WorldWideScience

Sample records for storage system buildings

  1. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  2. Building a mass storage system for physics applications

    International Nuclear Information System (INIS)

    The IEEE Mass Storage Reference Model and forthcoming standards based on it provide a standardized architecture to facilitate designing and building mass storage systems, and standard interfaces so that hardware and software from different vendors can interoperate in providing mass storage capabilities. A key concept of this architecture is the separation of control and data flows. This separation allows a smaller machine to provide control functions, while the data can flow directly between high-performance channels. Another key concept is the layering of the file system and the storage functions. This layering allows the designers of the mass storage system to focus on storage functions, which can support a variety of file systems, such as the Network File System, the Andrew File System, and others. The mass storage system provides location-independent file naming, essential if files are to be migrated to different storage devices without requiring changes in application programs. Physics data analysis applications are particularly challenging for mass storage systems because they stream vast amounts of data through analysis applications. Special mechanisms are required, to handle the high data rates and to avoid upsetting the caching mechanisms commonly used for smaller, repetitive-use files. High data rates are facilitated by direct channel connections, where, for example, a dual-ported drive will be positioned by the mass storage controller on one channel, then the data will flow on a second channel directly into the user machine, or directly to a high capacity network, greatly reducing the I/O capacity required in the mass storage control computer. Intelligent storage allocation can be used to bypass the cache devices entirely when large files are being moved

  3. Integrated Building Energy Systems Design Considering Storage Technologies

    International Nuclear Information System (INIS)

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site

  4. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage...... options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits...

  5. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...... from solid to liquid form (Fig. 1). Keeping the temperature as low as possible is an efficient way to reduce the heat loss from the storage. Furthermore, the PCM storage might be smaller than the equivalent water storage as more energy can be stored per volume. If the PCM further has the possibility...

  6. Thermal energy storage - A review of concepts and systems for heating and cooling applications in buildings

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    The use of thermal energy storage (TES) in buildings in combination with space heating and/or space cooling has recently received much attention. A variety of TES techniques have developed over the past decades. TES systems can provide short-term storage for peak-load shaving as well as long-term...

  7. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    International Nuclear Information System (INIS)

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments. - Highlights: • Model optimising heat pumps and heat storages in integration with the energy system. • Optimisation of both energy system investments and operation. • Heat storage in building structure and thermal storage tanks included. • Model well qualified for analysing system benefits of flexible heat pump operation. • Covers peak load shaving and operation prioritised for low electricity prices

  8. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    OpenAIRE

    Alexandre Hugo; Radu Zmeureanu

    2012-01-01

    The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1) reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2) using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS softwar...

  9. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  10. System Configuration Management Implementation Procedure for the Canister Storage Building (CSB)

    Energy Technology Data Exchange (ETDEWEB)

    GARRISON, R.C.

    2000-11-28

    This document provides configuration management for the Distributed Control System (DCS), the Gaseous Effluent Monitoring System (GEMS-100) System, the Heating Ventilation and Air Conditioning (HVAC) Programmable Logic Controller (PLC), the Canister Receiving Crane (CRC) CRN-001 PLC, and both North and South vestibule door interlock system PLCs at the Canister Storage Building (CSB). This procedure identifies and defines software configuration items in the CSB control and monitoring systems, and defines configuration control throughout the system life cycle. Components of this control include: configuration status accounting; physical protection and control; and verification of the completeness and correctness of these items.

  11. Modeling and optimization of energy generation and storage systems for thermal conditioning of buildings targeting conceptual building design

    Energy Technology Data Exchange (ETDEWEB)

    Grahovac, Milica

    2012-11-29

    The thermal conditioning systems are responsible for almost half of the energy consump-tion by commercial buildings. In many European countries and in the USA, buildings account for around 40% of primary energy consumption and it is therefore vital to explore further ways to reduce the HVAC (Heating, Ventilation and Air Conditioning) system energy consumption. This thesis investigates the relationship between the energy genera-tion and storage systems for thermal conditioning of buildings (shorter: primary HVAC systems) and the conceptual building design. Certain building design decisions irreversibly influence a building's energy performance and, conversely, many generation and storage components impose restrictions on building design and, by their nature, cannot be introduced at a later design stage. The objective is, firstly, to develop a method to quantify this influence, in terms of primary HVAC system dimensions, its cost, emissions and energy consumption and, secondly, to enable the use of the developed method by architects during the conceptual design. In order to account for the non-stationary effects of the intermittent renewable energy sources (RES), thermal storage and for the component part load efficiencies, a time domain system simulation is required. An abstract system simulation method is proposed based on seven pre-configured primary HVAC system models, including components such as boil-ers, chillers and cooling towers, thermal storage, solar thermal collectors, and photovoltaic modules. A control strategy is developed for each of the models and their annual quasi-stationary simulation is performed. The performance profiles obtained are then used to calculate the energy consumption, carbon emissions and costs. The annuity method has been employed to calculate the cost. Optimization is used to automatically size the HVAC systems, based on their simulation performance. Its purpose is to identify the system component dimensions that provide

  12. The integration of water loop heat pump and building structural thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  13. Modeling and simulation to determine the potential energy savings by implementing cold thermal energy storage system in office buildings

    International Nuclear Information System (INIS)

    Highlights: • Simulating the CTES system behavior based on Malaysian climate. • Almost 65% of power is used for cooling for cooling the office buildings, every day. • The baseline shows an acceptable match with real data from the fieldwork. • Overall, the energy used for full load storage is much than the conventional system. • The load levelling storage strategy has 3.7% lower energy demand. - Abstract: In Malaysia, air conditioning (AC) systems are considered as the major energy consumers in office buildings with almost 57% share. During the past decade, cold thermal energy storage (CTES) systems have been widely used for their significant economic benefits. However, there were always doubts about their energy saving possibilities. The main objective of the present work is to develop a computer model to determine the potential energy savings of implementing CTES systems in Malaysia. A case study building has been selected to determine the energy consumption pattern of an office building. In the first step the building baseline model was developed and validated with the recorded data from the fieldwork. Once the simulation results reach an acceptable accuracy, different CTES system configuration was added to the model to predict their energy consumption pattern. It was found that the overall energy used by the full load storage strategy is considerably more than the conventional system. However, by applying the load leveling storage strategy, and considering its benefits to reduce the air handling unit size and reducing the pumping power, the overall energy usage was almost 4% lower than the non-storage system. Although utilizing CTES systems cannot reduce the total energy consumption considerably, but it has several outstanding benefits such as cost saving, bringing balance in the grid system, reducing the overall fuel consumption in the power plants and consequently reducing to total carbon footprint

  14. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out.......Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...

  15. Advanced storage concepts for solar thermal systems in low energy buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Andersen, Elsa; Schultz, Joergen M.

    2006-04-07

    The aim of Task 32 is to develop new and advanced heat storage systems which are economic and technical suitable as long-term heat storage systems for solar heating plants with a high degree of coverage. The project is international and Denmark's participation has focused on Subtask A, C, and D. In Subtask A Denmark has contributed to a status report about heat storage systems. In Subtask C Denmark has focused on liquid thermal storage tanks based on NaCH{sub 3}COO?3H{sub 2}O with a melting point of 58 deg. C. Theoretical and experimental tests have been conducted in order to establish optimum conditions for storage design. In Subtask D theoretical and experimental tests of optimum designs for advanced water tanks for solar heating plants for combined space heating and domestic hot water have been conducted. (BA)

  16. Modelling of solar thermo-chemical system for energy storage in buildings

    OpenAIRE

    Skrylnyk, Alexandre; Courbon, Emilie; Frère, Marc; Hennaut, Samuel; Andre, Philippe; Sun, Philippe; Descy, Gilbert

    2012-01-01

    The goal of this paper is the demonstration of the methodological design principles within theoretical modelling of thermal heat storage apparatus and simulation of inter-seasonal heat storage system. The designing procedure starts from the modelling of thermal plant behaviour, based on the simplifications in the basic hypothesis. Afterwards, a more detailed modelling, involving dynamic aspects and additional features of plant components, is prese...

  17. Initial findings: The integration of water loop heat pump and building structural thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

    1989-01-01

    This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

  18. The integration of water loop heat pump and building structural thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  19. Dynamic Heat Storage and Cooling Capacity of a Concrete Deck with PCM and Thermally Activated Building System

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    the performance of the new deck with PCM concrete is the thermal properties of such a new material, as the PCM concrete is yet to be well defined. The results presented in the paper include models in which the PCM concrete material properties, such as thermal conductivity, and specific heat capacity were first......This paper presents a heat storage and cooling concept that utilizes a phase change material (PCM) and a thermally activated building system (TABS) implemented in a hollow core concrete deck. Numerical calculations of the dynamic heat storage capacity of the hollow core concrete deck element...... with and without microencapsulated PCM are presented. The new concrete deck with microencapsulated PCM is the standard deck on which an additional layer of the PCM concrete was added and, at the same time, the latent heat storage was introduced to the construction. The challenge of numerically simulating...

  20. Numerical study of thin layer ring on improving the ice formation of building thermal storage system

    International Nuclear Information System (INIS)

    Ice thermal storage systems have been widely used in HVAC and R systems for improving energy efficiency and reducing energy costs around the world. In this paper, a numerical model is developed to simulate the ice formation in a typical ice thermal storage system. The first study is to investigate the effect of a cooled cylinder placed in a rectangular space filled with water on the ice formation process. The validated numerical model can predict temperature distribution associated with liquid fraction during the process. Based on the result obtained from the first study, further research is focused on the novel structure of thin layer ring. The computational solutions can demonstrate that the thin layer ring structure can successfully increase an ice generated area and shorten the ice formation period in a typical ice thermal storage system. Finally, a parametric study was carried out to investigate the effect of material, thickness, and arrangement of thin layer ring. It predicted that the heat transfer performance of the thin layer ring is dependent on its material, thickness, and arrangement. Ice formation with novel thin layer ring can be improved by increasing the thermal conductivity of a material. A copper ring has the best performance among aluminum, stainless steel, magnesium alloy. The results show that the ice formation rate can be increased by increasing the thickness of the ring from 0.25 mm to 1 mm, while slowed by increasing from 1 mm to 2 mm and has the best performance with 3 mm ring in this study. Finally, the staggered arrangement of ring shows the best results of the ice formation compared to one parallel and two parallel cases. - Highlights: •A thin layer ring structure is studied systematically to enhance ice formation. •Increasing thermal conductivity of thin layer ring can increase ice formation rate. •Ice formation rate is also dependent on the thickness of thin layer ring. •Increasing thin layer ring area can increase ice

  1. The Role of Energy Storage in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of

  2. SPENT NUCLEAR FUEL (SNF) PROJECT CANISTER STORAGE BUILDING (CSB) MULTI CANISTER OVERPACK (MCO) SAMPLING SYSTEM VALIDATION (OCRWM)

    Energy Technology Data Exchange (ETDEWEB)

    BLACK, D.M.; KLEM, M.J.

    2003-11-17

    Approximately 400 Multi-canister overpacks (MCO) containing spent nuclear fuel are to be interim stored at the Canister Storage Building (CSB). Several MCOs (monitored MCOs) are designated to be gas sampled periodically at the CSB sampling/weld station (Bader 2002a). The monitoring program includes pressure, temperature and gas composition measurements of monitored MCOs during their first two years of interim storage at the CSB. The MCO sample cart (CART-001) is used at the sampling/weld station to measure the monitored MCO gas temperature and pressure, obtain gas samples for laboratory analysis and refill the monitored MCO with high purity helium as needed. The sample cart and support equipment were functionally and operationally tested and validated before sampling of the first monitored MCO (H-036). This report documents the results of validation testing using training MCO (TR-003) at the CSB. Another report (Bader 2002b) documents the sample results from gas sampling of the first monitored MCO (H-036). Validation testing of the MCO gas sampling system showed the equipment and procedure as originally constituted will satisfactorily sample the first monitored MCO. Subsequent system and procedural improvements will provide increased flexibility and reliability for future MCO gas sampling. The physical operation of the sampling equipment during testing provided evidence that theoretical correlation factors for extrapolating MCO gas composition from sample results are unnecessarily conservative. Empirically derived correlation factors showed adequate conservatism and support use of the sample system for ongoing monitored MCO sampling.

  3. Effect of thermal energy storage in energy consumption required for air conditioning system in office building under the African Mediterranean climate

    Directory of Open Access Journals (Sweden)

    Abdulgalil Mohamed M.

    2014-01-01

    Full Text Available In the African Mediterranean countries, cooling demand constitutes a large proportion of total electrical demand for office buildings during peak hours. The thermal energy storage systems can be an alternative method to be utilized to reduce and time shift the electrical load of air conditioning from on-peak to off-peak hours. In this study, the Hourly Analysis Program has been used to estimate the cooling load profile for an office building based in Tripoli weather data conditions. Preliminary study was performed in order to define the most suitable operating strategies of ice thermal storage, including partial (load leveling and demand limiting, full storage and conventional A/C system. Then, the mathematical model of heat transfer for external ice storage would be based on the operating strategy which achieves the lowest energy consumption. Results indicate that the largest rate of energy consumption occurs when the conventional system is applied to the building, while the lowest rate of energy consumption is obtained when the partial storage (demand limiting 60% is applied. Analysis of results shows that the new layer of ice formed on the surface of the existing ice lead to an increase of thermal resistance of heat transfer, which in return decreased cooling capacity.

  4. Massive Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Dan Feng; Hai Jin

    2006-01-01

    To accommodate the explosively increasing amount of data in many areas such as scientific computing and e-Business, physical storage devices and control components have been separated from traditional computing systems to become a scalable, intelligent storage subsystem that, when appropriately designed, should provide transparent storage interface, effective data allocation, flexible and efficient storage management, and other impressive features. The design goals and desirable features of such a storage subsystem include high performance, high scalability, high availability, high reliability and high security. Extensive research has been conducted in this field by researchers all over the world, yet many issues still remain open and challenging. This paper studies five different online massive storage systems and one offline storage system that we have developed with the research grant support from China. The storage pool with multiple network-attached RAIDs avoids expensive store-and-forward data copying between the server and storage system, improving data transfer rate by a factor of 2-3 over a traditional disk array. Two types of high performance distributed storage systems for local-area network storage are introduced in the paper. One of them is the Virtual Interface Storage Architecture (VISA) where VI as a communication protocol replaces the TCP/IP protocol in the system. VISA's performance is shown to achieve better than that of IP SAN by designing and implementing the vSCSI (VI-attached SCSI) protocol to support SCSI commands in the VI network. The other is a fault-tolerant parallel virtual file system that is designed and implemented to provide high I/O performance and high reliability. A global distributed storage system for wide-area network storage is discussed in detail in the paper, where a Storage Service Provider is added to provide storage service and plays the role of user agent for the storage system. Object based Storage Systems not only

  5. Grand Challenges facing Storage Systems

    CERN Document Server

    CERN. Geneva

    2004-01-01

    In this talk, we will discuss the future of storage systems. In particular, we will focus on several big challenges which we are facing in storage, such as being able to build, manage and backup really massive storage systems, being able to find information of interest, being able to do long-term archival of data, and so on. We also present ideas and research being done to address these challenges, and provide a perspective on how we expect these challenges to be resolved as we go forward.

  6. Canister Storage Building (CSB) Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    POWERS, T.B.

    2000-03-16

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other

  7. Fuel storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Donakowski, T.D.; Tison, R.R.

    1979-08-01

    Storage technologies are characterized for solid, liquid, and gaseous fuels. Emphasis is placed on storage methods applicable to Integrated Community Energy Systems based on coal. Items discussed here include standard practice, materials and energy losses, environmental effects, operating requirements, maintenance and reliability, and cost considerations. All storage systems were found to be well-developed and to represent mature technologies; an exception may exist for low-Btu gas storage, which could have materials incompatability.

  8. Ice slurry based thermal storage in multifunctional buildings

    Science.gov (United States)

    Wang, M. J.; Kusumoto, N.

    Ice slurry based thermal storage plays an important role in reshaping patterns of electricity use for space cooling and heating. It offers inherent advantages in energy efficiency, operating savings, load follow-up and flexible installation over conventional thermal storage technologies. This paper provides discussions on the generation mechanism and performance of ice slurry, as well as the operation principle of the ice slurry based thermal storage system. Details of the system design, control strategy and operation performance are given through a case study on a recent installation in Herbis Osaka, the largest simple building complex in Japan. An evaluation of different installations with ice slurry thermal storage reveals that it is a rewarding technology that provides significant operating savings for the building air-conditioning and improves energy utilization efficiency in modern society.

  9. Spent nuclear fuel Canister Storage Building CDR Review Committee report

    International Nuclear Information System (INIS)

    The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

  10. Spent nuclear fuel Canister Storage Building CDR Review Committee report

    Energy Technology Data Exchange (ETDEWEB)

    Dana, W.P.

    1995-12-01

    The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

  11. Canister storage building trade study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-05-01

    This study was performed to evaluate the impact of several technical issues related to the usage of the Canister Storage Building (CSB) to safely stage and store N-Reactor spent fuel currently located at K-Basin 100KW and 100KE. Each technical issue formed the basis for an individual trade study used to develop the ROM cost and schedule estimates. The study used concept 2D from the Fluor prepared ``Staging and Storage Facility (SSF) Feasibility Report`` as the basis for development of the individual trade studies.

  12. Canister storage building trade study. Final report

    International Nuclear Information System (INIS)

    This study was performed to evaluate the impact of several technical issues related to the usage of the Canister Storage Building (CSB) to safely stage and store N-Reactor spent fuel currently located at K-Basin 100KW and 100KE. Each technical issue formed the basis for an individual trade study used to develop the ROM cost and schedule estimates. The study used concept 2D from the Fluor prepared ''Staging and Storage Facility (SSF) Feasibility Report'' as the basis for development of the individual trade studies

  13. Canister storage building hazard analysis report

    International Nuclear Information System (INIS)

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  14. Canister storage building hazard analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Krahn, D.E.; Garvin, L.J.

    1997-07-01

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  15. Solar Thermal Storage System

    Directory of Open Access Journals (Sweden)

    Arjun A. Abhyankar

    2012-06-01

    Full Text Available Increasing energy consumption, shrinking resources and rising energy costs will have significant impact on our standard of living for future generations. In this situation, the development of alternative, cost effective sources of energy has to be a priority. This project presents the advanced technology and some of the unique features of a novel solar system that utilizes solar energy for space heating and water heating purpose in residential housing and commercial buildings. The improvements in solar technology offers a significant cost reduction, to a level where the solar system can compete with the energy costs from existing sources. The main goal of the project is to investigate new or advanced solutions for storing heat in systems providing heating. which can be achieved using phase change material(PCM.A phase change material with a melting/solidification temperature of 50ºC to 60ºC is used for solar heat storage. When the PCM undergoes the phase change, it can absorb or release a large amount of energy as latent heat. This heat can be used for further applications like water heating and space heating purposes. Thus solar thermal energy is widely use

  16. Interstitial hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Gell, H.A.

    1980-09-30

    A metal hydride fuel system is described that incorporates a plurality of storage elements that may be individually replaced to provide a hydrogen fuel system for combustion engines having a capability of partial refueling is presented.

  17. Building a Parallel Cloud Storage System using OpenStack’s Swift Object Store and Transformative Parallel I/O

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Andrew J. [Los Alamos National Laboratory; Lora, Kaleb D. [Los Alamos National Laboratory; Martinez, Esteban [Los Alamos National Laboratory; Shorter, Martel L. [Los Alamos National Laboratory

    2012-07-30

    Our project consists of bleeding-edge research into replacing the traditional storage archives with a parallel, cloud-based storage solution. It used OpenStack's Swift Object Store cloud software. It's Benchmarked Swift for write speed and scalability. Our project is unique because Swift is typically used for reads and we are mostly concerned with write speeds. Cloud Storage is a viable archive solution because: (1) Container management for larger parallel archives might ease the migration workload; (2) Many tools that are written for cloud storage could be utilized for local archive; and (3) Current large cloud storage practices in industry could be utilized to manage a scalable archive solution.

  18. Flywheel Energy Storage Systems

    OpenAIRE

    Daoud, Mohammed; Abdel-Khalik, Ayman; Elserogi, Ahmed; Ahmed, Shehab; Massoud, Ahmed

    2015-01-01

    Flywheels are one of the oldest and most popular energy storage media owing to the simplicity of storing kinetic energy in a rotating mass. Flywheel energy storage systems (FESSs) can be used in different applications, for example, electric utilities and transportation. With the development of new technologies in the field of composite materials and magnetic bearings, higher energy densities are allowed in the design of flywheels. The amount of stored energy in FESS depends on the mass and th...

  19. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  20. Canister storage building design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    KOPELIC, S.D.

    1999-02-25

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  1. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  2. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  3. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.; PIEPHO, M.G.

    2000-03-23

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  4. Canister storage building design basis accident analysis documentation

    International Nuclear Information System (INIS)

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  5. Radiological characterisation of waste in interim storage building of COVRA

    International Nuclear Information System (INIS)

    At COVRA spatial dose rate distribution measurements were performed in December 2004 and December 2006 in the interim L/ILW storage building (LOG). This storage facility consists out of four large storage halls (height x width x depth 7 m x 40 m x 70 m) each with a volume of about 20000 m3. The scope of this study is to investigate the benefits of the waste storage strategy and procedures for minimization of the dose to the workers and the public. The main aim of the measurements in 2004 was: to validate the applied L/ILW storage strategy - to examine, if spatial collected data can be used to detect unforeseen differences in radiation level. The results of these measurements of spatial dose showed a number of unforeseen hotspots at different locations, so that it could be concluded that the applied storage strategy and procedures has to be improved. Further the dose rate at the height of 6 m, mainly responsible for the sky-shine dose rate, being an important part of the dose rate to the public at the site boundary, has to be reduced by more shielding. In December 2006 a second serial of spatial radiological and non-radiological data have been collected. The applied nondestructive INDSS-R (Indoor Survey System-Radiation ) method has been improved, so that the following 3-dimensional data could be collected between 0.5 m and 5.5 m: - dose rate (by pressurized ionisation chamber). nuclide depended gamma photon flux (3 x 3 NaI). - temperature and relative humidity. These last two non-radiological parameters were measured to verify the storage conditions of the waste. The main aim of these 3 dimensional collection was to verify the second stated aim of 2004. (authors)

  6. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  7. STANDALONE “GREEN” COMMUNITY-CENTER BUILDINGS: HYDROGEN GENERATION/STORAGE/DELIVERY SYSTEM FOR WHEN PRIMARY ENERGY STORAGE IS AT CAPACITY

    Science.gov (United States)

    Overall, the implementation of a computer-controlled hydrogen generation system and subsequent conversion of small engine equipment for hydrogen use has been surprisingly straightforward from an engineering and technology standpoint. More testing is required to get a better gr...

  8. Building Services Systems

    DEFF Research Database (Denmark)

    Zinzi, Michele; Romeo, Carlo; Thomsen, Kirsten Engelund;

    2015-01-01

    of the description of 5 main technologies: condensing boilers, heat pumps, ventilation systems, lighting and photovoltaic systems. For each technology chapter there is the same content list: an introduction, a brief technology description, some advantages and disadvantages, market penetration and utilisation, energy......This guideline on Building Services Systems is one of four guidelines produced by the School of the Future project. The other three guidelines cover: Building Construction Elements, Improved Indoor Environmental Quality and Concepts for Zero Emission Schools. This guideline consists...

  9. Dynamic simulation of residential buildings with seasonal sorption storage of solar energy - parametric analysis

    OpenAIRE

    Hennaut, Samuel; Thomas, Sébastien; Davin, Elisabeth; Andre, Philippe

    2011-01-01

    This work focuses on the evaluation of the performances of a solar combisystem coupled to seasonal thermochemical storage using SrBr2/H20 as adsorbent/adsorbate couple. The objective is to determine the characteristics required for solar system and storage reactor to reach a 100 % solar fraction for a building with a low heating load. The complete system, including the storage reactor, is simulated, using the dynamic simulation software TRNSYS. The influence of some components and p...

  10. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    1999-09-09

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  11. Spent nuclear fuel canister storage building conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  12. Spent nuclear fuel canister storage building conceptual design report

    International Nuclear Information System (INIS)

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ''Technical Baseline and Updated Cost Estimate for the Canister Storage Building'', dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995

  13. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  14. Building Automation Systems.

    Science.gov (United States)

    Honeywell, Inc., Minneapolis, Minn.

    A number of different automation systems for use in monitoring and controlling building equipment are described in this brochure. The system functions include--(1) collection of information, (2) processing and display of data at a central panel, and (3) taking corrective action by sounding alarms, making adjustments, or automatically starting and…

  15. Passive hygrothermal control of a museum storage building

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Janssen, Hans

    2011-01-01

    For optimal conservation of the stored objects, museum storage buildings require a very stable interior climate, with only minimal and slow variations in temperature and relative humidity. Often extensive HVAC is installed to provide such stable indoor conditions, which results in a great amout...... of C02 emission. The purpose for this paper is to show that it is possible to reach the goal of using renewable energy for museum storage buildings by rethinking the strategy for the dehumidification design and in this way contribute to a C02 neutral environment. The solution is to construct a very...... airtight building and use concentrated dehumidification....

  16. RCRA closure of the Building 3001 Storage Canal

    International Nuclear Information System (INIS)

    The 3001 Storage Canal is located under portions of Buildings 3001 and 3019 at Oak Ridge National Laboratory (ORNL) and has a capacity of approximately 62,000 gallons of water. The term canal has historically been used to identify this structure, however, the canal is an in-ground reinforced concrete structure satisfying the regulatory definition of a tank. From 1943 through 1963, the canal in Building 3001 was designed to be an integral part of the system for handling irradiated fuel from the Oak Ridge Graphite Reactor. Because one of the main initial purposes of the reactor was to produce plutonium for the chemical processing pilot plant in Building 3019, the canal was designed to be the connecting link between the reactor and the pilot plant. During the war years, natural uranium slugs were irradiated in the reactor and then pushed out of the graphite matrix into the system of diversion plates and chutes which directed the fuel into the deep pit of the canal. After shutdown of the reactor, the canal was no longer needed for its designed purpose. Since 1964, the canal has only been used to store radioisotopes and irradiated samples under a water pool for radiation protection. This report describes closure alternatives

  17. Terrestrial Energy Storage SPS Systems

    Science.gov (United States)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  18. Provenance-Aware Storage Systems

    OpenAIRE

    Muniswamy-Reddy, Kiran-Kumar; Holland, David A.; Braun, Uri; Seltzer, Margo I.

    2006-01-01

    A Provenance-Aware Storage System (PASS) is a storage system that automatically collects and maintains provenance or lineage, the complete history or ancestry of an item. We discuss the advantages of treating provenance as meta-data collected and maintained by the storage system, rather than as manual annotations stored in a separately administered database. We present a PASS implementation, discussing the challenges and performance cost, and the new functionality it enables. We show that wit...

  19. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D.M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  20. Building Web Reputation Systems

    CERN Document Server

    Farmer, Randy

    2010-01-01

    What do Amazon's product reviews, eBay's feedback score system, Slashdot's Karma System, and Xbox Live's Achievements have in common? They're all examples of successful reputation systems that enable consumer websites to manage and present user contributions most effectively. This book shows you how to design and develop reputation systems for your own sites or web applications, written by experts who have designed web communities for Yahoo! and other prominent sites. Building Web Reputation Systems helps you ask the hard questions about these underlying mechanisms, and why they're critical

  1. Measurement of Moisture Storage Parameters of Building Materials

    OpenAIRE

    M. Jiřičková; Černý, R.; P. Rovnaníková

    2003-01-01

    The moisture storage parameters of three different building materials: calcium silicate, ceramic brick and autoclaved aerated concrete, are determined in the hygroscopic range and overhygroscopic range. Measured sorption isotherms and moisture retention curves are then combined into moisture storage functions using the Kelvin equation. A comparison of measured results with global characteristics of the pore space obtained by mercury intrusion porosimetry shows a reasonable agreement; the medi...

  2. Provenance-Aware Storage Systems

    OpenAIRE

    Seltzer, Margo I.; Muniswamy-Reddy, Kiran-Kumar; Holland, David A.; Braun, Uri; Ledlie, Jonathan

    2005-01-01

    Provenance is a type of meta-data that describes the history or ancestry of an object. Although provenance is typically manually generated and stored in a stand-alone database, we make the case that it must be managed by the storage system. In this paper, we describe provenance-aware storage systems (PASS), a new class of storage system that automatically tracks provenance. A PASS takes responsibility for recording provenance meta-data for the objects stored on it and maintaining that provena...

  3. Systems, distribution and storage

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmakis, A.; Nygaard Rasmussen, C.; Pensini, A.; Marra, F.; Guang Ya Yang

    2012-11-15

    Energy storage is as yet somewhat unprofitable due to its high capital costs and the immaturity of the technology. However, it shows great promise because of its expected ability to cut costs, deal with issues of excess energy supply from intermittent renewable sources, and capture profits from price arbitrage in electricity and heat markets. (LN)

  4. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Gregor P. Henze; Moncef Krarti

    2003-12-17

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigates the merits of harnessing both storage media concurrently in the context of predictive optimal control. This topical report describes the demonstration of the model-based predictive optimal control for active and passive building thermal storage inventory in a test facility in real-time using time-of-use differentiated electricity prices without demand charges. The laboratory testing findings presented in this topical report cover the second of three project phases. The novel supervisory controller successfully executed a three-step procedure consisting of (1) short-term weather prediction, (2) optimization of control strategy over the next planning horizon using a calibrated building model, and (3) post-processing of the optimal strategy to yield a control command for the current time step that can be executed in the test facility. The primary and secondary building mechanical systems were effectively orchestrated by the model-based predictive optimal controller in real-time while observing comfort and operational constraints. The findings reveal that when the optimal controller is given imperfect weather fore-casts and when the building model used for planning control strategies does not match the actual building perfectly, measured utility costs savings relative to conventional building operation can be substantial. This requires that the facility under control lends itself to passive storage utilization and the building

  5. Measurement of Moisture Storage Parameters of Building Materials

    Directory of Open Access Journals (Sweden)

    M. Jiřičková

    2003-01-01

    Full Text Available The moisture storage parameters of three different building materials: calcium silicate, ceramic brick and autoclaved aerated concrete, are determined in the hygroscopic range and overhygroscopic range. Measured sorption isotherms and moisture retention curves are then combined into moisture storage functions using the Kelvin equation. A comparison of measured results with global characteristics of the pore space obtained by mercury intrusion porosimetry shows a reasonable agreement; the median pore radii by volume are well within the interval given by the beginning and the end of the characteristic steep parts of the moisture retention curves.

  6. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  7. Storage Area Networks and The High Performance Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, H; Graf, O; Fitzgerald, K; Watson, R W

    2002-03-04

    The High Performance Storage System (HPSS) is a mature Hierarchical Storage Management (HSM) system that was developed around a network-centered architecture, with client access to storage provided through third-party controls. Because of this design, HPSS is able to leverage today's Storage Area Network (SAN) infrastructures to provide cost effective, large-scale storage systems and high performance global file access for clients. Key attributes of SAN file systems are found in HPSS today, and more complete SAN file system capabilities are being added. This paper traces the HPSS storage network architecture from the original implementation using HIPPI and IPI-3 technology, through today's local area network (LAN) capabilities, and to SAN file system capabilities now in development. At each stage, HPSS capabilities are compared with capabilities generally accepted today as characteristic of storage area networks and SAN file systems.

  8. GPUs as Storage System Accelerators

    CERN Document Server

    Al-Kiswany, Samer; Ripeanu, Matei

    2012-01-01

    Massively multicore processors, such as Graphics Processing Units (GPUs), provide, at a comparable price, a one order of magnitude higher peak performance than traditional CPUs. This drop in the cost of computation, as any order-of-magnitude drop in the cost per unit of performance for a class of system components, triggers the opportunity to redesign systems and to explore new ways to engineer them to recalibrate the cost-to-performance relation. This project explores the feasibility of harnessing GPUs' computational power to improve the performance, reliability, or security of distributed storage systems. In this context, we present the design of a storage system prototype that uses GPU offloading to accelerate a number of computationally intensive primitives based on hashing, and introduce techniques to efficiently leverage the processing power of GPUs. We evaluate the performance of this prototype under two configurations: as a content addressable storage system that facilitates online similarity detectio...

  9. Model Predictive Control for the Operation of Building Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

    2010-06-29

    A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

  10. Passive hygrothermal control of a museum storage building in Vejle

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Janssen, Hans

    2010-01-01

    of a museum storage building, related to an existing storage centre in Vejle (Denmark). The current building design already incorporates passive control concepts: thermal inertia is provided by the thick walls, the ground floor and its underlying soil volume, while hygric inertia is provided by the thick...... walls of light-weight concrete. The design promise stated that a few years of dehumidification would bring down the moisture contained in the fresh constructions to a level corresponding with the desired interior climate. After this initial stage, the passive control would eliminate all further need...... purposes. Reduction of dehumidification load: In an effort to reduce the necessary dehumidification, a number of thermal measures are investigated first. This primarily focuses on the influences of additional insulation in walls, roof and floor. Overall, the effects of extra insulation on the average...

  11. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  12. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  13. Review of thermal energy storage technologies based on PCM application in buildings

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Zhang, Yinping

    2013-01-01

    developed to serve the building industry. Various PCM technologies tailored for building applications are studied with respect to technological potential to improve indoor environment, increase thermal inertia and decrease energy use for building operation. What is more, in this review special attention......Thermal energy storage systems (TES), using phase change material (PCM) in buildings, are widely investigated technologies and a fast developing research area. Therefore, there is a need for regular and consistent reviews of the published studies. This review is focused on PCM technologies...... is paid to discussion and identification of proper methods to correctly determine the thermal properties of PCM materials and their composites and as well procedures to determine their energy storage and saving potential. The purpose of the paper is to highlight promising technologies for PCM application...

  14. Secure Repayable Storage System

    Science.gov (United States)

    Alkharobi, T. M.

    This paper proposes a method to create a system that allows data to be stored in several locations in secure and reliable manner. The system should create several shares from the data such that only pre-specified subsets of these shares can be used to retrieve the original data. The shares then will be distributed to shareholders over a local and/or wide area network. The system should allow requesting some/all shares from shareholders and using them to rebuild the data.

  15. PC-Cluster based Storage System Architecture for Cloud Storage

    CERN Document Server

    Yee, Tin Tin

    2011-01-01

    Design and architecture of cloud storage system plays a vital role in cloud computing infrastructure in order to improve the storage capacity as well as cost effectiveness. Usually cloud storage system provides users to efficient storage space with elasticity feature. One of the challenges of cloud storage system is difficult to balance the providing huge elastic capacity of storage and investment of expensive cost for it. In order to solve this issue in the cloud storage infrastructure, low cost PC cluster based storage server is configured to be activated for large amount of data to provide cloud users. Moreover, one of the contributions of this system is proposed an analytical model using M/M/1 queuing network model, which is modeled on intended architecture to provide better response time, utilization of storage as well as pending time when the system is running. According to the analytical result on experimental testing, the storage can be utilized more than 90% of storage space. In this paper, two parts...

  16. Application of the Food Displaying System in Intelligent Building

    OpenAIRE

    Ke Liu; Zhen Tang

    2015-01-01

    Given the importance of food-storage intelligent buildings, The study makes full use of the data and reasonably designs food displaying system in intelligent buildings which is more appropriate to the characteristics of specific sites of high-rise buildings than determining seismic input based on a simplified method and limited data. Website survey data is generally in great detail. The reasonable design of ground motion has a critical influence on the aseismic design of building structures. ...

  17. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  18. Application of Energy Storage in Power Systems

    Science.gov (United States)

    Alqunun, Khalid M.

    The purpose of this research is to determine the advantages of using energy storage systems. This study presents a model for energy storage in electric power systems. The model involves methods of reducing the operation cost of a power network and the calculation of capital cost of energy storage systems. Two test systems have been considered, the IEEE six-bus system and the IEEE 118-bus system, to analyze the impact of energy storage on power system economic operation. Properties of energy storage have been considered such as rated power investment cost and rated energy investment cost. Mixed integer programming has been used to formulate the model. A comparison between centralized energy storage system and distributed energy storage system have been proposed. The results show that distributed energy storage system has more impact on reducing total operation cost. Also, an analysis on optimal sizing of energy storage system with fixed investment cost is provided.

  19. Memory Storage and Neural Systems.

    Science.gov (United States)

    Alkon, Daniel L.

    1989-01-01

    Investigates memory storage and molecular nature of associative-memory formation by analyzing Pavlovian conditioning in marine snails and rabbits. Presented is the design of a computer-based memory system (neural networks) using the rules acquired in the investigation. Reports that the artificial network recognized patterns well. (YP)

  20. Analysis of ice cool thermal storage for a clinic building in Kuwait

    International Nuclear Information System (INIS)

    In Kuwait, air conditioning (AC) systems consume 61% and 40% of the peak electrical load and total electrical energy, respectively. This is due to a very high ambient temperature for the long summer period extended from April to October and the low energy cost. This paper gives an overview of the electrical peak and energy consumption in Kuwait, and it has been found that the average increase in the annual peak electrical demand and energy consumption for the year 1998-2002 was 6.2% and 6.4%, respectively. One method of reducing the peak electrical demand of AC systems during the day period is by incorporating an ice cool thermal storage (ICTS) with the AC system. A clinic building has been selected to study the effects of using an ICTS with different operation strategies such as partial (load levelling), partial (demand limiting) and full storage operations on chiller and storage sizes, reduction of peak electrical demand and energy consumption of the chiller for selected charging and discharging hours. It has been found that the full storage operation has the largest chiller and storage capacities, energy consumption and peak electrical reduction. However, partial storage (load levelling) has the smallest chiller and storage capacities and peak electrical reduction. This paper also provides a detailed comparison of using ICTS operating strategies with AC and AC systems without ICTS

  1. Final Safety Analysis Document for Building 693 Chemical Waste Storage Building at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    This Safety Analysis Document (SAD) for the Lawrence Livermore National Laboratory (LLNL) Building 693, Chemical Waste Storage Building (desipated as Building 693 Container Storage Unit in the Laboratory's RCRA Part B permit application), provides the necessary information and analyses to conclude that Building 693 can be operated at low risk without unduly endangering the safety of the building operating personnel or adversely affecting the public or the environment. This Building 693 SAD consists of eight sections and supporting appendices. Section 1 presents a summary of the facility designs and operations and Section 2 summarizes the safety analysis method and results. Section 3 describes the site, the facility desip, operations and management structure. Sections 4 and 5 present the safety analysis and operational safety requirements (OSRs). Section 6 reviews Hazardous Waste Management's (HWM) Quality Assurance (QA) program. Section 7 lists the references and background material used in the preparation of this report Section 8 lists acronyms, abbreviations and symbols. Appendices contain supporting analyses, definitions, and descriptions that are referenced in the body of this report

  2. Buildings Interaction with Urban Energy Systems

    DEFF Research Database (Denmark)

    Heller, Alfred; Wyckmans, Annemie; Zucker, Gerhard;

    2015-01-01

    The goal towards a fossil free energy system is expressed in amongst others European and national targets, and puts pressure on the application of renewable energy sources combined with energy efficiency. Many cities are even more ambitious than their national targets and want to be among the first...... on the impacts that buildings play in the overall energy system. Here buildings are not only consumers but rather prosumers that are able to produce renewable energy themselves. Buildings moreover offer potential storage capacities that can be utilized in demand shifting, which is necessary to enable increased...... to demonstrate that they can become not only smart fossil-free energy cities but sustainable in a wider sense, including water, waste, transportation and more. In the current paper, the research agenda to support such goals through smart city efforts is presented for a few European cases as examples, focusing...

  3. Integrated Building Management System (IBMS)

    Energy Technology Data Exchange (ETDEWEB)

    Anita Lewis

    2012-07-01

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

  4. Review on thermal performance of phase change energy storage building envelope

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; ZHANG YinPing; XlAO Wei; ZENG RuoLang; ZHANG QunLi; DI HongFa

    2009-01-01

    Improving the thermal performance of building envelope is an important way to save building energy consumption. The phase change energy storage building envelope is helpful to effective use of renewable energy, reducing building operational energy consumption, increasing building thermal comfort, and reducing environment pollution and greenhouse gas emission. This paper presents the concept of ideal energy-saving building envelope, which is used to guide the building envelope material selection and thermal performance design. This paper reviews some available researches on phase change building material and phase change energy storage building envelope. At last, this paper presents some current problems needed further research.

  5. Compressed gas fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  6. Simulation of thermocline thermal energy storage system using C

    OpenAIRE

    Meseret Tesfay; Meyyappan Venkatesan

    2013-01-01

    Solar thermal power generation is a modern technology, which has already shown feasible results in the production of electricity. Thermal energy storage (TES) is a crucial element in solar energy applications, which includes the increase of building thermal capacity, solar water heating systems for domestic use, and Concentrated Solar Thermal power plants for electricity generation. Economic, efficient and reliable thermal energy storage systems are a key need of solar thermal power plants, i...

  7. APS storage ring vacuum system

    International Nuclear Information System (INIS)

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's experimental program. The Storage Ring's 1104 m circumference is divided into 40 functional sectors. The sectors include vacuum, beam transport, control, acceleration and insertion device components. The vacuum system, which is designed to operate at a pressure of 1 n Torr, consists of 240 connected sections, the majority of which are fabricated from an aluminum alloy extrusion. The sections are equipped with distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. The details of the vacuum system design, selected results of the development program and general construction plans are presented. 11 refs., 6 figs., 3 tabs

  8. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  9. Data Acquisition and Transmission System for Building Energy Consumption Monitoring

    OpenAIRE

    Liang Zhao; Jili Zhang; Ruobing Liang

    2013-01-01

    Building energy consumption monitoring and management system have been developed widely in China in order to gain the real-time data of energy consumption in buildings for analyzing it in the next state work. This paper describes a low-cost and small-sized collector based on the STM32 microcontroller, which can be placed in a building easily to implement the work of data acquisition, storage, and transmission. The collector gathers the electricity, water, heat, and energy consumption data thr...

  10. A Video storage management system for soccer analytics

    OpenAIRE

    Hansen, Roger Bruun Asp

    2012-01-01

    Video is dominating consumer internet traffic. Restless internet users expect smooth playback and low latency when watching video content and vendors risk losing customers if this cannot be provided. Distributed storage systems specialized for delivering video content and for handling the high traffic this lead to, have been developed over many years. This thesis look into building and deploying a distributed video storage to deliver video content to an enterprise sport analytics web inter...

  11. Resilient mounting systems in buildings

    NARCIS (Netherlands)

    Breeuwer, R.; Tukker, J.C.

    1976-01-01

    The basic elements of resilient mounting systems are described and various measures for quantifying the effect of such systems defined. Using electrical analogue circuits, the calculation of these measures is illustrated. With special reference to resilient mounting systems in buildings, under speci

  12. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulation research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very

  13. ATLAS Nightly Build System Upgrade

    CERN Document Server

    Dimitrov, G; The ATLAS collaboration; Simmons, B; Undrus, A

    2014-01-01

    The ATLAS Nightly Build System is a facility for automatic production of software releases. Being the major component of ATLAS software infrastructure, it supports more than 50 multi-platform branches of nightly releases and provides ample opportunities for testing new packages, for verifying patches to existing software, and for migrating to new platforms and compilers. The Nightly System testing framework runs several hundred integration tests of different granularity and purpose. The nightly releases are distributed and validated, and some are transformed into stable releases used for data processing worldwide. The first LHC long shutdown (2013-2015) activities will elicit increased load on the Nightly System as additional releases and builds are needed to exploit new programming techniques, languages, and profiling tools. This paper describes the plan of the ATLAS Nightly Build System Long Shutdown upgrade. It brings modern database and web technologies into the Nightly System, improves monitoring of nigh...

  14. ATLAS Nightly Build System Upgrade

    CERN Document Server

    Dimitrov, G; The ATLAS collaboration; Simmons, B; Undrus, A

    2013-01-01

    The ATLAS Nightly Build System is a facility for automatic production of software releases. Being the major component of ATLAS software infrastructure, it supports more than 50 multi-platform branches of nightly releases and provides ample opportunities for testing new packages, for verifying patches to existing software, and for migrating to new platforms and compilers. The Nightly System testing framework runs several hundred integration tests of different granularity and purpose. The nightly releases are distributed and validated, and some are transformed into stable releases used for data processing worldwide. The first LHC long shutdown (2013-2015) activities will elicit increased load on the Nightly System as additional releases and builds are needed to exploit new programming techniques, languages, and profiling tools. This paper describes the plan of the ATLAS Nightly Build System Long Shutdown upgrade. It brings modern database and web technologies into the Nightly System, improves monitoring of nigh...

  15. Evaluating Storage Systems for Lustre

    Energy Technology Data Exchange (ETDEWEB)

    Oral, H. Sarp [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-20

    Storage systems are complex, including multiple subsystems and components. Sustained operations with top performance require all these subsystems and components working as expected. Having a detailed performance profile helps establishing a baseline. This baseline can be used for easier identification of possible future problems. A systematic bottom-to-top approach, starting with a detailed performance analysis of disks and moving up across layers and subsystems, provides a quantitative breakdown of each component's capabilities and bottlenecks. Coupling these low-level tests with Lustre-level evaluations will present a better understanding of performance expectations under different I/O workloads.

  16. Analysis of steam storage systems using Modelica

    OpenAIRE

    Buschle, Jochen; Steinmann, Wolf-Dieter; Tamme, Rainer

    2006-01-01

    Industrial process heat applications have been identified as a promising new area of application for thermal energy storage systems. Storage systems offer not only the reuse of thermal energy in cyclic processes which facilitates the integration of solar energy due to the availability of storage capacity. The bulk of process heat applications require steam at pressures between 1 and 20. While the application of phase change materials (PCMs) is straightforward for isothermal energy storage, no...

  17. Cold Thermal Storage and Peak Load Reduction for Office Buildings in Saudi Arabia

    Institute of Scientific and Technical Information of China (English)

    Nabil Y.Abdel-Shafi; Ramzy R.Obaid; Ibrahim M.Jomoah

    2014-01-01

    This paper involves the investigations of the chilled water and ice cold thermal storage technologies along with the associated operating strategies for the air conditioning (AC) systems of the typical office buildings in Saudi Arabia, so as to reduce the electricity energy consumption during the peak load periods. In Saudi Arabia, the extensive use of AC for indoor cooling in offices composes a large proportion of the annual peak electricity demand. The very high temperatures over long summer periods, extending from May to October, and the low cost of energy are the key factors in the wide and extensive use of air conditioners in the kingdom. This intense cooling load adds up to the requirement increase in the capacity of power plants, which makes them under utilized during the off-peak periods. Thermal energy storage techniques are one of the effective demand-side energy management methods. Systems with cold storage shifts all or part of the electricity requirement from peak hours to off-peak hours to reduce demand charges and/or take advantage of off-peak rates. The investigations reveal that the cold thermal energy storage techniques are effective from both technical and economic perspectives in the reduction of energy consumption in the buildings during peak periods.

  18. Advanced storage concepts for solar and low energy buildings, IEA-SHC Task 32. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.M.; Andersen, Elsa; Furbo, S.

    2008-01-15

    This report reports on the results of the activities carried through in connection with the Danish part of the IEA SHC Task 32 project: Advanced Storage Concepts for Solar and Low Energy Buildings. The Danish involvement has focused on Subtask C: Storage Concepts Based on Phase Change Materials and Subtask D: Storage Concepts Based on Advanced Water Tanks and Special Devices. The report describes activities concerning heat-of-fusion storage and advanced water storage. (BA)

  19. Pumped storage in systems with very high wind penetration

    International Nuclear Information System (INIS)

    This paper examines the operation of the Irish power system with very high levels of wind energy, with and without pumped storage. A unit commitment model which accounts for the uncertainty in wind power is used. It is shown that as wind penetration increases, the optimal operation of storage depends on wind output as well as load. The main benefit from storage is shown to be a decrease in wind curtailment. The economics of the system are examined to find the level at which storage justifies its capital costs and inefficiencies. It is shown that the uncertainty of wind makes the option of storage more attractive. The size of the energy store has an impact on results. At lower levels of installed wind (up to approximately 50% of energy from wind in Ireland), the reduction in curtailment is insufficient to justify building storage. At greater levels of wind, storage reduces curtailment sufficiently to justify the additional capital costs. It can be seen that if storage replaces OCGTs in the plant mix instead of CCGTs, then the level at which it justifies itself is lower. Storage increases the level of carbon emissions at wind penetration below 60%. - Research highlights: → Examines operation of pumped storage unit in a system with levels of wind from 34%-68% of energy. → High capital cost of storage is not justified until system has high (approx. 45%) wind penetration. → Results are driven by the amount of wind curtailment avoided and plant mix of system. → Other flexible options (e.g. interconnection) offer many of the same benefits as storage.

  20. Building Community Knowledge Systems

    DEFF Research Database (Denmark)

    Bansler, Jørgen P.; Havn, Erling C.

    2003-01-01

    The paper reports a field study of knowledge sharing in a large and complex organization. The objective of the study was to gain an in-depth understanding of the implementation and use of a web-based knowledge sharing system designed to facilitate the circulation of best practices among middle ma...

  1. Didactic model of the high storage system

    Directory of Open Access Journals (Sweden)

    J. Świder

    2006-04-01

    Full Text Available Purpose: The continuous progress in Computer Integrated Manufacturing (CIM field with automatic storing systems is broadening the range of education process for engineers in future. This document describes the newest didactic station integrated witch a Modular Production System (MPS model [1, 2, 3]. It is a module of high storage. This arrangement is the perfect didactic item for students.Design/methodology/approach: The main reason, why the laboratory position, we have mentioned, has been created is brodening the students knowlegde’s range. To achive this task the warehouse has been made from really industrial elements. All manipulator’s axis were building from different types of transmissions. Findings: During the work with warehouse there has been prepared the new algorithm which controlls the linear drive. Besides that there has been created brand new standards in engineers education, which are based on the described warehouse. Research limitations/implications: The main target of the didactic activity of Institute of Engineering Processes Automation and Integrated Manufacturing Systems is broden the loboratory base. That’s the reason why now there already has been building another laboratory position, which is based on Fanuc manipulator.Practical implications: The algorithm of Pneu-Stat steering hasn’t been finished yet, but when it has been done it can be used in industrial aplicationsOriginality/value: This paper describes the new didactic station with innovational steering algorithm [4, 5].

  2. Energy storage system control strategies for power distribution systems

    Directory of Open Access Journals (Sweden)

    Areewan Kajorndech

    2015-03-01

    Full Text Available Energy storage systems have been widely employed to attain several benefits, such as reliability improvement, stabilization of power systems connected with renewable energy resources, economic benefits and etc. To achieve the above objectives, the appropriate and effective control strategies for energy storage systems are needed to be developed. This research proposes energy storage system control strategies for power distribution systems equipped with a limited size of energy storage system in order to improve reliability and save energy costs by determining an optimal charging schedule of the energy storage system. Simulation results demonstrate the benefits of energy storage system applications under the different control strategies.

  3. Software Build and Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-10

    This presentation deals with the hierarchy of software build and delivery systems. One of the goals is to maximize the success rate of new users and developers when first trying your software. First impressions are important. Early successes are important. This also reduces critical documentation costs. This is a presentation focused on computer science and goes into detail about code documentation.

  4. Annual Collection and Storage of Solar Energy for the Heating of Buildings, Report No. 3. Semi-Annual Progress Report, August 1977 - January 1978.

    Science.gov (United States)

    Beard, J. Taylor; And Others

    This report is part of a series from the Department of Energy on the use of solar energy in heating buildings. Described here is a new system for year around collection and storage of solar energy. This system has been operated at the University of Virginia for over a year. Composed of an underground hot water storage system and solar collection,…

  5. Building Better Buildings: Sustainable Building Activities in California Higher Education Systems.

    Science.gov (United States)

    Sowell, Arnold; Eichel, Amanda; Alevantis, Leon; Lovegreen, Maureen

    2003-01-01

    This article outlines the activities and recommendations of California's sustainable building task force, discusses sustainable building activities in California's higher education systems, and highlights key issues that California is grappling with in its implementation of sustainable building practices. (EV)

  6. Criticality safety studies of Building 3019 Cell 4 and in-line storage wells

    International Nuclear Information System (INIS)

    New fissile material load limits for storage facilities located in Building 3019 are derived in a manner consistent with currently applicable Martin Marietta Energy Systems requirements. The limits for 233U loading are 2.00, 1.80, 1.45, and 0.19 kg/ft for hydrogen-to-233U atoms ratios of 3, 5, 10, and unrestricted, respectively. Limits were also found for 235U and 239Pu systems. The KENO-Va Monte Carlo Program and Hansen-Roach cross sections were used to derive these limits

  7. Auditing for Distributed Storage Systems

    OpenAIRE

    Le, Anh; Markopoulou, Athina; Dimakis, Alexandros G.

    2012-01-01

    Distributed storage codes have recently received a lot of attention in the community. Independently, another body of work has proposed integrity checking schemes for cloud storage, none of which, however, is customized for coding-based storage or can efficiently support repair. In this work, we bridge the gap between these two currently disconnected bodies of work. We propose NC-Audit, a novel cryptography-based remote data integrity checking scheme, designed specifically for network coding-b...

  8. Energy storage system control strategies for power distribution systems

    OpenAIRE

    Areewan Kajorndech; Dulpichet Rerkpreedapong

    2015-01-01

    Energy storage systems have been widely employed to attain several benefits, such as reliability improvement, stabilization of power systems connected with renewable energy resources, economic benefits and etc. To achieve the above objectives, the appropriate and effective control strategies for energy storage systems are needed to be developed. This research proposes energy storage system control strategies for power distribution systems equipped with a limited size of energy storage system ...

  9. A concept of an electricity storage system with 50 MWh storage capacity

    OpenAIRE

    Józef Paska; Mariusz Kłos; Paweł Antos; Grzegorz Błajszczak

    2012-01-01

    Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy), and direct storage (in an electric or magnetic fi eld). Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers an...

  10. Building a parallel file system simulator

    International Nuclear Information System (INIS)

    Parallel file systems are gaining in popularity in high-end computing centers as well as commercial data centers. High-end computing systems are expected to scale exponentially and to pose new challenges to their storage scalability in terms of cost and power. To address these challenges scientists and file system designers will need a thorough understanding of the design space of parallel file systems. Yet there exist few systematic studies of parallel file system behavior at petabyte- and exabyte scale. An important reason is the significant cost of getting access to large-scale hardware to test parallel file systems. To contribute to this understanding we are building a parallel file system simulator that can simulate parallel file systems at very large scale. Our goal is to simulate petabyte-scale parallel file systems on a small cluster or even a single machine in reasonable time and fidelity. With this simulator, file system experts will be able to tune existing file systems for specific workloads, scientists and file system deployment engineers will be able to better communicate workload requirements, file system designers and researchers will be able to try out design alternatives and innovations at scale, and instructors will be able to study very large-scale parallel file system behavior in the class room. In this paper we describe our approach and provide preliminary results that are encouraging both in terms of fidelity and simulation scalability.

  11. Systems analysis of thermal storage

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, R. J.

    1980-08-01

    During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

  12. Management issues for high performance storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S. [Lawrence Livermore National Lab., CA (United States); Burris, R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  13. Hydrogen storage and delivery system development

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L.; Wally, K.; Raber, T.N. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. The purpose of this project is to develop a platform for the engineering evaluation of hydrogen storage and delivery systems with an added focus on lightweight hydride utilization. Hybrid vehicles represent the primary application area of interest, with secondary interests including such items as existing vehicles and stationary uses. The near term goal is the demonstration of an internal combustion engine/storage/delivery subsystem. The long term goal is optimization of storage technologies for both vehicular and industrial stationary uses. In this project an integrated approach is being used to couple system operating characteristics to hardware development. A model has been developed which integrates engine and storage material characteristics into the design of hydride storage and delivery systems. By specifying engine operating parameters, as well as a variety of storage/delivery design features, hydride bed sizing calculations are completed. The model allows engineering trade-off studies to be completed on various hydride material/delivery system configurations. A more generalized model is also being developed to allow the performance characteristics of various hydrogen storage and delivery systems to be compared (liquid, activated carbon, etc.). Many of the features of the hydride storage model are applicable to the development of this more generalized model.

  14. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Rick E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Frederickson, James R. [AREVA, Avignon (France); Criddle, James [AREVA, Avignon (France); Hamilton, Dennis [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Johnson, Mike W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-10-18

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).

  15. Automated storage and retrieval system design report

    OpenAIRE

    Eaglesham, Mark A.

    1995-01-01

    This report describes the design and operation of an Automated Storage and Retrieval System (AS/RS) to serve the Flexible Manufacturing and Assembly System (FMAS) in the Manufacturing Systems Laboratory at Virginia Tech. The system requirements of the AS/RS, justification of design choices, and the proposed modes of operating the system are described. The AS/RS was designed to automatically move material on pallets between the storage racks in the laboratory to the FMAS conveyor interface....

  16. Pilot study on diffusive ground heat storage in the SUVA 'D4' building complex in Root, Switzerland; Etude pilote pour le stockage diffusif des batiments du centre D4 de la SUVA a Root, Lucerne. Analyse de 2 tests de reponse geothermique et integration du stockage diffusif dans le systeme

    Energy Technology Data Exchange (ETDEWEB)

    Pahud, D.

    2001-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents, in a first part, the results of two thermal response tests made on a geothermal heat storage system that forms part of a heating and cooling system for a complex of buildings comprising the 'D4' centre of the Swiss Accident Insurance Institution (SUVA) in Root, near Lucerne, Switzerland. These in situ response tests on two borehole heat exchangers confirmed the laboratory measurements, indicating that no significant ground water flow is present. In a second part the heat storage dimensioning and the heating/cooling system evaluation by means of computerized simulation are described, which used simulated data for the heating and cooling requirements of the new buildings and the ground heat storage parameters. The PILESIM thermal simulation tool is described, a computer code used to simulate heating and cooling systems that use heat-exchanger piles or borehole heat exchangers. The evaluations made on three system concepts are discussed that permitted the optimal design of the diffusive ground storage system. The construction of the actual system is also described.

  17. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  18. Cooperative Regenerating Codes for Distributed Storage Systems

    OpenAIRE

    Shum, Kenneth W.

    2011-01-01

    When there are multiple node failures in a distributed storage system, regenerating the failed storage nodes individually in a one-by-one manner is suboptimal as far as repair-bandwidth minimization is concerned. If data exchange among the newcomers is enabled, we can get a better tradeoff between repair bandwidth and the storage per node. An explicit and optimal construction of cooperative regenerating code is illustrated.

  19. Thermal Energy Storage for Building Load Management: Application to Electrically Heated Floor

    Directory of Open Access Journals (Sweden)

    Hélène Thieblemont

    2016-07-01

    Full Text Available In cold climates, electrical power demand for space conditioning becomes a critical issue for utility companies during certain periods of the day. Shifting a portion or all of it to off-peak periods can help reduce peak demand and reduce stress on the electrical grid. Sensible thermal energy storage (TES systems, and particularly electrically heated floors (EHF, can store thermal energy in buildings during the off-peak periods and release it during the peak periods while maintaining occupants’ thermal comfort. However, choosing the type of storage system and/or its configuration may be difficult. In this paper, the performance of an EHF for load management is studied. First, a methodology is developed to integrate EHF in TRNSYS program in order to investigate the impact of floor assembly on the EHF performance. Then, the thermal comfort (TC of the night-running EHF is studied. Finally, indicators are defined, allowing the comparison of different EHF. Results show that an EHF is able to shift 84% of building loads to the night while maintaining acceptable TC in cold climate. Moreover, this system is able to provide savings for the customer and supplier if there is a significant difference between off-peak and peak period electricity prices.

  20. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  1. Enabling Large-Scale Storage in Sensor Networks with the Coffee File System

    OpenAIRE

    Tsiftes, Nicolas; Dunkels, Adam; He, Zhitao; Voigt, Thiemo

    2009-01-01

    Persistent storage offers multiple advantages for sensor networks, yet the available storage systems have been unwieldy because of their complexity and device-specific designs. We present the Coffee file system for flash-based sensor devices. Coffee provides a programming interface for building efficient and portable storage abstractions. Unlike previous flash file systems, Coffee uses a small and constant RAM footprint per file, making it scale elegantly with workloads consisting of large fi...

  2. Search content via Cloud Storage System

    Directory of Open Access Journals (Sweden)

    Haytham Al-Feel

    2011-11-01

    Full Text Available With cloud computing growing in IT Enterprise. the importance of storing and searching files on the cloud increase. cloud storage is defined as a set of scalable data servers or chunk servers that provide computing and storage services to clients. Our research concern with searching in the file content throw cloud storage system Our research using ontology approach that can be store and retrieve files in the cloud based on its content to resolves the weaknesses that existed in Google File System that depends on metadata and searching only using file name Our new architecture was tested on Cloud Storage Simulator and the result shows that the new architecture has better scalability, fault tolerance and performance for searching for file content in cloud storage system.

  3. Canister storage building (CSB) safety analysis report phase 3:safety analysis documentation supporting CSB construction

    International Nuclear Information System (INIS)

    The purpose of this report is to provide an evaluation of the Canister Storage Building (CSB) design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB

  4. Energy storage for power systems

    CERN Document Server

    Ter-Gazarian, Andrei

    2011-01-01

    The supply of energy from primary sources is not constant and rarely matches the pattern of demand from consumers. Electricity is also difficult to store in significant quantities. Therefore, secondary storage of energy is essential to increase generation capacity efficiency and to allow more substantial use of renewable energy sources that only provide energy intermittently. Lack of effective storage has often been cited as a major hurdle to substantial introduction of renewable energy sources into the electricity supply network.This 2nd edition, without changing the existing structure of the

  5. Data storage system for fusion experiment

    International Nuclear Information System (INIS)

    An appropriate archiving and an effective using of experimental data are examined in the field of fusion research. Several computer systems in tokamak type fusion experimental devices are reviewed, and then, indispensable functions and optimum utilizing form of data storage system are discussed from the standpoint of computer technology. According to these considerations, the data storage system was made in the JFT-2M tokamak. (author)

  6. Data Acquisition and Transmission System for Building Energy Consumption Monitoring

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    2013-01-01

    Full Text Available Building energy consumption monitoring and management system have been developed widely in China in order to gain the real-time data of energy consumption in buildings for analyzing it in the next state work. This paper describes a low-cost and small-sized collector based on the STM32 microcontroller, which can be placed in a building easily to implement the work of data acquisition, storage, and transmission. The collector gathers the electricity, water, heat, and energy consumption data through the RS485 field bus and stores the data into an SD card with mass storage, finally, using Internet to finish the communication and transmission to data server through TCP protocol. The collector has been used in application for two years, and the results show that the system is reliable and stable.

  7. Calcium bromide hydration for heat storage systems

    OpenAIRE

    Ai Niwa; Noriyuki Kobayashi

    2015-01-01

    A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the...

  8. Hydrogen storage and delivery system development: Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L.; Malinowski, M.E.; Wally, K. [Sandia National Lab., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a newly developed fuel cell vehicle hydride storage system model will also be discussed. As an example of model use power distribution and control for a simulated driving cycle is presented. An experimental test facility, the Hydride Bed Testing Laboratory (HBTL) has been designed and fabricated. The development of this facility and its use in storage system development will be reviewed. These two capabilities (analytical and experimental) form the basis of an integrated approach to storage system design and development. The initial focus of these activities has been on hydride utilization for vehicular applications.

  9. The CASCAD system: An SGN spent fuel dry storage facility

    International Nuclear Information System (INIS)

    This paper will present SGN's dry vault spent storage system. This concept is based on the CASCAD facility, designed and built by SGN for the French Atomic Energy Commission (CEA) at Cadarache, France. Cascade has been in operation since 1990 since which time SGN has customized its storage system. Because of its extensive experience in both spent fuel assembly and dry storage of high level waste, SGN is able to design solutions fully customized to fit customers' storage requirements using proven technology. Its modular approach allows for staggered investment over a period of several years for maximum flexibility. The Cascad system meets site-specific constraints and safety requirements and is able to receive a wide range of fuels and shipping casks. Since spent fuel assemblies are stored in passive cooled pits, the system is entirely passive and therefore inherently safe. Moreover, the Cascad system allows total retrievability of spent fuel after a 50-year storage period even if the reactor building no longer exists

  10. Energy storage system for a pulsed DEMO

    International Nuclear Information System (INIS)

    Several designs have been proposed for the DEMO fusion reactor. Some of them are working in a non-steady state mode. Since a power plant should be able to deliver to the grid a constant power, this challenge must be solved. Energy storage is required at a level of 250 MWhe with the capability of delivering a power of 1 GWe. A review of different technologies for energy storage is made. Thermal energy storage (TES), fuel cells and other hydrogen storage, compressed air storage, water pumping, batteries, flywheels and supercapacitors are the most promising solutions to energy storage. Each one is briefly described in the paper, showing its basis, features, advantages and disadvantages for this application. The conclusion of the review is that, based on existing technology, thermal energy storage using molten salts and a system based on hydrogen storage are the most promising candidates to meet the requirements of a pulsed DEMO. These systems are investigated in more detail together with an economic assessment of each

  11. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  12. Biodigester as an energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Borges Neto, M.R.; Lopes, L.C.N. [Federal Institute of Education, Science and Technology of Sertao Pernambucano (IFSertao-PE), Petrolina, PE (Brazil)], Emails: rangel@cefetpet.br; Pinheiro Neto, J.S.; Carvalho, P.C.M. [Federal University of Ceara (UFC), Fortaleza, CE (Brazil). Dept. of Electrical Engineering], Emails: neto@tbmtextil.com.br, carvalho@dee.ufc.br; Silveira, G.C.; Moreira, A.P.; Borges, T.S.H. [Federal Institute of Education, Science and Technology of Ceara (IFCE), Fortaleza, CE (Brazil)], Emails: gcsilveira@cefet-ce.br, apmoreira@ifce.edu.br, thatyanys@yahoo.com.br

    2009-07-01

    Electricity supply for rural and remote areas is becoming an increasing priority to developing countries. The high initial cost of renewable energy based unities usually needs an energy storage system; due its operational and even replacement cost contributes to a higher final cost. The choice of energy storage systems depends on the sort and size of adopted power supply. This paper has a main goal to introduce a renewable energy based storage system weakly explored in Brazil: biogas from anaerobic digestion. It also brings a review of the main energy storage systems applied to electrical energy generation. As reference an experiment with an adapted Indian digester of 5 m{sup 3} that produced nearly 2m{sup 3} of biogas daily. The obtained biogas met the consumption of at least 4 typical Brazilian low income households with installed load of 500 W each and was enough to replace the use of 420 Ah lead-acid batteries. (author)

  13. The Indonesia Carbon Capture Storage Capacity Building Program

    OpenAIRE

    World Bank

    2015-01-01

    In order to meet the growing Indonesian demand for electricity, while also constraining carbon dioxide (CO2) emissions, future coal power plants may have to include CO2 capture equipment with storage of that CO2. This study set out to define and evaluate the conditions under which fossil fuel power plants can be deemed as carbon capture and storage (CCS) ready (CCS-R). It considers the tec...

  14. APS storage ring vacuum system performance

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) storage ring was designed to operated with 7-GeV, 100-mA positron beam with lifetimes > 20 hours. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented

  15. Monitored Retrievable Storage System Requirements Document

    International Nuclear Information System (INIS)

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design

  16. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...... of renewable energy. Meanwhile, the insurance of power system stability through reduction of power gradients is of major importance even at lower penetration levels and some form of energy storage therefore seems unavoidable. A variety of technologies are available for storage of energy in the power system...

  17. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    Energy Technology Data Exchange (ETDEWEB)

    BAZINET, G.D.

    2000-11-03

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those

  18. Thermal energy storage for building heating and cooling applications. Quarterly progress report, April--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.W.; Kedl, R.J.

    1976-11-01

    This is the first in a series of quarterly progress reports covering activities at ORNL to develop thermal energy storage (TES) technology applicable to building heating and cooling. Studies to be carried out will emphasize latent heat storage in that sensible heat storage is held to be an essentially existing technology. Development of a time-dependent analytical model of a TES system charged with a phase-change material was started. A report on TES subsystems for application to solar energy sources is nearing completion. Studies into the physical chemistry of TES materials were initiated. Preliminary data were obtained on the melt-freeze cycle behavior and viscosities of sodium thiosulfate pentahydrate and a mixture of Glauber's salt and Borax; limited melt-freeze data were obtained on two paraffin waxes. A subcontract was signed with Monsanto Research Corporation for studies on form-stable crystalline polymer pellets for TES; subcontracts are being negotiated with four other organizations (Clemson University, Dow Chemical Company, Franklin Institute, and Suntek Research Associates). Review of 10 of 13 unsolicited proposals received was completed by the end of June 1976.

  19. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  20. Security for cloud storage systems

    CERN Document Server

    Yang, Kan

    2014-01-01

    Cloud storage is an important service of cloud computing, which offers service for data owners to host their data in the cloud. This new paradigm of data hosting and data access services introduces two major security concerns. The first is the protection of data integrity. Data owners may not fully trust the cloud server and worry that data stored in the cloud could be corrupted or even removed. The second is data access control. Data owners may worry that some dishonest servers provide data access to users that are not permitted for profit gain and thus they can no longer rely on the servers

  1. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  2. Design and management of energy-efficient hybrid electrical energy storage systems

    CERN Document Server

    Kim, Younghyun

    2014-01-01

    This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an act

  3. Simulation of thermocline thermal energy storage system using C

    Directory of Open Access Journals (Sweden)

    Meseret Tesfay

    2013-06-01

    Full Text Available Solar thermal power generation is a modern technology, which has already shown feasible results in the production of electricity. Thermal energy storage (TES is a crucial element in solar energy applications, which includes the increase of building thermal capacity, solar water heating systems for domestic use, and Concentrated Solar Thermal power plants for electricity generation. Economic, efficient and reliable thermal energy storage systems are a key need of solar thermal power plants, in order to smooth out the insolation changes during intermittent cloudy weather condition or during night period, to allow the operation. To address this goal, based on the parabolic trough power plants, sensible heat storage system with operation temperature between 300°C – 390°C can be used. The goal of this research is to design TES which can produce 1MWe. In this work simulation is performed to analyze the Liquid medium STES using C. In this case different liquid medium TESs is investigated and out of all mixed-media single-tank thermocline TES is selected and designed based on the Schumann equation. In particular, this equation is numerically solved, in order to determine energy storage, at different locations and time inside the storage tank. Finally, due to their feasibility, low cost of manufacturing and maintenance are designed and sized to the minimum possible volume.

  4. Storage and distribution system for multimedia information

    Science.gov (United States)

    Murakami, Tokumichi

    1994-06-01

    Recent advances in technologies such as digital signal processing, LSI devices and storage media have led to an explosive growth in multimedia environment. Multimedia information services are expected to provide an information-oriented infrastructure which will integrate visual communication, broadcasting and computer services. International standardizations in video/audio coding accelerate permeation of these services into society. In this paper, from trends of R & D and international standardization in video coding techniques, an outline is given of a storage and distribution system for multimedia information, and a summary of the requirements of digital storage media.

  5. Review of Magnetic Flywheel Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Prince Owusu-Ansah

    2014-08-01

    Full Text Available This study studies an overview of magnetic flywheel energy storage system. Energy storage is an integral part of any critical power system, as this stored energy is used to offset interruptions in the power delivered system from either a utility or an on-site generator. Magnetic flywheel as mechanical batteries using composite rotor, magnetic support bearings as well as power electronics to store electrical energy to replace stone wheel and chemical batteries has resulted in high power and energy densities. Traditionally, capacitors are used for short term storage (µs-ms and filtering, chemical batteries are used for intermediate storage (min-h and diesel fuel is used for long-term storage (h-days. Electricity generated from renewable sources, which has shown remarkable growth worldwide, can rarely provide immediate response to demand as these sources do not deliver regular supply easily adjustable to consumption needs. Thus, the growth of this decentralization production means greater network load stability problems and requires energy storage, generally using lead acid batteries as a potential solution. Finally the integration of all subsystems optimally of the magnetic flywheel system has resulted in a mechanical battery which can supply more efficient, reliable and uninterrupted power to meet the ever increasing demand of industrial machinery and automobiles.

  6. Laser beam modeling in optical storage systems

    Science.gov (United States)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  7. Force balanced magnetic energy storage system

    International Nuclear Information System (INIS)

    A novel scheme of constructing coils suited for inductive storage system is described. By means of a force-compensating method, the reinforcement structure can be made considerably smaller than that needed for conventional coils. The economics of this system is shown to be capable of achieving savings of upwards of 40% when compared to a conventional system

  8. Injection Control System of HLS Storage Ring

    CERN Document Server

    Liu, G; Li, W; Li Chuan; Li, K; Shang, L; Liu, Gongfa; Li, Jingyi; Li, Weimin; Li, Chuan; Li, Kaihong; Shang, Lei

    2001-01-01

    The injection control system of Hefei Light Source (HLS) storage ring is a subsystem of the upgraded HLS control system, which is based upon EPICS. Three programmable logic controllers (PLCs) are used as device controllers, which control one septum modulator and four kicker modulators of HLS storage ring. An Industrial PC is used as Input/Output Controller (IOC) and it connects the PLCs with serial communication (RS232 mode) over fibre. A PC with Linux is used as operator interface (OPI), operator application are running on it. The control system was completed in July 2000. The commissioning shows that the control system is reliable and easy operational.

  9. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  10. Air quality in low-ventilated museum storage buildings

    DEFF Research Database (Denmark)

    Ryhl-Svendsen, Morten; Aasbjerg Jensen, Lars; Klenz Larsen, Poul

    2014-01-01

    internally-generated pollutants accumulate, were measured by passive sampling of ozone, nitrogen dioxide, and organic acids. The air exchange rates and the interchange of air between storage rooms were measured by the per-fluorocarbon tracer gas method. Ambient pollutants were reduced in concentration...

  11. Scalability in extensible and heterogeneous storage systems

    OpenAIRE

    Miranda Bueno, Alberto

    2014-01-01

    The evolution of computer systems has brought an exponential growth in data volumes, which pushes the capabilities of current storage architectures to organize and access this information effectively: as the unending creation and demand of computer-generated data grows at an estimated rate of 40-60% per year, storage infrastructures need increasingly scalable data distribution layouts that are able to adapt to this growth with adequate performance. In order to provide the required performance...

  12. Autonomic Management in a Distributed Storage System

    CERN Document Server

    Tauber, Markus

    2010-01-01

    This thesis investigates the application of autonomic management to a distributed storage system. Effects on performance and resource consumption were measured in experiments, which were carried out in a local area test-bed. The experiments were conducted with components of one specific distributed storage system, but seek to be applicable to a wide range of such systems, in particular those exposed to varying conditions. The perceived characteristics of distributed storage systems depend on their configuration parameters and on various dynamic conditions. For a given set of conditions, one specific configuration may be better than another with respect to measures such as resource consumption and performance. Here, configuration parameter values were set dynamically and the results compared with a static configuration. It was hypothesised that under non-changing conditions this would allow the system to converge on a configuration that was more suitable than any that could be set a priori. Furthermore, the sy...

  13. OPTIMUM HEAT STORAGE DESIGN FOR SDHW SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    Two simulation models have been used to analyse the heat storage design’s influence on the thermal performance of solar domestic hot water (SDHW) systems. One model is especially designed for traditional SDHW systems based on a heat storage design where the solar heat exchanger is a built-in spiral...... of the tank design’s influence on the thermal performance of the systems is possible. By means of the calculations design rules for the two heat storage types are proposed........ The other model is especially designed for low flow SDHW systems based on a mantle tank.The tank design’s influence on the thermal performance of the SDHW systems has been investigated in a way where only one tank parameter has been changed at a time in the calculations. In this way a direct analysis...

  14. Preoperational test report, vent building ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  15. ALARA Analysis for Shippingport Pressurized Water Reactor Core 2 Fuel Storage in the Canister Storage Building (CSB)

    CERN Document Server

    Lewis, M E

    2000-01-01

    The addition of Shippingport Pressurized Water Reactor (PWR) Core 2 Blanket Fuel Assembly storage in the Canister Storage Building (CSB) will increase the total cumulative CSB personnel exposure from receipt and handling activities. The loaded Shippingport Spent Fuel Canisters (SSFCs) used for the Shippingport fuel have a higher external dose rate. Assuming an MCO handling rate of 170 per year (K East and K West concurrent operation), 24-hr CSB operation, and nominal SSFC loading, all work crew personnel will have a cumulative annual exposure of less than the 1,000 mrem limit.

  16. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy st

  17. SYSTEM ORGANIZATION OF MATERIAL PROVIDING OF BUILDING

    Directory of Open Access Journals (Sweden)

    A. V. Rаdkеvich

    2014-04-01

    Full Text Available Purpose. Development of scientific-methodical bases to the design of rational management of material streams in the field of building providing taking into account intersystem connections with the enterprises of building industry. Methodology. The analysis of last few years of functioning of building industry in Ukraine allows distinguishing a number of problems that negatively influence the steady development of building, as the component of the state economics system. Therefore the research of existent organization methods of the system of building objects providing with material resources is extremely necessary. In connection with this the article justifies the use of method of hierarchies analysis (Saati method for finding the optimal task solution of fixing the enterprises of building industry after building objects. Findings. Results give an opportunity to guidance of building organization to estimate and choose advantageous suppliers - enterprises of building industry, to conduct their rating, estimation taking into account basic descriptions, such as: quality, price, reliability of deliveries, specialization, financial status etc. Originality. On the basis of Saati method the methodologies of organization are improved, planning and managements of the reliable system of providing of building necessary material resources that meet the technological requirements of implementation of building and installation works. Practical value. Contribution to the decisions of many intricate organizational problems that are accompanied by the problems of development of building, provided due to organization of the reliable system of purchase of material resources.

  18. Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid

    Science.gov (United States)

    Zheng, Menglian; Meinrenken, Christoph

    2013-04-01

    As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

  19. Operating Experiences with an Advanced Fabric Energy Storage System

    Directory of Open Access Journals (Sweden)

    R.J Fuller

    2012-11-01

    Full Text Available Despite their proven track record in the cold climate countries of northern Europe, there are no reports in the research literature of experiences using advanced fabric energy storage (FES systems in countries where cooling rather than heating is the main priority. This paper reports some of the experiences with the first known advanced FES system in Australia made over the first full calendar year of operation. It is located in a three-storey building on a university campus in Victoria and has been in operation since mid-2002. Temperature, energy use and operational mode data were recorded during 2003. Airflow measurements through the FES system have been made in five areas of the building. On-going operating problems still exist with the system and this has prevented a conclusive evaluation of its suitability for the southern Australian climate.

  20. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  1. Modernizing the monitoring of Mass Storage systems

    CERN Document Server

    Terrien, Alexandre

    2016-01-01

    The monitoring of a system is essential to ensure its efficiency. On a computer system, this monitoring is partly done via the analysis of log messages. The monitoring of CASTOR, a mass-storage system responsible for the storage of 150Pb of scientific data at CERN, was being done with tools developed by the IT-ST-FDO section. Those tools recently encountered some performance limitations due to the increase in the quantity of data produced by CERN's experiments. In this paper, I will describe how I managed to modernize CASTOR's monitoring tools by leveraging services centrally managed by CERN's IT department.

  2. Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life

    International Nuclear Information System (INIS)

    Dry cask storage systems are deployed at nuclear power plants for used nuclear fuel (UNF) storage when spent fuel pools reach their storage capacity and/or the plants are decommissioned. An important waste and materials disposition consideration arising from the increasing use of these systems is the management of the dry cask storage systems' materials after the UNF proceeds to disposition. Thermal analyses of repository design concepts currently under consideration internationally indicate that waste package sizes for the geologic media under consideration may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded into the dry storage canisters currently in use. In the United States, there are already over 1650 of these dry storage canisters deployed and approximately 200 canisters per year are being loaded at the current fleet of commercial nuclear power plants. There is about 10 cubic meters of material from each dry storage canister system that will need to be dispositioned. The concrete horizontal storage modules or vertical storage overpacks will need to be reused, re-purposed, recycled, or disposed of in some manner. The empty metal storage canister/cask would also have to be cleaned, and decontaminated for possible reuse or recycling or disposed of, likely as low-level radioactive waste. These material disposition options can have impacts of the overall used fuel management system costs. This paper will identify and explore some of the technical and interface considerations associated with managing the dry cask storage system materials. (authors)

  3. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2006-01-01

    to achieve 100% coverage of space heating and domestic hot water in a low energy house in a Danish climate with a solar heating system with 36 m² flat plate solar collector and approximately 10 m³ storage with sodium acetate. A traditional water storage solution aiming at 100% coverage will require a storage...

  4. Dynamic thermal behavior of building using phase change materials for latent heat storage

    Directory of Open Access Journals (Sweden)

    Selka Ghouti

    2015-01-01

    Full Text Available This study presents a two-dimensional model with a real size home composed of two-storey (ground and first floor spaces separated by a slab, enveloped by a wall with rectangular section containing phase change material (PCM in order to minimize energy consumption in the buildings. The main objective of the PCM-wall system is to decrease the temperature change from outdoor space before it reaches the indoor space during the daytime. The numerical approach uses effective heat capacity Ceff model with realistic outdoor climatic conditions of Tlemcen city, Algeria. The numerical results showed that by using PCM in wall as energy storage components may reduce the room temperature by about 6 to 7°C of temperature depending on the floor level (first floor spaces or ground floor spaces.

  5. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  6. New kinds of energy-storing building composite PCMs for thermal energy storage

    International Nuclear Information System (INIS)

    Graphical abstract: In this work, 10 new kinds of BCPCMs were prepared by blending of liquid xylitol pentalaurate (XPL) and xylitol pentamyristate (XPM) esters into gypsum, cement, diatomite, perlite and vermiculite. DSC results showed that the melting temperatures and energy storage capacities of the prepared BCPCMs are in range of about 40–55 °C and 31–126 J/g, respectively. TG investigations and thermal cycling test showed that the BCPCMs had good thermal endurance and thermal reliability. It can be also concluded that among the prepared 10 kinds materials, especially the BCPCMs including perlite, vermiculite, diatomite were found to better candidates for thermal energy storage applications in buildings due to the fact that they have relatively high heat storage ability. Highlights: ► New kinds BCPCMs were prepared by blending of liquid XPL and XPM esters with some building materials. ► The BCPCMs had suitable melting temperatures and energy storage capacities. ► Especially, the BCPCMs including perlite, vermiculite, diatomite were found to better candidates for thermal energy storage. - Abstract: Energy storing-composite phase change materials (PCMs) are significant means of thermal energy storage in buildings. Although several building composite PCMs (BCPCMs) have been developed in recent years, the additional investigations are still required to enrich the diversity of BCPCMs for solar heating and energy conservation applications in buildings. For this purpose, the present work is focused the preparation, characterization and determination of 10 new kinds of BCPCMs. The BCPCMs were prepared by blending of liquid xylitol pentalaurate (XPL) and xylitol pentamyristate (XPM) esters with gypsum, cement, diatomite, perlite and vermiculite as supporting matrices. The scanning electron microscopy (SEM) and Fourier Transform Infrared (FT-IR) analysis showed that the ester compounds were adsorbed uniformly into the building materials due to capillary forces

  7. Design and operational experience of dry cask storage systems

    International Nuclear Information System (INIS)

    This paper (Power Point presentation) describes cask storage design features and available dry cask storage technology, cask types used for dry storage, design characteristics of CASTOR casks, the German licensing basis for cask storage systems, shielding requirements, thermal layout, mechanical design, criticality safety and containment, licensing procedure, operational experience of dry cask storage in Germany and worldwide

  8. Interaction of a solar space heating system with the thermal behavior of a building

    Energy Technology Data Exchange (ETDEWEB)

    Vilmer, C.; Warren, M.L.; Auslander, D.

    1980-12-01

    The thermal behavior of a building in response to heat input from an active solar space heating system is analyzed to determine the effect of the variable storage tank temperature on the cycling rate, on-time, and off-time of a heating cycle and on the comfort characteristics of room air temperature swing and of offset of the average air temperature from the setpoint (droop). A simple model of a residential building, a fan coil heat-delivery system, and a bimetal thermostat are used to describe the system. A computer simulation of the system behavior has been developed and verified by comparisons with predictions from previous studies. The system model and simulation are then applied to determine the building response to a typical hydronic solar heating system for different solar storage temperatures, outdoor temperatures, and fan coil sizes. The simulations were run only for those cases where there was sufficient energy from storage to meet the building load requirements.

  9. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will be designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations

  10. Monitoring water storage variations in the vadose zone with gravimeters - quantifying the influence of observatory buildings

    Science.gov (United States)

    Reich, Marvin; Güntner, Andreas; Mikolaj, Michal; Blume, Theresa

    2016-04-01

    Time-lapse ground-based measurements of gravity have been shown to be sensitive to water storage variations in the surroundings of the gravimeter. They thus have the potential to serve as an integrative observation of storage changes in the vadose zone. However, in almost all cases of continuous gravity measurements, the gravimeter is located within a building which seals the soil beneath it from natural hydrological processes like infiltration and evapotranspiration. As water storage changes in close vicinity of the gravimeter have the strongest influence on the measured signal, it is important to understand the hydrology in the unsaturated soil zone just beneath the impervious building. For this reason, TDR soil moisture sensors were installed in several vertical profiles up to a depth of 2 m underneath the planned new gravimeter building at the Geodetic Observatory Wettzell (southeast Germany). In this study, we assess the influence of the observatory building on infiltration and subsurface flow patterns and thus the damping effect on gravimeter data in a two-way approach. Firstly, soil moisture time series of sensors outside of the building area are correlated with corresponding sensors of the same depth beneath the building. The resulting correlation coefficients, time lags and signal to noise relationships are used to find out how and where infiltrating water moves laterally beneath the building and towards its centre. Secondly, a physically based hydrological model (HYDRUS) with high discretization in space and time is set up for the 20 by 20 m area around and beneath the gravimeter building. The simulated spatial distribution of soil moisture in combination with the observed point data help to identify where and to what extent water storage changes and thus mass transport occurs beneath the building and how much this differs to the dynamics of the surroundings. This allows to define the umbrella space, i.e., the volume of the vadose zone where no mass

  11. [Digital photograph storage systems in clinical dermatology].

    Science.gov (United States)

    Taberner, R; Contestí, T

    2010-05-01

    In recent years, digital photography has consolidated its role in clinical dermatology. In view of the quality and low cost of current equipment and the simplicity of digital storage, almost all dermatologists now use digital photography, which is also extremely versatile and readily applicable to teaching. However, to maximize its full potential, image retrieval must be available at any time and with the patient present. This requires a suitable storage system that may vary according to the characteristics of each center. Dermatologists must also find time to maintain and organize the digital archives. The present article describes current options in digital image storage and retrieval, ranging from multidepartmental picture archiving and communication systems at one end to image management freeware at the other, and also including dedicated dermatology software.

  12. Calcium bromide hydration for heat storage systems

    Directory of Open Access Journals (Sweden)

    Ai Niwa

    2015-12-01

    Full Text Available A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the object that requires heat. The exothermic heat produced from the solid–liquid reaction was measured, and the relationship between the equivalence ratio and the reaction heat was evaluated. The heat output and heat recovered by the heat storage system, which comprised a reaction vessel and a heat exchanger, were measured. We selected solid CaBr2 because it was the best metal halide for a hydration reaction and had a high heat yield from the dissolution reaction. With this system, we were able to achieve a heat recovery rate of 582 kJ/L-H2O. We found no degradation in the chemical composition of CaBr2 after it being recycled 100 times.

  13. Building Systems: Passing Fad or Basic Tool?

    Science.gov (United States)

    Rezab, Donald

    Building systems can be traced back to a 1516 A.D. project by Leonardo da Vinci and to a variety of prefabrication projects in every succeeding century. When integrated into large and repetitive spatial units through careful design, building systems can produce an architecture of the first order, as evidenced in the award winning design of…

  14. DYNAMIC BOTTLENECKS IN HANDLING AND STORAGE SYSTEMS

    OpenAIRE

    PANOVA YULIA; HILMOLA OLLI-PEKKA

    2015-01-01

    The development of industrial engineering and production systems is manifested under the demand of Russian customers in the current economic and political situation, e.g. deprivation from several import markets. In these circumstances, issues related to the formation of process systems are gaining their importance. The article considers the objective of reaching the smooth and continuous material flow in the handling and storage system of the plant, as well as the problems of bottlenecks opti...

  15. Modelling the Size of Seasonal Thermal Storage in the Solar District Heating System

    OpenAIRE

    Giedrė Streckienė; Salomėja Bagdonaitė

    2012-01-01

    The integration of a thermal storage system into the solar heating system enables to increase the use of solar thermal energy in buildings and allows avoiding the mismatch between consumers’ demand and heat production in time. The paper presents modelling a seasonal thermal storage tank various sizes of which have been analyzed in the district solar heating system that could cover a part of heat demand for the district of individual houses in Vilnius. A biomass boiler house, as an additional ...

  16. Data Storage in RFID Systems

    OpenAIRE

    Henrici, Dirk; Kabzeva, Aneta; Fleuren, Tino; Müller, Paul

    2010-01-01

    The previous section showed different possibilities to separate the required object data between the transponder and the backend. This section discusses the advantages and disadvantages that each technical design possibility has in practice. Different quality characteristics of the resulting RFID system are taken into consideration: Speed of reading and error rate, flexibility, security, privacy, and costs. All application functionalities can be realized using an arbitrary one of the differen...

  17. A data acquisition system with mass storage

    NARCIS (Netherlands)

    Elswijk, P.B.J. van; Engmann, R.; Hoogenboom, A.M.; Wit, P. de

    1971-01-01

    data handling system consisting of a small computer with disk storage and magnetic tape has been developed for various kinds of nuclear spectroscopy experiments. The operator can specify the data structure and parameters of the experiment in a suitable code to the computer.

  18. Development of a seasonal thermochemical storage system

    NARCIS (Netherlands)

    Cuypers, R.; Maraz, N.; Eversdijk, J.; Finck, C.J.; Henquet, E.M.P.; Oversloot, H.P.; Spijker, J.C. van 't; Geus, A.C. de

    2012-01-01

    In our laboratories, a seasonal thermochemical storage system for dwellings and offices is being designed and developed. Based on a thermochemical sorption reaction, space heating, cooling and generation of domestic hot water will be achieved with up to 100% renewable energy, by using solar energy a

  19. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  20. Changing Dashboard build system to Bamboo

    CERN Document Server

    Varga, Robert

    2013-01-01

    The aim of this project is to change Cosmic custom build system to an Automated build system used Bamboo CI System services. The goal is when a developer performs some changes on the source code, the system builds installation packages for different architectures and runs tests automatically on the software modules as soon as possible. The Bamboo build system polls the git repository which is a commonly used source code repository by the developers of the IT department. Bamboo CI System is a widely used system by the department. Thus the project uses widely accepted tools by the department which makes the Cosmic project even more standardized. Project also aims to create packages for every versions of Cosmic modules for different architectures (SLC5/SLC6) which can be accessed by different package repositories on AFS file system. The created package repositories can be used for automated deploy environment such as puppet.

  1. Storage monitoring systems for the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, C.; Pollock, R.

    1997-12-31

    In September 1993, President Clinton stated the US would ensure that its fissile material meet the highest standards of safety, security, and international accountability. Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. To prepare for this future, Sandia National Laboratories has developed several monitoring systems, including the Modular Integrated Monitoring System (MIMS) and Project Straight-Line. The purpose of this paper is to describe a Sandia effort that merges remote monitoring technologies into a comprehensive storage monitoring system that will meet the near-term as well as the long-term requirements for these types of systems. Topics discussed include: motivations for storage monitoring systems to include remote monitoring; an overview of the needs and challenges of providing a storage monitoring system for the year 2000; an overview of how the MIMS and Straight-Line can be enhanced so that together they create an integrated and synergistic information system by the end of 1997; and suggested milestones for 1998 and 1999 to assure steady progress in preparing for the needs of 2000.

  2. Monitoring a petabyte scale storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Jon; Berman, Eileen; Huang, Chih-Hao; Moibenko, Alexander; Petravick, Don; Zalokar, Michael; /Fermilab

    2004-12-01

    Fermilab operates a petabyte scale storage system, Enstore, which is the primary data store for experiments' large data sets. The Enstore system regularly transfers greater than 15 Terabytes of data each day. It is designed using a client-server architecture providing sufficient modularity to allow easy addition and replacement of hardware and software components. Monitoring of this system is essential to insure the integrity of the data that is stored in it and to maintain the high volume access that this system supports. The monitoring of this distributed system is accomplished using a variety of tools and techniques that present information for use by a variety of roles (operator, storage system administrator, storage software developer, user). Essential elements of the system are monitored: performance, hardware, firmware, software, network, data integrity. We will present details of the deployed monitoring tools with an emphasis on the different techniques that have proved useful to each role. Experience with the monitoring tools and techniques, what worked and what did not will be presented.

  3. Storage monitoring systems for the year 2000

    International Nuclear Information System (INIS)

    In September 1993, President Clinton stated the US would ensure that its fissile material meet the highest standards of safety, security, and international accountability. Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. To prepare for this future, Sandia National Laboratories has developed several monitoring systems, including the Modular Integrated Monitoring System (MIMS) and Project Straight-Line. The purpose of this paper is to describe a Sandia effort that merges remote monitoring technologies into a comprehensive storage monitoring system that will meet the near-term as well as the long-term requirements for these types of systems. Topics discussed include: motivations for storage monitoring systems to include remote monitoring; an overview of the needs and challenges of providing a storage monitoring system for the year 2000; an overview of how the MIMS and Straight-Line can be enhanced so that together they create an integrated and synergistic information system by the end of 1997; and suggested milestones for 1998 and 1999 to assure steady progress in preparing for the needs of 2000

  4. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is

  5. APS storage ring vacuum system development

    International Nuclear Information System (INIS)

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's materials research program. The Storage Ring's 1104 m circumference is divided into 40 sectors which contain vacuum, beam transport, control, rf and insertion device systems. The vacuum system will operate at a pressure of 1 nTorr and is fabricated from aluminum. The system includes distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. An overview of the vacuum system design and details of selected development program results are presented. 5 refs

  6. Rapid Framing Mass Storage System on the Internet

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Mass storage system is now very important for storing huge volume of data in many application system such as VOD systems, electronic library, scientific computation and so on. Besides the storage device and network devices, the real performance of mass storage system is greatly influenced by the connection way between the host and storage system. Here we propose a new design of mass storage system by promoting the storage devices' functions and involving them directly into data delivering. It can easily meet the demands both for capacity and I/O bandwidth in those applications, and has better service quality and performance compared with the traditional system in delivering mass data over network.

  7. Fire Design Study Case of a High-Rise Steel Storage Building

    OpenAIRE

    Franssen, Jean-Marc; Zaharia, Raoul

    2002-01-01

    This paper presents a fire design study case for a high-rise storage rach supporting building. Standardised ISO and natural fire models were considered for the fire action. The structural analysis was carried out by means of the advanced numerical program SAFIR, an FEM software specialised for the thermal and mechanical analysis of structures submitted to the fire. Peer reviewed

  8. Superhalogens as Building Blocks of Complex Hydrides for Hydrogen Storage

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    Superhalogens are species whose electron affinity (EA) or vertical detachment energy (VDE) exceed to those of halogen. These species typically consist of a central electropositive atom with electronegative ligands. The EA or VDE of species can be further increased by using superhalogen as ligands, which are termed as hyperhalogen. Having established BH4- as a superhalogen, we have studied BH4-x(BH4)x- (x = 1 to 4) hyperhalogen anions and their Li-complexes, LiBH4-x(BH4)x using density functional theory. The VDE of these anions is larger than that of BH4-, which increases with the increase in the number of peripheral BH4 moieties (x). The hydrogen storage capacity of LiBH4-x(BH4)x complexes is higher but binding energy is smaller than that of LiBH4, a typical complex hydride. The linear correlation between dehydrogenation energy of LiBH4-x(BH4)x complexes and VDE of BH4-x(BH4)x- anions is established. These complexes are found to be thermodynamically stable against dissociation into LiBH4 and borane. This stud...

  9. Order Picking Optimization in Carousels Storage System

    Directory of Open Access Journals (Sweden)

    Xiong-zhi Wang

    2013-01-01

    Full Text Available This paper addresses the order picking problem in a material handling system consisting of multiple carousels and one picker. Carousels are rotatable closed-loop storage systems for small items, where items are stored in bins along the loop. An order at carousels consists of n different items stored there. The objective is to find an optimal picking sequence to minimizing the total order picking time. After proving the problem to be strongly NP-hard and deriving two characteristics, we develop a dynamic programming algorithm (DPA for a special case (two-carousel storage system and an improved nearest items heuristics (INIH for the general problem. Experimental results verify that the solutions are quickly and steadily achieved and show their better performance.

  10. Using Expert Systems To Build Cognitive Simulations.

    Science.gov (United States)

    Jonassen, David H.; Wang, Sherwood

    2003-01-01

    Cognitive simulations are runnable computer programs for modeling human cognitive activities. A case study is reported where expert systems were used as a formalism for modeling metacognitive processes in a seminar. Building cognitive simulations engages intensive introspection, ownership and meaning making in learners who build them. (Author/AEF)

  11. WASTE TREATMENT BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    P.A. Kumar

    2000-06-22

    The Waste Treatment Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Treatment Building (WTB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for personnel comfort and equipment operation, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WTB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement area ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination with the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WTB. The Waste Treatment Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits, The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Treatment Building Ventilation System interfaces with the Waste Treatment Building System by being located in the WTB, and by maintaining specific pressure, temperature, and humidity environments within the building

  12. Heat storage in solar thermal systems

    OpenAIRE

    Sedmidubský, Petr

    2014-01-01

    This bachelor´s thesis deals with heat storage in solar thermal systems. The first part of the thesis is devoted to the solar energy. The problems with its use are described in this part. The second part is devoted to solar thermal systems. Various types and designs of solar thermal systems are described in this part. The third part of thesis is devoted to the various types of solar thermal systems. The principle of their operation, advantages, disadvantages and the possibility of their pract...

  13. Parametric Study on the Dynamic Heat Storage Capacity of Building Elements

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2007-01-01

    of onedimensional heat conduction in a slab with convective boundary condition was applied to quantify the dynamic heat storage capacity of a particular building element. The impact of different parameters, such as slab thickness, material properties and the heat transfer coefficient was investigated, as well...... as their interrelation. The potential of increasing thermal mass by using phase change materials (PCM) was estimated assuming increased thermal capacity. The results show a significant impact of the heat transfer coefficient on heat storage capacity, especially for thick, thermally heavy elements. The storage capacity...... of a 100 mm thick concrete slab was found to increase with increasing heat transfer coefficients as high as 30 W/m2K. In contrast the heat storage capacity of a thin gypsum plaster board was found to be constant when the heat transfer coefficient exceeded 3 W/m2K. Additionally, the optimal thickness...

  14. Energy storage

    CERN Document Server

    Brunet, Yves

    2013-01-01

    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  15. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...

  16. Balancing Hydronic Systems in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, Russell [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Ludwig, Peter [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Maurer, Tessa [Partnership for Advanced Residential Retrofit, Chicago, IL (United States)

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61°F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1°F to 15.5°F.

  17. Hydrogen storage systems from waste Mg alloys

    Science.gov (United States)

    Pistidda, C.; Bergemann, N.; Wurr, J.; Rzeszutek, A.; Møller, K. T.; Hansen, B. R. S.; Garroni, S.; Horstmann, C.; Milanese, C.; Girella, A.; Metz, O.; Taube, K.; Jensen, T. R.; Thomas, D.; Liermann, H. P.; Klassen, T.; Dornheim, M.

    2014-12-01

    The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

  18. Multi personal computer storage system: solution of sea capacity PACS storage

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective According to the characteristics of digital medicine and the demands of digitized management in hospitals, we established a storage system that is affordable, highly expandable, and reliable. Methods The multi personal computer storage system (MPCSS) was constructed using hardware and software. The image data were archived from major servers to storage personal computers (PCs) by using Neusoft-picture archiving and communication system (PACS) and backed up on storage PCs. We simulated data loss on storage PCs and then restored the data. We also expanded the storage system to enlarge its capacity. Results The average transfer rate from MPCSS was 27.7 MB/s, and the average cost for this system was $74/GB. In the testing stage, only 6 of 187 instances of data retrieval (from 100 patients) failed. Conclusion The MPCSS is much less expensive than other high capacity systems or devices. It is feasible and suitable for digital image storage.

  19. Energy Efficiency through Thermal Energy Storage - Evaluation of the Possibilities for the Swedish Building Stock, Phase 1

    OpenAIRE

    Heier, Johan; Bales, Chris; Martin, Viktoria

    2010-01-01

    As a first step in assessing the potential of thermal energy storage in Swedish buildings, the current situation of the Swedish building stock and different storage methods are discussed in this paper. Overall, many buildings are from the 1960’s or earlier having a relatively high energy demand, creating opportunities for large energy savings. The major means of heating are electricity for detached houses and district heating for multi dwelling houses and premises. Cooling needs are relativel...

  20. Failure Analysis of Storage Data Magnetic Systems

    Directory of Open Access Journals (Sweden)

    Ortiz–Prado A.

    2010-10-01

    Full Text Available This paper shows the conclusions about the corrosion mechanics in storage data magnetic systems (hard disk. It was done from the inspection of 198 units that were in service in nine different climatic regions characteristic for Mexico. The results allow to define trends about the failure forms and the factors that affect them. In turn, this study has analyzed the causes that led to mechanical failure and those due to deterioration by atmospheric corrosion. On the basis of the results obtained from the field sampling, demonstrates that the hard disk failure is fundamentally by mechanical effects. The deterioration by environmental effects were found in read-write heads, integrated circuits, printed circuit boards and in some of the electronic components of the controller card of the device, but not in magnetic storage surfaces. There fore, you can discard corrosion on the surface of the disk as the main kind of failure due to environmental deterioration. To avoid any inconvenience in the magnetic data storage system it is necessary to ensure sealing of the system.

  1. File Assignment Policy in Network Storage System

    Institute of Scientific and Technical Information of China (English)

    CaoQiang; XieChang-sheng

    2003-01-01

    Network storage increase capacity and scalability of storage system, data availability and enables the sharing of data among clients. When the developing network technology reduce performance gap between disk and network, however,mismatched policies and access pattern can significantly reduce network storage performance. So the strategy of data place ment in system is an important factor that impacts the performance of overall system. In this paper, the two algorithms of file assignment are presented. One is Greed partition that aims at the load balance across all NADs (Network Attached Disk). The other is Sort partition that tries to minimize variance of service time in each NAD. Moreover, we also compare the performance of our two algorithms in practical environment. Our experimental results show that when the size distribution (load characters) of all assigning files is closer and larger, Sort partition provides consistently better response times than Greedy algorithm. However, when the range of all assigning files is wider, there are more small files and access rate is higher, the Greedy algorithm has superior performance in compared with the Sort partition in off-line.

  2. File Assignment Policy in Network Storage System

    Institute of Scientific and Technical Information of China (English)

    Cao Qiang; Xie Chang-sheng

    2003-01-01

    Network storage increase capacity and scalability of storage system, data availability and enables the sharing of data among clients. When the developing network technology reduce performance gap between disk and network, however, mismatched policies and access pattern can significantly reduce network storage performance. So the strategy of data placement in system is an important factor that impacts the performance of overall system. In this paper, the two algorithms of file assignment are presented. One is Greed partition that aims at the load balance across all NADs (Network Attached Disk). The other is Sort partition that tries to minimize variance of service time in each NAD. Moreover, we also compare the performance of our two algorithms in practical environment. Our experimental results show that when the size distribution (load characters) of all assigning files is closer and larger, Sort partition provides consistently better response times than Greedy algorithm. However, when the range of all assigning files is wider, there are more small files and access rate is higher, the Greedy algorithm has superior performance in compared with the Sort partition in off-line.

  3. UK Building Procurement System and Sustainability

    OpenAIRE

    Zhou, Lei; Lowe, David J.

    2003-01-01

    Under the pressure of sustainable construction, research and development into sustainability and procurement is emerging. As the bridge between design and construction, the building procurement system, therefore, is critical to delivering sustainability in practice. It is the key for the successful implementation of sustainability to conventional construction process. However, there is a lack of research between UK building procurement system and sustainability. This paper reviews the concept...

  4. Investigation of heat of fusion storage for solar low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2005-01-01

    This paper describes a theoretical investigation by means of TRNSYS simulations of a partly heat loss free phase change material (PCM) storage solution for solar heating systems. The partly heat loss free storage is obtained by controlled used of super cooling in a mixture of sodium acetate...... and xanthane rubber. The storage can cool down to surrounding temperature preserving the latent heat in form of the heat of fusion energy. The basis for the calculations is a super low energy house with a space heating demand of 2010 kWh/year and a domestic hot water demand of 2530 kWh/year. For storage...... volumes in the range of 500 – 3000 litres the heat loss free state is seldom reached and the effect of super cooling is limited. For larger volumes the heat loss free state may be reached. The benefit of using a PCM storage compared to a traditional water storage is limited with respect to energy savings...

  5. Building Maintenance Management System for Heritage Museum

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available An investment in the building maintenance aspect is massive throughout the world. In most of the countries, it signifies approximately 50% of the entire revenue of the construction industry. The value of buildings depends on the eminence of the maintenance invested in them. Maintenance management engages obtaining utmost advantage from the investment made on the maintenance activities. At the moment, maintenance in buildings in Malaysia is on the increase in spite of size, category, location, and ownership. This study focuses on Building Maintenance Management System for Heritage Museum, which consists of two case studies in Penang State Museum and Art Gallery, Malaysia and Museum of Perak, Malaysia. The aim of this study is to propose methods to improve the maintenance management system for heritage museum. From the results, the common problem occurs during the implementation for the maintenance of each building is the budget for the maintenance and worker’s skill. The department of each museum must have their own maintenance unit to keep an eye on the maintenance activities for their buildings in order to improve the maintenance management system in their building.

  6. Balancing Hydronic Systems in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  7. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)

    Energy Technology Data Exchange (ETDEWEB)

    HOLLENBECK, R.G.

    2000-05-08

    The Spent Nuclear Fuel (SNF) Canister Storage Building (CSB) is the interim storage facility for the K-Basin SNF at the US. Department of Energy (DOE) Hanford Site. The SNF is packaged in multi-canister overpacks (MCOs). The MCOs are placed inside transport casks, then delivered to the service station inside the CSB. At the service station, the MCO handling machine (MHM) moves the MCO from the cask to a storage tube or one of two sample/weld stations. There are 220 standard storage tubes and six overpack storage tubes in a below grade reinforced concrete vault. Each storage tube can hold two MCOs.

  8. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance

    Science.gov (United States)

    Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2016-08-01

    Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (~10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol-1 and 71 kJ mol-1, respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient

  9. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.; Birkholzer, J. T.

    2011-05-01

    The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

  10. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  11. Applying IEEE storage system management standards at the National Storage Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S.; Hyer, S.W.

    1992-12-04

    Since its inception in 1990, the IEEE Storage System Standards Working Group has identified storage-system management as an area in need of further development The pressing need for standards in storage-system management arises from the requirement to exchange management information and to provide control in a consistent predictable manner between the components of a storage system. An appropriate set of management standards will allow multiple vendors to supply storage management subsystems or applications that are integral to or compatible with new storage systems conforming to future IEEE standards. An early, practical application of IEEE storage-system-management work is being pursued at the National Storage Laboratory (NSL), a recently-formed industrial collaboration at Lawrence Livermore National Laboratory. The NSL`s purpose is to develop advanced hardware and software technologies for high-performance, distributed storage systems. Since storage system management is of critical concern, it is being explored in depth at the NSL. Work was initiated to define basic management requirements and develop generalized graphical-user-interface tools using remote-procedure-call mechanisms to implement the NSL`s conceptual management framework. Several constraints were imposed on the development of early versions of this work to maintain compatibility with the NSL`s underlying UniTree-based software architecture and to provide timely prototypes and proof of concept. The project leverages the on-going standards work of the IEEE Storage System Standards Working Group (SSSWG) and also explores some of the relationships and interactions between IEEE storage-system management and more well known management methods for distributed systems and networks. It will have long term benefits by providing ``real-life`` storage-system-management requirements to the IEEE SSSWG for validation of evolving standards.

  12. Spent fuel consolidation in the 105KW Building fuel storage basin

    International Nuclear Information System (INIS)

    This study is one element of a larger engineering study effort by WHC to examine the feasibility of irradiated fuel and sludge consolidation in the KW Basin in response to TPA Milestone (target date) M-34-00-T03. The study concludes that up to 11,500 fuel storage canisters could be accommodated in the KW Basin with modifications. These modifications would include provisions for multi-tiered canister storage involving the fabrication and installation of new storage racks and installation of additional decay heat removal systems for control of basin water temperature. The ability of existing systems to control radionuclide concentrations in the basin water is examined. The study discusses requirements for spent nuclear fuel inventory given the proposed multi-tiered storage arrangement, the impact of the consolidated mass on the KW Basin structure, and criticality issues associated with multi-tiered storage

  13. Joint Optimal Design and Operation of Hybrid Energy Storage Systems

    OpenAIRE

    Ghiassi-Farrokhfal, Yashar; Rosenberg, C; Keshav, Srinivasam; Adjaho, Marie-Benedicte

    2015-01-01

    markdownabstractThe wide range of performance characteristics of storage technologies motivates the use of a hybrid energy storage systems (HESS) that combines the best features of multiple technologies. However, HESS design is complex, in that it involves the choice of storage technologies, the sizing of each storage element, and deciding when to charge and discharge each underlying storage element (the operating strategy.We formulate the problem of jointly optimizing the sizing and the oper...

  14. Information storage capacity of discrete spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Beni, E-mail: rouge@caltech.edu

    2013-11-15

    Understanding the limits imposed on information storage capacity of physical systems is a problem of fundamental and practical importance which bridges physics and information science. There is a well-known upper bound on the amount of information that can be stored reliably in a given volume of discrete spin systems which are supported by gapped local Hamiltonians. However, all the previously known systems were far below this theoretical bound, and it remained open whether there exists a gapped spin system that saturates this bound. Here, we present a construction of spin systems which saturate this theoretical limit asymptotically by borrowing an idea from fractal properties arising in the Sierpinski triangle. Our construction provides not only the best classical error-correcting code which is physically realizable as the energy ground space of gapped frustration-free Hamiltonians, but also a new research avenue for correlated spin phases with fractal spin configurations. -- Highlights: •We propose a spin model with fractal ground states and study its coding properties. •We show that the model asymptotically saturates a theoretical limit on information storage capacity. •We discuss its relations to various theoretical physics problems.

  15. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  16. Energy Savings by Treating Buildings as Systems

    Science.gov (United States)

    Harvey, L. D. Danny

    2008-09-01

    This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.

  17. Hygrothermal evaluation of a museum storage building based on actual measurements and simulations

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Kollias, Christos Georgios

    2015-01-01

    Museum storage buildings should be able to provide a considerable stable indoor environment in terms of temperature and relative humidity (RH). To obtain such stable conditions with the lowest possible energy consumption, passive air conditioning is one-way solution. In this paper, indoor...... to maintain RH within acceptable levels. Therefore, renewable energy such us excess wind energy during the night can be utilized. [All rights reserved Elsevier]....

  18. Building Intrusion Tolerant Software System

    Institute of Scientific and Technical Information of China (English)

    PENG Wen-ling; WANG Li-na; ZHANG Huan-guo; CHEN Wei

    2005-01-01

    In this paper, we describe and analyze the hypothesis about intrusion tolerance software system, so that it can provide an intended server capability and deal with the impacts caused by the intruder exploiting the inherent security vulnerabilities. We present some intrusion tolerance technology by exploiting N-version module threshold method in constructing multilevel secure software architecture, by detecting with hash value, by placing an "antigen" word next to the return address on the stack that is similar to human immune system, and by adding "Honey code" nonfunctional code to disturb intruder, so that the security and the availability of the software system are ensured.

  19. Canister Storage Building (CSB) safety analysis report, phase 3: Safety analysis documentation supporting CSB construction

    International Nuclear Information System (INIS)

    The US Department of Energy established the K Basins Spent Nuclear Fuel Project to address safety and environmental concerns associated with deteriorating spent nuclear fuel presently stored under water in the Hanford Site's K Basins, which are located near the Columbia River. Recommendations for a series of aggressive projects to construct and operate systems and facilities to manage the safe removal of K Basins fuel were made in WHC-EP-0830, Hanford Spent Nuclear Fuel Recommended Path Forward, and its subsequent update, WHC-SD-SNF-SP-005, Hanford Spent Nuclear Fuel Project Integrated Process Strategy for K Basins Fuel. The integrated process strategy recommendations include the following steps: Fuel preparation activities at the K Basins, including removing the fuel elements from their K Basin canisters, separating fuel particulate from fuel elements and fuel fragments greater than 0.6 cm (0.25 in.) in any dimension, removing excess sludge from the fuel and fuel fragments by means of flushing, as necessary, and packaging the fuel into multicanister overpacks (MCOs); Removal of free water by draining and vacuum drying at a cold vacuum drying facility ES-122; Dry shipment of fuel from the Cold Vacuum Drying to the Canister Storage Building (CSB), a new facility in the 200 East Area of the Hanford Site

  20. Optimization of a thermal storage unit combined with a biomass bioler for heating buildings

    OpenAIRE

    Butala, Vincenc; Stritih, Uroš

    2015-01-01

    The performance of a boiler with a built-in thermal storage unit is presented.The thermal storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the thermal storage unit makes it possible to heat even when the boiler is not operating, thus increasing the heating efficiency. A system with three components is described. The model of the system and the mathematical model were made using the TRNSYS program package and a test reference year (TRY). The...

  1. On Building Secure Communication Systems

    DEFF Research Database (Denmark)

    Carvalho Quaresma, Jose Nuno

    ’s flexibility allows for the addition of constructs that model new security properties as well as new plugins that implement the security properties. In order to provide higher security assurances, the system specification can be verified by formal methods tools such as the Beliefs and Knowledge (BAK) tool......This thesis presents the Guided System Development (GSD) framework, which aims at supporting the development of secure communication systems. A communication system is specified in a language similar to the Alice and Bob notation, a simple and intuitive language used to describe the global...... perspective of the communications between different principals. The notation used in the GSD framework extends that notation with constructs that allow the security requirements of the messages to be described. From that specification, the developer is guided through a semi-automatic translation that enables...

  2. Nuclear Hybrid energy Systems: Molten Salt Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.; Sabharwall, P.; Yoon, S. J.; Bragg-Sitton, S. B.; Stoot, C.

    2014-07-01

    Without growing concerns in reliable energy supply, the next generation in reliable power generation via hybrid energy systems is being developed. A hybrid energy system incorporates multiple energy input source sand multiple energy outputs. The vitality and efficiency of these combined systems resides in the energy storage application. Energy storage is necessary for grid stabilization because stored excess energy is used later to meet peak energy demands. With high thermal energy production the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct thermal properties. This paper discusses the criteria for efficient energy storage and molten salt energy storage system options for hybrid systems. (Author)

  3. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the reliability and performance of these systems is to integrate energy storage devices into the power system network. Further, in the present deregulated markets these storage devices could also be used to increase the profit margins of wind farm owners and even provide arbitrage. This paper discusses...... the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...

  4. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Shilei, L.; Neng, Z. [School of Environment Science and Technology, Tianjin University, Tianjin (China); Guohui, F. [Shenyang Jianzhu University, Shenyang (China)

    2006-07-01

    Capric acid (CA) and lauric acid (LA), as phase change materials (PCM), can be applied for energy storage in low temperature. The phase transition temperature and values of latent heat of eutectic mixtures of CA and LA are suitable for being incorporated with building materials to form phase change wallboards used for building energy storage. 120, 240 and 360 accelerated thermal cycle tests were conducted to study the changes in latent heat of fusion and melting temperature of phase change wallboards combined with the eutectic mixtures of CA and LA. Differential scanning calorimetry (DSC) tested the transition temperature and latent heat. The results showed that the melting temperature and latent heat of these phase change wallboards with eutectic mixtures have no obvious variations after repeated 360 thermal cycles, which proved that these phase change wallboards have good thermal stability for melting temperature and variations in latent heat of fusion for long time application. Therefore, they can be used for latent heat storage in the field of building energy conservation. (author)

  5. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lv Shilei; Zhu Neng [Tianjin University (China). School of Environmental Science and Technology; Feng Guohui [Shenyang Jianzhu University, Shenyang (China)

    2006-06-15

    Capric acid (CA) and lauric acid (LA), as phase change materials (PCM), can be applied for energy storage in low temperature. The phase transitions temperature and values of latent heat of eutectic mixtures of CA and LA are suitable for being incorporated with building materials to form phase change wallboards used for building energy storage. 120, 240 and 360 accelerated thermal cycle tests were conducted to study the changes in latent heat of fusion and melting temperature of phase change wallboards combined with the eutectic mixtures of CA and LA. Differential scanning calorimetry (DSC) tested the transition temperature and latent heat. The results showed that the melting temperature and latent heat of these phase change wallboards with eutectic mixtures have not obvious variations after repeated 360 thermal cycles, which proved that these phase change wallboards have good thermal stability for melting temperature and variations in latent heat of fusion for long time application. Therefore, they can be used for latent heat storage in the field of building energy conservation. (author)

  6. Diagnosis System for Building Management Network

    Directory of Open Access Journals (Sweden)

    Zafer Al-Makhadmee

    2013-12-01

    Full Text Available In this study the author used multi-criteria decision-making design to provide optimal structure of the developed and modified modern Building Management Systems (BMS. While modern BMS is used to provide effective and securable activity of enterprises solving complex tasks of their operability. However a lot of problems such as system structure flexibility in an ever changing market of the BMS and industrial network hardware can be solved by means of the hardware structure development automation. Problems of optimal hardware structure composition solving all the necessary building management task support providing reliable and effective system operation have to be solved.

  7. Building Secure Networked Systems with Code Attestation

    Science.gov (United States)

    Perrig, Adrian

    Attestation is a promising approach for building secure systems. The recent development of a Trusted Platform Module (TPM) by the Trusted Computing Group (TCG) that is starting to be deployed in common laptop and desktop platforms is fueling research in attestation mechanisms. In this talk, we will present approaches on how to build secure systems with advanced TPM architectures. In particular, we have designed an approach for fine-grained attestation that enables the design of efficient secure distributed systems, and other network protocols.We demonstrate this approach by designing a secure routing protocol.

  8. Impact of Storage Technologies upon Power System Losses

    Directory of Open Access Journals (Sweden)

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  9. Building integration of concentrating solar systems for heating applications

    International Nuclear Information System (INIS)

    A new solar collection system integrated on the façade of a building is investigated for Dutch climate conditions. The solar collection system includes a solar façade, a receiver tube and 10 Fresnel lenses. The Fresnel lenses Fresnel lenses considered were linear, non-imaging, line – focused with a system tracking the position of the sun that ensures vertical incidence of the direct solar radiation on the lenses. For the heating system a double-effect absorption heat pump, which requires high temperature of the heating fluid, was used, working with water and lithium-bromide as refrigerant and solution respectively. The Fresnel lens system is connected with the absorption heat pump through a thermal energy storage tank which accumulates the heat from the Fresnel lens system to provide it to the high pressure generator of the absorption heat pump. - Highlights: • The integration of Fresnel lenses in solar thermal building façades is investigated. • Using building integrated Fresnel lenses, 43% heating energy can be saved. • Energy savings in Mediterranean countries are significantly larger. • The absorption heat pump could make great contribution to energy savings for Dutch climate conditions

  10. An energy storage and regeneration system

    DEFF Research Database (Denmark)

    2006-01-01

    caverns. When the energy demand exceeds the power production capacity of the plant, the stored gases are burned and the thermal energy is converted into electricity in gas turbine generators. The regenerated electrical power is then used to supplement the output of the electric power plant to meet......  The present invention relates to a method and a system for storing excess energy produced by an electric power plant during periods of lower energy demand than the power plant production capacity. The excess energy is stored by hydrolysis of water and storage of hydrogen and oxygen in underground...... the higher level of energy demand....

  11. On Locality in Distributed Storage Systems

    CERN Document Server

    Rawat, Ankit Singh

    2012-01-01

    This paper studies the design of codes for distributed storage systems (DSS) that enable local repair in the event of node failure. This paper presents locally repairable codes based on low degree multivariate polynomials. Its code construction mechanism extends work on Noisy Interpolating Set by Dvir et al. \\cite{dvir2011}. The paper presents two classes of codes that allow node repair to be performed by contacting 2 and 3 surviving nodes respectively. It further shows that both classes are good in terms of their rate and minimum distance, and allow their rate to be bartered for greater flexibility in the repair process.

  12. Simulation of Flywheel Energy Storage System Controls

    Science.gov (United States)

    Truong, Long V.; Wolff, Frederick J.; Dravid, Narayan

    2001-01-01

    This paper presents the progress made in the controller design and operation of a flywheel energy storage system. The switching logic for the converter bridge circuit has been redefined to reduce line current harmonics, even at the highest operating speed of the permanent magnet motor-generator. An electromechanical machine model is utilized to simulate charge and discharge operation of the inertial energy in the flywheel. Controlling the magnitude of phase currents regulates the rate of charge and discharge. The resulting improvements are demonstrated by simulation.

  13. Building blocks for embedded control systems

    NARCIS (Netherlands)

    Broenink, Jan F.; Hilderink, Gerald H.; Bakkers, André W.P.; Veen, Jean Pierre

    2000-01-01

    Developing embedded control systems using a building-block approach at all the parts enables an efficient and fast design process. Main reasons are the real plug-and-play capabilities of the blocks. Furthermore, due the simulatability of the designs, parts of the system can already be tested before

  14. Building Blocks for Control System Software

    NARCIS (Netherlands)

    Broenink, J.F.; Hilderink, G.H.; Amerongen van, J.; Jonker, B.; Regtien, P.P.L.

    2001-01-01

    Software implementation of control laws for industrial systems seem straightforward, but is not. The computer code stemming from the control laws is mostly not more than 10 to 30% of the total. A building-block approach for embedded control system development is advocated to enable a fast and effici

  15. Study on the Performance of a Ground Source Heat Pump System Assisted by Solar Thermal Storage

    OpenAIRE

    Yu Jin Nam; Xin Yang Gao; Sung Hoon Yoon; Kwang Ho Lee

    2015-01-01

    A ground source heat pump system (GSHPS) utilizes a relatively stable underground temperature to achieve energy-saving for heating and cooling in buildings. However, continuous long-term operation will reduce the soil temperature in winter, resulting in a decline in system performance. In this research, in order to improve the system performance of a GSHPS, a ground heat pump system integrated with solar thermal storage was developed. This solar-assisted ground heat pump system (SAGHPS) can b...

  16. Investigation of heat of fusion storage for solar low energy buildings

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.M.; Furbo, S. [Technical Univ. of Denmark, Dept. of Civil Engineering, Kgs.Lyngby (Denmark)

    2006-05-04

    This paper describes a theoretical investigation by means of TRNSYS simulations of a partly heat loss free phase change material (PCM) storage solution for solar heating systems. The partly heat loss free storage is obtained by controlled used of super cooling in a mixture of sodium acetate and xanthane rubber. The storage can cool down to surrounding temperature preserving the latent heat in form of the heat of fusion energy. The basis for the calculations is a super low energy house with a space heating demand of 2010 kWh/year and a domestic hot water demand of 2530 kWh/year. For storage volumes in the range of 500 3000 litres the heat loss free state is seldom reached and the effect of super cooling is limited. For larger volumes the heat loss free state may be reached. The benefit of using a PCM storage compared to a traditional water storage is limited with respect to energy savings for storage sizes up to 1 m{sup 3}, but if the same amount of net utilised solar energy should be reached it would require a water storage that is 2 3 times larger. (au)

  17. SMART reliability mechanism for very large storage systems

    Science.gov (United States)

    Luo, Dongjian; Zhong, Haifeng; Pei, Canhao; Wu, Wei; Zhang, Chengfeng

    2008-12-01

    In this paper, we investigate the reliability in a petabyte scale storage system built from thousands of Object-Based Storage Devices and study the mechanisms to protect data loss when disk failure happens. We delve in two underlying redundancy mechanisms: 2-way mirroring, 3-way mirroring. To accelerate data reconstruction, Fast Mirroring Copy is employed where the reconstructed objects are stored on different OBSDs throughout the system. A SMART reliability for enhancing the reliability in very large-scale storage system is proposed. Results show that our SMART Reliability Mechanism can utilize the spare resources (including processing, network, and storage resources) to improve the reliability in very large storage systems.

  18. Operation and maintenance of the SOL-DANCE building solar system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-29

    The Sol-Dance building solar heating system consists of 136 flat plate solar collectors divided evenly into two separate building systems, each providing its total output to a common thermal storage tank. An aromatic base transformer oil is circulated through a closed loop consisting of the collectors and a heat exchanger. Water from the thermal storage tank is passed through the same heat exchanger where heat from the oil is given up to the thermal storage. Back-up heat is provided by air source heat pumps. Heat is transferred from the thermal storage to the living space by liquid-to-air coils in the distribution ducts. Separate domestic hot water systems are provided for each building. The system consists of 2 flat plate collectors with a single 66 gallon storage tank with oil circulated in a closed loop through an external tube and shell heat exchanger. Some problems encountered and lessons learned during the project construction are listed as well as beneficial aspects and a project description. As-built drawings are provided as well as system photographs. An acceptance test plan is provided that checks the collection, thermal storage, and space and water heating subsystems and the total system installation. Predicted performance data are tabulated. Details are discussed regarding operation, maintenance, and repair, and manufacturers data are provided. (LEW)

  19. Evolution of the ATLAS Nightly Build System

    CERN Document Server

    Undrus, A

    2012-01-01

    The ATLAS Nightly Build System is a major component in the ATLAS collaborative software organization, validation, and code approval scheme. For over 10 years of development it has evolved into a factory for automatic release production and grid distribution. The 50 multi-platform branches of ATLAS releases provide vast opportunities for testing new packages, verification of patches to existing software, and migration to new platforms and compilers for ATLAS code that currently contains 2200 packages with 4 million C++ and 1.4 million python scripting lines written by about 1000 developers. Recent development was focused on the integration of ATLAS Nightly Builds and Installation systems. The nightly releases are distributed and validated and some are transformed into stable releases used for data processing worldwide. The ATLAS Nightly System is managed by the NICOS control tool on a computing farm with 50 powerful multiprocessor nodes. NICOS provides the fully automated framework for the release builds, test...

  20. Annual collection and storage of solar energy for the heating of buildings, report No. 1. Progress report, May--November 1976. [Underground pool of water

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J. T.; Dickey, J. W.; Iachetta, F. A.; Lilleleht, L. U.

    1977-01-01

    A new system for the annual collection and storage of solar heated water for heating of buildings is under development at the University of Virginia. The system is composed of an energy storage sub-system which stores hot water in an underground pool and of a solar collector sub-system which acts not only to collect solar energy throughout the year but also to limit the evaporative and convective heat losses from the storage system. During the summer of 1976, a storage sub-system was constructed using the initial design specifications. A structural failure of that storage pool occurred in August resulting from a leak in the pool liner which caused a failure of the pool structure. A revised design of the storage pool sub-system has been implemented and construction was completed in November, 1976. The collector sub-system has been designed and constructed. Collector operation began in February 1977. A vertical reflector on the north edge of the collector was added in March 1977. Future research will include initial total system operation, performance evaluation, and analytical modeling.

  1. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Sezgen, O.

    1992-01-01

    We have developed two case studies to review and analyze energy performance of thermal energy storage CMS systems in commercial buildings. Our case studies considered two partial ice storage systems in Northern California. For each case, we compiled historical data on TES design, installation, and operation. This information was further enhanced by data obtained through interviews with the building owners and operators. The performance and historical data of the TES systems and their components were grouped into issues related to design, installation, operation, and maintenance of the systems. Our analysis indicated that (1) almost all problems related to the operation of TES and non-TES systems could be traced back to the design of the system, and (2) the identified problems were not unique to the TES systems. There were as many original problems with ``conventional`` HVAC systems and components as with TES systems. Judging from the problems related to non-TES components identified in these two case studies, it is reasonable to conclude that conventional systems have as many problems as TES systems, but a failure, in a TES system may have a more dramatic impact on thermal comfort and electricity charges. The objective of the designers of the TES systems in the case-study buildings was to design just-the-right-size systems so that both the initial investment and operating costs would be minimized. Given such criteria, a system is typically designed only for normal and steady-state operating conditions-which often precludes due consideration to factors such as maintenance, growth in the needed capacity, ease of the operation, and modularity of the systems. Therefore, it is not surprising to find that these systems, at least initially, did not perform to the design intent and expectation and that they had to go through extended periods of trouble-shooting.

  2. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Sezgen, O.

    1992-01-01

    We have developed two case studies to review and analyze energy performance of thermal energy storage CMS systems in commercial buildings. Our case studies considered two partial ice storage systems in Northern California. For each case, we compiled historical data on TES design, installation, and operation. This information was further enhanced by data obtained through interviews with the building owners and operators. The performance and historical data of the TES systems and their components were grouped into issues related to design, installation, operation, and maintenance of the systems. Our analysis indicated that (1) almost all problems related to the operation of TES and non-TES systems could be traced back to the design of the system, and (2) the identified problems were not unique to the TES systems. There were as many original problems with conventional'' HVAC systems and components as with TES systems. Judging from the problems related to non-TES components identified in these two case studies, it is reasonable to conclude that conventional systems have as many problems as TES systems, but a failure, in a TES system may have a more dramatic impact on thermal comfort and electricity charges. The objective of the designers of the TES systems in the case-study buildings was to design just-the-right-size systems so that both the initial investment and operating costs would be minimized. Given such criteria, a system is typically designed only for normal and steady-state operating conditions-which often precludes due consideration to factors such as maintenance, growth in the needed capacity, ease of the operation, and modularity of the systems. Therefore, it is not surprising to find that these systems, at least initially, did not perform to the design intent and expectation and that they had to go through extended periods of trouble-shooting.

  3. Energy Storage Systems as a Compliment to Wind Power

    Science.gov (United States)

    Sieling, Jared D.; Niederriter, C. F.; Berg, D. A.

    2006-12-01

    As Gustavus Adolphus College prepares to install two wind turbines on campus, we are faced with the question of what to do with the excess electricity that is generated. Since the College pays a substantial demand charge, it would seem fiscally responsible to store the energy and use it for peak shaving, instead of selling it to the power company at their avoided cost. We analyzed six currently available systems: hydrogen energy storage, flywheels, pumped hydroelectric storage, battery storage, compressed air storage, and superconducting magnetic energy storage, for energy and financial suitability. Potential wind turbine production is compared to consumption to determine the energy deficit or excess, which is fed into a model for each of the storage systems. We will discuss the advantages and disadvantages of each of the storage systems and their suitability for energy storage and peak shaving in this situation.

  4. Ultrasonic identity data storage and archival system

    International Nuclear Information System (INIS)

    Ultrasonic seals are being used to determine if an underwater stored spent fuel container has been compromised and can be used to determine if a nuclear material container has been compromised. The Seal Pattern Reader (SPAR) is a microprocessor controlled instrument which interrogates an ultrasonic seal to obtain its identity. The SPAR can compare the present identity with a previous identity, which it obtains from a magnetic bubble cassette memory. A system has been developed which allows an IAEA inspector to transfer seal information obtained at a facility by the SPAR to an IAEA-based data storage and retrieval system, using the bubble cassette memory. Likewise, magnetic bubbles can be loaded at the IAEA with seal signature data needed at a facility for comparison purposes. The archived signatures can be retrieved from the data base for relevant statistical manipulation and for plotting

  5. MADOCA II data acquisition and storage system

    International Nuclear Information System (INIS)

    In SPring-8, we are constructing MADOCA II, next generation accelerator control framework. It will be installed in the spring of 2014. We describe the part of the data acquisition and the storage system of MADOCA II. MADOCA was built on the bases of ONC-RPC for communication between processes and a relational database for data management. We designed the new framework with the long experience on MADOCA. We employ Zeromq messages packed by Messagepack for communication. NoSQL databases, Redis and Apache Cassandra, store log data. We obtained a high performance, highly reliable, well scalable and flexible data management system. In this paper, we will discuss requirements, design, implementation and the result of the long run test. (author)

  6. Green Roofs and Green Building Rating Systems

    Directory of Open Access Journals (Sweden)

    Liaw

    2015-01-01

    Full Text Available The environmental benefits for green building from the Leadership in Energy and Environment Design (LEED and Ecology, Energy, Waste, and Health (EEWH rating systems have been extensively investigated; however, the effect of green roofs on the credit-earning mechanisms is relatively unexplored. This study is concerned with the environmental benefits of green roofs with respect to sustainability, stormwater control, energy savings, and water resources. We focused on the relationship between green coverage and the credits of the rating systems, evaluated the credits efficiency, and performed cost analysis. As an example, we used a university building in Keelung, Northern Taiwan. The findings suggest that with EEWH, the proposed green coverage is 50–75%, whereas with LEED, the proposed green coverage is 100%. These findings have implications for the application of green roofs in green building.

  7. Economic Analysis of using Above Ground Gas Storage Devices for Compressed Air Energy Storage System

    Institute of Scientific and Technical Information of China (English)

    LIU Jinchao; ZHANG Xinjing; XU Yujie; CHEN Zongyan; CHEN Haisheng; TAN Chunqing

    2014-01-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types:air storage tanks,gas cylinders,and gas storage pipelines.A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis.The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number.The LCCs of the three types are comprehensively analyzed and compared.The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types.This study may serve as a reference for designing large-scale CAES systems.

  8. Storage System Design Scheme in Virtualization Construction

    Institute of Scientific and Technical Information of China (English)

    Si Zhen-yu

    2012-01-01

    In order to improve resource utilization, it is necessary to integrate storage and data, and the emergence of cloud computing makes it possible. This paper analyzed the study of virtualization and cloud computing, proposed a new scheme based on virtualization, and established a shared storage platform, which made a good complement and perfected the centralized storage platform.

  9. Thermally activated building systems in context of increasing building energy efficiency

    OpenAIRE

    Stojanović Branislav V.; Janevski Jelena N.; Mitković Petar B.; Stojanović Milica B.; Ignjatović Marko G.

    2014-01-01

    One of the possible ways to provide heating to the building is to use thermally activated building systems. This type of heating, besides providing significant increase in building energy efficiency, allows using low-temperature heating sources. In this paper, special attention is given to opaque part of the building façade with integrated thermally activated building systems. Due to fact that this type of system strongly depends on temperature of this cons...

  10. Design of annual storage solar space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F.C.; Cook, J.D.

    1979-11-01

    Design considerations for annual storage solar space heating systems are discussed. A simulation model for the performance of suh systems is described, and a method of classifying system configurations is proposed. It is shown that annual systems sized for unconstrained performance, with no unused collector or storage capacity, and no rejected heat, minimize solar acquisition costs. The optimal performance corresponds to the condition where the marginal storage-to-collector sizing ratio is equal to the corresponding marginal cost ratio.

  11. Joint Optimal Design and Operation of Hybrid Energy Storage Systems

    NARCIS (Netherlands)

    Y. Ghiassi-Farrokhfal (Yashar); C. Rosenberg; S. Keshav (Srinivasam); M.-B. Adjaho (Marie-Benedicte)

    2015-01-01

    markdownabstractThe wide range of performance characteristics of storage technologies motivates the use of a hybrid energy storage systems (HESS) that combines the best features of multiple technologies. However, HESS design is complex, in that it involves the choice of storage technologies, the siz

  12. Final Hazard Classification and Auditable Safety Analysis for the 105-F Building Interim Safe Storage Project

    International Nuclear Information System (INIS)

    The auditable safety analysis (ASA) documents the authorization basis for the partial decommissioning and facility modifications to place the 105-F Building into interim safe storage (ISS). Placement into the ISS is consistent with the preferred alternative identified in the Record of Decision (58 FR). Modifications will reduce the potential for release and worker exposure to hazardous and radioactive materials, as well as lower surveillance and maintenance (S ampersand M) costs. This analysis includes the following: A description of the activities to be performed in the course of the 105-F Building ISS Project. An assessment of the inventory of radioactive and other hazardous materials within the 105-F Building. Identification of the hazards associated with the activities of the 105-F Building ISS Project. Identification of internally and externally initiated accident scenarios with the potential to produce significant local or offsite consequences during the 105-F Building ISS Project. Bounding evaluation of the consequences of the potentially significant accident scenarios. Hazard classification based on the bounding consequence evaluation. Associated safety function and controls, including commitments. Radiological and other employee safety and health considerations

  13. An Overview on Energy Storage Options for Renewable Energy Systems

    OpenAIRE

    Ajay Sharma

    2014-01-01

    Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can manage the amount of power required to supply customers at times when need is greatest, which is during peak load. This paper focuses on four storage technologies that can be used as storage for wind energy conversion system. For each storage te...

  14. Object-based Storage Integration within the ATLAS DDM system

    CERN Document Server

    Garonne, Vincent; The ATLAS collaboration

    2016-01-01

    In this paper, we'll talk about our experiences with different data storage technologies within the ATLAS Distributed Data Management system, and in particular about object-based storage. Object-based storage differs in many points from traditional file system storage and offers a highly scalable, simple and most common storage solution for the cloud. First, we describe the needed changes in the Rucio software to integrate this technology, then we present for which use cases we have evaluated them. Finally, we conclude by reporting the results, performances and the potential future by exploiting more of their specificities and features, like metadata support.

  15. Modeling And Predictive Control Of High Performance Buildings With Distributed Energy Generation And Thermal Storage

    OpenAIRE

    Li, Siwei; Karava, Panagiota

    2014-01-01

    Building-integrated photovoltaic-thermal (BIPV/T) systems replace conventional building cladding with solar technology that generates electricity and heat. For example, unglazed transpired solar collectors, known as UTCs, can be integrated with open-loop photovoltaic thermal (PV/T) systems to preheat ventilation air and/or to feed hot air into an air source heat pump, thus satisfying a significant part of the building’s heating and/or hot water requirements while also generating electricity. ...

  16. Energetic and Exergy Efficiency of a Heat Storage Unit for Building Heating

    International Nuclear Information System (INIS)

    This paper deals with a numerical and experimental investigation of a daily solar storage system conceived and built in Laboratoire de Maitrise des Technologies de l Energie (LMTE, Borj Cedria). This system consists mainly of the storage unit connected to a solar collector unit. The storage unit consists of a wooden case with dimension of 5 m3 (5 m x 1m x 1m) filed with fin sand. Inside the wooden case was buried a network of a polypropylene capillary heat exchanger with an aperture area equal to 5 m2. The heat collection unit consisted of 5 m2 of south-facing solar collector mounted at a 37 degree tilt angle. In order to evaluate the system efficiency during the charging period (during the day) and discharging period (during the night) an energy and exergy analyses were applied. Outdoor experiments were also carried out under varied environmental conditions for several consecutive days. Results showed that during the charging period, the average daily rates of thermal energy and exergy stored in the heat storage unit were 400 and 2.6 W, respectively. It was found that the net energy and exergy efficiencies in the charging period were 32 pour cent and 22 pour cent, respectively. During the discharging period, the average daily rates of the thermal energy and exergy recovered from the heat storage unit were 2 kW and 2.5 kW, respectively. The recovered heat from the heat storage unit was used for the air-heating of a tested room (4 m x 3 m x 3 m). The results showed that 30 pour cent of the total heating requirement of the tested room was obtained from the heat storage system during the whole night in cold seasons

  17. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    as the theoretical results obtained for a solar combi system with the PCM-storage installed in a low energy house in a Danish climate. Parametric studies of collector area, storage volume and solar fraction for the PCM-system will be presented as well as an outline for a system with 100% coverage of the space......The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating...... and domestic hot water. The work is part of the IEA Solar Heating & Cooling Programme Task 32 “Advanced Storage Concepts for Solar Buildings”. The investigations are based on a newly developed TRNSYS type for simulation of a PCM-storage with controlled super-cooling. The super-cooling makes it possible to let...

  18. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO₂ nanowires, which are a promising replacement for RuO₂, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm⁻¹, a maximum energy density of approximately 15 Jcm⁻³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m⁻¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  19. Building Hot Snapshot Copy Based on Windows File System

    Institute of Scientific and Technical Information of China (English)

    WANG Lina; GUO Chi; WANG Dejun; ZHU Qin

    2006-01-01

    This paper describes a method for building hot snapshot copy based on windows-file system (HSCF). The architecture and running mechanism of HSCF are discussed after giving a comparison with other on-line backup technology. HSCF, based on a file system filter driver, protects computer data and ensures their integrity and consistency with following three steps:access to open files, synchronization and copy-on-write. Its strategies for improving system performance are analyzed including priority setting, incremental snapshot and load balance. HSCF is a new kind of snapshot technology to solve the data integrity and consistency problem in online backup, which is different from other storage-level snapshot and Open File Solution.

  20. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  1. Energy storage systems program report for FY1996

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1997-05-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  2. Canister storage building (CSB) safety analysis report phase 3: Safety analysis documentation supporting CSB construction

    International Nuclear Information System (INIS)

    The Canister Storage Building (CSB) will be constructed in the 200 East Area of the U.S. Department of Energy (DOE) Hanford Site. The CSB will be used to stage and store spent nuclear fuel (SNF) removed from the Hanford Site K Basins. The objective of this chapter is to describe the characteristics of the site on which the CSB will be located. This description will support the hazard analysis and accident analyses in Chapter 3.0. The purpose of this report is to provide an evaluation of the CSB design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB

  3. Preparation and characterization of phase change material for thermal energy storage in buildings

    Science.gov (United States)

    Lo, Tommy Y.

    2016-04-01

    The paper presents the developing of novel form-stable composite phase change material (PCM) by incorporation of paraffin into lightweight aggregate through vacuum impregnation. The macro-encapsulated Paraffin-lightweight aggregate is a chemical compatible, thermal stable and thermal reliable PCM material for thermal energy storage applications in buildings. The 28 days compressive strength of NWAC using PCM-LWA is 33 - 53 MPa, which has an opportunity for structural purpose. Scanning electronic microscopic images indicated the paraffin can be held inside the porous structure of the aggregate. Thermal performance test showed that the cement paste panel with composite PCM can reduce the indoor temperature.

  4. Design and building of a new experimental setup for testing hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, Anders

    2005-09-01

    For hydrogen to become the future energy carrier a suitable way of storing hydrogen is needed, especially if hydrogen is to be used in mobile applications such as cars. To test potential hydrogen storage materials with respect to capacity, kinetics and thermodynamics the Materials Research Department has a high pressure balance. However, the drawback of this equipment is, that in order to load samples, exposure towards air is inevitable. This has prompted the design and building of a new experimental setup with a detachable reactor allowing samples to be loaded under protective atmosphere. The purpose of this report is to serve as documentation of the new setup. (au)

  5. A strategy for load balancing in distributed storage systems

    CERN Document Server

    CERN. Geneva

    2012-01-01

    Distributed storage systems are critical to the operation of the WLCG. These systems are not limited to fulfilling the long term storage requirements. They also serve data for computational analysis and other computational jobs. Distributed storage systems provide the ability to aggregate the storage and IO capacity of disks and tapes, but at the end of the day IO rate is still bound by the capabilities of the hardware, in particular the hard drives. Throughput of hard drives has increased dramatically over the decades, however for computational analysis IOPS is typically the limiting factor. To maximize return of investment, balancing IO load over available hardware is crucial. The task is made complicated by the common use of heterogeneous hardware and software environments that results from combining new and old hardware into a single storage system. This paper describes recent advances made in load balancing in the dCache distributed storage system. We describe a set of common requirements for load balan...

  6. Test report : Raytheon / KTech RK30 energy storage system.

    Energy Technology Data Exchange (ETDEWEB)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-10-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.

  7. Economic assessment of energy storage for load shifting in Positive Energy Building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Georges, Emeline;

    2016-01-01

    Net Zero Energy Buildings (NZEB) and Positive Energy Buildings (PEB) are gaining more and more interest. In this paper, the impact of the integration of a battery in a positive energy building is assessed in order to increase its self-consumption of electricity. Parametric studies are carried out...... by varying the building envelope characteristics, the power supply system, the climate, the lightning and appliances profiles, the roof tilt, the battery size and the electricity tariffs, leading to 3200 cases. The analysis is performed on an annual basis in terms of self-consumption rate, shifted energy...... and payback period. It is shown that the battery size leading to the minimum payback period within the input range, is comprised between 2.6 kWh and 6.2 kWh. The lowest payback periods, (~5.6 years), are reached with a well-insulated building envelope, a high lightning and appliance consumption, a low feed...

  8. Fatman:Building Reliable Archival Storage Based on Low-Cost Volunteer Resources

    Institute of Scientific and Technical Information of China (English)

    覃安; 胡殿明; 刘俊; 杨文君; 谭待

    2015-01-01

    We present Fatman, an enterprise-scale archival storage based on volunteer contribution resources from under-utilized web servers, usually deployed on thousands of nodes with spare storage capacity. Fatman is specifically designed for enhancing the utilization of existing storage resources and cutting down the hardware purchase cost. Two ma jor con-cerned issues of the system design are maximizing the resource utilization of volunteer nodes without violating service level objectives (SLOs) and minimizing the cost without reducing the availability of archival system. Fatman has been widely deployed on tens of thousands of server nodes across several datacenters, providing more than 100 PB storage capacity and serving dozens of internal mass-data applications. The system realizes an efficient storage quota consolidation by strong isolation and budget limitation, to maximally support resource contribution without any degradation on host-level SLOs. It novelly improves data reliability by applying disk failure prediction to minish failure recovery cost, named fault-aware data management, dramatically reduces the mean time to repair (MTTR) by 76.3% and decreases file crash ratio by 35%on real-life product workload.

  9. Sequencing dynamic storage systems with multiple lifts and shuttles

    NARCIS (Netherlands)

    Carlo, Hector J.; Vis, Iris F. A.

    2012-01-01

    New types of Automated Storage and Retrieval Systems (AS/RS) able to achieve high throughput are continuously being developed and require new control polices to take full advantage of the developed system. In this paper, a dynamic storage system has been studied as developed by Vanderlande Industrie

  10. ANL computer controlled target storage system: Status report

    International Nuclear Information System (INIS)

    Design and operation of an isotopic target storage system is described. Due to the cost and effort associated with nuclear target production, it is necessary to protect them. The storage system described was designed to protect up to 90 hydroscopic and readily oxidizing targets under vacuum of 10-6 torr. The computer controller maintains system integrity during normal use and emergency situations

  11. Integrated Energy Systems (IES) for Buildings: A Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    LeMar, P.

    2002-10-29

    Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability

  12. Introducing WebSocket-Based Real-Time Monitoring System for Remote Intelligent Buildings

    OpenAIRE

    Kun Ma; Runyuan Sun

    2013-01-01

    Today, wireless sensor networks (WSNs) in electronic engineering are used in the monitoring of remote intelligent buildings, and the need for emerging Web 3.0 is becoming more and more in every aspect of electronic engineering. However, the key challenges of monitoring are the monitoring approaches and storage models of huge historical monitoring data. To address these limitations, we attempt to design a WebSocket-based real-time monitoring system for remote intelligent buildings. On one hand...

  13. 马来西亚区域供冷、冰蓄冷和热电联产在高层建筑中的应用经验%Experiences on district cooling system, ice thermal storage and cogeneration for high rise buildings in Malaysia

    Institute of Scientific and Technical Information of China (English)

    罗斯里·穆罕默德; 萨利姆·赛兰; 韩华

    2001-01-01

    马来西亚气温较高而且潮湿,所有高层建筑均需先进的空调系统维持其舒适、有益的室内环境。很多业主向区域供冷开发商订购冷水,而不是自己生产,促进了大型区域供冷系统、冰蓄冷及热电联产的发展。以实例介绍了马来西亚区域供冷、冰蓄冷及热电联产项目的发展及经验,探讨了综合区域能源(IDE)的概念,及其在大规模房产规划开发区的应用、获益和在为要求不断提高的用户提供高质、持续、有效服务方面所做的贡献。%Super high-rise buildings have emerged in Malaysia due to its rapid requirement of office space by commercial corporations. Typically, all high-rise buildings require state of the art air conditioning systems to maintain a comfort and conducive working environment in a high temperature and humidity condition in Malaysia. Most of the building owners have opted to subscribe chilled water provided by a district cooling developer, rather than producing themselves. This has also led to the development of large scale privately owned district cooling systems, ice storage and cogeneration plants in Malaysia. Describes the development and experience of various district cooling systems, ice storage and cogeneration projects in Malaysia. Also highlights the concept and application of Integrated District Energy within the planned large scale property development, benefits and its contribution towards providing a quality, uninterruptible and efficient service to the ever demanding customer.

  14. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  15. Energy Storage Systems Are Coming: Are You Ready

    Energy Technology Data Exchange (ETDEWEB)

    Conover, David R.

    2015-12-05

    Energy storage systems (batteries) are not a new concept, but the technology being developed and introduced today with an increasing emphasis on energy storage, is new. The increased focus on energy, environmental and economic issues in the built environment is spurring increased application of renewables as well as reduction in peak energy use - both of which create a need for energy storage. This article provides an overview of current and anticipated energy storage technology, focusing on ensuring the safe application and use of energy storage on both the grid and customer side of the utility meter.

  16. Evolution of the ATLAS Nightly Build System

    CERN Document Server

    Undrus, A; The ATLAS collaboration

    2012-01-01

    For over 10 years of development the ATLAS Nightly Build System has evolved into a factory for automatic release production and grid distribution. The numerous branches of ATLAS releases provide vast opportunities for testing new packages, verification of patches to existing software, and migration to new platforms and compilers for ATLAS code that currently contains ~2200 packages with 4 million C++ and 1.4 million python scripting lines written by ~1000 developers. The nightly releases lead up to stable releases used for data processing and analysis worldwide. The ATLAS Nightly System is managed by the NICOS control tool on the ATLAS Build Farm. The ATN testing framework runs unit and integration tests for the nightly releases.

  17. Toxicity of systems for energy generation and storage

    International Nuclear Information System (INIS)

    This section contains summaries of research on assessment of health and environmental effects of electric storage systems, and the metabolism and toxicity of metal compounds associated with energy production and storage. The first project relates to the production and use of electric storage battery systems. The second project deals with the effects of pregnancy and lactation on the gastrointestinal absorption, tissue distribution, and toxic effects of metals (Cd). Also included in this study is work on the absorption of actinides (239Pu)

  18. Energy storage management system with distributed wireless sensors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  19. Structural factors of solar system cluster ground coupled storage rationalization

    OpenAIRE

    Viktor V. Wysochin; Аnna S. Golovatyuk

    2015-01-01

    The computational investigations of unsteady heat transfer in seasonal solar heat storage system were conducted. This storage system consists of nine ground heat exchangers. The investigations were made for periodical diurnal cycle charging during summer season. The heat exchanger is presented as vertical probe with concentric tubes arrangement. Aim: The aim of the work is the optimization of cluster ground coupled storage – the probes quantity in cluster, their lengths and interval – using h...

  20. High-performance commercial building systems

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to

  1. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study

    Directory of Open Access Journals (Sweden)

    Xiangfei Kong

    2016-01-01

    Full Text Available This study is focused on the preparation and performance of a building energy storage panel (BESP. The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP, which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM was incorporated into expanded perlite (EP through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC, scanning electron microscope (SEM, best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1 the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2 the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3 in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

  2. Building Business on a Remote Queuing System

    OpenAIRE

    Zhen, Shi

    2015-01-01

    The goal of the project was to build and commercialize a remote queuing system to reduce customers' queuing time at the service point. The product will allow customers to track their queue numbers without being physically present at the service point. The application was designed to be a web application so that there would be no platform limitation. Customers are able to use any internet accessible devices to monitor their queue numbers. Additionally, the service providers can benefit from of...

  3. Novel heat recovery systems for building applications

    OpenAIRE

    Ahmad, Mardiana Idayu

    2011-01-01

    The work presented in this thesis will explore the development of novel heat recovery systems coupled with low carbon technologies, and its integration to become one device with multifunction (building integrated heat recovery/cooling/air dehumidifier. In the first part of this thesis, an experimental performance of an individual heat recovery unit using Micro Heat and Mass Cycle Core (MHM3C) made of fibre papers with cross flow arrangement has been carried out. The unit was tested in an env...

  4. Progress in building a cognitive vision system

    Science.gov (United States)

    Benjamin, D. Paul; Lyons, Damian; Yue, Hong

    2016-05-01

    We are building a cognitive vision system for mobile robots that works in a manner similar to the human vision system, using saccadic, vergence and pursuit movements to extract information from visual input. At each fixation, the system builds a 3D model of a small region, combining information about distance, shape, texture and motion to create a local dynamic spatial model. These local 3D models are composed to create an overall 3D model of the robot and its environment. This approach turns the computer vision problem into a search problem whose goal is the acquisition of sufficient spatial understanding for the robot to succeed at its tasks. The research hypothesis of this work is that the movements of the robot's cameras are only those that are necessary to build a sufficiently accurate world model for the robot's current goals. For example, if the goal is to navigate through a room, the model needs to contain any obstacles that would be encountered, giving their approximate positions and sizes. Other information does not need to be rendered into the virtual world, so this approach trades model accuracy for speed.

  5. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Ownership of an underground storage tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment...

  6. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin;

    2015-01-01

    vehicles, during their main first life application, for providing residential demand response service. The paper considers the decayed characteristics of these batteries and optimizes the rating of such a second life battery energy storage system (SLBESS) for maximizing the economic benefits of the user......The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric...

  7. Grid Converters for Stationary Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Trintis, Ionut

    . Another solution is to use distributed energy storage units, and create virtual power plants. Stationary energy storage is a complementary solution, which can postpone the network expansion and can be optimized for dierent kind of grid services. As an energy storage solution with timing for few seconds...... to hours, rated at MW and MWh, battery energy storage systems are suitable and ecient solutions. Grid connection of the storage system can be done at dierent voltage levels, depending on the location and application scenario. For high power and energy ratings, increase in the battery and converter voltage...... ratings can enhance the overall system eciency. This work is divided in two parts, "Control of DC-AC Grid Converters" and "Medium Voltage Grid Converters for Energy Storage". The rst part starts with a brief review of control strategies applied to grid connected DC-AC converters. A control implementation...

  8. Reliability-oriented energy storage sizing in wind power systems

    DEFF Research Database (Denmark)

    Qin, Zian; Liserre, Marco; Blaabjerg, Frede;

    2014-01-01

    Energy storage can be used to suppress the power fluctuations in wind power systems, and thereby reduce the thermal excursion and improve the reliability. Since the cost of the energy storage in large power application is high, it is crucial to have a better understanding of the relationship...... between the size of the energy storage and the reliability benefit it can generate. Therefore, a reliability-oriented energy storage sizing approach is proposed for the wind power systems, where the power, energy, cost and the control strategy of the energy storage are all taken into account....... With the proposed approach, the computational effort is reduced and the impact of the energy storage system on the reliability of the wind power converter can be quantified....

  9. Electromechanical Storage Systems for Application to Isolated Wind Energy Plants

    International Nuclear Information System (INIS)

    Substantial technology advances have occurred during the last decade that have had and appreciated impact on performance and feasibility of the Electromechanical Storage Systems. Improvements in magnetic bearings, composite materials, power conversion systems, microelectronic control systems and computer simulation models have increased flywheel reliability, and energy storage capacity, while decreasing overall system size, weight and cost. These improvements have brought flywheels to the forefront in the quest for alternate systems. The result of the study carried out under the scope of the SEDUCTOR, about the state of art of the Electromechanical Storage Systems is presented in this report. (Author) 15 refs

  10. Analysis of a Building Energy Efficiency Certification System in Korea

    OpenAIRE

    Duk Joon Park; Ki Hyung Yu; Yong Sang Yoon; Kee Han Kim; Sun Sook Kim

    2015-01-01

    The Korean government has established a national plan for the promotion of zero energy buildings to respond to climate change and energy crises. To achieve this plan, several energy efficiency policies for new and existing buildings have been developed. The Building Energy Efficiency Certification System (BEECS) aims to promote the spread of high energy-efficient buildings by evaluating and certifying building energy performance. This study discussed Korean building energy efficiency policies...

  11. Fuel cell systems for first lunar outpost -- Reactant storage options

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P.A. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-06-01

    A Lunar Surface Power Working Group was formed to review candidate systems for providing power to the First Lunar Outpost habitat. The working group met for five days in the fall of 1992 and concluded that the most attractive candidate included a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases. Most of the volume (97%) and weight (64%) are taken up by the reactants and their storage tanks. The large volume is difficult to accommodate, and therefore, the working group explored ways of reducing the volume. An alternative approach to providing separate high pressure storage tanks is to use two of the descent stage propellant storage tanks, which would have to be wrapped with graphite fibers to increase their pressure capability. This saves 90% of the volume required for storage of fuel cell reactants. Another approach is to use the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids, but this requires a gas liquefaction system, increases the solar array by 40%, and increases the heat rejection rate by 170% compared with storage of reactants as high pressure gases. For a high power system (>20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.

  12. Integrated Bidding and Operating Strategies for Wind-Storage Systems

    DEFF Research Database (Denmark)

    Ding, Huajie; Pinson, Pierre; Hu, Zechun;

    2016-01-01

    Due to their flexible charging and discharging capabilities, energy storage systems (ESS) are considered a promising complement to wind farms (WFs) participating in electricity markets. This paper presents integrated day-ahead bidding and real-time operation strategies for a wind-storage system...

  13. The CMS event builder and storage system

    CERN Document Server

    Bauer, Gerry; Behrens, Ulf; Biery, Kurt; Brett, Angela; Branson, James; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa, Jose Antonio; Deldicque, Christian; Dusinberre, Elizabeth; Erhan, Samim; Fortes Rodrigues, Fabiana; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gutleber, Johannes; Hatton, Derek; Klute, Markus; Laurens, Jean-François; Loizides, Constantin; Lopez Perez, Juan Antonio; Meijers, Frans; Meschi, Emilio; Meyer, Andreas; Mommsen, Remigius K; Moser, Roland; O'Dell, Vivian; Oh, Alexander; Orsini, Luciano; Patras, Vaios; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Serrano Margaleff, Josep Francesc; Shpakov, Dennis; Simon, Sean; Sumorok, Konstanty; Zanetti, Marco

    2010-01-01

    The CMS event builder assembles events accepted by the first level trigger and makes them available to the high-level trigger. The event builder needs to handle a maximum input rate of 100\\,kHz and an aggregated throughput of 100\\,GB/s originating from approximately 500 sources. This paper presents the chosen hardware and software architecture. The system consists of 2 stages: an initial pre-assembly reducing the number of fragments by one order of magnitude and a final assembly by several independent readout builder (RU-builder) slices. The RU-builder is based on 3 separate services: the buffering of event fragments during the assembly, the event assembly, and the data flow manager. A further component is responsible for handling events accepted by the high-level trigger: the storage manager (SM) temporarily stores the events on disk at a peak rate of 2\\,GB/s until they are permanently archived offline. In addition, events and data-quality histograms are served by the SM to online monitoring clients. We disc...

  14. Energy Storage Management in Grid Connected Solar Photovoltaic System

    OpenAIRE

    Vidhya M.E

    2015-01-01

    The penetration of renewable sources in the power system network in the power system has been increasing in the recent years. One of the solutions being proposed to improve the reliability and performance of these systems is to integrate energy storage device into the power system network. This paper discusses the modeling of photo voltaic and status of the storage device such as lead acid battery for better energy management in the system. The energy management for the grid conne...

  15. The Role of Thermal Storage and Natural Gas in a Smart Energy System

    OpenAIRE

    Jeroen Vandewalle; Nico Keyaerts; William D'haeseleer

    2012-01-01

    Smart grids are considered important building blocks of a future energy system that facilitates integration of massive distributed energy resources like gas-fired cogeneration (CHP). The latter produces thermal and electric power together and as such reinforces the interaction between the gas and electricity-distribution systems. Thermal storage makes up the key-source of flexibility that allows decoupling the electricity production from the heat demand. However, smart grids focus on electric...

  16. Evolution of the ATLAS Nightly Build System

    Science.gov (United States)

    Undrus, A.

    2012-12-01

    The ATLAS Nightly Build System is a major component in the ATLAS collaborative software organization, validation, and code approval scheme. For over 10 years of development it has evolved into a factory for automatic release production and grid distribution. The 50 multi-platform branches of ATLAS releases provide vast opportunities for testing new packages, verification of patches to existing software, and migration to new platforms and compilers for ATLAS code that currently contains 2200 packages with 4 million C++ and 1.4 million python scripting lines written by about 1000 developers. Recent development was focused on the integration of ATLAS Nightly Build and Installation systems. The nightly releases are distributed and validated and some are transformed into stable releases used for data processing worldwide. The ATLAS Nightly System is managed by the NICOS control tool on a computing farm with 50 powerful multiprocessor nodes. NICOS provides the fully automated framework for the release builds, testing, and creation of distribution kits. The ATN testing framework of the Nightly System runs unit and integration tests in parallel suites, fully utilizing the resources of multi-core machines, and provides the first results even before compilations complete. The NICOS error detection system is based on several techniques and classifies the compilation and test errors according to their severity. It is periodically tuned to place greater emphasis on certain software defects by highlighting the problems on NICOS web pages and sending automatic e-mail notifications to responsible developers. These and other recent developments will be presented and future plans will be described.

  17. Evolution of the ATLAS Nightly Build System

    International Nuclear Information System (INIS)

    The ATLAS Nightly Build System is a major component in the ATLAS collaborative software organization, validation, and code approval scheme. For over 10 years of development it has evolved into a factory for automatic release production and grid distribution. The 50 multi-platform branches of ATLAS releases provide vast opportunities for testing new packages, verification of patches to existing software, and migration to new platforms and compilers for ATLAS code that currently contains 2200 packages with 4 million C++ and 1.4 million python scripting lines written by about 1000 developers. Recent development was focused on the integration of ATLAS Nightly Build and Installation systems. The nightly releases are distributed and validated and some are transformed into stable releases used for data processing worldwide. The ATLAS Nightly System is managed by the NICOS control tool on a computing farm with 50 powerful multiprocessor nodes. NICOS provides the fully automated framework for the release builds, testing, and creation of distribution kits. The ATN testing framework of the Nightly System runs unit and integration tests in parallel suites, fully utilizing the resources of multi-core machines, and provides the first results even before compilations complete. The NICOS error detection system is based on several techniques and classifies the compilation and test errors according to their severity. It is periodically tuned to place greater emphasis on certain software defects by highlighting the problems on NICOS web pages and sending automatic e-mail notifications to responsible developers. These and other recent developments will be presented and future plans will be described.

  18. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  19. Modeling leaks from liquid hydrogen storage systems.

    Energy Technology Data Exchange (ETDEWEB)

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  20. An Overview of Video Allocation Algorithms for Flash-based SSD Storage Systems

    CERN Document Server

    Al-Sabateen, Jaafer; Sumari, Putra

    2012-01-01

    Despite the fact that Solid State Disk (SSD) data storage media had offered a revolutionary property storages community, but the unavailability of a comprehensive allocation strategy in SSDs storage media, leads to consuming the available space, random writing processes, time-consuming reading processes, and system resources consumption. In order to overcome these challenges, an efficient allocation algorithm is a desirable option. In this paper, we had executed an intensive investigation on the SSD-based allocation algorithms that had been proposed by the knowledge community. An explanatory comparison had been made between these algorithms. We reviewed these algorithms in order to building advanced knowledge armature that would help in inventing new allocation algorithms for this type of storage media.

  1. Energy storage systems - Characteristics and comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, H. [Wind Energy Research Laboratory (WERL), Universite du Quebec a Rimouski, 300 allee des Ursulines, Que. (Canada); Anti Icing Materials International Laboratory (AMIL), Universite du Quebec a Chicoutimi, 555 boulevard de l' Universite, Que. (Canada); Ilinca, A. [Wind Energy Research Laboratory (WERL), Universite du Quebec a Rimouski, 300 allee des Ursulines, Que. (Canada); Perron, J. [Anti Icing Materials International Laboratory (AMIL), Universite du Quebec a Chicoutimi, 555 boulevard de l' Universite, Que. (Canada)

    2008-06-15

    Electricity generated from renewable sources, which has shown remarkable growth worldwide, can rarely provide immediate response to demand as these sources do not deliver a regular supply easily adjustable to consumption needs. Thus, the growth of this decentralized production means greater network load stability problems and requires energy storage, generally using lead batteries, as a potential solution. However, lead batteries cannot withstand high cycling rates, nor can they store large amounts of energy in a small volume. That is why other types of storage technologies are being developed and implemented. This has led to the emergence of storage as a crucial element in the management of energy from renewable sources, allowing energy to be released into the grid during peak hours when it is more valuable. The work described in this paper highlights the need to store energy in order to strengthen power networks and maintain load levels. There are various types of storage methods, some of which are already in use, while others are still in development. We have taken a look at the main characteristics of the different electricity storage techniques and their field of application (permanent or portable, long- or short-term storage, maximum power required, etc.). These characteristics will serve to make comparisons in order to determine the most appropriate technique for each type of application. (author)

  2. Analysis of a Building Energy Efficiency Certification System in Korea

    Directory of Open Access Journals (Sweden)

    Duk Joon Park

    2015-12-01

    Full Text Available The Korean government has established a national plan for the promotion of zero energy buildings to respond to climate change and energy crises. To achieve this plan, several energy efficiency policies for new and existing buildings have been developed. The Building Energy Efficiency Certification System (BEECS aims to promote the spread of high energy-efficient buildings by evaluating and certifying building energy performance. This study discussed Korean building energy efficiency policies and analyzed especially the influence of the BEECS on the actual energy consumption of a residential building and calculated energy performance of non-residential buildings. The BEECS was evaluated to have influence on gas and district heating consumption in residential buildings. For non-residential buildings, a decreasing trend was shown in calculated primary energy consumption in the years since the BEECS has been enacted. Appropriate improvements of the certification system were also discussed by analyzing relationship between building characteristics and their energy consumptions.

  3. Control system design for robotic underground storage tank inspection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission.

  4. Control system design for robotic underground storage tank inspection systems

    International Nuclear Information System (INIS)

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

  5. Decentralized Minimum-Cost Repair for Distributed Storage Systems

    OpenAIRE

    Gerami, Majid; Xiao, Ming; Fischione, Carlo; Skoglund, Mikael

    2013-01-01

    There have been emerging lots of applications for distributed storage systems e.g., those in wireless sensor networks or cloud storage. Since storage nodes in wireless sensor networks have limited battery, it is valuable to find a repair scheme with optimal transmission costs (e.g., energy). The optimal-cost repair has been recently investigated in a centralized way. However a centralized control mechanism may not be available or is very expensive. For the scenarios, it is interesting to stud...

  6. Distributed Energy Systems with Wind Power and Energy Storage

    OpenAIRE

    Korpås, Magnus

    2004-01-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy s...

  7. Storage Capacity Modeling of Reservoir Systems Employing Performance Measures

    OpenAIRE

    Issa Saket Oskoui; Rozi Abdullah; Majid Montaseri

    2014-01-01

    Developing a prediction relationship for total (i.e. within-year plus over-year) storage capacity of reservoir systems is beneficial because it can be used as an alternative to the analysis of reservoirs during designing stage and gives an opportunity to planner to examine and compare different cases in a fraction of time required for complete analysis where detailed analysis is not necessary. Existing relationships for storage capacity are mostly capable of estimating over-year storage ca...

  8. Thermo Active Building Systems Using Building Mass To Heat and Cool

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2012-01-01

    Using the thermal storage capacity of the concrete slabs between each floor in multistory buildings to heat or cool is a trend that began in the early 1990s in Switzerland.1,2 Pipes carrying water for heating and cooling are embedded in the center of the concrete slab. In central Europe (Germany...

  9. Thermo Active Building Systems – Using Building Mass To Heat and Cool

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2014-01-01

    Using the thermal storage capacity of the concrete slabs between each floor in multistory buildings to heat or cool is a trend that began in the early 1990s in Switzerland.1,2 Pipes carrying water for heating and cooling are embedded in the center of the concrete slab. In central Europe (Germany...

  10. Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Lototskyy, M., E-mail: mlototskyy@uwc.ac.za [South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Yartys, V.A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, P.O. Box 40, Kjeller NO-2027 (Norway); Norwegian University of Science and Technology, Trondheim NO-7491 (Norway)

    2015-10-05

    Highlights: • Performance evaluation of H stores with various solid H storage materials was done. • Volumetric and gravimetric H storage densities and energy consumption were evaluated. • Effects of H storage containment and heat exchanger were estimated. • Pressure–temperature conditions of H storage strongly affect the overall performance. • Material’s packing density influences safety of operation and efficiency of H stores. - Abstract: Evaluation of the performances of hydrogen storage systems accommodating solid H storage materials should include characteristics on their reversible hydrogen storage capacity, operating pressures and temperatures, packing densities, and heat effects of hydrogen uptake and release. We have conducted a performance evaluation of the systems accumulating 5 kg of hydrogen in a containment of cylindrical geometry filled with a solid H storage material including such hydrides and reactive hydride composites as AlH{sub 3}, MgH{sub 2}, “low-temperature” (inter)metallic hydrides, NaAlH{sub 4}, Na{sub 3}AlH{sub 6}, LiBH{sub 4} + MgH{sub 2}, and MOFs. The analysis yielded gravimetric and volumetric H storage capacities, and energy efficiencies of hydrogen stores. We conclude that the weight efficiency of hydrogen stores, apart from the gravimetric H storage capacity of the material, is greatly affected by its packing density, and by the pressure–temperature conditions which determine type and dimensions of the containment. The materials with low heat effects of H exchange, operating close to the ambient conditions, should be targeted in the course of the development of new hydrogen stores as offering the best energy efficiency of their operation.

  11. Building Low Cost Cloud Computing Systems

    Directory of Open Access Journals (Sweden)

    Carlos Antunes

    2013-06-01

    Full Text Available The actual models of cloud computing are based in megalomaniac hardware solutions, being its implementation and maintenance unaffordable to the majority of service providers. The use of jail services is an alternative to current models of cloud computing based on virtualization. Models based in utilization of jail environments instead of the used virtualization systems will provide huge gains in terms of optimization of hardware resources at computation level and in terms of storage and energy consumption. In this paper it will be addressed the practical implementation of jail environments in real scenarios, which allows the visualization of areas where its application will be relevant and will make inevitable the redefinition of the models that are currently defined for cloud computing. In addition it will bring new opportunities in the development of support features for jail environments in the majority of operating systems.

  12. Induction Motors Most Efficient Operation Points in Pumped Storage Systems

    DEFF Research Database (Denmark)

    Busca-Forcos, Andreea; Marinescu, Corneliu; Busca, Cristian;

    2015-01-01

    efficiency is desired especially when operating with renewable energy systems, which present low energy conversion factor (up to 50% - performance coefficient for wind turbines, and efficiency up to 40% for photovoltaic systems). In this paper the most efficient operation points of the induction motors...... in pumped storage systems are established. The variable speed operation of the pumped storage systems and motor loading conditions for pump applications have been the key factors for achieving the purpose of the paper....

  13. Prototype of a magnetically suspended flywheel energy storage system

    Science.gov (United States)

    Plant, David P.; Kirk, J. A.; Anand, D. K.

    1989-01-01

    The authors describe recent progress in the development of a 500-Wh magnetically suspended flywheel stack energy storage system. The design of the system and a critical study of the noncontacting displacement transducers and their placement in the stack system are discussed. The storage system has been designed and constructed and is currently undergoing experimental analysis. The results acquired from the noncontacting displacement transducer study show that currently available transducers will not function as desired and that further research is essential.

  14. Development of a direct contact ice storage system

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, R. [Chicago Bridge & Iron Company, Plainfield, IL (United States)

    1989-03-01

    The program described involves the design, construction, and performance testing of a Direct Freeze Thermal Energy Storage System. Task 1 (Design) has been completed; and Task 2 (construction) is in progress, with equipment procurements presently underway. Once constructed, the system will undergo extensive laboratory performance testing and analysis, followed by an assessment of the system`s cost effectiveness. This study will advance the understanding and development of the direct freeze concept, which offers inherent benefits for thermal energy storage.

  15. Carbon footprint reductions via grid energy storage systems

    OpenAIRE

    Trevor S. Hale, Kelly Weeks, Coleman Tucker

    2011-01-01

    This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES) systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be tota...

  16. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)

    Energy Technology Data Exchange (ETDEWEB)

    TU, K.C.

    1999-10-08

    Multi-Canister Overpacks (MCOs) containing spent nuclear fuel (SNF) will be routinely handled at the Canister Storage Building (CSB) during fuel movement operations in the SNF Project. This analysis was performed to investigate the potential for damage from an eccentric accidental drop onto the standard storage tube, overpack tube, service station, or sample/weld station. Appendix D was added to the FDNW document to include the peer Review Comment Record & transmittal record.

  17. Method for simulating predictive control of building systems operation in the early stages of building design

    DEFF Research Database (Denmark)

    Petersen, Steffen; Svendsen, Svend

    2011-01-01

    A method for simulating predictive control of building systems operation in the early stages of building design is presented. The method uses building simulation based on weather forecasts to predict whether there is a future heating or cooling requirement. This information enables the thermal...... control systems of the building to respond proactively to keep the operational temperature within the thermal comfort range with the minimum use of energy. The method is implemented in an existing building simulation tool designed to inform decisions in the early stages of building design through...... parametric analysis. This enables building designers to predict the performance of the method and include it as a part of the solution space. The method furthermore facilitates the task of configuring appropriate building systems control schemes in the tool, and it eliminates time consuming manual...

  18. Numerical Modeling of a Shallow Borehole Thermal Energy Storage System

    Science.gov (United States)

    Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.

    2014-12-01

    Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES

  19. Field testing of a high-temperature aquifer thermal energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, R.L.; Hoyer, M.C. [Univ. of Minnesota, Minneapolis, MN (United States)

    1989-03-01

    The University of Minnesota Aquifer Thermal Energy Storage (ATES) System has been operated as a field test facility for the past six years. Four short-term and two long-term cycles have been completed to data providing a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. A third long-term cycle is currently being planned to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact on the aquifer from heated waste storage cycles. The most critical activities in the preparation for the next cycle have proved to be the applications for the various permits and variances necessary to conduct the third cycle and the matching of the characteristics of the ATES system during heat recovery with a suitable adjacent building thermal load.

  20. Simulation of Solar Powered Absorption Cooling System for Buildings in Pakistan

    OpenAIRE

    Asim, Muhammad

    2016-01-01

    This research investigates the potential of a solar powered cooling system for single family houses in Pakistan. The system comprises water heating evacuated tube solar collectors, a hot water storage tank, and an absorption chiller.A literature review was carried out covering:• Energy situation, climate, and renewable energy potential in Pakistan;• Energy and thermal comfort in buildings, particularly for hot climates;• Solar collectors and solar cooling systems, particularly for hot climate...

  1. Building machine learning systems with Python

    CERN Document Server

    Richert, Willi

    2013-01-01

    This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro

  2. Canister storage building (CSB) safety analysis report phase 3: Safety analysis documentation supporting CSB construction

    Energy Technology Data Exchange (ETDEWEB)

    Garvin, L.J.

    1997-04-28

    The Canister Storage Building (CSB) will be constructed in the 200 East Area of the U.S. Department of Energy (DOE) Hanford Site. The CSB will be used to stage and store spent nuclear fuel (SNF) removed from the Hanford Site K Basins. The objective of this chapter is to describe the characteristics of the site on which the CSB will be located. This description will support the hazard analysis and accident analyses in Chapter 3.0. The purpose of this report is to provide an evaluation of the CSB design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB.

  3. Security framework for networked storage system based on artificial immune system

    Science.gov (United States)

    Huang, Jianzhong; Xie, Changsheng; Zhang, Chengfeng; Zhan, Ling

    2007-11-01

    This paper proposed a theoretical framework for the networked storage system addressing the storage security. The immune system is an adaptive learning system, which can recognize, classify and eliminate 'non-self' such as foreign pathogens. Thus, we introduced the artificial immune technique to the storage security research, and proposed a full theoretical framework for storage security system. Under this framework, it is possible to carry out the quantitative evaluation for the storage security system using modeling language of artificial immune system (AIS), and the evaluation can offer security consideration for the deployment of networked storage system. Meanwhile, it is potential to obtain the active defense technique suitable for networked storage system via exploring the principle of AIS and achieve a highly secure storage system with immune characteristic.

  4. Global distribution of grid connected electrical energy storage systems

    Directory of Open Access Journals (Sweden)

    Katja Buss

    2016-06-01

    Full Text Available This article gives an overview of grid connected electrical energy storage systems worldwide, based on public available data. Technologies considered in this study are pumped hydroelectric energy storage (PHES, compressed air energy storage (CAES, sodium-sulfur batteries (NaS, lead-acid batteries, redox-flow batteries, nickel-cadmium batteries (NiCd and lithium-ion batteries. As the research indicates, the worldwide installed capacity of grid connected electrical energy storage systems is approximately 154 GW. This corresponds to a share of 5.5 % of the worldwide installed generation capacity. Furthermore, the article gives an overview of the historical development of installed and used storage systems worldwide. Subsequently, the focus is on each considered technology concerning the current storage size, number of plants and location. In summary it can be stated, PHES is the most commonly used technology worldwide, whereas electrochemical technologies are increasingly gaining in importance. Regarding the distribution of grid connected storage systems reveals the share of installed storage capacity is in Europe and Eastern Asia twice as high as in North America.

  5. Power-reduction techniques for data-center storage systems

    NARCIS (Netherlands)

    Bostoen, Tom; Mullender, Sape; Berbers, Yolande

    2013-01-01

    As data-intensive, network-based applications proliferate, the power consumed by the data-center storage subsystem surges. This survey summarizes, organizes, and integrates a decade of research on power-aware enterprise storage systems. All of the existing power-reduction techniques are classified a

  6. Efficiency improvement for wind energy pumped storage systems

    DEFF Research Database (Denmark)

    Forcos, A.; Marinescu, C.; Teodorescu, Remus;

    2011-01-01

    Integrating wind energy into the grid may raise stability problems. Solutions for avoiding these situations are studied and energy storage methods are suitable for balancing the energy between the wind turbine and grid. In this paper, an autonomous wind turbine pumped storage system is presented...

  7. Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power Generation: A Case Study for Denmark

    DEFF Research Database (Denmark)

    Braun, Philipp; Swierczynski, Maciej Jozef; Diosi, Robert;

    2011-01-01

    This paper describes one approach to find two optimum energy storages (ESs) to build a hybrid system which is part of a virtual power plant. Here it means the combination of the hybrid energy storage system and wind power plant (WPP). The discussed approach is applied in a case study on the power...

  8. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  9. Specific systems studies of battery energy storage for electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  10. A vacuum data retrieval system for SSRF storage ting

    International Nuclear Information System (INIS)

    In this paper, we report the design and implementation of a Web-based database system for the SSRF storage ring vacuum status. A vacuum data acquisition system based on EPICS was developed for implementation of the system. By storing the vacuum gauge readings, the average pressure,beam lifetime and beam current to the historical database using Channel Archiver, the data can be retrieved from any online computers. A proper and effective platform for sharing the SSRF storage ring vacuum data has been built. It offers usable and reliable vacuum data of the storage ring for operators and the users. (authors)

  11. Energy Storage Systems Program Report for FY98

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1999-04-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.

  12. Energy Storage Systems Program Report for FY99

    Energy Technology Data Exchange (ETDEWEB)

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  13. Energy storage systems program report for FY97

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1998-08-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1997. 46 figs., 20 tabs.

  14. Device for storage of radioactive material in a building with heat pipes set in the building wall

    International Nuclear Information System (INIS)

    When storing radio-active material in a building, safe and sufficient heat removal must always be guaranteed. On the other hand, the building should be safely closed to the environment. The invention makes it possible to ensure, for such a building with heat pipes set in the building wall, that it is possible to use at least part of the heat generated in the building without limiting the removal of heat. Cooling sleeves are fitted to the heat pipes near the building wall for this purpose, where a cooling circuit with a circulating coolant is connected to the cooling sleeves. (orig.)

  15. The architecture of the High Performance Storage System (HPSS)

    Energy Technology Data Exchange (ETDEWEB)

    Teaff, D.; Coyne, B. [IBM Federal, Houston, TX (United States); Watson, D. [Lawrence Livermore National Lab., CA (United States)

    1995-01-01

    The rapid growth in the size of datasets has caused a serious imbalance in I/O and storage system performance and functionality relative to application requirements and the capabilities of other system components. The High Performance Storage System (HPSS) is a scalable, next-generation storage system that will meet the functionality and performance requirements of large-scale scientific and commercial computing environments. Our goal is to improve the performance and capacity of storage systems by two orders of magnitude or more over what is available in the general or mass marketplace today. We are also providing corresponding improvements in architecture and functionality. This paper describes the architecture and functionality of HPSS.

  16. HVAC system optimization - in-building section

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lu; Wenjian Cai; Lihua Xie; Shujiang Li; Yeng Chai Soh [Nanyang Technological Univ., Singapore (Singapore). School of Electrical and Electronic Engineering

    2005-01-01

    This paper presents a practical method to optimize in-building section of centralized Heating, Ventilation and Air-conditioning (HVAC) systems which consist of indoor air loops and chilled water loops. First, through component characteristic analysis, mathematical models associated with cooling loads and energy consumption for heat exchangers and energy consuming devices are established. By considering variation of cooling load of each end user, adaptive neuro-fuzzy inference system (ANFIS) is employed to model duct and pipe networks and obtain optimal differential pressure (DP) set points based on limited sensor information. A mix-integer nonlinear constraint optimization of system energy is formulated and solved by a modified genetic algorithm. The main feature of our paper is a systematic approach in optimizing the overall system energy consumption rather than that of individual component. A simulation study for a typical centralized HVAC system is provided to compare the proposed optimization method with traditional ones. The results show that the proposed method indeed improves the system performance significantly. (author)

  17. HVAC system optimisation-in-building section

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L.; Cai, W.; Xie, L.; Li, S.; Soh, Y.C. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore (Singapore)

    2004-07-01

    This paper presents a practical method to optimise in-building section of centralised Heating, Ventilation and Air-Conditioning (HVAC) systems which consist of indoor air loops and chilled water loops. First, through component characteristic analysis, mathematical models associated with cooling loads and energy consumption for heat exchangers and energy consuming devices are established. By considering variation of cooling load of each end user, adaptive neuro-fuzzy inference system (ANFIS) is employed to model duct and pipe networks and obtain optimal differential pressure (DP) set points based on limited sensor information. A mix-integer nonlinear constraint optimization of system energy is formulated and solved by a modified genetic algorithm. The main feature of our paper is a systematic approach in optimizing the overall system energy consumption rather than that of individual component. A simulation study for a typical centralized HVAC system is provided to compare the proposed optimisation method with traditional ones. The results show that the proposed method indeed improves the system performance significantly. (author)

  18. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  19. Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Corey, Garth P.; Iannucci, Joseph J., Jr. (Distributed Utility Associates, Livermore, CA)

    2004-12-01

    This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

  20. Comparison of cask and drywell storage concepts for a monitored retrievable storage/interim storage system

    International Nuclear Information System (INIS)

    The Department of Energy, through its Richland Operations Office is evaluating the feasibility, timing, and cost of providing a federal capability for storing the spent fuel, high-level wastes, and transuranic wastes that DOE may be obligated by law to manage until permanent waste disposal facilities are available. Three concepts utilizing a monitored retrievable storage/interim storage (MRS/IS) facility have been developed and analyzed. The first concept, co-location with a reprocessing plant, has been developed by staff of Allied General Nuclear Services. the second concept, a stand-alone facility, has been developed by staff of the General Atomic Company. The third concept, co-location with a deep geologic repository, has been developed by the Pacific Northwest Laboratory with the assistance of the Westinghouse Hanford Company and Kaiser Engineers. The objectives of this study are: to develop preconceptual designs for MRS/IS facilities: to examine various issues such as transportation of wastes, licensing of the facilities, and environmental concerns associated with operation of such facilities; and to estimate the life-cycle costs of the facilities when operated in response to a set of scenarios that define the quantities and types of waste requiring storage in specific time periods, generally spanning the years 1989 to 2037. Three scenarios are examined to develop estimates of life-cycle costs for the MRS/IS facilities. In the first scenario, the reprocessing plant is placed in service in 1989 and HLW canisters are stored until a repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at intervals as needed to meet the demand. In the second scenario, the reprocessing plants are delayed in starting operations by 10 years, but the repositories open on schedule. In the third scenario, the repositories are delayed 10 years, but the reprocessing plants open on schedule

  1. Comparison of cask and drywell storage concepts for a monitored retrievable storage/interim storage system

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, D.E.

    1982-12-01

    The Department of Energy, through its Richland Operations Office is evaluating the feasibility, timing, and cost of providing a federal capability for storing the spent fuel, high-level wastes, and transuranic wastes that DOE may be obligated by law to manage until permanent waste disposal facilities are available. Three concepts utilizing a monitored retrievable storage/interim storage (MRS/IS) facility have been developed and analyzed. The first concept, co-location with a reprocessing plant, has been developed by staff of Allied General Nuclear Services. the second concept, a stand-alone facility, has been developed by staff of the General Atomic Company. The third concept, co-location with a deep geologic repository, has been developed by the Pacific Northwest Laboratory with the assistance of the Westinghouse Hanford Company and Kaiser Engineers. The objectives of this study are: to develop preconceptual designs for MRS/IS facilities: to examine various issues such as transportation of wastes, licensing of the facilities, and environmental concerns associated with operation of such facilities; and to estimate the life-cycle costs of the facilities when operated in response to a set of scenarios that define the quantities and types of waste requiring storage in specific time periods, generally spanning the years 1989 to 2037. Three scenarios are examined to develop estimates of life-cycle costs for the MRS/IS facilities. In the first scenario, the reprocessing plant is placed in service in 1989 and HLW canisters are stored until a repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at intervals as needed to meet the demand. In the second scenario, the reprocessing plants are delayed in starting operations by 10 years, but the repositories open on schedule. In the third scenario, the repositories are delayed 10 years, but the reprocessing plants open on schedule.

  2. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-01

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  3. Agency Secure Image And Storage Tracking System (ASIST)

    Data.gov (United States)

    US Agency for International Development — Agency Secure Image and Storage Tracking System (Missions): is a Documentum-based user interface developed and maintained by the USAID OCIO (formerly IRM) to...

  4. Mutlifunctional Fibers for Energy Storage in Advanced EVA Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the Phase II effort is to demonstrate prototype multifunctional EVA system power patches that integrate energy storage into advanced space...

  5. Energy storage systems: a strategic road-book

    International Nuclear Information System (INIS)

    Dealing with the development and deployment of thermal and electric energy storage systems, this report first identifies four main challenges: to take environmental challenges into account during all the storage system life (design, production, use, end of life), to integrate the issue of economic valorization of the device into its design phase, to promote the development of standards, to make an institutional and legal framework emerge. It defines the geographical scope and the time horizon for the development of these systems. It evokes research and development programs in the United States, Japan, China, Germany and the European Union. These programs concern: mobile electric storage systems, electric storage systems in support of energy networks and renewable energies, heat storage systems. The authors outline that business models are now favourable to the deployment of storage systems. They discuss some key technological and economical parameters. They propose some prospective visions by 2050 with different possible orientations for this sector. They also identify and discuss the possible technological and socio-economical obstacles, research priorities, and stress the importance of implementing experimental platforms and research demonstrators

  6. Energy storage and thermal control system design status

    Science.gov (United States)

    Simons, Stephen N.; Willhoite, Bryan C.; Vanommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for and the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation and storage is described.

  7. Solar heating and cooling system for an office building at Reedy Creek Utilities

    Science.gov (United States)

    1978-01-01

    The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

  8. Flexibility of the BNFL dry storage systems

    International Nuclear Information System (INIS)

    To widen its range of spent fuel management services, BNFL entered the fuel storage market in 1995; entry was by acquisition rather than internal product development. The need for a transportable product was identified very early, but represents only the first phase of a philosophy of continuous improvement. Strong synergy exists between the new business area and existing fuel handling and transportation expertise, which has been of considerable assistance to the new business. (author)

  9. Development of hydrogen storage systems using Sodium alanate

    OpenAIRE

    Lozano Martinez, Gustavo Adolfo

    2010-01-01

    Hydrogen storage systems based on sodium alanate are studied, modelled, and optimised, on the basis of both experimental and theoretical approaches. The experimental hydrogen sorption behaviour (kinetics, heat transfer and cycling) of small cells up to kg-scale storage tanks is compared and analysed. In particular the effect of the size of the system, powder compaction, and addition of expanded graphite on the sorption behaviour is investigated and characterized. In order to implement simulat...

  10. Performance Analysis of a Flywheel Energy Storage System

    OpenAIRE

    K. Ghedamsi; D. Aouzellag; E. M. Berkouk

    2008-01-01

    The flywheel energy storage systems (FESSs) are suitable for improving the quality of the electric power delivered by the wind generators and to help these generators to contribute to the ancillary services. In this paper, a flywheel energy storage system associated to a grid connected variable speed wind generation (VSWG) scheme using a doubly fed induction generator (DFIG) is investigated. Therefore, the dynamic behavior of a wind generator, including models of the wind turbine (aerodynamic...

  11. Energy Storage Management in Grid Connected Solar Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Vidhya M.E

    2015-04-01

    Full Text Available The penetration of renewable sources in the power system network in the power system has been increasing in the recent years. One of the solutions being proposed to improve the reliability and performance of these systems is to integrate energy storage device into the power system network. This paper discusses the modeling of photo voltaic and status of the storage device such as lead acid battery for better energy management in the system. The energy management for the grid connected system was performed by the dynamic switching process.

  12. Carbon Nanotube Thin Films for Active Noise Cancellation, Solar Energy Harvesting, and Energy Storage in Building Windows

    Science.gov (United States)

    Hu, Shan

    This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of

  13. The economics of utilizing wind power in apple cold-storage systems

    Science.gov (United States)

    Tanchoco, J. M. A.; Wysk, R. A.; Norris, W. E.

    1982-02-01

    A computer model for the economics of a wind turbine powered apple cold storage facility is described, based on the performance of a pilot installation. The facility consisted of an 8 kW windmill, storage batteries, a rectifier to convert the windmill ac power to dc for storage, a dc vapor compression refrigeration system, a 1000 bu apple storage building, and an ice-tank thermal storage system. The performance of the pilot plant was monitored for 2 yr, and the model was devised to include the variations of power and wind, the demand for power, and the quantity of auxiliary power required. Important features of an after-tax analysis of the wind turbine economics are outlined, with attention given to the annual cost equivalence for systems with and without a windmill and with consideration for tax write-offs. It was found that the windpowered system was not economical for a 1000 bu facility, but may be applicable in commercial sized operations.

  14. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  15. Industrialised Building System in Malaysia: A Review

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-03-01

    Full Text Available The construction industry in Malaysia is experiencing a migration from conventional methods to a more systematic and mechanised method known as the Industrialised Building System (IBS. Each state in Malaysia is currently examining the developments of the IBS and its potential to overcome the shortages of housing accommodations in this country. The Malaysian government, involved through its agency, the Construction Industry Development Board (CIDB has been persistently pushing the construction industry to utilise of the IBS method of construction since the year 2003. It is a part of an incorporated endeavour to further improve the aptitude, potential, effectiveness and competitiveness of the industry as well as to diminish the industry’s dependence on foreign labour. This is also an attempt in the Malaysian construction industry to encourage positive inroads in matters associated to construction-site safety with regards to a working environment which is cleaner, more convenient and more organized.

  16. CFD Simulation of Spent Fuel in a Dry Storage System

    International Nuclear Information System (INIS)

    The spent fuel pool is expected to be full in few years. It is a serious problem one should not ignore. The dry storage type is considered as the interim storage system in Korea. The system stores spent fuel in a storage canister filled with an inert gas and the canister is cooled by a natural convection system using air or helium, radiation, and conduction. The spent fuel is heated by decay heat. The spent fuel is allowed to cool under a limiting temperature to avoid a fuel failure. Recently, the thermal hydraulic characteristics for a single bundle of the spent fuel were investigated through a CFD simulation. It would be of great interest to investigate the maximum fuel temperature in a dry storage system. The present paper deals with the thermal hydraulic characteristics of spent fuel for a dry storage system using the CFD method. A 3-D thermal flow simulation was carried out to predict the temperature of spent fuel. A dry storage system composed of 32 fuel bundles was modeled. The inlet temperature of the outer bundle is higher and that of inner bundle, however, is higher at the outlet. In a single fuel assembly, a center temperature of the fuel assembly was higher than elsewhere

  17. CFD Simulation of Spent Fuel in a Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Young Kyun; In, Wang Kee; Shin, Chang Hwan; Chun, Tae Hyun; Kook, Dong Hak [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The spent fuel pool is expected to be full in few years. It is a serious problem one should not ignore. The dry storage type is considered as the interim storage system in Korea. The system stores spent fuel in a storage canister filled with an inert gas and the canister is cooled by a natural convection system using air or helium, radiation, and conduction. The spent fuel is heated by decay heat. The spent fuel is allowed to cool under a limiting temperature to avoid a fuel failure. Recently, the thermal hydraulic characteristics for a single bundle of the spent fuel were investigated through a CFD simulation. It would be of great interest to investigate the maximum fuel temperature in a dry storage system. The present paper deals with the thermal hydraulic characteristics of spent fuel for a dry storage system using the CFD method. A 3-D thermal flow simulation was carried out to predict the temperature of spent fuel. A dry storage system composed of 32 fuel bundles was modeled. The inlet temperature of the outer bundle is higher and that of inner bundle, however, is higher at the outlet. In a single fuel assembly, a center temperature of the fuel assembly was higher than elsewhere.

  18. Developing a Model for a CHP System with Storage

    Directory of Open Access Journals (Sweden)

    M. Abunku

    2016-04-01

    Full Text Available A model for a Combined Heat and Power (CHP system developed using Matlab is presented in this project. The model developed includes sub-models of Internal Combustion Engine (ICE and generator, electrical and thermal storage systems, and power converters (rectifier and inverter. The model developed is able to simulate the performance of a CHP system when supplying user load. The battery electrical storage system is modelled and used as the electrical storage for this project, and the water storage tank is modelled and used as thermal storage. The project presents the model developed, and the results of the analysis done on the model. The model considered only heat from engine cooling, which is used to heat water to supply the DHW (District Hot Water needs of the user. The results show that by the addition of storage to the CHP system, the overall system efficiency is increased by 32% indicating that the model developed is reliable, and the project is a feasible one

  19. Use of compressed-air storage systems; Einsatz von Druckluftspeichersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Cyphely, I.; Rufer, A.; Brueckmann, Ph.; Menhardt, W.; Reller, A.

    2004-07-01

    This final report issued by the Swiss Federal Office of Energy (SFOE) looks at the use of compressed air as a means of storing energy. Historical aspects are listed and compressed-air storage as an alternative to current ideas that use electrolysis and hydrogen storage is discussed. The storage efficiency advantages of compressed-air storage is stressed and the possibilities it offers for compensating the stochastic nature of electricity production from renewable energy sources are discussed. The so-called BOP (Battery with Oil-hydraulics and Pneumatics) principle for the storage of electricity is discussed and its function is described. The advantages offered by such a system are listed and the development focus necessary is discussed.

  20. Monitored Retrievable Storage System Requirements Document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design.

  1. Entropy, pricing and macroeconomics of pumped-storage systems

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2014-05-01

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

  2. Building thermal envelope systems and materials (BTESM) progress report for DOE Office of Buildings Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G. (comp.)

    1990-10-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, and building diagnostics. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

  3. GA -based energy management optimization for grid-connected photovoltaic system without battery storage

    International Nuclear Information System (INIS)

    This paper presents genetic algorithm (GA) based optimization of energy management for grid connected photovoltaic (PV) systems without battery storage. The major objective of this work is to minimize energy cost by maximizing objective function of GA considering both energy consumption and generation. In objective function calculation, PV module output power obtained by model of PV modules and previous power recordings from the PV system were employed. In the system, some electrical appliances and lights are in the energy consumption side and photovoltaic energy source connected to the grid is in the energy generation side. A simulation study was implemented to obtain energy cost savings using GA optimization in a commercial building. Due to the cost of the batteries, PV system is implemented without battery storage. Therefore, by adapting fluctuating PV energy generation with the time -flexible loads , an effort was aimed to develop a smart -grid strategy. Key words: energy management , PV system, genetic algorithms, optimization, load scheduling

  4. NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader [Pacific Northwest National Laboratory, Richland, WA; Jin, Chunlian [Pacific Northwest National Laboratory, Richland, WA

    2013-06-01

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  5. Novel approach for decentralized energy supply and energy storage of tall buildings in Latin America based on renewable energy sources: Case study – Informal vertical community Torre David, Caracas – Venezuela

    International Nuclear Information System (INIS)

    This paper analyzes the concept of a decentralized power system based on wind energy and a pumped hydro storage system in a tall building. The system reacts to the current paradigm of power outage in Latin American countries caused by infrastructure limitations and climate change, while it fosters the penetration of renewable energy sources (RES) for a more diversified and secure electricity supply. An explicit methodology describes the assessment of technical, operational and economic potentials in a specific urban setting in Caracas/Venezuela. The suitability, applicability and the impacts generated by such power system are furthermore discussed at economic, social and technical level. - Highlights: ► We have modeled an innovative pico pumped hydro-storage system and wind power system for tall buildings. ► We conducted technical, economic and social analysis on these energy supply and storage alternatives. ► The energy storage system can achieve efficiencies within 30% and 35%. ► The energy storage is realistic and economic sensible in comparison to other solutions. ► The impacts of such a system in the current living conditions and safety issues of the building are minimum

  6. Security System in United Storage Network and Its Implementation

    Institute of Scientific and Technical Information of China (English)

    黄建忠; 谢长生; 韩德志

    2005-01-01

    With development of networked storage and its applications, united storage network (USN) combined with network attached storage (NAS) and storage area network (SAN) has emerged. It has such advantages as high performance, low cost, good connectivity, etc. However the security issue has been complicated because USN responds to block I/O and file I/O requests simultaneously. In this paper, a security system module is developed to prevent many types of atl~cks against USN based on NAS head.The module not only uses effective authentication to prevent unauthorized access to the system data, but also checks the data integrity.Experimental results show that the security module can not only resist remote attacks and attacks from those who has physical access to the USN, but can also be seamlessly integrated into underlying file systems, with little influence on their performance.

  7. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  8. Thermally activated building systems in context of increasing building energy efficiency

    Directory of Open Access Journals (Sweden)

    Stojanović Branislav V.

    2014-01-01

    Full Text Available One of the possible ways to provide heating to the building is to use thermally activated building systems. This type of heating, besides providing significant increase in building energy efficiency, allows using low-temperature heating sources. In this paper, special attention is given to opaque part of the building façade with integrated thermally activated building systems. Due to fact that this type of system strongly depends on temperature of this construction-thermal element and type and thickness of other materials of the façade, influence of these parameters on energy efficiency was analyzed in this paper. Since the simplest and most promising way of using geothermal energy is to use it directly, for our analysis this source of energy was selected. Building energy needs for heating were obtained for real residential multi-family building in Serbia by using EnergyPlus software. The building with all necessary input for simulation was modeled in Google SketchUp with aid of Open Studio Plug-in. Obtained results were compared with measured heating energy consumption. The results show that thermally activated building systems represent good way to increase building energy efficiency and that applying certain temperatures within this element, low-energy house standard can be achieved.

  9. Thermoeconomic evaluation of air conditioning system with chilled water storage

    International Nuclear Information System (INIS)

    Highlights: • A new thermoeconomic evaluation methodology has been presented. • The relationship between thermodynamic and economic performances has been revealed. • A key point for thermal storage technology further application is discovered. • A system has been analyzed via the new method and EUD method. - Abstract: As a good load shifting technology for power grid, chilled energy storage has been paid more and more attention, but it always consumes more energy than traditional air conditioning system, and the performance analysis is mostly from the viewpoint of peak-valley power price to get cost saving. The paper presents a thermoeconomic evaluation methodology for the system with chilled energy storage, by which thermodynamic performance influence on cost saving has been revealed. And a system with chilled storage has been analyzed, which can save more than 15% of power cost with no energy consumption increment, and just certain difference between peak and valley power prices can make the technology for good economic application. The results show that difference between peak and valley power prices is not the only factor on economic performance, thermodynamic performance of the storage system is the more important factor, and too big price difference is a barrier for its application, instead of for more cost saving. All of these give a new direction for thermal storage technology application

  10. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  11. Design of a Flywheel Storage System

    International Nuclear Information System (INIS)

    Storing mechanical kinetic energy for short time with flywheels has been known for centuries. However the applications of flywheels for longer storage times like electrochemical batteries is recent. Advanced flywheels have been possible thanks to the development from materials science with high tensile strength composite materials, and bearing technology with magnetic bearing, which suspend rotating shaft or rotor by magnetic forces. This summary report provides a study of the mechanics of flywheel, design considerations, material for advance flywheels, and magnetic bearing. Finally a brief description of a conventional flywheel prototype is given. (Author)

  12. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter; Cooper, Alan Charles; Scott, Aaron Raymond

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  13. Engineering and cost analysis of a dry cooling system augmented with a thermal storage pond

    Energy Technology Data Exchange (ETDEWEB)

    Drost, M.K.; Allemann, R.T.

    1978-09-01

    An engineering and cost study of the capacitive thermal storage pond added to a state-of-the-art dry cooling system is described. The purpose of the study was to assess the potential for reducing the cost of all-dry cooling for thermal electric power plants using a dry cooling system that includes a thermal storage pond. Using the modified BNW-I computer code, the effect of varying significant design parameters was investigated. The parametric study included studying the effects of varying turbine type, pond size, replacement energy costing, capacity penalty methodology, pond location with respect to the dry cooling tower, design temperature, and site location (meteorology). Incremental power production costs for dry cooling (i.e., the portion of the cost of bus-bar electricity from the plant which is attributable to the cost of building and operating the heat rejection system) with a thermal storage pond system were determined for meteorologies of both Wyodak, Wyoming and Phoenix, Arizona. For Wyodak the incremental cost of dry cooling with a thermal storage pond was 2.81 mills/kWh as compared to 2.55 mills/kWh for a system without a thermal storage pond. For Phoenix the incremental cost of dry cooling with a thermal storage pond was 3.66 mills/kWh as compared to 4.31 mills/kWh for a system without a thermal storage pond. If the use of a modified conventional turbine with the dry-cooled system is stipulated in order to stay with proven technology for large turbines, then results of this study show that in extremely hot climates the thermal storage pond can reduce the cost of dry cooling. If no cost penalty is assigned to high back pressure turbines and it can be used, then the thermal storage pond has no advantage in hot climates. However, collateral use of the pond for makeup or emergency cooling water storage may decreae the cost. (LCL)

  14. AnalyzeThis: An Analysis Workflow-Aware Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Hyogi [ORNL; Kim, Youngjae [ORNL; Vazhkudai, Sudharshan S [ORNL; Tiwari, Devesh [ORNL; Anwar, Ali [Virginia Tech, Blacksburg, VA; Butt, Ali R [Virginia Tech, Blacksburg, VA; Ramakrishnan, Lavanya [Lawrence Berkeley National Laboratory (LBNL)

    2015-01-01

    The need for novel data analysis is urgent in the face of a data deluge from modern applications. Traditional approaches to data analysis incur significant data movement costs, moving data back and forth between the storage system and the processor. Emerging Active Flash devices enable processing on the flash, where the data already resides. An array of such Active Flash devices allows us to revisit how analysis workflows interact with storage systems. By seamlessly blending together the flash storage and data analysis, we create an analysis workflow-aware storage system, AnalyzeThis. Our guiding principle is that analysis-awareness be deeply ingrained in each and every layer of the storage, elevating data analyses as first-class citizens, and transforming AnalyzeThis into a potent analytics-aware appliance. We implement the AnalyzeThis storage system atop an emulation platform of the Active Flash array. Our results indicate that AnalyzeThis is viable, expediting workflow execution and minimizing data movement.

  15. Ceph, a distributed storage system for scientific computing

    CERN Document Server

    CERN. Geneva

    2013-01-01

    Ceph is a distributed storage system designed to providing high performance and reliability at scales of up to thousands of storage nodes. The system is based on a distributed object storage layer call RADOS that provides durability, availability, efficient data distribution, and rich object semantics. This storage can be consumed directly via an object-based interface, or via file, block, or REST-based object services that are built on top of it. Clusters are composed of commodity components to provide a reliable storage service serving multiple use-cases. This seminar will cover the basic architecture of Ceph, with a focus on how each service can be consumed in a research and infrastructure environment. About the speaker Sage Weil, Founder and current CTO of Inktank Inc, is the creator of the Ceph project. He originally designed it as part of his PhD research in Storage Systems at the University of California, Santa Cruz. Since graduating, he has continued to refine the system with the goal of providi...

  16. Building Maintenance Management System for Heritage Museum

    OpenAIRE

    Md Azree Othuman Mydin; Siti Hajar Ismail; Norhidayah Md Ulang

    2012-01-01

    An investment in the building maintenance aspect is massive throughout the world. In most of the countries, it signifies approximately 50% of the entire revenue of the construction industry. The value of buildings depends on the eminence of the maintenance invested in them. Maintenance management engages obtaining utmost advantage from the investment made on the maintenance activities. At the moment, maintenance in buildings in Malaysia is on the increase in spite of size, ...

  17. Assessing prefabrication processes in house building systems

    OpenAIRE

    SCHEFFER, ZOLTAN

    2013-01-01

    This thesis surveys the current building energy regulations in the European Union, Hungary and Spain. Also, surveys the history of the use of prefabricated methods in house building. Then, applies calculations on a example of prefabricated building, defined by the national rules, and makes an analysis of them. The objective is to provide suggestions for improving the thermal behavior of the structure with the aim to improve its energy efficiency, using energy and environment conscious solutio...

  18. Standard review plan for dry cask storage systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

  19. Modelling the Size of Seasonal Thermal Storage in the Solar District Heating System

    Directory of Open Access Journals (Sweden)

    Giedrė Streckienė

    2012-12-01

    Full Text Available The integration of a thermal storage system into the solar heating system enables to increase the use of solar thermal energy in buildings and allows avoiding the mismatch between consumers’ demand and heat production in time. The paper presents modelling a seasonal thermal storage tank various sizes of which have been analyzed in the district solar heating system that could cover a part of heat demand for the district of individual houses in Vilnius. A biomass boiler house, as an additional heat source, should allow covering the remaining heat demand. energyPRO software is used for system modelling. The paper evaluates heat demand, climate conditions and technical characteristics.Article in Lithuanian

  20. Overview of a flywheel stack energy storage system

    Science.gov (United States)

    Kirk, James A.; Anand, Davinder K.

    1988-01-01

    The concept of storing electrical energy in rotating flywheels provides an attractive substitute to batteries. To realize these advantages the critical technologies of rotor design, composite materials, magnetic suspension, and high efficiency motor/generators are reviewed in this paper. The magnetically suspended flywheel energy storage system, currently under development at the University of Maryland, consisting of a family of interference assembled rings, is presented as an integrated solution for energy storage.

  1. The SLS storage ring support and alignment systems

    CERN Document Server

    Zelenika, S; Rivkin, L; Rohrer, M; Rossetti, D; Ruland, R; Schlott, V; Streun, A; Wiegand, Peter

    2001-01-01

    Storage rings of third generation synchrotron radiation facilities pose severe challenges for lowering the beam emittances and increasing the lifetimes, requiring thus increasing positioning and alignment precisions that must be preserved over long time spans. This work describes the SLS storage ring mechanical support, alignment and disturbances compensation systems that allow to meet these requirements. In particular, their design, the tests done on the respective prototypes and the applicability of the developed arrangement to beam-based alignment are addressed.

  2. Storage system requirements for grid supporting PV-power plants

    OpenAIRE

    Gavriluta, Catalin; Candela García, José Ignacio; Rocabert Delgado, Joan; Etxeberria Otadui, Ion; Rodríguez Cortés, Pedro

    2014-01-01

    Large penetration of renewable energy is currently attenuated by concerns regarding their impact on the controllability and reliability of the electrical system. As the inclusion of energy storage is to a great extent the solution to these issues, this paper proposes a methodology for approaching the calculation of the size of the energy storage to be connected to a PV power plant for providing inertia emulation, primary control, and the reduction of power fluctuation. A complete control stra...

  3. Thermal energy storage with liquid-liquid systems

    Energy Technology Data Exchange (ETDEWEB)

    Santana, E.A.; Stiel, L.I. [Polytechnic Univ., Brooklyn, NY (United States)

    1989-03-01

    The use of liquid-liquid mixtures for heat and cool storage applications has been investigated. Suitable mixtures exhibit large changes in the heat of mixing above and below the critical solution temperature of the system. Analytical procedures have been utilized to determine potential energy storage capabilities of systems with upper or lower critical solution temperatures. It has been found that aqueous systems with lower critical solution temperatures in a suitable range can result in large increases in the effective heat capacity in the critical region. For cool storage with a system of this type, the cooling process results in a transformation from two liquid phases to a single phase. Heats of mixing have been measured with a flow calorimeter system for a number of potential mixtures, and the results are summarized.

  4. Human Factors Engineering and Ergonomics Analysis for the Canister Storage Building (CSB) Results and Findings

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L.J.

    1999-09-20

    The purpose for this supplemental report is to follow-up and update the information in SNF-3907, Human Factors Engineering (HFE) Analysis: Results and Findings. This supplemental report responds to applicable U.S. Department of Energy Safety Analysis Report review team comments and questions. This Human Factors Engineering and Ergonomics (HFE/Erg) analysis was conducted from April 1999 to July 1999; SNF-3907 was based on analyses accomplished in October 1998. The HFE/Erg findings presented in this report and SNF-3907, along with the results of HNF-3553, Spent Nuclear Fuel Project, Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report,'' Chapter A3.0, ''Hazards and Accidents Analyses,'' provide the technical basis for preparing or updating HNF-3553. Annex A, Chaptex A13.0, ''Human Factors Engineering.'' The findings presented in this report allow the HNF-3553 Chapter 13.0, ''Human Factors,'' to respond fully to the HFE requirements established in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  5. Indoor air quality environmental information handbook: Building system characteristics

    International Nuclear Information System (INIS)

    This manual, the third in a series, focuses on residential building system characteristics and their effects on indoor air quality. The manual addresses: residential indoor air pollutants by source, indoor concentrations, health effects, source control and mitigation techniques, standards and guidelines; building system characteristics of air exchange, pollutant source strength, residence volume, site characteristics, structural design, construction, and operation, infiltration and ventilation system, building occupancy; and monitoring methods

  6. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  7. Underground gas storage Uelsen: Findings from planning, building and commissioning. Part 1: Deposit; Untertagegasspeicher Uelsen: Erkenntnisse aus Planung, Bau und Inbetriebnahme. Teil 1: Lagerstaette

    Energy Technology Data Exchange (ETDEWEB)

    Wallbrecht, J.; Beckmann, H.; Reiser, H.; Wilhelm, R. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    1998-12-31

    The underground gas storage at Uelsen which was built as a H-gas storage in a former variegated sandstone gasfield in Western Lower Saxony close to the town of Nordhorn has added to the gas supply system of the BEB Erdgas and Erdoel GmbH. The underground storage is connected to the Bunde-Rheine transport pipeline BEB-grid gas system by a 27 km pipeline and is a consequent expansion of BEB`s underground storage/transport system. Planning, building and commissioning were handled by BEB. Findings to date are described. [Deutsch] Der Untertagegasspeicher (UGS) Uelsen, der in einem ehemaligen Buntsandstein Gasfeld im westlichen Niedersachsen in der Naehe der Stadt Nordhorn als H-Gasspeicher eingerichtet wurde, hat die BEB Erdgas und Erdoel GmbH eine weitere Staerkung ihres Gasversorgungssystems erreicht. Der UGS Uelsen ist ueber eine 27 km lange Anbindungsleitung mit der zum BEB - Ferngasleitungssystems gehoerenden Bunde-Rheine Transportleitung verbunden und stellt eine konsequente Erweiterung des BEB Untertagegasspeicher-/Transportsystems dar. Planung, Bau und Inbetriebnahme erfolgten durch BEB im Rahmen einer integrierten bereichsuebergreifenden Projektbearbeitung. Die hierbei gewonnenen Erkenntnisse werden im Folgenden fuer den Untertagebereich dargestellt. (orig.)

  8. Improved accounting of emissions from utility energy storage system operation.

    Science.gov (United States)

    Denholm, Paul; Holloway, Tracey

    2005-12-01

    Several proposed utility-scale energy storage systems in the U.S. will use the spare output capacity of existing electric power systems to create the equivalent of new load-following plants that can rapidly respond to fluctuations in electricity demand and increase the flexibility of baseload generators. New energy storage systems using additional generation from existing plants can directly compete with new traditional sources of load-following and peaking electricity, yet this application of energy storage is not required to meet many of the Clean Air Act standards required of new electricity generators (e.g., coal- or gas-fired power plants). This study evaluates the total emissions that will likely result from the operation of a new energy storage facility when coupled with an average existing U.S. coal-fired power plant and estimates that the emission rates of SO2 and NOx will be considerably higher than the rate of a new plant meeting Clean Air Act standards, even accounting for the efficiency benefits of energy storage. This study suggests that improved emissions "accounting" might be necessary to provide accurate environmental comparisons between energy storage and more traditional sources of electricity generation.

  9. Integration of Real-Time Data Into Building Automation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  10. Security-Control Systems and Automation in Contemporary Buildings

    Directory of Open Access Journals (Sweden)

    Saadet Aytıs

    1999-05-01

    Full Text Available As a result of the developing technology, major renovations related to the security control systems and to building automation applications on contemporary buildings have appeared. The main item of the control systems is the entry system with cards and passwords and this is applied almost in all the large contemporary buildings. The entry and exit to/from the carparking is getting to be as important as the entry and exit to/from the building. Thus, specific measures to stop the security system being already perforated in the parking are needed. Warning systems with a great range of different detectors against various dangers that run connected to the mainframe computers and that turn on the system in case of danger are taken into consideration. The fact of obtaining all comfort conditions desired in the contemporary high space buildings and functioning of the first-aid systems are fully realized by computers with the help of systems that are called “Building Automation System” (BAS. All inspection, energy saving and security controls are achieved through these systems. In the buildings where building automation systems are applied, trained personel is needed to keep the system running; and the training of the residents about the system gains more and more importance.

  11. Simulation of diurnal thermal energy storage systems: Preliminary results

    Science.gov (United States)

    Katipamula, S.; Somasundaram, S.; Williams, H. R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system; and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  12. Simulation of diurnal thermal energy storage systems: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, S.; Somasundaram, S. [Pacific Northwest Lab., Richland, WA (United States); Williams, H.R. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Mechanical Engineering

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system, and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  13. Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Johns, William H.

    2013-11-01

    This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

  14. High efficiency ground source heat pump systems for sustainable building space conditioning

    OpenAIRE

    Carvalho, Anabela Duarte

    2015-01-01

    This thesis assesses the benefits of using ground source heat pump systems for space conditioning in buildings, in an integrated perspective, in terms of potential impacts such as increasing energy efficiency, increasing the use of renewable energy resources and reducing carbon emissions, as well as their use as a flexible load with thermal storage for balancing demand and supply, namely for the integration of intermittent renewable generation in the context of smart grids. Par...

  15. Design and Implementation of ZTE Object Storage System

    Institute of Scientific and Technical Information of China (English)

    Huabin Ruan; Xiaomeng Huang; Yang Zhou

    2012-01-01

    This paper introduces the basic concepts and features of an obiect storage system. It also introduces some related standards, specifications, and implementations for several existing systems. ZTE' s Object Storage System (ZTE OSS) was designed by Tsinghua University and ZTE Corporation and is designed to manage large amounts of data. ZTE OSS has a scalable architecture, some open source components, and an efficient key-value database. ZTE OSS is easy to scale and highly reliable. Experiments show that ZTE OSS performs well with mass data and heavy

  16. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  17. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  18. A Cassette Based System for Hydrogen Storage and Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Britton Wayne E.

    2006-11-29

    A hydrogen storage system is described and evaluated. This is based upon a cassette, that is a container for managing hydrogen storage materials. The container is designed to be safe, modular, adaptable to different chemistries, inexpensive, and transportable. A second module receives the cassette and provides the necessary infrastructure to deliver hydrogen from the cassette according to enduser requirements. The modular concept has a number of advantages over approaches that are all in one stand alone systems. The advantages of a cassette based system are discussed, along with results from model and laboratory testing.

  19. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  20. Battery Energy Storage System for PV Output Power Leveling

    OpenAIRE

    Rajkiran Singh; Seyedfoad Taghizadeh; Nadia Mei Lin Tan; Jagadeesh Pasupuleti

    2014-01-01

    Fluctuating photovoltaic (PV) output power reduces the reliability in power system when there is a massive penetration of PV generators. Energy storage systems that are connected to the PV generators using bidirectional isolated dc-dc converter can be utilized for compensating the fluctuating PV power. This paper presents a grid connected energy storage system based on a 2 kW full-bridge bidirectional isolated dc-dc converter and a PWM converter for PV output power leveling. This paper propos...

  1. Revised corrective action plan for underground storage tank 2331-U at the Building 9201-1 Site

    International Nuclear Information System (INIS)

    This document represents the Corrective Action Plan for underground storage tank (UST) 2331-U, previously located at Building 9201-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2331-U, a 560-gallon UST, was removed on December 14, 1988. This document presents a comprehensive summary of all environmental assessment investigations conducted at the Building 9201-1 Site and the corrective action measures proposed for remediation of subsurface petroleum product contamination identified at the site. This document is written in accordance with the regulatory requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-15-.06(7)

  2. Space Station thermal storage/refrigeration system research and development

    Science.gov (United States)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  3. Energy: Systems for Control, Maintenance, and Storage. A Bibliography.

    Science.gov (United States)

    Thomas, Gerald, Comp.; McKane, Irving, Comp.

    This publication is a bibliography of available periodical literature on specific aspects of energy and today's technology. The Applied Science and Technology Indexes were searched for articles that related to these specific areas: (1) Energy control systems; (2) Maintenance of Energy Systems; and (3) Energy storage. The articles and papers…

  4. Monolithic natural gas storage delivery system based on sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Hornbostel, Marc; Krishnan, Gopala N.; Sanjurjo, Angel

    2016-09-27

    The invention provides methods for producing a strong, light, sorbent-based storage/dispenser system for gases and fuels. The system comprises a porous monolithic material with an adherent strong impervious skin that is capable of storing a gas under pressure in a safe and usable manner.

  5. Thermal decomposition kinetic of salt hydrates for heat storage systems

    International Nuclear Information System (INIS)

    Highlights: • Charging of closed thermochemical energy storage concept was studied numerically. • Pressure effect in kinetic modelling for thermochemical energy storage is presented. • A partial differential equations system was developed and applied. • Prediction of charging process in a thermochemical heat storage process is provided. - Abstract: Thermal energy or heat storage systems using chemical reactions to store and release energy operate in charging and discharging phases. The charging phase in this work is a dehydration process with constant heating rate decomposing salt hydrates as chemical components resulting in the obtention of a less hydrated or anhydrous form and, at the same time, storing the released heat (energy storage). Latest research on thermal decomposition of several salt-hydrates concerned experimental and numerical investigations (Huang et al., 2010; Sugimoto et al., 2007). A mathematical model of heat and mass transfer in a fixed-bed reactor for heat storage is proposed on the basis of a set of partial differential equations (PDEs) controlling the balances of mass, conversion, and energy in the bed and the reactor. These PDEs are numerically solved by means of the finite element method using Comsol Multiphysics 4.3a. The objective of this paper is to describe an adaptive modelling approach and establish a correct set of PDEs describing the physical system and appropriate parameters for simulating the thermal decomposition process. Thus it could help in the design of thermal energy storage system. The recommendations the International Confederation for Thermal Analysis and Calorimetry (Vyazovkin et al., 2011) on kinetic behaviour were used to explain transport phenomena and reactions mechanism in gas and solid phases. The generalized Prout–Tompkins equation was therefore adopted with some modifications based on thermal analysis experiments and literature. The experimental data from the TGA–DSC measurements are then used to

  6. Hydrogen-air energy storage gas-turbine system

    Science.gov (United States)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  7. Capturing the Impact of Storage and Other Flexible Technologies on Electric System Planning

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Elaine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stoll, Brady [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Power systems of the future are likely to require additional flexibility. This has been well studied from an operational perspective, but has been more difficult to incorporate into capacity expansion models (CEMs) that study investment decisions on the decadal scale. There are two primary reasons for this. First, the necessary input data, including cost and resource projections, for flexibility options like demand response and storage are significantly uncertain. Second, it is computationally difficult to represent both investment and operational decisions in detail, the latter being necessary to properly value system flexibility, in CEMs for realistically sized systems. In this work, we extend a particular CEM, NREL's Resource Planning Model (RPM), to address the latter issue by better representing variable generation impacts on operations, and then adding two flexible technologies to RPM's suite of investment decisions: interruptible load and utility-scale storage. This work does not develop full suites of input data for these technologies, but is rather methodological and exploratory in nature. We thus exercise these new investment decisions in the context of exploring price points and value streams needed for significant deployment in the Western Interconnection by 2030. Our study of interruptible load finds significant variation by location, year, and overall system conditions. Some locations find no system need for interruptible load even with low costs, while others build the most expensive resources offered. System needs can include planning reserve capacity needs to ensure resource adequacy, but there are also particular cases in which spinning reserve requirements drive deployment. Utility-scale storage is found to require deep cost reductions to achieve wide deployment and is found to be more valuable in some locations with greater renewable deployment. Differences between more solar- and wind-reliant regions are also found: Storage

  8. Field test of a thermal active building system (tabs) in an office building in Denmark

    DEFF Research Database (Denmark)

    Raimondo, Daniela; Olesen, Bjarne W.; Corgnati, Stefano P.

    2013-01-01

    an experimental study in an office building in Denmark where cooling in summer is provided by thermally activated building systems (TABS). Indoor climate quality evaluation, cooling system performance and energy consumption for a specific room were analyzed with different levels of internal gains. The experiments...... in the pipes of the hydronic system, and energy consumption of the chillers were monitored. The performance of this test room was also analyzed by the dynamic building simulation tool Energy Plus. The paper includes a comparison between experimental collected data and simulation results. Besides the paper show...

  9. Thermal calculations for the study of the heat evacuation in the vaults building of the centralised temporary storage (ATC)

    International Nuclear Information System (INIS)

    This article presents the thermal analyses of the vaults building at the future Spanish Nuclear Waste Storage facility (ATC) in which spent nuclear fuel and high activity nuclear wastes are to be stored efficiency, safety and securely. the analyses have been carried out by means of computational fluid dynamics (CFD) simulation codes, for the purpose of confirming the adequate design of the storage buildings and in order to obtain the air flow rate required to guarantee that the different thermal criteria are met. The design relies on natural convection in order to remove residual heat from the nuclear waste. The simulation model allows the designer to perform sensitivity analyses to evaluate the impact of different design parameters, to optimize the heat load per fuel canister and to provide an optimal loading plan for the facility. (Author)

  10. Building America Systems Integration Research Annual Report: FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  11. Building America Systems Integration Research Annual Report. FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  12. Alkaline regenerative fuel cell systems for energy storage

    Science.gov (United States)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  13. Optimal generation scheduling for renewable microgrids using hydrogen storage systems

    OpenAIRE

    Petrollese, Mario

    2015-01-01

    The topic of this thesis is the development of a tool for an optimal energy management strategy (EMS) of the generators and energy storage systems constituent microgrids, both grid-connected or isolated (stand-alone power system) powered by Renewable Energy Sources (RES). In particular, a novel control system is designed based on the resolution of the unit commitment problem. For each time step, the proposed control system compares the expected power produced by the renewabl...

  14. Self-control system in storage unit of PV plants

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shaban, Saad; Mohmoud, Ali [Hadhramout Univ. of Science and Technology, Faculty of Engineering, Mukalla (Yemen)

    2000-04-01

    A new system for self-controlling of storage batteries being charged by PV plants has been developed. This provides enhanced system reliability, lower system cost, and simpler operation for the user. In this system, the only requirement is to design and select PV panels so that their voltage-sensitive region (on the I-V curve) coincides with that required for a simpler remote PV plant and for long periods. (Author)

  15. Evolving Requirements for Magnetic Tape Data Storage Systems

    Science.gov (United States)

    Gniewek, John J.

    1996-01-01

    Magnetic tape data storage systems have evolved in an environment where the major applications have been back-up/restore, disaster recovery, and long term archive. Coincident with the rapidly improving price-performance of disk storage systems, the prime requirements for tape storage systems have remained: (1) low cost per MB, (2) a data rate balanced to the remaining system components. Little emphasis was given to configuring the technology components to optimize retrieval of the stored data. Emerging new applications such as network attached high speed memory (HSM), and digital libraries, place additional emphasis and requirements on the retrieval of the stored data. It is therefore desirable to consider the system to be defined both by STorage And Retrieval System (STARS) requirements. It is possible to provide comparative performance analysis of different STARS by incorporating parameters related to (1) device characteristics, and (2) application characteristics in combination with queuing theory analysis. Results of these analyses are presented here in the form of response time as a function of system configuration for two different types of devices and for a variety of applications.

  16. A fuel cell energy storage system concept for the Space Station Freedom Extravehicular Mobility Unit

    Science.gov (United States)

    Adlhart, Otto J.; Rosso, Matthew J., Jr.; Marmolejo, Jose

    1989-01-01

    An update is given on work to design and build a Fuel Cell Energy Storage System (FCESS) bench-tested unit for the Space Station Freedom Extravehicular Mobility Unit (EMU). Fueled by oxygen and hydride-stored hydrogen, the FCESS is being considered as an alternative to the EMU zinc-silver oxide battery. Superior cycle life and quick recharge are the main attributes of FCESS. The design and performance of a nonventing, 28 V, 34 Ahr system with 7 amp rating are discussed.

  17. Impact of small-scale storage systems on the photovoltaic penetration potential at the municipal scale

    Science.gov (United States)

    Ramirez Camargo, Luis; Dorner, Wolfgang

    2016-04-01

    The yearly cumulated technical energy generation potential of grid-connected roof-top photovoltaic power plants is significantly larger than the demand of domestic buildings in sparsely populated municipalities in central Europe. However, an energy balance with cumulated annual values does not deliver the right picture about the actual potential for photovoltaics since these run on a highly variable energy source as solar radiation. The mismatch between the periods of generation and demand creates hard limitations for the deployment of the theoretical energy generation potential of roof-top photovoltaics. The actual penetration of roof-top photovoltaic is restricted by the energy quality requirements of the grid and/or the available storage capacity for the electricity production beyond the coverage of own demands. In this study we evaluate in how far small-scale storage systems can contribute to increment the grid-connected roof-top photovoltaic penetration in domestic buildings at a municipal scale. To accomplish this, we calculate, in a first step, the total technical roof-top photovoltaic energy generation potential of a municipality in a high spatiotemporal resolution using a procedure that relies on geographic information systems. Posteriorly, we constrain the set of potential photovoltaic plants to the ones that would be necessary to cover the total yearly demand of the municipality. We assume that photovoltaic plants with the highest yearly yield are the ones that should be installed. For this sub-set of photovoltaic plants we consider five scenarios: 1) no storage 2) one 7 kWh battery is installed in every building with a roof-top photovoltaic plant 3) one 10 kWh battery is installed in every building with a roof-top photovoltaic plant 4) one 7 kWh battery is installed in every domestic building in the municipality 5) one 10 kWh battery is installed in every domestic building in the municipality. Afterwards we evaluate the energy balance of the

  18. Review of optimization techniques of polygeneration systems for building applications

    Science.gov (United States)

    Y, Rong A.; Y, Su; R, Lahdelma

    2016-08-01

    Polygeneration means simultaneous production of two or more energy products in a single integrated process. Polygeneration is an energy-efficient technology and plays an important role in transition into future low-carbon energy systems. It can find wide applications in utilities, different types of industrial sectors and building sectors. This paper mainly focus on polygeneration applications in building sectors. The scales of polygeneration systems in building sectors range from the micro-level for a single home building to the large- level for residential districts. Also the development of polygeneration microgrid is related to building applications. The paper aims at giving a comprehensive review for optimization techniques for designing, synthesizing and operating different types of polygeneration systems for building applications.

  19. Comprehensive work plan for Building 3001 storage canal at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This Comprehensive Work Plan describes the method of accomplishment to replace the shielding protection of the water in the canal with a controlled low strength material (CLSM) 4. The canal was used during the operation of the Oak Ridge Graphite Reactor in the 1940s and 1950s to transport spent fuel slugs and irradiated test materials from the reactor, under water to the hot cell in Building 3019 for further processing, packaging, and handling. After the reactor was shut down, the canal was used until 1990 to store some irradiated materials until they could be transferred to a Solid Waste Storage Area. This task has the following objectives and components: (1) minimize potential future risk to human health and the environment; (2) reduce surveillance and maintenance cost of the canal; (3) perform site preparation activities; (4) replace the water in the canal with a solid CLSM; (5) pump the water to the Process Waste Treatment System (PWTS) for further processing at the same rate that the CLSM is pumped under the water; (6) remove the water using a process that will protect the workers and the public in the visitors area from contamination while the CLSM is being pumped underneath the water; (7) painting a protective coating material over the CLSM after the CLSM has cured.

  20. Structural factors of solar system cluster ground coupled storage rationalization

    Directory of Open Access Journals (Sweden)

    Viktor V. Wysochin

    2015-12-01

    Full Text Available The computational investigations of unsteady heat transfer in seasonal solar heat storage system were conducted. This storage system consists of nine ground heat exchangers. The investigations were made for periodical diurnal cycle charging during summer season. The heat exchanger is presented as vertical probe with concentric tubes arrangement. Aim: The aim of the work is the optimization of cluster ground coupled storage – the probes quantity in cluster, their lengths and interval – using high precision mathematical model. Materials and Methods: The mathematical model of conjugate solar system functioning and ground coupled storage involves differential equations describing the incoming and conversion of solar energy in solar collector. Also it includes the heat exchange in ground heat exchangers and three-dimensional soil mass. Results: The need of mutual influence accounting of the solar collector and the ground heat exchanger size ranges is shown. One more thing – capability of effectiveness improvement of the collector based on reasonable step size selection for cluster and selection of active heat exchangers quantity in requisite construction. Conclusions: The recommendations for organization of heat exchangers of the collector work are offered. The five-probe structure is the most effective one for cluster arrangement of seasonal heat storage. The recommended interval between probes is 4 meters.

  1. Analysis of multipass laser amplifier systems for storage laser media

    International Nuclear Information System (INIS)

    The performance characteristics of single pass and multipass storage laser amplifiers are presented and compared. The effects of the multipass amplifier parameters on the extraction characteristics are examined. For a wide range of conditions the multipass amplifier is found to provide high energy gain and high efficiency simultaneously. This is a significant advantage over the single pass laser amplifier. Finally, three specific storage laser amplifier systems, flashlamp pumped V:MgF2, XeF laser pumped Tm:Glass, and photolytically pumped Selenium, are examined. The performance characteristics for each of the three systems are calculated and compared

  2. Analysis of multipass laser amplifier systems for storage laser media

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, J.F.

    1980-03-25

    The performance characteristics of single pass and multipass storage laser amplifiers are presented and compared. The effects of the multipass amplifier parameters on the extraction characteristics are examined. For a wide range of conditions the multipass amplifier is found to provide high energy gain and high efficiency simultaneously. This is a significant advantage over the single pass laser amplifier. Finally, three specific storage laser amplifier systems, flashlamp pumped V:MgF/sub 2/, XeF laser pumped Tm:Glass, and photolytically pumped Selenium, are examined. The performance characteristics for each of the three systems are calculated and compared.

  3. Optimal energy management of HEVs with hybrid storage system

    OpenAIRE

    Vinot, Emmanuel; TRIGUI, Rochdi

    2013-01-01

    Energy storage systems are a key point in the design and development of electric and hybrid vehicles. In order to reduce the battery size and its current stress, a hybrid storage system, where a battery is coupled with an electrical double-layer capacitor (EDLC) is considered in this paper. The energy management of such a configuration is not obvious and the optimal operation concerning the energy consumption and battery RMS current has to be identified. Most of the past work on the optimal e...

  4. Entropy, pumped-storage and energy system finance

    Science.gov (United States)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  5. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  6. LHCb: A New Nightly Build System for LHCb

    CERN Multimedia

    Clemencic, M

    2013-01-01

    The nightly build system used so far by LHCb has been implemented as an extension on the system developed by CERN PH/SFT group (as presented at CHEP2010). Although this version has been working for many years, it has several limitations in terms of extensibility, management and ease of use, so that it was decided to develop a new version based on a continuous integration system. In this paper we describe a new implementation of the LHCb Nightly Build System based on the open source continuous integration system Jenkins and report on the experience on the configuration of a complex build workflow in Jenkins.

  7. Removal Action Workplan for the 105-DR and 105-F Building Interim Safe Storage Projects and Ancillary Buildings

    International Nuclear Information System (INIS)

    This document is the removal action workplan (RAW) for the 105-DR and 105-F Reactor Buildings and ancillary facilities. These buildings and facilities are located in the 100-D/DR and 100-F Areas of the Hanford Site in Benton County, Washington, which is owned and operated by the U.S. Department of Energy (DOE). The 100 Areas (including 100-D/DR and 100-F Areas) of the Hanford Site were placed on the U.S. Environmental Protection Agency's (EPA) National Priorities List under the Comprehensive Environmental Response, Compensation,and Liability Act of 1980 (CERCLA). DOE has determined that hazardous substances in the 105-DR and 105-F Reactor Buildings and four ancillary facilities present a potential threat to human health or the environment DOE has also determined that a non-time critical removal action is warranted at these facilities

  8. MARS: Microarray analysis, retrieval, and storage system

    Directory of Open Access Journals (Sweden)

    Scheideler Marcel

    2005-04-01

    Full Text Available Abstract Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS, a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at http://genome.tugraz.at.

  9. Management Methods In Sla-Aware Distributed Storage Systems

    Directory of Open Access Journals (Sweden)

    Darin Nikolow

    2012-01-01

    Full Text Available Traditional data storage systems provide access to user’s data on the “besteffort” basis. While this paradigm is sufficient in many use cases it becomesan obstacle for applications with Quality of Service (QoS constraints. ServiceLevel Agreement (SLA is a part of the contract agreed between the serviceprovider and the client and contains a set of well defined QoS requirementsregarding the provided service and the penalties applied in case of violations.In the paper we propose a set of SLA parameters and QoS metrics relevantto data storage processes and the management methods necessary for avoidingSLA violations. A key assumption in the proposed approach is that the underlyingdistributed storage system does not provide functionality for resource orbandwidth reservation for a given client request.

  10. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  11. Content-aware network storage system supporting metadata retrieval

    Science.gov (United States)

    Liu, Ke; Qin, Leihua; Zhou, Jingli; Nie, Xuejun

    2008-12-01

    Nowadays, content-based network storage has become the hot research spot of academy and corporation[1]. In order to solve the problem of hit rate decline causing by migration and achieve the content-based query, we exploit a new content-aware storage system which supports metadata retrieval to improve the query performance. Firstly, we extend the SCSI command descriptor block to enable system understand those self-defined query requests. Secondly, the extracted metadata is encoded by extensible markup language to improve the universality. Thirdly, according to the demand of information lifecycle management (ILM), we store those data in different storage level and use corresponding query strategy to retrieval them. Fourthly, as the file content identifier plays an important role in locating data and calculating block correlation, we use it to fetch files and sort query results through friendly user interface. Finally, the experiments indicate that the retrieval strategy and sort algorithm have enhanced the retrieval efficiency and precision.

  12. Chelonia: A self-healing, replicated storage system

    International Nuclear Information System (INIS)

    Chelonia is a novel grid storage system designed to fill the requirements gap between those of large, sophisticated scientific collaborations which have adopted the grid paradigm for their distributed storage needs, and of corporate business communities gravitating towards the cloud paradigm. Chelonia is an integrated system of heterogeneous, geographically dispersed storage sites which is easily and dynamically expandable and optimized for high availability and scalability. The architecture and implementation in term of web-services running inside the Advanced Resource Connector Hosting Environment Dameon (ARC HED) are described and results of tests in both local -area and wide-area networks that demonstrate the fault tolerance, stability and scalability of Chelonia will be presented. In addition, example setups for production deployments for small and medium-sized VO's are described.

  13. Doses of the staff during the spent fuel assemblies transportation and storage in Nuhmos 56V concrete system

    International Nuclear Information System (INIS)

    The NUHMOS 56V concrete system provides long-term interim storage (50 years) for spent fuel assemblies, which have been out of the reactor for a sufficient period of time. It consists from horizontal storage modules. The fuel assemblies are confined in a helium atmosphere by a canister containment pressure vessel. The canister is protected and shielded by a massive reinforced concrete module. Decay heat is removed from the canister and concrete module by a passive natural draft convection ventilation system. The project of storage does not foresee the radiation monitoring inside of building and around it. But we provided and realize the radiation monitoring program around storage, it includes tree phases: - determination the zero background around the building before storage put in exploiting; - monitoring of the radioactive particles in air (additional aspiration plant); dose rate monitoring by portable dosimeters and soil monitoring during the process of the fuel storage; - constantly after the completion the fuel storage process - monitoring of the radioactive particles in air (additional aspiration plant); dose rate monitoring by portable dosimeters, and soil monitoring. Also designed the dose rate monitoring by the dosimeter RME3 with the transfer of data by radio channel to central monitor. The canistered spent fuel assemblies are transferred from the plant's spent fuel pool to the concrete storage modules in a transfer cask. The cask is aligned with the storage module and the canister and inserted into the module by means of a hydraulic ram. The system is a totally passive installation that is designed to provide shielding and safe confinement of spent fuel for a range of postulated accident conditions and natural phenomena. (authors)

  14. Maximizing Your Investment in Building Automation System Technology.

    Science.gov (United States)

    Darnell, Charles

    2001-01-01

    Discusses how organizational issues and system standardization can be important factors that determine an institution's ability to fully exploit contemporary building automation systems (BAS). Further presented is management strategy for maximizing BAS investments. (GR)

  15. "Method, system and storage medium for generating virtual brick models"

    DEFF Research Database (Denmark)

    2009-01-01

    An exemplary embodiment is a method for generating a virtual brick model. The virtual brick models are generated by users and uploaded to a centralized host system. Users can build virtual models themselves or download and edit another user's virtual brick models while retaining the identity...... of the original virtual brick model. Routines are provided for both storing user created building steps in and generating automated building instructions for virtual brick models, generating a bill of materials for a virtual brick model and ordering physical bricks corresponding to a virtual brick model....

  16. Optimization of system parameters of packed bed solar energy storage system having storage material elements of large size

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R. [Beant College of Engineering and Technology, Gurdaspur, Punjab (India). Dept. of Mechanical Engineering; Saini, R.P. [Alternate Hydro Energy Centre, Roorkee, Uttaranchal (India); Saini, J.S. [Indian Inst. of Technology Roorkee, Roorkee, Uttarakhand (India). Dept. of Mechanical and Industrial Engineering

    2009-07-01

    The development of technologies for the efficient and effective use of solar energy is a high priority. However, in order to ensure the reliability of solar energy, the intermittent nature of solar energy requires the integration of an energy storage system with solar collectors. A packed bed is a well known thermal energy storage system for air based solar energy utilization. A major concern for the design of a packed bed solar energy storage system is to maximize the heat transfer during the charging and discharging phase by using a minimum amount of pumping power. The shape of the material elements and void fraction of the bed are among the system parameters for a given material size, which could affect heat transfer and pressure drop in the bed considerably. This paper presented a simulation study to evaluate optimum values of system parameters in order to ensure the best thermohydraulic performance of a packed bed solar energy storage system. The paper discussed the analysis of 5 different shapes of large size material elements. Design plots were successfully used to determine optimum values of system parameters under the given operating conditions. 7 refs., 1 tab., 4 figs.

  17. Intelligent Storage System Based on Automatic Identification

    Directory of Open Access Journals (Sweden)

    Kolarovszki Peter

    2014-09-01

    Full Text Available This article describes RFID technology in conjunction with warehouse management systems. Article also deals with automatic identification and data capture technologies and each processes, which are used in warehouse management system. It describes processes from entering goods into production to identification of goods and also palletizing, storing, bin transferring and removing goods from warehouse. Article focuses on utilizing AMP middleware in WMS processes in Nowadays, the identification of goods in most warehouses is carried through barcodes. In this article we want to specify, how can be processes described above identified through RFID technology. All results are verified by measurement in our AIDC laboratory, which is located at the University of Žilina, and also in Laboratory of Automatic Identification Goods and Services located in GS1 Slovakia. The results of our research bring the new point of view and indicate the ways using of RFID technology in warehouse management system.

  18. dCache,a Distributed Storage Data Cahing System

    Institute of Scientific and Technical Information of China (English)

    MichaelErns; CharlesWaldman; 等

    2001-01-01

    This article is about a piece of middle ware,allowing to convert a dump tape based Tertiary Storage System into a multi petabyte random access device with thousands of channels.Using typical caching mechanisms,the software optimizes the access to the underlying Storage System and makes better use of possibly expensive drives and robots or allows to integrate cheap and slow devices without introducing unacceptable performance degadation.In addition,using the standard NFS2 protocol,the dCache provides a unique view into the storage repository,hiding the physical location of the file data,cached or tape only.Bulk data transfer is supported through the kerberized FTP protocol and a C-API,providing the posix file access semantics,Dataset staging and disk space management is performed invisibly to the data clients.The project is a DESY,Fermilab joint effort to overcome limitations in the usage of tertiary storage resources common to many HEP labs.The distributed cache nodes may range from high performance SGI machines to commodity CERN Linux-IDE like file server models.Different cache nodes are assumed to have different affinities to particular storage groups or file sets.Affinities may be defined manually or are calculated by the dCache based on topology considerations.Cache nodes may have different disk space management policies to match the large variety of applications from raw data to user analysis data pools.

  19. Storage of energy in confined quantum systems

    OpenAIRE

    Malbouisson, A. P. C.

    2002-01-01

    Using the non-perturbative method of {\\it dressed} states introduced in previous publications [N.P.Andion, A.P.C. Malbouisson and A. Mattos Neto, J.Phys.{\\bf A34}, 3735, (2001); G. Flores-Hidalgo, A.P.C. Malbouisson, Y.W. Milla, Phys. Rev. A, {\\bf 65}, 063314 (2002)], we study the evolution of a confined quantum mechanical system embedded in a {\\it ohmic} environment. Our approach furnishes a theoretical mechanism to control inhibition of the decay of excited quantum systems in cavities, in b...

  20. Electric cars as mobile power storage systems

    International Nuclear Information System (INIS)

    This article discusses the use of electric cars as a means of optimising the use of renewable energy sources. Charging the cars' batteries during periods when cheap electricity prices prevail and then using excess capacity to supply the mains with electricity during periods of peak demand is discussed. The possible use of wind for power generation is discussed and a system proposed by a leading supplier of electrical apparatus and systems is examined. Two examples of electric cars and associated power chains are looked at and tests in everyday practice are described

  1. Innovative lightweight floor systems for steel framed buildings /1990.

    OpenAIRE

    Hillman, John R.

    1990-01-01

    For decades engineers have been concerned with finding ways to reduce the dead load of a buildings structural system. This thesis investigates the potential of reducing the dead load of a structure by creating new lighter-weight floor systems using various configurations of mixed materials. Floor systems have a/ways been one of the heaviest components of a buildings structural system, and therefore comprise a significant portion of the structures dead load. As a result, by d...

  2. Building control. Technical systems in buildings: Automation and management; 2. ed.; Building control. Technische Gebaeudesysteme: Automation und Bewirtschaftung

    Energy Technology Data Exchange (ETDEWEB)

    Kranz, H.R. [Siemens AG, Karlsruhe (Germany). Gebaeudetechnik - Automation; Baenninger, M. [Schweizerische Bankgesellschaft, Zurich (Switzerland); Bieler, P. [ROM (Rud. Otto Meyer), Duesseldorf (Germany); Brettschneider, J.P. [PIA, Hanau (Germany); Damnig, A. [IBM Deutschland GmbH, Boeblingen (Germany); Fassbender, H.W. [Honeywell GmbH, Maintal (Germany); Friedrichs, K. [Karlsruhe Univ. (T.H.) (Germany). Fakultaet fuer Architektur; Gauchel, J. [WIBc Objektorientierte Systeme fuer Gebaeudeplanung und -management, Karlsruhe (Germany); Hegewald, B. [Zentralverband Elektrotechnik- und Elektronikindustrie e.V. (ZVEI), Frankfurt am Main (Germany)]|[Siemens AG, Muenchen (Germany); Kaelin, W. [Ingenieurbuero Werner Kaelin, Schwyz (Switzerland); Lezius, A. [Staefa Control System GmbH, Stuttgart (Germany); Markert, H. [MW Software GmbH, Koeln (Germany); Oehler, A. [Fachhochschule Reutlingen (Germany); Otto, J. [IEP Ingenieurbuero Dr. Ellrich und Partner, Muenchen (Germany); Puettmer, M. Jr. [Goetz GmbH, Fellbach (Germany); Rohrbacher, H. [ABB Stotz Kontakt, Heidelberg (Germany); Schuerdt, K. [Siemens AG, Erlangen (Germany). Gebaeudetechnik; Vogt, D. [RWE Energie AG, Essen (Germany); Wittling, J. [Canzler Ingenieure GmbH, Muelheim an der Ruhr (Germany)

    1997-12-31

    Cost-optimized management, business management and maintenance of buildings all rely on electronic data processing. Technical and administrative systems must be projected for `lean buildings`, i.e. with easy operability and high economic efficiency. This book presents an easy-to-read, interdisciplinary and practical introduction to the following issues: Data processing in projecting and operation - ecological concepts for refrigeration and external walls - facility management, alarm systems and automation - communication technology, open communication and networks - building systems engineering and installation bus - energy management - operators` experience - standards and regulations (European standards, the new VDI 3814 information list) - construction law and legal regulations (e.g. building products, CE certificates, electromagnetic compatibility, environmental liability, software licensing legislation). (orig.) 260 figs., 161 refs. [Deutsch] Kostenoptimiertes Management, Betriebswirtschaft und Instandhaltung von Gebaeuden ist ohne EDV nicht mehr denkbar. Technische und administrative Systeme muessen im Hinblick auf Bedienbarkeit und Wirtschaftlichkeit geplant werden. Ziel sind `Lean-Buildings`. Dieses Buch behandelt kurzweilig, interdisziplinaer und praxisnah - EDV-Einsatz beim Planen und Betreiben - oekologische Kuehl- und Fassadenkonzepte - Facility Management, Gefahrenmeldetechnik, Gebaeudeautomation - Kommunikationstechnik, offene Kommunikation und Netzwerke - Gebaeudesystemtechnik und Installationsbus - Energiemanagement - Betreiber-Erfahrungen - Normen und Richtlinien (Stand der Europa-Normung, neue VDI 3814 Informationsliste) - Baurecht und Gesetz (z.B.: Bauprodukte, CE-Zeichen, elektromagnetische Vertraeglichkeit, Umwelt-Haftungsgesetz, Software-Lizenzrecht). (orig.)

  3. Integration of Electrochromic Smart Windows in Building Automation Systems

    OpenAIRE

    Hultmark Varejão, Marcus

    2013-01-01

    To lower energy consumption, the building industry invests in smart solutions. These solutions usually use control and automation to both increase energy efficiency and facilitate usage, and therefore attract consumers. This paper gives a better insight into how an electrochromic (EC) window, which is a relatively new smart product, should be used to further improve the intelligence of buildings. The funding company has not yet integrated the EC windows in building automation systems (BASs). ...

  4. Building a Human Rights Youth Justice System

    Science.gov (United States)

    Wyles, Paul

    2009-01-01

    The Australian Capital Territory's Human Rights Act 2004 and the establishment of an ACT Human Rights Commission have begun to create a human rights culture in the ACT. This paper highlights the influence of this culture on the design and build of the ACT's new youth justice centre. (Contains 2 figures.)

  5. The concentration gradient flow battery as electricity storage system

    NARCIS (Netherlands)

    Egmond, Van W.J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable e

  6. Experimental Results of Integrated Refrigeration and Storage System Testing

    Science.gov (United States)

    Notardonato, W. U.; Johnson, W. L.; Jumper, K.

    2009-01-01

    Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage

  7. Optimal management of electric vehicles with a hybrid storage system

    OpenAIRE

    Vinot, Emmanuel; Trigui, Rochdi; Jeanneret, Bruno

    2010-01-01

    This paper presents a comparison between two offline optimisation methods for energy management applied to electrical vehicle with one electrical machine and fed by a hybrid storage system composed of batteries and ultra-capacitors. After a short presentation of the two methods, they are applied and compared to the case of an electric micro bus.

  8. Earthquake Response Mitigation of RC Building Using Friction Pendulum System

    Directory of Open Access Journals (Sweden)

    Sudarshan B. Sanap

    2014-11-01

    Full Text Available Earthquake hazard mitigation is very sensitive issue now a day’s therefore researchers are struggling for optimum solution since last few decades. Base isolation technique is one of the effective techniques which give better results seismic hazard mitigation under earthquake excitation particularly in building structures, bridges and water tanks etc. Base isolation reduces not only the effects of earthquake acceleration to be transmitted to the structures, but also protects the content of building while simultaneous supporting the mass of structure. This study proposed a realistic ten storey RC building which is model as shear type lumped mass having single degrees-of-freedom at each floor level. This building is isolated by Friction Pendulum System of sliding base isolated type and excited under unidirectional ground motion due to four realistic earthquakes namely, Imperial Valley, 1940, Loma Prieta, 1989, Kobe, 1995 and Northridge, 1994. The governing equation of motion for the building solved using Newmarks method whereas isolation system is modelled by Wen’s model. The effectiveness of proposed isolation system and building response has been evaluated by coding in MATLAB 8.2 computing software. Further, effectiveness of isolation system is also studied in terms of peak responses of building. The results obtained from the study underscored that Friction Pendulum System works effectively in limiting the building responses during excitation due to earthquakes.

  9. Design of Mooring System for Oil Storage Vessels

    Institute of Scientific and Technical Information of China (English)

    李文龙; 谭家华

    2003-01-01

    The floating oil storage system has been proposed as a new facility for Strategic Petroleum Reserve (SPR) in China. Mooring is one of the key technologies to ensure the safety, reliability, and performance of the oil storage system. This paper describes the concept, analysis, design and reliability of the mooring system. For mooring system design of these oil vessels, analysis is essential of the behavior of the vessel in connection with mooring facilities of nonlinear resilience. A nonlinear mathematical model for analyzing a moored vessel is established and solved. Some results of numerical simulations are presented. Assessment of the safety regarding the mooring system in terms of failure probability is carried out. Another simulation model for calculating the failure probability of the mooring system is proposed. The design parameters that have an influence on the characteristics of the failure probability have been identified. The simulation results show that the mooring system has an annual reliability value of 0.999998. The proposed simulation method is proved to be effective in quantitative evaluation of the safety of the mooring system for floating oil storage vessels.

  10. Nanostructural Materials for Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Bronislaw Buczek

    2011-01-01

    Full Text Available The aim of this study was to assess of carbonaceous monoliths used for adsorption cooling systems. The carbonaceous monoliths prepared from coal precursors are obtained. The porous structure of monoliths was evaluated on the basis of nitrogen adsorption-desorption data. The investigated monoliths have significantly developed microporous structure. The large specific area of carbonaceous monoliths (about 2000 m2/g and volume of micropores are observed. Methanol adsorption isotherms and heat of wetting using methanol was determined. Results show that monoliths materials are high adsorption capacity of methanol and heat of wetting, which can improve of heat exchange and efficiency in processes of refrigeration and air conditioning.

  11. Integrating STATCOM and Battery Energy Storage System for Power System Transient Stability: A Review and Application

    OpenAIRE

    Arindam Chakraborty; Musunuri, Shravana K.; Srivastava, Anurag K.; Kondabathini, Anil K.

    2012-01-01

    Integration of STATCOM with energy storage devices plays an imperative role in improving the power system operation and control. Significant research has been done in this area for practical realization of benefits of the integration. This paper, however, pays particular importance to the performance improvement for the transients as is achievable by STATCOM with battery-powered storage systems. Application of STATCOM with storage in regard to intermittent renewable energy sources such as win...

  12. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    Science.gov (United States)

    1980-06-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  13. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    Science.gov (United States)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  14. A Rewritable, Random-Access DNA-Based Storage System

    Science.gov (United States)

    Tabatabaei Yazdi, S. M. Hossein; Yuan, Yongbo; Ma, Jian; Zhao, Huimin; Milenkovic, Olgica

    2015-09-01

    We describe the first DNA-based storage architecture that enables random access to data blocks and rewriting of information stored at arbitrary locations within the blocks. The newly developed architecture overcomes drawbacks of existing read-only methods that require decoding the whole file in order to read one data fragment. Our system is based on new constrained coding techniques and accompanying DNA editing methods that ensure data reliability, specificity and sensitivity of access, and at the same time provide exceptionally high data storage capacity. As a proof of concept, we encoded parts of the Wikipedia pages of six universities in the USA, and selected and edited parts of the text written in DNA corresponding to three of these schools. The results suggest that DNA is a versatile media suitable for both ultrahigh density archival and rewritable storage applications.

  15. A Grid storage accounting system based on DGAS and HLRmon

    Science.gov (United States)

    Cristofori, A.; Fattibene, E.; Gaido, L.; Guarise, A.; Veronesi, P.

    2012-12-01

    Accounting in a production-level Grid infrastructure is of paramount importance in order to measure the utilization of the available resources. While several CPU accounting systems are deployed within the European Grid Infrastructure (EGI), storage accounting systems, stable enough to be adopted in a production environment are not yet available. As a consequence, there is a growing interest in storage accounting and work on this is being carried out in the Open Grid Forum (OGF) where a Usage Record (UR) definition suitable for storage resources has been proposed for standardization. In this paper we present a storage accounting system which is composed of three parts: a sensor layer, a data repository with a transport layer (Distributed Grid Accounting System - DGAS) and a web portal providing graphical and tabular reports (HLRmon). The sensor layer is responsible for the creation of URs according to the schema (described in this paper) that is currently being discussed within OGF. DGAS is one of the CPU accounting systems used within EGI, in particular by the Italian Grid Infrastructure (IGI) and some other National Grid Initiatives (NGIs) and projects. DGAS architecture is evolving in order to collect Usage Records for different types of resources. This improvement allows DGAS to be used as a ‘general’ data repository and transport layer. HLRmon is the web portal acting as an interface to DGAS. It has been improved to retrieve storage accounting data from the DGAS repository and create reports in an easy way. This is very useful not only for the Grid users and administrators but also for the stakeholders.

  16. Model for energy conversion in renewable energy system with hydrogen storage

    Science.gov (United States)

    Kélouwani, S.; Agbossou, K.; Chahine, R.

    A dynamic model for a stand-alone renewable energy system with hydrogen storage (RESHS) is developed. In this system, surplus energy available from a photovoltaic array and a wind turbine generator is stored in the form of hydrogen, produced via an electrolyzer. When the energy production from the wind turbine and the photovoltaic array is not enough to meet the load demand, the stored hydrogen can then be converted by a fuel cell to produce electricity. In this system, batteries are used as energy buffers or for short time storage. To study the behavior of such a system, a complete model is developed by integrating individual sub-models of the fuel cell, the electrolyzer, the power conditioning units, the hydrogen storage system, and the batteries (used as an energy buffer). The sub-models are valid for transient and steady state analysis as a function of voltage, current, and temperature. A comparison between experimental measurements and simulation results is given. The model is useful for building effective algorithms for the management, control and optimization of stand-alone RESHSs.

  17. Recent research and applications of ground source heat pump integrated with thermal energy storage systems: A review

    International Nuclear Information System (INIS)

    As a renewable energy technology, ground source heat pump (GSHP) system is high efficient for space heating and cooling in buildings. Thermal energy storage (TES) technology facilitates the efficient utilization of renewable energy sources and energy conservation. It is expected to be more prevalent in the future. GSHP application is growing rapidly as it is integrated with TES system. During the last decade, a number of investigators have conducted the studies on the designing, modeling and testing of TES assisted GSHP (GSHP–TES) system. This paper presents a review on the research and applications of GSHP integrated with TES system, including various cooling and heating storage technologies. The studies on the GSHP–TES systems are categorized into five groups including: GSHP integrated with ice storage tank, GSHP integrated with solar collectors, GSHP integrated with soil, GSHP integrated with water tank and GSHP integrated with phase change materials (PCM). However, there are still several challenges for the applications of GSHP–TES systems, such as the mechanisms, thermodynamics and performance of the unsteady and transient heat transfer of underground soil and the thermal storage process as well as control strategies of the GSHP–TES systems. Addressing these problems will strengthen the theoretical and practical understandings and facilitate more extensive applications of GSHP–TES systems. - Highlights: • Ground source heat pump combined with thermal energy storage (GSHP–TES) systems. • Theoretical and practical understandings on GSHP–TES systems. • Outline review of the available studies and identify the future research opportunities

  18. Miniaturized volume holographic optical data storage and correlation system with a storage density of 10 Gb/cm3

    Institute of Scientific and Technical Information of China (English)

    CAO Liangcai; HE Qingsheng; WEI Haoyun; LIU Guodong; OUYANG Chuan; ZHAO Jian; WU Minxian; JIN Guofan

    2004-01-01

    The general idea of holographic optical data storage (HODS) is briefly introduced. Based on the recent advances of HODS, the key techniques and the challenges of HODS are discussed. Some new techniques are proposed to improve the system. A miniaturized volume holographic data storage and correlation system is presented. It can achieve a density of 10 Gb/cm3 and a fast correlation recognition rate of more than 2000 images per second. It shows the attracting potential advantages over other conventional storage methods in the information storage as well as information processing.

  19. High Performance Storage System Scalability: Architecture, Implementation, and Experience

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R W

    2005-01-05

    The High Performance Storage System (HPSS) provides scalable hierarchical storage management (HSM), archive, and file system services. Its design, implementation and current dominant use are focused on HSM and archive services. It is also a general-purpose, global, shared, parallel file system, potentially useful in other application domains. When HPSS design and implementation began over a decade ago, scientific computing power and storage capabilities at a site, such as a DOE national laboratory, was measured in a few 10s of gigaops, data archived in HSMs in a few 10s of terabytes at most, data throughput rates to an HSM in a few megabytes/s, and daily throughput with the HSM in a few gigabytes/day. At that time, the DOE national laboratories and IBM HPSS design team recognized that we were headed for a data storage explosion driven by computing power rising to teraops/petaops requiring data stored in HSMs to rise to petabytes and beyond, data transfer rates with the HSM to rise to gigabytes/s and higher, and daily throughput with a HSM in 10s of terabytes/day. This paper discusses HPSS architectural, implementation and deployment experiences that contributed to its success in meeting the above orders of magnitude scaling targets. We also discuss areas that need additional attention as we continue significant scaling into the future.

  20. Optimization of a solar hydrogen storage system: safety considerations

    International Nuclear Information System (INIS)

    Hydrogen has been extensively used in many industrial applications for more than 100 years, including production, storage, transport, delivery and final use. Nevertheless, the goal of the hydrogen energy system implies the use of hydrogen as an energy carrier in a more wide scale and for a public not familiarized with hydrogen technologies and properties. The road to the hydrogen economy pass by the development of safe practices in the production, storage, distribution, and use of hydrogen. These issues are essential for hydrogen insurability. We have to bear in mind that a catastrophic failure in any hydrogen project could damage the insurance public perception of hydrogen technologies at this early step of development of hydrogen infrastructures. Safety is a key issue for the development of hydrogen economy, and a great international effort is being done by different stakeholders for the development of suitable codes and standards concerning safety for hydrogen technologies. Additionally to codes and standards, different studies have been done regarding safety aspects of particular hydrogen energy projects during the last years. Most of them have been focused on hydrogen production and storage in large facilities, transport, delivery in hydrogen refuelling stations, and utilization, mainly on fuel cells for mobile and stationary applications. In comparison, safety considerations for hydrogen storage in small or medium scale facilities, as usual in hydrogen production plants from renewable energies, have received relatively less attention. After a brief introduction to risk assessment for hydrogen facilities, this paper reports an example of risk assessment of a small solar hydrogen storage system, applied to the INTA Solar Hydrogen Production and Storage facility as particular case, and considers a top level Preliminary Failure Modes and Effects Analysis (FMEA) for the identification of hazard associated to the specific characteristics of the facility. (authors)

  1. A new heat storage system using metal hydrides

    Science.gov (United States)

    Ono, S.; Kawamura, M.; Ishido, Y.; Akiba, E.; Higano, S.

    The development of a prototype chemical heat storage system, designed for the accumulation of fairly high temperature (300 - 400 C) waste heat, and called the Hydriding Heat Storage system is presented. Mg2Ni hydride is used as the high temperature heat storing medium, and LaNi5H6 is used as a reservoir for the hydrogen released from the heat storing medium. The system has been in development since 1976, and a 2000 kcal heat capacity prototype system is to be completed by 1982. Basic investigations, i.e., reaction kinetics of absorption and desorption, and heat transfer characteristics of the hydride and/or the metal powder packed bed, are described.

  2. Alternative schemes for low-footprint operating systems building

    OpenAIRE

    Rippert, Christophe; Deville, Damien; Grimaud, Gilles

    2004-01-01

    This paper presents two ways of building dedicated embedded operating systems. The constructive approach consists in starting from a minimal kernel and adding abstractions as they are needed, whereas the destructive approach promotes the idea of customizing an existing operating system by removing unnecessary abstractions. We compare these two approaches on the example of building an embedded Java operating system and discuss the pros and cons of each method. We conclude by exhibiting the wea...

  3. Building Energy Management through a Distributed Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Pervez Hameed Shaikh

    2013-08-01

    Full Text Available Buildings consume significant world’s energy resources, approximately 32% of the total primary energy. The rapid depletion of energy resources, has imparted researchers to focus on energy conservation and wastage. The next generation of smart buildings is becoming a trend to cope with the needs of energy and environmental ease in buildings. This advances the intelligent control of building to fulfill the occupants’ need. Intelligent system control for sustainable buildings is dynamic and highly complex. Building information accuracy with an effective controller scheme is a challenging task. This paper presents the fuzzy control system architecture (FCSA for resolving the conflict of maintaining the inhabitants comfort index and the energy consumption in buildings. It also infers the graphical relationship between energy consumption and comfort parameters. With a distributed fuzzy inference system (FIS, control has been developed for temperature, air quality and artificial lighting comfort parameters. Model simulation has been carried out and control factors have been discussed. The FIS models have also been validated with implication of change function. The presented control system is capable of achieving energy conservation in the buildings.

  4. Solar heating and hot water system installed at Municipal Building complex, Abbeville, South Carolina

    Science.gov (United States)

    1979-01-01

    Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.

  5. Optimization of a hybrid electric power system design for large commercial buildings: An application design guide

    Science.gov (United States)

    Lee, Keun

    Renewable energy in different forms has been used in various applications for survival since the beginning of human existence. However, there is a new dire need to reevaluate and recalibrate the overall energy issue both nationally and globally. This includes, but is not limited to, the finite availability of fossil fuel, energy sustainability with an increasing demand, escalating energy costs, environmental impact such as global warming and green-house gases, to name a few. This dissertation is primarily focused and related to the production and usage of electricity from non-hydro renewable sources. Among non-hydro renewable energy sources, electricity generation from wind and solar energy are the fastest-growing technologies in the United States and in the world. However, due to the intermittent nature of such renewable sources, energy storage devices are required to maintain proper operation of the grid system and in order to increase reliability. A hybrid system, as the name suggests, is a combination of different forms of non-renewable and renewable energy generation, with or without storage devices. Hybrid systems, when applied properly, are able to improve reliability and enhance stability, reduce emissions and noise pollution, provide continuous power, increase operation life, reduce cost, and efficiently use all available energy. In the United States (U.S.), buildings consume approximately 40% of the total primary energy and 74% of the total electricity. Therefore, reduction of energy consumption and improved energy efficiency in U.S. buildings will play a vital role in the overall energy picture. Electrical energy usage for any such building varies widely depending on age (construction technique), electricity and natural gas usage, appearance, location and climate. In this research, a hybrid system including non-renewable and renewable energy generation with storage devices specifically for building applications, is studied in detail. This research deals

  6. Assessment of rock bolt systems for underground waste storage

    International Nuclear Information System (INIS)

    A review of existing rock bolting systems was undertaken to assess their suitability in underground design for storage of nuclear waste. Unique engineering considerations are required due to the thermal pulse generated by the waste causing additional stress to the support system and possibly affecting anchorage stability. Field visits were made to four underground projects to assess the performance of a wide variety of rock bolt systems. Cable bolts, point anchor bolts, locally debonded full column cement grout bolts, and yieldable bolt systems show promise. Full scale testing of bolt systems is recommended, together with assessing temperature effects on grout strength and grout longterm stability

  7. Fuzzy synthetic assessment of building fire safety system

    Institute of Scientific and Technical Information of China (English)

    YANG Gao-shang; PENG Li-min

    2005-01-01

    A multistage assessment index set is chosen based on the analysis of building fire safety system, whereby the weight of each index is determined through an analy tie.hierarchy process; a fuzzy synthetic assessment model for the building fire safety system is constructed, and the quantified result was obtained by using hierarchy parameter judgment. This fuzzy synthetic assessment method can quantify assessment result of the building fire safety system, so thatthe fire precautions may be accurately adopted, and the serious potential risk may be avoided. The application shows that this method possesses both objectivity and feasibility.

  8. Ageing study of a supercapacitor-battery storage system

    OpenAIRE

    VULTURESCU, B; BUTTERBACH, S; Coquery, G.; FORGEZ, C; Friedrich, G

    2010-01-01

    This paper presents a preliminary study about a battery ageing methodology of a storage system formed by supercapacitors and lead-acid battery. The design of the hybrid system, based on a simple power flow management – the battery current clipping – is briefly summarized in order to outline the main benefit of the hybridization: the reduction of losses within the battery. The experimental setup will allow quantifying the impact of the hybridization on the battery lifetime by means...

  9. Enhanced electrophoretic motion using supercapacitor-based energy storage system.

    Science.gov (United States)

    Liu, Ran; Wong, Flory; Duan, Wentao; Sen, Ayusman

    2013-12-23

    Electrophoretic motion at low potentials is facilitated by redox chemistry occurring in a supercapacitor-based electrochemical energy storage system during charge and discharge. We show that MnO2 -modified electrodes can effectively alleviate the electrode surface polarization, the main factor that leads to inefficient electrophoresis at low voltages. A self-powered electrophoretic system based on a discharging battery has been also fabricated.

  10. Methods and devices for determining quality of services of storage systems

    Science.gov (United States)

    Seelam, Seetharami R.; Teller, Patricia J.

    2012-01-17

    Methods and systems for allowing access to computer storage systems. Multiple requests from multiple applications can be received and processed efficiently to allow traffic from multiple customers to access the storage system concurrently.

  11. Parameter study of a vehicle-scale hydrogen storage system.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    Sandia National Laboratories has developed a vehicle-scale prototype hydrogen storage system as part of a Work For Others project funded by General Motors. This Demonstration System was developed using the complex metal hydride sodium alanate. For the current work, we have continued our evaluation of the GM Demonstration System to provide learning to DOE's hydrogen storage programs, specifically the new Hydrogen Storage Engineering Center of Excellence. Baseline refueling data during testing for GM was taken over a narrow range of optimized parameter values. Further testing was conducted over a broader range. Parameters considered included hydrogen pressure and coolant flow rate. This data confirmed the choice of design pressure of the Demonstration System, but indicated that the system was over-designed for cooling. Baseline hydrogen delivery data was insufficient to map out delivery rate as a function of temperature and capacity for the full-scale system. A more rigorous matrix of tests was performed to better define delivery capabilities. These studies were compared with 1-D and 2-D coupled multi-physics modeling results. The relative merits of these models are discussed along with opportunities for improved efficiency or reduced mass and volume.

  12. Health risk assessment for the Building 3001 Storage Canal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    This human health risk assessment has been prepared for the Environmental Restoration (ER) Program at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. The objectives of this risk assessment are to evaluate the alternatives for interim closure of the Building 3001 Storage Canal and to identify the potential health risk from an existing leak in the canal. The Building 3001 Storage Canal connects Buildings 3001 and 3019. The volume of water in the canal is monitored and kept constant at about 62,000 gal. The primary contaminants of the canal water are the radionuclides 137Cs, 60Co, and 90Sr; a layer of sediment on the canal floor also contains radionuclides and metals. The prime medium of contaminant transport has been identified as groundwater. The primary route for occupational exposure at the canal is external exposure to gamma radiation from the canal water and the walls of the canal. Similarly, the primary exposure route at the 3042 sump is external exposure to gamma radiation from the groundwater and the walls of the sump. Based on the exposure rates in the radiation work permits (Appendix C) and assuming conservative occupational work periods, the annual radiation dose to workers is considerably less than the relevant dose limits. The potential risk to the public using the Clinch River was determined for three significant exposure pathways: ingestion of drinking water; ingestion of contaminated fish; and external exposure to contaminated sediments on the shoreline, the dominant exposure pathway

  13. K Basins sludge removal temporary sludge storage tank system

    International Nuclear Information System (INIS)

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A recommendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge

  14. K Basins sludge removal temporary sludge storage tank system

    Energy Technology Data Exchange (ETDEWEB)

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.

  15. Efficient distribution instead of standard storage systems. Customized heat stores save money; Geschickt verteilen - nicht wahllos horten. Auf den Bedarf abgestimmtes Speichersystem spart Kosten

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-10-15

    EFG Energie fuer Gebaeude GmbH and Co. KG of Kaufbeuren provides customized solutions for solar systems and heating systems. For maximum efficiency, the characteristics of the building and the individual consumption patterns of its inhabitants must be known. The storage technology has significant influence on the dimensioning of the system. (orig.)

  16. The control system of the photon factory storage ring

    Science.gov (United States)

    Pak, Cheol On

    1989-05-01

    The Photon Factory 2.5 GeV electron storage ring at KEK, a dedicated machine for synchrotron radiation, stored its first beam on March, 1982. The first control system of the storage ring comprised seven distributed minicomputers connected through a star-type network. However, from 1985 they have been gradually replaced in order to meet increasing system requirements. At present, the control system uses four "supermini" computers as device controllers and a general-purpose computer as a library computer. These computers are connected to each other through a token ring-type network. Each control computer independently performs several processes. However, console functions as man-machine interfaces of all processes can be treated in a unified way using the network. A prototype database for operation logging has been completed and tested.

  17. Review of power quality applications of energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-05-01

    Under the sponsorship of the US Department of Energy (DOE) Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories contracted Sentech, Inc., to assess the impact of power quality problems on the electricity supply system. This report contains the results of several studies that have identified the cost of power quality events for electricity users and providers. The large annual cost of poor power quality represents a national inefficiency and is reflected in the cost of goods sold, reducing US competitiveness. The Energy Storage Systems (ESS) Program takes the position that mitigation merits the attention of not only the DOE but affected industries as well as businesses capable of assisting in developing solutions to these problems. This study represents the preliminary stages of an overall strategy by the ESS Program to understand the magnitude of these problems so as to begin the process of engaging industry partners in developing solutions.

  18. Performance Analysis of a Flywheel Energy Storage System

    Directory of Open Access Journals (Sweden)

    K. Ghedamsi

    2008-06-01

    Full Text Available The flywheel energy storage systems (FESSs are suitable for improving the quality of the electric power delivered by the wind generators and to help these generators to contribute to the ancillary services. In this paper, a flywheel energy storage system associated to a grid connected variable speed wind generation (VSWG scheme using a doubly fed induction generator (DFIG is investigated. Therefore, the dynamic behavior of a wind generator, including models of the wind turbine (aerodynamic, DFIG, matrix converter, converter control (algorithm of VENTURINI and power control is studied. This paper investigates also, the control method of the FESS with a classical squirrel-cage induction machine associated to a VSWG using back-to-back AC/AC converter. Simulation results of the dynamic models of the wind generator are presented, for different operating points, to show the good performance of the proposed system.

  19. Process control of the EUS battery energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Harke, R.; Pierschke, T.; Schroeder, M. [EUS GmbH, Gelsenkirchen (Germany)

    1999-07-01

    The process control of the EUS battery energy storage system (BESS) is presented which is used to improve the utilization of regenerative energies. This multifunctional energy storage system includes three different functions: (i) Uninterruptible power supply (UPS); (ii) Improvement of power quality; (iii) Peak load shaving. UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power under consideration of an increase of system perturbation of electric grids. Peak load shaving means in this case the use of regenerative produced power stored in a battery for high peak load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. The batteries consist of standard OCSM cells with positive tubular plates and negative copper grids but modified according to the special demand of an multifunctional application. This paper is based on two examples where multifunctional energy storage systems have started operation recently in Germany: one system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 3,5 MW wind farm in Bocholt. At each of both places a 1,2 MWh (1h-rate) lead acid battery has been installed. (orig.)

  20. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Ramanathan, V.; Weast, T. E.; Ananth, K. P.

    1980-01-01

    The viability of using fluidized bed heat exchangers (FBHX) for thermal energy storage (TES) in applications with potential for waste heat recovery was investigated. Of the candidate applications screened, cement plant rotary kilns and steel plant electric arc furnaces were identified, via the chosen selection criteria, as having the best potential for successful use of FBHX/TES system. A computer model of the FBHX/TES systems was developed and the technical feasibility of the two selected applications was verified. Economic and tradeoff evaluations in progress for final optimization of the systems and selection of the most promising system for further concept validation are described.

  1. Building Management System Using Windows Communication Foundation And XAML

    Directory of Open Access Journals (Sweden)

    Swarnalatha P,

    2011-04-01

    Full Text Available Building Automation System (BAS will be extended for including different kinds of information, working towards to goal of Intelligent Building Management System. The next generation ofInternet technology uses Windows Communication Foundation as middleware technology for integration of different building automation systems (BAS since Web Services will support only http protocol which is stateless. The applications used for controlling building management system (BMS components like sensors, actuators, and controllers. In this paper we propose a Service Oriented Architecture(SOA for building Management system based upon Windows Communication Foundation and XAML used for integrating different BAS.A BAS which consists of BACnet network their BMS is applied. Their exist some publically exposed Windows Communication Foundation contracts, which write and read BACnet data points from the backnet work. These contracts will be called by other enterprise applications for realize BAS integration and get real-time data on BACnet network as a facilities Management. XAML will be provided at client side GUIs for the BMS which can be reused for different kinds of applications.Finally we discuss challenges in providing security to Building Automation Systems using proposed system.

  2. Building integration of photovoltaic systems in cold climates

    Science.gov (United States)

    Athienitis, Andreas K.; Candanedo, José A.

    2010-06-01

    This paper presents some of the research activities on building-integrated photovoltaic (BIPV) systems developed by the Solar and Daylighting Laboratory at Concordia University. BIPV systems offer considerable advantages as compared to stand-alone PV installations. For example, BIPV systems can play a role as essential components of the building envelope. BIPV systems operate as distributed power generators using the most widely available renewable source. Since BIPV systems do not require additional space, they are especially appropriate for urban environments. BIPV/Thermal (BIPV/T) systems may use exterior air to extract useful heat from the PV panels, cooling them and thereby improving their electric performance. The recovered thermal energy can then be used for space heating and domestic hot water (DHW) heating, supporting the utilization of BIVP/T as an appropriate technology for cold climates. BIPV and BIPV/T systems are the subject of several ongoing research and demonstration projects (in both residential and commercial buildings) led by Concordia University. The concept of integrated building design and operation is at the centre of these efforts: BIPV and BIPV/T systems must be treated as part of a comprehensive strategy taking into account energy conservation measures, passive solar design, efficient lighting and HVAC systems, and integration of other renewable energy systems (solar thermal, heat pumps, etc.). Concordia Solar Laboratory performs fundamental research on heat transfer and modeling of BIPV/T systems, numerical and experimental investigations on BIPV and BIPV/T in building energy systems and non-conventional applications (building-attached greenhouses), and the design and optimization of buildings and communities.

  3. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    Science.gov (United States)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    This technology assessment of long-term high capacity data storage systems identifies an emerging crisis of severe proportions related to preserving important historical data in science, healthcare, manufacturing, finance and other fields. For the last 50 years, the information revolution, which has engulfed all major institutions of modem society, centered itself on data-their collection, storage, retrieval, transmission, analysis and presentation. The transformation of long term historical data records into information concepts, according to Drucker, is the next stage in this revolution towards building the new information based scientific and business foundations. For this to occur, data survivability, reliability and evolvability of long term storage media and systems pose formidable technological challenges. Unlike the Y2K problem, where the clock is ticking and a crisis is set to go off at a specific time, large capacity data storage repositories face a crisis similar to the social security system in that the seriousness of the problem emerges after a decade or two. The essence of the storage crisis is as follows: since it could take a decade to migrate a peta-byte of data to a new media for preservation, and the life expectancy of the storage media itself is only a decade, then it may not be possible to complete the transfer before an irrecoverable data loss occurs. Over the last two decades, a number of anecdotal crises have occurred where vital scientific and business data were lost or would have been lost if not for major expenditures of resources and funds to save this data, much like what is happening today to solve the Y2K problem. A pr-ime example was the joint NASA/NSF/NOAA effort to rescue eight years worth of TOVS/AVHRR data from an obsolete system, which otherwise would have not resulted in the valuable 20-year long satellite record of global warming. Current storage systems solutions to long-term data survivability rest on scalable architectures

  4. Seismic Isolation Systems for Buildings Subjected to Vrancea Earthquakes

    OpenAIRE

    Dănilă, Gabriel

    2013-01-01

    The efficiency of the base isolation method was demonstrated by the major earthquakes of the late twentieth century and early twenty-first century. However, in Romania, the first seismic isolated building was finished in 2010; thus, no data are available concerning the behaviour of those buildings to Vrancea earthquakes. The paper presents a comparative study between two seismic isolation systems. The first system is composed of lead rubber bearings and nonlinear fluid viscous dampers and...

  5. Passive systems for buildings using buoyancy-driven airflows

    OpenAIRE

    Abreu, Maria Isabel; Corvacho, Helena; Dias, Ricardo P.

    2011-01-01

    The need for countries to become less dependent on fossil fuels has been a determining factor in recent years due to increasing energy and comfort concerns in modern building design. Therefore, the maximization of the use of renewable energies, like the sun, and the use of natural energy flows become strategies to explore. There are already passive building systems that show interesting performances. Different studies have proved that the above-mentioned systems can lead to important energy s...

  6. Recent Developments of the Modelica"Buildings" Library for Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry Stephane

    2011-04-01

    At the Modelica 2009 conference, we introduced the Buildings library, a freely available Modelica library for building energy and control systems. This paper reports the updates of the library and presents example applications for a range of heating, ventilation and air conditioning (HVAC) systems. Over the past two years, the library has been further developed. The number of HVAC components models has been doubled and various components have been revised to increase numerical robustness.The paper starts with an overview of the library architecture and a description of the main packages. To demonstrate the features of the Buildings library, applications that include multizone airflow simulation as well as supervisory and local loop control of a variable air volume (VAV) system are briefly described. The paper closes with a discussion of the current development.

  7. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  8. Design and Implementation of Agro-technical Extension Information System Based on Cloud Storage

    OpenAIRE

    Guo, Leifeng; Wang, Wensheng; Yang, Yong; Sun,Zhiguo

    2013-01-01

    International audience In order to solve the problems of low efficiency and backward methods in the agro-technical extension activities, this paper designed an agro-technical extension information system based on cloud storage technology. This paper studied the key technologies, such as cloud storage service engine, cloud storage management node and cloud storage data node and designed the overall architecture of the agro-technical extension information system based on cloud storage techno...

  9. Operation and maintenance of the Sol-Dance Building solar system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gaultney, J.R.

    1980-07-29

    A 16,400 square foot general office facility has its primary heating provided by a flat plate solar system using hydronic storage and water-to-air transfer coils for distribution. Backup heat is provided by 10 individually controlled air source heat pumps ranging from 3 tons to 5 tons in capacity. These heat pumps also contain electric resistive elements for use during extremely low ambient temperatures. Cooling is also provided by the heat pumps. Each of the two buildings contains a separate domestic hot water system. Primary heat is provided by a closed loop solar unit with electric elements providing backup heat. A 10,000 gallon black steel water tank provides heat storage.

  10. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  11. Co-simulation of innovative integrated HVAC systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Trcka, Marija; Hensena, Jan L.M.; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings HVAC systems can help in reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation, as an integrated approach to simulation. This article elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in the here described co-simulation prototype. The prototype is validated with the results obtained from the traditional simulation approach. It is further used in a proof-of-concept case study to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling time step.

  12. Thermal Storage Advanced Thruster System (TSATS) Experimental Program

    Science.gov (United States)

    Rose, M. Frank; Lisano, Michael E., II

    1991-01-01

    The Thermal Storage Advanced Thruster System (TSATS) rocket test stand is completely assembled and operational. The first trial experimental runs of a low-energy TSATS prototype rocket was made using the test stand. The features of the rocket test stand and the calibration of the associated diagnostics are described and discussed. Design and construction of the TSATS prototype are discussed, and experimental objectives, procedures, and results are detailed.

  13. An Energy Storage System Sizing Method for Wind Power Integration

    OpenAIRE

    Wei Wang(College of William and Mary); Chengxiong Mao; Jiming Lu; Dan Wang

    2013-01-01

    Combining an energy storage system (ESS) with a wind farm is an effective way to increase the penetration rate of wind power. ESS sizing is an important part in wind farm planning nowadays. In this paper, a basic method for determining the optimal capacity of an ESS integrated with a wind power generator to meet the requirements of grid integration is presented. With the proposed method, the necessary ESS capacity which can provide the best benefits between the regulation effects and energy s...

  14. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  15. Innovative Materials and Systems for Solid State Hydrogen Storage

    OpenAIRE

    Capurso, Giovanni

    2013-01-01

    The research presented in this doctoral thesis concerns with the development of novel materials and systems for solid state hydrogen storage. The first group of works presented is on alkaline and alkaline-earth borohydrides. The possibility to enhance their properties with the help of nanosupports has been widely explored. An attempt to improve the dehydrogenation kinetics of lithium borohydride has been made dispersing this material on the surface of modified nanotubes and gra...

  16. Experimental system for the storage of light in atomic vapor

    Science.gov (United States)

    Mair, A.; Fleischhauer, A.; Lukin, M. D.; Phillips, D. F.; Walsworth, R. L.

    2001-05-01

    In a recently reported experiment (D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86), 4783 (2001)., we reversibly stored a light pulse in a Zeeman (spin) coherence of Rb vapor for times ~ 0.5 ms. In this experiment, the Rb is warmed slightly above room temperature ( ~ 80^circC) and constrained by a buffer gas of a few torr of He. Experimental details of this light storage system will be presented.

  17. Accounting Carbon Storage in Decaying Root Systems of Harvested Forests

    OpenAIRE

    Wang, G. Geoff; Van Lear, David H.; Hu, Huifeng; Kapeluck, Peter R.

    2011-01-01

    Decaying root systems of harvested trees can be a significant component of belowground carbon storage, especially in intensively managed forests where harvest occurs repeatedly in relatively short rotations. Based on destructive sampling of root systems of harvested loblolly pine trees, we estimated that root systems contained about 32% (17.2 Mg ha−1) at the time of harvest, and about 13% (6.1 Mg ha−1) of the soil organic carbon 10 years later. Based on the published roundwood output data, we...

  18. A Model of BES Data Storage Management System

    Institute of Scientific and Technical Information of China (English)

    MeiYE; MeiMA; 等

    2001-01-01

    In this article we will introduce the system structure of a model built for BES data management and storage as well as the basic methods on how to establish the system.Additionally the analysis of the data structure,the data process,the selection of experimental program,the image manipulation and the key techniques will be discussed in detail,The model implements the setup of the system environment and all those functions from data loading,database cresting,data accessing,remote data process to data figuring.

  19. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  20. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, Mohammed G.; Hartel, Pieter H.

    2010-01-01

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such