachlor, simazine, galaxolide and triallate were detected in multiple samplers. Fluorene was the PAH detected at the highest concentration and the flame retardant Tris(1-chloro-2-propyl)phosphate was the chemical detected in the greatest abundance at all sites. The passive samplers showed different efficiencies for capture of micropollutants with the Empore disc samplers giving the most reliable results. The results indicate generally low levels of organic micropollutants in the stormwater, as the contaminants detected were present at very low ng/L levels, generally two to four orders of magnitude below the drinking water guidelines (NHMRC, 2011). The efficiency of attenuation of these organic micropollutants during MAR was difficult to determine due to variations in the source water concentrations. Comparisons were made between different samplers, to give a field-based calibration where existing lab-based calibrations were

  13. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration.

    Science.gov (United States)

    Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin

    2009-10-01

    Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.

  14. Analysis of the stormwater drainage of the historic walls of Cartagena de Indias between the bastions of San Lucas, Santa Catalina and Santa Clara

    Science.gov (United States)

    Utria, A.; Saba, M.; Quiñones-Bolaños, E.

    2017-12-01

    The city walls of Cartagena between the Baluarte of San Lucas and Santa Clara reflects the consequences of poor stormwater drainage. In the present investigation the current drainage state of this area have been evaluated, assessing its sizing and conditions to be then modelled through SWMM 5 software for return periods of 5, 10, 15 and 20 years respectively. Finally, it has been determined that the physical deterioration of the drainage elements justifies the malfunction of the whole system, therefore cleaning and periodic maintenance of the drainage elements is strongly suggested.

  15. Disulfide polymer grafted porous carbon composites for heavy metal removal from stormwater runoff

    DEFF Research Database (Denmark)

    Ko, Dongah; Mines, Paul D.; Jakobsen, Mogens Havsteen

    2018-01-01

    The emerging concern of heavy metal pollution derived from stormwater runoff has triggered a demand for effective heavy metal sorbents. To be an effective sorbent, high affinity along with rapid sorption kinetics for environmental relevant concentrations of heavy metals is important. Herein, we...... have introduced a new composite suitable for trace metal concentration removal, which consists of cheap and common granular activated carbon covered with polymers containing soft bases, thiols, through acyl chlorination (DiS-AC). Material characterization demonstrated that the polymer was successfully...

  16. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins.

    Science.gov (United States)

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Harris, Willie G; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Factors Influencing Stormwater Mitigation in Permeable Pavement

    Directory of Open Access Journals (Sweden)

    Chun Yan Liu

    2017-12-01

    Full Text Available Permeable pavement (PP is used worldwide to mitigate surface runoff in urban areas. Various studies have examined the factors governing the hydrologic performance of PP. However, relatively little is known about the relative importance of these governing factors and the long-term hydrologic performance of PP. This study applied numerical models—calibrated and validated using existing experimental results—to simulate hundreds of event-based and two long-term rainfall scenarios for two designs of PP. Based on the event-based simulation results, rainfall intensity, rainfall volume, thickness of the storage layer and the hydraulic conductivity of the subgrade were identified as the most influential factors in PP runoff reduction. Over the long term, PP performed significantly better in a relatively drier climate (e.g., New York, reducing nearly 90% of runoff volume compared to 70% in a relatively wetter climate (e.g., Hong Kong. The two designs of PP examined performed differently, and the difference was more apparent in the relatively wetter climate. This study generated insights that will help the design and implementation of PP to mitigate stormwater worldwide.

  18. Coal-tar-based pavement sealcoat and PAHs: implications for the environment, human health, and stormwater management.

    Science.gov (United States)

    Mahler, Barbara J; Metre, Peter C Van; Crane, Judy L; Watts, Alison W; Scoggins, Mateo; Williams, E Spencer

    2012-03-20

    Coal-tar-based sealcoat products, widely used in the central and eastern U.S. on parking lots, driveways, and even playgrounds, are typically 20-35% coal-tar pitch, a known human carcinogen that contains about 200 polycyclic aromatic hydrocarbon (PAH) compounds. Research continues to identify environmental compartments-including stormwater runoff, lake sediment, soil, house dust, and most recently, air-contaminated by PAHs from coal-tar-based sealcoat and to demonstrate potential risks to biological communities and human health. In many cases, the levels of contamination associated with sealed pavement are striking relative to levels near unsealed pavement: PAH concentrations in air over pavement with freshly applied coal-tar-based sealcoat, for example, were hundreds to thousands of times higher than those in air over unsealed pavement. Even a small amount of sealcoated pavement can be the dominant source of PAHs to sediment in stormwater-retention ponds; proper disposal of such PAH-contaminated sediment can be extremely costly. Several local governments, the District of Columbia, and the State of Washington have banned use of these products, and several national and regional hardware and home-improvement retailers have voluntarily ceased selling them.

  19. Coal-tar-based pavement sealcoat and PAHs: implications for the environment, human health, and stormwater management

    Science.gov (United States)

    Mahler, Barbara J.; Van Metre, Peter C.; Crane, Judy L.; Watts, Alison W.; Scoggins, Mateo; Williams, E. Spencer

    2012-01-01

    Coal-tar-based sealcoat products, widely used in the central and eastern U.S. on parking lots, driveways, and even playgrounds, are typically 20-35% coal-tar pitch, a known human carcinogen that contains about 200 polycyclic aromatic hydrocarbon (PAH) compounds. Research continues to identify environmental compartments—including stormwater runoff, lake sediment, soil, house dust, and most recently, air—contaminated by PAHs from coal-tar-based sealcoat and to demonstrate potential risks to biological communities and human health. In many cases, the levels of contamination associated with sealed pavement are striking relative to levels near unsealed pavement: PAH concentrations in air over pavement with freshly applied coal-tar-based sealcoat, for example, were hundreds to thousands of times higher than those in air over unsealed pavement. Even a small amount of sealcoated pavement can be the dominant source of PAHs to sediment in stormwater-retention ponds; proper disposal of such PAH-contaminated sediment can be extremely costly. Several local governments, the District of Columbia, and the State of Washington have banned use of these products, and several national and regional hardware and home-improvement retailers have voluntarily ceased selling them.

  20. Seasonal Trends in Bioaccumulation of Heavy Metals in Fauna of Stormwater Ponds

    DEFF Research Database (Denmark)

    Stephansen, Diana; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2013-01-01

    seasonal trend in concentrations when looking at individual species or groups of species. The number of species caught in ponds and lakes was more or less identical, which together with an only slightly elevated heavy metal content of the fauna supported that stormwater ponds can contribute positively...... in bioaccumulation. The results were compared with similar results from two natural shallow lakes of the same region. The study showed that there was some tendency for copper and also to some degree for other metals to be present in slightly higher concentrations in fauna of the ponds. There was, however, no clear...