WorldWideScience

Sample records for storage technical progress

  1. Hydrogen storage - are we making progress?

    International Nuclear Information System (INIS)

    Blair, L.; Milliken, J.; Satyapal, S.

    2004-01-01

    'Full text:' The efficient storage of hydrogen in compact, lightweight systems that allow greater than 300-mile range has been identified as one of the major technical challenges facing the practical commercialization of fuel cell power systems for light-duty vehicles. Following the hydrogen vision announced by President Bush in his 2003 State of the Union address, the U.S. Department of Energy issued a Grand Challenge, soliciting ideas from universities, national laboratories, and industry. DOE's National Hydrogen Storage Project, an aggressive and innovative research program focused on materials R and D, will be launched in Fiscal Year 2005. An intensive effort is also underway in the private sector, both in the U.S. and abroad, to meet the challenging on-board hydrogen storage requirements. A historical perspective of hydrogen storage research and development will be provided and the current DOE technical targets for hydrogen storage systems will be discussed. The state-of-the-art in hydrogen storage will be summarized and recent progress assessed. Finally future research directions and areas of technical emphasis will be described. (author)

  2. FY2014 Energy Storage R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Energy Storage subprogram in 2014. You can download individual sections at the following website, http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2014-energy-storage-rd-annual-report.

  3. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Hua, T. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Peng, J. -K. [Argonne National Lab. (ANL), Argonne, IL (United States); Lasher, S. [TIAX LLC, Lexington, MA (United States); McKenney, Kurtis [TIAX LLC, Lexington, MA (United States); Sinha, J. [TIAX LLC, Lexington, MA (United States)

    2009-12-01

    Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The report includes an overview of technical progress to date, including the potential to meet DOE onboard storage targets, as well as independent reviews of system cost and energy analyses of the technology paired with delivery costs.

  4. FY2013 Energy Storage R&D Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

  5. Hydrogen Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  6. National Waste Terminal Storage Program. Progress report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Asher, J.M.

    1978-04-01

    The National Waste Terminal Storage Program Report comprises five sections: technical projects, facility projects, planning and analysis, regulatory affairs, and public affairs. Progress made in these areas during the period October 1, 1976, to September 30, 1977, is reported

  7. FY2011 Progress Report for Energy Storage Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-01-31

    The FY 2011 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

  8. 48 CFR 2052.211-71 - Technical progress report.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Technical progress report... Technical progress report. As prescribed at 2011.104-70(b), the contracting officer shall insert the... solicitation. Technical Progress Report (JAN 1993) The contractor shall provide a monthly Technical Progress...

  9. Technical study gas storage. Final report

    International Nuclear Information System (INIS)

    Borowka, J.; Moeller, A.; Zander, W.; Koischwitz, M.A.

    2001-01-01

    This study will answer the following questions: (a) For what uses was the storage facility designed and for what use is it currently applied? Provide an overview of the technical data per gas storage facility: for instance, what is its capacity, volume, start-up time, etc.; (b) How often has this facility been used during the past 10 years? With what purpose was the facility brought into operation at the time? How much gas was supplied at the time from the storage facility?; (c) Given the characteristics and the use of the storage facility during the past 10 years and projected gas consumption in the future, how will the storage facility be used in the future?; (d) Are there other uses for which the gas storage facility can be deployed, or can a single facility be deployed for numerous uses? What are the technical possibilities in such cases? Questions (a) and (b) are answered separately for every storage facility. Questions (c) and (d) in a single chapter each (Chapter 2 and 3). An overview of the relevant storage data relating to current use, use in the last 10 years and use in future is given in the Annex

  10. Energy Storage Annual Progress Report for FY15

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cao, Lei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Graf, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles (PEVs) in support of the EV Everywhere Grand Challenge. PEVs could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. The Energy Storage program targets overcoming technical barriers to enable market success, including: (1) significantly reducing battery cost; (2) increasing battery performance (power, energy, durability); (3) reducing battery weight and volume; and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. The National Renewable Energy Laboratory (NREL) supports the VTO's Energy Storage program by evaluating the thermal performance of cells and packs, developing electrochemical-thermal models to accelerate the design cycle for developing batteries, investigating the behavior of lithium-ion batteries under abuse conditions such as crush, enhancing the durability of electrodes by coatings such as atomic layer deposition, synthesis of materials for higher energy density batteries, and conducting techno-economic analysis of batteries in various electric-drive vehicles. This report describes the progress made by NREL on the research and development projects funded by the DOE VTO Energy Storage subprogram in FY15.

  11. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570 0 C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 270 0 C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380 0 C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400 0 C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  12. Economic and technical feasibility study of compressed air storage

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    The results of a study of the economic and technical feasibility of compressed air energy storage (CAES) are presented. The study, which concentrated primarily on the application of underground air storage with combustion turbines, consisted of two phases. In the first phase a general assessment of the technical alternatives, economic characteristics and the institutional constraints associated with underground storage of compressed air for utility peaking application was carried out. The goal of this assessment was to identify potential barrier problems and to define the incentive for the implementation of compressed air storage. In the second phase, the general conclusions of the assessment were tested by carrying out the conceptual design of a CAES plant at two specific sites, and a program of further work indicated by the assessment study was formulated. The conceptual design of a CAES plant employing storage in an aquifer and that of a plant employing storage in a conventionally excavated cavern employing a water leg to maintain constant pressure are shown. Recommendations for further work, as well as directions of future turbo-machinery development, are made. It is concluded that compressed air storage is technically feasible for off-peak energy storage, and, depending on site conditions, CAES plants may be favored over simple cycle turbine plants to meet peak demands. (LCL)

  13. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1--July 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Progress is reported on research projects related to the following: Electronic resource library; Environment, safety, and health; Communication, education, training, and community involvement; Nuclear and other materials; and Reporting, evaluation, monitoring, and administration. Technical studies investigate remedial action of high explosives-contaminated lands, radioactive waste management, nondestructive assay methods, and plutonium processing, handling, and storage.

  14. Technical-economic study of electricity storage

    International Nuclear Information System (INIS)

    Harriche, Farah; Souletis, Romain; Carrette, Bertille; Jarry, Gregory; Dereuddre, Antoine

    2013-01-01

    This study first reports an analysis of all services which could be provided by storage to the French electric power system. It proposes an overview of existing technologies, a comparison of their technical characteristics, and a synthesis of technologies which are the most suited to the main services. The author then discusses some regulatory evolutions which are necessary for a good development of the power storage sector in France. An economic scenario is then proposed for the development of storage by 2030. The author indicates expected capacities for each technologies and possible valorisations

  15. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.

  16. Technical progress and its strategic consequences

    International Nuclear Information System (INIS)

    Bouchard, G.

    1999-01-01

    The history of energy during recent decades has shown that technical progress can have consequences for the organisation of markets, company strategies and the economy in general, confounding all forecasts and going beyond simple technical change. As a consequence for example, improvements in the techniques concerning the exploration and production of hydrocarbons have led to the petrol 'counter-crisis', the reduction in the power of OPEC and undreamed of gains in wealth for certain countries. The progress in gas turbines has led to the reversal of the age-old tendency towards increases in the size of electricity production units and encouraged the liberation of this sector. When looking at the future it is therefore judicious to try and understand the forces at work, and the major trends which result. This is the aim of the articles in this edition of the Revue de l'Energie, published on the occasion of the European colloquium on 'Technical progress faced with the challenges of the energy sector in the future' organised by the Association of Energy Economists. (authors)

  17. Critical experiments supporting underwater storage of tightly packed configurations of spent fuel pins. Technical progress report, January 1-March 31, 1981

    International Nuclear Information System (INIS)

    Hoovler, G.S.; Baldwin, M.N.

    1981-04-01

    Critical experiments are in progress on arrays of 2 1/2% enriched UO 2 fuel pins simulating underwater pin storage of spent power reactor fuel. Pin storage refers to a spent fuel storage concept in which the fuel assemblies are dismantled and the fuel pins are tightly packed into specially designed canisters. These experiments are providing benchmark data with which to validate nuclear codes used to design spent fuel pin storage racks

  18. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  19. Comparison study of the technical characteristics and financial analysis of electric battery storage systems for residential grid

    Science.gov (United States)

    Palivos, Marios; Vokas, Georgios A.; Anastasiadis, Anestis; Papageorgas, Panagiotis; Salame, Chafic

    2018-05-01

    One of the major energy issues of our days is reliable and effective energy generation and supply of electricity grids. In recent years there has been experienced a rapid development and implementation of Renewable Energy Sources (RES) worldwide. On one hand, many Gigawatts of grid-connected renewables are being installed and on the other many Megawatts of hybrid renewable systems for residential use are being installed making use of electric battery systems, in order to cover all daily energy and power needs during. New types of batteries are being developed and many companies have made great progress providing a variety of electricity storage products. The purpose of this research is firstly to highlight the necessity and also the importance of the use of energy storage systems and secondly, through detailed technical and financial simulation analysis using HOMER Pro-optimization software, to compare the technical characteristics and performance of energy storage systems by various leading companies when installed in a residential renewable energy system with a specific load and at the same time to provide the most efficient system economically. Results concerning the operation and the choice of a storage system are derived.

  20. Tracking Progress in Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    At the second Clean Energy Ministerial in Abu Dhabi, April 2011 (CEM 2), the Carbon Capture, Use and Storage Action Group (CCUS AG) presented seven substantive recommendations to Energy Ministers on concrete, near-term actions to accelerate global carbon capture and storage (CCS) deployment. Twelve CCUS AG governments agreed to advance progress against the 2011 recommendations by the third Clean Energy Ministerial (London, 25-26 April 2012) (CEM 3). Following CEM 2, the CCUS AG requested the IEA and the Global CCS Institute to report on progress made against the 2011 recommendations at CEM 3. Tracking Progress in Carbon Capture and Storage: International Energy Agency/Global CCS Institute report to the third Clean Energy Ministerial responds to that request. The report considers a number of key questions. Taken as a whole, what advancements have committed CCUS AG governments made against the 2011 recommendations since CEM 2? How can Energy Ministers continue to drive progress to enable CCS to fully contribute to climate change mitigation? While urgent further action is required in all areas, are there particular areas that are currently receiving less policy attention than others, where efforts could be redoubled? The report concludes that, despite developments in some areas, significant further work is required. CCS financing and industrial applications continue to represent a particularly serious challenge.

  1. the effects of unavailability of technical storage facilities

    African Journals Online (AJOL)

    unavailability of the technical storage facilities to the marketing of fruits and vegetables for economic ... vegetables are important profitable small-scale juice enterprises (Thomson,. 1990). ..... Knott's handbook for vegetables growers. 2nd ed.

  2. Office of Waste Isolation progress report, October 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Progress of the National Waste Terminal Storage program is reported under: technical projects, facility projects, systems projects, and regulatory affairs. Various media (salt, shales, rocks) for geologic storage are covered

  3. Flexible energy-storage devices: design consideration and recent progress.

    Science.gov (United States)

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Technical and Economic Assessment of Storage Technologies for Power-Supply Grids

    Directory of Open Access Journals (Sweden)

    H. Meiwes

    2009-01-01

    Full Text Available Fluctuating power generation from renewable energies such as wind and photovoltaic are a technical challenge for grid stability. Storage systems are an option to stabilise the grid and to maximise the utilisation factors of renewable power generators. This paper analyses the state of the art of storage technologies, including a detailed life cycle cost comparison. Beside this, benefits of using storage systems in electric vehicles are analysed and quantified. A comprehensive overview of storage technologies as well as possible applications and business cases for storage systems is presented. 

  5. Overview of technical Issues Associated with the Long Term Storage of Light Water Reactor used Nuclear Fuel

    International Nuclear Information System (INIS)

    Sorenson, Ken B.

    2014-01-01

    The nuclear power technical community is developing the technical basis for demonstrating the safety of storing used nuclear fuel for extended periods of time. The combination of reactor operations that off-load spent fuel to interim storage, coupled with delays in repository construction, has resulted in the expectation that storage periods may be for longer periods of time than originally intended. As more fuel continues to be off-loaded from operating reactors, the need for expanded interim storage also increases. As repository programs are delayed, interim storage requirements will likely exceed licensing term limits. To address these operational realities, there has been a concerted international effort to identify and prioritize the technical issues that need to be addressed in order to demonstrate the safety of storing used nuclear fuel for extended periods of time. Since this is an international effort, different storage systems, regulations, and policies need to be considered. This results in differences in technical issues, as well as differences in priorities. However, this effort also identifies important commonalities in some technical areas that need to be addressed. A broad-based international evaluation of these technical issues provides a better understanding of technical concerns as they relate to individual storage systems and specific national regulatory frameworks. While there are several international activities underway that are focused on long term storage, this paper will discuss the activities of the Electric Power Research Institute (EPRI)/Extended Storage Collaboration Program (ESCP) International Subcommittee. A status report detailing the identification and prioritization of the technical issues was presented at the PSAM11 Conference in June 2012 (1). Since that conference, a final report has been completed by the EPRI/ESCP International Subcommittee (2). This paper will provide important results of the final report as well as

  6. Technical considerations and problems associated with long-term storage of low-level waste

    International Nuclear Information System (INIS)

    Siskind, B.

    1991-01-01

    If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) contracted with Brookhaven National Laboratory (BNL) several years ago (1984--86) to address the technical issues of extended storage. The dual objectives of this study were (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. In this summary of that study, the circumstances under which extended storage of LLRW would most likely result in problems during or after the extended storage period are considered and possible mitigative measures to minimize these problems are discussed. These potential problem areas include: (1) the degradation of carbon steel and polyethylene containers during storage and the subsequent need for repackaging (resulting in increased occupational exposure), (2) the generation of hazardous gases during storage, and (3) biodegradative processes in LLRW

  7. Technical framework to facilitate foreign spent fuel storage and geologic disposal in Russia

    International Nuclear Information System (INIS)

    Jardine, L.J.; Halsey, W.G.; Cmith, C.F.

    2000-01-01

    The option of storage and eventual geologic disposal in Russia of spent fuel of US origin used in Taiwan provides a unique opportunity that can benefit many parties. Taiwan has a near term need for a spent fuel storage and geologic disposal solution, available financial resources, but limited prospect for a timely domestic solution. Russia has significant spent fuel storage and transportation management experience, candidate storage and repository sites, but limited financial resources available for their development. The US has interest in Taiwan energy security, national security and nonproliferation interests in Russian spent fuel storage and disposal and interest in the US origin fuel. While it is understood that such a project includes complex policy and international political issues as well as technical issues, the goal of this paper is to begin the discussion by presenting a technical path forward to establish the feasibility of this concept for Russia

  8. The role of technical progress in the process of recalculating oil reserves

    International Nuclear Information System (INIS)

    Boulard, J.N.

    1999-01-01

    Contrary to the concept of resources (which is essentially a geological one), the notion of reserves designates the quantities that are technically and economically recoverable. Beyond the production-related effect, the reserves therefore evolve over time in accordance with numerous technical and economic parameters. Among these parameters, it can be seen that technical progress plays a considerable role throughout the process of converting resources into reserves, including progress in the identification, accessibility and processing of the resources, and improvements in economic viability. After having tackled the problem of measuring the 'technical progress effects' and citing examples, we demonstrate that the evolution in oil reserves is subject to three types of impact. These are a quantitative impact by significantly improving the recovery rates or making it possible to identify hitherto undetectable oil fields, a qualitative impact by widening the resource base thanks to the adoption of new categories of oil (in particular the so-called 'unconventional' oils) and by carrying out the gradual substitution between these resources of differing qualities. There is also a dynamic impact, through the acceleration of resource availability. Through these three approaches, technical progress makes makes it possible to ensure continuity in oil supply and contributes significantly to the recalculation of reserves. It therefore acts as a compensating factor, counterbalancing the progressive depletion of resources. (author)

  9. Technical progress by major task. Semiannual technical progress report, September 29, 1997 - March 29, 1998

    International Nuclear Information System (INIS)

    1998-01-01

    The technical progress achieved during the period 29 September 1997 through 29 March 1998 on Contract DE-AC03-91SF18852 Radioisotope Thermoelectric Generators and Ancillary Activities is described in this report. The report is organized by program task structure: spacecraft integration and liaison; engineering support; safety; qualified unicouple production; RTG fabrication, assembly, and test; ground support equipment; RTG shipping and launch support; designs, reviews, and mission applications; project management, quality assurance, reliability, contract changes, CAGO acquisition (operating funds), and CAGO maintenance and repair

  10. Conjoint utility analysis of technical maturity and project progress of construction project

    Directory of Open Access Journals (Sweden)

    Ma Wei

    2016-01-01

    Full Text Available In this paper, taking construction project as the research object, the relationship between the project maturity index calculated by the construction project technical risks with different fine degree and the project progress index is studied, and the equilibrium relationship between the Party A’s utility curve and the Party B’s cost curve of using project maturity index and project progress index as the research variables is analyzed. The results show that, when the construction project technical risk division is more precise, the conjoint utility of the project's technical maturity index and the project progress is higher, and the project’s Party A and Party B two sides are closer to the optimal equilibrium. This shows that the construction project technical risk must be finely divided, and managed and controlled respectively, which will help to improve the conjoint utility of the project Party A and Party B two sides.

  11. A monitored retrievable storage facility: Technical background information

    International Nuclear Information System (INIS)

    1991-07-01

    The US government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an integral part of the federal system for safe and permanent disposal of the nation's high-level radioactive wastes. The MRS will accept shipments of spent fuel from commercial nuclear power plants, temporarily store the spent fuel above ground, and stage shipments of it to a geologic repository for permanent disposal. The law authorizing the MRS provides an opportunity for a state or an Indian tribe to volunteer to host the MRS. The law establishes the Office of the Nuclear Waste Negotiator, who is to seek a state or an Indian tribe willing to host an MRS at a technically-qualified site on reasonable terms, and is to negotiate a proposed agreement specifying the terms and conditions under which the MRS would be developed and operated at that site. This agreement can ensure that the MRS is acceptable to -- and benefits -- the host community. The proposed agreement must be submitted to Congress and enacted into law to become effective. This technical background information presents an overview of various aspects of a monitored retrievable storage facility, including the process by which it will be developed

  12. ISABELLE: a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, H

    1980-01-01

    This paper discusses the ISABELLE project, which has the objective of constructing a high-energy proton colliding beam facility at Brookhaven National Laboratory. The major technical features of the intersecting storage accelerators with their projected performance are described. Application of over 1000 superconducting magnets in the two rings represents the salient characteristic of the machine. The status of the entire project, the technical progress made so far, and difficulties encountered are reviewed.

  13. ISABELLE: a progress report

    International Nuclear Information System (INIS)

    Hahn, H.

    1980-01-01

    This paper discusses the ISABELLE project, which has the objective of constructing a high-energy proton colliding beam facility at Brookhaven National Laboratory. The major technical features of the intersecting storage accelerators with their projected performance are described. Application of over 1000 superconducting magnets in the two rings represents the salient characteristic of the machine. The status of the entire project, the technical progress made so far, and difficulties encountered are reviewed

  14. International linear collider. A technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Ned [Argonne National Laboratory, IL (United States); Aderhold, Sebastian [DESY, Hamburg (Germany); Adolphsen, Chris [Stanford Linear Accelerator Center, Menlo Park, CA (United States); and others

    2012-07-01

    The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R and D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

  15. International Linear Collider-A Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Elsen, Eckhard; /DESY; Harrison, Mike; /Brookhaven; Hesla, Leah; /Fermilab; Ross, Marc; /Fermilab; Royole-Degieux, Perrine; /Paris, IN2P3; Takahashi, Rika; /KEK, Tsukuba; Walker, Nicholas; /DESY; Warmbein, Barbara; /DESY; Yamamoto, Akira; /KEK, Tsukuba; Yokoya, Kaoru; /KEK, Tsukuba; Zhang, Min; /Beijing, Inst. High Energy Phys.

    2011-11-04

    The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

  16. Technical progress in planning organization of the Ostravo-Karwina coal basin, ''Mining Projects of Ostravo''

    Energy Technology Data Exchange (ETDEWEB)

    Karpeta, B; Kolar, J

    1979-01-01

    Based on the main task of further improvement in labor productivity and improvement in the quality of products, the leading planning organization of the Ostravo-Karwina basin is planning and realizing progressive technological plans based on new equipment. Long-term plans for basin development up to 1990 stipulate a rise in capital investments by 180%, increase in the volume of productivity by 164% with a rise in the number of workers by 142%. Corresponding technical progress in planning is based on an improvement in the system of scientific-technical information, automation and technical equipping of the planning process, improvements in the forms and organizational structure. Organization of specialized research-planning groups to substantiate and to technically-economically evaluate technical progress, and also to develop comprehensive technical assignments is stipulated.

  17. Critical experiments supporting close proximity water storage of power reactor fuel. Technical progress report

    International Nuclear Information System (INIS)

    Baldwin, M.N.; Hoovler, G.S.; Eng, R.L.; Welfare, F.G.

    1979-07-01

    Close-packed storage of LWR fuel assemblies is needed in order to expand the capacity of existing underwater storage pools. This increased capacity is required to accommodate the large volume of spent fuel produced by prolonged onsite storage. To provide benchmark criticality data in support of this effort, 20 critical assemblies were constructed that simulated a variety of close-packed LWR fuel storage configurations. Criticality calculations using the Monte Carlo KENO-IV code were performed to provide an analytical basis for comparison with the experimental data. Each critical configuration is documented in sufficient detail to permit the use of these data in validating calculational methods according to ANSI Standard N16.9-1975

  18. Swallowable Wireless Capsule Endoscopy: Progress and Technical Challenges

    Directory of Open Access Journals (Sweden)

    Guobing Pan

    2012-01-01

    Full Text Available Wireless capsule endoscopy (WCE offers a feasible noninvasive way to detect the whole gastrointestinal (GI tract and revolutionizes the diagnosis technology. However, compared with wired endoscopies, the limited working time, the low frame rate, and the low image resolution limit the wider application. The progress of this new technology is reviewed in this paper, and the evolution tendencies are analyzed to be high image resolution, high frame rate, and long working time. Unfortunately, the power supply of capsule endoscope (CE is the bottleneck. Wireless power transmission (WPT is the promising solution to this problem, but is also the technical challenge. Active CE is another tendency and will be the next geneion of the WCE. Nevertheless, it will not come true shortly, unless the practical locomotion mechanism of the active CE in GI tract is achieved. The locomotion mechanism is the other technical challenge, besides the challenge of WPT. The progress about the WPT and the active capsule technology is reviewed.

  19. Stockholm international conference 2003 on geological repositories: Political and technical progress

    International Nuclear Information System (INIS)

    2004-01-01

    The conference reviewed global progress made as well as current perspectives on the activities to develop geologic repositories. The objectives were to review the progress in policy making as well as technical issues and to strengthen international co-operation on waste management and disposal issues. The first day of the conference addressed the policy aspects of geological repositories and the second day featured the more technical issues. Session 1: International progress in performing long-term safety studies and security of geological disposal were discussed and reviewed with examples from OECD/NEA, Belgium, Sweden, USA, Switzerland and Russia. Session 2: Views on stakeholder involvement and decision making process were presented by international organisations and national implementers from Japan, United Kingdom, Belgium and OECD/NEA. Session 3: Views on stakeholder involvement and decision making process were presented by regional and local stakeholders from France, Finland, Korea and Sweden. Session 4: International instruments assisting in the implementation of geological repositories were discussed, for example ICRP and IAEA/NEA safety documents, Joint Convention, Safeguard agreements, Nuclear Liability Conventions, etc. Session 5: The contribution of Research, Development and Demonstration was discussed with overviews of the progress achieved on scientific and technical issues over the past four years. Progress and key issues were presented from Switzerland, USA, Finland, Japan, Sweden and IAEA. Each of the papers and poster presentations have been analysed and indexed separately

  20. Technical and economic feasibility of thermal storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shelpuk, B.; Joy, P.; Crouthamel, M.

    1977-06-01

    The technical and economic feasibility of various thermal energy storage alternatives is determined by comparing the system performance and annualized cost which result from each storage alternative operating with the same solar collector model, the same building load model, and the same heating system and controls model. Performance and cost calculations are made on the basis of an hour-by-hour time step using actual weather bureau data for Albuquerque, N. M., and New York City for a single six-month heating season. The primary approach to comparing various storage alternatives is to allow the collector area and storage mass to vary until a minimum cost combination is achieved. In the Albuquerque location collector area of 325 ft/sup 2/, water storage mass of 12.5 lb/ft/sup 2/ of collector area, and phase change mass of 6.25 lb/ft/sup 2/ of collector area results in minimum cost systems, each of which delivers about 50% of the total building demand. The primary conclusion is that, using current costs for materials and containers, water is the cheapest storage alternative for heating applications in both Albuquerque and New York City. The cost of containing or encapsulating phase change materials, coupled with their small system performance advantage, is the main reason for this conclusion. The use of desiccant materials for thermal storage is considered to be impractical due to irreversibilities in thermal cycling.

  1. Technical progress safeguards future. Technischer Fortschritt sichert die Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    'Technical progress safeguards future', the guiding theme of the 1985 conference of German engineers, calls for discussion. In five lectures representatives of the subdivisions of 'VDI' issued their statements from the viewpoints of their special fields. These lectures were completed by reports on the part of the remaining VDI subdivisions, which are published together with the lectures in this volume. The complex guiding theme is meant to stimulate discussion, which should be conducted also with representatives of other sciences and the public. The volume contains a.o. contributions regarding future prospects, given certain modifications in construction engineering and user behaviour in the sector heating and air-conditioning, regarding the development of new construction techniques to protect the environment, and regarding clean air as an international concern of engineers. For these three contributions separate entries were made. Other presentations relate to: automobile production technology; energy supply as an engineering task; information, invention, innovation as stages of technical progress; progress in materials technology; noise of motor vehicles - current state and future prospects. (orig./HSCH).

  2. Communication of technical information to lay audiences. [National Waste Terminal Storage (NWTS) program

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, J.E.; Stamm, K.R.; Jackson, K.M.; Moore, J.

    1978-05-01

    One of the objectives of the National Waste Terminal Storage (NWTS) Program is to provide terminal storage facilities for commercial radioactive wastes in various geologic formations at multiple locations in the United States. The activities performed under the NWTS Program will affect regional, state, and local areas, and widespread public interest in this program is expected. Since a large part of the NWTS Program deals with technical information it was considered desirable to initiate a study dealing with possible methods of effectively transmitting this technical information to the general public. This study has the objective of preparing a state-of-the-art report on the communication of technical information to lay audiences. The particular task of communicating information about the NWTS Program to the public is discussed where appropriate. The results of this study will aid the NWTS Program in presenting to the public the quite diverse technical information generated within the program so that a widespread, thorough public understanding of the NWTS Program might be achieved. An annotated bibliography is included.

  3. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    Science.gov (United States)

    Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)

    2011-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  4. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Laycak, D.T.

    2010-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  5. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  6. National Waste Terminal Storage Program. Progress report, April 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    1976-01-01

    This report is divided into two parts: the Management Report and the Technical Report. Section 1 of the Management Report provides a general National Waste Terminal Storage program overview, which includes a summary of the long-range plan. Part II contains the status reports of the technical projects, facility projects, and systems projects

  7. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  8. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  9. Technical, economic and institutional aspects of regional spent fuel storage facilities

    International Nuclear Information System (INIS)

    2005-11-01

    A particular challenge facing countries with small nuclear programmes is the preparation for extended interim storage and then disposal of their spent nuclear fuel. The costs and complications of providing for away-from-reactor storage facilities and/or geological repositories for relatively small amounts of spent fuel may be prohibitively high, motivating interest in regional solutions. This publication addresses the technical, economic and institutional aspects of regional spent fuel storage facilities (RSFSF) and is based on the results of a series of meetings on this topic with participants from IAEA Member States. Topics discussed include safety criteria and standards, safeguards and physical protection, fuel acceptance criteria, long term stability of systems and stored fuel, selection of site, infrastructure aspects, storage technology, licensing, operations, transport, decommissioning, as well as research and development. Furthermore the publication comprises economic, financial and institutional considerations including organizations and legal aspects followed by political and public acceptance and ethical considerations. Approaches and processes for implementation are discussed, as well as the overall benefits and risks of implementing a regional facility. It is illustrated that implementing a RSFSF facility would involve simultaneously addressing a wide range of diverse challenges. The appendix to this report tabulates the numerous issues that have been touched upon in the study. It appears, however, from the discussions that the challenges can in principle be met; the RSFSF concept is technically feasible and potentially economically viable. The technical committees producing this report did not identify any obvious institutional deficiencies that would prevent completion of such a project. Storing spent fuel in a few safe, reliable, secure facilities could enhance safeguards, physical protection and non-proliferation benefits. The committee also

  10. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  11. Technical Safety Requirements for the Waste Storage Facilities May 2014

    International Nuclear Information System (INIS)

    Laycak, D. T.

    2014-01-01

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  12. A progress report on the g-2 storage ring magnet system

    International Nuclear Information System (INIS)

    Bunce, G.; Cullen, J.; Danby, G.

    1995-01-01

    The 3.1 GeV muon storage ring for the g-2 experiment at Brookhaven National Laboratory hat three large solenoid magnets that form a continuous 1.451 tesla storage ring dipole with an average beam bond radius of 7.1 metors. In addition to the three storage ring solenoids, there is an inflector dipole with nested dipole coils that create very little stray magnetic field. A superconducting shield on the infractor gets rid of most of the remaining stray flux. This paper reports on the progress made on the storage ring solenoid magnet system and the inflector as of June 1995. The results of cryogenic system tests are briefly reported

  13. Aquifer thermal energy storage reference manual: seasonal thermal energy storage program

    Energy Technology Data Exchange (ETDEWEB)

    Prater, L.S.

    1980-01-01

    This is the reference manual of the Seasonal Thermal Energy Storage (STES) Program, and is the primary document for the transfer of technical information of the STES Program. It has been issued in preliminary form and will be updated periodically to include more technical data and results of research. As the program progresses and new technical data become available, sections of the manual will be revised to incorporate these data. This primary document contains summaries of: the TRW, incorporated demonstration project at Behtel, Alaska, Dames and Moore demonstration project at Stony Brook, New York, and the University of Minnesota demonstration project at Minneapolis-St. Paul, Minnesota; the technical support programs including legal/institutional assessment; economic assessment; environmental assessment; field test facilities; a compendia of existing information; numerical simulation; and non-aquifer STES concepts. (LCL)

  14. Progress of the radioactive waste management at the Dalat Nuclear Research Institute and the role of an IAEA technical co-operation project in this process

    International Nuclear Information System (INIS)

    Nang, N.T.; Ngoc, O.V.; Nhu Thuy, T.T.; Nghi, D.V.; Thu, N.T.

    2002-01-01

    At present, the main radioactive waste generator in Vietnam is the Dalat Nuclear Research Institute (DNRI). For safe management of radioactive waste generated from this nuclear center, in 1982 Soviet specialists newly constructed one combined technology system for low level radioactive waste management. The existing system consists of two main parts, a Liquid Radioactive Waste Treatment Station and a Storage/Disposal Facility. The liquid treatment station can in principle meet the needs for this nuclear center but disposal technology and storage/disposal facilities are not good enough both with respect to safety and economy, especially the storage/disposal facility placed in Dalat, the tourist city. In order to help DNRI and Vietnam to solve the radioactive waste management problem, the IAEA Technical Co-operation (TC) project VIE/9/007 was implemented in Vietnam. The facilities and IAEA experts provided under this project gradually help to develop radioactive waste management at DNRI, Vietnam. This paper outlines progress under way in the management of the radioactive waste at the Nuclear Research Institute (NRI), Dalat, Vietnam, and the role of the IAEA Technical Co-operation (TC) project in this process. (author)

  15. FY2015 Energy Storage R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-04-30

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

  16. Iowa Hill Pumped Storage Project Investigations - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, David [Sacramento Municipal Unitlity District, Sacramento, CA (United States)

    2016-07-01

    This Final Technical Report is a summary of the activities and outcome of the Department of Energy (DOE) Assistance Agreement DE-EE0005414 with the Sacramento Municipal Utility District (SMUD). The Assistance Agreement was created in 2012 to support investigations into the Iowa Hill Pumped-storage Project (Project), a new development that would add an additional 400 MW of capacity to SMUD’s existing 688MW Upper American River Hydroelectric Project (UARP) in the Sierra Nevada mountains east of Sacramento, California.

  17. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  18. Technical assessment of continued wet storage of EBR-II fuel

    International Nuclear Information System (INIS)

    Pahl, R.G.; Franklin, E.M.; Ebner, M.A.

    1996-01-01

    A technical assessment of the continued wet storage of EBR-II fuel has been made. Previous experience has shown that in-basin cladding failure occurs by intergranular attack of sensitized cladding, likely assisted by basin water chlorides. Subsequent fuel oxidation is rapid and leads to loss of configuration and release of fission products. The current inventory of EBR-II fuel stored in the ICPP basins is at risk from similar corrosion reactions

  19. Technical Progress of the New Worlds Observer Mission

    Science.gov (United States)

    Lo, Amy; Noecker, C.; Cash, W.; NWO Study Team

    2009-01-01

    We report on the technical progress of the New Worlds Observer (NWO) mission concept. NWO is a two spacecraft mission that is capable of detecting and characterizing extra-solar, terrestrial planets and planetary systems. NWO consists of an external starshade and an UV-optical space telescope, flying in tandem. The starshade is a petal-shaped, opaque screen that creates an extremely dark shadow large enough to shade the telescope aperture from the target star. The NWO team has been addressing the top technology challenges of the concept, and report here our progress. We will present the current mission configuration best suited to address Terrestrial Planet Finding requirements, and highlight the technological breakthroughs that we have achieved this year. In particular, we will report on progress made in precision deployables for the large starshade, and the trajectory & alignment control system for NWO. We will also briefly highlight advances in understanding the starshade optical performance.

  20. Technical progress faced with the challenges of the energy sector in the future

    International Nuclear Information System (INIS)

    Maillard, D.

    1999-01-01

    The colloquium organised by the Association of Energy Economists dealing with the theme 'Technical progress faced with the challenges of the energy sector in the future' takes place against a backdrop of ever-increasing initiatives in this field, for example at the World Energy Council or the International Energy Agency Faith in technical progress is widespread but should be supported by studies without any preconceived ideas. Research and development efforts must be fully supported, and in a climate of opening markets and liberalization the public authorities have a major role to pay. Historically, the markets have always been able to meet new needs thanks to technology, but the ambitious targets that the international community has set itself regarding the emission of greenhouse gases imply technical improvements and major investments. (authors)

  1. Technical bases for leak detection surveillance of waste storage tanks. Revision 1

    International Nuclear Information System (INIS)

    Johnson, M.G.; Badden, J.J.

    1995-01-01

    This document provides the technical bases for specification limits, monitoring frequencies and baselines used for leak detection and intrusion (for single shell tanks only) in all single and double shell radioactive waste storage tanks, waste transfer lines, and most catch tanks and receiver tanks in the waste tank farms and associated areas at Hanford

  2. Performance of stratified thermal-storage system for Oliver Springs Elementary School. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Bedinger, A.F.G.

    1981-01-01

    A progress report is given on the performance of a stratified thermal storage system coupled with a heat recovery refrigeration machine designed to provide space heating, cooling and service water heating. Water storage tanks utilizing a flexible membrane to resist temperature blending will be used as the thermal storage element. The two design goals of the heat recovery and thermal energy storage system are (1) to minimize the need to purchase energy for space heating and cooling and water heating and (2) to minimize electrical demand. An automatic data acquisition system will be used for system performance and data gathering. Data collection is expected to begin in September, 1981.

  3. Evaporation by mechanical vapor recompression. Technical progress report, September 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, C.H.; Coury, G.E.

    1979-01-01

    Progress to date in the development of a study of the application of the technologies of mechanical vapor recompression and falling film evaporators as applied to the beet sugar industry is reported. Progress is reported in the following areas: technical literature search and plant visitations of existing applications of VR/FFE.

  4. Achieving Hydrogen Storage Goals through High-Strength Fiber Glass - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong [PPG Industries, Inc., Cheswick, PA (United States); Johnson, Kenneth I. [PPG Industries, Inc., Cheswick, PA (United States); Newhouse, Norman L. [PPG Industries, Inc., Cheswick, PA (United States)

    2017-06-05

    Led by PPG and partnered with Hexagon Lincoln and Pacific Northwest National Laboratory (PNNL), the team recently carried out a project “Achieving Hydrogen Storage Goals through High-Strength Fiber Glass”. The project was funded by DOE’s Fuel Cell Technologies office within the Office of Energy Efficiency and Renewable Energy, starting on September 1, 2014 as a two-year project to assess technical and commercial feasibilities of manufacturing low-cost, high-strength glass fibers to replace T700 carbon fibers with a goal of reducing the composite total cost by 50% of the existing, commercial 700 bar hydrogen storage tanks used in personal vehicles.

  5. Basalt Waste Isolation Project Technical Program Evaluation Process: a criteria-based method

    International Nuclear Information System (INIS)

    Babad, H.; Evans, G.C.; Wolfe, B.A.

    1982-01-01

    The need to objectively evaluate the progress being made by the Basalt Waste Isolation Project (BWIP) toward establishing the feasibility of siting a nuclear waste repository in basalt (NWRB) mandates a process for evaluating the technical work of the project. To assist BWIP management in the evaluation process, the Systems Department staff has developed a BWIP Technical Program Evaluation Process (TPEP). The basic process relates progress on project technical work to the SWIP Functional and System Performance Criteria as defined in National Waste Terminal Storage (MWTS) Criteria Documents. The benefits of the TPEP to BWIP and future plans for TPEP are discussed. During fiscal year (FY) 1982, TPEP wll be further formalized and further applied to the review of BWIP technical activities

  6. Experimental Facilities Division/User Program Division technical progress report 1999-2000

    International Nuclear Information System (INIS)

    2001-01-01

    In October 1999, the two divisions of the Advanced Photon Source (APS), the Accelerator Systems Division (ASD) and the Experimental Facilities Division (XFD), were reorganized into four divisions (see high-level APS organizational chart, Fig. 1.1). In addition to ASD and XFD, two new divisions were created, the APS Operations Division (AOD), to oversee APS operations, and the User Program Division (UPD), to serve the APS user community by developing and maintaining the highest quality user technical and administration support. Previous XFD Progress Reports (ANL/APS/TB-30 and ANL/APS/TB-34) covered a much broader base, including APS user administrative support and what was previously XFD operations (front ends, interlocks, etc.) This Progress Report summarizes the main scientific and technical activities of XFD, and the technical support, research and development (R and D) activities of UPD from October 1998 through November 2000. The report is divided into four major sections, (1) Introduction, (2) SRI-CAT Beamlines, Technical Developments, and Scientific Applications, (3) User Technical Support, and (4) Major Plans for the Future. Sections 2 and 3 describe the technical activities and research accomplishments of the XFD and UPD personnel in supporting the synchrotron radiation instrumentation (SRI) collaborative access team (CAT) and the general APS user community. Also included in this report is a comprehensive list of publications (Appendix 1) and presentations (Appendix 2) by XFD and UPD staff during the time period covered by this report. The organization of section 2, SRI CAT Beamlines, Technical Developments, and Scientific Applications has been made along scientific techniques/disciplines and not ''geographical'' boundaries of the sectors in which the work was performed. Therefore items under the subsection X-ray Imaging and Microfocusing could have been (and were) performed on several different beamlines by staff in different divisions. The management of

  7. The Basalt Waste Isolation Project technical program evaluation process: A criteria-based method

    International Nuclear Information System (INIS)

    Babad, H.; Evans, C.; Wolfe, B.A.

    1982-01-01

    The need to objectively evaluate the progress being made by the Basalt Waste Isolation Project (BWIP) toward establishing the feasibility of siting a nuclear waste repository in basalt (NWRB) mandates a process for evaluating the technical work of the project. To assist BWIP management in the evaluation process, the Systems Department staff has developed a BWIP Technical Program Evaluation Process (TPEP). The basic process relates progress on project technical work to the BWIP Functional and System Performance Criteria as defined in National Waste Terminal Storage (NWTS) Criteria Documents. The benefits of the TPEP to BWIP and future plans for TPEP are discussed. During fiscal year (FY) 1982, TPEP will be further formalized and further applied to the review of BWIP technical activities

  8. Technical analysis of photovoltaic/wind systems with hydrogen storage

    Directory of Open Access Journals (Sweden)

    Bakić Vukman V.

    2012-01-01

    Full Text Available The technical analysis of a hybrid wind-photovoltaic energy system with hydrogen gas storage was studied. The market for the distributed power generation based on renewable energy is increasing, particularly for the standalone mini-grid applications. The main design components of PV/Wind hybrid system are the PV panels, the wind turbine and an alkaline electrolyzer with tank. The technical analysis is based on the transient system simulation program TRNSYS 16. The study is realized using the meteorological data for a Typical Metrological Year (TMY for region of Novi Sad, Belgrade cities and Kopaonik national park in Serbia. The purpose of the study is to design a realistic energy system that maximizes the use of renewable energy and minimizes the use of fossil fuels. The reduction in the CO2 emissions is also analyzed in the paper. [Acknowledgment. This paper is the result of the investigations carried out within the scientific project TR33036 supported by the Ministry of Science of the Republic of Serbia.

  9. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    International Nuclear Information System (INIS)

    Patrick, W.C.

    1986-01-01

    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs

  10. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, W.C. (comp.)

    1986-03-30

    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs.

  11. Spent fuel storage facility at science and technical center 'Sosny': Experience of ten years activity

    International Nuclear Information System (INIS)

    Chigrinov, S.; Goulo, V.; Lunev, A.; Belousov, N.; Salnikov, L.; Boiko, L.

    2000-01-01

    Spent fuel storage of the Academic Science and Technical Center in Minsk is in operation already more then 10 years. In the paper aspects of its design, operation practice, problems and decisions for future are discussed. (author)

  12. Means of storage and automated monitoring of versions of text technical documentation

    Science.gov (United States)

    Leonovets, S. A.; Shukalov, A. V.; Zharinov, I. O.

    2018-03-01

    The paper presents automation of the process of preparation, storage and monitoring of version control of a text designer, and program documentation by means of the specialized software is considered. Automation of preparation of documentation is based on processing of the engineering data which are contained in the specifications and technical documentation or in the specification. Data handling assumes existence of strictly structured electronic documents prepared in widespread formats according to templates on the basis of industry standards and generation by an automated method of the program or designer text document. Further life cycle of the document and engineering data entering it are controlled. At each stage of life cycle, archive data storage is carried out. Studies of high-speed performance of use of different widespread document formats in case of automated monitoring and storage are given. The new developed software and the work benches available to the developer of the instrumental equipment are described.

  13. Quarterly technical progress report, February 1, 1996--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-28

    This report from the Amarillo National REsource Center for PLutonium provides research highlights and provides information regarding the public dissemination of information. The center is a a scientific resource for information regarding the issues of the storage, disposition, potential utilization and transport of plutonium, high explosives, and other hazardous materials generated from nuclear weapons dismantlement. The center responds to informational needs and interpretation of technical and scientific data raised by interested parties and advisory groups. Also, research efforts are carried out on remedial action programs and biological/agricultural studies.

  14. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P.A.; Barney, D.L.; Steunenberg, R.K.

    1978-11-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at industrial subcontractors' laboratories on high-temperature batteries during the period October 1977--September 1978 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary-energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing electrodes of lithium--aluminum alloy, and molten LiCl--KCl electrolyte. During this fiscal year, cell and battery development work continued at ANL, Eagle--Picher Industries, Inc., the Energy Systems Group of Rockwell International, and Gould Inc. Related work was also in progress at the Carborundum Co., General Motors Research Laboratories, and various other organizations. A major event was the initiation of a subcontract with Eagle--Picher Industries to develop, design, and fabricate a 40-kWh battery (Mark IA) for testing in an electric van. Conceptual design studies on a 100-MWh stationary-energy-storage module were conducted as a joint effort between ANL and Rockwell International. A significant technical advance was the development of multiplate cells, which are capable of higher performance than bicells. 89 figures, 57 tables.

  15. Technical and economic feasibility of thermal energy storage. Thermal energy storage application to the brick/ceramic industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, D.R.

    1976-10-01

    An initial project to study the technical and economic feasibility of thermal energy storage (TES) in the three major consumer markets, namely, the residential, commercial and industrial sectors is described. A major objective of the study was to identify viable TES applications from which a more concise study could be launched, leading to a conceptual design and in-depth validation of the TES energy impacts. This report documents one such program. The brick/ceramic industries commonly use periodic kilns which by their operating cycle require time-variant energy supply and consequently variable heat rejection. This application was one of the numerous TES opportunities that emerged from the first study, now available from the ERDA Technical Information Center, Oak Ridge, Tennessee, identified as Report No. COO-2558-1.

  16. Carbon Capture and Storage: Progress and Next Steps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Two years after the G8 leaders commitment to the broad deployment of carbon capture and storage (CCS) by 2020, significant progress has been made towards commercialisation of CCS technologies. Yet the 2008 Hokkaido G8 recommendation to launch 20 large-scale CCS demonstration projects by 2010 remains a challenge and will require that governments and industry accelerate the pace toward achieving this critical goal. This is one of the main findings of a new report by the International Energy Agency (IEA), the Carbon Sequestration Leadership Forum (CSLF), and the Global CCS Institute, to be presented to G8 leaders at their June Summit in Muskoka, Canada.

  17. Progress on first-principles-based materials design for hydrogen storage.

    Science.gov (United States)

    Park, Noejung; Choi, Keunsu; Hwang, Jeongwoon; Kim, Dong Wook; Kim, Dong Ok; Ihm, Jisoon

    2012-12-04

    This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well.

  18. FY2012 Progress Report for Energy Storage Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    FY 2012 annual report of the energy storage research and development effort within the VT Office. An important step for the electrification of the nation’s light duty transportation sector is the development of more cost-effective, long lasting, and abuse-tolerant PEV batteries. In fiscal year 2012, battery R&D work continued to focus on the development of high-energy batteries for PEVs and very high power devices for hybrid vehicles. This document provides a summary and progress update of the VTP battery R&D projects that were supported in 2012.

  19. Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jonemann, M.

    2013-05-01

    Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

  20. Research and development related to the Nevada Nuclear Waste Storage Investigations: Progress report, October 1--December 31, 1984

    International Nuclear Information System (INIS)

    Thomas, K.W.

    1988-11-01

    This report summarizes some of the technical contributions by the Los Alamos National Laboratory to the Nevada Nuclear Waste Storage Investigations (NNWSI) Project from October 1 through December 31, 1984. The report is not a detailed technical document but does indicate the status of the investigations being performed at Los Alamos

  1. Research and development related to the Nevada Nuclear Waste Storage Investigations: Progress report, October 1--December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.W. (comp.)

    1988-11-01

    This report summarizes some of the technical contributions by the Los Alamos National Laboratory to the Nevada Nuclear Waste Storage Investigations (NNWSI) Project from October 1 through December 31, 1984. The report is not a detailed technical document but does indicate the status of the investigations being performed at Los Alamos.

  2. Technical and economic feasibility of thermal energy storage. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, D.R.

    1976-02-01

    This study provides a first-look at the system elements involved in: (1) creating a market; (2) understanding and deriving the requirements; (3) performing analytical effort; (4) specifying equipment; and (5) synthesizing applications for a thermal energy storage (TES) function. The work reviews implicated markets, energy consumption patterns, TES technologies, and applications. Further, several concepts are developed and evaluated in some detail. Key findings are: (1) there are numerous technical opportunities for TES in the residential and industrial market sectors; (2) apart from sensible heat storage and transfer, significant R and D is required to fully exploit the superior heat densities of latent heat-based TES systems, particularly at temperatures above 600/sup 0/F; (3) industrial energy conservation can be favorably impacted by TES where periodic or batch-operated unit functions characterize product manufacturing processes, i.e. bricks, steel, and ceramics; and (4) a severe data shortage exists for describing energy consumption rates in real time as related to plant process operations--a needed element in designing TES systems.

  3. Technical and Economic Potential of Distributed Energy Storages for the Integration of Renewable Energy

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Trier, Daniel; Hansen, Kenneth

    Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role decentral...... indicate that sector coupling along with an intelligent choice of distributed energy storage technologies can enable the integration of large shares of fluctuating renewable energy in an energy efficient and cost-effective way.......Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role...... decentralised energy storages (DES) should play in integrating fluctuating renewable energy sources. The technical and economic potential for DES solutions is quantified using energy system modelling, and it is identified which DES technologies have the largest total (technical and economic) potential. For this...

  4. AFR spent fuel storage program. Technical progress report, January 1981-March 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Work on this project is focused on developing design and licensing information for the model facility. Deliverables were submitted to DOE for facility modification, security design, and licensing documentation. Work is essentially complete on the high-density rack design with deliverable planned for April 30, 1981. A continuing program for completion of design and licensing information development was initiated by AGNS in February 1981. Progress to date is satisfactory

  5. Methodology to determine the technical performance and value proposition for grid-scale energy storage systems :

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond Harry; Loose, Verne William; Donnelly, Matthew K.; Trudnowski, Daniel J.

    2012-12-01

    As the amount of renewable generation increases, the inherent variability of wind and photovoltaic systems must be addressed in order to ensure the continued safe and reliable operation of the nation's electricity grid. Grid-scale energy storage systems are uniquely suited to address the variability of renewable generation and to provide other valuable grid services. The goal of this report is to quantify the technical performance required to provide di erent grid bene ts and to specify the proper techniques for estimating the value of grid-scale energy storage systems.

  6. Electrochemical Energy Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  7. Office of Waste Isolation progress report, January 1978

    International Nuclear Information System (INIS)

    Zerby, C.D.

    1978-01-01

    This document, prepared to report progress on the National Waste Terminal Storage (NWTS) program, consists of project reports on work performed by organizations under subcontract to OWI, by DOE contractors, by OWI consultants, and by other federal agencies participating in the NWTS program. The project reports are made under the headings technical projects, facility projects, planning and analysis, and regulatory affairs

  8. Office of Waste Isolation progress report, December 1977

    International Nuclear Information System (INIS)

    Zerby, C.D.

    1976-01-01

    This document reports progress on the OWI's portion of the National Waste Terminal Storage (NWTS) program. It comprises project reports on work performed by organizations under subcontract to OWI, by DOE contractors, by OWI consultants, and by other federal agencies participating in the NWTS program. They are made under the headings technical projects, facility projects, planning and analysis, and regulatory affairs

  9. Office of Waste Isolation progress report, January 1978

    Energy Technology Data Exchange (ETDEWEB)

    Zerby, C.D.

    1978-02-28

    This document, prepared to report progress on the National Waste Terminal Storage (NWTS) program, consists of project reports on work performed by organizations under subcontract to OWI, by DOE contractors, by OWI consultants, and by other federal agencies participating in the NWTS program. The project reports are made under the headings technical projects, facility projects, planning and analysis, and regulatory affairs. (DLC)

  10. IAEA Technical committee meeting on methods used in design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    Vitikainen, E.; Silfverberg, P.

    1985-01-01

    The meeting was held in Espoo, Finland and hosted by the Technical Research Centre of Finland (VTT), and was arranged to report and discuss design methods, licensing practise, operational experience as well as economic aspects connectied with spent fuel storage. This report contains session summaries by the session chairmen and the papers presented at the meeting

  11. Femtoslicing in Storage Rings

    CERN Document Server

    Khan, Shaukat

    2005-01-01

    The generation of ultrashort synchrotron radiation pulses by laser-induced energy modulation of electrons and their subsequent transverse displacement, now dubbed "femtoslicing," was demonstrated at the Advanced Light Source in Berkeley. More recently, a femtoslicing user facility was commissioned at the BESSY storage ring in Berlin, and another project is in progress at the Swiss Light Source. The paper reviews the principle of femtoslicing, its merits and shortcomings, as well as the variations of its technical implementation. Various diagnostics techniques to detect successful laser-electron interaction are discussed and experimental results are presented.

  12. The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China

    International Nuclear Information System (INIS)

    Yin, Jianhua; Zheng, Mingzheng; Chen, Jian

    2015-01-01

    Based on environmental Kuznets curve theory, a panel data model which takes environmental regulation and technical progress as its moderating factors was developed to analyse the institutional and technical factors that affect the path of low-carbon economic development. The results indicated that there was a CO 2 emission Kuznets curve seen in China. Environmental regulation had a significant moderating effect on the curve, and the inflection of CO 2 emissions could come substantially earlier under stricter environmental regulation. Meanwhile, the impact of technical progress on the low-carbon economic development path had a longer hysteresis effect but restrained CO 2 emission during its increasing stage and accelerated its downward trend during the decreasing stage which was conducive to emission reduction. Strict environmental regulation could force the high-carbon emitting industries to transfer from the eastern regions to the central or the western regions of China, which would make the CO 2 Kuznets curve higher in its increasing stage and lower in its decreasing stage than that under looser regulation. Furthermore, energy efficiency, energy structure, and industrial structure exerted a significant direct impact on CO 2 emissions; we should consider the above factors as essential in the quest for low-carbon economic development. - Highlights: • Estimate moderating effect of environmental regulation and technical progress on EKC. • There was a CO 2 emission Kuznets curve in effect in China. • Environmental regulation presents significant moderating effect on EKC. • Technical progress moderates the relationship between income and CO 2 emissions

  13. ERIP invention 637. Technical progress report 2nd quarter, April 1997--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    Thacker, G.W.

    1997-07-22

    This technical report describes progress in the development of the Pegasus plow, a stalk and root embedding apparatus. Prototype testing is reported, and includes the addition of precision tillage. Disease data, organic matter, and nitrogen levels results are very briefly described. Progress in marketing is also reported. Current marketing issues include test use by cotton and wheat growers, establishment of dealer relationships, incorporation of design modifications, expansion of marketing activities, and expansion of loan and lease program.

  14. Office of Waste Isolation progress report, December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Zerby, C.D.

    1976-01-31

    This document reports progress on the OWI's portion of the National Waste Terminal Storage (NWTS) program. It comprises project reports on work performed by organizations under subcontract to OWI, by DOE contractors, by OWI consultants, and by other federal agencies participating in the NWTS program. They are made under the headings technical projects, facility projects, planning and analysis, and regulatory affairs. (DLC)

  15. Cassini RTG Program. Monthly technical progress report, 27 November--31 December 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This monthly technical progress report provided information on the following tasks: spacecraft integration and liaison; engineering support; safety analysis; qualified unicouple fabrication; ETG fabrication, assembly, and test; ground support equipment (GSE); RTG shipping and launch support; designs, reviews, and mission applications; project management, quality assurance, and reliability, and contractor acquired government owned (CAGO) property acquisition

  16. Technical and economic design of photovoltaic and battery energy storage system

    International Nuclear Information System (INIS)

    Bortolini, Marco; Gamberi, Mauro; Graziani, Alessandro

    2014-01-01

    Highlights: • Design of grid connected photovoltaic system integrating battery energy storage system. • A model to manage the energy flows and assess the system profitability is presented. • The model evaluates the effective PV power rate and battery energy system capacity. • An application and multi-scenario analysis based on an Italian context is discussed. • Results show the system technical feasibility and an energy cost save of 52 €/MW h. - Abstract: In the last years, the technological development and the increasing market competitiveness of renewable energy systems, like solar and wind energy power plants, create favorable conditions to the switch of the electricity generation from large centralized facilities to small decentralized energy systems. The distributed electricity generation is a suitable option for a sustainable development thanks to the environmental impact reduction, the load management benefits and the opportunity to provide electricity to remote areas. Despite the current cut off of the national supporting policies to the renewables, the photovoltaic (PV) systems still find profitable conditions for the grid connected users when the produced energy is self-consumed. Due to the intermittent and random nature of the solar source, PV plants require the adoption of an energy storage system to compensate fluctuations and to meet the energy demand during the night hours. This paper presents a technical and economic model for the design of a grid connected PV plant with battery energy storage (BES) system, in which the electricity demand is satisfied through the PV–BES system and the national grid, as the backup source. The aim is to present the PV–BES system design and management strategy and to discuss the analytical model to determine the PV system rated power and the BES system capacity able to minimize the Levelized Cost of the Electricity (LCOE). The proposed model considers the hourly energy demand profile for a reference

  17. Impact of Environmental Regulation and Technical Progress on Industrial Carbon Productivity: An Approach Based on Proxy Measure

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2016-08-01

    Full Text Available This research aims to study the main influencing factors of China’s industrial carbon productivity by incorporating environmental regulation and technical progress into an econometric model. The paper focuses on data from 35 of China’s industrial sectors and covers the period from 2006 to 2014, in order to examine the impact of environmental regulation and technical progress on carbon productivity. Methods applied include panel fixed effect model, panel random effect model and two stage least squares with instrumental variables (IV-2SLS. The effect of environmental regulation and technical progress has industrial heterogeneity. The paper subdivides industrial sectors into capital and technology intensive, resource intensive and labor intensive sectors according to factor intensiveness. The estimation results of the subgroups have uncovered that for capital and technology intensive and resource intensive sectors, environmental regulation has a more significant impact than technical progress; while for labor intensive sectors, innovation more significantly influences carbon productivity. In addition, foreign direct investment (FDI and industrialization level facilitate improving carbon productivity for the full sample. By contrast, industrial structure inhibits the overall industrial carbon productivity. The industry-specific results indicate that for capital and technology intensive sectors, optimizing of the industrial structure can improve carbon productivity; for resource intensive sectors, FDI and energy consumption structure should be emphasized more; for labor intensive sectors, industrialization levels help enhance carbon productivity. Finally the industrial sector-specific policy suggestions are proposed.

  18. Research Progress in Carbon Dioxide Storage and Enhanced Oil Recovery

    Science.gov (United States)

    Wang, Keliang; Wang, Gang; Lu, Chunjing

    2018-02-01

    With the rapid development of global economy, human beings have become highly dependent upon fossil fuel such as coal and petroleum. Much fossil fuel is consumed in industrial production and human life. As a result, carbon dioxide emissions have been increasing, and the greenhouse effects thereby generated are posing serious threats to environment of the earth. These years, increasing average global temperature, frequent extreme weather events and climatic changes cause material disasters to the world. After scientists’ long-term research, ample evidences have proven that emissions of greenhouse gas like carbon dioxide have brought about tremendous changes to global climate. To really reduce carbon dioxide emissions, governments of different countries and international organizations have invested much money and human resources in performing research related to carbon dioxide emissions. Manual underground carbon dioxide storage and carbon dioxide-enhanced oil recovery are schemes with great potential and prospect for reducing carbon dioxide emissions. Compared with other schemes for reducing carbon dioxide emissions, aforementioned two schemes exhibit high storage capacity and yield considerable economic benefits, so they have become research focuses for reducing carbon dioxide emissions. This paper introduces the research progress in underground carbon dioxide storage and enhanced oil recovery, pointing out the significance and necessity of carbon dioxide-driven enhanced oil recovery.

  19. Development of technical design for waste processing and storage facilities for Novi Han repository

    International Nuclear Information System (INIS)

    Canizares, J.; Benitez, J.C.; Asuar, O.; Yordanova, O.; Demireva, E.; Stefanova, I.

    2005-01-01

    Empresarion Agrupados Internacional S.A. (Spain) and ENPRO Consult Ltd. (Bulgaria) were awarded a contract by the Central Finance and Contracts Unit to develop the technical design of the waste processing and storage facilities at the Novi Han repository. At present conceptual design phase is finished. This conceptual design covers the definition of the basic design requirements to be applied to the installations defined above, following both European and Bulgarian legislation. In this paper the following items are considered: 1) Basic criteria for the layout and sizing of buildings; 2) Processing of radioactive waste, including: treatment and conditioning of disused sealed sources; treatment of liquid radioactive wastes; treatment of solid radioactive waste; conditioning of liquid and solid radioactive waste; 3) Control of waste packages and 4) Storage of radioactive waste, including storage facility and waste packages. An analysis of inventories of stored and estimated future wastes and its subsequent processes is also presented and the waste streams are illustrated

  20. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  1. Regenesys utility scale energy storage. Project summary

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed

  2. Regenesys utility scale energy storage. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed.

  3. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3

    International Nuclear Information System (INIS)

    Ulm, Franz-Josef

    2000-01-01

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)

  4. Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

  5. Total Factor Productivity Growth, Technical Progress & Efficiency Change in Vietnam Coal Industry - Nonparametric Approach

    Science.gov (United States)

    Phuong, Vu Hung

    2018-03-01

    This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.

  6. Results on Technical and Consultants Service Meetings on Lessons Learned from Operating Experience in Wet and Dry Spent Fuel Storage

    International Nuclear Information System (INIS)

    White, B.; Zou, X.

    2015-01-01

    Spent fuel storage has been and will continue to be a vital portion of the nuclear fuel cycle, regardless of whether a member state has an open or closed nuclear fuel cycle. After removal from the reactor core, spent fuel cools in the spent fuel pool, prior to placement in dry storage or offsite transport for disposal or reprocessing. Additionally, the inventory of spent fuel at many reactors worldwide has or will reach the storage capacity of the spent fuel pool; some facilities are alleviating their need for additional storage capacity by utilizing dry cask storage. While there are numerous differences between wet and dry storage; when done properly both are safe and secure. The nuclear community shares lessons learned worldwide to gain knowledge from one another’s good practices as well as events. Sharing these experiences should minimize the number of incidents worldwide and increase public confidence in the nuclear industry. Over the past 60 years, there have been numerous experiences storing spent fuel, in both wet and dry mediums, that when shared effectively would improve operations and minimize events. These lessons learned will also serve to inform countries, who are new entrants into the nuclear power community, on designs and operations to avoid and include as best practices. The International Atomic Energy Agency convened a technical and several consultants’ meetings to gather these experiences and produce a technical document (TECDOC) to share spent fuel storage lessons learned among member states. This paper will discuss the status of the TECDOC and briefly discuss some lessons learned contained therein. (author)

  7. Sludge Treatment Evaluation: 1992 Technical progress

    International Nuclear Information System (INIS)

    Silva, L.J.; Felmy, A.R.; Ding, E.R.

    1993-01-01

    This report documents Fiscal Year 1992 technical progress on the Sludge Treatment Evaluation Task, which is being conducted by Pacific Northwest Laboratory. The objective of this task is to develop a capability to predict the performance of pretreatment processes for mixed radioactive and hazardous waste stored at Hanford and other US Department of Energy (DOE) sites. Significant cost savings can be achieved if radionuclides and other undesirable constituents can be effectively separated from the bulk waste prior to final treatment and disposal. This work is initially focused on chemical equilibrium prediction of water washing and acid or base dissolution of Hanford single-shell tank (SST) sludges, but may also be applied to other steps in pretreatment processes or to other wastes. Although SST wastes contain many chemical species, there are relatively few constituents -- Na, Al, NO 3 , NO 2 , PO 4 , SO 4 , and F -- contained in the majority of the waste. These constituents comprise 86% and 74% of samples from B-110 and U-110 SSTS, respectively. The major radionuclides of interest (Cs, Sr, Tc, U) are present in the sludge in small molal quantities. For these constituents, and other important components that are present in small molal quantities, the specific ion-interaction terms used in the Pitzer or NRTL equations may be assumed to be zero for a first approximation. Model development can also be accelerated by considering only the acid or base conditions that apply for the key pretreatment steps. This significantly reduces the number of chemical species and chemical reactions that need to be considered. Therefore, significant progress can be made by developing all the specific ion interactions for a base model and an acid dissolution model

  8. Sludge Treatment Evaluation: 1992 Technical progress

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L J; Felmy, A R; Ding, E R

    1993-01-01

    This report documents Fiscal Year 1992 technical progress on the Sludge Treatment Evaluation Task, which is being conducted by Pacific Northwest Laboratory. The objective of this task is to develop a capability to predict the performance of pretreatment processes for mixed radioactive and hazardous waste stored at Hanford and other US Department of Energy (DOE) sites. Significant cost savings can be achieved if radionuclides and other undesirable constituents can be effectively separated from the bulk waste prior to final treatment and disposal. This work is initially focused on chemical equilibrium prediction of water washing and acid or base dissolution of Hanford single-shell tank (SST) sludges, but may also be applied to other steps in pretreatment processes or to other wastes. Although SST wastes contain many chemical species, there are relatively few constituents -- Na, Al, NO[sub 3], NO[sub 2], PO[sub 4], SO[sub 4], and F -- contained in the majority of the waste. These constituents comprise 86% and 74% of samples from B-110 and U-110 SSTS, respectively. The major radionuclides of interest (Cs, Sr, Tc, U) are present in the sludge in small molal quantities. For these constituents, and other important components that are present in small molal quantities, the specific ion-interaction terms used in the Pitzer or NRTL equations may be assumed to be zero for a first approximation. Model development can also be accelerated by considering only the acid or base conditions that apply for the key pretreatment steps. This significantly reduces the number of chemical species and chemical reactions that need to be considered. Therefore, significant progress can be made by developing all the specific ion interactions for a base model and an acid dissolution model.

  9. The Communities R and D Programme: radioactive waste management and storage

    International Nuclear Information System (INIS)

    1977-01-01

    The European Community's programme is the first and to this date the only joint international action dealing with those issues, which might well become decisive for the future of nuclear energy -the management and storage of radioactive waste. The first Annual Progress Report describes the scope and the state of advancement of this indirect action programme. At present 24 research contracts with research institutes in almost every member country of the EC are either signed or in the final stages of negociation. The objective of the R and D actions to be achieved by 1980 is the demonstration of either the technical potential or, for further advanced projects, the feasibility and even the industrial availability of methods for treating and stoping radwaste. The following aspects are investigated: processing of solid waste from reactors, reprocessing plants and the plutonium manufacture; intermediate and terminal storage of high activity and alpha wastes; advanced waste management methods as the storage of gaseous waste and the separation and transmutation of actinides. In addition to the scientific-technical R and D actions, a survey of the legal, administrative and financial problems encountered in radwaste management and storage is an essential part of the Communities' programme

  10. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  11. Remote technology related to the handling, storage and disposal of spent fuel. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Reduced radiation exposure, greater reliability and cost savings are all potential benefits of the application of remote technologies to the handling of spent nuclear fuel. Remote equipment and technologies are used to some extent in all facilities handling fuel and high-level wastes whether they are for interim storage, processing/repacking, reprocessing or disposal. In view of the use and benefits of remote technologies, as well as recent technical and economic developments in the area, the IAEA organized the Technical Committee Meeting (TCM) on Remote Technology Related to the Handling, Storage and/or Disposal of Spent Fuel. Twenty-one papers were presented at the TCM, divided into five general areas: 1. Choice of technologies; 2. Use of remote technologies in fuel handling; 3. Use of remote technologies for fuel inspection and characterization; 4. Remote maintenance of facilities; and 5. Current and future developments. Refs, figs and tabs.

  12. Environmental Research Division technical progress report, January 1984-December 1985

    International Nuclear Information System (INIS)

    1986-05-01

    Technical progress in the various research and assessment activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1984 to 1985. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Environmental Impacts, Fundamental Molecular Physics and Chemistry, and Waste Management Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter

  13. Environmental Research Division technical progress report, January 1984-December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    Technical progress in the various research and assessment activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1984 to 1985. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Environmental Impacts, Fundamental Molecular Physics and Chemistry, and Waste Management Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter.

  14. Chemical and ceramic methods for the safe storage of actinides using monazite. 1997 annual progress report

    International Nuclear Information System (INIS)

    Boatner, L.A.

    1997-01-01

    'Oak Ridge National Laboratory (ORNL) and the Rockwell Science Center of Thousand Oaks, California, are carrying out a joint investigation of the chemical, physical, thermal, and radiation-resistance properties of the lanthanide orthophosphates (monazites) in both ceramic and single-crystal form with the objective of developing the scientific and technical base required for the application of these materials to the storage or disposal of actinide elements, including plutonium. An additional major objective of the research effort is to investigate the technical and scientific problems associated with the formation of both phase-pure monazite ceramics and multiphase monazite-ceramic composites for waste disposal or waste storage applications. These latter investigations encompass the development of low-temperature chemical synthesis routes for the formation of monoclinic monazite phases and the study of the densification properties of lanthanide orthophosphate powders to produce stable, high-density ceramics. Research Statement This research effort addresses several basic issues associated with the characteristics of lanthanide orthophosphates that make this class of materials extremely attractive candidates for application to the storage of actinide elements in general and plutonium in particular. Additionally, these materials are potentially important refractory ceramics in their own right, and many of the scientific issues addressed in this project are applicable to the development of what will constitute a new, highly stable family of ceramics for applications in a number of energy-related areas.'

  15. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system. Volume I. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    An energy storage system which could be attractive for future electric utility peak-load applications is a modified gas turbine power system utilizing underground storage of very high pressure air. The compressed air energy storage (CAES) concept involves using off-peak electricity generated from indigenous coal or nuclear sources to compress air, storing the air in large underground facilities, and withdrawing the air during peak-load periods when it would be heated by combustion and expanded through gas turbines to generate power. The attractiveness of the CAES concept is based upon its potential to supply competitively priced peaking energy, to reduce peak-load power plant dependence on petroleum-based fuels, and to provide a means for leveling the utility system load demand. Therefore, a technical and economic assessment of coal-fired fluidized bed (FBC) combustor/compressed air energy storage (FBC/CAES) systems was performed and is described. The conclusions drawn from the FBC/CAES study program are encouraging. They indicate that pressurized FBC/CAES power plants should be technologically feasible, provide good performance, and be economically competitive. Specifically, it is concluded that: coal-fired FBC/CAES systems should be technically feasible in the near future and potentially attractive for peak-load power generation; and an open-bed PFBC/CAES configuration would provide the best candidate for early commercialization. It has relatively low risk combined with moderate cost and reasonable round-trip heat rate. It also has the potential for future growth options which tend to reduce costs and lower fuel consumption.

  16. Institutional effectiveness of REDD+ MRV: Countries progress in implementing technical guidelines and good governance requirements

    NARCIS (Netherlands)

    Ochieng, R.M.; Visseren-Hamakers, Ingrid; Arts, B.; Brockhaus, M.; Herold, M.

    2016-01-01

    The UNFCCC requires REDD+ countries wishing to receive results-based payments to measure, report and verify (MRV) REDD+ impacts; and outlines technical guidelines and good governance requirements for MRV. This article examines institutional effectiveness of REDD+ MRV by assessing countries’ progress

  17. Technical and economic evaluation of hydrogen storage systems based on light metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jepsen, Julian

    2014-07-01

    Novel developments regarding materials for solid-state hydrogen storage show promising prospects. These complex hydrides exhibit high mass-related storage capacities and thus great technical potential to store hydrogen in an efficient and safe way. However, a comprehensive evaluation of economic competitiveness is still lacking, especially in the case of the LiBH4 / MgH2 storage material. In this study, an assessment with respect to the economic feasibility of implementing complex hydrides as hydrogen storage materials is presented. The cost structure of hydrogen storage systems based on NaAlH4 and LiBH4 / MgH2 is discussed and compared with the conventional high pressure (700 bar) and liquid storage systems. Furthermore, the properties of LiBH4 / MgH2, so-called Li-RHC (Reactive Hydride Composite), are scientifically compared and evaluated on the lab and pilot plant scale. To enhance the reaction rate, the addition of TiCl3 is investigated and high energy ball milling is evaluated as processing technique. The effect of the additive in combination with the processing technique is described in detail. Finally, an optimum set of processing parameters and additive content are identified and can be applied for scaled-up production of the material based on simple models considering energy input during processing. Furthermore, thermodynamic, heat transfer and kinetic properties are experimentally determined by different techniques and analysed as a basis for modelling and designing scaled-up storage systems. The results are analysed and discussed with respect to the reaction mechanisms and reversibility of the system. Heat transfer properties are assessed with respect to the scale-up for larger hydrogen storage systems. Further improvements of the heat transfer were achieved by compacting the material. In this regard, the influence of the compaction pressure on the apparent density, thermal conductivity and sorption behaviour, was investigated in detail. Finally, scaled

  18. Cabling design of booster and storage ring construction progress of TPS

    International Nuclear Information System (INIS)

    Wong, Y.-S.; Liu, K.-B.; Liu, C.-Y.; Wang, B.-S.

    2017-01-01

    The 2012 Taiwan Photon Source (TPS) cable construction project started after 10 months to complete the cable laying and installation of power supply. The circumference of the booster ring (BR) is 496.8 m, whereas that of the storage ring (SR) is 518.4 m. Beam current is set to 500 mA at 3.3 GeV. The paper on grounding systems discusses the design of the ground wire (< 0.2 Ω) with low impedance, power supply of the accelerator and cabling tray. The flow and size of the ground current are carefully evaluated to avoid grounded current from flowing everywhere, which causes interference problems. In the design of the TPS, special shielding will be established to isolate the effects of electromagnetic interference on the magnet and ground current. Booster ring dipoles are connected by a series of 54-magnet bending dipole; the cable size of its stranded wire measures 250 mm"2, with a total length of 5000 m. Booster ring and storage ring quadrupoles have 150 magnets; the cable size of their stranded wire is 250 mm"2, with a total length of 17000 m. Storage ring dipole consists of 48 magnets; the cable size of its stranded wire is 325 mm"2, with a total length of 6000 m. This study discusses the power supply cabling design of the storage ring and booster ring construction progress of TPS. The sections of this paper are divided into discussions of the construction of the control and instrument area, cabling layout of booster ring and storage ring, as well as the installation and commission machine. This study also discusses the use of a high-impedance meter to determine the effect of cabling insulation and TPS power supply machine on energy transfer to ensure the use of safe and correct magnet.

  19. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at

  20. Engineered Materials for Cesium and Strontium Storage. Final Technical Report

    International Nuclear Information System (INIS)

    McDeavitt, Sean M.

    2010-01-01

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at Purdue

  1. Index to Nuclear Safety: a technical progress review by chrology, permuted title, and author, Volume 11(1) through Volume 20(6)

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W B; Passiakos, M

    1980-06-01

    This index to Nuclear Safety, a bimonthly technical progress review, covers articles published in Nuclear Safety, Volume II, No. 1 (January-February 1970), through Volume 20, No. 6 (November-December 1979). It is divided into three sections: a chronological list of articles (including abstracts) followed by a permuted-title (KWIC) index and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center (NSIC), covers all safety aspects of nuclear power reactors and associated facilities. Over 600 technical articles published in Nuclear Safety in the last ten years are listed in this index.

  2. Nonequilibrium photochemical reactions induced by lasers. Technical progress report

    International Nuclear Information System (INIS)

    Steinfeld, J.I.

    1978-04-01

    Research has progressed in six principal subject areas of interest to DOE advanced (laser) isotope separation efforts. These are (1) Infrared double resonance spectroscopy of molecules excited by multiple infrared photon absorption, particularly SF 6 and vinyl chloride. (2) Infrared multiphoton excitation of metastable triplet-state molecules, e.g., biacetyl. (3) An Information Theory analysis of multiphoton excitation and collisional deactivation has been carried out. (4) The mechanism of infrared energy deposition and multiphoton-induced reactions in chlorinated ethylene derivatives; and RRKM (statistical) model accounts for all observed behavior of the system, and a deuterium-specific reaction pathway has been identified. (5) Diffusion-enhanced laser isotope separation in N 16 O/N 18 O. (6) A technical evaluation of laser-induced chemistry and isotope separation

  3. The socio-technical transition of distributed electricity storage into future networks—System value and stakeholder views

    International Nuclear Information System (INIS)

    Grünewald, Philipp H.; Cockerill, Timothy T.; Contestabile, Marcello; Pearson, Peter J.G.

    2012-01-01

    Whole system models for the GB electricity system suggest that distributed electricity storage has the potential to significantly reduce the system integration cost for future system scenarios. From a policy perspective, this poses the question why this value should not be realised within existing market structures. Opinion among stakeholders is divided. Some believe that storage deployment constitutes a ‘special case’ in need of policy support. Others insist that markets can provide the necessary platform to negotiate contracts, which reward storage operators for the range of services they could provide. This paper seeks to inform this debate with a process of stakeholder engagement using a perspective informed by socio-technical transition literatures. This approach allows the identification of tensions among actors in the electricity system and of possibilities for co-evolution in the deployment of storage technologies during a transition towards a low carbon electricity system. It also draws attention to policy-related challenges of technology lock-in and path dependency resulting from poor alignment of incumbent regimes with the requirements for distributed electricity storage. - Highlights: ► Electricity storage is poorly aligned with existing regimes in the electricity system. ► Stakeholders perceive electricity storage as “somebody else's problem”. ► Combining stakeholder views and transition theory provides new insight. ► Transition from network to operational benefits poses regulatory challenge. ► Value aggregation made difficult due to institutional barriers.

  4. Projects at the component development and integration facility. Quarterly technical progress report, April 1, 1994--June 30, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY94. The CDIF is a major Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; and Spray Casting Project

  5. Safe handling, transport and storage of plutonium. Proceedings of a technical committee meeting held in Vienna, 18-21 October 1993

    International Nuclear Information System (INIS)

    1994-10-01

    Plutonium inventories and utilization rates worldwide are growing. It is important for nuclear power programmes everywhere that no incidents or accidents with plutonium occur. It is therefore important that all who deal with plutonium, do so safely. All those who deal with plutonium should have available the best information on safety handling and storage. Several countries have mature plutonium programmes. However, information exchange on plutonium has been limited. This has precluded the development until now of consensus documentation on safe handling and storage of plutonium. The Technical Committee has been established to address these problems and this Technical Document is the first product in this process. The purpose of the meeting was to bring together experts with significant experience in handling, transporting and storing plutonium; to exchange information and experiences dealing with plutonium at their facilities; to describe their practices (guidelines, procedures, regulations, etc.) for safely dealing with plutonium; to assess the need to develop and publish a consensus plutonium safety practices document(s), and to recommend possible future IAEA activities in this technical area. Refs, figs and tabs

  6. Plutonium storage criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D. [Scientech, Inc., Germantown, MD (United States); Ascanio, X. [Dept. of Energy, Germantown, MD (United States)

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  7. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    Science.gov (United States)

    Zhai, Shiyan; Song, Genxin; Qin, Yaochen; Ye, Xinyue; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  8. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    Directory of Open Access Journals (Sweden)

    Shiyan Zhai

    Full Text Available This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  9. Advanced Gas Storage Concepts: Technologies for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  10. Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration

    Energy Technology Data Exchange (ETDEWEB)

    Parks, G.; Boyd, R.; Cornish, J.; Remick, R.

    2014-05-01

    At the request of the U.S. Department of Energy Fuel Cell Technologies Office (FCTO), the National Renewable Energy Laboratory commissioned an independent review of hydrogen compression, storage, and dispensing (CSD) for pipeline delivery of hydrogen and forecourt hydrogen production. The panel was asked to address the (1) cost calculation methodology, (2) current cost/technical status, (3) feasibility of achieving the FCTO's 2020 CSD levelized cost targets, and to (4) suggest research areas that will help the FCTO reach its targets. As the panel neared the completion of these tasks, it was also asked to evaluate CSD costs for the delivery of hydrogen by high-pressure tube trailer. This report details these findings.

  11. The Impacts of Technical Progress on Sulfur Dioxide Kuznets Curve in China: A Spatial Panel Data Approach

    Directory of Open Access Journals (Sweden)

    Zhimin Zhou

    2017-04-01

    Full Text Available This paper aims to reveal the nexus for sulfur dioxide (SO2 emission and income, as well as the effects of technical progress on SO2 emission in China based on environment Kuznets curve (EKC hypothesis. The spatial panel technique is used in case the coefficient estimates are biased due to the negligence of spatial dependence. With the provincial panel data of China from 2004 to 2014, this is the first research that finds an inverse N-trajectory of the relationship between SO2 emission and economic growth and confirms the beneficial impacts of technical advancement on SO2 emission abatement. The empirical results also suggest that the industrial structure change is an important driving force of the SO2 EKC. In addition, the direct and spillover effects of determinants on sulfur emission are clarified and estimated by a correct approach. Finally, we check the stability of our conclusions on the EKC shape for SO2 and technical progress effects when controlling for different variables and specifications, through which we find the turning points are sensitive to variables selections.

  12. Technical progress and climatic change

    International Nuclear Information System (INIS)

    Ausubel, J.H.

    1995-01-01

    The global warming debate has neglected and thus underestimated the importance of technical change in considering reduction in greenhouse gases and adaptation to climate change. Relevant quantitative cases of long-run technical change during the past 100 years are presented in computing, communications, transport, energy, and agriculture. A noteworthy technological trajectory is that of decarbonization, or decreasing carbon intensity of primary energy. If human societies have not yet reached the end of the history of technology, the cost structure for mitigation and adaptation changes could be cheap. (Author)

  13. Western Research Institute: Annual technical progress report, October 1987--September 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This report describes the technical progress made by the Western Research Institute of the University of Wyoming Research Institute of the University of Wyoming Research Corporation on work performed for the period October 1, 1987 through September 30, 1988. This research involves five resource areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. Under the terms of the cooperative agreement, an annual project plan has been approved by DOE. The work reported herein reflects the implementation of the research in the plan and follows the structure used therein. 49 refs., 32 figs., 87 tabs.

  14. Technical meeting on progress in managing, and limiting the consequences of events exceeding the design basis

    International Nuclear Information System (INIS)

    Fabian, H.

    2004-01-01

    The Technical Groups on 'Reactor Safety' and 'Thermodynamics and Fluid Dynamics' of the Kerntechnische Gesellschaft e.V. organized a joint technical meeting on 'Progress in Managing, and Limiting the Consequences of, Events Exceeding the Design Basis' at the FTU Training Center of the Karlsruhe Research Center. The topic chosen, the papers presented, the presenters, and the non-technical part of the program met with lively interest on the part of institutions in the nuclear field. These were the objectives of the technical meeting: - Establishing a forum for communicating relevant topics. - In-depth discussion of the main topic, i.e. the advanced development of reactor safety, research in the field, and its application, in twenty selected papers presented by speakers from different institutions. - Presentation of topical work in a nuclear technology institution, the Karlsruhe Research Center. (orig.) [de

  15. Studies in theoretical high energy particle physics: Technical progress report [February 1987-February 1988

    International Nuclear Information System (INIS)

    Sukhatme, U.P.; Keung, Wai-Yee; Kovacs, E.

    1988-02-01

    This is a technical progress report for grant No. FG02-84ER40173 for the period February 1987 to February 1988. Our research on supersymmetric quantum mechanics has yielded many interesting results. In particular, a systematic approach to the tunneling problem in double well potentials has been developed. Higgs boson related physics at the high energy hadron colliders has been extensively studied

  16. Technologies for gas cooled reactor decommissioning, fuel storage and waste disposal. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-09-01

    Gas cooled reactors (GCRs) and other graphite moderated reactors have been important part of the world's nuclear programme for the past four decades. The wide diversity in status of this very wide spectrum of plants from initial design to decommissioning was a major consideration of the International Working group on Gas Cooled Reactors which recommended IAEA to convene a Technical Committee Meeting dealing with GCR decommissioning, including spent fuel storage and radiological waste disposal. This Proceedings includes papers 25 papers presented at the Meeting in three sessions entitled: Status of Plant Decommissioning Programmes; Fuels Storage Status and Programmes; waste Disposal and decontamination Practices. Each paper is described here by a separate abstract

  17. The role of technical progress in the process of recalculating oil reserves; Le role du progres technique dans le processus de renouvellement des reserves petrolieres

    Energy Technology Data Exchange (ETDEWEB)

    Boulard, J.N. [Total/Fina/Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    1999-08-01

    Contrary to the concept of resources (which is essentially a geological one), the notion of reserves designates the quantities that are technically and economically recoverable. Beyond the production-related effect, the reserves therefore evolve over time in accordance with numerous technical and economic parameters. Among these parameters, it can be seen that technical progress plays a considerable role throughout the process of converting resources into reserves, including progress in the identification, accessibility and processing of the resources, and improvements in economic viability. After having tackled the problem of measuring the 'technical progress effects' and citing examples, we demonstrate that the evolution in oil reserves is subject to three types of impact. These are a quantitative impact by significantly improving the recovery rates or making it possible to identify hitherto undetectable oil fields, a qualitative impact by widening the resource base thanks to the adoption of new categories of oil (in particular the so-called 'unconventional' oils) and by carrying out the gradual substitution between these resources of differing qualities. There is also a dynamic impact, through the acceleration of resource availability. Through these three approaches, technical progress makes makes it possible to ensure continuity in oil supply and contributes significantly to the recalculation of reserves. It therefore acts as a compensating factor, counterbalancing the progressive depletion of resources. (author)

  18. A saposin deficiency model in Drosophila: Lysosomal storage, progressive neurodegeneration and sensory physiological decline.

    Science.gov (United States)

    Hindle, Samantha J; Hebbar, Sarita; Schwudke, Dominik; Elliott, Christopher J H; Sweeney, Sean T

    2017-02-01

    Saposin deficiency is a childhood neurodegenerative lysosomal storage disorder (LSD) that can cause premature death within three months of life. Saposins are activator proteins that promote the function of lysosomal hydrolases that mediate the degradation of sphingolipids. There are four saposin proteins in humans, which are encoded by the prosaposin gene. Mutations causing an absence or impaired function of individual saposins or the whole prosaposin gene lead to distinct LSDs due to the storage of different classes of sphingolipids. The pathological events leading to neuronal dysfunction induced by lysosomal storage of sphingolipids are as yet poorly defined. We have generated and characterised a Drosophila model of saposin deficiency that shows striking similarities to the human diseases. Drosophila saposin-related (dSap-r) mutants show a reduced longevity, progressive neurodegeneration, lysosomal storage, dramatic swelling of neuronal soma, perturbations in sphingolipid catabolism, and sensory physiological deterioration. Our data suggests a genetic interaction with a calcium exchanger (Calx) pointing to a possible calcium homeostasis deficit in dSap-r mutants. Together these findings support the use of dSap-r mutants in advancing our understanding of the cellular pathology implicated in saposin deficiency and related LSDs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Critical experiments supporting close proximity water storage of power reactor fuel. Technical progress report, July 1, 1978-September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.N.; Hoovler, G.S.; Eng, R.L.; Welfare, F.G.

    1978-11-01

    Experimental measurements are being taken on critical configurations of clusters of fuel rods mocking up LWR-type fuel elements in close proximity water storage. The results will serve to benchmark the computer codes used in designing nuclear power reactor fuel storage racks. KENO calculations of Cores I to VI are within two standard deviations of the measured k/sub eff/ values.

  20. Hollow ceramic block: containment of water for thermal storage in passive solar design. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Winship, C.T.

    1983-12-27

    The project activity has been the development of designs, material compositions and production procedures to manufacture hollow ceramic blocks which contain water (or other heat absorptive liquids). The blocks are designed to serve, in plurality, a dual purpose: as an unobtrusive and efficient thermal storage element, and as a durable and aesthetically appealing surface for floors and walls of passive solar building interiors. Throughout the grant period, numerous ceramic formulas have been tested for their workabilty, thermal properties, maturing temperatures and color. Blocks have been designed to have structural integrity, and textured surfaces. Methods of slip-casting and extrusion have been developed for manufacturing of the blocks. The thermal storage capacity of the water-loaded block has been demonstrated to be 2.25 times greater than that of brick and 2.03 times greater than that of concrete (taking an average of commonly used materials). Although this represents a technical advance in thermal storage, the decorative effects provided by application of the blocks lend them a more significant advantage by reducing constraints on interior design in passive solar architecture.

  1. Key technical issues relating to safety of spent fuel dry storage in vaults: CASCAD system

    Energy Technology Data Exchange (ETDEWEB)

    Berge, F [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    1994-12-31

    The operating CASCAD Facility at the Cadarashe site (FR) was commissioned in May 1990. Fuel is received in tight canisters which are transferred to storage pits in the vault and scheduled to be stored for up to 50 years. Canistering operations are performed in a cell of the reactor building.The paper describes the main functions of the facility as: cask receipt and shipping; fuel unloading; fuel conditioning; canisters emplacements in storage location; fuel storage; fuel retrieving and shipping at the end of the storage period; operation system and operation organization. Safety characteristics of the facility discussed are: fuel decay heat removal; subcriticality control and radiological protection. The fuel decay heat removal has two main purposes: (1) maintaining rod cladding temperature below a set limit in order to keep the fuel in its as received condition; (2) maintaining structures and equipment performing a safety function below the design temperature. The features of the sub-criticality control in the storage vault are such that sub-criticality in normal and accidental conditions is provided by the arrangement of pits in the vault. Radiological protection is based on limiting collective and individual annual dose equivalent to ALARA levels ensuring that they remain in any case below the set limits. Radiological protection system described consists in: confinement of radioactive materials for protection against its dissemination; radiation shielding for protection against irradiation. It is pointed out that all technical solutions presented are based on or adapted from proven technologies used in operating facilities in France or in other countries. The solution not only benefits from the experience of SGN in the design, construction and start-up of facilities for fuel or high level waste handling and storage, but also from the experience of the CEA and COGEMA groups in operating such facilities. 2 figs., 1 ref.

  2. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  3. Decision Support System for Aquifer Recharge (AR) and Aquifer Storage and Recovery (ASR) Planning, Design, and Evaluation - Principles and Technical Basis

    Science.gov (United States)

    Aquifer recharge (AR) is a technical method being utilized to enhance groundwater resources through man-made replenishment means, such as infiltration basins and injections wells. Aquifer storage and recovery (ASR) furthers the AR techniques by withdrawal of stored groundwater at...

  4. Office of Waste Isolation. Progress report, November 1977. [National waste terminal storage

    Energy Technology Data Exchange (ETDEWEB)

    Rhines, R.C.; Asher, J.M. (eds.)

    1977-12-28

    This program is part of the National Waste Terminal Storage program. The Geologic Review Group meeting was held in New Orleans, November 16-17. Start-up of the near-surface heater experiment in the Conasauga Shale formation is under way at Oak Ridge. The first shipment of experimental equipment from Oak Ridge to Avery Island, Louisiana, for the dome salt in-situ test was successfully completed. On November 9-10, a design status review on the spent fuel repository conceptual design was held with Kaiser Engineers, Inc. On November 2, OWI personnel reviewed the progress on the Economic Studies with TRW representatives.

  5. Advanced converter technology. Technical progress report, May 23, 1979-May 22, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Banic, C. V.; Eckhouse, S. A.; Kornbrust, F. J.; Lipman, K.; Peterson, J. L.; Rosati, R. W.

    1980-01-01

    The overall objective of this program is to define an advanced converter system employing 1980's technology in all subsystem and component areas for use in electrochemical energy storage systems. Additional experimental effort will validate elements of the advanced commutation circuitry on a full-scale breadboard basis. Improved models of battery electrical characteristics are beng defined and experimental apparatus is being designed to measure these characteristics and to enable better definition of the battery-power conditioner interface. Improvement of energy-storage system performance through modification of battery converter characteristics will also be investigated. During this first year of the contract, a new more advanced concept for power conditioning based on a concept defined by United Technologies Corporation for fuel cell use was evaluated. This high switching frequency concept has the potential for significantly reducing the size and cost of battery plant power conditioners. As a result, the Department of Energy authorized redirection of the program to first evaluate this new concept and then to reorient the program to adopt this concept as the primary one. Progress is reported. (WHK)

  6. Surgical resident technical skill self-evaluation: increased precision with training progression.

    Science.gov (United States)

    Quick, Jacob A; Kudav, Vishal; Doty, Jennifer; Crane, Megan; Bukoski, Alex D; Bennett, Bethany J; Barnes, Stephen L

    2017-10-01

    Surgical resident ability to accurately evaluate one's own skill level is an important part of educational growth. We aimed to determine if differences exist between self and observer technical skill evaluation of surgical residents performing a single procedure. We prospectively enrolled 14 categorical general surgery residents (six post-graduate year [PGY] 1-2, three PGY 3, and five PGY 4-5). Over a 6-month period, following each laparoscopic cholecystectomy, residents and seven faculty each completed the Objective Structured Assessment of Technical Skills (OSATS). Spearman's coefficient was calculated for three groups: senior (PGY 4-5), PGY3, and junior (PGY 1-2). Rho (ρ) values greater than 0.8 were considered well correlated. Of the 125 paired assessments (resident-faculty each evaluating the same case), 58 were completed for senior residents, 54 for PGY3 residents, and 13 for junior residents. Using the mean from all OSATS categories, trainee self-evaluations correlated well to faculty (senior ρ 0.97, PGY3 ρ 0.9, junior ρ 0.9). When specific OSATS categories were analyzed, junior residents exhibited poor correlation in categories of respect for tissue (ρ -0.5), instrument handling (ρ 0.71), operative flow (ρ 0.41), use of assistants (ρ 0.05), procedural knowledge (ρ 0.32), and overall comfort with the procedure (ρ 0.73). PGY3 residents lacked correlation in two OSATS categories, operative flow (ρ 0.7) and procedural knowledge (ρ 0.2). Senior resident self-evaluations exhibited strong correlations to observers in all areas. Surgical residents improve technical skill self-awareness with progressive training. Less-experienced trainees have a tendency to over-or-underestimate technical skill. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Pumped Storage and Potential Hydropower from Conduits

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-02-25

    Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability benefits, and the range of conduit hydropower opportunities available in the United States.

  8. Productivity Change, Technical Progress, and Relative Efficiency Change in the Public Accounting Industry

    OpenAIRE

    Rajiv D. Banker; Hsihui Chang; Ram Natarajan

    2005-01-01

    We present evidence on components of productivity change in the public accounting industry toward the end of the 20th century. Using revenue and human resource data from 64 of the 100 largest public accounting firms in the United States for the 1995--1999 period, we analyze productivity change, technical progress, and relative efficiency change over time. The average public accounting firm experienced a productivity growth of 9.5% between 1995 and 1999. We find support for the hypothesis that...

  9. GPHS-RTGs in support of the Cassini RTG Program. Semi annual technical progress report, September 26, 1994--April 2, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The technical progress achieved during the period 26 September 1994 through 2 April 1995 on Contract DE-AC03-91SF18852 Radioisotope Thermoelectric Generators and Ancillary Activities is described herein. Monthly technical activity for the period 27 February 1995 through 2 April 1995 is included in this progress report. The report addresses tasks, including: spacecraft integration and liaison; engineering support; safety; qualified unicouple production; ETG Fabrication, assembly, and test; ground support equipment; RTG shipping and launch support; designs, reviews, and mission applications; project management, quality assurance, reliability, contract changes, CAGO acquisition (operating funds), and CAGO maintenance and repair; and CAGO acquisition (capital funds)

  10. The atmospheric corrosion: an important technical-economic and nuclear safety factor during storage in the construction of nuclear power plants

    International Nuclear Information System (INIS)

    Rodriguez, R.; Rodriguez, J.; Diaz, J.; Gomez, J.; Galeano, N.

    1993-01-01

    The purpose of this work is to show the results of the research performed to determine the atmospheric corrosion in the region of Juragua nuclear power plant and to offer some practical recommendations to increase the efficiency during the storage of materials, considering technical-economic and nuclear safety aspects

  11. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  12. Works Technical Department progress report, March 1961

    Energy Technology Data Exchange (ETDEWEB)

    None

    1961-04-19

    This document details the activities of the Savannah River Works Technical Department during the month of March 1961. Topics discussed are: Reactor Technology, Separations Technology, Engineering Assistance, Health Physics, Laboratories Overview, and Technical Papers Issued.

  13. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  14. Progress and future direction for the interim safe storage and disposal of Hanford high level waste (HLW)

    International Nuclear Information System (INIS)

    Wodrich, D.D.

    1996-01-01

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the US DOE and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described

  15. Technical and economic assessments of storage techniques for long-term retention of industrial-beet sugar for non-food industrial fermentations

    Science.gov (United States)

    Vargas-Ramirez, Juan Manuel

    Industrial beets may compete against corn grain as an important source of sugars for non-food industrial fermentations. However, dependable and energy-efficient systems for beet sugar storage and processing are necessary to help establish industrial beets as a viable sugar feedstock. Therefore, technical and economic aspects of beet sugar storage and processing were evaluated. First, sugar retention was evaluated in whole beets treated externally with either one of two antimicrobials or a senescence inhibitor and stored for 36 wk at different temperature and atmosphere combinations. Although surface treatment did not improve sugar retention, full retention was enabled by beet dehydration caused by ambient air at 25 °C and with a relative humidity of 37%. This insight led to the evaluation of sugar retention in ground-beet tissue ensiled for 8 wk at different combinations of acidic pH, moisture content (MC), and sugar:solids. Some combinations of pH ≤ 4.0 and MC ≤ 67.5% enabled retentions of at least 90%. Yeast fermentability was also evaluated in non-purified beet juice acidified to enable long-term storage and partially neutralized before fermentation. None of the salts synthesized through juice acidification and partial neutralization inhibited yeast fermentation at the levels evaluated in that work. Conversely, yeast fermentation rates significantly improved in the presence of ammonium salts, which appeared to compensate for nitrogen deficiencies. Capital and operating costs for production and storage of concentrated beet juice for an ethanol plant with a production capacity of 76 x 106 L y-1 were estimated on a dry-sugar basis as U.S. ¢34.0 kg-1 and ¢2.2 kg-1, respectively. Storage and processing techniques evaluated thus far prove that industrial beets are a technically-feasible sugar feedstock for ethanol production.

  16. Vision and framework for technical and management support to facilitate foreign spent fuel storage and geologic disposal in Russia

    International Nuclear Information System (INIS)

    Halsey, W.G.; Jardine, L.J.; Smith, C.F.

    1999-01-01

    This 'Technical and Management Support' program would facilitate the transfer of spent fuel from commercial power plants in Taiwan to a storage and geologic repository site near Krasnoyarsk, Russia. This program resolves issues of disposition of Taiwan spent fuel (including US origin fuel) and provides revenue for Russia to develop an integrated spent fuel storage and radioactive waste management system including a geologic repository. LLNL has ongoing contracts and collaborations with all the principal parties and is uniquely positioned to facilitate the development of such a program. A three-phase approach over 20 years is proposed: namely, an initial feasibility investigation followed by an engineering development phase, and then implementation

  17. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  18. Economic Aspects of Innovations in Energy Storage

    OpenAIRE

    Strielkowski, Wadim; Lisin, Evgeny

    2017-01-01

    Energy storage is emerging as a potential method for addressing global energy system challenges across many different application areas. However, there are technical and non-technical barriers to the widespread deployment of energy storage devices. With regard to the above, it seems crucial to identify innovation processes, mechanisms and systems (in a broad sense) that can allow energy storage to help meet energy system challenges, and also deliver industrial growth from technology developme...

  19. Offshore Storage Resource Assessment - FINAL SCIENTIFIC/TECHNICAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Bill [NITEC LLC; Ozgen, Chet [NITEC LLC

    2017-12-13

    The DOE developed volumetric equation for estimating Prospective Resources (CO2 storage) in oil and gas reservoirs was utilized on each depleted field in the Federal GOM. This required assessment of the in-situ hydrocarbon fluid volumes for the fields under evaluation in order to apply the DOE equation. This project utilized public data from the U.S. Department of the Interior, Bureau of Ocean Energy Management (BOEM) Reserves database and from a well reputed, large database (250,000+ wells) of GOM well and production data marketed by IHS, Inc. IHS interpreted structure map files were also accessed for a limited number of fields. The databases were used along with geological and petrophysical software to identify depleted oil and gas fields in the Federal GOM region. BOEM arranged for access by the project team to proprietary reservoir level maps under an NDA. Review of the BOEM’s Reserves database as of December 31, 2013 indicated that 675 fields in the region were depleted. NITEC identified and rank these 675 fields containing 3,514 individual reservoirs based on BOEM’s estimated OOIP or OGIP values available in the Reserves database. The estimated BOEM OOIP or OGIP values for five fields were validated by an independent evaluation using available petrophysical, geologic and engineering data in the databases. Once this validation was successfully completed, the BOEM ranked list was used to calculate the estimated CO2 storage volume for each field/reservoir using the DOE CO2 Resource Estimate Equation. This calculation assumed a range for the CO2 efficiency factor in the equation, as it was not known at that point in time. NITEC then utilize reservoir simulation to further enhance and refine the DOE equation estimated range of CO2 storage volumes. NITEC used a purpose built, publically available, 4-component, compositional reservoir simulator developed under funding from DOE (DE-FE0006015) to assess CO2-EOR and CO2 storage in 73 fields/461 reservoirs. This

  20. Feasibility of a subsurface storage

    International Nuclear Information System (INIS)

    1998-11-01

    This report analyses the notion of subsurface storage under the scientifical, technical and legal aspects. This reflection belongs to the studies about long duration storage carried out in the framework of the axis 3 of the December 30, 1991 law. The report comprises 3 parts. The first part is a synthesis of the complete subsurface storage study: definitions, aim of the report, very long duration storage paradigm, description files of concepts, thematic synthesis (legal aspects, safety, monitoring, sites, seismicity, heat transfers, corrosion, concretes, R and works, handling, tailings and dismantlement, economy..), multi-criteria/multi-concept cross-analysis. The second part deals with the technical aspects of the subsurface storage: safety approach (long duration impact, radiation protection, mastery of effluents), monitoring strategy, macroscopic inventory of B-type waste packages, inventory of spent fuels, glasses, hulls and nozzles, geological contexts in the French territory (sites selection and characterization), on-site activities, hydrogeological and geochemical aspects, geo-technical works and infrastructures organization, subsurface seismic effects, cooling modes (ventilation, heat transfer with the geologic environment), heat transfer research programs (convection, poly-phase cooling in porous media), handling constraints, concretes (use, behaviour, durability), corrosion of metallic materials, technical-economical analysis, international context (experience feedback from Sweden (CLAB) and the USA (Yucca Mountain), other European and French facilities). The last part of the report is a graphical appendix with 3-D views and schemes of the different concepts. (J.S.)

  1. Developing new transportable storage casks for interim dry storage

    International Nuclear Information System (INIS)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R.

    2004-01-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication

  2. Thermal energy storage for building heating and cooling applications. Quarterly progress report, April--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.W.; Kedl, R.J.

    1976-11-01

    This is the first in a series of quarterly progress reports covering activities at ORNL to develop thermal energy storage (TES) technology applicable to building heating and cooling. Studies to be carried out will emphasize latent heat storage in that sensible heat storage is held to be an essentially existing technology. Development of a time-dependent analytical model of a TES system charged with a phase-change material was started. A report on TES subsystems for application to solar energy sources is nearing completion. Studies into the physical chemistry of TES materials were initiated. Preliminary data were obtained on the melt-freeze cycle behavior and viscosities of sodium thiosulfate pentahydrate and a mixture of Glauber's salt and Borax; limited melt-freeze data were obtained on two paraffin waxes. A subcontract was signed with Monsanto Research Corporation for studies on form-stable crystalline polymer pellets for TES; subcontracts are being negotiated with four other organizations (Clemson University, Dow Chemical Company, Franklin Institute, and Suntek Research Associates). Review of 10 of 13 unsolicited proposals received was completed by the end of June 1976.

  3. Nuclear structure theory. Annual technical progress report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1977-01-01

    This report summarizes progress during the past year in the following areas of nuclear structure and reaction theory: (1) statistical spectroscopy, including giant resonances for beta and electromagnetic excitation and sum rules (including inverse-energy-weighted sum rules), statistical methods of truncating shell model spaces and renormalization of operators, study of state labelling and ''chains'' of groups, evaluation of fluctuation measures, technical aspects of operator averaging; (2) meson interactions with nuclei, including scattering and absorption of mesons by nuclei (general methods), models for absorption, single- and double-charge exchange of pions, role of rho mesons

  4. Energy storage

    Science.gov (United States)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  5. Technical changes that would contribute to success in the civilian radioactive waste management program

    International Nuclear Information System (INIS)

    Ramspott, L.D.

    1993-01-01

    Many changes have taken place since the SCP safety strategy was formulated; it needs to be revised or replaced. Four concepts would aid in the shift from a rigid, ecelctic, schedule-driven, all-or-nothing program to an incremental, evolving, and experimental but integrated program. These are a simple safety case, reversability, demonstrability, and decoupling operations of a repository from operation of reactors. A simple safety case based on containment can be made for a repository at Yucca Mountain. This containment strategy is based on the dryness of openings at Yucca Mountain, Extended Dry heat management, and long-lived containers. Reversibility is technically believable at Yucca Mountain because of extended retrievability and drift emplacement, if an MRS were co-located with the repository. Because the rock is unsaturated, extended retrievability is technically feasible at Yucca Mountain. Demonstrability could be improved at Yucca Mountain by planning for incremental progression toward operation and closure of a repository, possibly including a shift to underground retrievable storage. Demonstrability can also be improved by using natural analogs. Repository operation can be decoupled from reactor operation by use of an unconstrained MRS facility or at-reactor dry storage and multipurpose storage canister/casks

  6. Rock cavern storage of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Kim, Kyung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Sang Ki [Inha University, Incheon (Korea, Republic of)

    2015-12-15

    The rock cavern storage for spent fuel has been assessed to apply in Korea with reviewing the state of the art of the technologies for surface storage and rock cavern storage of spent fuel. The technical feasibility and economic aspects of the rock cavern storage of spent fuel were also analyzed. A considerable area of flat land isolated from the exterior are needed to meet the requirement for the site of the surface storage facilities. It may, however, not be easy to secure such areas in the mountainous region of Korea. Instead, the spent fuel storage facilities constructed in the rock cavern moderate their demands for the suitable site. As a result, the rock cavern storage is a promising alternative for the storage of spent fuel in the aspect of natural and social environments. The rock cavern storage of spent fuel has several advantages compared with the surface storage, and there is no significant difference on the viewpoint of economy between the two alternatives. In addition, no great technical difficulties are present to apply the rock cavern storage technologies to the storage of domestic spent fuel.

  7. FY 1992 work plan and technical progress reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-11-01

    The Desert Research Institute (DRI) is a division of the University of Nevada System devoted to multidisciplinary scientific research. For more than 25 years, DRI has conducted research for the US Department of Energy`s Nevada Field Office (DOE/NV) in support of operations at the Nevada Test Site (NTS). During that time, the research program has grown from an early focus on hydrologic studies to include the areas of geology, archaeology, environmental compliance and monitoring, statistics, database management, public education, and community relations. The range of DRI`s activities has also expanded to include a considerable amount of management and administrative support in addition to scientific investigations. DRI`s work plan for FY 1992 reflects a changing emphasis in DOE/NV activities from nuclear weapons testing to environmental restoration and monitoring. Most of the environmental projects from FY 1991 are continuing, and several new projects have been added to the Environmental Compliance Program. The Office of Technology Development Program, created during FY 1991, also includes a number of environmental projects. This document contains the FY 1992 work plan and quarterly technical progress reports for each DRI project.

  8. Idaho chemical programs annual technical report, fiscal year 1974

    International Nuclear Information System (INIS)

    Bower, J.R.

    1975-01-01

    The operating experience in fuel processing, waste calcining, and other waste management activities for FY 1974 is summarized. A new zirconium fuel dissolver has performed well, and the first-cycle extraction system shows near-zero losses. Technical support activities include: a flowsheet to reduce acid consumption and volume of liquid wastes in the electrolytic process; a new dissolution process for ternary oxide PWR fuel using zirconium-fluoride-nitric acid dissolvent; a study and recommendation for treatment of fuel storage basin water; progress in design and development of processes for Rover and HTGR fuels, corrosion evaluation of bins containing calcined wastes showing corrosion rates indicative of a safe 500-year or greater storage life; demonstration on a pilot-plant scale of conditions for calcination of stainless steel and Rover fuel wastes as well as commercial wastes; evaluation of equipment alternatives for a new waste calcining facility; studies related to improvements in rare gas recovery and process off-gas treatment; demonstration of stability when various high-level waste solutions are mixed; progress on postcalcination treatment of calcined waste solids (ceramic formation, incorporation in metals, and calcine-concretes); studies on removal of actinides from ICPP wastes; a conceptual design for a proposed radioactive solid-waste repackaging facility for the INEL. Significant progress is reported on the program for determination of burnup for fast breeder reactor fuels. (U.S.)

  9. Final Technical Progress Report: Development of Low-Cost Suspension Heliostat; December 7, 2011 - December 6, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bender, W.

    2013-01-01

    Final technical progress report of SunShot Incubator Solaflect Energy. The project succeeded in demonstrating that the Solaflect Suspension Heliostat design is viable for large-scale CSP installations. Canting accuracy is acceptable and is continually improving as Solaflect improves its understanding of this design. Cost reduction initiatives were successful, and there are still many opportunities for further development and further cost reduction.

  10. Heat transport and storage

    International Nuclear Information System (INIS)

    Despois, J.

    1977-01-01

    Recalling the close connections existing between heat transport and storage, some general considerations on the problem of heat distribution and transport are presented 'in order to set out the problem' of storage in concrete form. This problem is considered in its overall plane, then studied under the angle of the different technical choices it involves. The two alternatives currently in consideration are described i.e.: storage in a mined cavity and underground storage as captive sheet [fr

  11. Progress in Energy Storage Technologies: Models and Methods for Policy Analysis

    Science.gov (United States)

    Matteson, Schuyler W.

    Climate change and other sustainability challenges have led to the development of new technologies that increase energy efficiency and reduce the utilization of finite resources. To promote the adoption of technologies with social benefits, governments often enact policies that provide financial incentives at the point of purchase. In their current form, these subsidies have the potential to increase the diffusion of emerging technologies; however, accounting for technological progress can improve program success while decreasing net public investment. This research develops novel methods using experience curves for the development of more efficient subsidy policies. By providing case studies in the field of automotive energy storage technologies, this dissertation also applies the methods to show the impacts of incorporating technological progress into energy policies. Specific findings include learning-dependent tapering subsidies for electric vehicles based on the lithium-ion battery experience curve, the effects of residual learning rates in lead-acid batteries on emerging technology cost competitiveness, and a cascading diffusion assessment of plug-in hybrid electric vehicle subsidy programs. Notably, the results show that considering learning rates in policy development can save billions of dollars in public funds, while also lending insight into the decision of whether or not to subsidize a given technology.

  12. Developing new transportable storage casks for interim dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R. [Hitachi Zosen Diesel and Engineering Co., Ltd., Tokyo (Japan)

    2004-07-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication.

  13. Generation and focusing of pulsed intense ion beams. Technical progress report, 20 August 1981-30 September 1982

    International Nuclear Information System (INIS)

    Hammer, D.A.; Kusse, B.R.; Sudan, R.N.

    1983-07-01

    The progress on this contract is described in two parts. The first deals with the technical operation of the LION accelerator which is the exact equivalent to one line of PBFA-I. The second part is concerned with the experimental results on the ion diode mounted at the front end of the LION accelerator

  14. Research progress about chemical energy storage of solar energy

    Science.gov (United States)

    Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun

    2018-01-01

    In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.

  15. Thermal Analysis of a Dry Storage Concept for Capsule Dry Storage Project

    International Nuclear Information System (INIS)

    JOSEPHSON, W.S.

    2003-01-01

    There are 1,936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project is conducted under the assumption that the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event that vitrification of the capsule contents is pursued. The Capsule Advisory Panel (CAP) was created by the Project Manager for the Hanford Site Capsule Dry Storage Project (CDSP). The purpose of the CAP is to provide specific technical input to the CDSP; to identify design requirements; to ensure design requirements for the project are conservative and defensible; to identify and resolve emerging, critical technical issues, as requested; and to support technical reviews performed by regulatory organizations, as requested. The CAP will develop supporting and summary documents that can be used as part of the technical and safety bases for the CDSP. The purpose of capsule dry storage thermal analysis is to: (1) Summarize the pertinent thermal design requirements sent to vendors, (2) Summarize and address the assumptions that underlie those design requirements, (3) Demonstrate that an acceptable design exists that satisfies the requirements, (4) Identify key design features and phenomena that promote or impede design success, (5) Support other CAP analyses such as corrosion and integrity evaluations, and (6) Support the assessment of proposed designs. It is not the purpose of this report to optimize or fully analyze variations of postulated acceptable designs. The present evaluation will indicate the impact of various possible design features, but not systematically pursue design improvements obtainable through analysis

  16. The U.S. nuclear waste management program - technical progress at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, L.H. [U.S. Department of Energy (United States)

    2001-07-01

    This paper discusses the current status of a national program being developed by the U.S. Department of Energy for the management of spent nuclear fuel and high-level radioactive waste produced by civilian nuclear power generation and defense-related activities. In 1987 the U.S. Congress directed the Department to characterize the Yucca Mountain site in Nevada and determine its suitability for development of a geologic repository. This paper will focus on the technical progress that has been made after more than 15 years of scientific and engineering investigations at Yucca Mountain, and the remaining work that is being done to support a decision on whether to recommend the site for development of a geologic repository. (author)

  17. Develop improved metal hydride technology for the storage of hydrogen. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.

    1998-12-04

    The overall objective was to develop commercially viable metal hydrides capable of reversibly storing at least 3 wt.% hydrogen for use with PEM fuel cells and hydrogen fueled internal combustion engine (HICE) applications. Such alloys are expected to result in system capacities of greater than 2 wt.%, making metal hydride storage systems (MHSS`s) a practical means of supplying hydrogen for many consumer applications. ECD`s (Energy Conversion Devices, Inc.) past work on sputtered thin films of transition metal-based alloys led to the commercialization of it`s nickel/metal hydride batteries, and similar work on thin film Mg-based alloys demonstrated potential to achieve very high gravimetric and volumetric energy densities approaching 2,500 Wh/Kg and 2,500 Wh/M{sup 3} respectively. Under this 2-year cost shared project with the DOE, the authors have successfully demonstrated the feasibility of scaling up the Mg-based hydrides from thin film to bulk production without substantial loss of storage capacity. ECD made progress in alloy development by means of compositional and process modification. Processes used include Mechanical Alloying, Melt spinning and novel Gas Phase Condensation. It was showed that the same composition when prepared by melt-spinning resulted in a more homogeneous material having a higher PCT plateau pressure as compared to mechanical alloying. It was also shown that mechanically alloyed Mg-Al-Zn results in much higher plateau pressures, which is an important step towards reducing the desorption temperature. While significant progress has been made during the past two years in alloy development and understanding the relationship between composition, structure, morphology, and processing parameters, additional R and D needs to be performed to achieve the goals of this work.

  18. AFCT/TFCT/ISFS Program. Technical progress report for the period April 1, 1978--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Hill, O.F. (comp.)

    1978-08-01

    This is the tenth in a series of quarterly progress reports on studies performed for the Alternate Fuel Cycle Technologies/Thorium Fuel Cycle Technologies/International Spent Fuel Receipt and Storage (AFCT/TFCT/ISFS) Program. This program provides information needed by industry to close the back end of the power reactor fuel cycle. During the past quarter, studies were conducted in the following tasks: thorium resource price analyses; spent fuel receipt and storage; investigation of air cleaning processes for removing TBP from off-gas streams; study of iodine chemistry in process solutions, high-level waste treatment; electropolishing to decontaminate metallic waste from alternate and thorium converter fuel cycles; U.S. scale transport, dispersion and removal model comparison; safety criticality experiments; and criticality research in support of thorium fuel cycle.

  19. Energy storage. Stakes, technical solutions and valorization opportunities

    International Nuclear Information System (INIS)

    2012-03-01

    As a key factor to allow the continuous growth of renewable energies, energy storage technologies are now more than ever in the spotlight. In order to grasp the stakes, understand the technology diversity, learn relevant orders of magnitudes and comprehend the close intricacy of energy storage with energy and environmental issues, ENEA has published a detailed and well-documented publication on the subject

  20. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  1. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Kindergarten. Technical Report # 0921

    Science.gov (United States)

    Alonzo, Julie; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in kindergarten. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2008 and administered to approximately 2800 students from…

  2. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This reports reports the progress/efforts performed on six technical projects: 1. systematic assessment of the state of hazardous waste clean-up technologies; 2. site remediation technologies (SRT):drain- enhanced soil flushing for organic contaminants removal; 3. SRT: in situ bio-remediation of organic contaminants; 4. excavation systems for hazardous waste sites: dust control methods for in-situ nuclear waste handling; 5. chemical destruction of polychlorinated biphenyls; and 6. development of organic sensors: monolayer and multilayer self-assembled films for chemical sensors.

  3. Reversible deep storage: reversibility options for storage in deep geological formations

    International Nuclear Information System (INIS)

    2009-01-01

    This report describes the definition approach to reversibility conditions, presents the main characteristics of high-activity and intermediate-activity long-lived wastes, describes the storage in deep geological formations (safety functions, general description of the storage centre), discusses the design options for the different types of wastes (container, storage module, handling processes, phenomenological analysis, monitoring arrangements) and the decision process in support reversibility (steering of the storage process, progressive development and step-by-step closing), and reports and discusses the researches concerning the memory of the storage site

  4. Underground storage tank - Integrated Demonstration Technical Task Plan master schedule

    International Nuclear Information System (INIS)

    Johnson, C.M.

    1994-08-01

    This document provides an integrated programmatic schedule (i.e., Master Schedule) for the U.S. Department of Energy (DOE) Underground Storage Tank-Integrated Demonstration (UST-ID) Program. It includes top-level schedule and related information for the DOE Office of Technology Development (EM-50) UST-ID activities. The information is based upon the fiscal year (FY) 1994 technical task plans (TTPS) and has been prepared as a baseline information resource for program participants. The Master Schedule contains Level 0 and Level 1 program schedules for the UST-ID Program. This document is one of a number of programmatic documents developed to support and manage the UST-ID activities. It is composed of the following sections: Program Overview - provides a summary background of the UST-ID Program. This summary addresses the mission, scope, and organizational structure of the program; Activity Description - provides a programmatic description of UST-ID technology development activities and lists the key milestones for the UST-ID systems. Master Schedules - contains the Level 0 and Level 1 programmatic schedules for the UST-ID systems. References - lists the UST-ID programmatic documents used as a basis for preparing the Master Schedule. The appendixes contain additional details related to site-specific technology applications

  5. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration

    International Nuclear Information System (INIS)

    Coninck, Heleen de; Stephens, Jennie C.; Metz, Bert

    2009-01-01

    Closing the gap between carbon dioxide capture and storage (CCS) rhetoric and technical progress is critically important to global climate mitigation efforts. Developing strong international cooperation on CCS demonstration with global coordination, transparency, cost-sharing and communication as guiding principles would facilitate efficient and cost-effective collaborative global learning on CCS, would allow for improved understanding of the global capacity and applicability of CCS, and would strengthen global trust, awareness and public confidence in the technology.

  6. Research and development related to the Nevada Nuclear Waste Storage Investigations. Progress report, July 1-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, W R; Wolfsberg, K; Vaniman, D T; Erdal, B R [comps.

    1982-01-01

    This report summarizes the contribution of the Los Alamos National Laboratory to the Nevada Nuclear Waste Storage Investigations for the fourth quarter of FY-81. Progress reports are presented for the following tasks: waste package development; nuclide migration experiments in G tunnel-laboratory studies; geochemistry of tuff; mineralogy-petrology of tuff; volcanism studies; rock physics studies; exploratory shaft; and quality assurance.

  7. Experience in ultimate storage of radwaste, illustrated by the information on geomechanics gained in the Asse storage facility

    International Nuclear Information System (INIS)

    Schmidt, M.W.

    1981-01-01

    Among the numerous variants of storing radioactive waste in the deep geological underground the storage in appropriate mineral salt formations has a couple of particular advantages. In order to effect research- and development works with regard to a safe secular storage of radioactive wastes, the former mineral salt deposit ASSE was assigned to the GSF in the year 1965. At this test plant storage technologies are developed, tested and the operational efficiency of according technical facilities is demonstrated. As a part of these duties several technical and natural scientific fields like nuclear engineering, mining, geomechanics, geochemistry or hydrogeology are worked in interdisciplinarily. Departing from the existing mine building of the shaft ASSE storage bunkers for low- and intermediate-level radioactive wastes (LAW/MAW) are presented. Accompanying geotechnical investigations are explained. An outlook alludes to an eventually possible development potential of the storage bunker arrangement from the geomechanic view. (orig./HP) [de

  8. SIGNIFICANT PROGRESS IN THE DEPLOYMENT OF NEW TECHNOLOGIES FOR THE RETRIEVAL OF HANFORD RADIOACTIVE WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    RAYMOND RE; DODD RA; CARPENTER KE; STURGES MH

    2008-01-01

    Significant enhancements in the development and deployment of new technologies for removing waste from storage tanks at the Hanford Site have resulted in accelerated progress and reduced costs for tank cleanup. CH2M HILL Hanford Group, Inc. is the U.S. Department of Energy, Office of River Protection's prime contractor responsible for safely storing and retrieving approximately 53 million gallons of highly-radioactive and hazardous waste stored in 177 underground tanks. The waste is stored in 149 older single-shell tanks (SST) and 28 newer double-shell tanks (DST) that are grouped in 18 so-called farms near the center of the Hanford Site, located in southeastern Washington State. Tank contents include materials from years of World-War II and post-war weapons production, which account for 60 percent by volume of the nation's high-level radioactive waste. A key strategy for improved cleanup is the development and deployment of innovative technologies, which enhance worker safety, resolve technical challenges, streamline retrieval processes, and cut project costs and durations. During the past seven years of tank cleanout projects we have encountered conditions and waste chemistry that defy conventional approaches, requiring a variety of new tools and techniques. Through the deployment of advanced technology and the creative application of resources, we are finding ways to accomplish the retrieval process safely, swiftly, and economically. To date, retrieval operations have been completed in seven tanks, including a record six tanks in a two-year period. Retrieval operations are in progress for another three tanks. This paper describes the following tank cleanup technologies deployed at Hanford in the past few years: Modified waste sluicing, High pressure water lance, Mobile retrieval tools, Saltcake dissolution, Vacuum retrieval, Sparging of wastes, Selective dissolution for waste treatment, Oxalic acid dissolution, High-pressure water mixers, Variable height pumps

  9. GPHS-RTGs in support of the Cassini Mission. Semi annual technical progress report, 1 April 1996--29 September 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This technical progress report discusses work on the Radioisotope Generators and Ancillary Activities for the Cassini spacecraft. The Cassini spacecraft is expected to launch in October 1997, and will explore Saturn and its moons. This progress report discusses issues in: spacecraft integration and liason, engineering support, safety, qualified unicouple fabrication, ETG fabrication and testing, ground support equipment, RTG shipping and launch support, designs, reviews and mission application. Safety analysis of the RTGs during reentry and launch accidents are covered. This report covers the period of April 1 to September 29, 1996

  10. Storage of radioactive wastes in geological formations. Technical criteria for site selection. Report by the work-group chaired by Professor Goguel

    International Nuclear Information System (INIS)

    Goguel, Jean; Candes, Pierre; Izabel, Cecile; Autran, Albert; Barthoux, Alain; Baudin, Guy; Devillers, Christian; Habib, Pierre; Lafuma, Jacques; Lefevre, Jean; Peaudecerf, Pierre; Pradel, Jacques; Salle, Claude; Treuil, Michel; Lebrun, Patrick; Tissier, Marie-Solange

    1985-06-01

    This document is the result of a prospective mission on the long term storage of radioactive wastes containing long-period emitters (wastes of B and C categories), and notably on a definitive storage in deep continental geological formations. After a presentation of hypotheses (brief description of the storage concept, main safety principles, objectives in terms of radiological safety, safety options, time-related considerations), the authors addressed the following issues: safety before closing during the exploitation period, and safety after closure (after backfilling and sealing of all underground cavities). For the first issue, they discuss the impacts of works on safety and thermal effects during exploitation. For the second issue, they discuss the site natural hydro-geological context, the disturbances brought by the storage (access of water to the storage, and return of water into the biosphere), and the influence of external factors (geological phenomena, human intrusion). Then, the authors make recommendations regarding reconnaissance programs and studies for the selection and qualification of a site. They finally propose technical criteria and main recommendations for site selection. Appendices propose a list of hearings, a presentation of the storage concept, a report on the impact of works, a report on the presence of mineralisation in granite massifs, reports on radiological consequences of intrusions in salt formations and in granite massif containing storage of radioactive wastes or vitrified wastes, a report on the characterization of unsteady parts of the French continental construction, a presentation of the evolution of climate and icings, and a study of seismic movements in the case of deep storages

  11. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 1. Geological environment of Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 1 of the progress report, describes first in detail the role of geological environment in high-level radioactive wastes disposal, the features of Japanese geological environment, and programs to proceed the investigation in geological environment. The following chapter summarizes scientific basis for possible existence of stable geological environment, stable for a long period needed for the HLW disposal in Japan including such natural phenomena as volcano and faults. The results of the investigation of the characteristics of bed-rocks and groundwater are presented. These are important for multiple barrier system construction of deep geological disposal. The report furthermore describes the present status of technical and methodological progress in investigating geological environment and finally on the results of natural analog study in Tono uranium deposits area. (Ohno, S.)

  12. Secure Storage Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Aderholdt, Ferrol [Tennessee Technological University; Caldwell, Blake A [ORNL; Hicks, Susan Elaine [ORNL; Koch, Scott M [ORNL; Naughton, III, Thomas J [ORNL; Pogge, James R [Tennessee Technological University; Scott, Stephen L [Tennessee Technological University; Shipman, Galen M [ORNL; Sorrillo, Lawrence [ORNL

    2015-01-01

    The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention on elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to

  13. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author. Vol. 11(1)--Vol. 18(6)

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.; Klein, A.

    1978-04-11

    This index to Nuclear Safety covers articles published in Nuclear Safety, Vol. 11, No. 1 (January-February 1970), through Vol. 18, No. 6 (November-December 1977). It is divided into three sections: a chronological list of articles (including abstracts) followed by a permuted-title (KWIC) index and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center (NSIC), covers all safety aspects of nuclear power reactors and associated facilities. Over 450 technical articles published in Nuclear Safety in the last eight years are listed in this index.

  14. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author. Vol. 11(1)--Vol. 18(6)

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Klein, A.

    1978-01-01

    This index to Nuclear Safety covers articles published in Nuclear Safety, Vol. 11, No. 1 (January-February 1970), through Vol. 18, No. 6 (November-December 1977). It is divided into three sections: a chronological list of articles (including abstracts) followed by a permuted-title (KWIC) index and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center (NSIC), covers all safety aspects of nuclear power reactors and associated facilities. Over 450 technical articles published in Nuclear Safety in the last eight years are listed in this index

  15. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 1. Technical Report # 0919

    Science.gov (United States)

    Alonzo, Julie; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grade 1. These measures, available as part of easyCBM [TM], an online progress monitoring assessment system, were developed in 2008 and administered to approximately 2800 students from schools…

  16. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 2. Technical Report # 0920

    Science.gov (United States)

    Alonzo, Julie; Lai, Cheng Fei; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…

  17. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 7. Technical Report 0908

    Science.gov (United States)

    Lai, Cheng Fei; Alonzo, Julie; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…

  18. Review of Technical Studies in the United States in Support of Burnup Credit Regulatory Guidance

    International Nuclear Information System (INIS)

    Wagner, John C.; Parks, Cecil V.; Mueller, Don; Gauld, Ian C.

    2010-01-01

    Taking credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transport, disposal, and reprocessing of spent nuclear fuel (SNF) while maintaining sufficient subcritical margin to establish an adequate safety basis. Consequently, there continues to be considerable interest in the United States (U.S.), as well as internationally, in the increased use of burnup credit in SNF operations, particularly related to storage, transport, and disposal of commercial SNF. This interest has motivated numerous technical studies related to the application of burnup credit, both domestically and internationally, as well as the design of SNF storage, transport and disposal systems that rely on burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission (NRC) initiated a burnup credit research program in 1999, with support from the Oak Ridge National Laboratory (ORNL), to develop regulatory guidance and the supporting technical bases for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Although this NRC research program has not been continuous since its inception, considerable progress has been achieved in many key areas in terms of increased understanding of relevant phenomena and issues, availability of relevant information and data, and subsequently updated regulatory guidance for expanded use of burnup credit. This paper reviews technical studies performed by ORNL for the U.S. NRC burnup credit research program. Examples of topics include reactivity effects associated with reactor operating characteristics, fuel assembly characteristics, burnable absorbers, control rods, spatial burnup distributions, cooling time, and assembly misloading; methods and data for validation of isotopic composition predictions; methods and data for validation of criticality calculations; and

  19. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Introductory part and summaries

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan and comprises seven chapters. Chapter I briefly describes the importance of HLW management in promoting nuclear energy utilization. According to the long-term program, the HLW separated from spent fuels at reprocessing plants is to be vitrified and stored for a period of 30 to 50 years to allow cooling, then be disposed of in a deep geological formation. Chapter II mainly explains the concepts of geological disposal in Japan. Chapters III to V are devoted to discussions on three important technical elements (the geological environment of Japan, engineering technology and safety assessment of the geological disposal system) which are necessary for reliable realization of the geological disposal concept. Chapter VI demonstrates the technical ground for site selection and for setup of safety standards of the disposal. Chapter VII summarizes together with plans for future research and development. (Ohno, S.)

  20. Progresso tecnico, forme di mercato e disoccupazione. ( Technical progress, market forms and unemployment

    Directory of Open Access Journals (Sweden)

    A. ASIMAKOPULOS A.

    2013-12-01

    Full Text Available Lo scopo del presente lavoro è triplice . Il primo obiettivo è quello di sottolineare l'importanza delle intuizioni da trovare nel lavoro di Sylos Labini . Il secondo scopo è quello di espandere su di essa distinguendo tra i diversi tipi di progresso tecnico . Infine , il terzo obiettivo è quello di commentare il confronto di Labini di Ricardo e Keynes sulla possibilità di disoccupazione tecnologica . Per quanto riguarda la sua descrizione del progresso tecnologico come " risparmio di lavoro " , l'autore mostra che una descrizione più completa sarebbe più utile per i suoi scopiThe purpose of the present paper is threefold. The first purpose is to emphasise the importance of the insights to be found in Sylos Labini’s work. The second purpose is to expand upon it by distinguishing  between the different types of technical progress. Finally, the third purpose is to comment on Labini’s comparison of Ricardo and Keynes on the possibility of technological unemployment. Regarding his description of technological progress as “labour saving”, the author shows that a more comprehensive description would be more useful for his purposes.JEL: E24, J64, O33

  1. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    Energy Technology Data Exchange (ETDEWEB)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  2. Technical progress and efficiency changes in football teams participating in the UEFA Champions League

    Directory of Open Access Journals (Sweden)

    Lucía Isabel García Cebrián

    2015-09-01

    Full Text Available This paper commits to calculate and analyze productivy levels and its components for teams that participated in the UEFA Champions League between 2003 and 2012. It will pursue three objectives: 1 evaluate resources usage, 2 analyze the productivity levels of the football teams and the sports results, and 3 see the influence of participation experience in reference to productivity and sports results. Using Malmquist Productivity Index, the results reflect a lack of consistent progression of efficiency, productivity, and technical change. This competition does not reward the efficient usage of resources and there is not a conclusive relationshop between permanence in the competition and productivity.

  3. Volatiles combustion in fluidized beds. Technical progress report, 4 March 1993--3 June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hesketh, R.P.

    1993-09-01

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization will be performed to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. The work conducted during the period 4 March, 1993 through 3 June, 1993 is reported in this technical progress report. The work during this time period consists primarily of the startup and trouble shooting of the fluidized bed reactor and gas phase modeling of methane and propane.

  4. Safety of Long-term Interim Storage Facilities - Workshop Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this workshop was to discuss and review current national activities, plans and regulatory approaches for the safety of long term interim storage facilities dedicated to spent nuclear fuel (SF), high level waste (HLW) and other radioactive materials with prolonged storage regimes. It was also intended to discuss results of experiments and to identify necessary R and D to confirm safety of fuel and cask during the long-term storage. Safety authorities and their Technical Support Organisation (TSO), Fuel Cycle Facilities (FCF) operating organisations and international organisations were invited to share information on their approaches, practices and current developments. The workshop was organised in an opening session, three technical sessions, and a conclusion session. The technical sessions were focused on: - National approaches for long term interim storage facilities; - Safety requirements, regulatory framework and implementation issues; - Technical issues and operational experience, needs for R and D. Each session consisted of a number of presentations followed by a panel discussion moderated by the session Chairs. A summary of each session and subsequent discussion that ensued are provided as well as a summary of the results of the workshop with the text of the papers given and presentations made

  5. What is plutonium stabilization, and what is safe storage of plutonium?

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1995-01-01

    The end of the cold war has resulted in the shutdown of nuclear weapons production and the start of dismantlement of significant numbers of nuclear weapons. This, in turn, is creating an inventory of plutonium requiring interim and long-term storage. A key question is, ''What is required for safe, multidecade, plutonium storage?'' The requirements for storage, in turn, define what is needed to stabilize the plutonium from its current condition into a form acceptable for interim and long-term storage. Storage requirements determine if research is required to (1) define required technical conditions for interim and long-term storage and (2) develop or improve current stabilization technologies. Storage requirements depend upon technical, policy, and economic factors. The technical issues are complicated by several factors. Plutonium in aerosol form is highly hazardous. Plutonium in water is hazardous. The plutonium inventory is in multiple chemical forms--some of which are chemically reactive. Also, some of the existing storage forms are clearly unsuitable for storage periods over a few years. Gas generation by plutonium compounds complicates storage: (1) all plutonium slowly decays creating gaseous helium and (2) the radiation from plutonium decay can initiate many chemical reactions-some of which generate significant quantities of gases. Gas generation can pressurize sealed storage packages. Last nuclear criticality must be avoided

  6. FY2007 NREL Energy Storage R&D Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.

    2007-11-01

    The National Renewable Energy Laboratory is engaged in research and development activities to support achieving targets and objectives set by the Energy Storage Program at the Office of FreedomCAR and Vehicle Technology in the U.S. Department of Energy. These activities include: 1. supporting the Battery Technology Development Program with battery thermal characterization and modeling and with energy storage system simulations and analysis; 2. supporting the Applied Research Program by developing thermal models to address abuse of Li-Ion batteries; and 3. supporting the Focused Long-Term Research Program by investigating improved Li-Ion battery electrode materials. This report summarizes the results of NREL energy storage activities in FY07.

  7. Electrochemical energy storage. Vol. 1. Fundamentals, aqueous storage batteries. Elektrochemische Energiespeicher. Bd. 1. Grundlagen, waessrige Akkumulatoren

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F; Euler, K J

    1984-01-01

    Vol. 1 is a synthesis of electrochemical, battery-technical and energy industry aspects. The role of energy storage systems in the energy industry, e.g. in connection with a hydrogen technology, is discussed along with the thermodynamic, kinetic, materials-technical and process engineering fundamentals. ''Classic'' and new systems are described in full detail for the first time. Cyclisation and technical/economic criteria of selection are discussed. (orig./GG).

  8. Final Report: Hydrogen Storage System Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel A. [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  9. Development of incident progress prediction technologies for nuclear emergency preparedness. Current status and future subjects

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Yamamoto, Yasunori; Kusunoki, Takayoshi; Kawasaki, Ikuo; Yanagi, Chihiro; Kinoshita, Ikuo; Iwasaki, Yoshito

    2014-01-01

    Nuclear licensees are required to maintain a prediction system during normal condition for using a nuclear emergency by the Basic Plan for Disaster Prevention of government. With prediction of the incident progress, if the present condition of nuclear power plant is understood appropriately and it grows more serious with keeping the present situation, it is in predicting what kind of situation will be occurred in the near future, choosing the effective countermeasures against the coming threat, and understanding the time available of intervention time. Following the accident on September 30 1999 in the nuclear fuel fabrication facility in Tokai Village of Ibaraki Prefecture, the Institute of Nuclear Safety System started development of incident progress prediction technologies for nuclear emergency preparedness. We have performed technical applications and made improvements in nuclear emergency exercises and verified the developed systems using the observed values of the Fukushima Daiichi Nuclear Power Plant accident. As a result, our developed Incident Progress Prediction System was applied to nuclear emergency exercises and we accumulated knowledge and experience by which we improved the system to make predictions more rapidly and more precisely, including for example, the development of a prediction method for leak size of reactor coolant. On the other hand, if a rapidly progressing incident occurs, since end users need simple and quick predictions about the public's protection and evacuation areas, we developed the Radioactive Materials Release, Radiation Dose and Radiological Protection Area Prediction System which changed solving an inverse problem into a forward problem solution. In view of the water-level-decline incident of the spent fuel storage facility at the Fukushima Daiichi Nuclear Power Plant, the spent fuel storage facility water level and the water temperature evaluation tool were improved. Such incident progress prediction technologies were

  10. Long-term interim storage concepts with conditioning strategies ensuring compatibility with subsequent disposal or reprocessing

    International Nuclear Information System (INIS)

    Moitrier, C.; Tirel, I.; Villard, C.

    2000-01-01

    The objective of the CEA studies carried out under research topic 3 (long-term interim storage) of the 1991 French radioactive waste management law is to demonstrate the industrial feasibility of a comprehensive, flexible interim storage facility by thoroughly evaluating and comparing all the basic components of various interim storage concepts. In this context, the CEA is considering reference solutions or concepts based on three primary components (the package, the interim storage facility and the site) suitable for determining the specifications of a very long-term solution. Some aspects are examined in greater detail, such as the implementation of long-term technologies, conditioning processes ensuring the absence of water and contamination in the facility, or allowance for radioactive decay of the packages. The results obtained are continually compiled in reports substantiating the design options. These studies should also lead to an overall economic assessment in terms of the capital and operating cost requirements, thereby providing an additional basis for selecting the design options. The comparison with existing industrial facilities highlights the technical and economic progress represented by the new generation of interim storage units. (authors)

  11. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 3. Technical Report # 09-02

    Science.gov (United States)

    Alonzo, Julie; Lai, Cheng Fei; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…

  12. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 5. Technical Report # 09-01

    Science.gov (United States)

    Lai, Cheng Fei; Alonzo, Julie; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…

  13. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 4. Technical Report # 09-03

    Science.gov (United States)

    Alonzo, Julie; Lai, Cheng Fei; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…

  14. The Development of K-8 Progress Monitoring Measures in Mathematics for Use with the 2% and General Education Populations: Grade 8. Technical Report # 09-04

    Science.gov (United States)

    Lai, Cheng Fei; Alonzo, Julie; Tindal, Gerald

    2009-01-01

    In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…

  15. National Council on Radiation Protection and Measurements semiannual technical progress report, March 1989--August 1989

    International Nuclear Information System (INIS)

    Ney, W.R.

    1991-01-01

    This semiannual technical progress report is for the period 1 March 1989 through 31 August 1989. This National Council on Radiation Protection and Measurements (NCRP) program is designed to provide recommendations for radiation protection based on scientific principles. During this period several reports were published covering the topics of occupational radiation exposure, medical exposure, radon control, dosimetry, and radiation protection standards. Accomplishments of various committees are also reported; including the committees on dental x-ray protection, radiation safety in uranium mining and milling, ALARA, instrumentation, records maintenance, occupational exposures of medical personnel, emergency planning, and others. (SM)

  16. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Passiakos, M.

    1982-06-01

    This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index

  17. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.; Passiakos, M.

    1982-06-01

    This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index.

  18. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol. 11, No. 1--Vol. 17, No. 6

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Klein, A.

    1977-01-01

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970), through Vol. 17, No. 6 (Nov.-Dec. 1976). The index includes a chronological list of articles (including abstract) followed by KWIC and Author Indexes. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 350 technical articles in the last six years of publication

  19. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol. 11, No. 1--Vol. 17, No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.; Klein, A.

    1977-02-23

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970), through Vol. 17, No. 6 (Nov.-Dec. 1976). The index includes a chronological list of articles (including abstract) followed by KWIC and Author Indexes. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 350 technical articles in the last six years of publication.

  20. Survey of domestic research on superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Dresner, L.

    1991-09-01

    This report documents the results of a survey of domestic research on superconducting magnetic energy storage (SMES) undertaken with the support of the Oak Ridge National Laboratory (ORNL) Superconductivity Pilot Center. Each survey entry includes the following: Name, address, and other telephone and facsimile numbers of the principal investigator and other staff members; funding for fiscal year 1991, 1992, 1993; brief descriptions of the program, the technical progress to date, and the expected technical progress; a note on any other collaboration. Included with the survey are recommendations intended to help DOE decide how best to support SMES research and development (R ampersand D). To summarize, I would say that important elements of a well-rounded SMES research program for DOE are as follows. (1) Construction of a large ETM. (2) Development of SMES as an enabling technology for solar and wind generation, especially in conjunction with the ETM program, if possible. (3) Development of small SMES units for electric networks, for rapid transit, and as noninterruptible power supplies [uses (2), (3), and (4) above]. In this connection, lightweight, fiber-reinforced polymer structures, which would be especially advantageous for space and transportation applications, should be developed. (4) Continued study of the potential impacts of high-temperature superconductors on SMES, with construction as soon as feasible of small SMES units using high-temperature superconductors (HTSs)

  1. Decontamination Systems Information and Research Program. Quarterly technical progress report, July 1--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    Progress reports are presented for the following projects: systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies--drain-enhanced soil flushing (DESF) for organic contaminants removal; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors--monolayer and multilayer self-assembled films for chemical sensors; Winfield Lock and Dam remediation; Winfield cleanup survey; assessment of technologies for hazardous waste site remediation--non-treatment technologies and pilot scale test facility implementation; assessment of environmental remediation storage technology; assessment of environmental remediation excavation technology; assessment of environmental remediation monitoring technology; and remediation of hazardous sites with steam reforming.

  2. Decontamination Systems Information and Research Program. Quarterly technical progress report, July 1--September 30, 1993

    International Nuclear Information System (INIS)

    1993-10-01

    Progress reports are presented for the following projects: systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies--drain-enhanced soil flushing (DESF) for organic contaminants removal; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors--monolayer and multilayer self-assembled films for chemical sensors; Winfield Lock and Dam remediation; Winfield cleanup survey; assessment of technologies for hazardous waste site remediation--non-treatment technologies and pilot scale test facility implementation; assessment of environmental remediation storage technology; assessment of environmental remediation excavation technology; assessment of environmental remediation monitoring technology; and remediation of hazardous sites with steam reforming

  3. Battery energy storage systems: Assessment for small-scale renewable energy integration

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Nirmal-Kumar C.; Garimella, Niraj [Power Systems Group, Department of Electrical and Computer Engineering, The University of Auckland, 38 Princes Street, Science Centre, Auckland 1142 (New Zealand)

    2010-11-15

    Concerns arising due to the variability and intermittency of renewable energy sources while integrating with the power grid can be mitigated to an extent by incorporating a storage element within the renewable energy harnessing system. Thus, battery energy storage systems (BESS) are likely to have a significant impact in the small-scale integration of renewable energy sources into commercial building and residential dwelling. These storage technologies not only enable improvements in consumption levels from renewable energy sources but also provide a range of technical and monetary benefits. This paper provides a modelling framework to be able to quantify the associated benefits of renewable resource integration followed by an overview of various small-scale energy storage technologies. A simple, practical and comprehensive assessment of battery energy storage technologies for small-scale renewable applications based on their technical merit and economic feasibility is presented. Software such as Simulink and HOMER provides the platforms for technical and economic assessments of the battery technologies respectively. (author)

  4. Energy storage for electrical systems in the USA

    Directory of Open Access Journals (Sweden)

    Eugene Freeman

    2016-10-01

    Full Text Available Energy storage is becoming increasingly important as renewable generation sources such as Wind Turbine and Photo Voltaic Solar are added to the mix in electrical power generation and distribution systems. The paper discusses the basic drivers for energy storage and provides brief descriptions of the various energy storage technologies available. The information summarizes current technical tradeoffs with different storage approaches and identifies issues surrounding deployment of large scale energy storage systems.

  5. Assessing innovation in emerging energy technologies: Socio-technical dynamics of carbon capture and storage (CCS) and enhanced geothermal systems (EGS) in the USA

    International Nuclear Information System (INIS)

    Stephens, Jennie C.; Jiusto, Scott

    2010-01-01

    This study applies a socio-technical systems perspective to explore innovation dynamics of two emerging energy technologies with potential to reduce greenhouse gas emissions from electrical power generation in the United States: carbon capture and storage (CCS) and enhanced geothermal systems (EGS). The goal of the study is to inform sustainability science theory and energy policy deliberations by examining how social and political dynamics are shaping the struggle for resources by these two emerging, not-yet-widely commercializable socio-technical systems. This characterization of socio-technical dynamics of CCS and EGS innovation includes examining the perceived technical, environmental, and financial risks and benefits of each system, as well as the discourses and actor networks through which the competition for resources - particularly public resources - is being waged. CCS and EGS were selected for the study because they vary considerably with respect to their social, technical, and environmental implications and risks, are unproven at scale and uncertain with respect to cost, feasibility, and life-cycle environmental impacts. By assessing the two technologies in parallel, the study highlights important social and political dimensions of energy technology innovation in order to inform theory and suggest new approaches to policy analysis.

  6. Extended storage of low-level radioactive waste: an update

    International Nuclear Information System (INIS)

    Siskind, B.

    1986-01-01

    If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) has contracted with Brookhaven National Laboratory to address the technical issues of extended storage. The dual objectives of this study are (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. The circumstances under which extended storage of LLRW would most likely result in problems during or after the extended storage period are considered and possible mitigative measures to minimize these problems are discussed. These potential problem areas include: (1) the degradation of carbon steel and polyethylene containers during storage and the subsequent need for repackaging (resulting in increased occupational exposure), (2) the generation of hazardous gases during storage, and (3) biodegradative processes in LLRW

  7. Extended storage of low-level radioactive waste: an update

    Energy Technology Data Exchange (ETDEWEB)

    Siskind, B.

    1986-01-01

    If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) has contracted with Brookhaven National Laboratory to address the technical issues of extended storage. The dual objectives of this study are (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. The circumstances under which extended storage of LLRW would most likely result in problems during or after the extended storage period are considered and possible mitigative measures to minimize these problems are discussed. These potential problem areas include: (1) the degradation of carbon steel and polyethylene containers during storage and the subsequent need for repackaging (resulting in increased occupational exposure), (2) the generation of hazardous gases during storage, and (3) biodegradative processes in LLRW.

  8. Spent nuclear fuel canister storage building conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  9. Spent nuclear fuel canister storage building conceptual design report

    International Nuclear Information System (INIS)

    Swenson, C.E.

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ''Technical Baseline and Updated Cost Estimate for the Canister Storage Building'', dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995

  10. Cost analysis methodology of spent fuel storage

    International Nuclear Information System (INIS)

    1994-01-01

    The report deals with the cost analysis of interim spent fuel storage; however, it is not intended either to give a detailed cost analysis or to compare the costs of the different options. This report provides a methodology for calculating the costs of different options for interim storage of the spent fuel produced in the reactor cores. Different technical features and storage options (dry and wet, away from reactor and at reactor) are considered and the factors affecting all options defined. The major cost categories are analysed. Then the net present value of each option is calculated and the levelized cost determined. Finally, a sensitivity analysis is conducted taking into account the uncertainty in the different cost estimates. Examples of current storage practices in some countries are included in the Appendices, with description of the most relevant technical and economic aspects. 16 figs, 14 tabs

  11. Canister storage building trade study. Final report

    International Nuclear Information System (INIS)

    Swenson, C.E.

    1995-05-01

    This study was performed to evaluate the impact of several technical issues related to the usage of the Canister Storage Building (CSB) to safely stage and store N-Reactor spent fuel currently located at K-Basin 100KW and 100KE. Each technical issue formed the basis for an individual trade study used to develop the ROM cost and schedule estimates. The study used concept 2D from the Fluor prepared ''Staging and Storage Facility (SSF) Feasibility Report'' as the basis for development of the individual trade studies

  12. Canister storage building trade study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-05-01

    This study was performed to evaluate the impact of several technical issues related to the usage of the Canister Storage Building (CSB) to safely stage and store N-Reactor spent fuel currently located at K-Basin 100KW and 100KE. Each technical issue formed the basis for an individual trade study used to develop the ROM cost and schedule estimates. The study used concept 2D from the Fluor prepared ``Staging and Storage Facility (SSF) Feasibility Report`` as the basis for development of the individual trade studies.

  13. Technical Note: Comparison of storage strategies of sea surface microlayer samples

    Directory of Open Access Journals (Sweden)

    K. Schneider-Zapp

    2013-07-01

    Full Text Available The sea surface microlayer (SML is an important biogeochemical system whose physico-chemical analysis often necessitates some degree of sample storage. However, many SML components degrade with time so the development of optimal storage protocols is paramount. We here briefly review some commonly used treatment and storage protocols. Using freshwater and saline SML samples from a river estuary, we investigated temporal changes in surfactant activity (SA and the absorbance and fluorescence of chromophoric dissolved organic matter (CDOM over four weeks, following selected sample treatment and storage protocols. Some variability in the effectiveness of individual protocols most likely reflects sample provenance. None of the various protocols examined performed any better than dark storage at 4 °C without pre-treatment. We therefore recommend storing samples refrigerated in the dark.

  14. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    Energy Technology Data Exchange (ETDEWEB)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  15. Spent nuclear fuel storage: Legal, technical and political considerations

    International Nuclear Information System (INIS)

    Blake, E.L. Jr.; Buren, M.A.

    1994-01-01

    In 1982, Congress enacted the Nuclear Waste Policy Act (NWPA), assigning responsibility to the Department of Energy (DOE) for the development and implementation of a comprehensive national nuclear waste management program. The NWPA makes clear that the generators and owners of commercially-generated spent nuclear fuel (SNF) have the primary responsibility to provide for, and pay the costs of, the interim storage of such SNF until it is accepted by the DOE under the provisions of the NWPA. The shift in responsibility was expected to begin in 1998, the date specified in the NWPA and the DOE's contracts with the utilities, at which time the NWPA anticipated commencement of operations of a geologic repository and/or a monitored retrievable storage facility (MRS). Unfortunately, despite a mid-course correction to the NWPA mandated by Congress in 1987 in an effort to streamline and accelerate the program, DOE is way behind schedule. DOE's last published program schedule indicates the commencement of repository operations in 2010, a date many feel is overly optimistic. In repeated statements during the early 1990s, DOE sought to reassure utility companies and their regulatory commissions that it could still commence SNF acceptance in 1998 for storage at an MRS if such a facility were sited through a voluntary process by the end of 1992. That date has now come and gone. Although DOE is still nominally seeking a voluntary MRS host jurisdiction, the prospects for MRS operation by 1998 are dim. Putting aside for the moment the question of DOE's ability to bring the repository on line, the immediate problem facing domestic utilities is the need to augment their onsite SNF storage capacity. In addition to providing a brief overview of the Federal independent spent fuel storage installation (ISFSI) licensing process, the author provides some insight of what the real issues are in ISFSI licensing

  16. Energy storage systems: power grid and energy market use cases

    Directory of Open Access Journals (Sweden)

    Komarnicki Przemysław

    2016-09-01

    Full Text Available Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.

  17. Re-evaluation of monitored retrievable storage concepts

    International Nuclear Information System (INIS)

    Fletcher, J.F.; Smith, R.I.

    1989-04-01

    In 1983, as a prelude to the monitored retrievable storage (MRS) facility conceptual design, the Pacific Northwest Laboratory (PNL) conducted an evaluation for the US Department of Energy (DOE) that examined alternative concepts for storing spent LWR fuel and high- level wastes from fuel reprocessing. The evaluation was made considering nine concepts for dry away-from-reactor storage. The nine concepts evaluated were: concrete storage cask, tunnel drywell, concrete cask-in-trench, open-cycle vault, metal casks (transportable and stationary), closed-cycle vault, field drywell, and tunnel-rack vault. The purpose and scope of the re-evaluation did not require a repetition of the expert-based examinations used earlier. Instead, it was based on more detailed technical review by a small group, focusing on changes that had occurred since the initial evaluation was made. Two additional storage concepts--the water pool and the horizontal modular storage vault (NUHOMS system)--were ranked along with the original nine. The original nine concepts and the added two conceptual designs were modified as appropriate for a scenario with storage capacity for 15,000 MTU of spent fuel. Costs, area requirements, and technical and historical data pertaining to MRS storage were updated for each concept

  18. Re-evaluation of monitored retrievable storage concepts

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.F.; Smith, R.I.

    1989-04-01

    In 1983, as a prelude to the monitored retrievable storage (MRS) facility conceptual design, the Pacific Northwest Laboratory (PNL) conducted an evaluation for the US Department of Energy (DOE) that examined alternative concepts for storing spent LWR fuel and high- level wastes from fuel reprocessing. The evaluation was made considering nine concepts for dry away-from-reactor storage. The nine concepts evaluated were: concrete storage cask, tunnel drywell, concrete cask-in-trench, open-cycle vault, metal casks (transportable and stationary), closed-cycle vault, field drywell, and tunnel-rack vault. The purpose and scope of the re-evaluation did not require a repetition of the expert-based examinations used earlier. Instead, it was based on more detailed technical review by a small group, focusing on changes that had occurred since the initial evaluation was made. Two additional storage concepts--the water pool and the horizontal modular storage vault (NUHOMS system)--were ranked along with the original nine. The original nine concepts and the added two conceptual designs were modified as appropriate for a scenario with storage capacity for 15,000 MTU of spent fuel. Costs, area requirements, and technical and historical data pertaining to MRS storage were updated for each concept.

  19. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  20. Progress report : Technical Physics Division

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.; Deshpande, R.Y.

    1978-01-01

    The research and development work carried out in the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, is reported. Some of the achievements are: (1) fabrication of mass spectrometers for heavy water analysis and lithium 6/7 isotope ratio measurement, (2) fabrication of electronic components for mass spectrometers, (3) growing of sodium iodide crystals for radiation detectors, (4) development of sandwich detectors comprising of NaI(Tl) and CaI(Na), (5) fabrication of mass spectrometer type leak detectors and (6) fabrication of the high vacuum components of the vacuum system of the variable energy cyclotron based at Calcutta. (M.G.B.)

  1. The prospects for dry fuel storage

    International Nuclear Information System (INIS)

    Harris, G.G.; Elliott, D.

    1994-01-01

    Dry storage of spent nuclear fuels is one method of dealing with radioactive waste. This article reports from a one day seminar on future prospects for dry fuel storage held in November 1993. Dry storage in an inert gas or air environment in vaults or casks, is an alternative to wet storage in water-filled ponds. Both wet and dry storage form part of the Interim Storage option for radioactive waste materials, and form alternatives to reprocessing or direct disposal in a deep repository. It has become clear that a large market for dry fuel storage will exist in the future. It will therefore be necessary to ensure that the various technical, safety, commercial, legislative and political constraints associated with it can be met effectively. (UK)

  2. Natural gas storage - end user interaction. Final report, September 1992--May 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The primary purpose of this project is to develop an understanding of the market for natural gas storage that will provide for rigorous evaluation of federal research and development opportunities in storage technologies. The project objectives are: (1) to identify market areas and end use sectors where new natural gas underground storage capacity can be economically employed; (2) to develop a storage evaluation system that will provide the analytical tool to evaluate storage requirements under alternate economic, technology, and market conditions; and (3) to analyze the economic and technical feasibility of alternatives to conventional gas storage. An analytical approach was designed to examine storage need and economics on a total U.S. gas system basis, focusing on technical and market issues. Major findings of each subtask are reported in detail. 79 figs.

  3. A Theory of the Function of Technical Writing.

    Science.gov (United States)

    Ross, Donald, Jr.

    1981-01-01

    Advances the theory that technical writing functions as a replacement for memory--an information storage receptacle. Lists the formal and stylistic features implied by such a theory. Considers the future development of technical writing within the context of this theory. (RL)

  4. Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe

    Directory of Open Access Journals (Sweden)

    Henrik Zsiborács

    2018-06-01

    Full Text Available Solar energy has an increasing role in the global energy mix. The need for flexible storage photovoltaic systems and energy storage in electricity networks is becoming increasingly important as more generating capacity uses solar and wind energy. This paper is a study on the economic questions related to flexible storage photovoltaic systems of household size in 2018. The aim is to clarify whether it is possible in the European Union to achieve a payback of the costs of flexible storage photovoltaic system investments for residential customers considering the technology-specific storage aspects prevalent in 2018. We studied seven different flexible storage photovoltaic investments with different battery technologies in Germany, France, Italy, and Spain because, in Europe, these countries have a prominent role with regard to the spread of photovoltaic technology. These investment alternatives are studied with the help of economic indicators for the different cases of the selected countries. At the end of our paper we come to the conclusion that an investment of a flexible storage photovoltaic (PV system with Olivine-type-LiFePO4, Lithium-Ion, Vented lead-acid battery (OPzS, Sealed lead-acid battery (OPzV, and Aqueous Hybrid Ion (AHI batteries can have a positive net present value due to the high electricity prices in Germany and in Spain. The most cost-effective technology was the Olivine-type-LiFePO4 and the Lithium-Ion at the time of the study. We suggest the provision of governmental support and uniform European modifications to the regulatory framework, especially concerning grid fees and tariffs, which would be necessary in the beginning to help to introduce these flexible storage PV systems to the market.

  5. Recent Progress on Integrated Energy Conversion and Storage Systems.

    Science.gov (United States)

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  6. Solar lease grant program. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Progress on a lease program for the installation of a solar water heater with no installation charge is reported. Information on the announcement of the program, the selection of participants, the contractural agreement, progress on installation of equipment, monitoring, and evaluation is summarized. The status of the budget concerned with the program is announced. Forms used for applications for the program and an announcement from Resource Alternatives for Cilco customers are presented.

  7. Monitored Retrievable Storage System Requirements Document

    International Nuclear Information System (INIS)

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design

  8. Progress in bio-manufacture of platelets for transfusion.

    Science.gov (United States)

    Heazlewood, Shen Y; Nilsson, Susan K; Cartledge, Kellie; Be, Cheang Ly; Vinson, Andrew; Gel, Murat; Haylock, David N

    2017-11-01

    Blood transfusion services face an ever-increasing demand for donor platelets to meet clinical needs. Whilst strategies for increasing platelet storage life and improving the efficiency of donor platelet collection are important, in the longer term, platelets generated by bio-manufacturing processes will be required to meet demands. Production of sufficient numbers of in vitro-derived platelets for transfusion represents a significant bioengineering challenge. In this review, we highlight recent progress in this area of research and outline the main technical and biological obstacles that need to be met before this becomes feasible and economic. A critical consideration is assurance of the functional properties of these cells as compared to their fresh, donor collected, counterparts. We contend that platelet-like particles and in vitro-derived platelets that phenotypically resemble fresh platelets must deliver the same functions as these cells upon transfusion. We also note recent progress with immortalized megakaryocyte progenitor cell lines, molecular strategies for reducing expression of HLA Class I to generate universal donor platelets and the move to early clinical studies with in vitro-derived platelets.

  9. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    Science.gov (United States)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  10. The SERI solar energy storage program

    Science.gov (United States)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  11. Tank waste remediation system technical baseline summary description

    International Nuclear Information System (INIS)

    Raymond, R.E.

    1998-01-01

    This document is one of the tools used to develop and control the mission work as depicted in the included figure. This Technical Baseline Summary Description document is the top-level tool for management of the Technical Baseline for waste storage operations

  12. Technical progress report

    International Nuclear Information System (INIS)

    1996-01-01

    This report summarizes experimental and theoretical work in basic nuclear physics carried out between October 1, 1995, the closing of our last Progress Report, and September 30, 1996 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contracts DE-FG03-93ER-40774 and DE-FG03-95ER-40913 with the United States Department of Energy. The experimental contract supports broadly-based experimental research in intermediate energy nuclear physics. This report includes results from studies of Elementary Systems involving the study of the structure of the nucleon via polarized high-energy positron scattering (the HERMES experiment) and lower energy pion scattering from both polarized and unpolarized nucleon targets. Results from pion- and kaon-induced reactions in a variety of nuclear systems are reported under the section heading Meson Reactions; the impact of these and other results on understanding the nucleus is presented in the Nuclear Structure section. In addition, new results from scattering of high-energy electrons (from CEBAF/TJNAF) and pions (from KEK) from a broad range of nuclei are reported in the section on Incoherent Reactions. Finally, the development and performance of detectors produced by the laboratory are described in the section titled Instrumentation

  13. Assessing storage adequacy

    International Nuclear Information System (INIS)

    Amirault, P.

    2004-01-01

    Government policy encourages the use of natural gas. It is expected that liquefied natural gas (LNG) and Arctic gas will make up 20 to 25 per cent of supply. This presentation provided an outlook of storage value based on a technical analysis by the National Petroleum Counsel (NPC) report. A moderately robust growth is expected in the residential and commercial load which may be partially offset by robust growth in electricity. The net result is an increase in storage requirements. It was concluded that there is a strong case for growth in storage demand but a lack of good sites for additional capacity. This will lead to higher storage values. The NPC sees the need for 1 Tcf more storage use by 2025, of which 700 Bcf will need to come from new storage. In particular, current storage levels may not be sufficient to meet a colder than normal winter, and deliverability is affected by field inventory. Most storage capacity was built before 1985, mostly by regulated entities. It is expected that only 250 to 400 Bcf will be added over the next 25 years in North America. If storage becomes scarce, prices will move to the marginal cost of new additions, and the upper limit on price will be determined by salt cavern storage. An increase of $1.00 in the price of leasing storage would add about $0.11 to the average price of consumed gas. tabs., figs

  14. A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

  15. Possible use of dual purpose dry storage casks for transportation and future storage of spent nuclear fuel from IRT-Sofia

    International Nuclear Information System (INIS)

    Manev, L.; Baltiyski, M.

    2003-01-01

    Objectives: The main objective of the present paper is related to one of the priority goals stipulated in Bulgarian Governmental Decision No.332 from May 17, 1999 - removal of SNF from IRT-Sofia site and its exporting for reprocessing and/or for temporary storage at Kozloduy NPP site. The variant of using dual purpose dry storage casks for transportation and future temporary storage of SNF from IRT-Sofia aims to find out a reasonable alternative of the existing till now variant for temporary SNF storage under water in the existing Kozloduy NPP Spent Fuel Storage Facility until its export for reprocessing. Results: Based on the given data for the condition of 73 Spent Nuclear Fuel Assemblies (SNFA) stored in the storage pool and technical data as well as data for available equipment and IRT-Sofia layout the following framework are specified: draft technical features of dual purpose dry storage casks and their overall dimensions; the suitability of the available equipment for safety and reliable performance of transportation and handling operations of assemblies from storage pool to dual purpose dry storage casks; the necessity of new equipment for performance of the above mentioned operations; Assemblies' transportation and handling operations are described; requirements to and conditions for future safety and reliable storage of SNFA loaded casks are determined. When selecting the technical solutions for safety assurance during performance of site handling operations of IRT-Sofia and for description of the exemplary casks the Effective Bulgarian Regulations are considered. The experience of other countries in performance of transfer and transportation of SNFA from such types of research reactors is taken into account. Also, Kozloduy NPP experience in SNF handling operations is taken into account. Conclusions: The Decision of Council of Minister for refurbishment of research reactor into a low power one and its future utilization for experimental and training

  16. Water Storage: Quo Vadis?

    Science.gov (United States)

    Smakhtin, V.

    2017-12-01

    Humans stored water - in various forms - for ages, coping with water resources variability, and its extremes - floods and droughts. Storage per capita, and other storage-related indicators, have essentially become one way of reflecting the progress of economic development. Massive investments went into large surface water reservoirs that have become the characteristic feature of the earth's landscapes, bringing both benefits and controversy. As water variability progressively increases with changing climate, globally, on one hand, and the idea of sustainable development receives strong traction, on another - it may be worth the while to comprehensively examine current trends and future prospects for water storage development. The task is surely big, to say the least. The presentation will aim to initiate a structured discussion on this multi-facet issue and identify which aspects and trends of water storage development may be most important in the context of Sustainable Development Goals, Sendai Framework for Disaster Risk Reduction, Paris Agreement on Climate Change, and examine how, where and to what extent water storage planning can be improved. It will cover questions like i) aging of large water storage infrastructure, the current extent of this trend in various geographical regions, and possible impacts on water security and security of nations; ii) improved water storage development planning overall in the context of various water development alternatives and storage options themselves and well as their combinations iii) prospects for another "storage revolution" - speed increase in dam numbers, and where, if at all this is most likely iv) recent events in storage development, e.g. is dam decommissioning a trend that picks pace, or whether some developing economies in Asia can do without going through the period of water storage construction, with alternatives, or suggestions for alleviation of negative impacts v) the role of subsurface storage as an

  17. Interfacial radiolysis effects in tank waste speciation. 1998 annual progress report

    International Nuclear Information System (INIS)

    Camaioni, D.; Meisel, D.; Orlando, T.M.

    1998-01-01

    'The purpose of this program is to deliver pertinent, fundamental information that can be used to make technically defensible decisions on safety issues and processing strategies associated with storage and clean up of DOE mixed chemical and radioactive wastes. The radioactive and chemical wastes present in DOE underground storage tanks contain complex mixtures of sludges, salts, and supernatant liquids. These mixtures, which contain a wide variety of oxide materials, aqueous solvents, and organic components, are constantly bombarded with gamma quanta, beta and alpha particles produced via the decay of radioactive isotopes. Currently, there is a vital need to understand radiolysis of organic and inorganic species present in mixed waste tanks because these processes: (a) produce mixtures of toxic, flammable, and potentially explosive gases (i.e., H 2 , N 2 O and volatile organics) (b) degrade organics, possibly to gas-generating organic fragments, even as the degradation reduces the hazards associated with nitrate-organic mixtures, (c) alter the surface chemistry of insoluble colloids in tank sludge, influencing sedimentation and the gas/solid interactions that may lead to gas entrapment phenomena. This report summarizes the technical achievements of a 3-year project that is now in its 2nd year. Progress in three areas is reported: (1) radiation effects at NaNO 3 crystal interfaces, (2) reactions of organic complexants with NO 2 in water, and (3) radiation effects in oxide particles.'

  18. Report on technical feasibility of underground pumped hydroelectric storage in a marble quarry site in the Northeast United States

    Energy Technology Data Exchange (ETDEWEB)

    Chas. T. Main, Inc.

    1982-03-01

    The technical and economic aspects of constructing a very high head underground hydroelectric pumped storage were examined at a prefeasibility level. Excavation of existing caverns in the West Rutland Vermont marble quarry would be used to construct the underground space. A plant capacity of 1200 MW and 12 h of continuous capacity were chosen as plant operating conditions. The site geology, plant design, and electrical and mechanical equipment required were considered. The study concluded that the cost of the 1200 MW underground pumped storage hydro electric project at this site even with the proposed savings from marketable material amounts to between $581 and $595 per kilowatt of installed capacity on a January 1982 pricing level. System studies performed by the planning group of the New England Power System indicate that the system could economically justify up to about $442 per kilowatt on an energy basis with no credit for capacity. To accommodate the plant with the least expensive pumping energy, a coal and nuclear generation mix of approximately 65% would have to be available before the project becomes feasible. It is not expected that this condition can be met before the year 2000 or beyond. It is therefore concluded that the West Rutland underground pumped storage facility is uneconomic at this time. Several variables however could have marked influence on future planning and should be examined on periodic basis.

  19. Underground storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi [Univ. of Tokyo, Hongo, Bunkyo-ku (Japan)

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  20. Storage issues: where are we in 2006?

    International Nuclear Information System (INIS)

    Chahine, R.

    2006-01-01

    Hydrogen storage onboard vehicles continue to be a key technical challenge for the widespread use of hydrogen and fuel cell power technologies in transportation. There are national and international collaborative efforts to narrow the gap between the present state of storage technologies and what is required for a competitive hydrogen economy. On-board hydrogen storage approaches under investigation mainly include advanced metal hydrides, nanoporus adsorbants, and chemical hydrogen storage. The presentation will briefly discuss the state of art of these technologies, highlight recent advances and outline future directions. (author)

  1. KBS Annual Report 1983. Including summaries of technical reports issued during 1983

    International Nuclear Information System (INIS)

    1984-06-01

    The purpose of the KBS Annual Report is to inform interested organizations and individuals of the research and development work performed by the division KBS within the Swedish Nuclear Fuel Supply Co (SKBF) on the handling, treatment and final storage of nuclear wastes in Sweden. The Annual Report normally contains a presentation of the legal and organizational situation followed by an account of the progress within different areas of the R and D-work. This account also includes indications of the activities planned for the future. At the end of the report the summaries of 76 technical reports and other publications issued during the year are listed in special appendices. (K.A.E.)

  2. Technical conservatisms in NWTS repository conceptual designs. National Waste Terminal Storage Repository No. 1: special study No. 4

    International Nuclear Information System (INIS)

    1980-09-01

    Prior studies have developed conceptual designs for National Waste Terminal Storage Repositories 1 and 2. Due to the considerable detail and volume of the documents describing these designs, it is often difficult to identify and comprehend the substantial conservatisms contained within them. This study identifies and explains the major technical conservatisms in these two conceptual designs in a concise and readily understandable format. The areas discussed include thermal loading of the geologic structure, rock mechanics and underground design, waste throughput capacity, hoisting systems, nuclear criticality safety, confinement of radioactive materials, occupational exposure and health physics, environmental effects, and cost estimates. Conservatisms are described in detail, quantified where possible, and compared to appropriate criteria

  3. GT-MHR COMMERCIALZATION STUDY. TECHNICAL PROGRESS AND COST MANAGEMENT REPORT FOR THE PERIOD MAY 1 THROUGH MAY 31, 2003

    International Nuclear Information System (INIS)

    SHENOY, A.S.

    2003-01-01

    A271 GT-MHR COMMERCIALZATION STUDY TECHNICAL PROGRESS AND COST MANAGEMENT REPORT FOR THE PERIOD MAY 1 THROUGH MAY 31, 2003. Petten advised GA the start of the HFR-EU2 irradiation is being delayed until late July 2004. HFR-EU1 (pebble fuel) is also delayed until February/March 2004. The reason for the delays was implementation of new financial regulations at Petten that delayed the contracts for capsule fabrication. Review of the MHR-2 Fuel Product Specification was completed. Revision of the specification to incorporate the review results is in progress. Detailed test matrices have been drafted for capsule irradiation tests and for post-irradiation heating tests proposed for development and qualification of advanced coated-particle fuels capable of meeting anticipated VHTR fuel performance requirements

  4. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol 11, No. 1 through Vol. 16, No. 6

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Klein, A.

    1976-04-01

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970) through Vol. 16, No. 6 (Nov.-Dec. 1975). Included in the index is a chronological list of articles (including abstract) followed by both a KWIC index and an Author Index. Nuclear Safety is a bimonthly technical progress review prepared by the Nuclear Safety Information Center and covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 300 technical articles in the last six years of publication

  5. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol 11, No. 1 through Vol. 16, No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.; Klein, A.

    1976-04-01

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970) through Vol. 16, No. 6 (Nov.-Dec. 1975). Included in the index is a chronological list of articles (including abstract) followed by both a KWIC index and an Author Index. Nuclear Safety is a bimonthly technical progress review prepared by the Nuclear Safety Information Center and covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 300 technical articles in the last six years of publication.

  6. Progress on the Design of the Storage Ring Vacuum System for the Advanced Photon Source Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Stillwell, B.; Billett, B.; Brajuskovic, B.; Carter, J.; Kirkus, E.; Lale, M.; Lerch, J.; Noonan, J.; O' Neill, M.; Rocke, B.; Suthar, K.; Walters, D.; Wiemerslage, G.; Zientek, J.

    2017-06-20

    Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction and rf cavity straight sections. An overview of progress in these areas is presented.

  7. Urology technical and non-technical skills development: the emerging role of simulation.

    Science.gov (United States)

    Rashid, Prem; Gianduzzo, Troy R J

    2016-04-01

    To review the emerging role of technical and non-technical simulation in urological education and training. A review was conducted to examine the current role of simulation in urology training. A PUBMED search of the terms 'urology training', 'urology simulation' and 'urology education' revealed 11,504 titles. Three hundred and fifty-seven abstracts were identified as English language, peer reviewed papers pertaining to the role of simulation in urology and related topics. Key papers were used to explore themes. Some cross-referenced papers were also included. There is an ongoing need to ensure that training time is efficiently utilised while ensuring that optimal technical and non-technical skills are achieved. Changing working conditions and the need to minimise patient harm by inadvertent errors must be taken into account. Simulation models for specific technical aspects have been the mainstay of graduated step-wise low and high fidelity training. Whole scenario environments as well as non-technical aspects can be slowly incorporated into the curriculum. Doing so should also help define what have been challenging competencies to teach and evaluate. Dedicated time, resources and trainer up-skilling are important. Concurrent studies are needed to help evaluate the effectiveness of introducing step-wise simulation for technical and non-technical competencies. Simulation based learning remains the best avenue of progressing surgical education. Technical and non-technical simulation could be used in the selection process. There are good economic, logistic and safety reasons to pursue the process of ongoing development of simulation co-curricula. While the role of simulation is assured, its progress will depend on a structured program that takes advantage of what can be delivered via this medium. Overall, simulation can be developed further for urological training programs to encompass technical and non-technical skill development at all stages, including

  8. Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, Joshua D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-08-17

    The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.

  9. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  10. Potential problem areas: extended storage of low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Siskind, B.

    1985-01-01

    If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) has contracted with Brookhaven National Laboratory to address the technical issues of extended storage. The dual objectives of this study are (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. Storage alternatives are considered in order to characterize the likely storage environments for these wastes. In particular, the range of storage alternatives considered and being implemented by the nuclear power plant utilities is described. The properties of the waste forms and waste containers are discussed. An overview is given of the performance of the waste package and its contents during storage (e.g., radiolytic gas generation, corrosion) and of the effects of extended storage on the performance of the waste package after storage (e.g., radiation-induced embrittlement of polyethylene, the weakening of steel containers by corrosion). Additional information and actions required to address these concerns, including possible mitigative measures, are discussed. 26 refs., 1 tab.

  11. Communication of technical information to lay audiences

    International Nuclear Information System (INIS)

    Bowes, J.E.; Stamm, K.R.; Jackson, K.M.; Moore, J.

    1978-05-01

    One of the objectives of the National Waste Terminal Storage (NWTS) Program is to provide terminal storage facilities for commercial radioactive wastes in various geologic formations at multiple locations in the United States. The activities performed under the NWTS Program will affect regional, state, and local areas, and widespread public interest in this program is expected. Since a large part of the NWTS Program deals with technical information it was considered desirable to initiate a study dealing with possible methods of effectively transmitting this technical information to the general public. This study has the objective of preparing a state-of-the-art report on the communication of technical information to lay audiences. The particular task of communicating information about the NWTS Program to the public is discussed where appropriate. The results of this study will aid the NWTS Program in presenting to the public the quite diverse technical information generated within the program so that a widespread, thorough public understanding of the NWTS Program might be achieved. An annotated bibliography is included

  12. Bismuth chalcogenide compounds Bi 2 × 3 (X=O, S, Se): Applications in electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jiangfeng; Bi, Xuanxuan; Jiang, Yu; Li, Liang; Lu, Jun

    2017-04-01

    Bismuth chalcogenides Bi2×3 (X=O, S, Se) represent a unique type of materials in diverse polymorphs and configurations. Multiple intrinsic features of Bi2×3 such as narrow bandgap, ion conductivity, and environmental friendliness, have render them attractive materials for a wide array of energy applications. In particular, their rich structural voids and the alloying capability of Bi enable the chalcogenides to be alternative electrodes for energy storage such as hydrogen (H), lithium (Li), sodium (Na) storage and supercapacitors. However, the low conductivity and poor electrochemical cycling are two key challenges for the practical utilization of Bi2×3 electrodes. Great efforts have been devoted to mitigate these challenges and remarkable progresses have been achieved, mainly taking profit of nanotechnology and material compositing engineering. In this short review, we summarize state-of-the-art research advances in the rational design of diverse Bi2×3 electrodes and their electrochemical energy storage performance for H, Li, and Na and supercapacitors. We also highlight the key technical issues at present and provide insights for the future development of bismuth based materials in electrochemical energy storage devices.

  13. WWER spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Bower, C C; Lettington, C [GEC Alsthom Engineering Systems Ltd., Whetstone (United Kingdom)

    1994-12-31

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs.

  14. WWER spent fuel storage

    International Nuclear Information System (INIS)

    Bower, C.C.; Lettington, C.

    1994-01-01

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs

  15. Canister Storage Building (CSB) Technical Safety Requirements

    International Nuclear Information System (INIS)

    KRAHN, D.E.

    2000-01-01

    The purpose of this section is to explain the meaning of logical connectors with specific examples. Logical connectors are used in Technical Safety Requirements (TSRs) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TSRs are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings

  16. Studies and research concerning BNFP: LWR spent fuel storage

    International Nuclear Information System (INIS)

    Shallo, F.A.

    1978-08-01

    This report describes potential spent fuel storage expansion programs using the Barnwell Nuclear Fuel Plant--Fuel Receiving and Storage Station (BNFP-FRSS) as a model. Three basic storage arrangements are evaluated with cost and schedule estimates being provided for each configuration. A general description of the existing facility is included with emphasis on the technical and equipment requirements which would be necessary to achieve increased spent fuel storage capacity at BNFP-FRSS

  17. Waste Management Program. Technical progress report, October-December 1982

    International Nuclear Information System (INIS)

    1983-07-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, in situ storage or disposal, waste from development and characterization, process and equipment development, and low-level waste management are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities

  18. Interim storage of radioactive waste packages

    International Nuclear Information System (INIS)

    1998-01-01

    This report covers all the principal aspects of production and interim storage of radioactive waste packages. The latest design solutions of waste storage facilities and the operational experiences of developed countries are described and evaluated in order to assist developing Member States in decision making and design and construction of their own storage facilities. This report is applicable to any category of radioactive waste package prepared for interim storage, including conditioned spent fuel, high level waste and sealed radiation sources. This report addresses the following issues: safety principles and requirements for storage of waste packages; treatment and conditioning methods for the main categories of radioactive waste; examples of existing interim storage facilities for LILW, spent fuel and high level waste; operational experience of Member States in waste storage operations including control of storage conditions, surveillance of waste packages and observation of the behaviour of waste packages during storage; retrieval of waste packages from storage facilities; technical and administrative measures that will ensure optimal performance of waste packages subject to various periods of interim storage

  19. Technical Aspects Regarding the Preservation of Dry Onions in Different Storage Conditions

    Directory of Open Access Journals (Sweden)

    Marian Vintila

    2014-11-01

    Full Text Available Research refers to the ability to maintain the quality of dry onions in different conditions of temperature, the three varieties used in experimentation (De Buzau, Daytona and Countach being stored after proper preparation at ambient temperature (+20…+22°C, refrigerated (+10…+12°C and cold conditions (+3…+5°C. Storage life, the level of weight (mass and decay losses and evolution of some chemical components determined from the 9 variants led to the conclusion that the best results were obtained by De Buzau variety for storage under ambient conditions and Daytona variety for storage under refrigerated and cold conditions. Moreover large differences between varieties and their behavior depending on storage conditions require choosing resistant cultivars and optimum storage temperatures according to destination and period of marketing or consumption.

  20. Monitored Retrievable Storage conceptual system study: metal storage casks

    International Nuclear Information System (INIS)

    Unterzuber, R.; Cross, T.E.; Krasicki, B.R.

    1983-08-01

    A description of the metal cask storage facility concept is presented with the operations required to handle the spent fuel or high-level wastes and transuranic wastes. A generic Receiving and Handling Facility, provided by PNL, has been used for this study. Modifications to the storage delivery side of the handling facility, necessary to couple the Receiving and Handling Facility with the storage facility, are described. The equipment and support facilities needed for the storage facility are also described. Two separate storage facilities are presented herein: one for all spent fuel storage, and one for storage of high-level waste (HLW) and transuranic waste (TRU). Each facility is described for the capacities and rates defined by PNL in the Concept Technical Performance Criteria and Base Assumptions (see Table 1.3-1). Estimates of costs and time-distributions of expenditures have been developed to construct, operate, and decommission the conceptual MRS facilities in mid-1983 dollars, for the base cases given using the cost categories and percentages provided by PNL. Cost estimates and time-distributions of expenditures have also been developed to expand the facility throughput rate from 1800 MTU to 3000 MTU, and to expand the facility storage capacity from 15,000 MTU to 72,00 MTU. The life cycle cost of the facility for the bounding cases of all spent fuel and all HLW and TRU, using the time-distributions of costs developed above and assuming a two percent per year discount rate, are also presented. 3 references, 16 figures, 18 tables

  1. Storage ring at HIE-ISOLDE Technical design report

    NARCIS (Netherlands)

    Grieser, M.; Litvinov, Yu. A.; Raabe, R.; Blaum, K.; Blumenfeld, Y.; Butler, P. A.; Wenander, F.; Woods, P. J.; Aliotta, M.; Andreyev, A.; Artemyev, A.; Atanasov, D.; Aumann, T.; Balabanski, D.; Barzakh, A.; Batist, L.; Bernardes, A. -P.; Bernhardt, D.; Billowes, J.; Bishop, S.; Borge, M.; Borzov, I.; Boston, A. J.; Brandau, C.; Catford, W.; Catherall, R.; Cederkall, J.; Cullen, D.; Davinson, T.; Dillmann, I.; Dimopoulou, C.; Dracoulis, G.; Duellmann, Ch. E.; Egelhof, P.; Estrade, A.; Fischer, D.; Flanagan, K.; Fraile, L.; Fraser, M. A.; Freeman, S. J.; Geissel, H.; Gerl, J.; Greenlees, P.; Grisenti, R. E.; Habs, D.; von Hahn, R.; Hagmann, S.; Hausmann, M.; He, J. J.; Heil, M.; Huyse, M.; Jenkins, D.; Jokinen, A.; Jonson, B.; Joss, D. T.; Kadi, Y.; Kalantar-Nayestanaki, N.; Kay, B. P.; Kiselev, O.; Kluge, H. -J.; Kowalska, M.; Kozhuharov, C.; Kreim, S.; Kroell, T.; Kurcewicz, J.; Labiche, M.; Lemmon, R. C.; Lestinsky, M.; Lotay, G.; Ma, X. W.; Marta, M.; Meng, J.; Muecher, D.; Mukha, I.; Mueller, A.; Murphy, A. St J.; Neyens, G.; Nilsson, T.; Nociforo, C.; Noertershaeuser, W.; Page, R. D.; Pasini, M.; Petridis, N.; Pietralla, N.; Pfuetzner, M.; Podolyak, Z.; Regan, P.; Reed, M. W.; Reifarth, R.; Reiter, P.; Repnow, R.; Riisager, K.; Rubio, B.; Sanjari, M. S.; Savin, D. W.; Scheidenberger, C.; Schippers, S.; Schneider, D.; Schuch, R.; Schwalm, D.; Schweikhard, L.; Shubina, D.; Siesling, E.; Simon, H.; Simpson, J.; Smith, J.; Sonnabend, K.; Steck, M.; Stora, T.; Stoehlker, T.; Sun, B.; Surzhykov, A.; Suzaki, F.; Tarasov, O.; Trotsenko, S.; Tu, X. L.; Van Duppen, P.; Volpe, C.; Voulot, D.; Walker, P. M.; Wildner, E.; Winckler, N.; Winters, D. F. A.; Wolf, A.; Xu, H. S.; Yakushev, A.; Yamaguchi, T.; Yuan, Y. J.; Zhang, Y. H.; Zuber, K.; Bosch, F.M.

    We propose to install a storage ring at an ISOL-type radioactive beam facility for the first time. Specifically, we intend to setup the heavy-ion, low-energy ring TSR at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored secondary beams

  2. Superconductive energy storage magnet study

    International Nuclear Information System (INIS)

    Rhee, S.W.

    1982-01-01

    Among many methods of energy storages the superconducting energy storage has been considered as the most promising method. Many related technical problems are still unsolved. One of the problems is the magnetizing and demagnetizing loss of superconducting coil. This loss is mainly because of hysteresis of pinning force. In this paper the hysteresis loss is calculated and field dependence of the a.c. losses is explained. The ratio of loss and stored energy is also calculated. (Author)

  3. 48 CFR 742.1170-4 - Progress reporting requirements and contract clause.

    Science.gov (United States)

    2010-10-01

    ... progress. (b) Because the cognizant technical officer is the individual most familiar with the contractor's performance, the contractor must submit the progress reports directly to the cognizant technical officer. The cognizant technical officer must review the reports and advise the contracting officer, in writing, of any...

  4. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  5. American proposals for long range storage of irradiated fuel

    International Nuclear Information System (INIS)

    Sugier, Annie

    1978-01-01

    The American politics of irradiated fuel management is reviewed, the short-range storage of huge amounts of wastes being the fundamental problem. Two steps are considered: the ''At the Reactor'' storage, ensured by the electricity companies, and the ''Away From Reactor'' storage on the DOE's responsibility. A technical and economical study has been carried out in order to estimate the cost of the AFR provisory storage and a project of taxation has been established on this basis [fr

  6. American proposals for long range storage of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sugier, A [CEA, 75 - Paris (France). Dept. des Programmes

    1978-12-01

    The American politics of irradiated fuel management is reviewed, the short-range storage of huge amounts of wastes being the fundamental problem. Two steps are considered: the ''At the Reactor'' storage, ensured by the electricity companies, and the ''Away From Reactor'' storage on the DOE's responsibility. A technical and economical study has been carried out in order to estimate the cost of the AFR provisory storage and a project of taxation has been established on this basis.

  7. Underground gas storage in the World - Cedigaz survey

    International Nuclear Information System (INIS)

    Benquey, R.

    2010-01-01

    The 2010 edition of 'Underground Gas Storage in the World' provides an update to the previous survey released by CEDIGAZ in 2006. At that time, 610 underground gas storage (UGS) facilities were in operation worldwide, with a working capacity of 319 billion cubic metres (bcm). As of 1 January 2010, this number had reached 642 facilities with a working gas capacity of 333 bcm, or 10.8% of world gas consumption. By 2020, the global UGS demand is expected to grow at a pace of 3.3% per year, and according to the projects identified, more than 760 UGS sites could be active in the world with a total working capacity of approximately 465 bcm. In this survey, CEDIGAZ analyses the following trends which characterise the rapid development of underground gas storage in the world: - the strong dynamics of the European storage market, where 127 projects could add 75 bcm of working capacity by 2020, - the continued development of the UGS market in the United States (49 projects), encouraged by market-based rates allowed by the FERC, and rapid permitting processes, - the development of facilities in countries with little or no storage capacities at present, in Asia/Oceania, the C.I.S., and Eastern Europe in particular. This survey provides an analysis of the recent evolutions in the technic-economic aspects of the underground gas storage business, as well as an overview of the UGS markets and their developments in the world, country by country. A specific section is dedicated to the analysis of future UGS needs in Europe by 2020: - Technic-economic aspects of UGS: This part of the survey analyses the latest technical improvements and research axes in the field of underground gas storage. As it is more difficult to build greenfield storage facilities, a lot of work has been done to improve the performance and flexibility of existing storage sites. This section also deals with the evolution of investment and operational costs in storage over the last few years. Furthermore, the

  8. Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island

    International Nuclear Information System (INIS)

    Ma, Tao; Yang, Hongxing; Lu, Lin

    2014-01-01

    Highlights: • Batteries and pumped hydro storage schemes are examined. • Sizing procedure for each option is investigated in detail. • The two schemes are compared in terms of life cycle cost and technical viability. • Sensitivity analyses are conducted on five key input parameters. - Abstract: This study examined and compared two energy storage technologies, i.e. batteries and pumped hydro storage (PHS), for the renewable energy powered microgrid power supply system on a remote island in Hong Kong. The problems of energy storage for off-grid renewable energy were analyzed. The sizing methods and economic models were developed, and finally applied in the real project (case study). The results provide the most suitable energy storage scheme for local decision-makers. The two storage schemes were further divided into 4 options. Accordingly, the life-cycle costs (LCC), levelized costs for the renewable energy storage system (LCRES) and the LCC ratios between all options were calculated and compared. It was found that the employment of conventional battery (Option 2) had a higher LCC value than the advanced deep cycle battery (Option 1), indicating that using deep cycle batteries is more suitable for a standalone renewable power supply system. The pumped storage combined with battery bank option (Option 3) had only 55% LCC of that of Option 1, making this combined option more cost-competitive than the sole battery option. The economic benefit of pumped storage is even more significant in the case of purely pumped storage with a hydraulic controller (Option 4), with the lowest LCC among all options at 29–48% of Option 1. Sensitivity analysis demonstrates that PHS is even more cost competitive by controlling some adjustments such as increasing energy storage capacity and days of autonomy. Therefore, the renewable energy system coupled with pumped storage presents technically feasible opportunities and practical potential for continuous power supply in remote

  9. Nuclear structure theory. Annual technical progress report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1976-01-01

    This report summarizes progress during the past year in the following areas of nuclear structure and reaction theory: Meson interactions with nucleons and nuclei, including elastic and inelastic scattering of pions, three-body theories of scattering and absorption of pions by deuterons, π-p bremsstrahlung, and multiple-excitation models for meson absorption by heavier nuclei. Studies of the inverse scattering problem including 1 S 0 nucleon-nucleon scattering; the relativistic two-body problem, particularly for relativistic effects at low energies: the unitary-pole expansion in nucleon-nucleon scattering with hard-core interactions. Statistical spectroscopy including: strength distributions and sum rules(both energy weighted and inverse energy weighted) for nuclear excitations; fluctuations and correlations in spectra, strengths and expectation values; studies of Garvey-Kelson and similar mass relationships; spectroscopy in huge spaces including spectral methods for renormalization of the interaction and for using (two + three)-body Skyrme interactions; technical aspects of operator averaging

  10. The natural gas storage in France and in Europe

    International Nuclear Information System (INIS)

    2006-02-01

    The natural gas storages play a great role in the gas supplying security. They allow to compensate for the variations of the supply and demand. This document presents the different natural gas storage technic: in the phreatic cave, in salt hollows, in abandoned deposits and the natural liquefied gas. It includes also a map of the natural gas storage situation in France. (A.L.B.)

  11. Selection of away-from-reactor facilities for spent fuel storage. A guidebook

    International Nuclear Information System (INIS)

    2007-09-01

    This publication aims to provide information on the approaches and criteria that would have to be considered for the selection of away-from-reactor (AFR) type spent fuel storage facilities, needs for which have been growing in an increasing number of Member States producing nuclear power. The AFR facilities can be defined as a storage system functionally independent of the reactor operation providing the role of storage until a further destination such as a disposal) becomes available. Initially developed to provide additional storage space for spent fuel, some AFR storage options are now providing additional spaces for extended storage of spent fuel with a prospect for long term storage, which is becoming a progressive reality in an increasing number of Member States due to the continuing debate on issues associated with the endpoints for spent fuel management and consequent delays in the implementation of final steps, such as disposal. The importance of AFR facilities for storage of spent fuel has been recognized for several decades and addressed in various IAEA publications in the area of spent fuel management. The Guidebook on Spent Fuel Storage (Technical Reports Series No. 240 published in 1984 and revised in 1991) discusses factors to be considered in the evaluation of spent fuel storage options. A technical committee meeting (TCM) on Selection of Dry Spent Fuel Storage Technologies held in Tokyo in 1995 also deliberated on this issue. However, there has not been any stand-alone publication focusing on the topic of selection of AFR storage facilities. The selection of AFR storage facilities is in fact a critical step for the successful implementation of spent fuel management programmes, due to the long operational periods required for storage and fuel handling involved with the additional implication of subsequent penalties in reversing decisions or changing the option mid-stream especially after the construction of the facility. In such a context, the long

  12. Hydrogen storage in graphitic nanofibres

    OpenAIRE

    McCaldin, Simon Roger

    2007-01-01

    There is huge need to develop an alternative to hydrocarbons fuel, which does not produce CO2 or contribute to global warming - 'the hydrogen economy' is such an alternative, however the storage of hydrogen is the key technical barrier that must be overcome. The potential of graphitic nanofibres (GNFs) to be used as materials to allow the solid-state storage of hydrogen has thus been investigated. This has been conducted with a view to further developing the understanding of the mechanism(s) ...

  13. Technical concept for a test of geologic storage of spent reactor fuel in the climax granite, Nevada Test Site

    International Nuclear Information System (INIS)

    Ramspott, L.D.; Ballou, L.B.; Carlson, R.C.; Montan, D.N.; Butkovich, T.R.; Duncan, J.E.; Patrick, W.C.; Wilder, D.G.; Brough, W.G.; Mayr, M.C.

    1979-01-01

    We plan to emplace spent fuel assemblies from an operating commercial nuclear reactor in the Climax granite at the US Department of Energy's Nevada Test Site. In this generic test, 11 canisters of spent fuel will be emplaced with 6 electrical simulator canisters in a storage drift 420 m below in surface and their effects compared. Two adjacent drifts will contain electrical heaters, operated to simulate the temperature-stress-displacement fields of a large repository. We describe the test objectives, the technical issues, the site, the preoperational measurement program, thermal and mechanical response calculations, the characteristics of the spent fuel, the field instrumentation and data-acquisition systems, and the system for handling the spent fuel

  14. Expansion of storage capacity of interim spent fuel storage (MSVP) Bohunice

    International Nuclear Information System (INIS)

    Pilat, P.; Fridrich, V.

    2005-01-01

    This article describes modifications of Interim spent fuel storage, performed with aim of storage capacity expansion, seismic stability enhancement, and overall increase of service life as well as assuring of MSVP safe operation. Uniqueness of adopted technical solutions is based upon the fact that mentioned innovations and modifications were performed without any changes, neither in ground plan nor architecture of MSVP structure. It also important to mention that all modifications were performed during continual operation of MSVP without any breaks of limits or operational regulations. Reconstruction and innovation of existing construction and technological systems of MSVP has assured required quality standard comparable with actual trends. (authors)

  15. 1984 Federal Interim Storage fee study: a technical and economic analysis

    International Nuclear Information System (INIS)

    Engel, R.L.

    1984-07-01

    JAI examined alternative methods for structuring charges for Federal Interim Storage (FIS) services were examined and the conclusion reached that the combined interests of the Department and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, and (4) impact aid payments made in accordance with section 136(e) of the Act. The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under-or over-estimation in the costs used to calculate the Initial Payment of the fee including savings due to rod consolidation), (2) module costs (i.e., storage casks, drywells, or silos), and (3) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at cost since these will be specific to each reactor site and destination

  16. Inventory extension considerations for long-term storage at the nuclear materials storage facility

    International Nuclear Information System (INIS)

    Olinger, C.T.; Stanbro, W.D.; Longmire, V.; Argo, P.E.; Nielson, S.M.

    1996-01-01

    Los Alamos National Laboratory is in the process of modifying its nuclear materials storage facility to a long-term storage configuration. In support of this effort, we examined technical and administrative means to extend periods between physical inventories. Both the frequency and sample size during a physical inventory could significantly impact required sizing of the non-destructive assay (NDA) laboratory as well as material handling capabilities. Several options are being considered, including (1) treating each storage location as a separate vault, (2) minimizing the number of items returned for quantitative analysis by optimizing the use of in situ confirmatory measurements, and (3) utilizing advanced monitoring technologies. Careful consideration of these parameters should allow us to achieve and demonstrate safe and secure storage while minimizing the impact on facility operations and without having to increase the size of the NDA laboratory beyond that required for anticipated shipping and receiving activities

  17. Scientific and technical report, 2000 of the IPSN

    International Nuclear Information System (INIS)

    2001-01-01

    IPSN (Institut de Protection et de Surete Nucleaire) is responsible for dealing with all aspects in the evaluation of safety of nuclear installations involving the human factors. To achieve its objectives, it conducts its own research and development activities on these themes. This report highlights the most significant scientific and technical achievements of the Institut in 2000. Twenty eight reports are presented, grouped in eight sessions, each ones opened by a review paper: the reactors safety, the installations safety, the radioactive materials and transport safety, the public health, the environment protection, the radioactive wastes safety, the crisis management and the IPSN installations. The international research program Phebus PF is detailed, technical progresses concerning the steam generators nondestructive testing or the impact of automation on operator performance are also presented. One session deals with the criticality studies and risk assessment. The control and surveillance of nuclear materials form the subject of research programs and experiments as well as the transport safety. Concerning the public and environment protection inspections, epidemiological studies, radionuclides transportation and radio-contaminant behavior are reported. In the domain of the radioactive wastes safety, the deep underground storage and the model MELODIE are presented. Examples of accidents or the INEX2 exercise are also discussed. (A.L.B.)

  18. Energy storage systems program report for FY1996

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1997-05-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  19. Nuclear waste glass melter: an update of technical progress

    International Nuclear Information System (INIS)

    Brouns, R.A.; Hanson, M.S.

    1984-08-01

    The direct slurry-fed ceramic-lined melter is currently the reference US process for treating defense and civilian high-level liquid waste. Extensive nonradioactive pilot-scale testing at Pacific Northwest Laboratory (PNL) and Savannah River Laboratory has proven the process, defined operating parameters, and identified successful equipment design concepts. Programs at PNL continue to support several of the planned US vitrification plants through preparation of equipment designs and flowsheet testing. Current emphasis is on remotization of equipment, radioactive verification testing, and resolution of remaining technical issues. Development of this technology, technical status, and planned development activities are discussed. 9 references, 4 figures

  20. Hydrogen production by supercritical water gasification of biomass. Phase 1 -- Technical and business feasibility study, technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The nine-month Phase 1 feasibility study was directed toward the application of supercritical water gasification (SCWG) for the economical production and end use of hydrogen from renewable energy sources such as sewage sludge, pulp waste, agricultural wastes, and ultimately the combustible portion of municipal solid waste. Unique in comparison to other gasifier systems, the properties of supercritical water (SCW) are ideal for processing biowastes with high moisture content or contain toxic or hazardous contaminants. During Phase I, an end-to-end SCWG system was evaluated. A range of process options was initially considered for each of the key subsystems. This was followed by tests of sewage sludge feed preparation, pumping and gasification in the SCW pilot plant facility. Based on the initial process review and successful pilot-scale testing, engineering evaluations were performed that defined a baseline system for the production, storage and end use of hydrogen. The results compare favorably with alternative biomass gasifiers currently being developed. The results were then discussed with regional wastewater treatment facility operators to gain their perspective on the proposed commercial SCWG systems and to help define the potential market. Finally, the technical and business plans were developed based on perceived market needs and the projected capital and operating costs of SCWG units. The result is a three-year plan for further development, culminating in a follow-on demonstration test of a 5 MT/day system at a local wastewater treatment plant.

  1. 48 CFR 2052.211-70 - Preparation of technical reports.

    Science.gov (United States)

    2010-10-01

    ....211-70 Preparation of technical reports. As prescribed at 2011.104-70(a), the contracting officer... Reports (JAN 1993) All technical reports required by Section C and all Technical Progress Reports required... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Preparation of technical...

  2. Technical issues and approach to license dry storage of LWR fuel in the United States

    International Nuclear Information System (INIS)

    Johnson, A.B.; Beeman, G.H.; Creer, J.M.; Gilbert, E.R.

    1984-01-01

    Dry storage is emerging as an important alternative to wet storage for US utilities, even though wet storage will remain the principal storage method, at least until the federal government begins to accept fuel in 1998. Dry storage has been licensed in several countries. In the USA, dry storage issues are related to storage system performance and behavior of spent fuel during storage. There is a coordinated US effort among electric utilities, the Electric Power Research Institute (EPRI), the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) to license two dry storage concepts: metal casks, and horizontal storage modules. The following activities are underway to resolve the licensing issues associated with dry storage and to establish the licensing basis: a) summarize and assimilate domestic and foreigh dry storage experience; b) conduct tests which resolve specific licensing issues; c) conduct cooperative demonstrations of the leading dry storage concepts; d) establish criteria and justifications for generic licensing. The paper summarizes the licensing issues and the approach to their resolution

  3. FY13 Annual Progress Report for SECA Core Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-31

    This progress report covers technical work performed during fiscal year 2013 at PNNL under Field Work Proposal (FWP) 40552. The report highlights and documents technical progress in tasks related to advanced cell and stack component materials development and computational design and simulation.

  4. The challenge of the future. Technical progress and ecological perspectives

    International Nuclear Information System (INIS)

    Jischa, M.F.

    1993-01-01

    The book introduces readers into the interrelated global problems population dynamics, energy supply, imminent climate catastrophe, environmetal pollution, finite resources and the conflict between the North and South. It encourages probing more deeply into the technical challenges of the future. The author demonstrates why economic and technical issues will soon be outstripped by questions of the environmental, human and social compatibility of new technologies. (orig./UA) [de

  5. Hanford Federal Facility Agreement and Consent Order, quarterly progress report, March 31, 1992

    International Nuclear Information System (INIS)

    1992-05-01

    This is the twelfth quarterly report as required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1990), established between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology). The Tri-Party Agreement sets the plan and schedule for achieving regulatory compliance and cleanup of waste sites at the Hanford Site. This report covers progress for the quarter that ended March 31, 1992. Topics covered under technical status include: disposal of tank wastes; cleanup of past-practice units; permitting and closure of treatment, storage, and disposal units; and other tri-party agreement activities and issues

  6. A Numerical and Graphical Review of Energy Storage Technologies

    Directory of Open Access Journals (Sweden)

    Siraj Sabihuddin

    2014-12-01

    Full Text Available More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.

  7. Monitored Retrievable Storage System Requirements Document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design.

  8. Progress in preliminary studies at Ottana Solar Facility

    Science.gov (United States)

    Demontis, V.; Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Melis, T.; Musio, M.

    2016-05-01

    The fast increasing share of distributed generation from non-programmable renewable energy sources, such as the strong penetration of photovoltaic technology in the distribution networks, has generated several problems for the management and security of the whole power grid. In order to meet the challenge of a significant share of solar energy in the electricity mix, several actions aimed at increasing the grid flexibility and its hosting capacity, as well as at improving the generation programmability, need to be investigated. This paper focuses on the ongoing preliminary studies at the Ottana Solar Facility, a new experimental power plant located in Sardinia (Italy) currently under construction, which will offer the possibility to progress in the study of solar plants integration in the power grid. The facility integrates a concentrating solar power (CSP) plant, including a thermal energy storage system and an organic Rankine cycle (ORC) unit, with a concentrating photovoltaic (CPV) plant and an electrical energy storage system. The facility has the main goal to assess in real operating conditions the small scale concentrating solar power technology and to study the integration of the two technologies and the storage systems to produce programmable and controllable power profiles. A model for the CSP plant yield was developed to assess different operational strategies that significantly influence the plant yearly yield and its global economic effectiveness. In particular, precise assumptions for the ORC module start-up operation behavior, based on discussions with the manufacturers and technical datasheets, will be described. Finally, the results of the analysis of the: "solar driven", "weather forecasts" and "combined storage state of charge (SOC)/ weather forecasts" operational strategies will be presented.

  9. Technical foundations and progress of the axial tomography

    International Nuclear Information System (INIS)

    Heckmann, K.

    1980-01-01

    The X-ray-source is rotating about the object (or the object is rotating). Opposite is rotating an X-ray-image intensifier and a conventional television scanning technique. For tomographic application the total effective field is constrained by a diaphragm of the X-rays to a slit defining the slice under observation and hence the corresponding profile. The X-ray-beam source and the slit-diaphragm are rotating 180 deg around the object. For any angle the profile can be obtained as an electric signal in a time-domain by applying television technique: an X-ray image intensifier with a television-camera. A tomographic picture is the result by back-projection of the various profiles ('electronic spreading') and a process of integration ('deflection'), accumulation and storage of the density profiles. A second method is discussed: the X-ray-source-detector-system is rotating around the object and simultaneous displacing longitudinal. The detector sends its impulses to an electronic storage, off that the images can be successive transferred to a monitor. So quickly shifting the layers we obtain spatial pictures. (orig.) [de

  10. Final Technical Report: Imaging a Dry Storage Cask with Cosmic Ray Muons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haori; Hayward, Jason; Can, Liao; Liu, Zhengzhi

    2018-03-31

    The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-site wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely. From the point of view of nuclear material protection, accountability and control technologies (MPACT) campaign, it is important to ensure that special nuclear material (SNM) in UNF is not stolen or diverted from civilian facilities for other use during the extended storage.

  11. Storage fee analysis for a retrievable surface storage facility

    International Nuclear Information System (INIS)

    Field, B.B.; Rosnick, C.K.

    1973-12-01

    Conceptual design studies are in progress for a Water Basin Concept (WBC) and an alternative Sealed Storage Cask Concept (SSCC) of a Retrievable Surface Storage Facility (RSSF) intended as a Federal government facility for storing high-level radioactive wastes until a permanent disposal method is established. The RSSF will be a man-made facility with a design life of at least 100 y, and will have capacity to store all of the high-level waste from the reprocessing of nuclear power plant spent fuels generated by the industry through the year 2000. This report is a basic version of ARH-2746, ''Retrievable Surface Storage Facility, Water Basin Concept, User Charge Analysis.'' It is concerned with the issue of establishing a fee to cover the cost of storing nuclear wastes both in the RSSF and at the subsequent disposal facility. (U.S.)

  12. Energy Storage Systems Program Report for FY98

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1999-04-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.

  13. Energy storage systems program report for FY97

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1998-08-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1997. 46 figs., 20 tabs.

  14. Energy Storage Systems Program Report for FY99

    Energy Technology Data Exchange (ETDEWEB)

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  15. The community's R and D programme on radioactive waste management and storage

    International Nuclear Information System (INIS)

    1978-01-01

    The objective of the R and D actions is the demonstration of either the technical potential or, for further advanced projects, the feasibility and even the industrial availability of methods for treating and storing radwaste. The following aspects are investigated: processing of solid waste from reactors, reprocessing plants and the plutonium manufacture; intermediate and terminal storage of high activity and alpha waste; advanced waste management methods as the storage of gaseous waste. In addition to the scientific-technical R and D actions, a survey of the legal, administrative and financial problems encountered in radwaste management and storage is an essential part of the Communities' programme

  16. Periodic progress report, 6 months

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    This is the first progress report of the BriteEuram project named "High Power Laser Cutting for Heavy Industry" ("Powercut"). The report contains a summary of the objectives of the first period, an overview of the technical progress, a comparison between the planed and the accomplished work...

  17. Decomposing productivity growth allowing efficiency gains and price-induced technical progress

    NARCIS (Netherlands)

    Oude Lansink, A.G.J.M.; Silva, E.; Stefanou, S.

    2000-01-01

    Time- and firm-specific output technical efficiency measures are generated within a price-induced technological change framework. The firm-specific production frontier incorporates past prices as an argument encouraging innovation and a time trend to account for exogenous technical change. The

  18. FutureGen 2.0 Pipeline and Regional Carbon Capture Storage Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Chris [Patrick Engineering Inc., Lisle, IL (United States); Wortman, David [Patrick Engineering Inc., Lisle, IL (United States); Brown, Chris [Battelle Memorial Inst., Richland, WA (United States); Hassan, Syed [Gulf Interstate Engineering, Houston, TX (United States); Humphreys, Ken [Futuregen Industrial Alliance, Inc., Washington, D.C. (United States); Willford, Mark [Futuregen Industrial Alliance, Inc., Washington, D.C. (United States)

    2016-03-31

    The U.S. Department of Energy’s (DOE) FutureGen 2.0 Program involves two projects: (1) the Oxy-Combustion Power Plant Project and (2) the CO2 Pipeline and Storage Project. This Final Technical Report is focused on the CO2 Pipeline and Storage Project. The FutureGen 2.0 CO2 Pipeline and Storage Project evolved from an initial siting and project definition effort in Phase I, into the Phase II activity consisting permitting, design development, the acquisition of land rights, facility design, and licensing and regulatory approvals. Phase II also progressed into construction packaging, construction procurement, and targeted early preparatory activities in the field. The CO2 Pipeline and Storage Project accomplishments were significant, and in some cases unprecedented. The engineering, permitting, legal, stakeholder, and commercial learnings substantially advance the nation’s understanding of commercial-scale CO2 storage in deep saline aquifers. Voluminous and significant information was obtained from the drilling and the testing program of the subsurface, and sophisticated modeling was performed that held up to a wide range of scrutiny. All designs progressed to the point of securing construction contracts or comfort letters attesting to successful negotiation of all contract terms and willing execution at the appropriate time all major project elements – pipeline, surface facilities, and subsurface – as well as operations. While the physical installation of the planned facilities did not proceed in part due to insufficient time to complete the project prior to the expiration of federal funding, the project met significant objectives prior to DOE’s closeout decision. Had additional time been available, there were no known, insurmountable obstacles that would have precluded successful construction and operation of the project. Due to the suspension of the project, site restoration activities were developed and the work was accomplished. The site restoration

  19. Technical considerations associated with spent fuel acceptance. Final report

    International Nuclear Information System (INIS)

    Supko, E.M.

    1996-06-01

    This study was initiated by the Electric Power Research Institute (EPRI) to identify technical considerations associated with spent fuel acceptance and implementation of a waste management system that includes the use of transportable storage systems, and to serve as an opening dialogue among Standard Contract Holders and the department of Energy's Office of Civilian Radioactive Waste management (OCRWM) prior to the development of waste acceptance criteria or issuance of a Notice of Proposed Rulemaking by OCRWM to amend the Standard Contract. The original purpose of the Notice of Proposed Rulemaking was to address changes to the Standard Contract to implement a multi-purpose canister based system and to address other issues that were not adequately addressed in the standard contract. Even if DOE does not develop a multi-purpose canister based system for waste acceptance, it will still be necessary to develop waste acceptance criteria in order to accept spent fuel in transportable storage systems that are being deployed for at-reactor storage. In this study, technical issues associated with spent fuel acceptance will be defined and potential options and alternatives for resolution of technical considerations will be explored

  20. Permanent Closure of the TAN-664 Underground Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  1. 1986 Federal Interim Storage fee study: a technical and economic analysis

    International Nuclear Information System (INIS)

    1986-09-01

    JAI examined alternative methods for structuring charges for federal interim storage (FIS) services and concluded that the combined interests of the Department and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, (4) impact aid payments made in accordance with Section 136(e) of the Act, and (5) module costs (i.e., storage casks, drywells or silos). The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under- or over-estimation in the costs used to calculate the Initial Payment of the fee (including savings due to rod consolidation), and (2) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). The module costs were included in the Initial Payment to preclude the possible need to obtain appropriations for federal funds to support the purchase of the modules in advance of receipt of the Final Payment. Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at actual cost since these will be specific to each reactor site and destination

  2. Deep reversible storage. Design options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    2010-09-01

    This report aims at presenting a synthesis of currently studied solutions for the different components of the project of deep geological radioactive waste storage centre. For each of these elements, the report indicates the main operational objectives to be taken into account in relationship with safety functions or with reversibility. It identifies the currently proposed design options, presents the technical solutions (with sometime several possibilities), indicates industrial references (in the nuclear sector, in underground works) and comments results of technological tests performed by the ANDRA. After a description of functionalities and of the overall organisation of storage components, the different following elements and aspects are addressed: surface installations, underground architecture, parcel transfer between the surface and storage cells, storage container for medium-activity long-life (MAVL) waste, storage cell for medium-activity long-life waste, handling of MAVL parcels in storage cells, storage container for high-activity (HA) waste, storage cell for HA waste, handling of HA parcels in storage cells, and works for site closing

  3. Practices and developments in spent fuel burnup credit applications. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    The International Atomic Energy Agency convened a technical committee Meeting on Requirements, Practices and Developments in Burnup Credit (BUC) Applications in Madrid, Spain, from 22 to 26 April 2002. The purpose of this meeting was to explore the progress and status of international activities related to the BUC applications for spent nuclear fuel. This meeting was the third major meeting on the uses of BUC for spent fuel management systems held since the IAEA began to monitor the uses of BUC in spent fuel management systems in 1997. The first major meeting was an Advisory Group meeting (AGM), which was held in Vienna, in October 1997. The second major meeting was a technical committee meeting (TCM), which was held in Vienna, in July 2000. Several consultants meetings were held since 1997 to advise and assist the IAEA in planning and conducting its BUC activities. The proceedings of the 1997 AGM were published as IAEA-TECDOC-1013, and the proceedings of the 2000 TCM as IAEA-TECDOC-1241. BUC for wet and dry storage systems, spent fuel transport, reprocessing and final disposal is needed in many Member States to allow for increased enrichment, and to increase storage capacities, cask capacities and dissolver capacities avoiding the need for extensive modifications. The use of BUC is a necessity for spent fuel disposal.

  4. AFCT/TFCT/ISFS Program. Technical progress report for the period October 1, 1977--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Hill, O.F. (comp.)

    1978-02-01

    This is the eighth in a series of quarterly progress reports on studies performed for the Alternate Fuel Cycle Technologies/Thorium Fuel Cycle Technologies/International Spent Fuel Receipt and Storage (AFCT/TFCT/ISFS) Program, formerly the LWR Fuel Recycle Program. This program is designed to provide information needed by industry to close the back end of the power reactor fuel cycle. During the past quarter, studies were conducted in the following tasks: Survey of Current Technology of Fuel Handling Techniques; Investigation of Air Cleaning Processes for Removing Tributyl Phosphate (TBP) from Off-Gas Streams; Study of Iodine Chemistry in Process Solutions; Electropolishing to Decontaminate Metallic Waste from Alternate and Thorium Converter Fuel Cycles; and U.S. Scale Transport, Dispersion and Removal Mode Comparison Safety Criticality Experiments. (11 figs., 7 tables)

  5. Costing of spent nuclear fuel storage

    International Nuclear Information System (INIS)

    2009-01-01

    This report deals with economic analysis and cost estimation, based on exploration of relevant issues, including a survey of analytical tools for assessment and updated information on the market and financial issues associated with spent fuel storage. The development of new storage technologies and changes in some of the circumstances affecting the costs of spent fuel storage are also incorporated. This report aims to provide comprehensive information on spent fuel storage costs to engineers and nuclear professionals as well as other stakeholders in the nuclear industry. This report is meant to provide informative guidance on economic aspects involved in selecting a spent fuel storage system, including basic methods of analysis and cost data for project evaluation and comparison of storage options, together with financial and business aspects associated with spent fuel storage. After the review of technical options for spent fuel storage in Section 2, cost categories and components involved in the lifecycle of a storage facility are identified in Section 3 and factors affecting costs of spent fuel storage are then reviewed in the Section 4. Methods for cost estimation and analysis are introduced in Section 5, and other financial and business aspects associated with spent fuel storage are discussed in Section 6.

  6. Battery storage for supplementing renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  7. PFBC HGCU Test Facility. Technical progress report No. 24, Third quarter, CY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This is the twenty-fourth and final Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the work completed during the Third Quarter of CY 1995. All activity this quarter was directed toward the completion of the program final report. A draft copy of the final report was forwarded to DOE during this quarter, and DOE submitted their comments on the report to AEPSC. DOE requested that Westinghouse write an appendix to the report covering the performance of the fail-safe regenerator devices during Tad operation, and Westinghouse subsequently prepared the appendix. Additional DOE comments were incorporated into the report, and it will be issued in camera-ready form by the end of October, 1995, which is the program end date. Appendix 1 presents the results of filter candle posttest examination by Westinghouse performed on selected filter candles following final shutdown of the system.

  8. Yield, utilization, storage and ultimate storage of depleted uranium

    International Nuclear Information System (INIS)

    Aumueller, L.; Hermann, J.

    1977-11-01

    More than 80% of the uranium leaving uranium enrichment plants is depleted to a residual content of about 0,25% U 235. Due to the present ineconomical further depletion to the technically possible residual content of 0,1% U 235, the so-called 'tails' are first of all stored. The quantity of stored depleted uranium in the FRG should be about 100.000 t by the year 2000. It represents a strategic reserve for future energy supply regardless of profitableness. The study analysis the conceivable possible uses for the tails quantity considered. These are, besides further depletion whose profitableness is considered, also the use as breeder material in breeder reactors and the use in the non-nuclear field. The main part of the study deals with the various storage possibilities of the depleted uranium in oxidic or fluoride form. A comparison of costs of alternative storage concepts showed a clear advantage for the storage of UF 6 in 48 inch containers already in use. The conceivable accidents in storing are analyzed and measures to reduce the consequences are discussed. Finally, the problems of ultimate storage for the remaining waste after further depletion or use are investigated and the costs arising here are also estimated. (RB) [de

  9. Assessing socio-technical mindsets: Public deliberations on carbon capture and storage in the context of energy sources and climate change

    International Nuclear Information System (INIS)

    Einsiedel, Edna F.; Boyd, Amanda D.; Medlock, Jennifer; Ashworth, Peta

    2013-01-01

    The adaptation and transition to new configurations of energy systems brought on by challenges of climate change, energy security, and sustainability have encouraged more integrative approaches that bring together the social and technical dimensions of technology. The perspectives of energy systems and climate change play an important role in the development and implementation of emerging energy technologies and attendant policies on greenhouse gas reduction. This research examines citizens’ views on climate change and a number of energy systems, with a specific focus on the use of carbon capture and storage (CCS) as a technology to address greenhouse gas emissions. An all-day workshop with 82 local participants was held in the city of Calgary in Alberta, Canada to explore the views of climate change, energy and CCS. Participants were provided the opportunity to ask experts questions and discuss in small groups their views of climate change policy and energy systems. Results demonstrate that participants’ assessments of energy systems are influenced by social–political–institutional–economic contexts such as trust in industry and government, perception of parties benefiting from the technology, and tradeoffs between energy systems. We discuss our findings in the context of understanding social learning processes as part of socio-technical systems change. - Highlight: ► Energy systems are judged in the context of wider socio-technical system dimensions. ► Skepticism about climate change may affect support for CCS. ► Concerns about CCS include: CO 2 leaks, accuracy of monitoring and costs.

  10. The underground retrievable storage (URS) high-level waste management concept

    International Nuclear Information System (INIS)

    Ramspott, L.D.

    1991-01-01

    This papers presents the concept of long-term underground retrievable storage (URS) of spent reactor fuel in unsaturated rock. Emplacement would be incremental and the system is planned to be experimental and flexible. The rationale for retrievability is examined, and a technical basis for 300-year retrievability is presented. Maximum isolation is the rationale for underground as opposed to surface storage. Although the potential repository site at Yucca Mountain Nevada would be suitable for a URS, alternate sites are discussed. The technical issues involved in licensing a URS for 300 years are simpler than licensing a 10,000 year repository. 16 refs

  11. Systems study 'Alternative Entsorgung'. Final report. Technical annex 10

    International Nuclear Information System (INIS)

    Hartje, B.; Kronschnabel, H.; Mueller, W.F.W.

    1984-01-01

    There is an investigation whether accessibility can be produced to fuel elements stored in a salt mine. All solutions of the problem were followed up until the technically best one was found. Two conditions must be fulfilled for access to the final storage barrel: - There must be a climate which is suitable for people. The Mining Order is the basis for this. - The pit building must be fixed, in the convergence in the salt mine should not lead to it becoming impossible to reach part of the mine. Due to heat-producing waste, rock temperatures are caused in the salt mine, in which mining is no longer possible. Building on the idea of cooling the whole final storage area using concentric sections, the amount of heat to be removal was first estimated. Cooling of the whole final storage area proved to be technically unjustifiable and uninteresting at present. (orig./HP) [de

  12. Spent fuel receipt and lag storage facility for the spent fuel handling and packaging program

    International Nuclear Information System (INIS)

    Black, J.E.; King, F.D.

    1979-01-01

    Savannah River Laboratory (SRL) is participating in the Spent Fuel Handling and Packaging Program for retrievable, near-surface storage of spent light water reactor (LWR) fuel. One of SRL's responsibilities is to provide a technical description of the wet fuel receipt and lag storage part of the Spent Fuel Handling and Packaging (SFHP) facility. This document is the required technical description

  13. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  14. Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Sebastiano Garroni

    2018-04-01

    Full Text Available Hydrogen storage in the solid state represents one of the most attractive and challenging ways to supply hydrogen to a proton exchange membrane (PEM fuel cell. Although in the last 15 years a large variety of material systems have been identified as possible candidates for storing hydrogen, further efforts have to be made in the development of systems which meet the strict targets of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU and U.S. Department of Energy (DOE. Recent projections indicate that a system possessing: (i an ideal enthalpy in the range of 20–50 kJ/mol H2, to use the heat produced by PEM fuel cell for providing the energy necessary for desorption; (ii a gravimetric hydrogen density of 5 wt. % H2 and (iii fast sorption kinetics below 110 °C is strongly recommended. Among the known hydrogen storage materials, amide and imide-based mixtures represent the most promising class of compounds for on-board applications; however, some barriers still have to be overcome before considering this class of material mature for real applications. In this review, the most relevant progresses made in the recent years as well as the kinetic and thermodynamic properties, experimentally measured for the most promising systems, are reported and properly discussed.

  15. Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica island

    International Nuclear Information System (INIS)

    Diaf, S.; Belhamel, M.; Haddadi, M.; Louche, A.

    2008-01-01

    The sizing and techno-economical optimization of a stand-alone hybrid photovoltaic/wind system (HPWS) with battery storage is presented in this paper. The main objective of the present study is to find the optimum size of system, able to fulfill the energy requirements of a given load distribution, for three sites located at Corsica island and to analyze the impact of different parameters on the system size. The methodology used provides a useful and simple approach for sizing and analyzing an HPWS. In the proposed stand-alone system, a new concept such as the supply of wind power via a uninterruptible power supply (UPS) is introduced and therefore the energy produced by the wind generator can be sent directly to the load. In this context, an optimization sizing model is developed. It consists of three submodels; system components submodels, technical submodel based on the loss of power supply probability (LPSP) and the economical submodel based on the levelized cost of energy (LCE). Applying the developed model, a set of configurations meeting the desired LPSP are obtained. The configuration with the lowest LCE gives the optimal one. Analyzing the optimal system configurations used to satisfy the requirements of typical residential home (3 kWh/day), a significant reduction in system size is observed as the available renewable potential increases leading to a considerable decrease in LCE (case of Cape corse site). The 2 days storage capacity is found to be the best for the optimal configuration with the lowest LCE. On the other hand, for low energy requirements, the LCE is found relatively high and decreases sharply with the increase in load. However, for low LPSP values, the LCE is found to rise sharply for a little increase in LPSP

  16. Proceedings of the research conference on post-accident waste management safety (RCWM2016) and the technical seminar on safety research for radioactive waste storage

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Yamagishi, Isao

    2017-03-01

    Collaborative Laboratories for Advanced Decommissioning Science (CLADS) is responsible to promote international cooperation in the R and D activities on the decommissioning of Fukushima Daiichi Nuclear Power Station and to develop the necessary human resources. CLADS held the Research Conference on Post-accident Waste Management Safety (RCWM2016) on 7th November, 2016 and the Technical Seminar on Safety Research for Radioactive Waste Storage on 8th November, 2016. This report compiles the abstracts and the presentation materials in the above conference and seminar. (author)

  17. Properties and regulation of biosynthesis of cottonseed storage proteins. Comprehensive progress report, December 1, 1976 to September 1, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dure, III, L S

    1979-01-01

    The regulation of gene expression in cotton seed embryogenesis was studied by attempting to define what gene products are likely to be highly regulated during this developmental progression. The flow of nitrogen into the free amino acids pools of the developing cotyledons, and into the principal nitrogen nutritional reserve of the seed, the storage proteins was measured. This was continued by following the flow of nitrogen from the storage proteins to the principal exported amino acid asparagine that occurs during the first several days of germination. In this fashion the rise and fall of certain enzymes of amino acid intermediary metabolism could be postulated, and in some cases, verified. The subsets of abundant mRNAs whose appearance and disappearance coincided with developmental events in cotyledon embryogenesis/germination with the short range goal of identifying proteins/enzyme activities were delineated as well as their mRNAs that represent specific developmental stages and the long range goal of using these representatives as probes for studying the mechanisms controlling the rise and fall of these mRNAs and their protein products.

  18. SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2002-08-26

    On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

  19. Appropriability, Technological Opportunity, Market Demand, and Technical Change - Empirical Evidence from Switzerland

    OpenAIRE

    Harabi, Najib

    1992-01-01

    The purpose of this paper is to analyze both theoretically and empirically those factors which underlay the - empirically observable - inter-industry differences in technical progress. At the theoretical level economists agree more and more that technical progress can be explained at the industry level by the following three factors: (1) the technological opportunities, (2) the appropriability conditions, meaning the ability to capture and protect the results of technical innovations and (3) ...

  20. Annual progress report 1980

    International Nuclear Information System (INIS)

    1981-01-01

    The technical support activities of the IPSN to competent administrations in 1980 has been marked: namely by the authorizations of divergence for 9 units EdF-PWR of 900 MW, the authorization project of creation and extension of reprocessing plant of COGEMA at the Hague UP 2 -800 and the authorization of starting up of the third unit of production of the EURODIF enrichment plant at Tricastin. On the other hand, IPSN has participated at the elaboration of a certain number of legislative and regulation texts relative to the control of nuclear matter, to radioprotection standards and to criteria of safety. For the safety of breeder, the test made at CABRI pile, in the international research program has given confirmation of the validity of theoretical models used in accidents calculations, hypothetical accidents which has allowed to reactualize safety criteria which have to be used for the development of this type of reactor. In worker radioprotection the results obtained in laboratory on the effect of radon, the progress made in personal dosimetry and the action of radioprotection undertaken in uranium mines constitutes a coherent effort. The deep drilling in granit (1000 m) and the experimental associated program which has finished the indispensable scientific data for the future policy in matter of storage of radioactives wastes. IPSN has contributed to progress made in the rules of exploitation of reactors, in the definition of wastes containment -specially at the output of reprocessing plant- in handling machines in hazardeous areas and in the study of environment [fr

  1. Dismantling of civilian nuclear powered fleet technical support vessels. engineering solutions - 59386

    International Nuclear Information System (INIS)

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.

    2012-01-01

    At the present time six nuclear technical support vessels are operated and maintained by Atomflot. Two of them (Volodarsky FTB (floating technical base) and Lepse FTB) were taken out of service for decommissioning and are stored afloat. One more vessel Lotta FTB should be decommissioned during next two years. The nuclear technological support ships carrying spent nuclear fuel (SNF), liquid and solid radioactive wastes (LRW and SRW) appear to be a possible radiation contamination of Murmansk region and Kola Bay because the Ship long-term storage afloat has the negative effect on hull's structures technical condition. As a result of this in the context of the Federal Program 'Nuclear and Radiation Safety' (2008-2015) NIPTB Onega OAO was engaged by state corporation Rosatom to develop the dismantling procedure for Volodarsky FTB and Lotta FTB. Before developing of nuclear technological support ships decommissioning projects the technical and economic assessment of decommissioning/dismantling was carried out. The following options were examined: - formation of module as one-piece Ship's hull for long-term storage at Saida Bay; - formation of separated modules for long-term storage at Saida Bay; - complete dismantling of hull's structures, systems and equipment with packing all generated SRW into certified long-term storage containers. This paper contains description of options, research procedure, comparative analysis of options of decommissioning and dismantling (D and D) of nuclear technological support ships and its difference with dismantling of nuclear submarine. On the basis of the technical and economic assessment of FTB D and D options the least expensive on the first D and D stage and the least duration option is the option 1 (Formation of module as one-piece Ship's hull for long-term storage at Saida Bay). By the implementation of the given option there will be the need of large areas for modules storage at Saida Bay. It was not considered while working out

  2. GLOBAL 2009: Closing speech - the bulk of technical sessions

    International Nuclear Information System (INIS)

    Greneche, D.

    2009-01-01

    The author proposes an overview of the content of the hundred technical sessions of the GLOBAL 2009 conference. Thus, he addresses the twelve main issues: the upstream part of the fuel cycle, the present status of used fuel recycling, the waste management strategies and technologies, the transportation and storage of used fuels and radioactive materials, the definitive storage of nuclear wastes, the new technologies for fuel recycling, advanced designs of reactor cores and fuel management, long life radionuclide transmutation systems, the non proliferation issue, material management and options for sustainable fuel cycles, dismantling, decommissioning and resulting material management, transverse topics (technical-economic studies, nuclear energy applications other than electricity production, challenges of sustainable development of nuclear energy, advanced researches)

  3. Expectation and task for constructing the volume reduction system of removed soils. In search of the technical integrity from the intermediate storage to final disposal

    International Nuclear Information System (INIS)

    Mori, Hisaki

    2016-01-01

    The intermediate storage volume of the removed soils and incineration ash in Fukushima is supposed about 22 million cubic meters. Within 30 years after starting the intermediate storage, the final disposal outside Fukushima prefecture to these removed soils and incineration ash is determined by the law. Because these removed soils are the very-very low radio activity, the volume reduction method is most effective to reduce the burden of the final disposal. As the volume reduction technology is the stage of research and development, the possibility of the introduction of the volume reduction technology that has the consistency of the final disposal technology is evaluated from the point of view of cost. Since this business is accompanied by economic and technical risk to implement private companies, this project is considered appropriate to be implemented as a national project. (author)

  4. Final Report UCLA-Thermochemical Storage with Anhydrous Ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, Adrienne [Univ. of California, Los Angeles, CA (United States)

    2018-02-05

    In ammonia-based thermochemical energy storage (TCES), ammonia is dissociated endothermically as it absorbs solar energy during the daytime. When energy is required, the reverse reaction releases energy to heat a working fluid such as steam, to produce electricity. Ammonia-based TCES has great advantages of simplicity, low cost reactants, and a strong industrial base in the conventional ammonia industry. The concept has been demonstrated over three decades of research at Australian National University, achieving a 24-hour demonstration of a complete system. At the start of this project, three challenges were identified that would have to be addressed to show that the system is technically and economically viable for incorporation into a CSP plant with an advanced, high temperature power block. All three of these challenges have now been addressed: 1. The ammonia synthesis reaction had not, to our knowledge, been carried out at temperatures consistent with modern power blocks (i.e., ~650°C). The technical feasibility of operating a reactor under high-temperature, near-equilibrium conditions was an unknown, and was therefore a technical risk. The project has successfully demonstrated steam heating to 650°C and energy recovery to steam at the 5 kWt level. 2. The ammonia system has a relatively low enthalpy of reaction combined with gas phase reactants. This is not a direct disadvantage since the reactants themselves are low cost. The challenge lies in storing the required volume of reactants cost effectively. Therefore, a second key goal was to show, through techno-economic analysis, that underground storage technologies can be used to store the energy-rich gas at a cost that is consistent with the SunShot cost goal. We have identified two promising technologies for gas storage: storage in salt caverns has an estimated cost of 1(USD)/kWht and storage in drilled shafts could be on the order of 7(USD)/kWht. Together these two options answer the technical challenge

  5. Integrated path towards geological storage

    International Nuclear Information System (INIS)

    Bouchard, R.; Delaytermoz, A.

    2004-01-01

    Among solutions to contribute to CO 2 emissions mitigation, sequestration is a promising path that presents the main advantage of being able to cope with the large volume at stake when considering the growing energy demand. Of particular importance, geological storage has widely been seen as an effective solution for large CO 2 sources like power plants or refineries. Many R and D projects have been initiated, whereby research institutes, government agencies and end-users achieve an effective collaboration. So far, progress has been made towards reinjection of CO 2 , in understanding and then predicting the phenomenon and fluid dynamics inside the geological target, while monitoring the expansion of the CO 2 bubble in the case of demonstration projects. A question arises however when talking about sequestration, namely the time scale to be taken into account. Time is indeed of the essence, and points out the need to understand leakage as well as trapping mechanisms. It is therefore of prime importance to be able to predict the fate of the injected fluids, in an accurate manner and over a relevant period of time. On the grounds of geology, four items are involved in geological storage reliability: the matrix itself, which is the recipient of the injected fluids; the seal, that is the mechanistic trap preventing the injected fluids to flow upward and escape; the lower part of the concerned structure, usually an aquifer, that can be a migration way for dissolved fluids; and the man- made injecting hole, the well, whose characteristics should be as good as the geological formation itself. These issues call for specific competencies such as reservoir engineering, geology and hydrodynamics, mineral chemistry, geomechanics, and well engineering. These competencies, even if put to use to a large extent in the oil industry, have never been connected with the reliability of geological storage as ultimate goal. This paper aims at providing an introduction to these

  6. High temperature turbine technology program. Phase II. Technology test and support studies. Annual technical progress report, January 1, 1979-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Work performed on the High Temperature Turbine Technology Program, Phase II - Technology Test and Support Studies during the period from January 1, 1979 through December 31, 1979 is summarized. Objectives of the program elements as well as technical progress and problems encountered during this Phase II annual reporting period are presented. Progress on design, fabrication and checkout of test facilities and test rigs is described. LP turbine cascade tests were concluded. 350 hours of testing were conducted on the LP rig engine first with clean distillate fuel and then with fly ash particulates injected into the hot gas stream. Design and fabrication of the turbine spool technology rig components are described. TSTR 60/sup 0/ sector combustor rig fabrication and testing are reviewed. Progress in the design and fabrication of TSTR cascade rig components for operation on both distillate fuel and low Btu gas is described. The new coal-derived gaseous fuel synthesizing facility is reviewed. Results and future plans for the supporting metallurgical programs are discussed.

  7. Refractory Hyperlactatemia with Organ Insufficiency in Lipid Storage Myopathy.

    Science.gov (United States)

    Xu, Yuanda; Zhou, Li; Liang, Weibo; He, Weiqun; Liu, Xiaoqing; Liang, Xiuling; Zhong, Nanshan; Li, Yimin

    2015-08-01

    Lipid storage myopathy is a metabolic disorder characterized by abnormal lipid accumulation in muscle fibers and progressive muscle weakness. Here, we report the case of a 17-year-old woman with progressive muscle weakness, refractory hyperlactatemia, and multiple organ insufficiency. Severe pneumonia was the initial diagnosis. After anti-infective treatment, fluid resuscitation, and mechanical ventilation, the patient's symptoms improved but hyperlactatemia and muscle weakness persisted. She was empirically treated with carnitine. Biochemical tests, electromyography, and muscle biopsy confirmed lipid storage myopathy. After 7 weeks of treatment, the patient resumed normal daily life. An empirical treatment with carnitine may be beneficial for patients before an accurate diagnosis of lipid storage myopathy is made.

  8. GPHS-RTGs in support of the Cassini mission. Semi annual technical progress report, 2 October 1995--31 March 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The technical progress achieved during the period 2 October 1995 through 31 March 1996 on Contract No. DE-AC03-91SF18852, Radioisotope Generators and Ancillary Activities is described herein. This report is organized by the program task structure as follows: spacecraft integration and liaison; engineering support; safety; qualified unicouple fabrication; ETG fabrication, assembly, and test; ground support equipment (GSE); RTG shipping and launch support; designs, reviews, and mission applications; project management, quality assurance and reliability, contract changes, non-capital CAGO acquisition, and CAGO maintenance; contract acquired government-owned property (CAGO) acquisition; and program calendars

  9. Design, construction and monitoring of temporary storage facilities for removed contaminants

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Funaki, Hironori; Kurikami, Hiroshi; Sakamoto, Yoshiaki; Tokizawa, Takayuki

    2013-01-01

    Since the Fukushima Daiichi nuclear power plant accident caused by the Tohoku Region Pacific Coast Earthquake on March 11, 2011, decontamination work has been conducted in the surrounding environment within the Fukushima prefecture. Removed contaminants including soil, grass and trees are to be stored safely at temporary storage facilities for up to three years, after which they will be transferred to a planned interim storage facility. The decontamination pilot project was carried out in both the restricted and planned evacuation areas in order to assess decontamination methods and demonstrate measures for radiation protection of workers. Fourteen temporary storage facilities of different technical specifications were designed and constructed under various topographic conditions and land use. In order to support the design, construction and monitoring of temporary storage facilities for removed contaminants during the full-scale decontamination within the prefecture of Fukushima, technical know-how obtained during the decontamination pilot project has been identified and summarized in this paper. (author)

  10. Status of electrical energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents an overview of the status of electrical storage systems in the light of the growing use of renewable energy sources and distributed generation (DG) in meeting emission targets and in the interest of the UK electricity supply industry. Examples of storage technologies, their applications and current status are examined along with technical issues and possible activities by UK industries. Details are given of development opportunities in the fields of flow cells, advanced batteries - lithium batteries, high temperature batteries, flywheels, and capacitors. Power conversion systems and system integration, the all-electric ship project, and compressed air energy storage are discussed. Opportunities for development and deployment, small scale systems, demonstration programmes, and research and development issues are considered. An outline of the US Department of Energy Storage programme is given in the Annex to the report.

  11. Risk assessment-led characterisation of the SiteChar UK north sea site for the geological storage of CO2

    International Nuclear Information System (INIS)

    Akhurst, Maxine; Hannis, Sarah D.; Quinn, Martyn F.; Long, David; Shi, Ji-Quan; Koenen, Marielle; Pluymaekers, Maarten; Delprat-Jannaud, Florence; Lecomte, Jean-Claude; Bossie-Codreanu, Daniel; Nagy, Stanislaw; Klimkowski, Lukas; Gei, Davide

    2015-01-01

    Risk assessment-led characterisation of a site for the geological storage of CO 2 in the UK northern North Sea was performed for the EU SiteChar research project as one of a portfolio of sites. Implementation and testing of the SiteChar project site characterisation work-flow has produced a 'dry-run' storage permit application that is compliant with regulatory requirements. A site suitable for commercial-scale storage was characterised, compatible with current and future industrial carbon dioxide (CO 2 ) sources in the northern UK. Pre-characterisation of the site, based on existing information acquired during hydrocarbon exploration and production, has been achieved from publicly available data. The project concept is to store captured CO 2 at a rate of 5 Mt per year for 20 years in the Blake Oil Field and surrounding Captain Sandstone saline aquifer. This commercial-scale storage of 100 Mt CO 2 can be achieved through a storage scenario combining injection of CO 2 into the oil field and concurrent water production down-dip of the field. There would be no encroachment of supercritical phase CO 2 for more than two kilometres beyond the field boundary and no adverse influence on operating hydrocarbon fields provided there is pressure management. Components of a storage permit application for the site are presented, developed as far as possible within a research project. Characterisation and technical investigations were guided by an initial assessment of perceived risks to the prospective site and a need to provide the information required for the storage permit application. The emphasis throughout was to reduce risks and uncertainty on the subsurface containment of stored CO 2 , particularly with respect to site technical performance, monitoring and regulatory issues, and effects on other resources. The results of selected risk assessment-led site characterisation investigations and the subsequent risk reassessments are described together with their

  12. Redox Flow Batteries, Hydrogen and Distributed Storage.

    Science.gov (United States)

    Dennison, C R; Vrubel, Heron; Amstutz, Véronique; Peljo, Pekka; Toghill, Kathryn E; Girault, Hubert H

    2015-01-01

    Social, economic, and political pressures are causing a shift in the global energy mix, with a preference toward renewable energy sources. In order to realize widespread implementation of these resources, large-scale storage of renewable energy is needed. Among the proposed energy storage technologies, redox flow batteries offer many unique advantages. The primary limitation of these systems, however, is their limited energy density which necessitates very large installations. In order to enhance the energy storage capacity of these systems, we have developed a unique dual-circuit architecture which enables two levels of energy storage; first in the conventional electrolyte, and then through the formation of hydrogen. Moreover, we have begun a pilot-scale demonstration project to investigate the scalability and technical readiness of this approach. This combination of conventional energy storage and hydrogen production is well aligned with the current trajectory of modern energy and mobility infrastructure. The combination of these two means of energy storage enables the possibility of an energy economy dominated by renewable resources.

  13. Progress on the Hanford K basins spent nuclear fuel project

    International Nuclear Information System (INIS)

    Culley, G.E.; Fulton, J.C.; Gerber, E.W.

    1996-01-01

    This paper highlights progress made during the last year toward removing the Department of Energy's (DOE) approximately, 2,100 metric tons of metallic spent nuclear fuel from the two outdated K Basins at the Hanford Site and placing it in safe, economical interim dry storage. In the past year, the Spent Nuclear Fuel (SNF) Project has engaged in an evolutionary process involving the customer, regulatory bodies, and the public that has resulted in a quicker, cheaper, and safer strategy for accomplishing that goal. Development and implementation of the Integrated Process Strategy for K Basins Fuel is as much a case study of modern project and business management within the regulatory system as it is a technical achievement. A year ago, the SNF Project developed the K Basins Path Forward that, beginning in December 1998, would move the spent nuclear fuel currently stored in the K Basins to a new Staging and Storage Facility by December 2000. The second stage of this $960 million two-stage plan would complete the project by conditioning the metallic fuel and placing it in interim dry storage by 2006. In accepting this plan, the DOE established goals that the fuel removal schedule be accelerated by a year, that fuel conditioning be closely coupled with fuel removal, and that the cost be reduced by at least $300 million. The SNF Project conducted coordinated engineering and technology studies over a three-month period that established the technical framework needed to design and construct facilities, and implement processes compatible with these goals. The result was the Integrated Process Strategy for K Basins Fuel. This strategy accomplishes the goals set forth by the DOE by beginning fuel removal a year earlier in December 1997, completing it by December 1999, beginning conditioning within six months of starting fuel removal, and accomplishes it for $340 million less than the previous Path Forward plan

  14. Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants: Report Summary

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eichman, Joshua D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-28

    The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.

  15. Low-Temperature Thermal Energy Storage Program. Annual progress report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Brunton, G.D.; Eissenberg, D.M.; Kedl, R.J.

    1979-05-01

    The Low-Temperature Thermal Energy Storage (LTTES) Program is part of a national effort to develop means for reducing United States dependence on oil and natural gas as primary energy sources. To this end, LTTES addresses the development of advanced sensible and latent heat storage technologies that permit substitution by solar or off-peak electrical energies or permit conservation by recovery and reuse of waste heat. Emphasis is on applying these technologies to heating and cooling of buildings. As the LTTES program continued to mature, a number of technologies were identified for development emphasis, including (1) seasonal storage of hot and cold water from waste or natural sources in aquifers, (2) short-term or daily storage of heat or coolness from solar or off-peak electrical sources in phase-change materials, and (3) recovery and reuse of rejected industrial heat through thermal storage. These areas have been further divided into three major and four minor activities; significant accomplishments are reported for each.

  16. Risks attached to container- and bunker-storage of nuclear waste

    International Nuclear Information System (INIS)

    Jager, D. de

    1987-12-01

    The results are presented of a literature study into the risks attached to the two dry-storage options selected by the Dutch Central Organization For Radioactive Waste (COVRA): the container- and the bunker-storage for irradiated nuclear-fuel elements and nuclear waste. Since the COVRA does not make it clear how these concepts should have to be realized, the experiences abroad with dry interim-storage are considered. In particular the Castor-container-storage and the bunker storage proposed in the committee MINSK (Possibilities of Interim-storage in the Netherlands of Irradiated nuclear-fuel elements and Nuclear waste) are studied further in depth. The committee MINSK has performed a study into the technical realizability of various interim-storage facilities, among which a storage in bunkers. (author). 75 refs.; 14 figs.; 16 tabs

  17. Storage of radioactive wastes

    International Nuclear Information System (INIS)

    1992-07-01

    Even if the best waste minimization measures are undertaken throughout radioisotope production or usage, significant radioactive wastes arise to make management measures essential. For developing countries with low isotope usage and little or no generation of nuclear materials, it may be possible to handle the generated waste by simply practicing decay storage for several half-lives of the radionuclides involved, followed by discharge or disposal without further processing. For those countries with much larger facilities, longer lived isotopes are produced and used. In this situation, storage is used not only for decay storage but also for in-process retention steps and for the key stage of interim storage of conditioned wastes pending final disposal. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Considerations are limited to the simpler storage facilities. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements in the storage facilities or equipment used for handling. A small quantity of wastes from some radioisotope production cells and from reactor cooling water treatment may contain sufficient short lived activity from activated corrosion products to require some separate decay storage before contact-handling is suitable. 16 refs, 12 figs, 8 tabs

  18. The general technical regulation and the standardization

    International Nuclear Information System (INIS)

    Laverie, Michel; Houze, Christian; Lebouleux, Philippe

    1980-01-01

    Through a certain number of procedures, the thorough appreciation of the safety of a nuclear installation relies more on a specific appreciation taking into account the references as a whole, than on a technical regulation which claims to cover all the problems. Nevertheless, a French technical regulation structure regarding the safety domain must be built up progressively. The authors consider the principles of such a structure, and together they make the inventory of the works, finished, in progress or contemplated. The description of this specifically French approach emphazises the multiple and complementary forms given to statutory implements [fr

  19. UFD Storage and Transportation - Transportation Working Group Report

    International Nuclear Information System (INIS)

    Maheras, Steven J.; Ross, Steven B.

    2011-01-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms (known as features, events, and processes (FEPs)) were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references such as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the

  20. A Micro-Grid Battery Storage Management

    DEFF Research Database (Denmark)

    Mahat, Pukar; Escribano Jiménez, Jorge; Moldes, Eloy Rodríguez

    2013-01-01

    An increase in number of distributed generation (DG) units in power system allows the possibility of setting-up and operating micro-grids. In addition to a number of technical advantages, micro-grid operation can also reduce running costs by optimally scheduling the generation and/or storage...... systems under its administration. This paper presents an optimized scheduling of a micro-grid battery storage system that takes into account the next-day forecasted load and generation profiles and spot electricity prices. Simulation results show that the battery system can be scheduled close to optimal...

  1. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  2. The Community's R and D Programme on radioactive waste management and storage

    International Nuclear Information System (INIS)

    1980-01-01

    The objective of the R and D actions to be achieved by 1980 is the demonstration of either the technical potential or, for further advanced projects, the feasibility and even the industrial availability of methods for treating and storing radwaste. The following aspects are investigated: - processing of solid waste from reactors, reprocessing plants and the plutonium fuel fabrication; - intermediate and terminal storage of high activity and alpha wastes; - advanced waste management methods as the storage of gaseous wastes. This report presents the most important results achieved under the programme. In addition to the scientific-technical R and D actions, a survey of the legal, administrative and financial problems encountered in radwaste management and storage is an essential part of the Communities' programme

  3. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Aristos Aristidou Natureworks); Robert Kean (NatureWorks); Tom Schechinger (IronHorse Farms, Mat); Stuart Birrell (Iowa State); Jill Euken (Wallace Foundation & Iowa State)

    2007-10-01

    The two main objectives of this project were: 1) to develop and test technologies to harvest, transport, store, and separate corn stover to supply a clean raw material to the bioproducts industry, and 2) engineer fermentation systems to meet performance targets for lactic acid and ethanol manufacturers. Significant progress was made in testing methods to harvest corn stover in a “single pass” harvest mode (collect corn grain and stover at the same time). This is technically feasible on small scale, but additional equipment refinements will be needed to facilitate cost effective harvest on a larger scale. Transportation models were developed, which indicate that at a corn stover yield of 2.8 tons/acre and purchase price of $35/ton stover, it would be unprofitable to transport stover more than about 25 miles; thus suggesting the development of many regional collection centers. Therefore, collection centers should be located within about 30 miles of the farm, to keep transportation costs to an acceptable level. These collection centers could then potentially do some preprocessing (to fractionate or increase bulk density) and/or ship the biomass by rail or barge to the final customers. Wet storage of stover via ensilage was tested, but no clear economic advantages were evident. Wet storage eliminates fire risk, but increases the complexity of component separation and may result in a small loss of carbohydrate content (fermentation potential). A study of possible supplier-producer relationships, concluded that a “quasi-vertical” integration model would be best suited for new bioproducts industries based on stover. In this model, the relationship would involve a multiyear supply contract (processor with purchase guarantees, producer group with supply guarantees). Price will likely be fixed or calculated based on some formula (possibly a cost plus). Initial quality requirements will be specified (but subject to refinement).Producers would invest in harvest/storage

  4. Lysosomal storage diseases: current diagnostic and therapeutic options

    International Nuclear Information System (INIS)

    Malinova, V.; Honzik, T.

    2013-01-01

    Lysosomal storage diseases are rare genetic diseases caused by insufficient activity of some of the lysosomal enzymes and/or transport proteins. Initial symptoms may appear any time from the neonatal period to late adulthood; early forms tend to have a severe course with rapid progression and unfavorable prognosis. There is multisystem involvement with continuous progression of symptoms and involvement of metabolically active organs or tissues – the bone marrow, liver, bones, skeletal muscles, myocardium, or CNS. The diagnosis is definitively confirmed by demonstration of reduced activity of the particular enzyme and by mutation analysis. Some of the storage diseases can be effectively treated by intravenous administration of recombinant enzymes or by limiting the amount of the substrate stored. In a small number of lysosomal storage diseases, bone marrow transplantation is successful. Multidisciplinary collaboration, including genetic counselling and prenatal diagnosis in patient families, is required. The first part of the paper deals with general characteristics of lysosomal storage diseases and the most common diseases that are currently treatable in the Czech Republic (Gaucher’s disease, Pompe disease, Fabry disease, Niemann–Pick disease, cholesterol ester storage disease). The second part of the paper deals with mucopolysaccharidase, another group of rare lysosomal storage diseases. (author)

  5. Defense Technical Information Center thesaurus

    Energy Technology Data Exchange (ETDEWEB)

    Dickert, J.H. [ed.] [comp.

    1996-10-01

    This DTIC Thesaurus provides a basic multidisciplinary subject term vocabulary used by DTIC to index and retrieve scientific and technical information from its various data bases and to aid DTIC`s users in their information storage and retrieval operations. It includes an alphabetical posting term display, a hierarchy display, and a Keywork Out of Context (KWOC) display.

  6. ACRR fuel storage racks criticality safety analysis

    International Nuclear Information System (INIS)

    Bodette, D.E.; Naegeli, R.E.

    1997-10-01

    This document presents the criticality safety analysis for a new fuel storage rack to support modification of the Annular Core Research Reactor for production of molybdenum-99 at Sandia National Laboratories, Technical Area V facilities. Criticality calculations with the MCNP code investigated various contingencies for the criticality control parameters. Important contingencies included mix of fuel element types stored, water density due to air bubbles or water level for the over-moderated racks, interaction with existing fuel storage racks and fuel storage holsters in the fuel storage pool, neutron absorption of planned rack design and materials, and criticality changes due to manufacturing tolerances or damage. Some limitations or restrictions on use of the new fuel storage rack for storage operations were developed through the criticality analysis and are required to meet the double contingency requirements of criticality safety. As shown in the analysis, this system will remain subcritical under all credible upset conditions. Administrative controls are necessary for loading, moving, and handling the storage rack as well as for control of operations around it. 21 refs., 16 figs., 4 tabs

  7. Electricity storage. The problematic of alternative energies

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre

    2013-01-01

    After having evoked the increasing share of renewable energies in electricity production in Europe and the associated investments, the author outlines the main problems associated with renewable energy: their intermittency, and the fact that they are submitted to quick and important variations which must be managed by the grid. He also evokes economic and financial problems (high taxes in Germany and in France, mandatory purchase mechanisms leading to absurd situations and having consequences on the electricity market). The author discusses the issue of energy storage: storage is expensive and its cost will increase that of the produced energy. However, storage can be interesting if its cost is covered by the income generated by the provided services. Some solutions already exist: pumped-storage power station (PSPS), remotely controlled electric-storage water heaters. The author presents and comments the services which storage can provide: smoothing, spare energy supply, and supply quality. He outlines the importance of a technical-economic analysis for the choice of the best storage solution, but also the need to change the business model

  8. Toward flexible polymer and paper-based energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Nyholm, Leif [Department of Materials Chemistry, The Aangstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Nystroem, Gustav; Mihranyan, Albert; Stroemme, Maria [Nanotechnology and Functional Materials, Department of Engineering Sciences, The Aangstroem Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden)

    2011-09-01

    All-polymer and paper-based energy storage devices have significant inherent advantages in comparison with many currently employed batteries and supercapacitors regarding environmental friendliness, flexibility, cost and versatility. The research within this field is currently undergoing an exciting development as new polymers, composites and paper-based devices are being developed. In this report, we review recent progress concerning the development of flexible energy storage devices based on electronically conducting polymers and cellulose containing composites with particular emphasis on paper-based batteries and supercapacitors. We discuss recent progress in the development of the most commonly used electronically conducting polymers used in flexible device prototypes, the advantages and disadvantages of this type of energy storage devices, as well as the two main approaches used in the manufacturing of paper-based charge storage devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Non-technical constraints to eradication: the Italian experience.

    Science.gov (United States)

    Moda, Giuliana

    2006-02-25

    Although technical constraints to eradication of bovine tuberculosis are well-recognised, non-technical constraints can also delay progress towards eradication, leading to inefficiency and increased programme costs. This paper seeks to analyse the main non-technical constraints that can interfere with the successful implementation of tuberculosis eradication plans, based on experiences from an area of high tuberculosis prevalence in Regione Piemonte, Italy. The main social and economic constraints faced in the past 20 years are reviewed, including a social reluctance to recognise the importance of seeking eradication as the goal of disease control, effective communication of technical issues, the training and the organization of veterinary services, the relationship between the regional authority and farmers and their representatives, and data management and epidemiological reporting. The paper analyses and discusses the solutions that were applied in Regione Piemonte and the benefits that were obtained. Tuberculosis eradication plans are one of the most difficult tasks of the Veterinary Animal Health Services, and non-technical constraints must be considered when progress towards eradication is less than expected. Organizational and managerial resources can help to overcome social or economic obstacles, provided the veterinary profession is willing to address technical, but also non-technical, constraints to eradication.

  10. Energy storage: a review of recent literature

    International Nuclear Information System (INIS)

    Tatone, O.S.

    1981-12-01

    Recent literature on the technological and economic status of reversible energy storage has been reviewed. A broad range of research and development activities have been pursued between 1975 and the present. Most of this work has concentrated on improving technical and economic performance of previously known storage technologies. Hydraulic pumped storage with both reservoirs above ground and compressed air storage (1 plant) are the only methods that have been adopted by electric utilities. The need for electrical energy storage in Canada has not been acute because of the large proportion of hydraulic generation which incorporates some storge and, in most cases, can readily be used for load-following. Residential heat storage in ceramic room heaters has been used in Europe for several years. For Canadian climatic and market conditions larger, central heating units would be required. Residential heat storage depends upon utilities offering time-of-use rates and none in Canada do so at present. Most seasonal storage concepts depend upon storage of low-grade heat for district heating. The cost of energy storage is highly dependent upon annual energy throughput and hence favours smaller capacity systems operating on frequent charge/discharge cycles over long-term storage. Capital costs of energy storage methods from the literature, expressed in constant dollars, are compared graphically and tentative investment costs are presented for several storage methods

  11. Design and management of energy-efficient hybrid electrical energy storage systems

    CERN Document Server

    Kim, Younghyun

    2014-01-01

    This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an act

  12. Aquifer thermal energy storage. International symposium: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  13. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball and W. Zeuner

    2011-01-01

    In this report we will review the main achievements of the Technical Stop and the progress of several centrally-managed projects to support CMS operation and maintenance and prepare the way for upgrades. Overview of the extended Technical Stop  The principal objectives of the extended Technical Stop affecting the detector itself were the installation of the TOTEM T1 telescopes on both ends, the readjustment of the alignment link-disk in YE-2, the replacement of the light-guide sleeves for all PMs of both HFs, and some repairs on TOTEM T2 and CASTOR. The most significant tasks were, however, concentrated on the supporting infrastructure. A detailed line-by-line leak search was performed in the C6F14 cooling system of the Tracker, followed by the installation of variable-frequency drives on the pump motors of the SS1 and SS2 tracker cooling plants to reduce pressure transients during start-up. In the electrical system, larger harmonic filters were installed in ...

  14. Effects of humic substances on the migration of radionuclides: complexation and transport of actinides. First technical progress report (work period 01.97 - 12.97)

    International Nuclear Information System (INIS)

    Buckau, G.

    1998-08-01

    The present report describes progress within the first year of the EC-project 'Effects of Humic Substances on the Migration of Radionuclides: Complexation and Transport of Actinides'. The project is conducted within the EC-Cluster 'Radionuclide Transport/Retardation Processes'. Contrary to formal requirements of the Commission, this report with a great deal of detail is established already after one year of project work. It is scheduled to be followed by a second technical progress report covering the second year of the project. In agreement with the contractual obligations a final report of similar technical detail will also be generated. The report contains an executive summary written by the coordinator (FZK/INE) with strong support from the other three task leaders (BGS, CEA-SGC and RMC-E). More detailed results are given by individual contributions of the project partners in 13 annexes. In the executive summary report the origin of results presented is given, also serving as guidance for finding more detailed results in the annexes. Not all results are discussed or referred to in the executive summary report and thus readers with a deeper interest also need to consult the annexes. (orig.)

  15. Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life

    International Nuclear Information System (INIS)

    Howard, Rob; Van den Akker, Bret

    2014-01-01

    Dry cask storage systems are deployed at nuclear power plants for used nuclear fuel (UNF) storage when spent fuel pools reach their storage capacity and/or the plants are decommissioned. An important waste and materials disposition consideration arising from the increasing use of these systems is the management of the dry cask storage systems' materials after the UNF proceeds to disposition. Thermal analyses of repository design concepts currently under consideration internationally indicate that waste package sizes for the geologic media under consideration may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded into the dry storage canisters currently in use. In the United States, there are already over 1650 of these dry storage canisters deployed and approximately 200 canisters per year are being loaded at the current fleet of commercial nuclear power plants. There is about 10 cubic meters of material from each dry storage canister system that will need to be dispositioned. The concrete horizontal storage modules or vertical storage overpacks will need to be reused, re-purposed, recycled, or disposed of in some manner. The empty metal storage canister/cask would also have to be cleaned, and decontaminated for possible reuse or recycling or disposed of, likely as low-level radioactive waste. These material disposition options can have impacts of the overall used fuel management system costs. This paper will identify and explore some of the technical and interface considerations associated with managing the dry cask storage system materials. (authors)

  16. The physics interests of a 10 TeV proton synchrotron, 400 x 400 GeV2 proton storage rings, and electron-proton storage rings

    International Nuclear Information System (INIS)

    Camilleri, L.

    1976-01-01

    This report consists of a collection of documents produced by two Study Groups, one on a multi-TeV Proton Synchrotron and the other on 400 x 400 GeV 2 Proton Storage Rings. In both studies the reactions of interest in the weak, electromagnetic and strong interactions are discussed. The technical feasibility of the relevant experiments is investigated by attempting. in each case, the design of an experimental set-up. Event rates are estimated using currently p revailing theoretical models and by extrapolation of results at present accelerators. In addition to the work of the two Study Groups, a section on the physics interests and technical problems of ep Storage Rings is included. (author)

  17. 1985 Federal Interim Storage Fee Study: a technical and economic analysis

    International Nuclear Information System (INIS)

    1985-09-01

    JAI examined alternative methods for structuring charges for FIS services and concluded that the combined interests of the Deaprtment and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, (4) impact aid payments made in accordance with section 136(e) of the Act, and (5) module costs (i.e., storage casks, drywells or silos). The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under-or over-estimation in the costs used to calculate the Initial Payment of the fee (including savings due to rod consolidation), and (2) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). The module costs were included in the Initial Payment to preclude the possible need to obtain appropriations for federal funds to support the purchase of the modules in advance of receipt of the Final Payment. Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at actual cost since these will be specific to each reactor site and destination

  18. Data systems and computer science space data systems: Onboard memory and storage

    Science.gov (United States)

    Shull, Tom

    1991-01-01

    The topics are presented in viewgraph form and include the following: technical objectives; technology challenges; state-of-the-art assessment; mass storage comparison; SODR drive and system concepts; program description; vertical Bloch line (VBL) device concept; relationship to external programs; and backup charts for memory and storage.

  19. 1987 Federal interim storage fee study: A technical and economic analysis

    International Nuclear Information System (INIS)

    1987-09-01

    This document is the latest in a series of reports that are published annually by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). This information in the report, which was prepared by E.R. Johnson Associates under subcontract to PNL, will be used by the DOE to establish a payment schedule for interim storage of spent nuclear fuel under the Federal Interim Storage (FIS) Program, which was mandated by the Nuclear Waste Policy Act of 1982. The information in this report will be used to establish the schedule of charges for FIS services for the year commencing January 1, 1988. 13 tabs

  20. 1987 Federal interim storage fee study: A technical and economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    This document is the latest in a series of reports that are published annually by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). This information in the report, which was prepared by E.R. Johnson Associates under subcontract to PNL, will be used by the DOE to establish a payment schedule for interim storage of spent nuclear fuel under the Federal Interim Storage (FIS) Program, which was mandated by the Nuclear Waste Policy Act of 1982. The information in this report will be used to establish the schedule of charges for FIS services for the year commencing January 1, 1988. 13 tabs.

  1. Superconducting magnetic energy storage (SMES). Results of a technology assessment

    International Nuclear Information System (INIS)

    Fleischer, T.; Juengst, K.P.; Brandl, V.; Maurer, W.; Nieke, E.

    1995-05-01

    The authors report on results of a Technology Assessment study commissioned by the German Federal Ministry of Education, Science, Research and Technology. The objective of this study was to evaluate the potential of superconducting magnetic energy storage (SMES) technology with respect to the economical, political and organization structures in the Federal Republic of Germany. The main focus of the study was on the technical and economic potential of large-scale SMES for diurnal load levelling applications. It was shown that there is no demand for the development of large SMES in Germany in the short and medium term. A second range of applications investigated is storage of electric energy for immediate delivery or consumption of electric power in case of need or for periodic power supply within the range of seconds. Due to its excellent dynamic properties SMES has substantial advantages over conventional storage technologies in this field. For those so-called dynamic applications SMES of small and medium energy capacity are needed. It was shown that SMES may be economically attractive for the provision of spinning reserve capacity in electrical networks, in particular cases for power quality applications (uninterruptable power supply, UPS) and for the compensation of cyclic loads, as well as in some market niches. The use of SMES for storage of recuperated energy in electrical railway traction systems has been proven to be uneconomical. Mobile SMES applications are unrealistic due to technical and size limitations. In SMES systems the energy is stored in a magnetic field. Biological objects as well as technical systems in the vicinity of a SMES plant are exposed to this field. The knowledge on impacts of magnetic fields on sensitive technical systems as well as on living organisms and especially on effects on human health is rather small and quite uncertain. (orig./MM) [de

  2. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design. Appendix A: energy storage coil and superconductor

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1979-09-01

    The technical aspects of a 1-GWh Superconducting Magnetic Energy Storage (SMES) coil for use as a diurnal load-leveling device in an electric utility system are presented. The superconductor for the coil is analyzed, and costs for the entire coil are developed

  3. 75 FR 42292 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6

    Science.gov (United States)

    2010-07-21

    ... Fuel Storage Casks: NAC-MPC System, Revision 6 AGENCY: Nuclear Regulatory Commission. ACTION: Direct...-MPC storage system as noted in Appendix B of the Technical Specifications (TS): Incorporation of a... include the following changes to the configuration of the NAC-MPC storage system as noted in Appendix B of...

  4. Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Sprik, Sam; Tamburello, David; Thornton, Matthew

    2018-05-03

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.

  5. Energy storage and grid for electricity, gas, fuel and heat. A system-wide approach

    Energy Technology Data Exchange (ETDEWEB)

    Benesch, Wolfgang A. [STEAG Energy Services GmbH, Essen (Germany); Kakaras, Emmanouil [Mitsubishi Hitachi Power Systems Europe GmbH, Duisburg (Germany)

    2016-07-01

    Renewable energies are asked for more and more worldwide. Even though they cannot generate electricity 8760 h/a year. This can be accomplished by flexible conventional power stations as well as storage systems. Especially the storage systems have to be developed technical wise and especially economic wise. An example of an integrated approach is the methanol production with a coal fired power plant. An overview showing the technical features as well as the strategic opportunities of such kind of approach is given.

  6. Simulation model for wind energy storage systems. Volume I. Technical report. [SIMWEST code

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Chan, Y.K.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume I gives a brief overview of the SIMWEST program and describes the two NASA defined simulation studies.

  7. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    Directory of Open Access Journals (Sweden)

    Jacek D. Wojcik

    2017-02-01

    Full Text Available The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage (TES integration into the power plant process cycle is considered as a possible solution for this issue. In this article, a technical feasibility study of TES integration into a 375-MW subcritical oil-fired conventional power plant is presented. Retrofitting is considered in order to avoid major changes in the power plant process cycle. The concept is tested based on the complete power plant model implemented in the ProTRAX software environment. Steam and water parameters are assessed for different TES integration scenarios as a function of the plant load level. The best candidate points for heat extraction in the TES charging and discharging processes are evaluated. The results demonstrate that the integration of TES with power plant cycle is feasible and provide a provisional guidance for the design of the TES system that will result in the minimal influence on the power plant cycle.

  8. A methodology for the analysis and selection of alternatives for the disposition of surplus plutonium. Quarterly technical progress report, April 1, 1995--June 30, 1995

    International Nuclear Information System (INIS)

    Mulder, R.

    1995-01-01

    The Office of Fissile Materials Disposition is currently involved in the development of a comprehensive approach to the long-term storage and disposition of fissile materials. A major objective of this effort is to provide a framework for US efforts to prevent the proliferation of nuclear weapons. This will entail both the elimination of excess highly enriched uranium and plutonium, and the insurance of the highest standards of safety, security, and international accountability. The Office of Fissile Materials Disposition is supporting an Interagency Working Group that has initiated a comprehensive review of alternatives for plutonium disposition which takes into account non-proliferation, economic, technical, institutional, schedule, environmental, and health and safety issues. These alternatives were identified by the development of screening criteria as a guide to the selection of alternatives that best achieve the fissile nuclear material long-term storage and disposition goals of the US Government

  9. Carbon nanomaterials for advanced energy conversion and storage.

    Science.gov (United States)

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Assessment of enriched uranium storage safety issues at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This document is an assessment of the technical safety issues pertaining to the storage of EU at the Oak Ridge Y-12 Plant. The purpose of the assessment is to serve as the basis for defining the technical standards for storage of EU at Y-12. A formal assessment of the Y-12 materials acceptance criteria for EU is currently being conducted by a task force cochaired by B. G. Eddy of DOE Oak Ridge Operations and S. 0. Cox of Y-12 Defense Programs. The mission of this technical assessment for storage is obviously dependent on results of the acceptance assessment. Clearly, the two efforts require coordination to avoid inconsistencies. In addition, both these Assessments must be consistent with the Environmental Assessment for EU storage at Y-12.1 Both the Storage Assessment and the Criteria for Acceptance must take cognizance of the fact that a portion of the EU to be submitted for storage in the future is expected to be derived from foreign sources and to include previously irradiated uranium containing significant levels of transuranics, radioactive daughter products, and unstable uranium isotopes that do not occur in the EU stream of the DOE weapons complex. National security considerations may dictate that these materials be accepted despite the fact that they fail to conform to the Acceptance Criteria. This document will attempt to address the complexities inherent in this situation.

  11. Assessment of enriched uranium storage safety issues at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1996-08-01

    This document is an assessment of the technical safety issues pertaining to the storage of EU at the Oak Ridge Y-12 Plant. The purpose of the assessment is to serve as the basis for defining the technical standards for storage of EU at Y-12. A formal assessment of the Y-12 materials acceptance criteria for EU is currently being conducted by a task force cochaired by B. G. Eddy of DOE Oak Ridge Operations and S. 0. Cox of Y-12 Defense Programs. The mission of this technical assessment for storage is obviously dependent on results of the acceptance assessment. Clearly, the two efforts require coordination to avoid inconsistencies. In addition, both these Assessments must be consistent with the Environmental Assessment for EU storage at Y-12.1 Both the Storage Assessment and the Criteria for Acceptance must take cognizance of the fact that a portion of the EU to be submitted for storage in the future is expected to be derived from foreign sources and to include previously irradiated uranium containing significant levels of transuranics, radioactive daughter products, and unstable uranium isotopes that do not occur in the EU stream of the DOE weapons complex. National security considerations may dictate that these materials be accepted despite the fact that they fail to conform to the Acceptance Criteria. This document will attempt to address the complexities inherent in this situation

  12. KBS Technical report 1-120 (1977-1978). Summaries

    International Nuclear Information System (INIS)

    1979-05-01

    The Swedish nuclear utilities started early in 1977 the KBS (nuclear fuel safety) project to study the high level waste problem and report on how and where a safe final storage could be arranged in Sweden. The docummentation produced by the project during 1977 and 1978 has been collected in a series of technical reports numbered from 1 to 120. The English summaries of the technical reports have been collected in this separate volume, No. 121. (G.B.)

  13. One-dimensional nanomaterials for energy storage

    Science.gov (United States)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  14. Independent Spent Fuel Storage Installations (ISFSI). Annual report, FY 1978

    International Nuclear Information System (INIS)

    Zima, G.E.

    1979-03-01

    The prime objective of the subject program is the identification of technical aspects of the design, operation and maintenance of independent spent fuel storage installations which could contribute to technical bases for Regulations and Regulatory Guides issued by NRC for these facilities. Activities on the various tasks of the program for the FY 1978 period are discussed in this report

  15. Progress Report Oct to Dec 1975(2)

    International Nuclear Information System (INIS)

    1976-01-01

    Progress report NO. 2 of Tehran Nuclear Research Centre outlines a brief description of the progress made in each section of the centre. A complete list of dissertations for Master's degrees studied at the Nuclear Research Centre and a list of new technical employee are given at the beginning of the report. Research activities in the third section include, isotope separation, laser research, radiation chemistry, reactor management, environmental research, neutron physics, reactor engineering, and nuclear medicine. The fourth section deals with education and training; technical support and health physics are discussed in sections five and six respectively

  16. Engineering program in order to increase the irradiated fuel storage capacity in pool facilities of Juragua

    International Nuclear Information System (INIS)

    Rodriguez R, J.

    1996-01-01

    In 1993, a technical program in the spent fuel storage area of Nuclear Plant Juragua was launched. Such a program tries to carry out an engineering assessment of the possibility of increasing the spent fuel storage capacity in pool storage facilities by using high density racks (re-racking) instead of the original (non-compact) ones. The purpose of the above-mentioned program is to evaluate possible solutions that can be applied to the construction works prior to plant operation. The first stage of the program for the 1994-95 period is an ongoing Engineering-Economic Feasibility Study (EEFS), which endeavors to examine the capabilities of the reloading pool in Unit-1 Reactor building and long-term storage pool in auxiliary building in high density storage conditions. Technical details of the EEFS and reached results and difficulties are described. (author). 5 refs., 2 figs

  17. National Waste Terminal Storage Program. Progress report, July 1977

    International Nuclear Information System (INIS)

    Asher, J.M.

    1977-01-01

    The report contains project reports on work performed by organizations under subcontract to OWI, by ERDA contractors, by OWI consultants, and by other federal agencies participating in the NWTS program. The reports are made under the headings of technical projects, facility projects, planning and analysis, and regulatory affairs

  18. Diagnostics of the Technical State of Bearings of Mining Machines Base Assemblies

    Science.gov (United States)

    Gerike, Boris L.; Mokrushev, Andrey A.

    2017-10-01

    The article reviews the methods of technical diagnostics of equipment used during maintenance of mining machines in accordance with their actual technical state, and considers the basics of vibration parameters measuring. The classification of existing methods for diagnosing the technical condition of rolling bearings is given. The advantages and disadvantages of these methods are considered. The main defects of rolling bearings arising during manufacturing, transportation, storage, and operation are considered.

  19. Progress report for '89

    International Nuclear Information System (INIS)

    Podest, M.

    1990-08-01

    The 1989 Progress Report presents the most important scientific and technical achievements of the Nuclear Research Institute's research work. Some specialized products prepared at or fabricated by the NRI are mentioned as well. (author). 24 figs., 8 tabs., 101 refs

  20. C-Mod Collaboration Informal Technical Progress Report

    International Nuclear Information System (INIS)

    Kenneth W. Gentle

    2007-01-01

    The aims of the collaboration have not changed. A specific list of tasks was agreed upon during the Fall of 2006 in preparation for the 2007 C-Mod campaign by Earl Marmar, Head of the Alcator Project, Kenneth Gentle, Principal Investigator, and William Rowan, Collaboration Coordinator with the facilitation of Adam Rosenberg (DOE grant monitor for the collaboration). The activities follow the list of tasks and are discussed in this progress report

  1. Commercial storage and marketing trials of irradiated Onions

    International Nuclear Information System (INIS)

    Nouchpramool, K.; Charoen, S.; Prachasitthisak, Y.

    1997-06-01

    Pilot scale storage tests were carried out in co-operation with commercial onions traders in the years 1986 and 1987 to evaluate the efficacy of irradiation for sprout inhibition of onions under actual commercial stored in commercial cold storage at 1-10 degrees C and 70-90% relative humidity. The results show that irradiation reduce sprouting in onions by 11 and 40 per cent and weight loss by 3 and 5 per cent after 5 and 6 months of storage, respectively. Storage losses are minimum when radiation is applied within two weeks of harvest. A maximum storage life of six months as against five months for controls is attained. Post cold storage life at ambient temperature for irradiated onions after withdrawal from cold storage is one week longer than that of non-irradiated controls. The radio inhibition process is technically feasible and economically justified as a profit can be made during the extended storage period. Marketing trials of irradiated onions conducted during and after termination of storage revealed no adverse comments from consumers and retailers/wholesalers. Wholesalers.retailers and consumers preferred irradiated onions because of their better physical quality and longer marketable life

  2. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    Energy Technology Data Exchange (ETDEWEB)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  3. Progress report 1979

    International Nuclear Information System (INIS)

    1980-12-01

    This progress report deals with technical and research work done at the AAEC Research Establishment in the twelve month period ending September 30, 1979. Work done in the following research divisions is reported: Applied Maths and Computing, Chemical Technology, Engineering Research, Environmental Science, Instrumentation and Control, Isotope, Materials and Physics

  4. 75 FR 42339 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6

    Science.gov (United States)

    2010-07-21

    ...-2010-0183] RIN 3150--AI88 List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6 AGENCY.... (NAC), NAC-MPC System listing within the ``List of Approved Spent Fuel Storage Casks'' to include... changes to the configuration of the NAC-MPC storage system as noted in Appendix B of the Technical...

  5. Technical and economic practicability of novel flywheel mass storage systems in electricity supply networks; Technisch-wirtschaftliche Realisierbarkeit von neuartigen Schwungmassenspeicher-Systemen (SMSS) in elektrischen Netzen

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H J; Baeumer, U; Kaiser, A; Gruener, A; Gutt, H J; Hampel, R; Heyder, B; Kleimaier, M; Radtke, U; Sachse, H; Schlechter, V; Schrepfer, W; Worlitz, F

    1998-12-31

    Efficient storage of electrical energy is an increasing need. New developments in high-power electronics, high-strength materials and magnetic bearings have made efficient reliable flywheel mass storage systems in the range of 1-5 MfW/50-150 kWh conceivable. According to a first assessment, these systems may provide energy to the supply grid in a range of seconds and thus ensure frequency maintenance and compensation of short interruptions. The authors present first results of a preliminary study preparatory to a feasibility study on the technical and economic practicability of flywheel mass storage systems. (orig.) [Deutsch] Das Thema effiziente Speicherung von elektrischer Energie gewinnt immer mehr an Bedeutung. Durch neuere Entwicklungen in der Leistungselektronik und bei der Herstellung hochfester Werkstoffe sowie durch Fortschritte bei der Entwicklung von beruehrungsfreien Lagern im Bereich der aktiven Magnetlager (AML) und insbesondere supraleitenden Magnetlager (SML) sind effiziente und sichere Schwungmassenspeicher-Systeme (SMSS) bis in die Bereiche 1-5 MW/50-150 kWh denkbar. Nach einer ersten Einschaetzung eignen sich solche Anlagen, um im Sekundenbereich Energie in das Netz abzugeben und somit zur Frequenzstuetzung und zur Kompensation von Kurzunterbrechungen beizutragen. Praesentiert werden erste Ergebnisse einer Untersuchung zur Vorbereitung einer Machbarkeitsstudie ueber die technisch-wirtschaftliche Realisierbarkeit von Schwungmassenspeicher-Systemen. (orig.)

  6. Storage and separation of gases

    International Nuclear Information System (INIS)

    Biloe, S.; Cagnon, B.; Goetz, V.; Guillot, A.; Mauran, S.; Mazet, N.; Menard, D.; Py, X.

    2005-01-01

    Various processes such as gas separation, gas storage (H 2 or CH 4 ) are known to be inhibited by intrinsic antagonistic material properties (texture, thermal conductivity, permeability). In the following document are gathered the last progress in adsorbent material elaboration and process engineering. (authors)

  7. Progress report [of] Technical Physics Division

    International Nuclear Information System (INIS)

    Vijendran, P.; Deshpande, R.Y.

    1975-01-01

    Activities of the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, over the last few years are reported. This division is engaged in developing various technologies supporting the development of nuclear technology. The various fields in which development is actively being carried out are : (i) vacuum technology, (ii) mass spectrometry, (iii) crystal technology, (iv) cryogenics, and (v) magnet technology. For surface studies, the field emission microscope and the Auger electron spectrometer and other types of spectrometers have been devised and perfected. Electromagnets of requisite strength to be used in MHD programme and NMR instruments are being fabricated. Various crystals such as NaI(Tl), Ge, Fluorides, etc. required as windows and prisms in X and gamma-ray spectroscopy, have been grown. In the cryogenics field, expansion engines required for air liquefaction plants, vacuum insulated dewars, helium gas thermometers etc. have been constructed. In addition to the above, the Division provides consultancy and training to personnel from various institutions and laboratories. Equipment and systems perfected are transferred to commercial organizations for regular production. (A.K.)

  8. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    International Nuclear Information System (INIS)

    D. Ray Johnson; Sidney Diamond

    2000-01-01

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given

  9. Final Scientific/Technical Report Carbon Capture and Storage Training Northwest - CCSTNW

    Energy Technology Data Exchange (ETDEWEB)

    Workman, James

    2013-09-30

    This report details the activities of the Carbon Capture and Storage Training Northwest (CCSTNW) program 2009 to 2013. The CCSTNW created, implemented, and provided Carbon Capture and Storage (CCS) training over the period of the program. With the assistance of an expert advisory board, CCSTNW created curriculum and conducted three short courses, more than three lectures, two symposiums, and a final conference. The program was conducted in five phases; 1) organization, gap analysis, and form advisory board; 2) develop list serves, website, and tech alerts; 3) training needs survey; 4) conduct lectures, courses, symposiums, and a conference; 5) evaluation surveys and course evaluations. This program was conducted jointly by Environmental Outreach and Stewardship Alliance (dba. Northwest Environmental Training Center – NWETC) and Pacific Northwest National Laboratories (PNNL).

  10. The development of an e-learning software, ''Technical ethics''

    International Nuclear Information System (INIS)

    Matsue, Kazuki; Madarame, Haruki; Okamoto, Koji

    2004-01-01

    For the engineers and researchers, it is coming to the time when they are asked not only technical progress but also their ethics view. In this study, I aim to develop of the education software ''Technical Ethics'', which cultivates ethics view of the engineers. (author)

  11. Ten questions to Jean Dhers on the storage of electric energy

    International Nuclear Information System (INIS)

    2006-01-01

    The authors proposes a comprehensive set of technical and economical data and information on electricity storage: the reasons to store energy (autonomous, stationary and network applications), the different types and advantages of energy storages with reversible power, the means to massively store electricity to exploit in on the network (description, uses and comparison of pumping energy transfer station, energy storage under the form of compressed air), the inertial storage (storage of kinetic energy accumulated in a flywheel, and its applications), the importance of storage with electrochemical batteries (reversible storage, evolution of batteries in ground transports, main economic sectors for batteries), fuel cells, the role of energy storage by power capacitors, the perspectives of super capacitors in a near future (comparison of their performance with those of batteries, possible applications), the use of electromagnetic storage of electricity (description, advantages, drawbacks and applications of superconducting magnet energy storage or SMES), and how the research on electric power storage is organised

  12. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    Heafield, W.

    1984-01-01

    This paper deals with certain aspects of the management of one of the most important radioactive wastes arising from the nuclear fuel cycle, i.e. the handling and storage of conditioned high-level wastes. The paper is based on an IAEA report of the same title published during 1983 in the Technical Reports Series. The paper provides illustrative background material on the characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The principles important in the storage of high-level wastes are reviewed in conjunction with the radiological and socio-political considerations involved. Four fundamentally different storage concepts are described with reference to published information and the safety aspects of particular storage concepts are discussed. Finally, overall conclusions are presented which confirm the availability of technology for constructing and operating conditioned high-level waste storage facilities for periods of at least several decades. (author)

  13. Core Activities Program. TMI-2 Core Receipt and Storage Project Plan

    International Nuclear Information System (INIS)

    Ayers, A.L. Jr.

    1984-12-01

    The TMI-2 Core Receipt and Storage Project is funded by the US Department of Energy and managed by the Technical Support Branch of EG and G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). As part of the Core Activities Program, this project will include: (a) preparations for receipt and storage of the Three Mile Island Unit 2 core debris at INEL; and (b) receipt and storage operations. This document outlines procedures; project management; safety, environment, and quality; safeguards and security; deliverables; and cost and schedule for the receipt and storage activities at INEL

  14. Storage, a stake for renewable energies integration

    International Nuclear Information System (INIS)

    Grabette, Olivier

    2013-01-01

    Development of renewable energy sources is challenging the power system operation. Balancing consumption and generation at different times, from real time up to 10 years, with an increasing part of intermittent and fatal sources should indicate a clear route to storage development Up to now on opposite situation occurs. New storage project in Europe has been stopped because of missing business model, and there is no long term economical signal showing it could change in the near future. The capability to predict with a good accuracy, and share through the European transmission system the renewable production places storage in direct competition with other sources of flexibility. However, use case of storage is not limited to energy balancing. Ancillary services, connexion cost optimization, quality of supply are among other possible services offered by storage installation. For all of those, understanding technical requirements and economical issues is an initial condition to open a favourable game area for storage. Exploring new multi-service models through demonstrators, redesigning the electricity market in Europe are key initiatives to approach a new era for storage development. It doesn't prevent innovation to improve performance and reduce cost, an essential condition to give a chance for storage solution compared to other flexibility sources. (author)

  15. MRS role in reducing technical uncertainties in geological disposal

    International Nuclear Information System (INIS)

    Ramspott, L.D.

    1990-06-01

    A high-level nuclear waste repository has inherent technical uncertainty due to its first-of-a-kind nature and the unprecedented time over which it must function. Three possible technical modifications to the currently planned US high-level nuclear waste system are reviewed in this paper. These modifications would be facilitated by inclusion of a monitored retrievable storage (MRS) in the system. The modifications are (1) an underground MRS at Yucca Mountain, (2) a phased repository, and (3) a ''cold'' repository. These modifications are intended to enhance scientific confidence that a repository system would function satisfactorily despite technical uncertainty. 12 refs

  16. Dry spent fuel storage licensing

    International Nuclear Information System (INIS)

    Sturz, F.C.

    1995-01-01

    In the US, at-reactor-site dry spent fuel storage in independent spent fuel storage installations (ISFSI) has become the principal option for utilities needing storage capacity outside of the reactor spent fuel pools. Delays in the geologic repository operational date at or beyond 2010, and the increasing uncertainty of the US Department of Energy's (DOE) being able to site and license a Monitored Retrievable Storage (MRS) facility by 1998 make at-reactor-site dry storage of spent nuclear fuel increasingly desirable to utilities and DOE to meet the need for additional spent fuel storage capacity until disposal, in a repository, is available. The past year has been another busy year for dry spent fuel storage licensing. The licensing staff has been reviewing 7 applications and 12 amendment requests, as well as participating in inspection-related activities. The authors have licensed, on a site-specific basis, a variety of dry technologies (cask, module, and vault). By using certified designs, site-specific licensing is no longer required. Another new cask has been certified. They have received one new application for cask certification and two amendments to a certified cask design. As they stand on the brink of receiving multiple applications from DOE for the MPC, they are preparing to meet the needs of this national program. With the range of technical and licensing options available to utilities, the authors believe that utilities can meet their need for additional spent fuel storage capacity for essentially all reactor sites through the next decade

  17. Technical feasibility of krypton-85 storage in sodalite

    International Nuclear Information System (INIS)

    Benedict, R.W.; Christensen, A.B.; Del Debbio, J.A.; Keller, J.H.; Knecht, D.A.

    1979-01-01

    Based on these experimental results, the process that is technically feasible for a reference 2000 metric ton of heavy metal (MTHM) per year reprocessing plant producing approx. 17 MCi or approx. 190 m 3 at STP would encapsulate krypton at approx. 20 cm 3 /g from krypton at temperatures greater than 575 0 C and pressures greater than 1600 atm with one batch a day in a 58-L high pressure vessel. Based on preliminary measurements at 500 0 C, the same process also would be feasible for a 70% krypton and 30% xenon mixture. 7 figures

  18. Radiation sources and technical services

    International Nuclear Information System (INIS)

    Stonek, K.; Satorie, Z.; Vyskocil, I.

    1981-01-01

    Work is briefly described of the department for sealed sources production of the Institute, including leak testing and surface contamination of sealed sources. The department also provides technical services including the inspections of sealed sources used in medicine and geology and repair of damaged sources. It carries out research of the mechanical and thermal strength of sealed sources and of the possibility of reprocessing used 226 Ra sources. The despatch department is responsible for supplying the entire country with home and imported radionuclides. The department of technical services is responsible for testing imported radionuclides, assembling materials testing, industrial and medical irradiation devices, and for the collection and storage of low-level wastes on a national scale. (M.D.)

  19. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  20. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    John Ross

    2003-04-30

    The Final Technical Report summarizes research accomplishments and Publications in the period of 5/1/99 to 4/30/03 done on the grant. Extensive progress was made in the period covered by this report in the areas of chemical kinetics of non-linear systems; spatial structures, reaction - diffusion systems, and thermodynamic and stochastic theory of electrochemical and general systems.

  1. Inventory of future power and heat production technologies. Partial report Energy storage; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Energilagring

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Lars; Lindahl, Sture [Gothia Power AB, Goeteborg (Sweden)

    2008-12-15

    critical periods and can therefore be an alternative to new power lines. Hydrogen energy storage: The handling (storage and transfer) of hydrogen is considered to be difficult and dangerous. Air-compression energy storage: This method is combined with gas turbine plants. During periods with surplus of energy in the power system this surplus energy is used to compress air and store it. This compressed air is used in the operation of gas turbine power plant where the compressed air is used instead of the normal use where the gas turbine makes the compression. The possibility should be considered in the future if new gas turbine power plants are to be built in Sweden. This is not the situation today. Different application areas where the energy storage can be used are discussed, such as: Electrical supply quality improvement; Improvement of power system transient stability; Damping of electromechanical oscillations in the power system; Spinning disturbance power reserves; Power system frequency control; Fast disturbance power reserves (activated within 15 minutes); Optimization of energy production dispatch; Increase of power grid transmission capacity. In the scientific world the technical development is very active within areas regarding batteries, capacitors with very large storage capacity, flywheels, etc. As the progress is very fast and this report gives only a brief survey of the research within the area, there is a need to continuously follow the technical development. The judgement is done that there is demand for evaluation of the value of energy storage for different applications and to identify suitable methods to be used in the different applications. Regarding conditions and demands in Sweden and the other Nordic countries research and development activities should be done as: Identify application areas where there are requirements of improvements in the power system. From the identified demands it should be analysed if electrical energy storage can be used to

  2. Inventory of future power and heat production technologies. Partial report Energy storage; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Energilagring

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Lars; Lindahl, Sture (Gothia Power AB, Goeteborg (Sweden))

    2008-12-15

    during critical periods and can therefore be an alternative to new power lines. Hydrogen energy storage: The handling (storage and transfer) of hydrogen is considered to be difficult and dangerous. Air-compression energy storage: This method is combined with gas turbine plants. During periods with surplus of energy in the power system this surplus energy is used to compress air and store it. This compressed air is used in the operation of gas turbine power plant where the compressed air is used instead of the normal use where the gas turbine makes the compression. The possibility should be considered in the future if new gas turbine power plants are to be built in Sweden. This is not the situation today. Different application areas where the energy storage can be used are discussed, such as: Electrical supply quality improvement; Improvement of power system transient stability; Damping of electromechanical oscillations in the power system; Spinning disturbance power reserves; Power system frequency control; Fast disturbance power reserves (activated within 15 minutes); Optimization of energy production dispatch; Increase of power grid transmission capacity. In the scientific world the technical development is very active within areas regarding batteries, capacitors with very large storage capacity, flywheels, etc. As the progress is very fast and this report gives only a brief survey of the research within the area, there is a need to continuously follow the technical development. The judgement is done that there is demand for evaluation of the value of energy storage for different applications and to identify suitable methods to be used in the different applications. Regarding conditions and demands in Sweden and the other Nordic countries research and development activities should be done as: Identify application areas where there are requirements of improvements in the power system. From the identified demands it should be analysed if electrical energy storage can be

  3. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. An extra issue: background of the geological disposal

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, an extra issue of the progress report, was prepared for the expected readers of the report to have background information on the geological disposal. Thus it gives information about (1) generation of high-level radioactive wastes, (2) history of plans proposed for HLW disposal in Japan, and (3) procedure until the geological disposal plan is finally adopted and basic future schedules. It further discusses on such problems in HLW treatment and disposal, as for example a problem of reliable safety for a very long period. (Ohno, S.)

  4. GT-MHR COMMERCIALZATION STUDY. TECHNICAL PROGRESS AND COST MANAGEMENT REPORT FOR THE PERIOD JUNE 1 THROUGH JUNE 30, 2003

    International Nuclear Information System (INIS)

    SHENOY, A.S.

    2003-01-01

    A271 GT-MHR COMMERCIALZATION STUDY TECHNICAL PROGRESS AND COST MANAGEMENT REPORT FOR THE PERIOD JUNE 1 THROUGH JUNE 30, 2003. Petten was provided with irradiation dimensional change data for both fuel compacts and H-451 graphite for design of the graphite sleeves that hold the fuel compacts to be irradiated in HFR-EU2. The Fuel Sample Product Specification for the Fuel Performance Irradiation Test Capsule MHR-2 was completed and approved. A Work Breakdown Structure was prepared for the development and qualification of advanced coated-particle fuels capable of meeting anticipated fuel performance requirements and work was initiated on preparation of schedules and a cost estimates for the test matrices

  5. Electrical and Electronics Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Electrical and Electronics Technical Team’s (EETT's) mission is to enable cost-effective, smaller, lighter, and efficient power electronics and electric motors for electric traction drive systems (ETDSs) while maintaining performance of internal combustion engine (ICE)-based vehicles. The EETT also identifies technology gaps, establishes R&D targets, develops a roadmap to achieve technical targets and goals, and evaluates the R&D progress toward meeting the established R&D targets and goals.

  6. Mass storage technology in networks

    Science.gov (United States)

    Ishii, Katsunori; Takeda, Toru; Itao, Kiyoshi; Kaneko, Reizo

    1990-08-01

    Trends and features of mass storage subsystems in network are surveyed and their key technologies spotlighted. Storage subsystems are becoming increasingly important in new network systems in which communications and data processing are systematically combined. These systems require a new class of high-performance mass-information storage in order to effectively utilize their processing power. The requirements of high transfer rates, high transactional rates and large storage capacities, coupled with high functionality, fault tolerance and flexibility in configuration, are major challenges in storage subsystems. Recent progress in optical disk technology has resulted in improved performance of on-line external memories to optical disk drives, which are competing with mid-range magnetic disks. Optical disks are more effective than magnetic disks in using low-traffic random-access file storing multimedia data that requires large capacity, such as in archive use and in information distribution use by ROM disks. Finally, it demonstrates image coded document file servers for local area network use that employ 130mm rewritable magneto-optical disk subsystems.

  7. Study on uncertainty evaluation system for the safety evaluation of interim spent fuel storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyeon; Shin, Myeong Won; Rhy, Seok Jin; Cho, Dong Keon; Park, Dong Hwan [Kyunghee Univ., Seoul (Korea, Republic of); Cheong, Beom Jin [Minstry of Science and Technology, Gwacheon (Korea, Republic of)

    1998-03-15

    The main objective os to develop a technical standards for the facility operation of the interm, spent fuel storage facility and to develop a draft for the technical criteria to be legislated. The another objective os to define a uncertainty evaluation system for burn up credit application in criticality analysis and to investigate an applicability of this topic for future regulatory activity. Investigate a status of art for the operational criteria of spent fuel interm wet storage. Collect relevant laws, decree, notices and standards related to the operation of storage facility and study on the legislation system. Develop a draft of technical standards and criteria to be legislated. Define an evaluation system for the uncertainty analysis and study on the status of art in the field of criticality safety analysis. Develop an uncertainty evaluation system in criticality analysis with burnup credit and investigate an applicability as well as its benefits of this policy.

  8. ATR Technical Specification Upgrade Program

    International Nuclear Information System (INIS)

    McCracken, R.T.; Durney, J.L.; Freund, G.A.

    1990-01-01

    The Advanced Test Reactor (ATR) is a 250 MW, uranium-aluminum fueled test reactor which began full power operation in 1969. The initial operation was controlled by an Operating Limits document based on the original Safety Analysis Report. Additional safety bases were later developed to support Technical Specifications which were approved and implemented in 1977. The Technical Specifications which were initially developed with content and format specified in ANSI/ANS--15.1, ''The Development of Technical Specifications for Research Reactors.'' The safety basis documentation and the Technical Specifications have been updated as required to maintain them current with the ATR facility configuration. All revisions have been made with a content, format and style consistent with the original. A major, two-phase program to upgrade the content, format and style is in progress. This paper describes the first phase of this program

  9. 1985. Annual progress report

    International Nuclear Information System (INIS)

    1986-01-01

    This annual progress report of the CEA Protection and Nuclear Safety Institut outlines a description of the progress made in each sections of the Institut Research activities of the different departments include: reactor safety analysis, fuel cycle facilities analysis; and associated safety research programs (criticality, sites, transport ...), radioecology and environmental radioprotection techniques; data acquisition on radioactive waste storage sites; radiation effects on man, studies on radioprotection techniques; nuclear material security including security of facilities, security of nuclear material transport, and monitoring of nuclear material management; nuclear facility decommissioning; and finally the public information [fr

  10. Technical progress report, 1 April-30 June 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    This report describes the technical accomplishments during the quarter ending June 1981, on the commercial nuclear waste management programs under the direction of the Office of Nuclear Waste Isolation (ONWI). The ONWI program is organized into 8 tasks entitled: systems, waste package, site, repository, regulatory and institutional, test facilities and excavations, land acquisition, and program management. Principal investigators in each of these areas have submitted summaries of quarterly highlights for inclusion in this report. Separate abstracts have been prepared for 5 of these tasks for inclusion in the Energy Data Base. (DMC)

  11. Safety research activities for Japanese regulations of spent fuel interim storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Japan Nuclear Energy Safety Organization (JNES) carries out (a) preparation of technical documents, (b) technical evaluations of standards (prepared by academic societies), etc. and (c) other R and D activities, to support Nuclear Regulation Authority (NRA: which controls the regulations for Spent Fuel Interim Storage Facilities). In 2012 fiscal year, JNES carried out dynamic test of spent fuel to examine the integrity of spent fuel under cask drop accidents, and preparation for PWR spent fuel storage test to prove long term integrity of spent fuel and cask itself. Some of these tests will be also carried out in 2013 fiscal year and after. (author)

  12. Optical information storage

    International Nuclear Information System (INIS)

    Woike, T.

    1996-01-01

    In order to increase storage capacity and data transfer velocity by about three orders of magnitude compared to CD or magnetic disc it is necessary to work with optical techniques, especially with holography. About 100 TByte can be stored in a waver of an area of 50 cm 2 via holograms which corresponds to a density of 2.10 9 Byte/mm 2 . Every hologram contains data of 1 MByte, so that parallel-processing is possible for read-out. Using high-speed CCD-arrays a read-out velocity of 1 MByte/μsec can be reached. Further, holographic technics are very important in solid state physics. We will discuss the existence of a space charge field in Sr 1-x Ba x Nb 2 O 6 doped with cerium and the physical properties of metastable states, which are suited for information storage. (author) 19 figs., 9 refs

  13. Technical progress of nuclear energy: economic and environmental prospects

    International Nuclear Information System (INIS)

    Naudet, G.

    1994-01-01

    This document deals with three different aspects of the nuclear energy: first the operating and economic performances of nuclear power plants in the world, the French nuclear competitiveness. Then, the technical and economic perspectives about reactors and fuels cycle and the advantages towards atmospheric pollution are discussed to favour a new worldwide nuclear development. (TEC). 8 refs., 4 figs., 6 tabs

  14. Theoretical maximal storage of hydrogen in zeolitic frameworks.

    Science.gov (United States)

    Vitillo, Jenny G; Ricchiardi, Gabriele; Spoto, Giuseppe; Zecchina, Adriano

    2005-12-07

    Physisorption and encapsulation of molecular hydrogen in tailored microporous materials are two of the options for hydrogen storage. Among these materials, zeolites have been widely investigated. In these materials, the attained storage capacities vary widely with structure and composition, leading to the expectation that materials with improved binding sites, together with lighter frameworks, may represent efficient storage materials. In this work, we address the problem of the determination of the maximum amount of molecular hydrogen which could, in principle, be stored in a given zeolitic framework, as limited by the size, structure and flexibility of its pore system. To this end, the progressive filling with H2 of 12 purely siliceous models of common zeolite frameworks has been simulated by means of classical molecular mechanics. By monitoring the variation of cell parameters upon progressive filling of the pores, conclusions are drawn regarding the maximum storage capacity of each framework and, more generally, on framework flexibility. The flexible non-pentasils RHO, FAU, KFI, LTA and CHA display the highest maximal capacities, ranging between 2.86-2.65 mass%, well below the targets set for automotive applications but still in an interesting range. The predicted maximal storage capacities correlate well with experimental results obtained at low temperature. The technique is easily extendable to any other microporous structure, and it can provide a method for the screening of hypothetical new materials for hydrogen storage applications.

  15. Spent fuel storage for ISER plant

    International Nuclear Information System (INIS)

    Nakajima, Takasuke; Kimura, Yuzi

    1987-01-01

    ISER is an intrinsically safe reactor basing its safety only on physical laws, and uses a steel reactor vessel in order to be economical. For such a new type reactor, it is essentially important to be accepted by the society by showing that the reactor is more profitable than conventional reactors to the public in both technical and economic viewpoint. It is also important that the reactor raises no serious problem in the total fuel cycle. Reprocessing seems one of the major worldwide fuel cycle issues. Spent fuel storage is also one of the key technologies for fuel cycle back end. Various systems for ISER spent fuel storages are examined in the present report. Spent fuel specifications of ISER are similar to those of LWR and therefore, most of LWR spent fuel technologies are basically applicable to ISER spent fuel. Design requirements and examples of storage facilities are also discussed. Dry storage seems to be preferable for the relatively long cooling time spent fuel like ISER's one from economical viewpoint. Vault storage will possibly be the most advantageous for large storage capacity. Another point for discussion is the location and international collaboration for spent fuel storages: ISER expected to be a worldwide energy source and therefore, international spent fuel management seems to be fairly attractive way for an energy recipient country. (Nogami, K.)

  16. Scaling up DNA data storage and random access retrieval

    OpenAIRE

    Gopalan, Parikshit; Ceze, Luis; Nguyen, Bichlien; Takahashi, Christopher; Newman, Sharon; Parker, Hsing-Yeh; Rashtchian, Cyrus; Seelig, Georg; Stewart, Kendall; Gupta, Gagan; Carlson, Robert; Mulligan, John; Carmean, Douglas; Yekhanin, Sergey; Makarychev, Konstantin

    2017-01-01

    Current storage technologies can no longer keep pace with exponentially growing amounts of data. Synthetic DNA offers an attractive alternative due to its potential information density of ~ 1018B/mm3, 107 times denser than magnetic tape, and potential durability of thousands of years. Recent advances in DNA data storage have highlighted technical challenges, in particular, coding and random access, but have stored only modest amounts of data in synthetic DNA. This paper demonstrates an end-to...

  17. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability

    Energy Technology Data Exchange (ETDEWEB)

    Lessard, R.D.; Blecher, W.A.; Merrick, D.

    1981-09-01

    The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

  18. Magnox Swarf Storage Silo Liquor Effluent Management -Sellafield Site, Cumbria, UK - Legacy radioactive waste storage - 59271

    International Nuclear Information System (INIS)

    Le Clere, Stephen

    2012-01-01

    The Sellafield Magnox Swarf Storage Silo (MSSS) was constructed to provide an underwater storage facility for irradiated magnox cladding metal Swarf, as well as miscellaneous beta-gamma waste from several sources. Liquid effluent arisings from hazard reduction activities at this facility represent the toughest effluent treatment challenge within the company's Legacy Ponds and Silos portfolio. The key requirement for hazard reduction has generated many substantial challenges as the facility is readied for decommissioning. This has demanded the production of carefully thought out strategies for managing, and overcoming, the key difficulties to be encountered as hazard reduction progresses. The complexity associated with preparing for waste retrievals from the Magnox Swarf Storage Silo, has also generated the demand for a mix of creativity and perseverance to meet the challenges and make progress. Challenging the status quo and willingness to accept change is not easy and the road to overall hazard reduction for the high hazard MSSS facility will demand the skills and investment of individuals, teams, and entire facility work-forces. The first steps on this road have been taken with the successful introduction of liquor management operations, however much more is yet to be achieved. Clear communication, investing in stakeholder management, perseverance in the face of difficulty and a structured yet flexible programme delivery approach, will ensure the continued success of tackling the complex challenges of treating liquid effluent from a legacy fuel storage silo at the Sellafield Site. (authors)

  19. Self vs expert assessment of technical and non-technical skills in high fidelity simulation.

    Science.gov (United States)

    Arora, Sonal; Miskovic, Danilo; Hull, Louise; Moorthy, Krishna; Aggarwal, Rajesh; Johannsson, Helgi; Gautama, Sanjay; Kneebone, Roger; Sevdalis, Nick

    2011-10-01

    Accurate assessment is imperative for learning, feedback and progression. The aim of this study was to examine whether surgeons can accurately self-assess their technical and nontechnical skills compared with expert faculty members' assessments. Twenty-five surgeons performed a laparoscopic cholecystectomy (LC) in a simulated operating room. Technical and nontechnical performance was assessed by participants and faculty members using the validated Objective Structured Assessment of Technical Skills (OSATS) and the Non-Technical Skills for Surgeons scale (NOTSS). Assessment of technical performance correlated between self and faculty members' ratings for experienced (median score, 30.0 vs 31.0; ρ = .831; P = .001) and inexperienced (median score, 22.0 vs 28.0; ρ = .761; P = .003) surgeons. Assessment of nontechnical skills between self and faculty members did not correlate for experienced surgeons (median score, 8.0 vs 10.5; ρ = -.375; P = .229) or their more inexperienced counterparts (median score, 9.0 vs 7.0; ρ = -.018; P = .953). Surgeons can accurately self-assess their technical skills in virtual reality LC. Conversely, formal assessment with faculty members' input is required for nontechnical skills, for which surgeons lack insight into their behaviours. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Cloud Storage and Bioinformatics in a private cloud deployment: Lessons for Data Intensive research

    OpenAIRE

    Chang, Victor; Walters, Robert John; Wills, Gary

    2013-01-01

    This paper describes service portability for a private cloud deployment, including a detailed case study about Cloud Storage and bioinformatics services developed as part of the Cloud Computing Adoption Framework (CCAF). Our Cloud Storage design and deployment is based on Storage Area Network (SAN) technologies, details of which include functionalities, technical implementation, architecture and user support. Experiments for data services (backup automation, data recovery and data migration) ...

  1. Information Loss from Technological Progress

    International Nuclear Information System (INIS)

    Townsend, P D

    2014-01-01

    Progress in electronics and optics offers faster computers, and rapid communication via the internet that is matched by ever larger and evolving storage systems. Instinctively one assumes that this must be totally beneficial. However advances in software and storage media are progressing in ways which are frequently incompatible with earlier systems and the economics and commercial pressures rarely guarantee total compatibility with earlier systems. Instead, the industries actively choose to force the users to purchase new systems and software. Thus we are moving forward with new technological variants that may have access to only the most recent systems and we will have lost earlier alternatives. The reality is that increased processing speed and storage capacity are matched by an equally rapid decline in the access and survival lifetime of older information. This pattern is not limited to modern electronic systems but is evident throughout history from writing on stone and clay tablets to papyrus and paper. It is equally evident in image systems from painting, through film, to magnetic tapes and digital cameras. In sound recording we have variously progressed from wax discs to vinyl, magnetic tape and CD formats. In each case the need for better definition and greater capacity has forced the earlier systems into oblivion. Indeed proposed interactive music systems could similarly relegate music CDs to specialist collections. The article will track some of the examples and discuss the consequences as well as noting that this information loss is further compounded by developments in language and changes in cultural views of different societies

  2. Information Loss from Technological Progress

    Science.gov (United States)

    Townsend, P. D.

    2014-12-01

    Progress in electronics and optics offers faster computers, and rapid communication via the internet that is matched by ever larger and evolving storage systems. Instinctively one assumes that this must be totally beneficial. However advances in software and storage media are progressing in ways which are frequently incompatible with earlier systems and the economics and commercial pressures rarely guarantee total compatibility with earlier systems. Instead, the industries actively choose to force the users to purchase new systems and software. Thus we are moving forward with new technological variants that may have access to only the most recent systems and we will have lost earlier alternatives. The reality is that increased processing speed and storage capacity are matched by an equally rapid decline in the access and survival lifetime of older information. This pattern is not limited to modern electronic systems but is evident throughout history from writing on stone and clay tablets to papyrus and paper. It is equally evident in image systems from painting, through film, to magnetic tapes and digital cameras. In sound recording we have variously progressed from wax discs to vinyl, magnetic tape and CD formats. In each case the need for better definition and greater capacity has forced the earlier systems into oblivion. Indeed proposed interactive music systems could similarly relegate music CDs to specialist collections. The article will track some of the examples and discuss the consequences as well as noting that this information loss is further compounded by developments in language and changes in cultural views of different societies.

  3. Directed technical change and the adoption of CO2 abatement technology. The case of CO2 capture and storage

    International Nuclear Information System (INIS)

    Otto, Vincent M.; Reilly, John

    2008-01-01

    This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO 2 -trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO 2 abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO 2 emissions associated with energy use, directed technical change and the economy. We specify CO 2 capture and storage (CCS) as a discrete CO 2 abatement technology. We find that combining CO 2 -trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R and D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target. (author)

  4. Safety aspects of long-term dry interim storage of type-B spent fuel and HLW transport casks

    International Nuclear Information System (INIS)

    Wolff, D.; Probst, U.; Voelzke, H.; Droste, B.; Roedel, R.

    2004-01-01

    Based on the German decision to minimise transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities several on-site storage facilities have been licensed till the end of 2003. Because of the large amount of type-B transport casks which are going to be used for long-term interim storage the question of time limited type-B license maintenance during the storage period of up to 40 years has been discussed under different aspects. This paper describes present technical aspects of the discussion. A main aspect of transport cask qualification for interim storage is the long-term behaviour of the metallic seal lid system. Concerning this results from current experimental long-term tests with metallic ''Helicoflex''-seals in which pool water is enclosed are presented. The test series has been performed by the Federal Institute for Materials Research and Testing (BAM) on behalf of the Federal Office for Radiation Protection (BfS) since 2001. Finally, the paper presents a German concept for an authorities' and technical experts' exchange of experience, know-how and state of the art referring to cask dispatch in nuclear facilities. BAM has taken over a central role in this so-called ''co-ordinating institution for cask dispatching information'' (''KOBAF'') which contains an online data base and a technical working group meeting twice a year. The goal is to keep comparable technical standards for all nuclear sites and storage facilities which are going to load and dispatch casks of the same or similar types under the responsibility of different German state governments for the next decades

  5. Nuclear theory research. Technical progress report

    International Nuclear Information System (INIS)

    1982-01-01

    Progress is briefly described on the following studies: (1) Dirac phenomenology for deuteron elastic scattering, (2) Dirac wave functions in nuclear distorted wave calculations, (3) impulse approximation for p→p → dπ + reaction above the 3-3 resonance, (4) coherent π production, (5) nuclear potentials from Dirac bound state wavefunctions, (6) nonlocality effects in nuclear reactions, (7) unhappiness factors in DWBA description of (t,p) and (p,t) reactions, (8) absolute normalization of three-nucleon transfer reactions, (9) formulation of a finite-range CCBA computer program, (10) crossing symmetric solutions of the low equations, (11) pion scattering from quark bags, (12) study of the p 11 channel in the delta model, (13) isovector corrections in pion-nucleus scattering, (14) pionic excitation of nuclear giant resonances, and (15) isospin dependence of the second-order pion-nucleus optical potential

  6. ''Project Crystal'' for ultimate storage of highly radioactive waste

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    NAGRA (The National Association for storage of radioactive waste) in Baden has launched in North Switzerland an extensive geological research program. The current research program, under the title of ''Project Crystal'', aims at providing the scientific knowledge which is required for the assessment of the suitability of the crystalline sub-soil of North Switzerland for the ultimate storage of highly radioactive waste. Safety and feasibility of such ultimate storage are in the forefront of preoccupations. Scientific institutes of France, Germany, USA and Canada are cooperating more particularly on boring research and laboratory analyses. Technical data are given on the USA and German installations used. (P.F.K.)

  7. Current state of WWER SNF storage in Russia and the perspectives

    International Nuclear Information System (INIS)

    Anisimov, O.; Kozlov, Y.; Razmashkin, N.; Safutin, V.; Tikhonov, N.

    2006-01-01

    In the Russian Federation WWER-440 Spent Nuclear Fuel (SNF) is reprocessed at RT-1 plant near Cheliabinsk. WWER-1000 SNF is supposed to be reprocessed at RT-2 plant, which will be built about 2020. The information on the capacity and fill up level of the at-reactor pools at NPP with WWER reactors considering its modification up to May 2005 is given. The regulatory requirements to all SNF 'wet' storage facilities; the principle design and engineering solutions as well as the complex of measures for radiation safety and the environmental protection of spent fuel storage are presented. WWER-440 SNF management, WWER-1000 SNF management and dry storage of WWER-1000 SNF are discussed. In the conclusion it is noted than neither Russia, nor any other country have the experience of construction of vault-type 'dry' storage facilities of such a capacity to store WWER-1000 SNF (9000 tU). The experience and design solutions approved earlier in creation of other dangerous facilities were used. The calculations were based on conservative assumptions allowing with a large assurance to guarantee the nuclear and radiation safety and the environmental protection. At present, a program is developed for scientific-technical support of the dry storage facility design and operation, aimed at the studies whose results will allow to optimize the taken technical decisions, simplify SNF management technology and, possibly, to reduce the cost of the storage facility itself

  8. A distributed storage system with dCache

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Fuhrmann, Patrick; Grønager, Michael

    2008-01-01

    The LCG collaboration is encompassed by a number of Tier 1 centers. The Nordic LCG Tier 1, operated by NDGF, is in contrast to many other Tier 1 centers distributed over the Nordic countries. A distributed setup was chosen for both political and technical reasons, but also provides a number...... of unique challenges. dCache is well known and respected as a powerful distributed storage resource manager, and was chosen for implementing the storage aspects of the Nordic Tier 1. In contrast to classic dCache deployments, we deploy dCache over a WAN with limited bandwidth, high latency, frequent network...

  9. Technical Progress Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Ben Poulter; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

    2006-06-30

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. Work is being carried out in Brazil, Belize, Chile, Peru and the USA.

  10. Electricity Storage. Technology Brief

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Kempener, R. [International Renewable Energy Agency IRENA, Bonn (Germany)

    2012-04-15

    Electricity storage is a key technology for electricity systems with a high share of renewables as it allows electricity to be generated when renewable sources (i.e. wind, sunlight) are available and to be consumed on demand. It is expected that the increasing price of fossil fuels and peak-load electricity and the growing share of renewables will result in electricity storage to grow rapidly and become more cost effective. However, electricity storage is technically challenging because electricity can only be stored after conversion into other forms of energy, and this involves expensive equipment and energy losses. At present, the only commercial storage option is pumped hydro power where surplus electricity (e.g. electricity produced overnight by base-load coal or nuclear power) is used to pump water from a lower to an upper reservoir. The stored energy is then used to produce hydropower during daily high-demand periods. Pumped hydro plants are large-scale storage systems with a typical efficiency between 70% and 80%, which means that a quarter of the energy is lost in the process. Other storage technologies with different characteristics (i.e. storage process and capacity, conversion back to electricity and response to power demand, energy losses and costs) are currently in demonstration or pre-commercial stages and discussed in this brief report: Compressed air energy storage (CAES) systems, Flywheels; Electrical batteries; Supercapacitors; Superconducting magnetic storage; and Thermal energy storage. No single electricity storage technology scores high in all dimensions. The technology of choice often depends on the size of the system, the specific service, the electricity sources and the marginal cost of peak electricity. Pumped hydro currently accounts for 95% of the global storage capacity and still offers a considerable expansion potential but does not suit residential or small-size applications. CAES expansion is limited due to the lack of suitable

  11. Properties of thermoplastic polymers used for hydrogen storage under pressure

    International Nuclear Information System (INIS)

    Jousse, F.; Mazabraud, P.; Icard, B.; Mosdale, R.; Serre-Combe, P.

    2000-01-01

    The storage of hydrogen is one of the points of development of industrial applications of fuel cells of type PEMFC ( Proton Exchange Membrane Fuel Cell). Developing an effective system of storage remains major. Ameliorations concerning the storage density of energy, the cost and facilities and the storage must be considered especially for the mobile applications. Among different approaches possible, the absorption on carbon nanotubes, the production by hydrides in the organic solutions or storage hyperbar in the gas state seem the most promising way. The storage of hydrogen gas at ambient temperature today appears as the simplest technical solution, the most advanced and the most economic solution. However, the energy density of hydrogen being weaker than that of the traditional fuels, of the quantities more important must be stored at equivalent rate. Hyperbar storage (higher pressure has 350 bar) of hydrogen makes it possible to reduce the volume of the tanks and strengthens the argument for their weights and cost

  12. Technical products for radiation shielding. Shield assembled from lead blocks for radiation protection. General technical requirements

    International Nuclear Information System (INIS)

    1981-01-01

    The object of this standard description is the general technological requirements of 50 and 100 mm thick radiation protection shields assembled from lead blocks. The standard contains the definitions, types, parameters and dimensions of shields, their technical and acceptance criteria with testing methods, tagging, packaging, transportation and storage requirements, producer's liability. Some illustrated assembling examples, preferred parameters and dosimetry methods for shield inspection are given. (R.P.)

  13. Energy storage for load leveling; Fuka heijunka ni kakasenai denryoku chozo

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, S. [Tokyo Electric Power Co. Inc., Tokyo (Japan)

    1996-09-20

    This paper introduces features and state of development of electric power storage technologies. Pumped storage power generation is a technology to store electric power by utilizing energy of position. However, because the plant locations are limited to mountainous areas far away from power demand areas, development of power storage technologies is being progressed from a new viewpoint of installing plants in the vicinity of demand areas. Superconduction power storage continues flowing current into a superconductor coil to store the power as electromagnetic energy, which is drawn out as electric power on request. Research and development is in progress in Japan on superconductor coils, permanent current switches, and control and protection systems. A flywheel system stores energy by rotating a disk at high speeds. Element technologies are being developed on long-period storage technologies such as superconductor magnetic bearings and high-speed rotating flywheels. For new load leveling batteries, development efforts are being given on sodium-sulfur batteries, zinc-bromine batteries, redox flow batteries, and lithium batteries. 3 refs., 1 fig., 2 tabs.

  14. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  15. Development of a hydrogen and deuterium polarized gas target for application in storage rings

    International Nuclear Information System (INIS)

    Haeberli, W.

    1991-01-01

    The present report contains the progress report for the second year of the 3-year budget period, and proposes work for the third year. Progress has been made on the two major components of the project, the tests of storage cells for polarized atoms under various operating conditions, and the construction of a new atomic beam source which conforms to the high vacuum requirements of storage rings

  16. Technical Division quarterly progress report, April 1--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Slansky, C.M.; Dickey, B.R.; Musgrave, B.C.; Rohde, K.L.

    1977-07-01

    Fuel Cycle Research and Development: Results are presented on the fluidized-bed calcination of high-level radioactive waste from reprocessing on the post treatment of the calcine, and on the removal of actinide elements from the waste prior to calcination. Other projects include the development of storage technology for /sup 85/Kr waste; a study of the hydrogen mordenite catalyzed reaction between NO/sub x/ and NH/sub 3/; the adsorption and storage of /sup 129/I on silver exchanged mordenite; physical properties, materials of construction, and unit operations studies on the evaporation of high-level waste; the behavior of volatile radionuclides during the combustion of HTGR graphite-based fuel; and the use of the uranium-ruthenium system in age-dating uranium ore bodies. Special Materials Production: The long-term management of defense waste from the ICPP covers postcalcination treatment of ICPP calcined waste; the removal of actinide elements from first-cycle raffinate; the retrieval and handling of calcined waste from ICPP storage vaults; and the preparation of the ''Defense Waste Document''. Process improvements are reported on the Fluorinel headend process for Zircaloy-clad fuels and on uranium accountability measurements. Other development results cover the process for recovering spent Rover fuel, buried pipeline transfer systems, support to the Waste Management Program, and effluent monitoring methods evaluation and development. Other Projects Supporting Energy Development: In this category are studies on nuclear materials security; application of a liquid-solid fluidized-bed heat exchanger to the recovery of geothermal heat; in-plant reactor source term measurements; burnup methods for fast breeder reactor fuels; absolute thermal fission yield measurements; analytical support to light water breeder reactor development; research on analytical methods; and the behavior of environmental species of iodine.

  17. Study of the storage of hydrogen in carbon nanostructures

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Cossement, D.; Tessier, A.; Belanger, M.; Bose, T.K.; Dodelet, J-P.; Dellero, T.

    2000-01-01

    The storage of hydrogen is one of the points of development in industrial applications of fuel cells (CAP) of type PEMFC (Proton Exchange Membrane Fuel Cell). An effective system of storage would be a major step in the large scale utilization of this energy source. Process improvements concerning the storage density of energy, the cost, and facilities and the reliability of the storage must be sought in particular for the mobile applications. Among the different approaches possible, the absorption on carbon nanotubes, the production by hydrides in the organic solutions or storage hyperbar in the gas state seems the most promising way.The storage of hydrogen gas at ambient temperature today appears as the technical solution simplest, more advanced and more economic. However the energy density of hydrogen being weaker than that of the traditional fuels, of the quantities more important must be stored at equivalent rate. Hyperbar storage (higher pressure has 350 bar) of hydrogen makes it possible to reduce the volume of the tanks and strengthens the argument for their weights and cost

  18. Dry spent fuel storage in the 1990's

    International Nuclear Information System (INIS)

    Roberts, J.P.

    1991-01-01

    In the US, for the decade of the 1990's, at-reactor-site dry spent fuel storage has become the predominant option outside of reactor spent fuel pools. This development has resulted from failure, in the 1980's, of a viable reprocessing option for commercial power reactors, and delay in geologic repository development to an operational date at or beyond the year 2010. Concurrently, throughout the 1980's, aggressive technical and regulatory efforts by the Federal Government, coordinated with nuclear industry, have led to successful evolution of dry spent fuel storage as a utility option

  19. An expanded system simulation model for solar energy storage (technical report), volume 1

    Science.gov (United States)

    Warren, A. W.

    1979-01-01

    The simulation model for wind energy storage (SIMWEST) program now includes wind and/or photovoltaic systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic) and is available for the UNIVAC 1100 series and the CDC 6000 series computers. The level of detail is consistent with a role of evaluating the economic feasibility as well as the general performance of wind and/or photovoltaic energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. The first program is a precompiler which generates computer models (in FORTRAN) of complex wind and/or photovoltaic source/storage/application systems, from user specifications using the respective library components. The second program provides the techno-economic system analysis with the respective I/0, the integration of system dynamics, and the iteration for conveyance of variables.

  20. Rupture of plutonium oxide storage container, March 13, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-29

    On March 13, 1979, a plutonium oxide storage can ruptured in the 303-C storage facility, which is in the 300 Area of the Hanford Site, Washington. The facility is operated by the Pacific Northwest Laboratory (PNL); three PNL staff members were performing the storage operation. No injuries to these staff members resulted from the occurrence. A Class C Investigation Committee was appointed on March 14, 1979, by the Director, PNL. Subsequently, when the loss estimates became available, the Manager, Department of Energy-Richland Operations Office (DOE-RL), appointed a Class B Investigation Committee in accordance with DOE Manual Chapter 0502. As requested by DOE-RL, the Committee investigated technical elements of the causal sequence and management systems that should have or could have prevented the occurrence. The investigation included: review of the use of the 303-C facilities and the transfer containers; interviews with the involved personnel and their managers; analysis of technical studies related to involved materials and procedures; review of safe operating procedures, radiation work procedures, and transfer requirements applicable to the occurrence; and use of the Management Oversight and Risk Tree (MORT) and the Events and Causal Factors Charting methods. 15 figs.

  1. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  2. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  3. Optical information storage

    Energy Technology Data Exchange (ETDEWEB)

    Woike, T [Koeln Univ., Inst. fuer Kristallography, Koeln (Germany)

    1996-11-01

    In order to increase storage capacity and data transfer velocity by about three orders of magnitude compared to CD or magnetic disc it is necessary to work with optical techniques, especially with holography. About 100 TByte can be stored in a waver of an area of 50 cm{sup 2} via holograms which corresponds to a density of 2.10{sup 9} Byte/mm{sup 2}. Every hologram contains data of 1 MByte, so that parallel-processing is possible for read-out. Using high-speed CCD-arrays a read-out velocity of 1 MByte/{mu}sec can be reached. Further, holographic technics are very important in solid state physics. We will discuss the existence of a space charge field in Sr{sub 1-x}Ba{sub x}Nb{sub 2}O{sub 6} doped with cerium and the physical properties of metastable states, which are suited for information storage. (author) 19 figs., 9 refs.

  4. Thermo-aeraulics of high level waste storage facilities

    International Nuclear Information System (INIS)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume; Duret, Bernard

    2006-01-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete structures; - GALATEE

  5. Thermo-aeraulics of high level waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume [CEA/Valrho, B.P. 17171, F-30207 Bagnols-sur-Ceze (France); Duret, Bernard [CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-07-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete

  6. The next generation mass storage devices - Physical principles and current status

    Science.gov (United States)

    Wang, L.; Gai, S.

    2014-04-01

    The amount of digital data today has been increasing at a phenomenal rate due to the widespread digitalisation service in almost every industry. The need to store such ever-increasing data aggressively triggers the requirement to augment the storage capacity of the conventional storage technologies. Unfortunately, the physical limitations that conventional forms face have severely handicapped their potential to meet the storage need from both consumer and industry point of view. The focus has therefore been switched into the development of the innovative data storage technologies such as scanning probe memory, nanocrystal memory, carbon nanotube memory, DNA memory, and organic memory. In this paper, we review the physical principles of these emerging storage technologies and their superiorities as the next generation data storage device, as well as their respective technical challenges on further enhancing the storage capacity. We also compare these novel technologies with the mainstream data storage means according to the technology roadmap on areal density.

  7. Technical strategy for the management of INEEL spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report presents evaluations, findings, and recommendations of the Idaho National Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Task Team. The technical strategy developed by the Task Team includes stabilization, near term storage, packaging, transport, and ultimate disposal. Key issues identified and discussed include waste characterization, criticality, packaging, waste form performance, and special fuels. Current plans focus on onsite needs, and include three central elements: (1) resolution of near-term vulnerabilities, (2) consolidation of storage locations, and (3) achieving dry storage in transportable packages. In addition to the Task Team report, appendices contain information on the INEEL spent fuel inventory; regulatory decisions and agreements; and analyses of criticality, packaging, storage, transportation, and system performance of a geological repository. 16 refs., 6 figs., 4 tabs.

  8. Technical strategy for the management of INEEL spent nuclear fuel

    International Nuclear Information System (INIS)

    1997-03-01

    This report presents evaluations, findings, and recommendations of the Idaho National Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Task Team. The technical strategy developed by the Task Team includes stabilization, near term storage, packaging, transport, and ultimate disposal. Key issues identified and discussed include waste characterization, criticality, packaging, waste form performance, and special fuels. Current plans focus on onsite needs, and include three central elements: (1) resolution of near-term vulnerabilities, (2) consolidation of storage locations, and (3) achieving dry storage in transportable packages. In addition to the Task Team report, appendices contain information on the INEEL spent fuel inventory; regulatory decisions and agreements; and analyses of criticality, packaging, storage, transportation, and system performance of a geological repository. 16 refs., 6 figs., 4 tabs

  9. Research by ESS Division for the Nevada Nuclear Waste Storage Investigations: Progress report, January-June 1985

    International Nuclear Information System (INIS)

    Vaniman, D.

    1987-10-01

    Petrographic research for the Nevada Nuclear Waste Storage Investigations focused on xenolithic variability in the Topopah Spring Member and on variations of clinoptilolite composition at Yucca Mountain. Zeolite and smectite occurrences were considered in terms of their relation to a disturbed zone beneath the potential repository, and mineral stability experiments have produced a new clinoptilolite structure as a result of prolonged heating at low temperature. Limitations were defined on the abundance of erionite and of sulfur. X-ray diffraction studies lead to improved analytical methods. Progress was made in the comparative study of mineralogy in sand ramps and in faults. Geological modeling considered the differences of the diffusion of nonsorbing tracers in vertically and in horizontally fractured rock. Modeling also treated the diffusion of a nonsorbing tracer in devitrified and in zeolitized rock. The results of these experiments in all cases show relatively symmetrical two-dimensional diffusion patterns. Preliminary calculations compare the dispersion/diffusion of nonsorbing Tc with the dispersion/diffusion/sorption of U. 27 refs., 20 figs., 5 tabs

  10. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  11. Safety aspects of long-term dry interim storage of Type B spent fuel and high-level transport casks

    International Nuclear Information System (INIS)

    Wolff, D.; Probst, U.; Voelzke, H.; Droste, B.; Roedel, R.

    2004-01-01

    Based on the German decision to minimise transport of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities several on-site storage facilities were licensed until the end of 2003. Because of the large amount of Type B(U) transport casks which are going to be used for long-term interim storage the question of time-limited Type B(U) licence maintenance during the storage period of up to 40 years has been discussed under different aspects. This paper describes present technical aspects of the discussion. A main aspect of qualification of transport casks for interim storage is the long-term behaviour of the metallic seal-lid system. Here we present results from current long-term experimental tests with metallic 'Helicoflex' seals in which pool water is enclosed. This series of tests has been performed by the Federal Institute for Materials Research and Testing (BAM) on behalf of the Federal Office for Radiation Protection (BfS) since 2001. Finally, the paper presents a German concept for an exchange of experience, know-how and state-of-the-art between authorities and technical experts with regard to cask dispatch in nuclear facilities. BAM has taken over a central role in this so-called 'coordinating institution for cask dispatching information' ('KOBAF') which entails management of an online database of cask-specific documents and a technical working group meeting twice a year. The goal is to keep comparable technical standards for all nuclear sites and storage facilities which are going to load and dispatch casks of the same or similar types under the responsibility of different German state governments for the coming decades. (author)

  12. A strategic storage programme for developing countries - to be or not to be?

    Energy Technology Data Exchange (ETDEWEB)

    Morse, B.W. [Petroleum Management Consultant, Moss (Norway)

    1995-05-01

    In the industrialised world agreements between countries or legislation will dictate that there shall be strategic fuel storage of {open_quotes}X{close_quotes} amount of days. What about the developing countries, the third world? For the most part they have no storage regulations. Should they consider a strategic fuel storage programme? If so, how can they go about it? What are the obstacles? Many have neither the technical expertise nor the monies. This paper will explore how developing countries can have a strategic oil storage programme - How they can plan, justify, finance, execute and operate such a storage without having a major impact on their countries.

  13. Waste Management Program. Technical progress report, Aporil-June 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-02-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  14. Transportation Technical Environmental Information Center index

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.A.; Foley, J.T.

    1982-06-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a Data Center of technical environmental information has been established by Sandia National Laboratories, Division 5523, for the DOE Office of Transportation Fuel Storage. This document is an index which can be used to request data of interest. Access to the information held is not limited to Sandia personnel.

  15. Transportation Technical Environmental Information Center index

    International Nuclear Information System (INIS)

    Davidson, C.A.; Foley, J.T.

    1982-06-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a Data Center of technical environmental information has been established by Sandia National Laboratories, Division 5523, for the DOE Office of Transportation Fuel Storage. This document is an index which can be used to request data of interest. Access to the information held is not limited to Sandia personnel

  16. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 3. Safety assessment for geological disposal systems

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 3 of the progress report, concerns safety assessment for geological disposal systems definitely introduced in part 1 and 2 of this series and consists of 9 chapters. Chapter I concerns the methodology for safety assessment while Chapter II deals with diversity and uncertainty about the scenario, the adequate model and the required data of the systems above. Chapter III summarizes the components of the geological disposal system. Chapter IV refers to the relationship between radioactive wastes and human life through groundwater, i.e. nuclide migration. In Chapter V is made a reference case which characterizes the geological environmental data using artificial barrier specifications. (Ohno. S.)

  17. Potential storage and/or disposal strategies

    International Nuclear Information System (INIS)

    Lioure, A.

    2002-01-01

    The long-term management of substances produced by nuclear power plants has become a major challenge for society. One of the options is to dispose of ultimate waste, or even whole spent fuel, in geological structures with reversibility potential. Another option, which may precede this, is storage, which is already the interim solution adopted by the industry. CEA has started to demonstrate that standardized storage is feasible over centuries for all types of objects (spent fuel, packages of vitrified waste, forthcoming packages resulting from advanced separation) in heavy-duty, passive near-surface or subsurface facilities. The finer details of some technical arrangements as well as the cost of these stores remain to be worked out. (author)

  18. Electron-beam-fusion progress report, January--June 1976

    International Nuclear Information System (INIS)

    1976-10-01

    Research progress is reported for the following areas: (1) Proto I, (2) Proto II, (3) EBFA, (4) power flow, (5) contract progress reports, (6) progress in the Sandia program, (7) repetitively operated pulse generator development, (8) electron beam power from inductive storage, (9) fusion target design, (10) beam physics research, (11) power flow, (12) heavy ion fusion, (13) particle beam source development, (14) beam target interaction and target response studies, (15) diagnostic development, and (16) hybrid systems

  19. Status of spent fuel dry storage concepts: concerns, issues and developments

    International Nuclear Information System (INIS)

    1985-11-01

    This report is intended to provide the reader with a general understanding of the various dry storage concepts and facilities required to support them. The outstanding technical concerns relative to dry storage installations, as well as, past and planned demonstration programs are briefly described. Such other activities as the development and approval of a design criteria standard is presented. An updated review of the cost of the various concepts are discussed

  20. Large-scale CO2 storage — Is it feasible?

    Directory of Open Access Journals (Sweden)

    Johansen H.

    2013-06-01

    Full Text Available CCS is generally estimated to have to account for about 20% of the reduction of CO2 emissions to the atmosphere. This paper focuses on the technical aspects of CO2 storage, even if the CCS challenge is equally dependent upon finding viable international solutions to a wide range of economic, political and cultural issues. It has already been demonstrated that it is technically possible to store adequate amounts of CO2 in the subsurface (Sleipner, InSalah, Snøhvit. The large-scale storage challenge (several Gigatons of CO2 per year is more an issue of minimizing cost without compromising safety, and of making international regulations.The storage challenge may be split into 4 main parts: 1 finding reservoirs with adequate storage capacity, 2 make sure that the sealing capacity above the reservoir is sufficient, 3 build the infrastructure for transport, drilling and injection, and 4 set up and perform the necessary monitoring activities. More than 150 years of worldwide experience from the production of oil and gas is an important source of competence for CO2 storage. The storage challenge is however different in three important aspects: 1 the storage activity results in pressure increase in the subsurface, 2 there is no production of fluids that give important feedback on reservoir performance, and 3 the monitoring requirement will have to extend for a much longer time into the future than what is needed during oil and gas production. An important property of CO2 is that its behaviour in the subsurface is significantly different from that of oil and gas. CO2 in contact with water is reactive and corrosive, and may impose great damage on both man-made and natural materials, if proper precautions are not executed. On the other hand, the long-term effect of most of these reactions is that a large amount of CO2 will become immobilized and permanently stored as solid carbonate minerals. The reduced opportunity for direct monitoring of fluid samples

  1. Large-scale CO2 storage — Is it feasible?

    Science.gov (United States)

    Johansen, H.

    2013-06-01

    CCS is generally estimated to have to account for about 20% of the reduction of CO2 emissions to the atmosphere. This paper focuses on the technical aspects of CO2 storage, even if the CCS challenge is equally dependent upon finding viable international solutions to a wide range of economic, political and cultural issues. It has already been demonstrated that it is technically possible to store adequate amounts of CO2 in the subsurface (Sleipner, InSalah, Snøhvit). The large-scale storage challenge (several Gigatons of CO2 per year) is more an issue of minimizing cost without compromising safety, and of making international regulations.The storage challenge may be split into 4 main parts: 1) finding reservoirs with adequate storage capacity, 2) make sure that the sealing capacity above the reservoir is sufficient, 3) build the infrastructure for transport, drilling and injection, and 4) set up and perform the necessary monitoring activities. More than 150 years of worldwide experience from the production of oil and gas is an important source of competence for CO2 storage. The storage challenge is however different in three important aspects: 1) the storage activity results in pressure increase in the subsurface, 2) there is no production of fluids that give important feedback on reservoir performance, and 3) the monitoring requirement will have to extend for a much longer time into the future than what is needed during oil and gas production. An important property of CO2 is that its behaviour in the subsurface is significantly different from that of oil and gas. CO2 in contact with water is reactive and corrosive, and may impose great damage on both man-made and natural materials, if proper precautions are not executed. On the other hand, the long-term effect of most of these reactions is that a large amount of CO2 will become immobilized and permanently stored as solid carbonate minerals. The reduced opportunity for direct monitoring of fluid samples close to the

  2. Simulation and analysis of the plutonium oxide/metal storage containers subject to various loading conditions

    International Nuclear Information System (INIS)

    Gong, C.; Miller, R.F.

    1995-05-01

    The structural and functional requirements of the Plutonium Oxide/Metal Storage Containers are specified in the Report ''Complex 21 Plutonium Storage Facility Material Containment Team Technical Data Report'' [Complex 21, 1993]. There are no existing storage containers designed for long term storage of plutonium and current codes, standards or regulations do not adequately cover this case. As there is no extensive experience with the long term (50+ years) storage of plutonium, the design of high integrity storage containers must address many technical considerations. This analysis discusses a few potential natural phenomena that could theoretically adversely affect the container integrity over time. The plutonium oxide/metal storage container consists of a primary containment vessel (the outer container), a bagless transfer can (the inner container), two vertical plates on top of the primary containment vessel, a circular plate (the flange) supported by the two plates, tube for gas sampling operations mounted at the center of the primary containment vessel top and a spring system being inserted in the cavity between the primary containment vessel and the cap of the bagless transfer can. The dimensions of the plutonium oxide/metal storage container assembly can be found in Figure 2-1. The primary container, the bagless transfer can, and all the attached components are made of Type 304L stainless steel

  3. Onsite LLW storage at Cook

    International Nuclear Information System (INIS)

    MacRae, W.T.

    1994-01-01

    The Donald C. Cook nuclear plant has gained much experience through the onsite storage of low-level radioactive waste. Owned and operated by the Indiana Michigan Power Company, which is owned by American Electric Power, the plant is located in Bridgman, Michigan, on the southeast side of Lake Michigan, about 50 miles from Chicago. In November 1990, waste generators in the state of Michigan were denied access to licensed low-level waste disposal sites because of a lack of progress by the state in developing its own disposal site. Because of this lack, wastes from the Cook plant have been stored onsite for three years. This article covers four issues related to the Cook nuclear plant's experience in the low-level waste storage: storage capacity and waste generation rates, waste form and packages, regulatory issues, and the monitoring of the waste

  4. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  5. Modernization and refurbishment of the Central Interim Storage

    International Nuclear Information System (INIS)

    Mele, I.; Zeleznik, N.

    2002-01-01

    The Central Interim Storage for radioactive waste in Brinje, being put into operation in 1986, needs refurbishment and modernization in order to meet the up-to-date operational and safety requirements and to ensure the normal and undisturbed acceptance of radioactive waste from small producers in the future. Because of the waste, being already stored in the storage, the lack of reprocessing capacities and the lack of auxiliary room, the refurbishment and modernization is a complex problem, which needs to be addressed with care. The plan of refurbishment and modernization requires an integral approach, covering all different aspects of renewal and reconstruction. The implementation plan, however, must be based on the actual state of the storage and real conditions for the implementations: from technical to financial. In this paper the project for refurbishment and modernization of the storage, and some activities that have already been implemented, are presented.(author)

  6. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    International Nuclear Information System (INIS)

    Burgard, K.C.

    1998-01-01

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis

  7. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Burgard, K.C.

    1998-04-09

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  8. Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements

    International Nuclear Information System (INIS)

    KLEM, M.J.

    2000-01-01

    In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8.0 References lists the

  9. FY2009 Annual Progress Report for Energy Storage Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-19

    The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs).

  10. The industrial centre of gathering, warehousing and storage

    International Nuclear Information System (INIS)

    2014-06-01

    This publication proposes an overview of the Cires (industrial centre for the gathering, warehousing and storage), a storage centre classified for the protection of the environment and operated by the ANDRA for the storage of very-low-level wastes. The activities and missions of this centre are briefly indicated, as well as some key figures (storage and warehousing surfaces), a definition of radioactive wastes and an indication of their origins (electronuclear, research, defence, industry, or medicine), an indication of the different categories of wastes with respect to their activity level and lifetime. It briefly describes the technical solution adopted for the storage of these very-low-level wastes, and comments their origins, indicates their average radioactivity level, and their quantity in France. The choice for storage is briefly explained. The pathway followed by a waste is briefly described: production, parcel preparation, parcel delivery at the Cires, controls performed at their arrival, processing and re-packaging of some parcels before storage. The gathering and warehousing functions of the centre for non electronuclear wastes are presented: functions of the specific buildings, concerned wastes. The path followed by these non electronuclear wastes is described with respect with the different types of wastes: sorting, gathering, processing, warehousing, storage. Actions related to the control of the environment and to the control of the storage area after closure are indicated

  11. Defining a Progress Metric for CERT RMM Improvement

    Science.gov (United States)

    2017-09-14

    REV-03.18.2016.0 Defining a Progress Metric for CERT-RMM Improvement Gregory Crabb Nader Mehravari David Tobar September 2017 TECHNICAL ...fendable resource allocation decisions. Technical metrics measure aspects of controls implemented through technology (systems, soft- ware, hardware...implementation metric would be the percentage of users who have received anti-phishing training . • Effectiveness/efficiency metrics measure whether

  12. Introducing errors in progress ratios determined from experience curves

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.

    2008-01-01

    Progress ratios (PRs) derived from historical data in experience curves are used for forecasting development of many technologies as a means to model endogenous technical change in for instance climate–economy models. These forecasts are highly sensitive to uncertainties in the progress ratio. As a

  13. Behaviour of power and research reactor fuel in wet and dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Freire-Canosa, J [Nuclear Waste Management Organization (Canada)

    2012-07-01

    Canada has developed extensive experience in both wet and dry storage of CANDU fuel. Fuel has been stored in water pools at CANDU reactor sites for approximately 45 years, and in dry storage facilities for a large part of the past decade. Currently, Canada has 38 450 t U of spent fuel in storage, of which 8850 t U are in dry storage. In June 2007, the Government of Canada selected the Adaptive Phased Management (APM) approach, recommended by the Nuclear Waste Management Organization (NWMO), for the long-term management of Canada's nuclear-fuel waste. The Canadian utilities and AECL are conducting development work in extended storage systems as well as research on fuel behaviour under storage conditions. Both activities have as ultimate objective to establish a technical basis for assuring the safety of long-term fuel storage.

  14. Progress Report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This document is the 1994 annual progress report of the CEA-Direction of Waste Management (DGD). It comprises four chapters. The first chapter is a general presentation of radioactive wastes, of the management of liquid effluents, solid wastes, sealed sources, of the relations with the ANDRA (The French Agency for the Management of Radioactive Wastes), and of the research and development studies in progress for the improvement of waste management. The second chapter concerns the spent fuels and their reprocessing, in particular AGR and PWR type reactor fuels, the ''Caramel'' fuel from Osiris reactor and the cover elements from the Rapsodie reactor core. The long time storage of ancient fuels is also discussed. The third chapter concerns the dismantling of decommissioned installations, the actions in progress and the planning of dismantling actions up to the year 2000. Chapter four is devoted to the management of wastes from the Direction of Military Applications (DAM), the actions in progress in the different DAM centers and the cleansing projects at Marcoule plant. (J.S.). 5 figs., 28 tabs., 21 photos., 3 appendix

  15. Electropolishing as a decontamination process: progress and applications

    International Nuclear Information System (INIS)

    Allen, R.P.; Arrowsmith, H.W.; Charlot, L.A.; Hooper, J.L.

    1978-04-01

    Research studies demonstrated the ability of electropolishing to reduce the radiation levels of steel tools and stainless steel vacuum system components, which were heavily contaminated with plutonium oxide, from 1 million dis/min x 100 cm 2 to background in less than 10 min. Other examples of objects that have been decontaminated within minutes using electropolishing include hot cell manipulator assemblies, analytical instrument components, laboratory transfer containers, offsite shipping containers, fission product storage capsules, laboratory animal cages, and nuclear reactor process tube components. One of the major activities of this research has been the establishment and intensive operation of a 400-gal immersion electropolishing system. Progress has also been made in developing in situ electropolishing techniques that can be used to decontaminate metallic surfaces that cannot readily be transported to or immersed in a conventional electropolishing tank. Sectioning/pretreatment studies are under way to develop and demonstrate optimum disassembly, sectioning, surface preparation, and gross contamination removal procedures. Arc saw, plasma arc torch, and explosive cutting techniques are being evaluated in terms of the thickness and characteristics of the disturbed metal layer. Some of the pretreatment methods under consideration for removal of paint, grease, corrosion layers, and gross contamination include vibratory finishing, ultrasonics, dry and liquid abrasive blasting, and high-pressure spray systems. Other supporting studies are also in progress to provide a sound technical basis for scale-up and widespread application of this new decontamination process. 44 figures

  16. Mechanization of coal storage bins at thermal electric stations

    Energy Technology Data Exchange (ETDEWEB)

    Bushuev, V P; Dyunze, V M; Sidorenko, I A; Dombrovskii, A N; Orlov, S V

    1987-07-01

    Soviet and foreign methods of mechanizing materials handling at storage depots are discussed. Describes a new method of mechanizing coal storage using a bucket wheel reclaimer and mobile conveyor. Sketches and specifications of the PG-1250.32/21 mobile conveyor and the PRK-1250 bucke wheel reclaimer as well as a flow chart and technical and economic indicators of loading operations are given. Savings realized annually from using the combined PRK-1250 bucke wheel reclaimer and the PG-1250.32/21 mobile conveyor were 280 thousand rubles.

  17. Comparison of Traditional and Innovative Techniques to Solve Technical Challenges

    Science.gov (United States)

    Perchonok, Michele

    2011-01-01

    This slide presentation reviews the use of traditional and innovative techniques to solve technical challenges in food storage technology. The planning for a mission to Mars is underway, and the food storage technology improvements requires that improvements be made. This new technology is required, because current food storage technology is inadequate,refrigerators or freezers are not available for food preservation, and that a shelf life of 5 years is expected. A 10 year effort to improve food packaging technology has not enhanced significantly food packaging capabilities. Two innovation techniques were attempted InnoCentive and Yet2.com and have provided good results, and are still under due diligence for solver verification.

  18. Waste Management Program. Technical progress report, July-December, 1984

    International Nuclear Information System (INIS)

    1986-10-01

    This report provides information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, other support, in situ storage or disposal, waste form development and characterization, process and equipment development, and the Defense Waste Processing Facility are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations: tank farm operation, inspection program, burial ground operations, and waste transfer/tank replacement

  19. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    Science.gov (United States)

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recycling of chemical hydrogen storage materials

    International Nuclear Information System (INIS)

    Lo, C.F.; Davis, B.R.; Karan, K.

    2004-01-01

    'Full text:' Light weight chemical hydrides such as sodium borohydride (NaBH4) and lithium borohydride (LiBH4) are promising hydrogen storage materials. They offer several advantages including high volumetric storage density, safe storage, practical storage and operating condition, controlled and rapid hydrogen release kinetics in alkaline aqueous media in the presence of catalysts. In addition, borate or borax, the reaction by-product, is environmentally friendly and can be directly disposed or recycled. One technical barrier for utilizing borohydrides as hydrogen storage material is their high production cost. Sodium borohydride currently costs $90 per kg while lithium borohydride costs $8000 per kg. For commercialization, new and improved technology to manufacture borohydrides must be developed - preferably by recycling borates. We are investigating different inorganic recycling routes for regenerating borohydrides from borates. In this paper, the results of a chlorination-based recycling route, incorporating multi-step reactions, will be discussed. Experiments were conducted to establish the efficiency of various steps of the selected regeneration process. The yields of desired products as a function of reaction temperature and composition were obtained from multi-phase batch reactor. Separation efficiency of desired product was also determined. The results obtained so far appear to be promising. (author)