WorldWideScience

Sample records for storage site characterization

  1. International Symposium on Site Characterization for CO2Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  2. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    Science.gov (United States)

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  3. How to characterize a potential site for CO2 storage with sparse data coverage - a Danish onshore site case

    International Nuclear Information System (INIS)

    Nielsen, Carsten Moller; Frykman, Peter; Dalhoff, Finn

    2015-01-01

    The paper demonstrates how a potential site for CO 2 storage can be evaluated up to a sufficient level of characterization for compiling a storage permit application, even if the site is only sparsely explored. The focus of the paper is on a risk driven characterization procedure. In the initial state of a site characterization process with sparse data coverage, the regional geological and stratigraphic understanding of the area of interest can help strengthen a first model construction for predictive modeling. Static and dynamic modeling in combination with a comprehensive risk assessment can guide the different elements needed to be evaluated for fulfilling a permit application. Several essential parameters must be evaluated; the storage capacity for the site must be acceptable for the project life of the operation, the trap configuration must be efficient to secure long term containment, the injectivity must be sufficient to secure a longstanding stable operation and finally a satisfactory and operational measuring strategy must be designed. The characterization procedure is demonstrated for a deep onshore aquifer in the northern part of Denmark, the Vedsted site. The site is an anticlinal structural closure in an Upper Triassic - Lower Jurassic sandstone formation at 1 800-1 900 m depth. (authors)

  4. Comprehensive characterization and hazard assessment of the DOE-Niagara Falls storage site

    International Nuclear Information System (INIS)

    Anderson, T.L.; Dettorre, J.F.; Jackson, D.R.; Ausmus, B.S.

    1981-06-01

    A comprehensive radioecological and nonradiological characterization and hazards assessment was conducted on DOE-Niagara Falls Storage Site. Pitchblende residues and other low-level nuclear waste have been stored on the site since 1944. The most highly radioactive residues were stored in four abandoned buildings, while other wastes were deposited in pits or piled on surface soils on the Site. Several ditches were constructed on the Site to facilitate drainage or excess precipitation. Results of the study will permit the US DOE to form an appropriate remedial action plan for the Site

  5. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Surdam, Ronald C. [Univ. of Wyoming, Laramie, WY (United States); Bentley, Ramsey [Univ. of Wyoming, Laramie, WY (United States); Campbell-Stone, Erin [Univ. of Wyoming, Laramie, WY (United States); Dahl, Shanna [Univ. of Wyoming, Laramie, WY (United States); Deiss, Allory [Univ. of Wyoming, Laramie, WY (United States); Ganshin, Yuri [Univ. of Wyoming, Laramie, WY (United States); Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States); Kaszuba, John [Univ. of Wyoming, Laramie, WY (United States); Mallick, Subhashis [Univ. of Wyoming, Laramie, WY (United States); McLaughlin, Fred [Univ. of Wyoming, Laramie, WY (United States); Myers, James [Univ. of Wyoming, Laramie, WY (United States); Quillinan, Scott [Univ. of Wyoming, Laramie, WY (United States)

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  6. CCS acceptability: social site characterization and advancing awareness at prospective storage sites in Poland and Scotland

    International Nuclear Information System (INIS)

    Brunsting, Suzanne; Mastop, Jessanne; Kaiser, Marta; Zimmer, Rene; Shackley, Simon; Mabon, Leslie; Howell, Rhys

    2015-01-01

    This paper summarizes the work on the social dimension conducted within the EU FP7 SiteChar project. The most important aim of the research was to advance public awareness and draw lessons for successful public engagement activities when developing a CO 2 storage permit application. To this end, social site characterization (e.g. representative surveys) and public participation activities (focus conference) were conducted at two prospective Carbon Capture and Storage (CCS) sites: an onshore site in Poland and an offshore site in Scotland. The research consisted of four steps over a time period of 1.5 year, from early 2011 to mid-2012. The first step consisted of four related qualitative and quantitative research activities to provide a social characterization of the areas: desk research, stakeholder interviews, media analyses, and a survey among representative samples of the local community. The aim was to identify: - stakeholders or interested parties; - factors that may drive their perceptions of and attitudes towards CCS. Results were used to as input for the second step, in which a new format for public engagement named 'focus conferences' was tested at both sites involving a small sample of the local community. The third step consisted of making available generic as well as site-specific information to the general and local public, by: - setting up a bilingual set of information pages on the project web site suitable for a lay audience; - organizing information meetings at both sites that were open to all who took interest. The fourth step consisted of a second survey among a new representative sample of the local community. The survey was largely identical to the survey in step 1 to enable the monitoring of changes in awareness, knowledge and opinions over time. Results provide insight in the way local CCS plans may be perceived by the local stakeholders, how this can be reliably assessed at early stage without raising unnecessary concerns, and how

  7. Temporary storage area characterization report

    International Nuclear Information System (INIS)

    1990-01-01

    The preferred alternative identified in the Remedial Investigation/Feasibility Study (RI/FS) for the Weldon Spring Quarry Bulk Wastes is to remove the wastes from the quarry and transport them by truck to temporary storage facility at the chemical plant site. To support the RI/FS, this report provides data to characterize the temporary storage area (TSA) site and to ensure the suitability of the proposed location. 31 refs., 14 figs., 7 tabs

  8. Geological characterization of CO{sub 2} storage sites: lessons from Sleipner, Northern North Sea

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Chadwick; P. Zweigel; U. Gregersen; G.A. Kirby; S. Holloway; P.N. Johannessen [British Geological Survey, Keyworth (United Kingdom). Kingsley Dunham Centre

    2003-07-01

    The paper aims to draw some generic conclusions on reservoir characterization based on the Sleipner operation in the North Sea where CO{sub 2} is being injected into the Utsira Sand, a saline aquifer. Regional mapping and petrophysical characterization of the reservoir, based on 2D seismic and well data, enable gross storage potential to be evaluated. Site specific injection studies, however, require precision depth mapping based on 3D seismic data and detailed knowledge of reservoir stratigraphy. Stratigraphical and structural permeability barriers, difficult to detect prior to CO{sub 2} injection, can radically affect CO{sub 2} migration within the aquifer. 5 refs., 5 figs.

  9. Expedited Site Characterization: A rapid, cost-effective process for preremedial site characterization

    International Nuclear Information System (INIS)

    Burton, J.C.; Walker, J.L.; Jennings, T.V.; Aggarwal, P.K.; Hastings, B.; Meyer, W.T.; Rose, C.M.; Rosignolo, C.L.

    1993-01-01

    Argonne National Laboratory has developed a unique, cost- and time-effective, technically innovative process for preremedial site characterization, referred to as Expedited Site Characterization (ESC). The cost of the ESC field sampling process ranges from 1/10 to 1/5 of the cost of traditional site characterization. The time required for this ESC field activity is approximately 1/30 of that for current methods. Argonne's preremedial site investigations based on this approach have been accepted by the appropriate regulatory agencies. The ESC process is flexible and neither site nor contaminant dependent. The process has been successfully tested and applied in site investigations of multiple contaminated landfills in New Mexico (for the US Department of the Interior's Bureau of Land Management [BLM]) and at former grain storage facilities in Nebraska and Kansas, contaminated with carbon tetrachloride (for the Department of Agriculture's Commodity Credit Corporation [CCC/USDA]). A working demonstration of this process was sponsored by the US Department of Energy (DOE) Office of Technology Development as a model of the methodology needed to accelerate site characterizations at DOE facilities. This report describes the application of the process in New Mexico, Nebraska and Kansas

  10. Site characterization data for Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.

    1984-12-01

    Currently, the only operating shallow land burial site for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL) is Solid Waste Storage Area No. 6 (SWSA-6). In 1984, the US Department of Energy (DOE) issued Order 5820.2, Radioactive Waste Management, which establishes policies and guidelines by which DOE manages its radioactive waste, waste by-products, and radioactively contaminated surplus facilities. The ORNL Operations Division has given high priority to characterization of SWSA-6 because of the need for continued operation under DOE 5820.2. The purpose of this report is to compile existing information on the geologic and hydrologic conditions in SWSA-6 for use in further studies related to assessing compliance with 5820.2. Burial operations in SWSA-6 began in 1969 on a limited scale, and full operation was initiated in 1973. Since that time, ca. 29,100 m 3 of low-level waste containing ca. 251,000 Ci of activity has been buried in SWSA-6. No transuranic waste has been disposed of in SWSA-6; rather this waste is retrievably stored in SWSA-5. Estimates of the remaining usable space in SWSA-6 vary; however, in 1982 sufficient useful land was reported for about 10 more years of operation. Analysis of the information available on SWSA-6 indicates that more information is required to evaluate the surface water hydrology, the geology at depths below the burial trenches, and the nature and extent of soils within the site. Also, a monitoring network will be required to allow detection of potential contaminant movement in groundwater. Although these are the most obvious needs, a number of specific measurements must be made to evaluate the spatial heterogeneity of the site and to provide background information for geohydrological modeling. Some indication of the nature of these measurements is included

  11. Characterization and reclamation assessment for the Central Shops Diesel Storage Facility, Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.

    1993-10-01

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful clean-ups. Central Shops Diesel Storage Facility at Savannah River Site was characterized to determine the extent of subsurface diesel fuel contamination using innovative approaches and effective bioremediation techniques for clean-up of the contaminant plume have been established.

  12. Site characterization studies in the NWTS program

    International Nuclear Information System (INIS)

    Shipler, D.; Evans, G.

    1980-01-01

    The US Department of Energy (DOE) has the responsibility to identify sites and construct and operate facilities for the storage or isolation of spent fuel and/or reprocessing radioactive wastes from commercial nuclear power plants. The National Waste Terminal Storage (NWTS) Program has been initiated by the DOE to develop the technology and demonstrate the feasibility of burial and isolation of high level radioactive waste in deep geologic formations. The NTWS Program plan which sets forth the criteria, procedures, and other considerations required to characterize and select a site in a comprehensive stepwise manner is discussed. The plan is not specific to any given geologic medium but serves as a guide for site selection in any geohydrologic system deemed appropriate for consideration for a deep geologic repository. The plan will be used by all NWTS Project Offices in the conduct of their site characterization program. The plan will be updated, as warranted, to reflect technology development, National policies, rulemakings by regulatory agencies, and other changing political, social, and institutional considerations. Site characterization begins with the identification of regions believed to have suitable geologic, hydrologic, and environmental characteristics for repository siting. This is followed by an iterative process of data collection and analysis to identify areas and locations which appear most suitable for further investigations. In addition, screening studies of the DOE's nuclear complexes has led to the selection of the Nevada Test Site and the Hanford Site for further characterization studies. The site characterization process results in a number of candidate sites from which a site will be selected and proposed to the NRC for licensing

  13. Site characterization report for the basalt waste isolation project. Volume III

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 3 contains chapters 13 through 19: site issues and plans; geoengineering and repository design issues and plans; waste package and site geochemistry issues and plans; performance-assessment issues and plans; site characterization program; quality assurance; and identification of alternate sites

  14. Old radioactive waste storage sites

    International Nuclear Information System (INIS)

    2008-01-01

    After a recall of the regulatory context for the management of old sites used for the storage of radioactive wastes with respect with their activity, the concerned products, the disposal or storage type, this document describes AREVA's involvement in the radioactive waste management process in France. Then, for the different kinds of sites (currently operated sites having radioactive waste storage, storage sites for uranium mineral processing residues), it indicates their location and name, their regulatory status and their control authority, the reference documents. It briefly presents the investigation on the long term impact of uranium mineral processing residues on health and environment, evokes some aspects of public information transparency, and presents the activities of an expertise group on old uranium mines. The examples of the sites of Bellezane (uranium mineral processing residues) and COMURHEX Malvesi (assessment of underground and surface water quality at the vicinity of this installation) are given in appendix

  15. Site characterization report for the basalt waste isolation project. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  16. Site characterization report for the basalt waste isolation project. Volume II

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment

  17. Radioactive waste on-site storage alternative

    International Nuclear Information System (INIS)

    Dufrane, K.H.

    1983-01-01

    The first, most frequently evaluated approach for the large producer is the construction of a relatively expensive storage building. However, with the likely possibility that at least one disposal site will remain available and the building never used, such expenditures are difficult to justify. A low cost, but effective alternative, is the use of ''On-Site Storage Containers'' (OSSC) when and if required. Radwaste is only stored in the OSSC if a disposal site is not available. A small number of OSSC's would be purchased initially just to assure immediate access to storage. Only in the unlikely event of total disposal sites closure would additional OSSC's have to be obtained and even this is cost effective. With two or three months of storage available on site, production lead time is sufficient for the delivery of additional units at a rate faster than the waste can be produced. The recommended OSSC design would be sized and shielding optimized to meet the needs of the waste generator. Normally, this would duplicate the shipping containers (casks or vans) currently in use. The reinforced concrete design presented is suitable for outside storage, contains a leakproof polyethylene liner and has remote sampling capability. Licensing would be under 10CFR50.59 for interim storage with long-term storage under 10CFR30 not an impossibility. Cost comparisons of this approach vs. building construction show that for a typical reactor plant installation, the OSSC offers direct savings even under the worst case assumption that no disposal sites are available and the time value of money is zero

  18. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  19. Pyramid mountain diesel fuel storage site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Brolmsa, M.; Sandau, C. [Jacques Whitford Environment Ltd., Burnaby, BC (Canada)

    2005-07-01

    Remediation activities during the decommissioning of a microwave tower facility where a tram line was used to transfer diesel fuel from the base of a mountain to its summit were described. As the site was leased from Parks Canada, federal guidelines were used to assess levels of contamination. Underground storage tanks (USTs) used for diesel storage had been replaced with aboveground storage tanks (AST) in 1994. Remediation was also complicated by the remote location and altitude of the site, as well as by extreme weather conditions. Hand auguring and test pitting were used at both the summit and base to allow characterization and preliminary delineation of impacted soils. A heavy lift helicopter was used to place demolition and excavation equipment on the summit. An excavator was used to remove hydrocarbon impacted soils. Following the remedial excavation for the summit diesel AST, residual soil impacts in excess of the applicable remediation guidelines were present at the bottom of the tank nest and under a floor slab. An environmental liner was installed, and a quantitative screening level risk assessment demonstrated the low level of risk for the area, as well as for waste oil impacted soils on the slope below the summit. Contaminants of potential concern were barium, zinc, naphthalene, and petroleum hydrocarbon fractions F1-F4. It was concluded that there are now no unacceptable ecological or human risks from residual impacts at the site. 1 tab., 19 figs.

  20. Fuel Assemblies Thermal Analysis in the New Spent Fuel Storage Facility at Inshass Site

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, Ahmed

    1999-01-01

    New Wet Storage Facility (NSF) is constructed at Inshass site to solve the problem of spent fuel storage capacity of ETRR-1 reactor . The Engineering Safety Heat Transfer Features t hat characterize the new facility are presented. Thermal analysis including different scenarios of pool heat load and safety limits are discussed . Cladding temperature limit during handling and storage process are specified for safe transfer of fuel

  1. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Science and Technology Database from January 1, 1990, through December 31, 1991

  2. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  3. CO2 Storage Feasibility: A Workflow for Site Characterisation

    Directory of Open Access Journals (Sweden)

    Nepveu Manuel

    2015-04-01

    Full Text Available In this paper, we present an overview of the SiteChar workflow model for site characterisation and assessment for CO2 storage. Site characterisation and assessment is required when permits are requested from the legal authorities in the process of starting a CO2 storage process at a given site. The goal is to assess whether a proposed CO2 storage site can indeed be used for permanent storage while meeting the safety requirements demanded by the European Commission (EC Storage Directive (9, Storage Directive 2009/31/EC. Many issues have to be scrutinised, and the workflow presented here is put forward to help efficiently organise this complex task. Three issues are highlighted: communication within the working team and with the authorities; interdependencies in the workflow and feedback loops; and the risk-based character of the workflow. A general overview (helicopter view of the workflow is given; the issues involved in communication and the risk assessment process are described in more detail. The workflow as described has been tested within the SiteChar project on five potential storage sites throughout Europe. This resulted in a list of key aspects of site characterisation which can help prepare and focus new site characterisation studies.

  4. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ``A through K`` evaluation was completed to support a request for an Administrative Closure of the site.

  5. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ''A through K'' evaluation was completed to support a request for an Administrative Closure of the site

  6. Preliminary site characterization radiological monitoring plan for the Nevada Nuclear Waste Storage Investigations Project, Yucca Mountain Site

    International Nuclear Information System (INIS)

    1987-03-01

    The activities described in this plan occur in the early phases of site characterization. This document presents the Preliminary Site Characterization Radiological Monitoring Plan (PSCRMP) for collecting and evaluating data in support of the NNWSI Project. The PSCRMP defines and identifies control procedures for the monitoring activities. The PSCRMP activity will utilize integrating radon monitoring devices, a continuous radon monitor, and a particulate air sampler. These instruments will be used to establish the baseline radioactivity and/or radioactivity released due to early site characterization activities. The sections that follow provide a general project description, the specifics of the monitoring program, and the practices that will be employed to ensure the validity of the collected data by integrating quality assurance into all activities. Section 2 of this document describes the regulatory base of this document. Section 3 describes the site characterization activities which may lead to release of radioactivity. Section 4 provides a description of the potential sources of radioactivity that site characterization could generate. Section 5 summarizes the sampling and monitoring methodology, which will be used to monitor the potential sources of radioactivity. The network of sampling and monitoring equipment is described in Section 6, and Section 7 summarizes the systems operation activities. The data reporting activities are described in Section 8. Finally, a description of the Quality Assurance (QA) and Quality Control (QC) activities is provided in Section 9. Appendix A contains a summary of the procedures to be used in this program, and Appendix B contains technical specification on equipment and services. 20 refs., 11 figs., 2 tabs

  7. Techno-Economic Assessment of Four CO2 Storage Sites

    Directory of Open Access Journals (Sweden)

    Gruson J.-F.

    2015-04-01

    Full Text Available Carbon Capture and Storage (CCS should be a key technology in order to achieve a decline in the CO2 emissions intensity of the power sector and other intensive industry, but this potential deployment could be restricted by cost issues as the International Energy Agency (IEA in their last projections (World Energy Outlook 2013 has considered only around 1% of global fossil fuel-fired power plants could be equipped with CCS by 2035. The SiteChar project funded by 7th Framework Programme of European Commission gives the opportunity to evaluate the most influential parameters of techno-economic evaluations of four feasible European projects for CO2 geological storage located onshore and offshore and related to aquifer storage or oil and gas reservoirs, at different stages of characterization. Four potential CO2 storage sites have been assessed in terms of storage costs per tonne of CO2 permanently stored (equivalent cost based. They are located offshore UK, onshore Denmark, offshore Norway and offshore Italy. The four SiteChar techno-economic evaluations confirm it is not possible to derive any meaningful average cost for a CO2 storage site. The results demonstrate that the structure of costs for a project is heterogeneous and the storage cost is consequently site dependent. The strategy of the site development is fundamental, the technical choices such as the timing, rate and duration of injection are also important. The way monitoring is managed, using observation wells and logging has a strong impact on the estimated monitoring costs. Options to lower monitoring costs, such as permanent surveys, exist and should be further investigated. Table 1 below summarizes the cost range in Euro per tonne (Discount Rate (DR at 8% for the different sites, which illustrates the various orders of magnitude due to the specificities of each site. These figures have how to be considered with care. In particular the Italian and Norwegian sites present very specific

  8. Streamlined approach for environmental restoration closure report for Corrective Action Unit 452: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 25-3101-1, 25-3102-3, and 25-3152-1. The sites are located within the Nevada Test Site in Area 25 at Buildings 3101, 3102, and 3152. The characterization was completed to support administrative closure of the sites. Characterization was completed using drilling equipment to delineate the extent of hydrocarbon impact. Clean closure had been previously attempted at each of these sites using backhoe equipment without success due to adjacent structures, buried utilities, or depth restrictions associated with each site. Although the depth and extent of hydrocarbon impact was determined to be too extensive for clean closure, it was verified through drilling that the sites should be closed through an administrative closure. The Nevada Administrative Code ''A Through K'' evaluation completed for each site supports that there is no significant risk to human health or the environment from the impacted soils remaining at each site

  9. Storage of intermediate level waste at UKAEA sites

    International Nuclear Information System (INIS)

    Goodill, D.R.; Tymons, B.J.

    1985-08-01

    This report describes the storage of wastes at UKAEA sites and accordingly contributes to the investigations conducted by the Department of the Environment into the Best Practicable Environmental Option (BPEO) for radioactive waste storage and/or disposal. This report on the storage of ILW should be read in conjunction with a similar NII funded CTS study for Licensed Sites in the UK. (author)

  10. Gulf of Mexico miocene CO₂ site characterization mega transect

    Energy Technology Data Exchange (ETDEWEB)

    Meckel, Timothy [Univ. of Austin, Austin, TX (United Staes); Trevino, Ramon [Univ. of Austin, Austin, TX (United Staes)

    2014-12-01

    This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO₂) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacity estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO₂-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the

  11. Leaking Underground Storage Tank Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  12. Risk management guidelines for petroleum storage tank sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    These guidelines provide a site management process designed particularly for soil and groundwater pollution originating from existing or former petroleum storage tank (PST) facilities and provide uniform standards for the remediation of polluted PST sites in Alberta. The numerical criteria, risk management objectives and technical information described in this document were compiled from four documents including Remediation Guidelines for Petroleum Storage Tank Sites 1994, the Canada-Wide Standards for Petroleum Hydrocarbons in Soil, Alberta Soil and Water Quality Guidelines for Hydrocarbons at Upstream Oil and Gas Facilities, and Guidelines for Managing Risks at Contaminated Sites in Alberta. The changes in these updated guidelines reflect new remediation criteria and provide a process for determining alternate site-specific management objectives for more petroleum storage tank sites. The guidelines were developed using a risk-based approach that ensures the protection of human health, safety and the environment. The guidelines apply to aboveground and underground storage tank facilities that contain gasoline, diesel, heating oil, and aviation fuel. The guidelines specify requirements by Alberta Environment and the Alberta Fire Code. The chapter on risk management process included information on site investigation, determination of soil type, pollution source removal, land use assessment, selection of exposure pathways, depth of remediation, human inhalation and groundwater protection pathways, and verification of remediation. figs, 4 tabs., 2 appendices.

  13. SiteChar – Methodology for a Fit-for-Purpose Assessment of CO2 Storage Sites in Europe

    Directory of Open Access Journals (Sweden)

    Delprat-Jannaud F.

    2015-04-01

    Full Text Available The FP7-funded SiteChar project examined the entire CO2 geological storage site characterisation process, from the initial feasibility studies through to the final stage of application for a CO2 storage permit based on criteria defined by the relevant European legislation. The SiteChar workflow for CO2 geological storage site characterisation provides a description of all elements of a site characterisation study, as well as guidance to streamline the site characterisation process and make sure that the output covers the aspects mentioned in the European Community (EC Storage Directive. Five potential European storage sites, representative of prospective geological contexts, were considered as test sites for the research work: a North Sea multi-store site (hydrocarbon field and aquifer offshore Scotland; an onshore aquifer in Denmark; an onshore gas field in Poland; an aquifer offshore in Norway; and an aquifer in the Southern Adriatic Sea. This portfolio combines complementary sites that allowed to encompass the different steps of the characterisation workflow. A key innovation was the development of internal ‘dry-run’ permit applications at the Danish and Scottish sites and their review by relevant regulatory authorities. This process helped to refine the site characterisation workflow, and aimed to identify remaining gaps in site-specific characterisation, needed to secure storage permits under the EC Storage Directive as implemented in ‘host’ Member States. SiteChar considered the important aspect of the public awareness and public opinions of these new technologies, in parallel to technical issues, on the onshore Polish and offshore Scottish sites. A new format to assist public opinion-forming processes was tested involving a small sample of local communities. Generic as well as site-specific information was made available to the general and local public via the internet and at information meetings. These exercises provide insight

  14. Site characterization plan:

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed

  15. The Cabril: The Spanish Storage Site for Low and medium Level Radioactive Wastes

    International Nuclear Information System (INIS)

    Zuloaga, P.

    1993-01-01

    The new installations at El Cabril are one of the most modern storage sites for low and medium level radioactive wastes worldwide. The site was conceived in such a way that it is possible its reutilization without any radiological restriction after its current surveillance period of 300 years. Additionally, the installations have enough of a capacity to store all the medium and low level wastes to be produced in Spain during the next 30 years plus all the already gathered ones at the three old installations. In order to achieve all the objectives a storage system, a control network and installations for sewage water treatment are available. An incinerator to burn biological and organic wastes from hospitals and a laboratory of wastes characterization complete the variety of installations

  16. Site characterization plan:

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs

  17. Site Characterization for CO2 Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Peter E. [Oklahoma State Univ., Stillwater, OK (United States); Pashin, Jack [Oklahoma State Univ., Stillwater, OK (United States); Carlson, Eric [Univ. of Alabama, Tuscaloosa, AL (United States); Goodliffe, Andrew [Univ. of Alabama, Tuscaloosa, AL (United States); McIntyre-Redden, Marcella [Geological Survey of Alabama, Tuscaloosa, AL (United States); Mann, Steven D. [Geological Survey of Alabama, Tuscaloosa, AL (United States); Thompson, Mason [Rice Univ., Houston, TX (United States)

    2013-11-29

    Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the west of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. While this part of the basin was found to be unsuitable for

  18. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    Lorenz, J.J.; Stephan, P.M.

    1991-09-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1991 through June 1991. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  19. Yucca Mountain Site Characterization Project bibliography, January--June 1992

    International Nuclear Information System (INIS)

    1992-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1993, through June 30, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  20. Yucca Mountain Site Characterization Project Bibliography, July--December 1990

    International Nuclear Information System (INIS)

    1991-05-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountains Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from July 1990 through December 1990. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers and articles are included in the sponsoring organizations list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  1. Yucca Mountain Site characterization project bibliography, January--June 1992

    International Nuclear Information System (INIS)

    1992-09-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1992, through June 30, 1992. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor resorts, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  2. Loads imposed on dual purpose casks in German on-site-storage facilities for long term intermediate storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, N.; Rabe, O. [TUeV NORD EnSys Hannover GmbH und Co. KG, Hanover (Germany)

    2004-07-01

    In accordance with recent changes of the atomic energy act and in order to secure reliable removal of spent fuel from the nuclear power plants' fuel storage ponds the German utilities filed license applications for a total of 12 onsite- storage facilities for spent fuel assemblies. By the end of 2003 the last of these storage facilities were licensed and are currently under construction. The first on-site-storage facility of that line became operational in late 2002. There are several design lines of storage facilities with different handling procedures or possible accident conditions. Short term interim storage facilities for a few casks are characterized by individual concrete hoods shielding the casks in horizontal position whereas long term intermediate storage facilities currently erected for large numbers of casks typically feature a condensed pattern of casks stored in upright position and massive structures of reinforced concrete. TUeV Hannover/Sachsen-Anhalt e. V. (now TUeV NORD EnSys Hannover GmbH and Co. KG) has been contracted as a body of independent experts for the assessment of all related safety requirements on behalf of the national licensing authority, the federal office for radiation protection (BfS).

  3. Loads imposed on dual purpose casks in German on-site-storage facilities for long term intermediate storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Wetzel, N.; Rabe, O.

    2004-01-01

    In accordance with recent changes of the atomic energy act and in order to secure reliable removal of spent fuel from the nuclear power plants' fuel storage ponds the German utilities filed license applications for a total of 12 onsite- storage facilities for spent fuel assemblies. By the end of 2003 the last of these storage facilities were licensed and are currently under construction. The first on-site-storage facility of that line became operational in late 2002. There are several design lines of storage facilities with different handling procedures or possible accident conditions. Short term interim storage facilities for a few casks are characterized by individual concrete hoods shielding the casks in horizontal position whereas long term intermediate storage facilities currently erected for large numbers of casks typically feature a condensed pattern of casks stored in upright position and massive structures of reinforced concrete. TUeV Hannover/Sachsen-Anhalt e. V. (now TUeV NORD EnSys Hannover GmbH and Co. KG) has been contracted as a body of independent experts for the assessment of all related safety requirements on behalf of the national licensing authority, the federal office for radiation protection (BfS)

  4. Characterization of subsurface sediments at a site of gasoline contamination

    International Nuclear Information System (INIS)

    Bishop, D.J.; Krauter, P.W.; Jovanovich, M.C.; Lee, K.; Nelson, S.C.; Noyes, C.

    1992-02-01

    The Dynamic Underground Stripping Project combines monitored steam injection and electrical heating to treat in situ a gasoline plume resulting from leakage of an underground storage tank. A preliminary field demonstration of this system was performed at an uncontaminated site (Clean Site) a few hundred feet away with similar geology to that at the Gasoline Spill (GS) area. This paper describes characterization efforts at both sites and highlights what we rearmed at the Clean Site that helped us plan our operations more effectively at the GS. To validate the success of the Dynamic Underground Stripping Project, we require a detailed understanding of the physical, geological, hydrological, chemical, and biological nature of the demonstration sites and how these parameters change as a result of the Dynamic Stripping processes. The characterization process should also provide data to estimate the masses of contaminants present and their spatial distribution before and after the remedial process to (1) aid in the planning for placement of injection and extraction wells, (2) provide physical data to develop conceptual models, (3) validate subsurface imaging techniques, and (4) confirm regulatory compliance

  5. Site characterization plan: Gulf Coast salt domes

    International Nuclear Information System (INIS)

    1983-12-01

    The National Waste Terminal Storage (NWTS) program of the US Department of Energy (DOE) is responsible for developing technology and providing facilities for safe, environmentally acceptable, permanent disposal of high-level nuclear waste. The Office of Nuclear Waste Isolation has been intensively investigating Gulf Coast Salt Dome Basin salt domes and bedded salt in Texas and Utah since 1978. In the Gulf Coast, the application of screening criteria in the region phase led to selection of eight domes for further study in the location phase. Further screening in the area phase identified four domes for more intensive study in the location phase: Oakwood Dome, Texas; Vacherie Dome, Louisiana; and Richton Dome and Cypress Creek Dome, Mississippi. For each dome, this Site Characterization Plan identifies specific hydrologic, geologic, tectonic, geochemical, and environmental key issues that are related to the DOE/NWTS screening criteria or affect the feasibility of constructing an exploratory shaft. The Site Characterization Plan outlines studies need to: (1) resolve issues sufficiently to allow one or more salt domes to be selected and compared to bedded salt sites in order to determine a prime salt site for an exploratory shaft; (2) conduct issue-related studies to provide a higher level of confidence that the preferred salt dome site is viable for construction of an exploratory shaft; and (3) provide a vehicle for state input to issues. Extensive references, 7 figures, 20 tables

  6. CPA ups storage at Lavera site

    International Nuclear Information System (INIS)

    Back, R.

    1992-01-01

    Compagnie Parisienne des Asphaltes (CPA; Paris) and its subsidiary Pacsud -owned 65% by CPA and 35% by Shell Chimie (Paris) - have inaugurated their new chemicals storage site at Lavera, France, in the Europort South complex near Marseilles. The facilities, with 60,000-m.t./year capacity, also include a barreling plant that will have output of up to 250 bbl/hour when it comes onstream next spring. Total investment for these facilities amount to F122 million ($22.5 million), including F22 million for the barreling unit. CPA, France's number two storage specialist, after LB Chimie (Paris), is jointly owned by investment company Union Normandie (60%), Elf Aquitaine (Paris; 20%), and Total (Paris; 20%). Adding to its existing French storage sites at Dunkirk and Rouen, CPA says it decided to build on the Pacsud venture because it considered it attractive to invest in the petroleum and petrochemical complex of Fos-Berre-Lavera, particularly since the present trend in the oil and chemical industries is to subcontract all ancillary functions, especially logistics. CPA general manager Rafic Charles Rathle says that customer requirements and the role of the service provider are changing. With that in mid, CPA, in addition to providing storage terminals, converts its depots into distribution and packing centers. At Lavera the company has taken over storage, blending, and barreling operations for Pacsud and its direct customers. For example, Pacsud has a long-term contract with Shell Chimie for the latter's additive production at a 10,000-m.t./year rate. Another long-term contract is being negotiated, but the identity of the customer was not revealed

  7. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    International Nuclear Information System (INIS)

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities

  8. Building arrangement and site layout design guides for on site low level radioactive waste storage facilities

    International Nuclear Information System (INIS)

    McMullen, J.W.; Feehan, M.J.

    1986-01-01

    Many papers have been written by AE's and utilities describing their onsite storage facilities, why they are needed, NRC regulations, and disposal site requirements. This paper discusses a typical storage facility and address the design considerations and operational aspects that are generally overlooked when designing and siting a low level radioactive waste storage facility. Some topics to be addressed are: 1. Container flexibility; 2. Modular expansion capabilities; 3. DOT regulations; 4. Meterological requirements; 5. OSHA; 6. Fire protection; 7. Floods; 8. ALARA

  9. Site selection experience for a new low-level radioactive waste storage/disposal facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Helton, B.D.

    1985-10-01

    Preliminary performance criteria and site selection guides specific to the Savannah River Plant, were developed for a new low-level radioactive waste storage/disposal facility. These site selection guides were applied to seventeen potential sites identified at SRP. The potential site were ranked based on how well they met a set of characteristics considered important in site selection for a low-level radioactive waste disposal facility. The characteristics were given a weighting factor representing its relative importance in meeting site performance criteria. A candidate site was selected and will be the subject of a site characterization program

  10. Risk assessment-led characterisation of the SiteChar UK north sea site for the geological storage of CO2

    International Nuclear Information System (INIS)

    Akhurst, Maxine; Hannis, Sarah D.; Quinn, Martyn F.; Long, David; Shi, Ji-Quan; Koenen, Marielle; Pluymaekers, Maarten; Delprat-Jannaud, Florence; Lecomte, Jean-Claude; Bossie-Codreanu, Daniel; Nagy, Stanislaw; Klimkowski, Lukas; Gei, Davide

    2015-01-01

    Risk assessment-led characterisation of a site for the geological storage of CO 2 in the UK northern North Sea was performed for the EU SiteChar research project as one of a portfolio of sites. Implementation and testing of the SiteChar project site characterisation work-flow has produced a 'dry-run' storage permit application that is compliant with regulatory requirements. A site suitable for commercial-scale storage was characterised, compatible with current and future industrial carbon dioxide (CO 2 ) sources in the northern UK. Pre-characterisation of the site, based on existing information acquired during hydrocarbon exploration and production, has been achieved from publicly available data. The project concept is to store captured CO 2 at a rate of 5 Mt per year for 20 years in the Blake Oil Field and surrounding Captain Sandstone saline aquifer. This commercial-scale storage of 100 Mt CO 2 can be achieved through a storage scenario combining injection of CO 2 into the oil field and concurrent water production down-dip of the field. There would be no encroachment of supercritical phase CO 2 for more than two kilometres beyond the field boundary and no adverse influence on operating hydrocarbon fields provided there is pressure management. Components of a storage permit application for the site are presented, developed as far as possible within a research project. Characterisation and technical investigations were guided by an initial assessment of perceived risks to the prospective site and a need to provide the information required for the storage permit application. The emphasis throughout was to reduce risks and uncertainty on the subsurface containment of stored CO 2 , particularly with respect to site technical performance, monitoring and regulatory issues, and effects on other resources. The results of selected risk assessment-led site characterisation investigations and the subsequent risk reassessments are described together with their

  11. Site dose calculations for the INEEL/TMI-2 storage facility

    International Nuclear Information System (INIS)

    Jones, K.B.

    1997-01-01

    The U.S. Department of Energy (DOE) is licensing an independent spent-fuel storage installation (ISFSI) for the Three Mile Island unit 2 (TMI-2) core debris to be constructed at the Idaho Chemical Processing Plant (ICPP) site at the Idaho National Engineering and Environmental Laboratory (INEEL) using the NUHOMS spent-fuel storage system. This paper describes the site dose calculations, performed in support of the license application, that estimate exposures both on the site and for members of the public. These calculations are unusual for dry-storage facilities in that they must account for effluents from the system in addition to skyshine from the ISFSI. The purpose of the analysis was to demonstrate compliance with the 10 CFR 20 and 10 CFR 72.104 exposure limits

  12. Using RFID to Enhance Security in Off-Site Data Storage

    Directory of Open Access Journals (Sweden)

    Enrique de la Hoz

    2010-08-01

    Full Text Available Off-site data storage is one of the most widely used strategies in enterprises of all sizes to improve business continuity. In medium-to-large size enterprises, the off-site data storage processes are usually outsourced to specialized providers. However, outsourcing the storage of critical business information assets raises serious security considerations, some of which are usually either disregarded or incorrectly addressed by service providers. This article reviews these security considerations and presents a radio frequency identification (RFID-based, off-site, data storage management system specifically designed to address security issues. The system relies on a set of security mechanisms or controls that are arranged in security layers or tiers to balance security requirements with usability and costs. The system has been successfully implemented, deployed and put into production. In addition, an experimental comparison with classical bar-code-based systems is provided, demonstrating the system’s benefits in terms of efficiency and failure prevention.

  13. Using RFID to Enhance Security in Off-Site Data Storage

    Science.gov (United States)

    Lopez-Carmona, Miguel A.; Marsa-Maestre, Ivan; de la Hoz, Enrique; Velasco, Juan R.

    2010-01-01

    Off-site data storage is one of the most widely used strategies in enterprises of all sizes to improve business continuity. In medium-to-large size enterprises, the off-site data storage processes are usually outsourced to specialized providers. However, outsourcing the storage of critical business information assets raises serious security considerations, some of which are usually either disregarded or incorrectly addressed by service providers. This article reviews these security considerations and presents a radio frequency identification (RFID)-based, off-site, data storage management system specifically designed to address security issues. The system relies on a set of security mechanisms or controls that are arranged in security layers or tiers to balance security requirements with usability and costs. The system has been successfully implemented, deployed and put into production. In addition, an experimental comparison with classical bar-code-based systems is provided, demonstrating the system’s benefits in terms of efficiency and failure prevention. PMID:22163638

  14. Using RFID to enhance security in off-site data storage.

    Science.gov (United States)

    Lopez-Carmona, Miguel A; Marsa-Maestre, Ivan; de la Hoz, Enrique; Velasco, Juan R

    2010-01-01

    Off-site data storage is one of the most widely used strategies in enterprises of all sizes to improve business continuity. In medium-to-large size enterprises, the off-site data storage processes are usually outsourced to specialized providers. However, outsourcing the storage of critical business information assets raises serious security considerations, some of which are usually either disregarded or incorrectly addressed by service providers. This article reviews these security considerations and presents a radio frequency identification (RFID)-based, off-site, data storage management system specifically designed to address security issues. The system relies on a set of security mechanisms or controls that are arranged in security layers or tiers to balance security requirements with usability and costs. The system has been successfully implemented, deployed and put into production. In addition, an experimental comparison with classical bar-code-based systems is provided, demonstrating the system's benefits in terms of efficiency and failure prevention.

  15. Flexible OSSC or the on-site storage alternative and how it grew

    International Nuclear Information System (INIS)

    Dufrane, K.H.

    1986-01-01

    The On-Site Storage Container (OSSC) is an accepted and proven concept currently in widespread use for both operations and the storage of low level radioactive waste. In addition, it represents a very attractive enhancement to a geological low-level waste disposal site. Use of the proven OSSC concept at a site can provide additional safety to the environment by combining the benefits of an engineered storage facility with the proven safety of a sound geological repository. The concept of flexibility which was built into the OSSC concept for the temporary above ground storage of low-level waste is directly applicable to a permanent storage facility. Manufacturing costs, size flexibility, handling systems, and real-world operational advantages are well known and proven. This background provides a high confidence level for adapting this technology to a disposal site while keeping in mind the significance of both operational economics, safety to the environment, and ALARA principles. The development, design and cost effectiveness features of the OSSC as a temporary storage facility are discussed in detail. The flexible OSSC provides significant economic advantages over a permanent storage building. The application of the OSSC to a permanent geological disposal site provides the environmental advantages of an engineered facility while maintaining the inherent operational and economic benefits of the flexible OSSC concept

  16. Afraid to Start Because the Outcome is Uncertain?: Social Site Characterization as a Tool for Informing Public Engagement Efforts

    Science.gov (United States)

    Wade, S.; Greenberg, S.

    2009-01-01

    This paper introduces the concept of social site characterization as a parallel effort to technical site characterization to be used in evaluating and planning carbon dioxides capture and storage (CCS) projects. Social site characterization, much like technical site characterization, relies on a series of iterative investigations into public attitudes towards a CCS project and the factors that will shape those views. This paper also suggests ways it can be used to design approaches for actively engaging stakeholders and communities in the deployment of CCS projects. This work is informed by observing the site selection process for FutureGen and the implementation of research projects under the Regional Carbon Sequestration Partnership Program. ?? 2009 Elsevier Ltd. All rights reserved.

  17. Hydrogen storage in carbon nano-materials. Elaboration, characterization and properties

    International Nuclear Information System (INIS)

    Luxembourg, D.

    2004-10-01

    This work deals with hydrogen storage for supplying fuel cells. Hydrogen storage by adsorption in carbon nano-tubes and nano-fibers is a very controversial issue because experimental results are very dispersed and adsorption mechanisms are not yet elucidated. Physi-sorption cannot explain in fact all the experimental results. All the potential adsorption sites, physical and chemical, are discussed as detailed as possible in a state of the art. Experimental works includes the steps of elaboration, characterization, and measurements of the hydrogen storage properties. Nano-fibers are grown using a CVD approach. Single wall carbon nano-tubes (SWNT) synthesis is based on the vaporization/condensation of a carbon/catalysts mixture in a reactor using a fraction of the available concentrated solar energy at the focus of the 1000 kW solar facility of IMP-CNRS at Odeillo. Several samples are produced using different synthesis catalysts (Ni, Co, Y, Ce). SWNT samples are purified using oxidative and acid treatments. Hydrogen storage properties of these materials are carefully investigated using a volumetric technique. The applied pressure is up to 6 MPa and the temperature is 253 K. Hydrogen uptake of the investigated materials are less than 1 % wt. at 253 K and 6 MPa. (author)

  18. Identification and capacity quantification of CO{sub 2} storage sites

    Energy Technology Data Exchange (ETDEWEB)

    Bachu, Stefan [Energy Resources Conservation Board (Canada)

    2008-07-15

    In this presentation the subject of scales of evaluation of the sites of CO{sub 2} storage is commented. Also the criteria to identify river basins and sites appropriated for the CO{sub 2} storage are analyzed and finally the matter of the estimation of the capacities of CO{sub 2} storage is analyzed. [Spanish] En esta presentacion se comenta sobre las escalas de evaluacion de los sitios de almacenamiento de CO{sub 2}. Tambien se analizan los criterios para identificar cuencas y lugares adecuados para el almacenamiento de CO{sub 2} y por ultimo se habla sobre la estimacion de las capacidades de almacenamiento de CO{sub 2}.

  19. Double tracks test site characterization report

    International Nuclear Information System (INIS)

    1996-05-01

    This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy's (DOE) Streamlined Approach for Environmental Restoration (SAFER)

  20. Natural phenomena evaluations of the K-25 site UF6 cylinder storage yards

    International Nuclear Information System (INIS)

    Fricke, K.E.

    1996-01-01

    The K-25 Site UF 6 cylinder storage yards are used for the temporary storage of UF 6 normal assay cylinders and long-term storage of other UF 6 cylinders. The K-25 Site UF 6 cylinder storage yards consist of six on-site areas: K-1066-B, K-1066-E, K-1066-F, K-1066-J, K-1066-K and K-1066-L. There are no permanent structures erected on the cylinder yards, except for five portable buildings. The operating contractor for the K-25 Site is preparing a Safety Analysis Report (SAR) to examine the safety related aspects of the K-25 Site UF 6 cylinder storage yards. The SAR preparation encompasses many tasks terminating in consequence analysis for the release of gaseous and liquid UF 6 , one of which is the evaluation of natural phenomena threats, such as earthquakes, floods, and winds. In support of the SAR, the six active cylinder storage yards were evaluated for vulnerabilities to natural phenomena, earthquakes, high winds and tornados, tornado-generated missiles, floods (local and regional), and lightning. This report summarizes those studies. 30 refs

  1. Social Site Characterisation for CO2 storage operations to inform public engagement in Poland and Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Brunsting, S.; Pol, M.; Mastop, J. [Energy research Centre of the Netherlands ECN, Policy Studies, Petten (Netherlands); Kaiser, M.; Zimmer, R. [UfU - Independent Institute for Environmental Issues, Berlin (Germany); Shackley, S.; Mabon, L.; Howell, R. [The University of Edinburgh - School of Geosciences, Edinburgh, Scotland (United Kingdom); Hepplewhite, F.; Loveridge, R. [Scottish Government, Edinburgh, Scotland (United Kingdom); Mazurowski, M. [PGNiG - Polskie Gornictwo Naftowe i Gazownictwo SA, Warszawa (Poland); Rybicki, C. [AGH - University of Science and Technology, Krakow (Poland)

    2013-05-01

    Public support has proven crucial to the implementation of CO2 capture and storage (CCS) demonstration projects. Whereas no method exists to guarantee local public acceptability of any project, a constructive stakeholder engagement process does increase the likelihood thereof. Social site characterisation can be used as an instrument to plan and evaluate an approach for actively engaging local stakeholders. Social site characterisation is the process of repeatedly investigating local public awareness and opinions of a specific CCS project, changes therein over time, and underlying factors shaping public opinion as a parallel activity to technical site characterization. This paper presents results from the EU FP7 SiteChar project in which social site characterisation (a.o. surveys) and public participation activities (focus conferences) were conducted by a multidisciplinary team at two prospective CCS sites in in Poland (onshore) and Scotland (offshore). Results demonstrate that social site characterization and focus conferences are powerful tools to raise public awareness about complex issues such as CCS and to initiate local discussion and planning processes with the appropriate type of information, through appropriate media, and involving all relevant stakeholders. Application and the duration of effects in real-life project settings will be discussed.

  2. Preliminary site requirements and considerations for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    1991-08-01

    This report presents preliminary requirements and considerations for siting monitored retrievable storage (MRS) facility. It purpose is to provide guidance for assessing the technical suitability of potential sites for the facility. It has been reviewed by the NRC staff, which stated that this document is suitable for ''guidance in making preliminary determinations concerning MRS site suitability.'' The MRS facility will be licensed by the US Nuclear Regulatory Commission. It will receive spent fuel from commercial nuclear power plants and provide a limited amount of storage for this spent fuel. When a geologic repository starts operations, the MRS facility will also stage spent-fuel shipments to the repository. By law, storage at the MRS facility is to be temporary, with permanent disposal provided in a geologic repository to be developed by the DOE

  3. On-site interim storage of spent nuclear fuel: Emerging public issues

    International Nuclear Information System (INIS)

    Feldman, D.L.; Tennessee Univ., Knoxville, TN

    1992-01-01

    Failure to consummate plans for a permanent repository or above- ground interim Monitored Retrievable Storage (MRS) facility for spent nuclear fuel has spurred innovative efforts to ensure at-reactor storage in an environmentally safe and secure manner. This article examines the institutional and socioeconomic impacts of Dry Cask Storage Technology (DCST)-an approach to spent fuel management that is emerging as the preferred method of on-site interim spent fuel storage by utilities that exhaust existing storage capacity

  4. Contaminated site investigation using nuclear technique: a case study of temporary transformer storage sites in Ghana

    International Nuclear Information System (INIS)

    Sanu, J. K.

    2013-07-01

    Recent introduction of man-made toxic chemicals, and the massive relocation of natural materials to different environmental compartment like soil, ground water and atmosphere, has resulted in severe pressure on the self- cleansing capacity of recipient ecosystems. Various accomulated pollutants and contaminants such as polychlorinated biphenyls (PCBs) are of much concern relative to both human and ecosystemm exposure and potential health impact. PCBs which are resistant to degradation and bioremediation accumulated in different niches of the biosphere. This significantly affects the ecological balances and cause adverse health effect on both human and the environment. Temporal transformer storage sites at four locations in Ghana (Tema, Temale, Bolgatanga and Wa) were investigated for PCB contamination using nuclear techniques. Analysis of soil samples from four temporal transformer storage sites revealed that the soil samples from Tema, Tamale, Bolgatanga and Wa were generally sandy with pH and EC ranging between 6.24 - 7.29 and 44.60 - 188.30 respectively. The PCB levels detected in the soil samples from the various locations varied considerably with mean ranging between 7.69 and 51.92 mg/kg. The highest mean PCB level was recorded at the Tema temporal transformer storage site (51.92 mg/kg), whilst the least mean level of 7.69 mg/kg was recorded at Wa storage site. At Tamale the individual levels range between 3.57 mg/kg and 38.70 mg/kg while at Bolgatanga it was 6.85 - 16.30 mg/kg and Wa, 6.08 - 14.70mg/kg. About 9% of soil samples from temporal transformer storage sites analysed had total PCBs concentrations above the 25mg/kg and 33 mg/kg level recommended by the Canadian Council of Ministers of environment (CCME) and EPA Ghana respectively for the protection of environment and human health. Generally, the Levels of PCBs in soil samples were found to decrease with increasing depth at all the temporal transformer storage sites. Results obtained using the EPA's L

  5. On-site concrete cask storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Craig, P.A.; Haelsig, R.T.; Kent, J.D.; Schmoker, D.S.

    1989-01-01

    A method is described of storing spent nuclear fuel assemblies including the steps of: transferring the fuel assemblies from a spent-fuel pool to a moveable concrete storage cask located outside the spent-fuel pool; maintaining a barrier between the fuel and the concrete in the cask to prevent contamination of the concrete by the fuel; maintaining the concrete storage cask containing the spent-fuel on site at the reactor complex for some predetermined period; transferring the fuel assemblies from the concrete storage cask to a shipping container; and, recycling the concrete storage cask

  6. Hazelwood Interim Storage Site annual site environmental report: Calendar year 1986

    International Nuclear Information System (INIS)

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Hazelwood Interim Storage Site (HISS), a US Department of Energy (DOE) facility located in the City of Hazelwood, Missouri. Originally known as the Cotter Corporation site on Latty Avenue in Hazelwood, the HISS is presently used for the storage of soils contaminated with residual radioactive material. As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action and environmental monitoring program are being conducted at the site and at vicinity properties by Bechtel National, Inc., Project Management Contractor for FUSRAP. The monitoring program at the HISS measures radon gas concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the scenario described in this report, the maximally exposed individual at the HISS would receive an annual external exposure approximately equivalent to 2% of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles. The cumulative dose to the population within an 80-km (50-mi) radius of the HISS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the HISS is in compliance with the DOE radiation protection standard. 11 refs., 6 figs., 10 tabs

  7. Perry Nuclear Plant's Plans for on-site storage

    International Nuclear Information System (INIS)

    Ratchen, J.T.

    1993-01-01

    Because of current radwaste disposal legislation and the eventual denial of access to the Barnwell, Richland, and Beatty burial sites, it was imperative for the Perry nuclear power plant to develop alternative means for handling its generated radioactive waste. The previous radwaste facilities at Perry were developed for processing, packaging, short-term storage, and shipment for burial. In order to meet the changing needs, new facilities have been constructed to handle the processing, packaging, and 5-yr interim storage of both dry active waste (DAW) and dewatered or solidified resin, filter media, etc

  8. Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 2: Volume 2 of 3. Characterize and explore potential sites and prepare research and development plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    The characteristics of sites in Indiana and Illinois which are being investigated as potential sites for compressed air energy storage power plants are documented. These characteristics include geological considerations, economic factors, and environmental considerations. Extensive data are presented for 14 specific sites and a relative rating on the desirability of each site is derived. (LCL)

  9. Storage of radioactive wastes in geological formations. Technical criteria for site selection. Report by the work-group chaired by Professor Goguel

    International Nuclear Information System (INIS)

    Goguel, Jean; Candes, Pierre; Izabel, Cecile; Autran, Albert; Barthoux, Alain; Baudin, Guy; Devillers, Christian; Habib, Pierre; Lafuma, Jacques; Lefevre, Jean; Peaudecerf, Pierre; Pradel, Jacques; Salle, Claude; Treuil, Michel; Lebrun, Patrick; Tissier, Marie-Solange

    1985-06-01

    This document is the result of a prospective mission on the long term storage of radioactive wastes containing long-period emitters (wastes of B and C categories), and notably on a definitive storage in deep continental geological formations. After a presentation of hypotheses (brief description of the storage concept, main safety principles, objectives in terms of radiological safety, safety options, time-related considerations), the authors addressed the following issues: safety before closing during the exploitation period, and safety after closure (after backfilling and sealing of all underground cavities). For the first issue, they discuss the impacts of works on safety and thermal effects during exploitation. For the second issue, they discuss the site natural hydro-geological context, the disturbances brought by the storage (access of water to the storage, and return of water into the biosphere), and the influence of external factors (geological phenomena, human intrusion). Then, the authors make recommendations regarding reconnaissance programs and studies for the selection and qualification of a site. They finally propose technical criteria and main recommendations for site selection. Appendices propose a list of hearings, a presentation of the storage concept, a report on the impact of works, a report on the presence of mineralisation in granite massifs, reports on radiological consequences of intrusions in salt formations and in granite massif containing storage of radioactive wastes or vitrified wastes, a report on the characterization of unsteady parts of the French continental construction, a presentation of the evolution of climate and icings, and a study of seismic movements in the case of deep storages

  10. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  11. Initial Operation of the Savannah River Site Advanced Storage Monitoring Facility

    International Nuclear Information System (INIS)

    McCurry, D.R.

    2001-01-01

    An advanced storage monitoring facility has been constructed at the Savannah River Site capable of storing sensitive nuclear materials (SNM) with access to monitoring information available over the Internet. This system will also have monitoring information available over the Internet to appropriate users. The programs will ultimately supply authenticated and encrypted data from the storage sites to certified users to demonstrate the capability of using the Internet as a safe and secure communications medium for remote monitoring of sensitive items

  12. NRC staff site characterization analysis of the Department of Energy's Site Characterization Plan, Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    1989-08-01

    This Site Characterization Analysis (SCA) documents the NRC staff's concerns resulting from its review of the US Department of Energy's (DOE's) Site Characterization Plan (SCP) for the Yucca Mountain site in southern Nevada, which is the candidate site selected for characterization as the nation's first geologic repository for high-level radioactive waste. DOE's SCP explains how DOE plans to obtain the information necessary to determine the suitability of the Yucca Mountain site for a repository. NRC's specific objections related to the SCP, and major comments and recommendations on the various parts of DOE's program, are presented in SCA Section 2, Director's Comments and Recommendations. Section 3 contains summaries of the NRC staff's concerns for each specific program, and Section 4 contains NRC staff point papers which set forth in greater detail particular staff concerns regarding DOE's program. Appendix A presents NRC staff evaluations of those NRC staff Consultation Draft SCP concerns that NRC considers resolved on the basis of the SCP. This SCA fulfills NRC's responsibilities with respect to DOE's SCP as specified by the Nuclear Waste Policy Act (NWPA) and 10 CFR 60.18. 192 refs., 2 tabs

  13. The dry spent RBMK fuel cask storage site at the Ignalina NPP in Lithuania

    International Nuclear Information System (INIS)

    Penkov, V.V.; Diersch, R.

    1999-01-01

    At present, there are about 15,000 spent RBMK fuel assemblies stored in the water pools near the reactors at the Ignalina Nuclear Power Plant (INPP). Part of them are cut in two bundles and stored in standardized baskets in the pools. Each basket is loaded with 102 bundles. For long-term interim storage of this fuel, it was decided to use dry storage in casks. For this reason, the total activity to be stored is split into individual units (casks). Each cask represents a closed and independent safety system, fulfilling all safety-relevant requirements for both normal operational and hypothetical accidental conditions. The main safety relevant features of the storage cask system are: (1) Inherent safety system; (2) Double barrier system; (3) Passive cooling by natural convection; (4) Safety against accidents. The cask dry storage system is a cost effective and multi-functional system for storage, transport after the operation time and final disposal under consideration of additional protective elements. From an economical point of view, cask storage has a number of advantages. Two cask types have been intended for the INPP storage site: (1) The CASTOR RBMK cask made of ductile cast iron; (2) The CONSTOR RBMK sandwich cask made of an inner and outer steel shell and reinforced heavy concrete. The CASTOR RBMK and the CONSTOR RBMK casks are designed to withstand severe storage site accidents and with help of impact limiters - to fulfil the IAEA test criteria for type B(U)F packages. The INPP spent RBMK fuel storage site is designed as an open air storage for an operational time of 50 years. The casks are arranged on the concrete storage pad. The site is equipped with a crane for cask handling and technological buildings and security systems. The safety analyses for fuel and cask handling and for cask handling and for cask technology at the site have been made and accepted by the Lithuanian Competent Authority. (author)

  14. Wayne Interim Storage Site annual environmental report for calendar year 1991, Wayne, New Jersey. [Wayne Interim Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-09-01

    This document describes the envirormental monitoring program at the Wayne Interim Storage Site (WISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of WISS and surrounding area began in 1984 when Congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. WISS is a National Priorities List site. The environmental monitoring program at WISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium concentrations in surface water, sediment, and groundwater. Several nonradiological parameters are also measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides, dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  15. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    International Nuclear Information System (INIS)

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems

  16. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.; Spalding, B.P.; Vaughan, N.D.; Haase, C.S.; Huff, D.D.; Lee, S.Y.; Walls, E.C.; Newbold, J.D.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems.

  17. Site characterization quality assurance for the California LLRW Disposal Site Project

    International Nuclear Information System (INIS)

    Hanrahan, T.P.; Ench, J.E.; Serlin, C.L.; Bennett, C.B.

    1988-01-01

    In December of 1985 US Ecology was chosen as the license designee for the State of California's low-level radioactive waste disposal facility. In early 1987, three candidate sites were selected for characterization studies in preparation for identifying the preferred site. The geotechnical characterization activities along with studies of the ecological and archaeological attributes, as well as assessments of the socio-economic impacts and cultural resources all provide input towards selection of the proposed site. These technical studies in conjunction with comments from local citizen committees and other interested parties are used as a basis for determining the proposed site for which full site characterization as required by California licensing requirements are undertaken. The purpose of this paper is to present an overview of the program for Quality Assurance and Quality Control for the site characterization activities on the California LLRW Disposal Site Project. The focus is on three major perspectives: The composite QA Program and two of the primary characterization activities, the geotechnical and the meteorological investigations

  18. Workload Characterization of a Leadership Class Storage Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjae [ORNL; Gunasekaran, Raghul [ORNL; Shipman, Galen M [ORNL; Dillow, David A [ORNL; Zhang, Zhe [ORNL; Settlemyer, Bradley W [ORNL

    2010-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the scientific workloads of the world s fastest HPC (High Performance Computing) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). Spider provides an aggregate bandwidth of over 240 GB/s with over 10 petabytes of RAID 6 formatted capacity. OLCFs flagship petascale simulation platform, Jaguar, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, and the distribution of read requests to write requests for the storage system observed over a period of 6 months. From this study we develop synthesized workloads and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution.

  19. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil

  20. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil.

  1. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Aboveground Storage Tanks' and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain

  2. Final storage site for radioactive waste. Gorleben mine

    International Nuclear Information System (INIS)

    1995-02-01

    Out of more than 20 salt stocks, the Gorleben salt stock was chosen. In addition to the preliminary information available on its size and depth, detailed exploratory investigations were carried out in order to test its suitability as a site for ultimate storage of all types of radioactive waste. (orig.) [de

  3. Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987

    International Nuclear Information System (INIS)

    Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A.; Craig, P.M.

    1987-01-01

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants

  4. Generation, on-site storage; handling and processing of industrial waste of Tehran

    International Nuclear Information System (INIS)

    Abduli, M.A.

    1997-01-01

    This paper describes out the present status of generation, on-site handling, processing and storage of industrial waste in Tehran. In this investigation, 67 large scale factories of different industrial groups were randomly selected. Above cited functional elements of these factories were surveyed. In this investigation a close contact with each factory was required, thus a questionnaire was prepared and distributed among these factories. The relationship between daily weight of the industrial waste (Y) and number of employer of each factory (x) is found to be Y=547.4 + 0.58 x. The relationship between daily volume of industrial waste (V), and daily weight of waste generated in each factory (Y) can be described by V=1.56 + 0.00078 Y. About 68% of the factories have their own interim storage site and the rest of the factories do not possess any on-site storage facility

  5. Characterization of stored defense production spent nulcear fuel and associated materials at Hanford Site, Richland Washington: Environmental assessment

    International Nuclear Information System (INIS)

    1995-03-01

    There are about 2,100 tonnes (2,300 tons) of defense production spent nuclear fuel stored in the 100-K Area Basins located along the south shore of the Columbia River in the northern part of the Hanford Site. Some of the fuel which has been in storage for a number of years is in poor condition and continues to deteriorate. The basins also contain fuel fragments and radioactively contaminated sludge. The DOE needs to characterize defense production spent nuclear fuel and associated materials stored on the Hanford Site. In order to satisfy that need, the Department of Energy (DOE) proposes to select, collect and transport samples of spent nuclear fuel and associated materials to the 327 Building for characterization. As a result of that characterization, modes of interim storage can be determined that would be compatible with the material in its present state and alternative treatment processes could be developed to permit a broader selection of storage modes. Environmental impacts of the proposed action were determined to be limited principally to radiation exposure of workers, which, however, were found to be small. No health effects among workers or the general public would be expected under routine operations. Implementation of the proposed action would not result in any impacts on cultural resources, threatened, endangered and candidate species, air or water quality, socioeconomic conditions, or waste management

  6. Repository site characterization

    International Nuclear Information System (INIS)

    Voss, J.W.; Pentz, D.L.

    1987-01-01

    The characterization of candidate repository sites has a number of programmatic objectives. Principal among these is the acquisition of data: a) to determine the suitability of a site relative to the DOE repository siting guidelines, b) to support model development and calculations to determine the suitability of a site relative to the post closure criteria of the NRC and EPA, c) to support the design of a disposal system, including the waste package and the engineered barrier system, as well as the shafts and underground openings of the repository. In meeting the gaols of site characterization, the authors have an obligation to conduct their investigations within an appropriate budget and schedule. This mandates that a well-constructed and systematic plan for field investigations be developed. Such a plan must fully account for the mechanisms which will control the radiologic performance in the repository. The plan must also flexibly and dynamically respond to the results of each step of field investigation, responding to the spatial variability of earth as well as to enhanced understandings of the performance of the disposal system. Such a plan must ensure that sufficient data are available to support the necessary probabilistic calculations of performance. This paper explores the planning for field data acquisition with specific reference to requirements for demonstrations of the acceptable performance for disposal systems

  7. Site characterization plan: Public Handbook, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1989-01-01

    The Yucca Mountain site in Nevada has been designated by the Nuclear Waste Policy Act of 1982, as amended, for detailed study as the candidate site for the first US geologic repository for spent nuclear fuel and high-level radioactive waste. The detailed study --- called ''site characterization'' --- will be conducted by the Department of Energy (DOE) to determine the suitability of the site for a repository and, if the site is suitable, to obtain from the Nuclear Regulatory Commission authorization to construct the repository. As part of the site characterization study, DOE has prepared a Site Characterization Plan (SCP) for the Yucca Mountain site. The Site Characterization Plan is a nine-volume document, approximately 6300 pages in length, which describes the activities that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. Part 1 of this Handbook explains what site characterization is and how the Site Characterization Plan (Plan) relates to it. Part 2 tells how to locate subjects covered in the Plan. Another major purpose of this Handbook is to identify opportunities for public involement in the review of the Site Characterization Plan. DOE wants to be sure that the public has adequate opportunities to learn about the Plan and review the results of the subsequent technical studies. 14 refs

  8. Niagara Falls Storage Site annual environmental report for calendar year 1991, Lewiston, New York. [Niagara Falls Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  9. Maywood Interim Storage Site annual environmental report for calendar year 1991, Maywood, New Jersey. [Maywood Interim Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-09-01

    This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  10. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 204: STORAGE BUNKERS, NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    2006-01-01

    Corrective Action Unit (CAU) 330 consists of four Corrective Action Sites (CASs) located in Areas 6, 22, and 23 of the Nevada Test Site (NTS). The unit is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites. CAU 330 consists of the following CASs: CAS 06-02-04, Underground Storage Tank (UST) and Piping CAS 22-99-06, Fuel Spill CAS 23-01-02, Large Aboveground Storage Tank (AST) Farm CAS 23-25-05, Asphalt Oil Spill/Tar Release

  11. Air quality measurements for site characterization

    International Nuclear Information System (INIS)

    Carter, M.W.; Conklin, W.C.

    1982-01-01

    Effective and timely site characterization is an important part of selecting a site for low-level waste disposal. Parameters measured can be compared with pertinent regulatory requirements, used for a reference base, helpful in evaluating environmental impacts, utilized in documenting changes in control programs, of value in modeling studies and other data uses, and beneficial in providing relevant sampling and methodology training. This paper will focus on specific air quality measurements which should be an inherent part of the site characterization program. The program is designed to measure, quantify, and identify contributions from site uses (operational procedures), atmospheric fallout, natural radioactivity, and vicinity and regional applications of radionuclides. The recommended air quality measurements program will be described in association with a reference site developd by the US Nuclear Regulatory Commission. Particular attention will be devoted to the type and quality of information which is needed, the scope of sampling and measurements, the frequency of measurements, locations and numbers of sampling stations, the period of time needed for site characterization, and the proper uses of the information once it has been obtained. Adequate characterization of the site will be most important in final site selection and in the operation of the site as to periodically assessing environmental impacts and helping guide any remedial control efforts designed to meet regulatory requirements

  12. Hanford Site Waste Storage Tank Information Notebook

    International Nuclear Information System (INIS)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  13. NRC staff site characterization analysis of the Department of Energy`s Site Characterization Plan, Yucca Mountain Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-08-01

    This Site Characterization Analysis (SCA) documents the NRC staff`s concerns resulting from its review of the US Department of Energy`s (DOE`s) Site Characterization Plan (SCP) for the Yucca Mountain site in southern Nevada, which is the candidate site selected for characterization as the nation`s first geologic repository for high-level radioactive waste. DOE`s SCP explains how DOE plans to obtain the information necessary to determine the suitability of the Yucca Mountain site for a repository. NRC`s specific objections related to the SCP, and major comments and recommendations on the various parts of DOE`s program, are presented in SCA Section 2, Director`s Comments and Recommendations. Section 3 contains summaries of the NRC staff`s concerns for each specific program, and Section 4 contains NRC staff point papers which set forth in greater detail particular staff concerns regarding DOE`s program. Appendix A presents NRC staff evaluations of those NRC staff Consultation Draft SCP concerns that NRC considers resolved on the basis of the SCP. This SCA fulfills NRC`s responsibilities with respect to DOE`s SCP as specified by the Nuclear Waste Policy Act (NWPA) and 10 CFR 60.18. 192 refs., 2 tabs.

  14. Yucca Mountain Site Characterization Project Bibliography, July--December 1994: An update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  15. Yucca Mountain Site Characterization Project Bibliography, July, December 194: An update

    International Nuclear Information System (INIS)

    1995-03-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  16. Niagara Falls Storage Site, Lewiston, New York: geologic report

    International Nuclear Information System (INIS)

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area

  17. Niagara Falls Storage Site, Lewiston, New York: geologic report

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area.

  18. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  19. Assessment and characterization of radioactive waste for ultimate storage

    International Nuclear Information System (INIS)

    Brennecke, P.; Warnecke, E.

    1986-01-01

    The waste specifications determined from site safety analyses define the requirements to be met by waste forms for ultimate storage. Product quality control is the process step ensuring compliance with the conditions to be met for ultimate storage. For this purpose, radionuclide inventory, fixation method, container type, waste form and quantity, and type of waste are the most significant items on the checking list. (DG) [de

  20. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

  1. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1988-01-01

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requiremenrs of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs

  2. Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. (Oak Ridge National Lab., TN (United States)); Craig, P.M. (Environmental Consulting Engineers, Inc., Knoxville, TN (United States))

    1987-09-30

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

  3. Simulation of a Potential CO2 Storage in the West Paris Basin: Site Characterization and Assessment of the Long-Term Hydrodynamical and Geochemical Impacts Induced by the CO2 Injection

    Directory of Open Access Journals (Sweden)

    Estublier Audrey

    2017-07-01

    Full Text Available This article presents the preliminary results of a study carried out as part of a demonstration project of CO2 storage in the Paris Basin. This project funded by ADEME (French Environment and Energy Management Agency and several industrial partners (TOTAL, ENGIE, EDF, Lafarge, Air Liquide, Vallourec aimed to study the possibility to set up an experimental infrastructure of CO2 transport and storage. Regarding the storage, the objectives were: (1 to characterize the selected site by optimizing the number of wells in a CO2 injection case of 200 Mt over 50 years in the Trias, (2 to simulate over time the CO2 migration and the induced pressure field, and (3 to analyze the geochemical behavior of the rock over the long term (1,000 years. The preliminary site characterization study revealed that only the southern area of Keuper succeeds to satisfy this injection criterion using only four injectors. However, a complementary study based on a refined fluid flow model with additional secondary faults concluded that this zone presents the highest potential of CO2 injection but without reaching the objective of 200 Mt with a reasonable number of wells. The simulation of the base scenario, carried out before the model refinement, showed that the overpressure above 0.1 MPa covers an area of 51,869 km2 in the Chaunoy formation, 1,000 years after the end of the injection, which corresponds to the whole West Paris Basin, whereas the CO2 plume extension remains small (524 km2. This overpressure causes brine flows at the domain boundaries and a local overpressure in the studied oil fields. Regarding the preliminary risk analysis of this project, the geochemical effects induced by the CO2 injection were studied by simulating the fluid-rock interactions with a coupled geochemical and fluid flow model in a domain limited to the storage complex. A one-way coupling of two models based on two domains fitting into each other was developed using dynamic boundary

  4. Characterization and storage of the Rocky Flats plutonium oxide legacy

    International Nuclear Information System (INIS)

    Stakebake, J.L.

    1997-01-01

    Prior to 1989, plutonium oxide storage at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) could generally be considered as short term. Packaging configurations for short-term storage consisted of slip-lid cans and sealed produce cans. Prior to packaging, most of the oxide had been stabilized by heating to ∼500 degrees C. When storage times were relatively short, few problems were attributed to either packaging or storage. However, with projected storage times extended up to 50 yr, most of the old packaging of RFETS plutonium oxide will be in two welded steel containers in compliance with the DOE Standard 3013-96, which defines processing and packaging criteria for safe, long-term storage of plutonium oxide

  5. Maywood Interim Storage Site environmental report for calendar year 1989, Maywood, New Jersey

    International Nuclear Information System (INIS)

    1990-05-01

    The environmental monitoring program, which began in 1984, was continued in 1989 at the Maywood Interim Storage Site (MISS), a US Department of Energy (DOE) facility located in the Borough of Maywood and the Township of Rochelle Park, New Jersey. MISS is currently used for storage of soils contaminated with low-level radioactivity. MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials are present. The monitoring program at MISS measures thoron and radon concentrations in air; external gamma radiation levels; and thorium, uranium, and radium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. The radiation dose was calculated for a hypothetical maximally exposed individual to verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and to assess its potential effects on public health. This report presents the results of the environmental monitoring program conducted at the US Department of Energy's (DOE) Maywood Interim Storage Site (MISS) during calendar year 1989. Environmental monitoring began at MISS in 1984. 19 refs., 23 figs., 14 tabs

  6. Maywood Interim Storage Site environmental report for calendar year 1989, Maywood, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    The environmental monitoring program, which began in 1984, was continued in 1989 at the Maywood Interim Storage Site (MISS), a US Department of Energy (DOE) facility located in the Borough of Maywood and the Township of Rochelle Park, New Jersey. MISS is currently used for storage of soils contaminated with low-level radioactivity. MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials are present. The monitoring program at MISS measures thoron and radon concentrations in air; external gamma radiation levels; and thorium, uranium, and radium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. The radiation dose was calculated for a hypothetical maximally exposed individual to verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and to assess its potential effects on public health. This report presents the results of the environmental monitoring program conducted at the US Department of Energy's (DOE) Maywood Interim Storage Site (MISS) during calendar year 1989. Environmental monitoring began at MISS in 1984. 19 refs., 23 figs., 14 tabs.

  7. Site characterization criteria (DOE-STD-1022-94) for natural phenomena hazards at DOE sites

    International Nuclear Information System (INIS)

    Chen, J.C.; Ueng, T.S.; Boissonnade, A.C.

    1995-12-01

    This paper briefly summarizes requirements of site characterization for Natural Phenomena Hazards (NPH) at DOE sites. In order to comply with DOE Order 5480.28, site characterization criteria has been developed to provide site-specific information needed for development of NPH assessment criteria. Appropriate approaches are outlined to ensure that the current state-of-the-art methodologies and procedures are used in the site characterization. General and detailed site characterization requirements are provided in the areas of meteorology, hydrology, geology, seismology and geotechnical studies

  8. Yucca Mountain Site Characterization Project bibliography, July--December 1992: An update, Supplement 3, Addendum 2

    International Nuclear Information System (INIS)

    1993-04-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from July 1, 1992, through December 31, 1992. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  9. Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, P.M. [ed.

    1996-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  10. Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, P.M. [ed.

    1995-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  11. Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1

    International Nuclear Information System (INIS)

    Stephan, P.M.

    1995-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  12. Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update

    International Nuclear Information System (INIS)

    Stephan, P.M.

    1996-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  13. Solid NMR characterization of hydrogen solid storage matrices

    International Nuclear Information System (INIS)

    Pilette, M.A.; Charpentier, T.; Berthault, P.

    2007-01-01

    The aim of this work is to develop and validate characterization tools by NMR imagery and spectroscopy of the structure of materials for hydrogen storage, and of their evolution during load/unload cycles. The two main topics of this work are in one hand the analysis of the local structure of the materials and the understanding of their eventual modifications, and in another hand, the in-situ analysis of the distribution and diffusion of hydrogen inside the storage material. (O.M.)

  14. Characterization of spent fuel assemblies for storage facilities using non destructive assay

    International Nuclear Information System (INIS)

    Lebrun, A.; Bignan, G.; Recroix, H.; Huver, M.

    1999-01-01

    Many non destructive assay (NDA) techniques have been developed by the French Atomic Energy Commission (CEA) for spent fuel characterization and management. Passive and active neutron methods as well as gamma spectrometric methods have been carried out and applied to industrial devices like PYTHON TM and NAJA. Many existing NDA methods can be successfully applied to storage, but the most promising are the neutron methods combined with on line evolution codes. For dry storage applications, active neutron measurements require further R and D to achieve accurate results. Characterization data given by NDA instruments can now be linked to automatic fuel recognition. Both information can feed the storage management software in order to meet the storage operation requirements like: fissile mass inventory, operators declaration consistency or automatic selection of proper storage conditions. (author)

  15. Fires at storage sites of organic materials, waste fuels and recyclables.

    Science.gov (United States)

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  16. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  17. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  18. A Bookless Library, Part I: Relocating Print Materials to Off-Site Storage

    Science.gov (United States)

    Sewell, Bethany B.

    2013-01-01

    This article presents an analysis of the feasibility of a bookless library in a research setting. As spaces for collections are being converted for increased study and community spaces, many libraries have been moving low-use collections to off-site storage. Issues regarding the types of storage spaces available are addressed. Concerns and…

  19. Site characterization report for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-01-01

    Several Old Hydrofracture Facility (OHF) structures (i.e., Building 7852, the bulk storage bins, the pump house, water tank T-5, and pump P-3) are surplus facilities at Oak Ridge National Laboratory (ORNL) slated for decontamination and decommissioning (D and D). OHF was constructed in 1963 to allow experimentation and operations with an integrated solids storage, handling, mixing, and grout injection facility. It was shut down in 1980 and transferred to ORNL's Surveillance and Maintenance Program. The hydrofracture process was a unique disposal method that involved injecting waste materials mixed with grout and additives under pumping pressures of 2,000 psi or greater into a deep, low-permeability shale formation. The injected slurry spread along fractures and bedding planes for hundreds of feet from the injection points, forming thin grout sheets (often less than 1/8 in. thick). The grout ostensibly immobilized and solidified the liquid wastes. Site characterization activities were conducted in the winter and spring of 1994 to collect information necessary to plan the D and D of OHF structures. This site characterization report documents the results of the investigation of OHF D and D structures, presenting data from the field investigation and laboratory analyses in the form of a site description, as-built drawings, summary tables of radiological and chemical contaminant concentrations, and a waste volume estimate. 25 refs., 54 figs., 17 tabs

  20. Minimally invasive three-dimensional site characterization system

    International Nuclear Information System (INIS)

    Steedman, D.; Seusy, F.E.; Gibbons, J.; Bratton, J.L.

    1993-09-01

    This paper presents an improved for hazardous site characterization. The major components of the systems are: (1) an enhanced cone penetrometer test, (2) surface geophysical surveys and (3) a field database and visualization code. The objective of the effort was to develop a method of combining geophysical data with cone penetrometer data in the field to produce a synergistic effect. Various aspects of the method were tested at three sites. The results from each site are discussed and the data compared. This method allows the data to be interpreted more fully with greater certainty, is faster, cheaper and leads to a more accurate site characterization. Utilizing the cone penetrometer test rather than the standard drilling, sampling and laboratory testing reduces the workers exposure to hazardous materials and minimizes the hazardous material disposal problems. The technologies employed in this effort are, for the most part, state-of-the-art procedures. The approach of using data from various measurement systems to develop a synergistic effect was a unique contribution to environmental site characterization. The use of the cone penetrometer for providing ''ground truth'' data and as a platform for subsurface sensors in environmental site characterization represents a significant advancement in environmental site characterization

  1. Spent-fuel storage - MRS and/or on-site?

    International Nuclear Information System (INIS)

    Fuierer, A.A.

    1991-01-01

    The US government through the Office of Civilian Radioactive Waste Management (OCRWM) is seeking by the use of an authorized negotiator a site for a monitored retrievable storage (MRS) facility. Based on a public information document provided by the office of the negotiator, the MRS will be an integral part of the federal system for safe and permanent disposal of the nation's high-level radioactive wastes. It is planned that the MRS will accept and store spent fuel above ground until a repository opens and spent fuel that has been stored is shipped from the MRS to the repository. Additional spent fuel stored at reactor sites will be shipped to the MRS, which will be used as a staging area to assemble dedicated trains for shipment to the repository. The intent of the MRS is to reduce utilities' needs to expand on-site storage of spent fuel. A utility viewpoint may emphasize an alternate set of priorities. The waste management system must be considered as an overall system involving both the utility and DOE that begins with the first discharge of spent nuclear fuel from a commercial reactor and ends with high-level waste in a final repository. Many studies have been made on individual components of a waste system. This study, with the benefit of past hands-on experience as a guide, looks at costs and reliability for a total system concept with particular emphasis on the interface between the utility and Department of Energy

  2. Draft reclamation program plan for site characterization

    International Nuclear Information System (INIS)

    1989-08-01

    As part of its obligations under the Nuclear Waste Policy Act, as amended, the US Department of Energy (DOE) has developed an environmental program that is to be implemented during site characterization at the Yucca Mountain site. This site is proposed for the location of the nation's first high-level radioactive waste repository. A program for the reclamation of areas disturbed by site characterization is part of the overall environmental program for that site. This Reclamation Program Plan (RPP) describes the reclamation policy of the DOE for the Yucca Mountain site and presents an overview of the reclamation program. The RPP also provides an overview of the reclamation needs relative to site characterization; a review of legislation and requirements pertinent to reclamation; and a review of previous commitments made by the DOE to certain types of reclamation activities. The objective of the DOE reclamation program at Yucca Mountain is to return land disturbed by site-characterization activities to a stable ecological state with a form and productivity similar to the predisturbance state. The DOE will take all reasonable and necessary steps to achieve this objective. 19 refs., 2 tabs

  3. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Conatser, E.R.; Thomas, J.E.

    2000-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These ∼2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show

  4. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Thomas, Jay

    1999-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S.-origin from foreign research reactors to the United States. As of July 1999, over 18% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These 2400 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into L-Area in April 1997 and approximately 86 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show how the empty

  5. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Conatser, E.R.; Thomas, J.E. [Westinghouse Savannah River Company, Aiken, SC 29808 (United States)

    2000-07-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These {approx}2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment

  6. Method of impact evaluation of storage sites for uranium ore tailings

    International Nuclear Information System (INIS)

    Servant, A.C.; Cessac, B.

    2001-11-01

    Mining and ore processing generate liquid effluents and solid waste ( tailings) in important quantities. On fifty years exploitation, 50 millions tons of tailings have been stored on twenty sites in France. From a radiological point of view, the uranium tailings contain only natural radioisotopes, daughters of 238 U and 235 U families and for a low part daughter's of 232 Th family. Their activity stay low to very low, under the ore activity. It decreases very slowly because of the long period of some radionuclides ( 230 Th, 75 000 years, 226 Ra, 1600 years). generally stored on the exploitation site, these tailings constitute a radiological source term of which it is necessary to evaluate the impact on man and environment. At close-down of an uranium ore exploitation site, the operator is required to give to the prefect of his region a file of rehabilitation with the dispositions to take to limit the radiological impact of the storage. It is in this frame that the direction of pollutions and risks prevention (D.P.P.R.) from the Minister of Territory landscaping and the Institute of protection and nuclear safety (I.R.S.N.) established a convention, reference 56/2000, relative to investigations in matter of radiological impact evaluation of uranium tailings storage sites, in order to supply a document allowing to judge the pertinence of the different files made by Cogema in the frame of tailings storage of uranium ore processing. The present document constitutes the report planned at the 3. article ( 3. paragraph) of the convention. It gives the information necessary to the evaluation of impact studies for the sites in question. (N.C.)

  7. Remediation and assessment of the national radioactive waste storage and disposal site in Tajikistan - 59110

    International Nuclear Information System (INIS)

    Buriev, Nazirzhon T.; Abdushukurov, Dzhamshed A.; Vandergraaf, Tjalle T.

    2012-01-01

    The National Radioactive Waste Storage and Disposal Site was established in 1959 in the Faizabad region approximately 50 km east of the capital, Dushanbe. The site is located on the southern flank of the Fan Mountains facing the Gissar Valley in a sparsely populated agricultural area, with the nearest villages located a few km from the site. The site was initially designed to accept a wide range of contaminated materials, including obsolete smoke detectors, sealed radioactive sources, waste from medical institutions, and radioactive liquids. Between 1962 and 1976, 363 tonnes and 1146 litres of material, contaminated with a range of radionuclides were shipped to the site. Between 1972 - 1980 and 1985 - 1991, ∼4.8 x 10 14 and 2 x 10 13 Bq, respectively, were shipped to the site. An additional 7 x 10 14 Bq was shipped to the site in 1996. Partly as a result of the dissolution of the former Soviet Union, the disposal site had fallen into disrepair and currently presents both an environmental hazard and a potential for the proliferation of radionuclides that could potentially be used for illicit purposes. Remediation of the disposal site was started in 2005. New security fences were erected and a new superstructure over an in-ground storage site constructed. A central alarm monitoring and observation station has been constructed and is now operational. The geology, flora, and fauna of the region have been documented. Radiation surveys of the buildings and the storage and disposal sites have been carried out. Samples of soil, surface water and vegetation have been taken and analyzed by gamma spectrometry. Results show a slight extent of contamination of soils near the filling ports of the underground liquid storage container where a Cs-137 concentration of 2.3 x 104 Bq/kg was obtained. Similar values were obtained for Ra- 226. Radiation fields of the in-ground storage site were generally 3 . Most of the activity appears to be associated with the sediments in the tank

  8. Structuring a cost-effective site characterization

    International Nuclear Information System (INIS)

    Berven, B.A.; Little, C.A.; Swaja, R.E.

    1990-01-01

    Successful chemical and radiological site characterizations are complex activities which require meticulously detailed planning. Each layer of investigation is based upon previously generated information about the site. Baseline historical, physical, geological, and regulatory information is prerequisite for preliminary studies at a site. Preliminary studies then provide samples and measurements which define the identity of potential contaminants and define boundaries around the area to be investigated. The goal of a full site characterization is to accurately determine the extent and magnitude of contaminants and carefully define the site conditions such that the future movements of site contaminants can be assessed for potential exposure to human occupants and/or environmental impacts. Critical to this process is the selection of appropriate measurement and sampling methodology, selection and use of appropriate instrumentation and management/interpretation of site information. Site investigations require optimization between the need of information to maximize the understanding of site conditions and the cost of acquiring that information. 5 refs., 1 tab

  9. Assessment of 222Rn occupational exposure at IPEN nuclear materials storage site, SP, Brazil

    International Nuclear Information System (INIS)

    Caccuri, Lilian Saueia

    2007-01-01

    In this study it was assessed the occupational exposure to 222 Rn at IPEN, SP, Brazil, nuclear materials storage site through the committed effective dose received by workers exposed to this radionuclide. The radiation dose was calculated through the radon concentrations at nuclear materials storage site. Radon concentrations were determined by passive detection method with solid state nuclear detectors (SSNTD). The SSNTD used in this study was the polycarbonate Makrofol E; each detector is a small square plastic of 1 cm 2 , placed into a diffusion chamber type KFK. It was monitored 14 points at nuclear materials storage site and one external point, over a period of 21 months, changing the detectors every three months, from December 2004 to September 2006. The 222 Rn concentrations varied from 196 ± 9 and 2048 ± 81 Bq·m -3 . The committed effective dose due to radon inhalation at IPEN nuclear materials storage site was obtained from radon activity incorporated and dose conversion factor, according to International Commission on Radiological Protection procedures. The effective committed dose received by workers is below 20 mSv·y -1 . This value is suggested as an annual effective dose limit for occupational exposure by ICRP 60. (author)

  10. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    International Nuclear Information System (INIS)

    Preston, E.L.

    1986-01-01

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management

  11. Environmental Regulatory Compliance Plan for site: Draft characterization of the Yucca Mountain site:Draft

    International Nuclear Information System (INIS)

    1988-01-01

    The objective of the EMMP is to document compliance with the NWPA. To do so, a summary description of site characterization activites is provided, based on the consultation draft of the SCP. Subsequent chpaters identify those technical areas having the potential to be impacted by site characterization activities and the monitoring plans proposed to identify whether those impacts acutally occur. Should monitoring confirm the potential for significant adverse impact, mitigative measures will be developed. In the context of site characterization, mitigation is defined as those changes in site characterization activities that serve to avoid or minimize, to the maximum extent practicle, any significant adverse environmental impacts. Although site characterization activies involve both surface and subsurface activities, it is the surface-based aspect of site characterization that is addressed in detailed by the EMMP. The schedule and duration of these activities is given in the consultation draft of the SCP. A breif summary of all proposed activities is given in the EMMP. 10 refs., 8 figs

  12. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.; Zapatero, M. A.; Suarez, I.; Arenillas, A.

    2007-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs

  13. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.

    2006-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref

  14. UST/LUST Site Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset contains all Underground Storage Tank (UST) site information. It includes details such as property location, acreage, identification and characterization,...

  15. Canadian experiences in characterizing two low-level and intermediate-level radioactive waste management sites

    International Nuclear Information System (INIS)

    Heystee, R.J.; Rao, P.K.M.

    1984-02-01

    Low-level waste (LLW) and intermediate-level reactor waste (ILW) arise in Canada from the operation of nuclear power reactors for the generation of electricity and from the operation of reactors for nuclear research and development as well as for the production of separated radioisotopes. The majority of this waste is currently being safely managed at two sites in the Province of Ontario: (1) Chalk River Nuclear Laboratories, and (2) Ontario Hydro's Bruce Nuclear Power Development Radioactive Waste Operations Site 2. Although these storage facilities can safely manage the waste for a long period of time, there are advantages in disposal of the LLW and ILW. The design of the disposal facilities and the assessment of long-term performance will require that the hydrologic and geologic data be gathered for a potential disposal site. Past site characterization programs at the two aforementioned waste storage sites have produced information which will be useful to future disposal studies in similar geologic materials. The assessment of long-term performance will require that predictions be made regarding the potential subsurface migration of radionuclides. However there still remain many uncertainties regarding the chemical and physical processes which affect radionuclide mobility and concentrations, in particular hydrodynamic dispersion, geochemical reactions, and transport through fractured media. These uncertainties have to be borne in mind when conducting the performance assessments and adequate conservatism must be included to account for the uncertainties. (author)

  16. Probabilistic Assessment of Above Zone Pressure Predictions at a Geologic Carbon Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    Namhata, Argha; Oladyshkin, Sergey; Dilmore, Robert M.; Zhang, Liwei; Nakles, David V.

    2016-12-01

    Carbon dioxide (CO2) storage into geological formations is regarded as an important mitigation strategy for anthropogenic CO2 emissions to the atmosphere. This study first simulates the leakage of CO2 and brine from a storage reservoir through the caprock. Then, we estimate the resulting pressure changes at the zone overlying the caprock also known as Above Zone Monitoring Interval (AZMI). A data-driven approach of arbitrary Polynomial Chaos (aPC) Expansion is then used to quantify the uncertainty in the above zone pressure prediction based on the uncertainties in different geologic parameters. Finally, a global sensitivity analysis is performed with Sobol indices based on the aPC technique to determine the relative importance of different parameters on pressure prediction. The results indicate that there can be uncertainty in pressure prediction locally around the leakage zones. The degree of such uncertainty in prediction depends on the quality of site specific information available for analysis. The scientific results from this study provide substantial insight that there is a need for site-specific data for efficient predictions of risks associated with storage activities. The presented approach can provide a basis of optimized pressure based monitoring network design at carbon storage sites.

  17. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

  18. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year

  19. Site characterization plan overview: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Consultation Draft

    International Nuclear Information System (INIS)

    1988-01-01

    The consultation draft of the site characterization plan is a lengthy document that describes in considerable detail the program that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. The overview presented here consists of brief summaries of important topics covered in the consultation draft of the site-characterization plan; it is not a substitute for the site-characterization plan. The arrangement of the overview is similar to that of the plan itself, with brief descriptions of the disposal system -- the site, the repository, and the waste package -- preceding the discussion of the characterization program to be carried out at the Yucca Mountain site. It is intended primarily for the management staff of organizations involved in the DOE's repository program -- staff who might wish to understand the general scope of the site-characterization program, the activities to be conducted, and the facilities to be constructed rather than the technical details of site characterization. 22 figs., 1 tab

  20. Plans for characterization of salt sites

    International Nuclear Information System (INIS)

    Heim, G.E.; Matthews, S.C.; Kircher, J.F.; Kennedy, R.K.

    1983-01-01

    This basic salt site characterization program has been designed to provide the data required to support the design, performance assessment, and licensing of each of the principal project elements: the repository, the shafts, and the surface facilities. The work has been sequenced to meet the design and licensing schedule. It is anticipated that additional characterization activities will be performed to address site-specific considerations and to provide additional information to address questions which arise during the evaluation of characterization data. 3 figures, 3 tables

  1. Niagara Falls Storage Site environmental surveillance report for calendar year 1993

    International Nuclear Information System (INIS)

    1994-06-01

    This report summarizes the results of environmental surveillance activities conducted at the Niagara Falls Storage Site (NFSS) during calendar year 1993. It includes an overview of site operations, the basis for radiological and nonradiological monitoring, a summary of the results, and the estimated dose to the offsite population. Environmental surveillance activities were conducted in accordance with the site environmental monitoring plan, which describes the rationale and design criteria for the surveillance program, the frequency of sampling and analysis, specific sampling and analysis procedures, and quality assurance requirements. NFSS is in compliance with National Emission Standards for Hazardous Air Pollutants (NESHAPs) Subpart H of the Clean Air Act as well as the requirements of the National Pollutant Discharge Elimination System (NPDES) under the Clean Water Act. Located in northwestern New York, the site covers 191 acres. From 1944 to the present, the primary use of NFSS has been storage of radioactive residues that were by-products of uranium production. Most onsite areas of residual radioactivity above regulatory guidelines were remediated during the early 1980s. Additional isolated areas of onsite contamination were remediated in 1989, and the materials were consolidated into the waste containment structure in 1991. Remediation of the site has now been completed

  2. Advanced and Integrated Petrophysical Characterization for CO2 Storage: Application to the Ketzin Site Caractérisation pétrophysique intégrée pour le stockage de CO2 : application au site de Ketzin

    Directory of Open Access Journals (Sweden)

    Fleury M.

    2013-06-01

    Full Text Available Advanced and Integrated Petrophysical Characterization for CO2 Storage: Application to the Ketzin Site — Reservoir simulations and monitoring of CO2 storage require specific petrophysical data. We show a workflow that can be applied to saline aquifers and caprocks in order to provide the minimum data set for realistic estimations of storage potential and perform pertinent simulations of CO2 injection. The presented series of experiments are fully integrated with quantitative log data analysis to estimate porosity, irreducible saturation, drainage capillary pressure and water relative permeability, residual gas saturation, resistivity-saturation relationships and caprock transport properties (permeability and diffusivity. The case considered is a saline aquifer of the Triassic Stuttgart formation studied in the framework of the CO2SINK onshore research storage, the first in situ testing site of CO2 injection in Germany located near the city of Ketzin. We used petrophysical methods that can provide the required data in a reasonable amount of time while still being representative of the in situ injection process. For two phase transport properties, we used the centrifuge technique. For resistivity measurements, we used the Fast Resistivity Index Measurement (FRIM method in drainage and imbibition, at ambient and storage conditions. For caprock characterization, we used a fast NMR (Nuclear Magnetic Resonance deuterium tracer technique to measure diffusivity and a modified steady state innovative technique to determine permeability. Entry pressure has also been evaluated using several methods. Resistivity and NMR logs were analyzed to provide a continuous estimation of irreducible saturation for the entire storage zone and to judge on the representativity of the samples analyzed in the laboratory. For the Ketzin site, the storage zone is a clayey sandstone of fluvial origin locally highly cemented, with porosity around 30% and permeability ranging

  3. Radio-ecological characterization and radiological assessment in support of regulatory supervision of legacy sites in northwest Russia

    International Nuclear Information System (INIS)

    Sneve, M.K.; Kiselev, M.; Shandala, N.K.

    2014-01-01

    The Norwegian Radiation Protection Authority has been implementing a regulatory cooperation program in the Russian Federation for over 10 years, as part of the Norwegian government's Plan of Action for enhancing nuclear and radiation safety in northwest Russia. The overall long-term objective has been the enhancement of safety culture and includes a special focus on regulatory supervision of nuclear legacy sites. The initial project outputs included appropriate regulatory threat assessments, to determine the hazardous situations and activities which are most in need of enhanced regulatory supervision. In turn, this has led to the development of new and updated norms and standards, and related regulatory procedures, necessary to address the often abnormal conditions at legacy sites. This paper presents the experience gained within the above program with regard to radio-ecological characterization of Sites of Temporary Storage for spent nuclear fuel and radioactive waste at Andreeva Bay and Gremikha in the Kola Peninsula in northwest Russia. Such characterization is necessary to support assessments of the current radiological situation and to support prospective assessments of its evolution. Both types of assessments contribute to regulatory supervision of the sites. Accordingly, they include assessments to support development of regulatory standards and guidance concerning: control of radiation exposures to workers during remediation operations; emergency preparedness and response; planned radionuclide releases to the environment; development of site restoration plans, and waste treatment and disposal. Examples of characterization work are presented which relate to terrestrial and marine environments at Andreeva Bay. The use of this data in assessments is illustrated by means of the visualization and assessment tool (DATAMAP) developed as part of the regulatory cooperation program, specifically to help control radiation exposure in operations and to support

  4. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    Energy Technology Data Exchange (ETDEWEB)

    Lamolla, Meritxell Martell [MERIENCE Strategic Thinking, 08734 Olerdola, Barcelona (Spain)

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  5. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    Energy Technology Data Exchange (ETDEWEB)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  6. Analysis of the interim safe storage of reactors at the Hanford site

    International Nuclear Information System (INIS)

    Wang Hailiang

    2014-01-01

    The nine production reactors, i.e. B, C, D, DR, F, H, KE, KW and N, at the Hanford site are all water-cooled and graphite-moderated reactors with natural uranium fuel. In 1993, the U.S. Department of Energy (DOE) decided to put eight production reactors (except for B) into Interim Safe Storage (ISS) for 75 years followed by deferred one-piece removal. Reactor B will remain as a national historical landmark. By the end of 2013, six reactors C, F, D, DR, H and N had been successfully put into the ISS. Reactors KE and KW will be put into the ISS in the coming years. Taking reactor C as an example, this paper mainly talks about how to put the production reactors in the Interim Safe Storage, e.g. how to make site preparation, how to construct the safe storage enclosure (SSE) and how to perform surveillance and maintenance during the ISS period, etc. (authors)

  7. Ultrasonic characterization of pork fat crystallization during cold storage.

    Science.gov (United States)

    Corona, Edith; García-Pérez, José V; Santacatalina, Juan V; Ventanas, Sonia; Benedito, José

    2014-05-01

    In this work, the feasibility of using ultrasonic velocity measurements for characterizing and differentiating the crystallization pattern in 2 pork backfats (Montanera and Cebo Iberian fats) during cold storage (0 °C, 2 °C, 5 °C, 7 °C, and 10 °C) was evaluated. The fatty acid profile, thermal behavior, and textural properties (hardness) of fat were also determined. Both fats became harder during cold storage (average hardness increase for both fats, 11.5 N, 8 N, and 1.8 N at 0, °C 2 °C, and 5 °C , respectively), showing a 2-step pattern related with the separate crystallization of the different existing triacylglycerols, which was well described using a modified Avrami equation (explained variance > 99%). Due to a greater content of saturated triacylglycerols, Cebo fat (45.1%) was harder than Montanera (41.8%). The ultrasonic velocity followed a similar 2-step pattern to hardness during cold storage, being found an average increase for both fats of 184, 161, and 150 m/s at 0 °C 2 °C, and 5 °C, respectively. Thus, ultrasonic measurements were useful both to characterize the textural changes taking place during cold storage and to differentiate between fats with different composition. The cold storage of dry-cured meat products during their distribution and retail sale exert an important effect on their textural properties and consumers' acceptance due to the crystallization of the fat fraction, which is greatly influenced by the type of fat. In this work, a nondestructive ultrasonic technique was used to identify the textural changes provoked by the crystallization during cold storage, and to differentiate between fats, which could be used for quality control purposes. © 2014 Institute of Food Technologists®

  8. Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site

    International Nuclear Information System (INIS)

    Seeley, F.G.; Kelmers, A.D.

    1985-01-01

    The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3 - to 0.9 - m depth); the maximum values were 1566 μg/g and 101 pCi/g, respectively. Below about the 6 - m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 μg/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system

  9. Management strategy for site characterization at candidate HLW repository sites

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1988-01-01

    This paper describes a management strategy for HLW repository site characterization which is aimed at producing an optimal characterization trajectory for site suitability and licensing evaluations. The core feature of the strategy is a matrix of alternative performance targets and alternative information-level targets which can be used to allocate and justify program effort. Strategies for work concerning evaluation of expected and disrupted repository performance are distinguished, and the need for issue closure criteria is discussed

  10. Monitored Retrievable Storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume

  11. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document

  12. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs{hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document.

  13. High-level radioactive waste disposal: Key geochemical issues and information needs for site characterization

    International Nuclear Information System (INIS)

    Brooks, D.J.; Bembia, P.J.; Bradbury, J.W.; Jackson, K.C.; Kelly, W.R.; Kovach, L.A.; Mo, T.; Tesoriero, J.A.

    1986-01-01

    Geochemistry plays a key role in determining the potential of a high-level radioactive waste disposal site for long-term radionuclide containment and isolation. The Nuclear Regulatory Commission (NRC) has developed a set of issues and information needs important for characterizing geochemistry at the potential sites being investigated by the Department of Energy Basalt Waste Isolation Project, Nevada Nuclear Waste Storage Investigations project, and Salt Repository Project. The NRC site issues and information needs consider (1) the geochemical environment of the repository, (2) changes to the initial geochemical environment caused by construction and waste emplacement, and (3) interactions that affect the transport of waste radionuclides to the accessible environment. The development of these issues and information needs supports the ongoing effort of the NRC to identify and address areas of geochemical data uncertainty during prelicensing interactions

  14. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    International Nuclear Information System (INIS)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies

  15. Yucca Mountain Site Characterization Project bibliography, 1992--1994. Supplement 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE).

  16. Yucca Mountain Site Characterization Project bibliography, 1992--1993. Supplement 4

    International Nuclear Information System (INIS)

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE)

  17. Biologic overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Collins, E.; O'Farrell, T.P.; Rhoads, W.A.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations project study area includes five major vegetation associations characteristic of the transition between the northern extent of the Mojave Desert and the southern extent of the Great Basin Desert. A total of 32 species of reptiles, 66 species of birds, and 46 species of mammals are known to occur within these associations elsewhere on the Nevada Test Site. Ten species of plants, and the mule deer, wild horse, feral burro, and desert tortoise were defined as possible sensitive species because they are protected by federal and state regulations, or are being considered for such protection. The major agricultural resources of southern Nye County included 737,000 acres of public grazing land managed by the Bureau of Land Management, and 9500 acres of irrigated crop land located in the Beatty/Oasis valleys, the Amargosa Valley, and Ash Meadows. Range lands are of poor quality. Alfalfa and cotton are the major crops along with small amounts of grains, Sudan grass, turf, fruits, and melons. The largest impacts to known ecosystems are expected to result from: extensive disturbances associated with construction of roads, seismic lines, drilling pads, and surface facilities; storage and leaching of mined spoils; disposal of water; off-road vehicle travel; and, over several hundred years, elevated soil temperatures. Significant impacts to off-site areas such as Ash Meadows are anticipated if new residential developments are built there to accommodate an increased work force. Several species of concern and their essential habitats are located at Ash Meadows. Available literature contained sufficient baseline information to assess potential impacts of the proposed project on an area-wide basis. It was inadequate to support analysis of potential impacts on specific locations selected for site characterization studies, mining an exploratory shaft, or the siting and operation of a repository

  18. Site characterization criteria (DOE-STD-1022-94) for natural phenomena hazards at DOE sites. Revision 1

    International Nuclear Information System (INIS)

    Chen, J.C.; Ueng, Tzou-Shin; Boissonnade, A.C.

    1995-01-01

    This paper briefly summarizes requirements of site characterization for Natural Phenomena Hazards (NPH) at DOE sites. In order to comply with DOE Order 5480.28, site characterization criteria has been developed to provide site-specific information needed for development of NPH assessment criteria. Appropriate approaches are outlined to ensure that the current state-of-the-art methodologies and procedures are used in the site characterization. General and detailed site characterization requirements are provided in the areas of meteorology, hydrology, geology, seismology and geotechnical studies

  19. Sampling and physical and actinide characterization of colloids from the Grimsel test site

    International Nuclear Information System (INIS)

    Longworth, G.; Ivanovich, M.

    1990-01-01

    Samples of groundwater from a granite fracture at the Grimsel test site in Switzerland have been collected as part of a second intercomparison of groundwater colloid sampling and characterization techniques carried out by members of the Coco Club (colloids and complexes) sponsored by the CEC. This report describes the Harwell contribution to this exercise. The bulk of naturally occurring actinides were found to reside in solution with 10 particles/I (detection limit ∼50 nm) for samples determined by three laboratories. The colloids were shown to be negatively charged using microelectrophoresis and to be relatively stable. There was evidence of a reduction in the pH of the water after storage due to air contamination. This work has served to identify the problems associated with colloid sampling and characterization techniques

  20. Characterization of underground storage tank sludge using fourier transform infrared photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Luo, S.; Bajic, S.J.; Jones, R.W.

    1994-01-01

    Analysis of underground storage tank (UST) contents is critical for the determination of proper disposal protocols and storage procedures of nuclear waste materials. Tank volume reduction processes during the 1940's and 50's have produced a waste form that compositionally varies widely and has a consistency that ranges from paste like sludge to saltcake. The heterogeneity and chemical reactivity of the waste form makes analysis difficult by most conventional methods which require extensive sample preparation. In this paper, a method is presented to characterize nuclear waste from UST's at the Westinghouse Hanford Site in Washington State, using Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS). FTIR-PAS measurements on milligram amounts of surrogate sludge samples have been used to accurately identify phosphate, sulfate, nitrite, nitrate and ferrocyanide components. A simple sample preparation method was followed to provide a reproducible homogeneous sample for quantitative analysis. The sample preparation method involved freeze drying the sludge sample prior to analysis to prevent the migration of soluble species. Conventional drying (e.g., air or, oven) leads to the formation of crystals near the surface where evaporation occurs. Sample preparation as well as the analytical utility of this method will be discussed

  1. Technical know-how of site descriptive modeling for site characterization - 59089

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Doke, Ryosuke; Niizato, Tadafumi; Yasue, Ken-ichi

    2012-01-01

    The site descriptive model covering the current status of characteristics of geological environment and the site evolution model for estimation of the long-term evolution of site conditions are used to integrate multi-disciplinary investigation results. It is important to evaluate uncertainties in the models, to specify issues regarding the uncertainties and to prioritize the resolution of specified issues, for the planning of site characterization. There is a large quantity of technical know-how in the modeling process. It is important to record the technical know-how with transparency and traceability, since site characterization projects generally need long duration. The transfer of the technical know-how accumulated in the research and development (R and D) phase to the implementation phase is equally important. The aim of this study is to support the planning of initial surface-based site characterizations based on the technical know-how accumulated from the underground research laboratory projects. These projects are broad scientific studies of the deep geological environment and provide a technical basis for the geological disposal of high-level radioactive wastes. In this study, a comprehensive task flow from acquisition of existing data to planning of field investigations through the modeling has been specified. Specific task flow and decision-making process to perform the tasks have been specified. (authors)

  2. Surface-downhole and crosshole geoelectrics for monitoring of brine injection at the Ketzin CO2 storage site

    Science.gov (United States)

    Rippe, Dennis; Bergmann, Peter; Labitzke, Tim; Wagner, Florian; Schmidt-Hattenberger, Cornelia

    2016-04-01

    et al., 2012). During the brine injection, usage of a new data acquisition unit allowed the daily collection of an extended crosshole data set. This data set was complemented by an alternative surface-downhole acquisition geometry, which for the first time allowed for regular current injections from three permanent surface electrodes into the existing electrical resistivity downhole array without the demand of an extensive field survey. This alternative surface-downhole acquisition geometry is expected to be characterized by good data quality and well confined sensitivity to the target storage zone. Time-lapse geoelectrical tomographies have been derived from both surface-downhole and crosshole data and show a conductive signature around the injection well associated with the displacement of CO2 by the injected brine. In addition to the above mentioned objectives of this brine injection experiment, comparative analysis of the surface-downhole and crosshole data provides the opportunity to evaluate the alternative surface-downhole acquisition geometry with respect to its resolution within the target storage zone and its ability to quantitatively constrain the displacement of CO2 during the brine injection. These results will allow for further improvement of the deployed alternative surface-downhole acquisition geometries. References Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., Rücker, C., Labitzke, T., Henninges, J., Baumann, G., Schütt, H. (2012). Surface-Downhole Electrical Resistivity Tomography applied to Monitoring of the CO2 Storage Ketzin (Germany). Geophysics, 77, B253-B267. Kiessling, D., Schmidt-Hattenberger, C., Schuett, H., Schilling, F., Krueger, K., Schoebel, B., Danckwardt, E., Kummerow, J., CO2SINK Group (2010). Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). International Journal of Greenhouse Gas Control, 4(5), 816

  3. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force

  4. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force.

  5. Conceptual design report for regional low-level waste interim storage site

    International Nuclear Information System (INIS)

    Bird, M.V.; Thompson, J.D.

    1981-08-01

    An interim storage site design concept was developed for receiving 100,000 ft 3 low-level waste per year, in the form of solidified wastes in 55-gallon drums with a dose rate of < 200 mrem per hour at contact

  6. CY2000 Hanford Site Mixed Waste Land Disposal Restrictions Report Vol. 1 Storage Report and Vol 2: Characterization and Treatment Report [SEC 1 thru SEC 4

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    2001-01-01

    This volume presents information about the storage and minimization of mixed waste and potential sources for the generation of additional mixed waste. This information is presented in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1996) Milestone M-26-01K. It is Volume 1 of a two-volume report on the status of Hanford Site land-disposal-restricted mixed waste, other mixed waste, and other waste that the parties have agreed to include in this report. This volume also contains the approval page for both volumes and assumptions, accomplishments, and some other information that also pertains to waste characterization and treatment, which are addressed in Volume 2. Appendix A lists the land disposal restriction (LDR) reporting requirements and explains where they are addressed in this report. The reporting period for this document is from January 1, 2000, to December 31, 2000

  7. Shaft sealing issue in CO2 storage sites

    Science.gov (United States)

    Dieudonné, A.-C.; Charlier, R.; Collin, F.

    2012-04-01

    Carbon capture and storage is an innovating approach to tackle climate changes through the reduction of greenhouse gas emissions. Deep saline aquifers, depleted oil and gas reservoirs and unmineable coal seams are among the most studied reservoirs. However other types of reservoir, such as abandonned coal mines, could also be used for the storage of carbon dioxide. In this case, the problem of shaft sealing appears to be particularly critical regarding to the economic, ecologic and health aspects of geological storage. The purpose of the work is to study shaft sealing in the framework of CO2 storage projects in abandoned coal mines. The problem of gas transfers around a sealing system is studied numerically using the finite elements code LAGAMINE, which has been developped for 30 years at the University of Liege. A coupled hydro-mechanical model of unsaturated geomaterials is used for the analyses. The response of the two-phase flow model is first studied through a simple synthetic problem consisting in the injection of gas in a concrete-made column. It stands out of this first modeling that the advection of the gas phase represents the main transfer mechanism of CO2 in highly unsaturated materials. Furthermore the setting of a bentonite barrier seal limits considerably the gas influx into the biosphere. A 2D axisymetric hydromechanical modeling of the Anderlues natural gas storage site is then performed. The geological and hydrogeological contexts of the site are used to define the problem, for the initial and boundary conditions, as well as the material properties. In order to reproduce stress and water saturation states in the shale before CO2 injection in the mine, different phases corresponding to the shaft sinking, the mining and the set up of the sealing system are simulated. The system efficiency is then evaluated by simulating the CO2 injection with the imposed pressure at the shaft wall. According to the modeling, the low water saturation of concrete and

  8. Annotated bibliography: overview of energy and mineral resources for the Nevada nuclear-waste-storage investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Bell, E.J.; Larson, L.T.

    1982-09-01

    This Annotated Bibliography was prepared for the US Department of Energy as part of the Environmental Area Characterization for the Nevada Nuclear Waste Storage Investigations (NNWSI) at the Nevada Test Site (NTS). References were selected to specifically address energy resources including hydrocarbons, geothermal and radioactive fuel materials, mineral resources including base and precious metals and associated minerals, and industrial minerals and rock materials which occur in the vicinity of the NNWSI area

  9. Monitored Retrievable Storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs {hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume.

  10. An advanced joint inversion system for CO2 storage modeling with large date sets for characterization and real-time monitoring-enhancing storage performance and reducing failure risks under uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kitanidis, Peter [Stanford Univ., CA (United States)

    2016-04-30

    As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic, tracer and thermal tests before CO2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO2 storage examples.

  11. Description of a Multipurpose Processing and Storage Complex for the Hanford Site's radioactive material

    International Nuclear Information System (INIS)

    Nyman, D.H.; Wolfe, B.A.; Hoertkorn, T.R.

    1993-05-01

    The mission of the US Department of Energy's (DOE) Hanford Site has changed from defense nuclear materials production to that of waste management/disposal and environmental restoration. ne Multipurpose Processing and Storage Complex (MPSC) is being designed to process discarded waste tank internal hardware contaminated with mixed wastes, failed melters from the vitrification plant, and other Hanford Site high-level solid waste. The MPSC also will provide interim storage of other radioactive materials (irradiated fuel, canisters of vitrified high-level waste [HLW], special nuclear material [SNM], and other designated radioactive materials)

  12. Bibliography of publications related to the Yucca Mountain Site Characterization Project prepared by U.S. Geological Survey personnel through April 1991

    International Nuclear Information System (INIS)

    Glanzman, V.M.

    1991-01-01

    Personnel of the US Geological Survey have participated in nuclear-waste management studies in the State of Nevada since the mid-1970's. A bibliography of publications prepared principally for the US Department of Energy Yucca Mountain Site Characterization Project (formerly Nevada Nuclear Waste Storage Investigations) through April 1991 contains 475 entries in alphabetical order. The listing includes publications prepared prior to the inception of the Nevada Nuclear Waste Storage Investigations Project in April 1977 and selected publications of interest to the Yucca Mountain region. 480 refs

  13. Site characterization report for the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1982-11-01

    This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues

  14. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    International Nuclear Information System (INIS)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2

  15. Weldon Spring storage site environmental-monitoring report for 1979 and 1980

    International Nuclear Information System (INIS)

    Weidner, R.B.; Boback, M.W.

    1982-01-01

    The US Department of Energy (DOE) Weldon Spring Site consists of two separate radioactive waste storage properties: a 52-acre site which is a remnant of the Weldon Spring Feed Materials Plant; and a 9-acre abandoned rock quarry. The larger property has four pits which contain settled sludge from uranium and thorium processing operations. At the quarry, part of the excavation contains contaminated building rubble, scrap, and various residues. During 1979 and 1980 these storage locations were managed by NLO, Inc., contract operator of the DOE Feed Materials Production Center. Air and water samples were collected to provide information about the transfer of radionuclides in the offsite environment. Monitoring results show that uranium and radium concentrations in offsite surface and well water were within DOE Guide values for uncontrolled areas. At offsite locations, radon-222 concentrations in air were well within the Guide value

  16. Area 5 Site characterization project report, FY 1994

    International Nuclear Information System (INIS)

    Albright, W.; Tyler, S.; Chapman, J.; Miller, M.; Estrella, R.

    1994-09-01

    The Area 5 Site Characterization Project is designed to determine the suitability of the Radioactive Waste Management Site (RWMS) for disposal of low-level waste (LLW), mixed waste (MW) and transuranic waste (TRU). The Desert Research institute (DRI) has conducted this study for the Area 5 Site Characterization Project for the US Department of Energy, Nevada Operations Office (DOE/NV), Waste Management Division (WMD). The purpose of DRI's Area 5 Site Characterization Project is to characterize important properties of the upper vadose zone which influence infiltration and redistribution of water and transport of solutes as well as to characterize the water quality and hydrologic conditions of the uppermost aquifer. This report describes methods and presents a summary of all data and results from laboratory physical and chemical testing from borehole samples through September 1994. DRI laboratories performed soil water content, soil water potential, soil bulk density, and soil water extract isotope analyses

  17. Ames expedited site characterization demonstration at the former manufactured gas plant site, Marshalltown, Iowa

    International Nuclear Information System (INIS)

    Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.

    1996-03-01

    The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the target contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs

  18. Consultation draft: Site characterization plan overview, Deaf Smith County Site, Texas: Nuclear Waste Policy Act (Section 113)

    International Nuclear Information System (INIS)

    1988-01-01

    The Department of Energy (DOE) is preparing a site characterization plan for the candidate site in Deaf Smith County, Texas. The DOE has provided, for information and review, a consultation draft of the plan to the State of Texas and the US Nuclear Regulatory Commission. The site characterization plan is a lengthy document that describes in considerable detail the program that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. The overview presented here consists of brief summaries of important topics covered in the consultation draft of the site characterization plan; it is not a substitute for the site characterization plan. The arrangement of the overview is similar to that of the plan itself, with brief descriptions of the repository system - the site, the repository, and the waste package - preceding the discussion of the characterization program to be carried out at the Deaf Smith County site. It is intended primarily for the management staff of organizations involved in the DOE's repository program or other persons who might wish to understand the general scope of the site-characterization program, the activities to be conducted, and the facilities to be constructed rather than the technical details of site characterization. 15 figs., 1 tab

  19. Final Oak Ridge National Laboratory Site Assessment Report on the Storage of 233U

    International Nuclear Information System (INIS)

    Bereolos, P.J.; Yong, L.K.

    1999-01-01

    This assessment characterizes the 233 U inventories and storage facility at Oak Ridge National Laboratory (ORNL). This assessment is a commitment in the U.S. Department of Energy (DOE) Implementation Plan (IP), ''Safe Storage of Uranium-233,'' in response to the Defense Nuclear Facilities Safety Board's Recommendation 97-1

  20. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  1. Ambient air monitoring to support HLW repository site characterization

    International Nuclear Information System (INIS)

    Fransioli, P.M.; Dixon, W.R.

    1993-01-01

    Site characterization at the Yucca Mountain site includes an ambient air quality and meteorological monitoring program to provide information for environmental and site characterization issues. The program is designed to provide data for four basic purposes: Atmospheric dispersion calculations to estimate impacts of possible airborne releases of radiological material; Engineering design and extreme weather event characterization; Local climate studies for environmental impact analyses and climate characterization; and, Air quality permits required for site characterization work. The program is compiling a database that will provide the basis for analyses and reporting related to the purposes of the program. Except for reporting particulate matter and limited meteorological data to the State of Nevada for an air quality permit condition, the data have yet to be formally analyzed and reported

  2. Socioeconomic monitoring and mitigation plan for site characterization: Revision 1

    International Nuclear Information System (INIS)

    1988-01-01

    The objective of the SMMP is to document compliance with the NWPA. In order to do so, a summary description of site characterization activities based on the consultation draft of the Site Characterization Plan and the final EA is provided. Subsequent chapters identify issues related to the potential for significant adverse impacts and the monitoring plans proposed to determine whether those impacts occur. Should monitoring confirm the potential for significant adverse impact, mitigative maesures will be developed. In the context of site characterization, mitigation is defined as those changes in site characterization activities that serve to avoid or minimize, to the maximum extent practicable, any significant adverse environmental impacts. Proposed site characterization activites involve a variety of surface and subsurface activities including site preparation, access road construction and improvment, exploratory drilling and testing, geophysical surveys, geological mapping, and construction of the exploratory shaft facility. It is not anticipated that any significant adverse socioeconomic impacts will result form any of the proposed site characterization activities. However, the assessment of impacts in the EA, especially impacts related to employment and population growth, was based on assumptions concerning activities and conditions during the site characterization phase

  3. Site characterization activities at Stripa and other Swedish projects

    International Nuclear Information System (INIS)

    Ahlstroehm, P.E.

    1991-01-01

    The Swedish research programme concerning spent nuclear fuel disposal aims for submitting a siting license application around the year 2000. An important step towards that goal will be the detailed characterization of at least two potential sites in late 1990s. In preparation for such characterization several research projects are conducted. One is the international Stripa Project that includes a site characterization and validation project for a small size granite rock body. The Stripa work also includes further development of instrumentation and measurement techniques. Another project is the Finnsjoen Fracture Zone Project, which is characterizing a subhorizontal zone at depths from 100 to 350 meters. The third project is the new Swedish Hard Rock Laboratory planned at the site of the Oskarshamn nuclear power plant. The preinvestigations and construction of this laboratory include major efforts in development, application and validation of site characterization methodology. (author) 6 figs., 9 refs

  4. Management of scientific and engineering data collected during site characterization of a potential high-level waste repository

    International Nuclear Information System (INIS)

    Newbury, C.M.; Heitland, G.W.

    1992-01-01

    This paper discusses the characterization of Yucca Mountain as a potential site for a high-level nuclear waste repository encompasses many diverse investigations to determine the nature of the site. Laboratory and on-site investigations are being conducted of the geology, hydrology, mineralogy, paleoclimate, geotechnical properties, and past use of the area, to name a few. Effective use of the data from these investigations requires development of a system for the collection, storage, and dissemination of those scientific and engineering data needed to support model development, design, and performance assessment. The time and budgetary constraints associated with this project make sharing of technical data within the geoscience community absolutely critical to the successful solution of the complex scientific problem challenging us

  5. Using Geographic Information Systems to Determine Site Suitability for a Low-Level Radioactive Waste Storage Facility.

    Science.gov (United States)

    Wilson, Charles A; Matthews, Kennith; Pulsipher, Allan; Wang, Wei-Hsung

    2016-02-01

    Radioactive waste is an inevitable product of using radioactive material in education and research activities, medical applications, energy generation, and weapons production. Low-level radioactive waste (LLW) makes up a majority of the radioactive waste produced in the United States. In 2010, over two million cubic feet of LLW were shipped to disposal sites. Despite efforts from several states and compacts as well as from private industry, the options for proper disposal of LLW remain limited. New methods for quickly identifying potential storage locations could alleviate current challenges and eventually provide additional sites and allow for adequate regional disposal of LLW. Furthermore, these methods need to be designed so that they are easily communicated to the public. A Geographic Information Systems (GIS) based method was developed to determine suitability of potential LLW disposal (or storage) sites. Criteria and other parameters of suitability were based on the Code of Federal Regulation (CFR) requirements as well as supporting literature and reports. The resultant method was used to assess areas suitable for further evaluation as prospective disposal sites in Louisiana. Criteria were derived from the 10 minimum requirements in 10 CFR Part 61.50, the Nuclear Regulatory Commission's Regulatory Guide 0902, and studies at existing disposal sites. A suitability formula was developed permitting the use of weighting factors and normalization of all criteria. Data were compiled into GIS data sets and analyzed on a cell grid of approximately 14,000 cells (covering 181,300 square kilometers) using the suitability formula. Requirements were analyzed for each cell using multiple criteria/sub-criteria as well as surrogates for unavailable datasets. Additional criteria were also added when appropriate. The method designed in this project proved to be sufficient for initial screening tests in determining the most suitable areas for prospective disposal (or storage

  6. Planning, Coordinating, and Managing Off-Site Storage is an Area of Increasing, Professional Responsibility for Special Collections Departments

    Directory of Open Access Journals (Sweden)

    Melissa Goertzen

    2016-03-01

    Full Text Available Objective – To measure the use of off-site storage for special collections materials and to examine how this use impacts core special collections activities. Design – Survey questionnaire containing both structured and open ended questions. Follow-up interviews were also conducted. Setting – Association of Research Libraries (ARL member institutions in the United States of America. Subjects – 108 directors of special collections. Methods – Participants were recruited via email; contact information was compiled through professional directories, web searches, and referrals from professionals at ARL member libraries. The survey was sent out on October 31, 2013, and two reminder emails were distributed before it closed three weeks later. The survey was created and distributed using Qualtrics, a research software that supports online data collection and analysis. All results were analyzed using Microsoft Excel and Qualtrics. Main Results – The final response rate was 58% (63 out of 108. The majority (51 participants, or 81% reported use of off-site storage for library collections. Of this group, 91% (47 out of 51 house a variety of special collections in off-site storage. The criteria most frequently utilized to designate these materials to off-site storage are use (87%, size (66%, format (60%, and value (57%. The authors found that special collections directors are most likely to send materials to off-site storage facilities that are established and in use by other departments at their home institution; access to established workflows, especially those linked to transit and delivery, and space for expanding collections are benefits. In regard to core special collections activities, results indicated that public service was most impacted by off-site storage. The authors discussed challenges related to patron use and satisfaction. In regard to management and processing, directors faced challenges using the same level of staff to maintain

  7. Expedited site characterization. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Expedited Site Characterization (ESC) has been developed, demonstrated, and deployed as a new time-saving, cost-effective approach for hazardous waste site investigations. ESC is an alternative approach that effectively shortens the length of the assessment period and may significantly reduce costs at many sites. It is not a specific technology or system but is a methodology for most effectively conducting a site characterization. The principal elements of ESC are: a field investigation conducted by an integrated team of experienced professionals working in the field at the same time, analysis, integration and initial validation of the characterization data as they are obtained in the field, and a dynamic work plan that enables the team to take advantage of new insights from recent data to adjust the work plan in the field. This report covers demonstrations that took place between 1989 and 1996. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned.

  8. Expedited site characterization. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Expedited Site Characterization (ESC) has been developed, demonstrated, and deployed as a new time-saving, cost-effective approach for hazardous waste site investigations. ESC is an alternative approach that effectively shortens the length of the assessment period and may significantly reduce costs at many sites. It is not a specific technology or system but is a methodology for most effectively conducting a site characterization. The principal elements of ESC are: a field investigation conducted by an integrated team of experienced professionals working in the field at the same time, analysis, integration and initial validation of the characterization data as they are obtained in the field, and a dynamic work plan that enables the team to take advantage of new insights from recent data to adjust the work plan in the field. This report covers demonstrations that took place between 1989 and 1996. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned

  9. Final storage high-level radioactive waste in Sweden - the way to the 2009 siting decision

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    In Sweden, high-level radioactive waste producing heat, i.e. spent fuel, is to be emplaced for final storage on the site of Forsmark, which also holds three reactor units. The siting decision was taken in June 2009. A 100 percent private company, a merger of the commercial nuclear power plant operators as producers of the waste, is responsible for the siting decision as well as for waste storage. Major impulses were given to the back-end fuel cycle policy in the early 1970s. Sweden practically gave up the reprocessing option very soon, but kept on pursuing final storage in deep geologic formations. Between 1977, when legislation was adopted with conditions relating to repository storage, and 2009, when the decision in favour of the Forsmark site was taken, the path followed was not always a straight line. The boundary conditions, such as the organization of the repository and procedural and safety criteria established by the government, are interesting with regard to their influence on the siting decision, if any. For this reason, the approaches chosen and their connections with government criteria and with geological conditions in Sweden, including their impacts on the repository concept chosen, will be examined. After a summary review of developments in Sweden, filing of the licensing application and the accompanying documents up to commissioning of the repository, a short comparison will be made with the situation in Germany, especially the status reached of the Gorleben salt dome, highlighting and evaluating important criteria and parameters. Sweden as a model is important especially in these respects: A repository site was found by a private company in consensus with the local government within the framework of government criteria, and with ultimate responsibility resting with the government; the local government of a place not winning the siting decision is disappointed although it will have the conditioning plant and receive higher grants; it was not only

  10. Deriving a site characterization program from applicable regulations

    International Nuclear Information System (INIS)

    Voegele, M.D.; Younker, J.L.; Alexander, D.H.

    1988-01-01

    The process of deriving a site characterization program from the applicable regulations was approached by the DOE through the use of two basic organizing principles. One organizing principle is a hierarchical structure of questions about regulatory criteria related to the acquisition of site data. This set of questions is called an issues hierarchy, and it provides a topical organizing framework for developing a site characterization program. The second basic organizing principle used by the DOE and its contractors to develop a site characterization program is called performance allocation. For each issue in the issues hierarchy, a resolution strategy is developed. These strategies involve the identification of elements of the disposal system that are relevant to isolation and containment of waste or to radiological safety. It is then possible to identify performance measures and information needed from the site characterization program. This information, coupled with information about confidence in existing data and the confidence required in the data to be obtained, allows the development of testing strategies for field programs

  11. Biological tracer for waste site characterization

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.

    1995-01-01

    Remediating hazardous waste sites requires detailed site characterization. In groundwater remediation, characterizing the flow paths and velocity is a major objective. Various tracers have been used for measuring groundwater velocity and transport of contaminants, colloidal particles, and bacteria and nutrients. The conventional techniques use dissolved solutes, dyes. and gases to estimate subsurface transport pathways. These tracers can provide information on transport and diffusion into the matrix, but their estimates for groundwater flow through fractured regions are very conservative. Also, they do not have the same transport characteristics as bacteria and suspended colloid tracers, both of which must be characterized for effective in-place remediation. Bioremediation requires understanding bacterial transport and nutrient distribution throughout the acquifer, knowledge of contaminants s mobile colloidal particles is just essential

  12. Determination of import process during Yucca Mountain Site characterization

    International Nuclear Information System (INIS)

    Hastings, P.S.; Gwyn, D.W.; Wemheuer, R.F.

    1996-01-01

    Construction of an underground Exploratory Studies Facility (ESF) for characterizing the Yucca Mountain site precedes the design of a potential repository, with site characterization testing and ESF construction conducted as parallel activities. As a result of this fact, a program is required to: (1) provide for inclusion of the underground excavation into a potential repository, (2) minimize the potential impact of ESF construction on site characterization test results, and (3) minimize the potential impact of ESF construction and site characterization testing on the waste isolation capabilities of the site. At Yucca Mountain, the Determination of Importance (DI) process fulfills these goals. This paper addresses the evolution of the DI process; describes how the DI process fits into design, testing, and construction programs: and discusses how the process is implemented through specification requirements

  13. Development of subsurface characterization method for decommissioning site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In situ measurement of peak to valley method based on the ratio of counting rate between the full energy peak and Compton region was applied to identify the depth distribution of 137Cs. The In situ measurement and sampling results were applied to evaluate a residual radioactivity before and after remediation in decommissioning KRR site. Spatial analysis based on the Geostatistics method provides a reliable estimating the volume of contaminated soil with a graphical analysis, which was applied to the site characterization in the decommissioning KRR site. The in situ measurement and spatial analysis results for characterization of subsurface contamination are presented. The objective of a remedial action is to reduce risks to human health to acceptable levels by removing the source of contamination. Site characterization of the subsurface contamination is an important factor for planning and implementation of site remediation. Radiological survey and evaluation technology are required to ensure the reliability of the results, and the process must be easily applied during field measurements. In situ gamma-ray spectrometry is a powerful method for site characterization that can be used to identify the depth distribution and quantify radionuclides directly at the measurement site. The in situ measurement and Geostatistics method was applied to the site characterization for remediation and final status survey in decommissioning KRR site.

  14. Site characterization plan overview: reference repository location, Hanford Site, Washington: Consultation draft: Nuclear Waste Policy Act (Section 113)

    International Nuclear Information System (INIS)

    1988-01-01

    As part of the process for siting the nation's first geologic repository for radioactive waste, the Department of Energy (DOE) is preparing a site characterization plan for the Hanford site in Benton County, Washington. As a step in the preparation of that plan, the DOE has provided, for information and review, a consultation draft of the plan to the State of Washington, the affected Indian Tribes - the Confederated Tribes of the Umatilla Indian Reservation, the Nez Perce Indian Tribe, and the Yakima Indian Nation - and the US Nuclear Regulatory Commission. The Hanford site is one of three sites that the DOE currently plans to characterize;the other sites are the Deaf Smith County site in Texas and the Yucca Mountain site in Nevada. After site characterization has been completed and its results evaluated, the DOE will identify from among the three characterized sites the site that is preferred for the repository. The overview presented here consists of brief summaries of important topics covered in the consulation draft of the site characterization plan;it is not a substitute for the site characterization plan. The arrangement of the overview is similar to that of the plan itself, with breif descriptions of the dispoal system - the site, the repository, and the waste package - preceding the discussion of the characterization program to be carried out at the Hanford site. It is intended primarily for the management staff of organizations involved in the DOE's repository program or other persons who might wish to understand the general scope of the site-characterization program, the activities to be conducted, and the facilities to be constructed rather than the technical details of site characterization

  15. Maywood Interim Storage Site: Annual site environmental report, Maywood, New Jersey, Calendar year 1986: Formerly Utilized Sites Remedial Action Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Maywood Interim Storage Site (MISS), a US Department of Energy (DOE) facility located in the Borough of Maywood and the Township of Rochelle Park, New Jersey. The MISS is presently used for the storage of low-level radioactively contaminated soils. The MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action and environmental monitoring programs are being conducted at this site and at vicinity properties by Bechtel National, Inc., Project Management Contractor for FUSRAP. The monitoring program at the MISS measures thoron and radon gas concentrations in air; external gamma radiation levels; and thorium, uranium, and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/y) and to assess the potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, the maximally exposed individual would receive an annual external exposure approximately equivalent to 1% of the DOE radiation protection standard of 100 mrem/y. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles (due to greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the MISS that would result from radioactive materials present at the site would be indistinguishable from the dose the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the MISS is in compliance with the DOE radiation protection standard. 16 refs., 8 figs., 15 tabs.

  16. Southern Adriatic sea as a potential area for CO2 geological storage

    International Nuclear Information System (INIS)

    Volpi, V.; Forlin, F.; Donda, F.; Civile, D.; Facchin, L.; Sauli, L.; Merson, B.; Sinza-Mendieta, K.; Shams, A.

    2015-01-01

    The Southern Adriatic Sea is one of the five prospective areas for CO 2 storage being evaluated under the three year (FP7) European SiteChar project dedicated to the characterization of European CO 2 storage sites. The potential reservoir for CO 2 storage is represented by a carbonate formation, the wackstones and packstones of the Scaglia Formation (Upper Cretaceous-Paleogene). In this paper, we present the geological characterization and the 3D modeling that led to the identification of three sites, named Grazia, Rovesti and Grifone, where the Scaglia Formation, with an average thickness of 50 m, reveals good petrophysical characteristics and is overlain by an up to 1 200 thick cap-rock. The vicinity of the selected sites to the Enel - Federico II power plant (one of the major Italian CO 2 emitter) where a pilot plant for CO 2 capture has been already started in April 2010, represents a good opportunity to launch the first Carbon Capture and Storage (CCS) pilot project in Italy and to apply this technology at industrial level, strongly contributing at the same time at reducing the national CO 2 emissions. (authors)

  17. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

  18. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    1995-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage

  19. Site characterization and petroleum hydrocarbon plume mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, K. [Harding Lawson Associates, Houston, TX (United States)

    1996-12-31

    This paper presents a case study of site characterization and hydrocarbon contamination plume mapping/delineation in a gas processing plant in southern Mexico. The paper describes innovative and cost-effective use of passive (non-intrusive) and active (intrusive) techniques, including the use of compound-specific analytical methods for site characterization. The techniques used, on a demonstrative basis, include geophysical, geochemical, and borehole drilling. Geochemical techniques used to delineate the horizontal extent of hydrocarbon contamination at the site include soil gas surveys. The borehole drilling technique used to assess the vertical extent of contamination and confirm geophysical and geochemical data combines conventional hollow-stem auguring with direct push-probe using Geoprobe. Compound-specific analytical methods, such as hydrocarbon fingerprinting and a modified method for gasoline range organics, demonstrate the inherent merit and need for such analyses to properly characterize a site, while revealing the limitations of noncompound-specific total petroleum hydrocarbon analysis. The results indicate that the techniques used in tandem can properly delineate the nature and extent of contamination at a site; often supplement or complement data, while reducing the risk of errors and omissions during the assessment phase; and provide data constructively to focus site-specific remediation efforts. 7 figs.

  20. Final work plan: Expedited Site Characterization of the IES Industries, Inc., Site at Marshalltown, Iowa. Ames Expedited Site Characterization Project, Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-04

    The overall goal of the Ames Laboratory Expedited Site Characterization (ESC) project is to evaluate and promote both innovative and state-of-the-practice site characterization and/or monitoring technologies. This will be accomplished by fielding both types of technologies together in the context of an expedited site characterization. The first site will be at a former manufactured gas plant (FMGP) in Marshalltown, Iowa. The project will field three areas of technology: geophysical, analytical, and data fusion. Geophysical technologies are designed to understand the subsurface geology to help predict fate and transport of the target contaminants. Analytical technologies/methods are designed to detect and quantify the target contaminants. Data fusion technology consists of software systems designed to rapidly integrate or fuse all site information into a conceptual site model that then becomes the decision making tool for the site team to plan subsequent sampling activity. Not all of the contaminants present can be located at the action level. Polynuclear aromatic hydrocarbons (PAHs) are the signature organics associated with the coal tar activities that took place at the site. As a result, PAHs were selected as the target compounds. Screening analytical instruments and nonintrusive geophysical techniques will be fielded to qualitatively map the spatial contaminant distribution. Soil gas surveys, immunoassay testing (IMA), innovative optical techniques, and passive organic sorbent sensors will be deployed along with the geophysical methods. Gas chromatography/mass spectrometry (GC/MS) instruments and a cone penetrometer system equipped with a laser-induced fluorescence (LIF) probe will quantitatively map the action level edges of the PAH plume(s). Samples will be taken both by the cone penetrometer test system (CPT) and the Geoprobe {reg_sign} sampler system.

  1. Characterization and leaching study of sludge from Melton Valley Storage Tank W-25

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-08-01

    One of the greatest challenges facing the Department of Energy (DOE) is the remediation of the 100 million gallons of high-level and low-level radioactive waste in the underground storage tanks at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. Bench-scale batch tests have been conducted with sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation processes for use in a comprehensive sludge-processing flow sheet for concentrating the radionuclides and reducing the volumes of storage tanks wastes for final disposal. This report discusses the hot cell apparatus, the characterization of the sludge, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge. Approximately 5 L of sludge/supernate from MVST W-25 was retrieved and transferred to a stainless steel tank for mixing and storage in a hot cell. Samples were centrifuged to separate the sludge liquid and the sludge solids. Air-dried samples of sludge were analyzed to determine the concentrations of radionuclides, other metals, and anions. Based upon the air-dried weight, about 41% of the centrifuged, wet sludge solids was water. The major alpha-, gamma-, and beta-emitting radionuclides in the centrifuged, wet sludge solids were 137 Cs, 60 Co, 154 Eu, 241 Am, 244 Cm, 90 Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and the anions were Na, Ca, Al, K, Mg, NO 3 - , CO 3 2- , OH - , and O 2- . The organic carbon content was 3.0 ± 1.0%. The pH was 13

  2. Tank characterization reference guide

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J.; Simpson, B.C.

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research

  3. Site characterization and validation - Final report

    International Nuclear Information System (INIS)

    Olsson, O.

    1992-04-01

    The central aims of the Site Characterization and Validation (SCV) project were to develop and apply; * an advanced site characterization methodology and * a methodology to validate the models used to describe groundwater flow and transport in fractured rock. The basic experiment within the SCV project was to predict the distribution of water flow and tracer transport through a volume of rock, before and after excavation of a sub-horizontal drift, and to compare these predictions with actual field measurements. A structured approach was developed to combine site characterization data into a geological and hydrogeological conceptual model of a site. The conceptual model was based on a binary description where the rock mass was divided into 'fracture zones' and 'averagely fractured rock'. This designation into categories was based on a Fracture Zone Index (FZI) derived from principal component analysis of single borehole data. The FZI was used to identify the location of fracture zones in the boreholes and the extent of the zones between the boreholes was obtained form remote sensing data (radar and seismics). The consistency of the geometric model thus defined, and its significance to the flow system, was verified by cross-hole hydraulic testing. The conceptual model of the SCV site contained three major and four minor fractures zones which were the principal hydraulic conduits at the site. The location and extent of the fracture zones were included explicitly in the flow and transport models. Four different numerical modelling approaches were pursued within the project; one porous medium approach, two discrete fracture approaches, and an equivalent discontinuum approach. A series of tracer tests was also included in the prediction-validation exercise. (120 refs.) (au)

  4. Proceedings of the 1981 National Waste Terminal Storage Program information meeting

    International Nuclear Information System (INIS)

    1981-11-01

    Separate abstracts have been prepared for each of the following sixteen sections: Overview of the National Waste Terminal Storage Program; Site Characterization; Repository Development; Regulatory Framework; Systems; Socioeconomic Evaluation; Site Screening/Characterization Support Activities; Repository Data Base Development; Regulatory Implementation; Systems Performance Assessment; Sociopolitical Initiatives; Earth Sciences; International Waste Management; Waste Package Development; Quality Assurance; and Overviews of NWTS Projects

  5. Site Specific Waste Management Instruction for the 116-F-4 soil storage unit

    International Nuclear Information System (INIS)

    Hopkins, G.G.

    1996-08-01

    This Site Specific Waste Management Instruction provides guidance for management of waste generated during the excavation and remediation of soil and debris from the 116-4 soil storage unit located at the Hanford Site in Richland, Washington. This document outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements

  6. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    International Nuclear Information System (INIS)

    McDeavitt, Sean

    2016-01-01

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period of time.

  7. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period of time.

  8. Technical factors in the site selection for a radioactive wastes storage of low and intermediate level

    International Nuclear Information System (INIS)

    Badillo A, V. E.; Ramirez S, J. R.; Palacios H, J. C.

    2009-10-01

    The storage on surface or near surface it is viable for wastes of low and intermediate level which contain radio nuclides of short half life that would decay at insignificant levels of radioactivity in some decades and also radio nuclides of long half life but in very low concentrations. The sites selection, for the construction of radioactive waste storages, that present an appropriate stability at long term, a foreseeable behavior to future and a capacity to fulfill other operational requirements, is one of the great tasks that confront the waste disposal agencies. In the selection of potential sites for the construction of a radioactive wastes storage of low and intermediate level, several basic judgments should be satisfied that concern to physiography, climatology, geologic, geo-hydrology, tectonic and seismic aspects; as well as factors like the population density, socioeconomic develops and existent infrastructure. the necessary technician-scientific investigations for the selection of a site for the construction of radioactive waste storages are presented in this work and they are compared with the pre-selection factors realized in specify areas in previous studies in different regions of the Mexican Republic. (Author)

  9. Testing in support of on-site storage of residues in the Pipe Overpack Container

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Bobbe, J.G.; Arviso, M.

    1997-02-01

    The disposition of the large back-log of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plans call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55-gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. It is desirable to use this same waste packaging for interim on-site storage in non-hardened buildings. To meet the safety concerns for this storage the Pipe Overpack Container has been subjected to a series of tests at Sandia National Laboratories in Albuquerque, New Mexico. In addition to the tests required to qualify the Pipe Overpack Container as a waste container for shipment in the TRUPACT-II several tests were performed solely for the purpose of qualifying the container for interim storage. This report will describe these tests and the packages response to the tests. 12 figs., 3 tabs

  10. An economic analysis of a monitored retrievable storage site for Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Fox, W.F.; Mayo, J.W.; Hansen, L.T.; Quindry, K.E.

    1985-12-17

    The United States Department of Energy is charged with the task of identifying potential sites for a Monitored Retrievable Storage (MRS) Facility and reporting the results of its analysis to Congress by January 1986. DOE chose three finalist sites from 11 sites DOE analysts evaluated earlier. All three are in Tennessee, including two in Oak Ridge and one in Trousdale/Smith Counties. This paper is a summary of research undertaken on the economic effects of establishing the MRS facility in Tennessee. All three locations were considered in the analysis, but on some occasions attention is focused on the site preferred by DOE. The research was undertaken by the Center for Business and Economic Research (CBER), College of Business Administration, the University of Tennessee, Knoxville, under contract with the Tennessee Department of Economic and Community Development.

  11. Hazelwood Interim Storage Site environmental surveillance report for calendar year 1993

    International Nuclear Information System (INIS)

    1994-06-01

    This report summarizes the results of environmental surveillance activities conducted at the Hazelwood Interim Storage Site (HISS) during calendar year 1993. It includes an overview of site operations, the basis for monitoring for radioactive and non-radioactive parameters, summaries of environmental program at HISS, a summary of the results, and the calculated hypothetical radiation dose to the offsite population. Environmental surveillance activities were conducted in accordance with the site environmental monitoring plan, which describes the rationale and design criteria for the surveillance program, the frequency of sampling and analysis, specific sampling and analysis procedures, and quality assurance requirements. The US Department of Energy (DOE) began environmental monitoring of HISS in 1984, when the site was assigned to DOE by Congress through the energy and Water Development Appropriations Act and subsequent to DOE's Formerly Utilized Sites Remediation Action Program (FUSRAP). Contamination at HISS originated from uranium processing work conducted at Mallinckrodt Chemical Works at the St. Louis Downtown Site (SLDS) from 1942 through 1957

  12. Adaptive sampling program support for expedited site characterization

    International Nuclear Information System (INIS)

    Johnson, R.

    1993-01-01

    Expedited site characterizations offer substantial savings in time and money when assessing hazardous waste sites. Key to some of these savings is the ability to adapt a sampling program to the ''real-time'' data generated by an expedited site characterization. This paper presents a two-prong approach to supporting adaptive sampling programs: a specialized object-oriented database/geographical information system for data fusion, management and display; and combined Bayesian/geostatistical methods for contamination extent estimation and sample location selection

  13. Myth and Reality in Hydrogeological Site Characterization at DD and R Sites

    International Nuclear Information System (INIS)

    Rubin, Yoram

    2008-01-01

    The science of hydrogeological site characterization has made significant progress over the last twenty years. Progress has been made in modeling of flow and transport in the heterogeneous subsurface, in understanding of the complex patterns of geological heterogeneity and in measurement technologies. Modeling of uncertainty has also advanced significantly, in recognition of the inherent limitations of subsurface characterization. Much less progress has been made in transforming this progress into practice, where characterization is determined to a large extent by regulations. Environmental regulations have not progressed as much as the science, for example, in recognizing uncertainty. As such, practitioners are less inclined to adopt advanced, science-based solutions, this opening the door for myths and conflicts. Myths develop where the science base is perceived to be weak, whereas conflicts arise in the face of a disconnect between the science and the regulations. Myths translate to ad-hoc solutions and misplaced empiricism, as well as to unjustified reliance on field experience, to the detriment of D and DR. This paper explores the roots for this situation and identifies ideas that may help in bridging the gap between research and applications. A rational approach for DD and R is needed that will encourage innovation in site characterization, reduce costs and accelerate completion. Such an approach needs to include several elements. DD and R regulations need to recognize the various aspects of uncertainty inherent to site characterization, and as such, should be formulated using probabilistic concepts. One of the immediate benefits will be in allowing a gradual approach for data acquisition in DD and R sites: decisions can be made even under the most severe data limitations, and can be modified as additional data become available. The definition of risk is another major element. There is no universal definition of risk or of a methodology to define risk

  14. Draft site characterization analysis of the site characterization report for the Basalt Waste Isolation Project, Hanford, Washington Site. Main report and Appendices A through D

    International Nuclear Information System (INIS)

    1983-03-01

    On November 12, 1982, the US Department of Energy submitted to the US Nuclear Regulatory Commission the Site Characterization Report for the Basalt Waste Isolation Project (DOE/RL 82-3). The Basalt Waste Isolation Project is located on DOE's Hanford Reservation in the State of Washington. NUREG-0960 contains the detailed analysis, by the NRC staff, of the site characterization report. Supporting technical material is contained in Appendices A through W

  15. Sampling and analysis plan for Wayne Interim Storage Site (WISS), Wayne, New Jersey

    International Nuclear Information System (INIS)

    Brown, K.S.; Murray, M.E.; Rodriguez, R.E.

    1998-10-01

    This field sampling plan describes the methodology to perform an independent radiological verification survey and chemical characterization of a remediated area of the subpile at the Wayne Interim Storage Site, Wayne, New Jersey.Data obtained from collection and analysis of systematic and biased soil samples will be used to assess the status of remediation at the site and verify the final radiological status. The objective of this plan is to describe the methods for obtaining sufficient and valid measurements and analytical data to supplement and verify a radiological profile already established by the Project Remediation Management Contractor (PMC). The plan describes the procedure for obtaining sufficient and valid analytical data on soil samples following remediation of the first layer of the subpile. Samples will be taken from an area of the subpile measuring approximately 30 m by 80 m from which soil has been excavated to a depth of approximately 20 feet to confirm that the soil beneath the excavated area does not exceed radiological guidelines established for the site or chemical regulatory limits for inorganic metals. After the WISS has been fully remediated, the Department of Energy will release it for industrial/commercial land use in accordance with the Record of Decision. This plan provides supplemental instructions to guidelines and procedures established for sampling and analysis activities. Procedures will be referenced throughout this plan as applicable, and are available for review if necessary

  16. Characterization Plan for L/ILW Repository Candidate Sites in Croatia

    International Nuclear Information System (INIS)

    Schaller, A.; Lokner, V.; Kucar-Dragicevic, S.; Subasic, D.

    1998-01-01

    There have been four preferred sites for L/ILW repository selected in the siting program in Croatia so far. According to the accepted and verified site selection procedure, these sites are suitable for a more detailed characterization, including also site specific field investigations. The aim of these investigations is to measure and calculate all needed site specific parameters important for performance of safety assessment, aiming eventually with selection of the final disposal site. Both Croatian and IAEA regulations referring to radwaste repository siting procedure have been briefly discussed. Detailed site investigations foreseen to be done in order to perform a successful site characterization, refer to the following main topics: geomorphology, lithostratigraphy, tectonics, seismicity, rock mechanics, surface-water hydrology, aquifer features and groundwater hydrology, rock and groundwater chemistry, and radionuclide transport modeling. All these issues are listed in suggested site characterization format. (author)

  17. Encapsulated Nanoparticle Synthesis and Characterization for Improved Storage Fluids: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G. C.; Pradhan, S.; Kang, J.; Curtis, C.; Blake, D.

    2010-10-01

    Nanoparticles are typically composed of 50--500 atoms and exhibit properties that are significantly different from the properties of larger, macroscale particles that have the same composition. The addition of these particles to traditional fluids may improve the fluids' thermophysical properties. As an example, the addition of a nanoparticle or set of nanoparticles to a storage fluid may double its heat capacity. This increase in heat capacity would allow a sensible thermal energy storage system to store the same amount of thermal energy in half the amount of storage fluid. The benefit is lower costs for the storage fluid and the storage tanks, resulting in lower-cost electricity. The goal of this long-term research is to create a new class of fluids that enable concentrating solar power plants to operate with greater efficiency and lower electricity costs. Initial research on this topic developed molecular dynamic models that predicted the energy states and transition temperatures for these particles. Recent research has extended the modeling work, along with initiating the synthesis and characterization of bare metal nanoparticles and metal nanoparticles that are encapsulated with inert silica coatings. These particles possess properties that make them excellent candidates for enhancing the heat capacity of storage fluids.

  18. Hazelwood interim storage site: Annual site environmental report, Hazelwood, Missouri, Calendar Year 1988

    International Nuclear Information System (INIS)

    1989-04-01

    The monitoring program at Hazelwood Interim Storage Site (HISS) measures radon concentrations in air; external gamma radiation levels; and uranium, radium, and thorium, concentrations in surface water, groundwater and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect or public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the scenario described in this report, this hypothetical individual at HISS would receive an annual external exposure approximately equivalent to 1 percent of the DOE radiation protection standard. This exposure is less than the exposure a person receives during a flight from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of HISS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. The results of 1988 monitoring show that HISS is in compliance with the DOE radiation protection standard. 15 refs., 16 figs., 13 tabs

  19. Site characterization and validation

    International Nuclear Information System (INIS)

    Olsson, O.; Eriksson, J.; Falk, L.; Sandberg, E.

    1988-04-01

    The borehole radar investigation program of the SCV-site (Site Characterization and Validation) has comprised single hole reflection measurements with centre frequencies of 22, 45, and 60 MHz. The radar range obtained in the single hole reflection measurements was approximately 100 m for the lower frequency (22 MHz) and about 60 m for the centre frequency 45 MHz. In the crosshole measurements transmitter-receiver separations from 60 to 200 m have been used. The radar investigations have given a three dimensional description of the structure at the SCV-site. A generalized model of the site has been produced which includes three major zones, four minor zones and a circular feature. These features are considered to be the most significant at the site. Smaller features than the ones included in the generalized model certainly exist but no additional features comparable to the three major zones are thought to exist. The results indicate that the zones are not homogeneous but rather that they are highly irregular containing parts of considerably increased fracturing and parts where their contrast to the background rock is quite small. The zones appear to be approximately planar at least at the scale of the site. At a smaller scale the zones can appear quite irregular. (authors)

  20. Site characterization in fractured crystalline rock

    International Nuclear Information System (INIS)

    Andersson, Peter; Andersson, J.E.; Gustafsson, E.; Nordqvist, R.; Voss, C.

    1993-03-01

    This report concerns a study which is part of the SKI performance assessment project SITE-94. SITE-94 is a performance assessment of a hypothetical repository at a real site. The main objective of the project is to determine how site specific data should be assimilated into the performance assessment process and to evaluate how uncertainties inherent in site characterization will influence performance assessment results. Other important elements of SITE-94 are the development of a practical and defensible methodology for defining, constructing and analyzing scenarios, the development of approaches for treatment of uncertainties, evaluation of canister integrity, and the development and application of an appropriate Quality Assurance plan for Performance Assessments. (111 refs.)

  1. General safety guidelines for looking for a low mass activity-long life waste storage site

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of this document is to define general guidelines which must be followed during the stages of search for a site and stages of design of a storage facility for low activity-long life radioactive wastes, in order to ensure its safety after closure. After having specified the considered wastes, geological shapes, and situations, this document defines the fundamental objective and the associated criteria (protection against chemical risk, radioprotection). It presents the design aspects related to safety (safety principles and functions, waste packages, public works engineering, geological environment, storage concepts). The last part deals with the safety demonstration after site closure which includes the control of some components, the assessment of disturbances in the storage facility or due to its presence, the taking of uncertainty and sensitivity studies into account, the influence of natural events

  2. Feasibility studies for pump and treat technology at leaking underground storage tank sites in Michigan

    International Nuclear Information System (INIS)

    O'Brien, J.M.; Pekas, B.S.

    1993-01-01

    Releases from underground storage tanks have resulted in impacts to groundwater at thousands of sites across the US. Investigations of these sites were initiated on a national basis with the implementation of federal laws that became effective December 22, 1989 (40 CFR 280). Completion of these investigations has led to a wave of design and installation of pump and treat aquifer restoration systems where impacts to groundwater have been confirmed. The purpose of this paper is to provide managers with a demonstration of some of the techniques that can be used by the consulting industry in evaluating the feasibility of pump and treat systems. With knowledge of these tools, managers can better evaluate proposals for system design and their cost effectiveness. To evaluate the effectiveness of typical pump and treat systems for leaking underground storage tank (LUST) sites in Michigan, ten sites where remedial design had been completed were randomly chosen for review. From these ten, two sites were selected that represented the greatest contrast in the types of site conditions encountered. A release of gasoline at Site 1 resulted in contamination of groundwater and soil with benzene, toluene, ethylbenzene, and xylenes

  3. Feasibility of a subsurface storage

    International Nuclear Information System (INIS)

    1998-11-01

    This report analyses the notion of subsurface storage under the scientifical, technical and legal aspects. This reflection belongs to the studies about long duration storage carried out in the framework of the axis 3 of the December 30, 1991 law. The report comprises 3 parts. The first part is a synthesis of the complete subsurface storage study: definitions, aim of the report, very long duration storage paradigm, description files of concepts, thematic synthesis (legal aspects, safety, monitoring, sites, seismicity, heat transfers, corrosion, concretes, R and works, handling, tailings and dismantlement, economy..), multi-criteria/multi-concept cross-analysis. The second part deals with the technical aspects of the subsurface storage: safety approach (long duration impact, radiation protection, mastery of effluents), monitoring strategy, macroscopic inventory of B-type waste packages, inventory of spent fuels, glasses, hulls and nozzles, geological contexts in the French territory (sites selection and characterization), on-site activities, hydrogeological and geochemical aspects, geo-technical works and infrastructures organization, subsurface seismic effects, cooling modes (ventilation, heat transfer with the geologic environment), heat transfer research programs (convection, poly-phase cooling in porous media), handling constraints, concretes (use, behaviour, durability), corrosion of metallic materials, technical-economical analysis, international context (experience feedback from Sweden (CLAB) and the USA (Yucca Mountain), other European and French facilities). The last part of the report is a graphical appendix with 3-D views and schemes of the different concepts. (J.S.)

  4. Session II-A. Site characterization

    International Nuclear Information System (INIS)

    McIntosh, W.

    1981-01-01

    Section II-A on Site Characterization consists of the following papers which describe the progress made during the past fiscal year toward identifying sites for high-level radioactive waste repositories in deep geologic formations: (1) progress in expanded studies for repository sites; (2) evaluation of geologic and hydrologic characteristics in the Basin and Range Province relative to high-level nuclear waste disposal; (3) siting progress: Permian region; (4) Paradox Basin site exploration: a progress report; (5) progress toward recommending a salt site for an exploratory shaft; (6) status of geologic investigations for nuclear waste disposal at the Nevada Test Site; (7) geohydrologic investigation of the Hanford Site, Washington: basalt waste isolation project. Highlights include: expanding studies in crystalline rocks, both in the Appalachian and Lake Superior regions; laying the ground work with the states in the Basin and Range Province to kick off a joint USGS-state province study; narrowing areas of the Permian and Paradox bedded salt regions to a few promising locations; issuing a Gulf Coast Salt Dome Evaluation report (ONWI-109) for public review and comment; narrowing the Nevada Test Site area and Hanford Site area to locations for detailed site investigations and exploratory shafts; progress in developing the subseabed and space disposals alternatives

  5. Draft site characterization analysis of the site characterization report for the Basalt Waste Isolation Project, Hanford, Washington site. Appendices E through W

    International Nuclear Information System (INIS)

    1983-03-01

    Volume 2 contains Appendices E through W: potential for large-scale pump tests in the Grande Ronde; review of hydrochemical characterization related to flow system interpretation in Hanford basalts; limitations of packer-testing for head evaluation in Hanford basalts; hydrogeologic data integration for conceptual groundwater flow models; drilling mud effects on hydrogeologic testing; site issue analyses related to the nature at the present groundwater system at the Hanford site, Washington; structural and stratigraphic characteristics related to groundwater flow at the Hanford site, Washington; seismic hazard and some examples of hazard studies at Hanford; earthquake swarms in the Columbia Plateau; seismic ground motion at depth; failure modes for the metallic waste package component; degradation mechanisms of borosilicate glass; transport and retardation of radionuclides in the waste package; determination and interpretation of redox conditions and changes in underground high-level repositories; determination and interpretation of sorption data applied to radionuclide migration in underground repositories; solubility of radionuclide compounds presented in the BWIP site characterization report; and release rate from engineered system

  6. The site-characterization plan and its role in resolving siting and licensing issues

    International Nuclear Information System (INIS)

    Hanlon, C.L.

    1986-01-01

    As required by the Nuclear Waste Policy Act and the Nuclear Regulatory Commission (NRC) in 10 CFR Part 60, the Department of Energy is preparing plans for conducting site characterization at three candidate sites. Prepared according to a detailed annotated outline that is based on the NRC's Regulatory Guide 4.17, these plans will present the information collected to date about the geologic, hydrologic, geochemical, geoengineering, and climatic conditions of each site; describe the design of the repository and the waste package; and discuss the site-characterization program. The most important portions of the plan will be the strategy for resolving siting and licensing issues and the description of the testing and analysis program to be followed in resolving these issues. The issues-resolution strategy consists of identifying issues and the associated information needs; allocating performance goals for various components of the repository system; developing a testing plan to gather the necessary information; gathering and analyzing the information; and documenting the results for use in site selection and licensing. The issues-resolution strategy will allow the Department to define all of the issues that must be resolved in order to demonstrate compliance with applicable regulations and to specify the information needed to resolve these issues. It will provide a consistent framework and establish priorities for the Department's site-characterization effort for the next several years

  7. Site specific comparison of H2, CH4 and compressed air energy storage in porous formations

    Science.gov (United States)

    Tilmann Pfeiffer, Wolf; Wang, Bo; Bauer, Sebastian

    2016-04-01

    The supply of energy from renewable sources like wind or solar power is subject to fluctuations determined by the climatic and weather conditions, and shortage periods can be expected on the order of days to weeks. Energy storage is thus required if renewable energy dominates the total energy production and has to compensate the shortages. Porous formations in the subsurface could provide large storage capacities for various energy carriers, such as hydrogen (H2), synthetic methane (CH4) or compressed air (CAES). All three energy storage options have similar requirements regarding the storage site characteristics and consequently compete for suitable subsurface structures. The aim of this work is to compare the individual storage methods for an individual storage site regarding the storage capacity as well as the achievable delivery rates. This objective is pursued using numerical simulation of the individual storage operations. In a first step, a synthetic anticline with a radius of 4 km, a drop of 900 m and a formation thickness of 20 m is used to compare the individual storage methods. The storage operations are carried out using -depending on the energy carrier- 5 to 13 wells placed in the top of the structure. A homogeneous parameter distribution is assumed with permeability, porosity and residual water saturation being 500 mD, 0.35 and 0.2, respectively. N2 is used as a cushion gas in the H2 storage simulations. In case of compressed air energy storage, a high discharge rate of 400 kg/s equating to 28.8 mio. m³/d at surface conditions is required to produce 320 MW of power. Using 13 wells the storage is capable of supplying the specified gas flow rate for a period of 31 hours. Two cases using 5 and 9 wells were simulated for both the H2 and the CH4 storage operation. The target withdrawal rates of 1 mio. sm³/d are maintained for the whole extraction period of one week in all simulations. However, the power output differs with the 5 well scenario producing

  8. Site-characterization data needs for hydrogeological evaluation

    International Nuclear Information System (INIS)

    Geier, J.

    1997-12-01

    A review of data utilization and data sufficiency for the multiple lines of hydrological analysis in the SITE-94 study yields insight regarding how site characterization relates to key uncertainties in geologic-barrier performance for performance assessment (PA). Significant uncertainties arise from (1) lack of data regarding interrelationships between hydraulic and transport properties in water-conducting features, (2) insufficient data to discriminate between different conceptual models for large-scale spatial correlation of hydraulic properties, and (3) inadequate determination of effective boundary conditions for site-scale models. For future site characterization in support of hydrological modelling for PA, recommendations that can be offered includes: (1) to develop methods for the evaluation of site-specific transport properties, particularly flow porosity, flow wetted surface, matrix diffusion coefficients, and possibly effective sorption coefficients, (2) to emphasize the use of multiple tracers and multiple scales of observation in pumping and tracer tests, in order to allow evaluation of the effects of scale and heterogeneity in hydrologic and transport properties, (3) to develop a structured, systematic approach to borehole investigations, sampling, and core logging, in order to ensure that the data thus gathered will support meaningful statistical analysis, and to ensure that the development of alternative conceptual models is supported, and finally (4) to improve documentation and checking of site-characterization data in order to avoid unnecessary introduction of uncertainty in PA. A full list of recommendations is given in Chapter 4 of this report

  9. Site-characterization data needs for hydrogeological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J. [Clearwater Hardrock Consulting, Monmouth, ON (United States)

    1997-12-01

    A review of data utilization and data sufficiency for the multiple lines of hydrological analysis in the SITE-94 study yields insight regarding how site characterization relates to key uncertainties in geologic-barrier performance for performance assessment (PA). Significant uncertainties arise from (1) lack of data regarding interrelationships between hydraulic and transport properties in water-conducting features, (2) insufficient data to discriminate between different conceptual models for large-scale spatial correlation of hydraulic properties, and (3) inadequate determination of effective boundary conditions for site-scale models. For future site characterization in support of hydrological modelling for PA, recommendations that can be offered includes: (1) to develop methods for the evaluation of site-specific transport properties, particularly flow porosity, flow wetted surface, matrix diffusion coefficients, and possibly effective sorption coefficients, (2) to emphasize the use of multiple tracers and multiple scales of observation in pumping and tracer tests, in order to allow evaluation of the effects of scale and heterogeneity in hydrologic and transport properties, (3) to develop a structured, systematic approach to borehole investigations, sampling, and core logging, in order to ensure that the data thus gathered will support meaningful statistical analysis, and to ensure that the development of alternative conceptual models is supported, and finally (4) to improve documentation and checking of site-characterization data in order to avoid unnecessary introduction of uncertainty in PA. A full list of recommendations is given in Chapter 4 of this report. 31 refs.

  10. Report on site-independent environmental impacts of radioactive waste storage and management

    International Nuclear Information System (INIS)

    1985-10-01

    The organisation responsible for radioactive wastes in the Netherlands is COVRA: Centrale Organisatie Voor Radioactief Afval. It deals especially with storage and management of these wastes. For that purpose, COVRA will build a waste managing and storage facility at a central site in the Netherlands. In this report, environmental impacts of these activities are studied, that are independent of the location. The report is readable and useful for a broad audience. In the main report, the general features are outlined starting from figures and tables on environmental effects. In a separate volume, detailed numerical data are presented. (G.J.P.)

  11. Characterization and leaching study of sludge from Melton Valley Storage Tank W-25

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-08-01

    One of the greatest challenges facing the Department of Energy (DOE) is the remediation of the 100 million gallons of high-level and low-level radioactive waste in the underground storage tanks at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. Bench-scale batch tests have been conducted with sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation processes for use in a comprehensive sludge-processing flow sheet for concentrating the radionuclides and reducing the volumes of storage tanks wastes for final disposal. This report discusses the hot cell apparatus, the characterization of the sludge, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge. Approximately 5 L of sludge/supernate from MVST W-25 was retrieved and transferred to a stainless steel tank for mixing and storage in a hot cell. Samples were centrifuged to separate the sludge liquid and the sludge solids. Air-dried samples of sludge were analyzed to determine the concentrations of radionuclides, other metals, and anions. Based upon the air-dried weight, about 41% of the centrifuged, wet sludge solids was water. The major alpha-, gamma-, and beta-emitting radionuclides in the centrifuged, wet sludge solids were {sup 137}Cs, {sup 60}Co, {sup 154}Eu, {sup 241}Am, {sup 244}Cm, {sup 90}Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and the anions were Na, Ca, Al, K, Mg, NO{sub 3}{sup {minus}}, CO{sub 3}{sup 2{minus}}, OH{sup {minus}}, and O{sub 2{minus}}. The organic carbon content was 3.0 {+-} 1.0%. The pH was 13.

  12. State of Nevada comments on the US Department of Energy site characterization plan, Yucca Mountain site, Nevada

    International Nuclear Information System (INIS)

    1989-09-01

    In December 1988, the US Department of Energy issued a Site Characterization Plan (SCP) for the Yucca Mountain site, as required by Section 113 of the Nuclear Waste Policy Act of 1982 (NWPA). The purpose of site characterization is to develop sufficient information to support a determination of the suitability, or lack of suitability of the site to safely isolate high-level radioactive waste with reasonable certainty for thousands of years. The purpose of the Site Characterization Plan is to describe plans for obtaining sufficient information about the site, plans for mitigation of any adverse impacts occurring from site characterization activities, and plans for decontamination and decommissioning of the site if it is determined not to be suitable for a repository. Part I presents an overview of the State's comments. The overview takes the form of general concerns and comments organized by specific areas of concern. The overview does not follow the format of the SCP

  13. Site characterization plan: Conceptual design report, Volume 2: Chapters 4-9: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    MacDougall, H.R.; Scully, L.W.; Tillerson, J.R.

    1987-09-01

    This document presents a description of a prospective geologic repository for high-level radioactive waste to support the development of the Site Characterization Plan for the Yucca Mountain site. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases (site and properties of the waste package), design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. 147 refs., 145 figs., 83 tabs

  14. Magnox Swarf Storage Silo Liquor Effluent Management -Sellafield Site, Cumbria, UK - Legacy radioactive waste storage - 59271

    International Nuclear Information System (INIS)

    Le Clere, Stephen

    2012-01-01

    The Sellafield Magnox Swarf Storage Silo (MSSS) was constructed to provide an underwater storage facility for irradiated magnox cladding metal Swarf, as well as miscellaneous beta-gamma waste from several sources. Liquid effluent arisings from hazard reduction activities at this facility represent the toughest effluent treatment challenge within the company's Legacy Ponds and Silos portfolio. The key requirement for hazard reduction has generated many substantial challenges as the facility is readied for decommissioning. This has demanded the production of carefully thought out strategies for managing, and overcoming, the key difficulties to be encountered as hazard reduction progresses. The complexity associated with preparing for waste retrievals from the Magnox Swarf Storage Silo, has also generated the demand for a mix of creativity and perseverance to meet the challenges and make progress. Challenging the status quo and willingness to accept change is not easy and the road to overall hazard reduction for the high hazard MSSS facility will demand the skills and investment of individuals, teams, and entire facility work-forces. The first steps on this road have been taken with the successful introduction of liquor management operations, however much more is yet to be achieved. Clear communication, investing in stakeholder management, perseverance in the face of difficulty and a structured yet flexible programme delivery approach, will ensure the continued success of tackling the complex challenges of treating liquid effluent from a legacy fuel storage silo at the Sellafield Site. (authors)

  15. Site Characterization Work Plan for Gnome-Coach Site, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2001-02-13

    Project Gnome was the first nuclear experiment conducted under the U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE), Plowshare Program. Gnome was part of a joint government-industry experiment focused on developing nuclear devices exclusively for peaceful purposes. The intent of the Gnome experiment was to evaluate the effects of a nuclear detonation in a salt medium. Historically, Project Gnome consisted of a single detonation of a nuclear device on December 10, 1961. Since the Gnome detonation, the AEC/DOE has conducted surface restoration, site reconnaissance, and decontamination and decommissioning activities at the site. In addition, annual groundwater sampling is performed under a long-term hydrological monitoring program begun in 1980. Coach, an experiment to be located near the Gnome project, was initially scheduled for 1963. Although construction and rehabilitation were completed for Coach, the experiment was canceled and never executed. Known collectively as Project Gnome-Coach, the site is situated within the Salado Formation approximately 25 miles east of Carlsbad, New Mexico, in Eddy County, and is comprised of nearly 680 acres, of which 60 acres are disturbed from the combined AEC/DOE operations. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the project. The subsurface at the Gnome-Coach site has two contaminant sources that are fundamentally different in terms of both their stratigraphic location and release mechanism. The goal of this characterization is to collect data of sufficient quantity and quality to establish current site conditions and to use the data to identify and evaluate if further action is required to protect human health and the environment and achieve permanent closure of the site. The results of these activities will be presented in a subsequent corrective

  16. Siting-selection study for the Soyland Power Cooperative, Inc. , compressed-air energy-storage system (CAES)

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A method used for siting a compressed air energy storage (CAES) system using geotechnical and environmental criteria is explained using the siting of a proposed 220 MW water-compensated CAES plant in Illinois as an example. Information is included on the identification and comparative ranking of 28 geotechnically and environmental sites in Illinois, the examination of fatal flaws, e.g., mitigation, intensive studies, costly studies, permit denials, at 7 sites; and the selection of 3 sites for further geological surveying. (LCL)

  17. Characterization of solidified radioactive wastes produced at Montalto di Castro BWR plant with reference to the site storage

    International Nuclear Information System (INIS)

    Donato, A.; Ricci, G.; Pace, A.

    1985-01-01

    The cement solidification of the Montalto di Castro BWR plant radwastes has been studied both from the point of view of the mixtures of formulation and of the product characterization. Five radwaste types and mixtures of them have been taken into consideration, determining the best chemical formulations starting from the compressive strenght as leading parameter. The solidified products have been characterized from the point of view of the freeze and thawing resistance, the water immersion resistance, the leachability, the dimensional changes and the free standing water. All the tests have been performed taking into account the real site conditions, so the leaching tests and the water immersion tests have been carried out using sea water and table water as leachant

  18. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Christopher [U.S Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S Department of Energy Office of Legacy Management, Westminster, Colorado; Widdop, Michael; Gillespie, Joey [SM Stoller Corporation, Grand Junction, Colorado

    2012-02-26

    The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. DOE must continue to maintain constructive relationships with the U

  19. Second ILAW Site Borehole Characterization Plan

    International Nuclear Information System (INIS)

    Reidel, S.P.

    2000-01-01

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m 3 (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment

  20. Site Characterization and Preliminary Performance Assessment Calculation Applied To JAEA-Horonobe URL Site of Japan

    International Nuclear Information System (INIS)

    Lim, Doo Hyun; Hatanaka, Koichiro; Ishii, Eiichi

    2010-01-01

    JAEA-Horonobe Underground Research Laboratory (URL) is designed for research and development on high-level radioactive waste (HLW) repository in sedimentary rock. For a potential HLW repository, understanding and implementing fracturing and faulting system, with data from the site characterization, into the performance assessment is essential because fracture and fault will be the major conductors or barriers for the groundwater flow and radionuclide release. The objectives are i) quantitative derivation of characteristics and correlation of fracturing/faulting system with geologic and geophysics data obtained from the site characterization, and ii) preliminary performance assessment calculation with characterized site information

  1. Site Characterization and Preliminary Performance Assessment Calculation Applied To JAEA-Horonobe URL Site of Japan

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Doo Hyun [NE Union Hill Road, Suite 200, WA 98052 (United States); Hatanaka, Koichiro; Ishii, Eiichi [Japan Atomic Energy Agency, Hokkaido (Japan)

    2010-10-15

    JAEA-Horonobe Underground Research Laboratory (URL) is designed for research and development on high-level radioactive waste (HLW) repository in sedimentary rock. For a potential HLW repository, understanding and implementing fracturing and faulting system, with data from the site characterization, into the performance assessment is essential because fracture and fault will be the major conductors or barriers for the groundwater flow and radionuclide release. The objectives are i) quantitative derivation of characteristics and correlation of fracturing/faulting system with geologic and geophysics data obtained from the site characterization, and ii) preliminary performance assessment calculation with characterized site information

  2. Silver Niobate Lead-Free Antiferroelectric Ceramics: Enhancing Energy Storage Density by B-Site Doping.

    Science.gov (United States)

    Zhao, Lei; Gao, Jing; Liu, Qing; Zhang, Shujun; Li, Jing-Feng

    2018-01-10

    Lead-free dielectric ceramics with high recoverable energy density are highly desired to sustainably meet the future energy demand. AgNbO 3 -based lead-free antiferroelectric ceramics with double ferroelectric hysteresis loops have been proved to be potential candidates for energy storage applications. Enhanced energy storage performance with recoverable energy density of 3.3 J/cm 3 and high thermal stability with minimal energy density variation (<10%) over a temperature range of 20-120 °C have been achieved in W-modified AgNbO 3 ceramics. It is revealed that the W 6+ cations substitute the B-site Nb 5+ and reduce the polarizability of B-site cations, leading to the enhanced antiferroelectricity, which is confirmed by the polarization hysteresis and dielectric tunability. It is believed that the polarizability of B-site cations plays a dominant role in stabilizing the antiferroelectricity in AgNbO 3 system, in addition to the tolerance factor, which opens up a new design approach to achieve stable antiferroelectric materials.

  3. The National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) is a national genetics data repository facilitating access to genotypic...

  4. Site characterization techniques used in environmental remediation activities

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    2000-01-01

    As a result of decades of nuclear energy research, weapons production, as well as ongoing operations, a significant amount of radioactive contamination has occurred throughout the United States Department of Energy (DOE) complex. DOE facility are in the process of assessing and potentially remediating various sites according to the regulations imposed by a Federal Facility Agreement and Consent order (FFA/CO) between DOE, the state in which the facility is located, and the U.S. Environmental Protection Agency (EPA). In support of these active site remediation efforts, the DOE has devoted considerable resources towards the development of innovative site characterization techniques that support environmental restoration activities. These resources and efforts have focused on various aspects of this complex problem. Research and technology development conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the ability and state-of-the-art equipment required to obtain real-time, densely spaced, in situ characterization data (i.e. detection, speciation, and location) of various radionuclides and contaminants. The Remedial Action Monitoring System (RAMS), developed by the INEEL, consists of enhanced sensor technology, measurement modeling and interpretation techniques, and a suite of deployment platforms which can be interchanged to directly support remedial cleanup and site verification operations. In situ characterization techniques have advanced to the point where they are being actively deployed in support of remedial operations. The INEEL has deployed its system at various DOE and international sites. The deployment of in situ characterization systems during environmental restoration operations has shown that this approach results in several significant benefits versus conventional sampling techniques. A flexible characterization system permits rapid modification to satisfy physical site conditions, available site resources

  5. Identifying suitable piercement salt domes for nuclear waste storage sites

    International Nuclear Information System (INIS)

    Kehle, R.; e.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes

  6. Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles[mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a)

  7. TOMOGRAPHIC SITE CHARACTERIZATION USING CPT, ERT, AND GPR

    Energy Technology Data Exchange (ETDEWEB)

    Rexford M. Morey; Susanne M. Conklin; Stephen P. Farrington, P.E.; James D. Shinn II, P.E.

    1999-07-01

    The US Department of Energy (DOE) is responsible for the cleanup of inactive DOE sites and for bringing DOE sites and facilities into compliance with federal, state, and local laws and regulations. The DOE's Office of Environmental Management (EM) needs advanced technologies that can make environmental restoration and waste management operations more efficient and less costly. These techniques are required to better characterize the physical, hydrogeological, and chemical properties of the subsurface while minimizing and optimizing the use of boreholes and monitoring wells. Today the cone penetrometer technique (CPT) is demonstrating the value of a minimally invasive deployment system for site characterization. Applied Research Associates, Inc. is developing two new sensor packages for site characterization and monitoring. The two new methods are: (1) Electrical Resistivity Tomography (ERT); and (2) Ground Penetrating Radar (GPR) Tomography. These sensor systems are now integrated with the CPT. The results of this program now make it possible to install ERT and GPR units by CPT methods and thereby reduce installation costs and total costs for ERT and GPR surveys. These two techniques can complement each other in regions of low resistivity where ERT is more effective and regions of high resistivity where GPR is more effective. The results show that CPT-installed GeoWells can be used for both ERT and GPR borehole tomographic subsurface imaging. These two imaging techniques can be used for environmental site characterization and monitoring have numerous and diverse applications within site cleanup and waste management operations.

  8. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    International Nuclear Information System (INIS)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

    1985-06-01

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year

  9. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    Energy Technology Data Exchange (ETDEWEB)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

    1985-06-01

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

  10. Soil characterization methods for unsaturated low-level waste sites

    International Nuclear Information System (INIS)

    Wierenga, P.J.; Young, M.H.; Hills, R.G.

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies

  11. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  12. Material characterization and corrosion control in wet storage of Chilean spent fuel

    International Nuclear Information System (INIS)

    Lamas, C.; Klein, J.; Escobar, I.

    2002-01-01

    Chile has two MTR type research reactors and the spent fuel will be stored in water previous to the conditioning for final disposal. One of the serious problem presented during wet storage is the phenomenon of corrosion, which depends on the water quality, the structural materials and the storage conditions. Thus, it is necessary to solve how to guarantee the integrity of the spent fuel during its wet storage. The water quality and fuel assembly materials are being characterized with the purpose to define the criteria of surveillance and control of corrosion as a function of time. The behavior of the 6061 Al and N4 Al alloys is being studied to characterize the susceptibility to pitting corrosion in solutions with chloride and cadmium as aggressive ions. The analyses were performed in a three-electrode electrochemical cell with 6061 Al and N4 Al as working electrodes. Platinum wire was the auxiliary electrode while Ag/AgCl was the reference electrode. To obtain the electrochemical characterization the polarization curves were used and the evolution of the corrosion potential of the aluminum alloys and SS 304 were measured. The electrolyte was deionized water with different concentrations of chloride and cadmium. At present, the results show that 6061 Al and N4 Al alloys are more susceptible to be attacked by pitting due to the presence of chloride than cadmium. (author)

  13. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots

  14. Risks and mitigation options for on-site storage of wastewater from shale gas and tight oil development

    International Nuclear Information System (INIS)

    Kuwayama, Yusuke; Roeshot, Skyler; Krupnick, Alan; Richardson, Nathan; Mares, Jan

    2017-01-01

    We provide a critical review of existing research and information regarding the sources of risk associated with on-site shale gas and tight oil wastewater storage in the United States, the gaps that exist in knowledge regarding these risks, policy and technology options for addressing the risks, and the relative merits of those options. Specifically, we (a) identify the potential risks to human and ecological health associated with on-site storage of shale gas and tight oil wastewater via a literature survey and analysis of data on wastewater spills and regulatory violations, (b) provide a detailed description of government regulations or industry actions that may mitigate these risks to human and ecological health, and (c) provide a critical review of this information to help generate progress toward concrete action to make shale gas and tight oil development more sustainable and more acceptable to a skeptical public, while keeping costs down. - Highlights: • We review current research/information on shale gas and tight oil wastewater storage. • Pit overflows, tank overfills, and liner malfunctions are common spill causes. • Tanks lead to smaller and less frequent spills than pits, but are not a magic bullet. • State regulations for on-site oil and gas wastewater storage are very heterogeneous.

  15. Corrosion surveillance program of aluminum spent fuel elements in wet storage sites

    International Nuclear Information System (INIS)

    Linardi, E; Haddad, R

    2012-01-01

    Due to different degradation issues observed in aluminum-clad spent fuel during long term storage in water, the IAEA implemented in 1996 a Coordinated Research Project (CRP) and a Regional Project for Latin America, on Corrosion of Research Reactor Aluminum Clad Spent Fuel in Water. Argentine has been among the participant countries of these projects, carrying out spent fuel corrosion surveillance activities in its storage facilities. As a result of the research a large database on corrosion of aluminum-clad fuel has been generated. It was determined that the main types of corrosion affecting the spent fuel are pitting and galvanic corrosion due to contact with stainless steel. It was concluded that the quality of the water is the critical factor to control in a spent fuel storage facility. Another phase of the program is being conducted currently, which began in 2011 with the immersion of test racks in the RA1 reactor pool, and in the Research Reactor Spent Fuel Storage Facility (FACIRI), located in Ezeiza Atomic Center. This paper presents the results of the chemical analysis of the water performed so far, and its relationship with the examination of the coupons extracted from the sites (author)

  16. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed

  17. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

  18. Monitoring of injected CO2 at two commercial geologic storage sites with significant pressure depletion and/or re-pressurization histories: A case study

    Directory of Open Access Journals (Sweden)

    Dayanand Saini

    2017-03-01

    The monitoring technologies that have been used/deployed/tested at both the normally pressured West Hastings and the subnormally pressured Bell Creek storage sites appear to adequately address any of the potential “out of zone migration” of injected CO2 at these sites. It would be interesting to see if any of the collected monitoring data at the West Hastings and the Bell Creek storage sites could also be used in future to better understand the viability of initially subnormally pressured and subsequently depleted and re-pressurized oil fields as secure geologic CO2 storage sites with relatively large storage CO2 capacities compared to the depleted and re-pressurized oil fields that were initially discovered as normally pressured.

  19. Geoscientific Characterization of the Bruce Site, Tiverton, Ontario

    Science.gov (United States)

    Raven, K.; Jackson, R.; Avis, J.; Clark, I.; Jensen, M.

    2009-05-01

    Ontario Power Generation is proposing a Deep Geologic Repository (DGR) for the long-term management of its Low and Intermediate Level Radioactive Waste (L&ILW) within a Paleozoic-age sedimentary sequence beneath the Bruce site near Tiverton, Ontario, Canada. The concept envisions that the DGR would be excavated at a depth of approximately 680 m within the Ordovician Cobourg Formation, a massive, dense, low- permeability, argillaceous limestone. Characterization of the Bruce site for waste disposal is being conducted in accordance with a four year multi-phase Geoscientific Site Characterization Plan (GSCP). The GSCP, initially developed in 2006 and later revised in 2008 to account for acquired site knowledge based on successful completion of Phase I investigations, describes the tools and methods selected for geological, hydrogeological and geomechanical site characterization. The GSCP was developed, in part, on an assessment of geoscience data needs and collection methods, review of the results of detailed geoscientific studies completed in the same bedrock formations found off the Bruce site, and recent international experience in geoscientific characterization of similar sedimentary rocks for long-term radioactive waste management purposes. Field and laboratory work related to Phase 1 and Phase 2A are nearing completion and have focused on the drilling, testing and monitoring of four continuously cored vertical boreholes through Devonian, Silurian, Ordovician and Cambrian bedrock to depths of about 860 mBGS. Work in 2009 will focus on drilling and testing of inclined boreholes to assess presence of vertical structure. The available geological, hydrogeological and hydrogeochemical data indicate the presence of remarkably uniform and predictable geology, physical hydrogeologic and geochemical properties over well separation distances exceeding 1 km. The current data set including 2-D seismic reflection surveys, field and lab hydraulic testing, lab petrophysical and

  20. Radionuclide migration at sites of temporary storage of SNF and RW in North-West Russia - Contribution to regulatory development

    International Nuclear Information System (INIS)

    Sneve, M.K.; Shandala, N.K.; Orlova, E.I.; Titov, A.V.; Kochetkov, O.A.; Smith, G.M.; Barraclough, I.M.

    2007-01-01

    Two technical bases of the Northern Fleet were created in the Russian northwest in the 1960s at Andreeva in the Kola Bay and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, performing receipt and storage of radioactive waste and spent nuclear fuel. No further stored material was received after 1985. These technical bases have since been re-categorised as sites of temporary storage. It is necessary to note that, during the storage of RW and SNF, certain conditions arose which resulted in failure of the storage barrier system, resulting in release of radionuclides. Remediation activities at the site focus on reduction of major risks associated with most hazardous radioactive source terms. In addition, the long term management of the sites includes consideration of how to remediate contaminated areas, not only because they affect continuing work at the site, but also because this work will influence final radiological status of the sites. The optimum approach to remediation will be affected by how quickly radionuclides could move, both during the remediation works and, so far as any residual activity is concerned, after the works are completed. Present investigations reported here are directed to determination of sorption-desorption parameters of radionuclides in the studied areas, which will affect their underground migration, with the purpose of accounting for regional peculiarities in optimization process of the STSs remediation. The work is being carried out by the TSO State Research Centre - Institute of Biophysics, of Russian Federation, with assistance from western experts. The work forms part of a regulatory collaboration programme on-going between the Norwegian Radiation Protection Authority and the Federal Medical-Biological Agency which is designed to support the development of norms and standards to be applied in the remediation of these sites of temporary storage. (author)

  1. Comparing CO2 Storage and Advection Conditions at Night at Different Carboeuroflux Sites

    Science.gov (United States)

    Aubinet, M.; Berbigier, P.; Bernhofer, Ch.; et al.

    Anemometer and CO2 concentration data from temporary campaigns performed at six CARBOEUROFLUX forest sites were used to estimate the importance of non-turbulent fluxes in nighttime conditions. While storage was observed to be significant only during periods of both low turbulence and low advection, the advective fluxes strongly influence the nocturnal CO2 balance, with the exception of almost flat and highly homogeneous sites. On the basis of the main factors determining the onset of advective fluxes, the ‘advection velocity’, which takes net radiation and local topography into account, was introduced as a criterion to characterise the conditions of storage enrichment/depletion. Comparative analyses of the six sites showed several common features of the advective fluxes but also some substantial differences. In particular, all sites where advection occurs show the onset of a boundary layer characterised by a downslope flow, negative vertical velocities and negative vertical CO2 concentration gradients during nighttime. As a consequence, vertical advection was observed to be positive at all sites, which corresponds to a removal of CO2 from the ecosystem. The main differences between sites are the distance from the ridge, which influences the boundary-layer depth, and the sign of the mean horizontal CO2 concentration gradients, which is probably determined by the source/sink distribution. As a consequence, both positive and negative horizontal advective fluxes (corresponding respectively to CO2 removal from the ecosystem and to CO2 supply to the ecosystem) were observed. Conclusive results on the importance of non-turbulent components in the mass balance require, however, further experimental investigations at sites with different topographies, slopes, different land covers, which would allow a more comprehensive analysis of the processes underlying the occurrence of advective fluxes. The quantification of these processes would help to better quantify nocturnal

  2. Analysis of the portfolio of sites to characterize for selecting a nuclear repository

    International Nuclear Information System (INIS)

    Keeney, R.L.

    1987-01-01

    The US Department of Energy has selected three sites, from five nominated, to characterize for a nuclear repository to permanently dispose of nuclear waste. This decision was made without the benefit of an analysis of this portfolio problem. This paper analyzes different portfolios of three sites for simultaneous characterization and strategies for sequential characterization. Characterization of each site, which involves significant subsurface excavation, is now estimated to cost $1 billion. Mainly because of the high characterization costs, sequential characterization strategies are identified which are the equivalent of $1.7-2.0 billion less expensive than the selected DOE simultaneous characterization of the three sites. If three sites are simultaneously characterized, one portfolio is estimated to be the equivalent of $100-400 million better than the selected DOE portfolio. Because of these potential savings and several other complicating factors that may influence the relative desirability of characterization strategies, a thorough analysis of characterization strategies that addresses the likelihood of finding disqualifying conditions during site characterization, uncertainties, and dependencies in forecast site repository costs, preclosure and postclosure health and safety impacts, potential delays of both sequential and simultaneous characterization strategies, and the environmental, socioeconomic, and health and safety impacts of characterization activities is recommended

  3. Methodology of site generation for evaluation of the behaviour of radioactive waste storage

    International Nuclear Information System (INIS)

    Ruiz Rivas, C.; Eguilior Diez, S.

    1997-01-01

    The present report summarizes the purpose of methodology for the site generation in the evaluation of high-level radioactive waste storage for long-term. This work is developed into the project Safety analysis long-term of high-level radioactive waste. This project is carried on for CIEMAT and ENRESA

  4. Successful characterization of radioactive waste at the Savannah River Site

    International Nuclear Information System (INIS)

    Hughes, M.B.; Miles, G.M.

    1995-01-01

    Characterization of the low-level radioactive waste generated by forty five independent operating facilities at The Savannah River Site (SRS) experienced a slow start. However, the site effectively accelerated waste characterization based on findings of an independent assessment that recommended several changes to the existing process. The new approach included the development of a generic waste characterization protocol and methodology and the formulation of a technical board to approve waste characterization. As a result, consistent, detailed characterization of waste streams from SRS facilities was achieved in six months

  5. Verification of geomechanical integrity and prediction of long-term mineral trapping for the Ketzin CO2 storage pilot site

    Science.gov (United States)

    Kempka, Thomas; De Lucia, Marco; Kühn, Michael

    2014-05-01

    Static and dynamic numerical modelling generally accompany the entire CO2 storage site life cycle. Thereto, it is required to match the employed models with field observations on a regular basis in order to predict future site behaviour. We investigated the coupled processes at the Ketzin CO2 storage pilot site [1] using a model coupling concept focusing on the temporal relevance of processes involved (hydraulic, chemical and mechanical) at given time-scales (site operation, abandonment and long-term stabilization). For that purpose, long-term dynamic multi-phase flow simulations [2], [3] established the basis for all simulations discussed in the following. Hereby, pressure changes resulting in geomechanical effects are largest during site operation, whereas geochemical reactions are governed by slow kinetics resulting in a long-term stabilization. To account for mechanical integrity, which may be mainly affected during site operation, we incorporated a regional-scale coupled hydro-mechanical model. Our simulation results show maximum ground surface displacements of about 4 mm, whereas shear and tensile failure are not observed. Consequently, the CO2 storage operation at the Ketzin pilot site does not compromise reservoir, caprock and fault integrity. Chemical processes responsible for mineral trapping are expected to mainly occur during long-term stabilization at the Ketzin pilot site [4]. Hence, our previous assessment [3] was extended by integrating two long-term mineral trapping scenarios. Thereby, mineral trapping contributes to the trapping mechanisms with 11.7 % after 16,000 years of simulation in our conservative and with 30.9 % in our maximum reactivity scenarios. Dynamic flow simulations indicate that only 0.2 % of the CO2 injected (about 67,270 t CO2 in total) is in gaseous state, but structurally trapped after 16,000 years. Depending on the studied long-term scenario, CO2 dissolution is the dominating trapping mechanism with 68.9 % and 88

  6. Site characterization plan overview: Yucca Mountain site, Nevada Research and Development Area, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs.

  7. Site characterization plan overview: Yucca Mountain site, Nevada Reserch and Development Area, Nevada

    International Nuclear Information System (INIS)

    1988-12-01

    To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs

  8. Geohydrologic characterization of proposed Solid Waste Storage Area (SWSA) 7

    International Nuclear Information System (INIS)

    Rothschild, E.R.; Huff, D.D.; Haase, C.S.; Clapp, R.B.; Spalding, B.P.; Farmer, C.D.; Farrow, N.D.

    1984-12-01

    A critical flow flume and several temporary gaging stations were installed on the site to characterize the surface water system. The site is drained by a central stream that flows into Melton Branch. Two smaller tributaries are located on either side of the site. The site lies within the White Oak Creek watershed, thus drainage from the site is monitored by the established system for the drainage basin. A monitoring well network of 18 wells was installed on site to characterize the groundwater flow regime and to collect data on the aquifer properties. The aquifer underlying the site is relatively low in permeability (2.57 x 10 -5 cm/sec), anisotropic, and flow is controlled by the secondary porosity formed by the pervasive jointing. The surrounding tributaries are the local discharge areas for the groundwater system, but, based on the water budget and the geologic investigations, it appears that part of the groundwater discharge may directly enter Melton Branch. Water samples collected from the wells and streams indicate that the site is uncontaminated by surrounding activities on the ORR. 47 references, 34 figures, 15 tables

  9. Geohydrologic characterization of proposed Solid Waste Storage Area (SWSA) 7

    Energy Technology Data Exchange (ETDEWEB)

    Rothschild, E.R.; Huff, D.D.; Haase, C.S.; Clapp, R.B.; Spalding, B.P.; Farmer, C.D.; Farrow, N.D.

    1984-12-01

    A critical flow flume and several temporary gaging stations were installed on the site to characterize the surface water system. The site is drained by a central stream that flows into Melton Branch. Two smaller tributaries are located on either side of the site. The site lies within the White Oak Creek watershed, thus drainage from the site is monitored by the established system for the drainage basin. A monitoring well network of 18 wells was installed on site to characterize the groundwater flow regime and to collect data on the aquifer properties. The aquifer underlying the site is relatively low in permeability (2.57 x 10/sup -5/ cm/sec), anisotropic, and flow is controlled by the secondary porosity formed by the pervasive jointing. The surrounding tributaries are the local discharge areas for the groundwater system, but, based on the water budget and the geologic investigations, it appears that part of the groundwater discharge may directly enter Melton Branch. Water samples collected from the wells and streams indicate that the site is uncontaminated by surrounding activities on the ORR. 47 references, 34 figures, 15 tables.

  10. Quantification of uncertain outcomes from site characterization: Insights from the ESF-AS

    International Nuclear Information System (INIS)

    Boyle, W.J.; Parrish, D.K.; Beccue, P.C.

    1992-01-01

    As part of the Exploratory Studies Facility Alternatives Study (ESF-AS) the uncertain outcomes from site characterization were quantified using a probabilistic tree known as ''Nature's Tree.'' Nature's Tree distinguished the true characteristics of the Yucca Mountain site from the perceived characteristics deduced from testing. Bayesian probabilistic calculations converted probabilities in Nature's Tree to the probabilistic estimates required for the comparative analysis of Exploratory Studies Facility-repository options. Experts on characterization testing explicitly addressed several site characterization issues that are considered implicitly in many site characterization programs

  11. The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites

    Science.gov (United States)

    Sauer, U.; Schuetze, C.; Dietrich, P.

    2013-12-01

    The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The

  12. Petrophysical Characterization of Arroyal Antiform Geological Formations (Aguilar de Campoo, Palencia) as a Storage and Seal Rocks in the Technology Development Plant for Geological CO2 Storage (Hontomin, Burgos)

    International Nuclear Information System (INIS)

    Campos, R.; Barrios, I.; Gonzalez, A. M.; Pelayo, M.; Saldana, R.

    2011-01-01

    The geological storage program of Energy City Foundation is focusing its research effort in the Technological Development and Research Plant in Hontomin (Burgos) start off. The present report shows the petrophysical characterization of of the Arroyal antiform geological formations since they are representatives, surface like, of the storage and seal formations that will be found in the CO 2 injection plant in Hontomin. In this petrophysics characterization has taken place the study of matrix porosity, specific surface and density of the storage and seal formations. Mercury intrusion porosimetry, N 2 adsorption and He pycnometry techniques have been used for the characterization. Furthermore, it has carried out a mineralogical analysis of the seal materials by RX diffraction. (Author) 26 refs.

  13. Colonie Interim Storage Site environmental surveillance report for calendar year 1993

    International Nuclear Information System (INIS)

    1994-06-01

    This report summarizes the results of environmental surveillance activities conducted at the Colonie Interim Storage Site (CISS) during calendar year 1993. It includes an overview of site operations, the basis for radiological and nonradiological monitoring, dose to the offsite population, and summaries of environmental programs at CISS. Environmental surveillance activities were conducted in accordance with the site environmental monitoring plan, which describes the rationale and design criteria for the surveillance program, the frequency of sampling and analysis, specific sampling and analysis procedures, and quality assurance requirements. Appendix A contains a discussion of the nature of radiation, the way it is measured, and common sources of it. The primary environmental guidelines and limits applicable to CISS are given in US Department of Energy (DOE) orders and mandated by six federal acts: the Clean Air Act; the Clean Water Act; the Resource Conservation and Recovery Act (RCRA); the Toxic Substances Control Act; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); and the National Environmental Policy Act (NEPA). DOE began environmental monitoring of CISS in 1984 when DOE was authorized by Congress through the Energy and Water Development Appropriations Act to conduct a decontamination research and development program at the site. The site was subsequently assigned to DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP)

  14. Advances in characterizing ubiquitylation sites by mass spectrometry

    DEFF Research Database (Denmark)

    Sylvestersen, K.B.; Young, C.; Nielsen, M.L.

    2013-01-01

    of ubiquitylation is a two-fold challenge that involves the mapping of ubiquitylation sites and the determination of ubiquitin chain topology. This review focuses on the technical advances in the mass spectrometry-based characterization of ubiquitylation sites, which have recently involved the large...

  15. The practical use of computer graphics techniques for site characterization

    International Nuclear Information System (INIS)

    Tencer, B.; Newell, J.C.

    1982-01-01

    In this paper the authors describe the approach utilized by Roy F. Weston, Inc. (WESTON) to analyze and characterize data relative to a specific site and the computerized graphical techniques developed to display site characterization data. These techniques reduce massive amounts of tabular data to a limited number of graphics easily understood by both the public and policy level decision makers. First, they describe the general design of the system; then the application of this system to a low level rad site followed by a description of an application to an uncontrolled hazardous waste site

  16. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    International Nuclear Information System (INIS)

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult

  17. Los Alamos National Laboratory Site Integrated Management plan, uranium 233 storage and disposition. Volume 1: Project scope and description

    International Nuclear Information System (INIS)

    Nielsen, J.B.; Erickson, R.

    1997-01-01

    This Site Integration Management plan provides the Los Alamos Response to the Defense Nuclear Facility Safety Board (DNFSB) Recommendation 97-1. This recommendation addresses the safe storage and management of the Departments uranium 233 ( 233 U) inventory. In the past, Los Alamos has used 233 U for a variety of different weapons related projects. The material was used at a variety of sites in varying quantities. Now, there is a limited need for this material and the emphasis has shifted from use to storage and disposition of the material. The Los Alamos program to address the DNFSB Recommendation 97-1 has two emphases. First, take corrective action to address near term deficiencies required to provide safe interim storage of 233 U. Second, provide a plan to address long term storage and disposition of excess inventory at Los Alamos

  18. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-08-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and

  19. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd 3 of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft 3 of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and disposed as LLW, and

  20. Characteristics of soils and saprolite in Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Ammons, J.T.; Phillips, D.H.; Timpson, M.E.

    1987-01-01

    Solid Waste Storage Area 6 (SWSA-6) is one of the disposal sites for solid low-level radioactive waste at Oak Ridge National Laboratory. Soils and saprolites from the site were characterized to provide base line information to initiate assessment for remedial actions and closure plans. Physical, chemical, mineralogical, and engineering analyses were conducted on soil and saprolite samples

  1. Coordinated site characterization and performance assessment - an iterative approach for the site evaluation

    International Nuclear Information System (INIS)

    Papp, T.; Ericsson, L.O.; Thegerstroem, C.; Almen, K.E.

    1995-01-01

    SKB planning for siting a deep repository involves feasibility studies in 5-10 municipalities surface based characterization and drilling on two candidate sites and detailed characterization of one site including a shaft to proposed repository depth. The selection of a site or the detailed layout of the repository defines characteristics that might influence safety in a broad sense. There is a strong ling between the safety, technical (engineering) and functional aspects. The site selection will be based on general geoscientific information, i.e. mechanical stability, ground-water chemistry, slow ground-water movements and complicating factors like high potential for mineralization. The general layout of the repository in the actual geological structure of the site must be done with regard to a number of guidelines, e.g. to hydraulically separate the parts of the repository containing the spent nuclear fuel from those for other types of long lived waste and to separate the two stages of the spent fuel repository so they can be handled separately in the licensing process. When the various parts of the repository have been tentatively located the consequence of the multiple barrier principle is that the layout of the various parts should be made with the aim to utilize the available natural barrier system at the site as well as possible. (authors). 2 refs., 3 figs., 2 tabs

  2. Safety issues in construction of facilities for long-term storage of radioactive waste at vector site

    Energy Technology Data Exchange (ETDEWEB)

    Tokarevskyi, O.; Alekseeva, Z.; Kondratiev, S. [State Scientific and Technical Center for Nuclear and Radiation Safety, Kyiv (Ukraine); Rybalka, N. [State Nuclear Regulatory Inspectorate of Ukraine, Kyiv (Ukraine)

    2013-07-01

    In Ukraine, it is planned to create a number of near-surface facilities for disposal of short-lived RW and long-term (up to 100 years) storage of long-lived RW at the Vector site in the Chernobyl exclusion zone. The expected streams of long-lived RW are analyzed in the paper. According to the analysis of RW streams, in particular, issues are considered on development of RW acceptance criteria, admissible radiological impacts during preparation of RW for long-term storage, reliability of barriers (RW packages, modules and structures, etc.) during long-term storage of RW. (orig.)

  3. Paradox Basin site characterization report: preparation papers, Gibson Dome location

    International Nuclear Information System (INIS)

    1982-11-01

    This document contains Part C, Identification of Pertinent Issues, of the site characterization report. The site characterization report, preparation papers, includes a description of detailed field studies and efforts to collect data to resolve key geologic and environmental issues in the Gibson Dome location within the Paradox Basin Region of Utah

  4. Environmental Assessment: Relocation and storage of TRIGA reg-sign reactor fuel, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-08-01

    In order to allow the shutdown of the Hanford 308 Building in the 300 Area, it is proposed to relocate fuel assemblies (101 irradiated, three unirradiated) from the Mark I TRIGA Reactor storage pool. The irradiated fuel assemblies would be stored in casks in the Interim Storage Area in the Hanford 400 Area; the three unirradiated ones would be transferred to another TRIGA reactor. The relocation is not expected to change the offsite exposure from all Hanford Site 300 and 400 Area operations

  5. Safety and optimization aspects of radioactive waste long-term storage at the ''Vector'' site

    International Nuclear Information System (INIS)

    Tokarevs'kij, O.V.; Kondrat'jev, S.M.; Aleksjejeva, Z.M.; Ribalka, N.V.

    2015-01-01

    The paper analyzes links between the final disposal option and needs for long-term storage of radioactive waste taking into proposals on possible changes in radwaste classification as regards disposal. It considers the conceptual approach to design facilities for long-term storage of long-lived radioactive waste at the Vector site and approaches to apply requirements of regulatory documents, radiation safety principles and criteria for long-term storage of radwaste and safety assessment.

  6. Designing chemical soil characterization programs for mixed waste sites

    International Nuclear Information System (INIS)

    Meyers, K.A. Jr.

    1989-01-01

    The Weldon Spring Site Remedial Action Project is a remedial action effort funded by the U.S. Department of Energy. The Weldon Spring Site, a former uranium processing facility, is located in east-central Missouri on a portion of a former ordnance works facility which produced trinitrotoluene during World War II. As a result of both uranium and ordnance production, the soils have become both radiologically and chemically contaminated. As a part of site characterization efforts in support of the environmental documentation process, a chemical soil characterization program was developed. This program consisted of biased and unbiased sampling program which maximized areal coverage, provided a statistically sound data base and maintained cost effectiveness. This paper discusses how the general rationale and processes used at the Weldon Spring Site can be applied to other mixed and hazardous waste sites

  7. Characterization of radioactively contaminated sites for remediation purposes

    International Nuclear Information System (INIS)

    1998-05-01

    Characterization of the contaminated site is essential before embarking on a programme for its remediation and ultimate restoration. Reliable and suitable data must be obtained regarding the distribution and physical, chemical and nuclear properties of all radioactive contaminants. Characterization data is necessary for assessing the associated radiation risks and is used in support of the required engineering design and project planning for the environmental restoration. In addition, continuing characterization can provide information regarding efficiency of the cleanup methods and influence possible redirection of work efforts. Similarly, at the end of the remediation phase, characterization and ongoing monitoring can be used to demonstrate completion and success of the cleanup process. The suggested methodology represents a contribution attempting to solve the issue of preremediation characterization in a general manner. However, a number of difficulties might make this methodology unsuitable for general application across the diverse social, environmental and political systems in the IAEA Member States. This TECDOC covers the methodologies used to characterize radioactively contaminated sites for the purpose of remediating the potential sources of radiation exposure and assessing the hazards to human health and the environment

  8. Yucca Mountain Site Characterization Project Technical Data Catalog

    International Nuclear Information System (INIS)

    1992-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear, Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition

  9. Yucca Mountain Site Characterization Project technical data catalog

    International Nuclear Information System (INIS)

    1992-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition

  10. Geological evaluation of spent fuel storage and low-intermediate level radwaste disposal in the site of NPP candidate

    International Nuclear Information System (INIS)

    Sucipta; Yatim, S.; Martono, H.; Pudyo, A.

    1997-01-01

    Based on the consideration of techno-economy and environmental safety, the radioactive waste treatment installation (RWI), interim storage of spen fuel (ISSF) and low-intermediate level disposal shall be sited in the surrounding of NPP area. The land suitability of NPP's site candidate at Muria Peninsula as spent fuel storage and low-intermediate level radwaste disposal need to be studied. Site selection was conducted by overlay method and scoring method, and based on safety criteria which include geological and environmental aspects. Land evaluation by overlay method has given result a potential site which have highest suitable land at surrounding of borehole L-15 about 17.5 hectares. Land evaluation by scoring method has given result two land suitability classes, i.e. moderate suitability class (includes 14 borehole) and high suitability class, include borehole L-2, L-14 and L-15 (author)

  11. Characterization recommendations for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil

  12. A combinatorial characterization scheme for high-throughput investigations of hydrogen storage materials

    International Nuclear Information System (INIS)

    Hattrick-Simpers, Jason R; Chiu, Chun; Bendersky, Leonid A; Tan Zhuopeng; Oguchi, Hiroyuki; Heilweil, Edwin J; Maslar, James E

    2011-01-01

    In order to increase measurement throughput, a characterization scheme has been developed that accurately measures the hydrogen storage properties of materials in quantities ranging from 10 ng to 1 g. Initial identification of promising materials is realized by rapidly screening thin-film composition spread and thickness wedge samples using normalized IR emissivity imaging. The hydrogen storage properties of promising samples are confirmed through measurements on single-composition films with high-sensitivity (resolution <0.3 μg) Sievert's-type apparatus. For selected samples, larger quantities of up to ∼100 mg may be prepared and their (de)hydrogenation and micro-structural properties probed via parallel in situ Raman spectroscopy. Final confirmation of the hydrogen storage properties is obtained on ∼1 g powder samples using a combined Raman spectroscopy/Sievert's apparatus.

  13. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  14. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  15. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed

  16. Radioactive solid waste inventories at United States Department of Energy burial and storage sites

    International Nuclear Information System (INIS)

    Watanabe, T.

    1987-06-01

    Radioactive solid waste inventories are given for United States Department of Energy (DOE) burial and storage sites. These data are obtained from the Solid Waste Information Management System (SWIMS) and reflect the inventories as of the end of the calendar year 1986. 4 figs., 7 tabs

  17. Site characterization investigations at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ketelle, R.H.

    1985-01-01

    The geologic and geohydrologic characterization and assessment techniques currently used at ORNL are integrated into a systematic approach. The investigations are multi-faceted, and involve investigators with a variety of expertise. Characterization studies are designed to obtain the data requirements of pathways analysis and facility design in addition to the detailed site description. The approach effectively minimizes the redundancy and lack of coordination which often arise when the study is broken down into totally independent tasks. The geologic environment of the Oak Ridge Reservation is one of structural and stratigraphic complexity which requires a comprehensive and systematic approach to characterize. Recent characterization studies have included state-of-the-science techniques in the areas of unsaturated zone testing, geochemical tests to determine attenuation properties of soils, and numerical analyses of site performance. The results of these studies and analyses are changing the technology of shallow land burial by indicating that chemically stable waste forms are required to limit radionuclide migration to acceptable levels. 11 refs., 1 tab

  18. Niagara Falls Storage Site, Annual site environmental report, Lewiston, New York, Calendar year 1986: Surplus Facilities Management Program (SFMP)

    International Nuclear Information System (INIS)

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a US Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. The monitoring program at the NFSS measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 6% of the DOE radiation protection standard of 100 mrem/yr. By comparison, the incremental dose received from living in a brick house versus a wooden house is 10 mrem/yr above background. The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the NFSS is in compliance with the DOE radiation protection standard. 14 refs., 11 figs., 14 tabs

  19. Niagara Falls Storage Site, Annual site environmental report, Lewiston, New York, Calendar year 1986: Surplus Facilities Management Program (SFMP)

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a US Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. The monitoring program at the NFSS measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 6% of the DOE radiation protection standard of 100 mrem/yr. By comparison, the incremental dose received from living in a brick house versus a wooden house is 10 mrem/yr above background. The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the NFSS is in compliance with the DOE radiation protection standard. 14 refs., 11 figs., 14 tabs.

  20. 105-H Reactor Interim Safe Storage Project Final Report

    International Nuclear Information System (INIS)

    Ison, E.G.

    2008-01-01

    The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D and D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

  1. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area

  2. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-06-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

  3. Recent Experience Using Active Love Wave Techniques to Characterize Seismographic Station Sites

    Science.gov (United States)

    Martin, A. J.; Yong, A.; Salomone, L.

    2014-12-01

    Active-source Love waves recorded by the multi-channel analysis of surface wave (MASLW) technique were recently analyzed in two site characterization projects. Between 2010 and 2011, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 189 seismographic stations—185 in California and 4 in the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in the investigation it became evident that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not effective at characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. The MASLW technique was deployed at a total of 38 sites, in addition to other methods, and used as the primary technique to characterize 22 sites, 5 of which were also characterized using Rayleigh wave techniques. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites—the remaining 9 sites and 2 overlapping sites were characterized by University of Texas, Austin. Of the 24 sites characterized by GEOVision, 16 were characterized using MASLW data, 4 using both MASLW and MASRW data and 4 using MASRW data. Love wave techniques were often found to perform better, or at least yield phase velocity data that could be more readily modeled using the fundamental mode assumption, at shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in Love wave data. At such sites, it may be possible

  4. Site study plan for borehole search and characterization, Deaf Smith County Site, Texas: Revision 1

    International Nuclear Information System (INIS)

    1987-01-01

    This site study plan describes the Borehole Search and Characterization field activities to be conducted during the early stages of Site Characterization at the Deaf Smith County site, Texas. The field program has been designed to provide data useful in addressing information/data needs resulting from Federal/State/Local regulatory requirements and repository program requirements. Air and ground surveys, an extensive literature search, and landowner interviews will be conducted to locate wells within and adjacent to the proposed nuclear waste repository site in Deaf Smith County. Initially, the study will center around the planned Exploratory Shaft Facilities location and will expand outward from that location. Findings from this study may lead to preparation of a new site study plan to search suspected borehole locations, and excavate or reenter known boreholes for additional characterization or remedial action. The Salt Repository Project (SRP) Networks specify the schedule under which the program will operate. The Technical Field Services Contractor (TFSC) is responsible for conducting the field program. Data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that appropriate documentation is maintained. 13 refs., 6 figs., 3 tabs

  5. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  6. Analytical characterization of some pasteurized apple juices during storage

    Directory of Open Access Journals (Sweden)

    Damian Cristina

    2015-06-01

    Full Text Available The aim of the study was to assess the effect of three weeks of storage on the chemical and rheological properties of apple juices obtained from Idared and Jonatan apples variety. Total antioxidant activity, levels of bio-active compound groups and the viscosity were measured to characterize the investigated juices. The method applied for the determination of ascorbic acid concentration was with 2, 6-diclorophenolindophenol. Total phenols (TP in apple juices were determined using the Folin-Ciocalteau method and antioxidant activity by the use of DPPH free radical method. The viscosity of apple juices was investigated by a rotational viscometer, Brookfield viscometer (Brookfield Engineering Inc., Model RV-DV I Prime with RV spindles. During three weeks of storage, different rates of all measured properties have been observed decreasing for both studied apples varieties juices. The juices from Jonatan apples have higher antioxidant activities that are correlated with the higher content in polyphenols and lower values of viscosity.

  7. Reservoir characterization and final pre-test analysis in support of the compressed-air-energy-storage Pittsfield aquifer field test in Pike County, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1983-06-01

    The work reported is part of a field experimental program to demonstrate and evaluate compressed air energy storage in a porous media aquifer reservoir near Pittsfield, Illinois. The reservoir is described. Numerical modeling of the reservoir was performed concurrently with site development. The numerical models were applied to predict the thermohydraulic performance of the porous media reservoir. This reservoir characterization and pre-test analysis made use of evaluation of bubble development, water coning, thermal development, and near-wellbore desaturation. The work was undertaken to define the time required to develop an air storage bubble of adequate size, to assess the specification of instrumentation and above-ground equipment, and to develop and evaluate operational strategies for air cycling. A parametric analysis was performed for the field test reservoir. (LEW)

  8. Colonie Interim Storage Site: Annual site environmental report, Colonie, New York, Calendar year 1986: Formerly Utilized Sites Remedial Action Program (FUSRAP)

    International Nuclear Information System (INIS)

    1987-06-01

    During 1986, the environmental monitoring program continued at the Colonie Interim Storage Site (CISS), a US Department of Energy (DOE) facility located in Colonie, New York. The CISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has mandated DOE to remedy. As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action is being conducted at the site and at vicinity properties by Bechtel National Inc. (BNI), Project Management Contractor for FUSRAP. The environmental monitoring program is also carried out by BNI. The monitoring program at the CISS measures external gamma radiation levels as well as uranium and radium-226 concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess the potential effect of the site on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, the maximally exposed individual would receive an annual external exposure approximately equivalent to 5% of the DOE radiation protection standard of 100 mrem/y. Results of 1986 monitoring show that the CISS is in compliance with the DOE radiation protection standard. 14 refs., 9 figs., 9 tabs

  9. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed

  10. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  11. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  12. Vadose zone characterization of highly radioactive contaminated soil at the Hanford Site

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1993-05-01

    The Hanford Site in south-central Washington State contains over 1500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy has initiated a remedial investigation/feasibility study at the 200-BP-1 operable unit. The 200-BP-1 remedial investigation is the first Comprehensive Environmental Response, Compensation, and Liability Act of 1980 investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste site within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling the waste site, chemical and physical analysis of samples, and development of a conceptual vadose zone model. Predicted modeling concentrations compared favorably to analytical data collected during the initial characterization activities

  13. Characterization of the neutron sources storage pool of the Neutron Standards Laboratory, using Montecarlo Techniques

    International Nuclear Information System (INIS)

    Campo Blanco, X.

    2015-01-01

    The development of irradiation damage resistant materials is one of the most important open fields in the design of experimental facilities and conceptual nucleoelectric fusion plants. The Neutron Standards Laboratory aims to contribute to this development by allowing the neutron irradiation of materials in its calibration neutron sources storage pool. For this purposes, it is essential to characterize the pool itself in terms of neutron fluence and spectra due to the calibration neutron sources. In this work, the main features of this facility are presented and the characterization of the storage pool is carried out. Finally, an application is shown of the obtained results to the neutron irradiation of material.

  14. Plans for characterization of salt sites in the United States of America

    International Nuclear Information System (INIS)

    Heim, G.E.; Matthews, S.C.; Kircher, J.F.; Kennedy, R.K.

    1984-02-01

    The characterization plans presented in this paper are considered to be basic in nature and are the minimum program that meets project needs. The proposed basic program can be applied to any of the salt sites under consideration. It has been designed to provide the data required to support the design, performance assessment, and licensing of each of the principal project elements: the repository, the shafts, and the surface facilities. The work has been sequenced to meet the design and licensing schedule. It is anticipated that additional characterization activities will be performed to address site-specific considerations and to provide additional information to address questions which arise during the evaluation of characterization data. The information obtained during the characterization program will be incorporated into: the site characterization plan, the site recommendation report, the environmental impact statement, and the construction authorization application

  15. Priority and construction sites of water storage in a watershed in response to climate change

    Science.gov (United States)

    Lin, Cheng-Yu; Zhang, Wen-Yan; Lin, Chao-Yuan

    2014-05-01

    Taiwan is located at the Eastern Asia Monsoon climate zone. Typhoons and/or convectional rains occur frequently and result in high intensity storms in the summer season. Once the detention facilities are shortage or soil infiltration rate become worse in a watershed due to land use, surface runoff is easily to concentrate and threaten the protected areas. Therefore, it is very important to examine the functionality of water storage for a watershed. The purpose of this study is to solve the issue of flooding in the Puzi Creek. A case study of Yizen Bridge Watershed, in which the SCS curve number was used as an index to extract the spatial distribution of the strength of water storage, and the value of watershed mean CN along the main channel was calculated using area-weighting method. Therefore, the hotspot management sites were then derived and the priority method was applied to screen the depression sites for the reference of management authorities in detention ponds placement. The results show that the areas of subzone A with the characteristics of bad condition in topography and soil, which results in poor infiltration. However, the areas are mostly covered with forest and are difficult to create the artificial water storage facilities. Detention dams are strongly recommended at the site of depression in the river channel to decrease discharge velocity and reduce impact from flood disaster. The areas of subzone B are mainly located at the agriculture slope land. The topographic depressions in the farmland are the suitable places to construct the farm ponds for the use of flood detention and sediment deposition in the rainy seasons and irrigation in the dry seasons. Areas of subzone C are mainly occupied the gentle slope land with a better ability in water storage due to low CN value. Farm ponds constructed in the riparian to bypass the nearby river channel can create multifunctional wetland to effectively decrease the peak discharge in the downstream during

  16. Characterization plan for Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.; Dreier, R.B.; Huff, D.D.; Kelmers, A.D.; Kocher, D.C.; Lee, S.Y.; O'Donnell, F.R.; Pin, F.G.; Smith, E.D.

    1985-12-01

    Solid Waste Storage Area 6 (SWSA-6) is the only currently operating low-level radioactive waste (LLW) shallow land burial facility at the Oak Ridge National Laboratory. The US Department of Energy (DOE) recently issued DOE Order 5820.2, which provides new policy and guidelines for the management of radioactive wastes. To ensure that SWSA-6 complies with this Order it will be necessary to establish whether sufficient data on the geology, hydrology, soils, and climatology of SWSA-6 exist, and to develop plans to obtain any additional information required. It will also be necessary to establish a source term from the buried waste and provide geochemical information for hydrologic and dosimetric calculations. Where data gaps exist, methodology for obtaining this information must be developed. The purpose of this Plan is to review existing information on SWSA-6 and develop cost estimates and schedules for obtaining any required additional information. Routine operation of SWSA-6 was initiated in 1973, and it is estimated that about 29,100 m 3 (1,000,000 ft 3 ) of LLW containing about 250,000 Ci of radioactivity have been buried through 1984. Since SWSA-6 was sited prior to enactment of current disposal regulations, a detailed site survey of the geologic and hydrologic properties of the site was not performed before wastes were buried. However, during the operation of SWSA-6 some information on site characteristics has been collected

  17. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    International Nuclear Information System (INIS)

    Van Eeckhout, E.; Pope, P.; Becker, N.; Wells, B.; Lewis, A.; David, N.

    1996-01-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Las Cruces, New Mexico

  18. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    Science.gov (United States)

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  19. Corrective Action Investigation Plan for Corrective Action Unit 214: Bunkers and Storage Areas Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2003-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 214 under the Federal Facility Agreement and Consent Order. Located in Areas 5, 11, and 25 of the Nevada Test Site, CAU 214 consists of nine Corrective Action Sites (CASs): 05-99-01, Fallout Shelters; 11-22-03, Drum; 25-99-12, Fly Ash Storage; 25-23-01, Contaminated Materials; 25-23-19, Radioactive Material Storage; 25-99-18, Storage Area; 25-34-03, Motor Dr/Gr Assembly (Bunker); 25-34-04, Motor Dr/Gr Assembly (Bunker); and 25-34-05, Motor Dr/Gr Assembly (Bunker). These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). The suspected contaminants and critical analyte s for CAU 214 include oil (total petroleum hydrocarbons-diesel-range organics [TPH-DRO], polychlorinated biphenyls [PCBs]), pesticides (chlordane, heptachlor, 4,4-DDT), barium, cadmium, chronium, lubricants (TPH-DRO, TPH-gasoline-range organics [GRO]), and fly ash (arsenic). The land-use zones where CAU 214 CASs are located dictate that future land uses will be limited to nonresidential (i.e., industrial) activities. The results of this field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the corrective action decision document

  20. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  1. PUREX storage tunnels waste analysis plan

    International Nuclear Information System (INIS)

    Haas, C.R.

    1995-01-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX plant, as well as waste received from other on-site sources

  2. PUREX storage tunnels waste analysis plan

    International Nuclear Information System (INIS)

    Haas, C.R.

    1996-01-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources

  3. Radio-ecological characterization and radiological assessment in support of regulatory supervision of legacy sites in northwest Russia.

    Science.gov (United States)

    Sneve, M K; Kiselev, M; Shandala, N K

    2014-05-01

    The Norwegian Radiation Protection Authority has been implementing a regulatory cooperation program in the Russian Federation for over 10 years, as part of the Norwegian government's Plan of Action for enhancing nuclear and radiation safety in northwest Russia. The overall long-term objective has been the enhancement of safety culture and includes a special focus on regulatory supervision of nuclear legacy sites. The initial project outputs included appropriate regulatory threat assessments, to determine the hazardous situations and activities which are most in need of enhanced regulatory supervision. In turn, this has led to the development of new and updated norms and standards, and related regulatory procedures, necessary to address the often abnormal conditions at legacy sites. This paper presents the experience gained within the above program with regard to radio-ecological characterization of Sites of Temporary Storage for spent nuclear fuel and radioactive waste at Andreeva Bay and Gremikha in the Kola Peninsula in northwest Russia. Such characterization is necessary to support assessments of the current radiological situation and to support prospective assessments of its evolution. Both types of assessments contribute to regulatory supervision of the sites. Accordingly, they include assessments to support development of regulatory standards and guidance concerning: control of radiation exposures to workers during remediation operations; emergency preparedness and response; planned radionuclide releases to the environment; development of site restoration plans, and waste treatment and disposal. Examples of characterization work are presented which relate to terrestrial and marine environments at Andreeva Bay. The use of this data in assessments is illustrated by means of the visualization and assessment tool (DATAMAP) developed as part of the regulatory cooperation program, specifically to help control radiation exposure in operations and to support

  4. Wayne Interim Storage Site: Annual environmental report for calendar year 1990, Wayne, New Jersey

    International Nuclear Information System (INIS)

    1991-09-01

    Environmental monitoring of the US Department of Energy's (DOE) Wayne Interim Storage Site (WISS) (a National Priorities List site) and surrounding area began in 1984. WISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at WISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation exposure; and radium-226, thorium-232, and total uranium concentrations in surface water, sediment, and groundwater. Sediment samples were also analyzed for thorium-230, and several nonradiological parameters were measured in groundwater. 16 refs., 12 figs., 23 tabs

  5. GHGT-10 : Assessing the integrity of fault- and top seals at CO2 storage sites

    NARCIS (Netherlands)

    Orlic, B.; Heege J.H. ter; Wassing, B.

    2011-01-01

    Induced stress changes due to CO2 injection into geological reservoirs can mechanically damage bounding fault- and top seals creating preferential pathways for CO2 migration from the containment or trigger existing faults causing seismic activity at storage sites. In this paper we present

  6. Measurement techniques for radiological characterization of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M

    1996-09-18

    Once the decision is taken to characterize a contaminated site, appropriate measurement techniques must be selected. The choice will depend on the available information, on the nature and extent of the contamination, as well as on available resources (staff and budget). Some techniques are described on the basis of examples of characterization projects (e.g. Olen area in Belgium).

  7. Protecting subcontractor personnel during hazardous waste site characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lankford, B.R.

    1987-01-01

    This paper covers Industrial Hygiene involvement in the Site Characterization Program, focusing on the field oversight responsibilities. It discusses the different types and levels of protective equipment, gives an example of the type of situation that can arise from field characterization efforts, and gives a brief summary of health protection program elements. 3 figs., 3 tabs.

  8. Protecting subcontractor personnel during hazardous waste site characterization

    International Nuclear Information System (INIS)

    Lankford, B.R.

    1987-01-01

    This paper covers Industrial Hygiene involvement in the Site Characterization Program, focusing on the field oversight responsibilities. It discusses the different types and levels of protective equipment, gives an example of the type of situation that can arise from field characterization efforts, and gives a brief summary of health protection program elements. 3 figs., 3 tabs

  9. Corrective Action Decision Document for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2007-03-01

    This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 166, Storage Yards and Contaminated Materials, in accordance with the Federal Facility Agreement and Consent Order (1996). The corrective action sites (CASs) are located in Areas 2, 3, 5, and 18 of the Nevada Test Site, Nevada. Corrective Action Unit 166 is comprised of the following CASs: • 02-42-01, Cond. Release Storage Yd - North • 02-42-02, Cond. Release Storage Yd - South • 02-99-10, D-38 Storage Area • 03-42-01, Conditional Release Storage Yard • 05-19-02, Contaminated Soil and Drum • 18-01-01, Aboveground Storage Tank • 18-99-03, Wax Piles/Oil Stain The purpose of this CADD is to identify and provide the rationale for the recommendation of a corrective action alternative (CAA) for the seven CASs within CAU 166. Corrective action investigation (CAI) activities were performed from July 31, 2006, through February 28, 2007, as set forth in the CAU 166 Corrective Action Investigation Plan (NNSA/NSO, 2006).

  10. Probabilistic approaches for geotechnical site characterization and slope stability analysis

    CERN Document Server

    Cao, Zijun; Li, Dianqing

    2017-01-01

    This is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book not only provides new probabilistic approaches for geotechnical site characterization and slope stability analysis, but also tackles the difficulties in practical implementation of these approaches. In addition, this book also develops efficient Monte Carlo simulation approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment. These approaches and the software package are readily available to geotechnical practitioners and alleviate them from reliability computational algorithms. The readers will find useful information for a non-specialist to determine project-specific statistics of geotechnical properties and to perform probabilistic analysis of slope stability.

  11. Screening and identification of sites for a proposed Monitored Retrievable Storage Facility

    International Nuclear Information System (INIS)

    1985-04-01

    The Director, Office of Civilian Radioactive Waste Management (OCRWM), Department of Energy (DOE), has identified the Clinch River Breeder Reactor site, the DOE Oak Ridge Reservation and the Tennessee Valley Authority (TVA) Hartsville Nuclear Plant site as preferred and alternative sites, respectively, for development of site-specific designs as part of the proposal for construction of an integrated Monitored Retrievable Storage (MRS) Facility. The proposal, developed pursuant to Section 141 (b) of the Nuclear Waste Policy Act of 1982, will be submitted to Congress in January 1986. The Director expects to propose to Congress that an MRS be constructed at the perferred site. His judgment could change based on information to be developed between now and January 1986. The decision to construct an MRS facility and final site selection are reserved by Congress for itself. The Director's judgment is based on the results of a rigorous site screening and evaluation process described in this report. The three sites were selected from among eleven sites evaluated in detail. The Clinch River Breeder Reactor site, owned by the Tennessee Valley Authority, was identified as the preferred site. It has several particularly desirable features including: (1) federal ownership and control by the Department of Energy; (2) particularly good transportation access (five miles to the nearest interstate highway and direct rail access); (3) site characteristics and current data base judged by the NRC in 1983 as sufficient for granting a limited work authorization for the now cancelled breeder reactor; and (4) a technical community in the vicinity of site which can provide experienced nuclear facility support functions. 6 figs., 2 tabs

  12. Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1994-02-01

    The Special Projects Section (SPS) of Reynolds Electrical ampersand Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities

  13. Studies on site characterization methodologies for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Ju; Guo Yonghai; Chen Weiming

    2008-01-01

    This paper presents the final achievement of the project 'Studies of Site-specific Geological Environment for High Level Waste Disposal and Performance Assessment Methodology, Part Ⅰ: Studies on Site Characterization Methodologies for High Level Radioactive Waste Disposal', which is a 'Key Scientific and Technological Pre-Research Project for National Defense' during 2001-2005. The study area is Beishan area, Gansu Province, NW China--the most potential site for China's underground research laboratory and high level radioactive waste repository. The boreholes BS01, BS2, BS03 and BS04 drilled in fractured granite media in Beishan are used to conduct comprehensive studies on site characterization methodologies, including: bore hole drilling method, in situ measurement methods of hydrogeological parameters, underground water sampling technology, hydrogeochemical logging method, geo-stress measurement method, acoustic borehole televiewer measurement method, borehole radar measurement method, fault stability evaluation methods and rock joint evaluation method. The execution of the project has resulted in the establishment of an 'Integrated Methodological System for Site Characterization in Granite Site for High Level Radioactive Waste Repository' and the 8 key methodologies for site characterization: bore hole drilling method with minimum disturbance to rock mass, measurement method for hydrogeological parameters of fracture granite mass, in situ groundwater sampling methods from bore holes in fractured granite mass, fracture measurement methods by borehole televiewer and bore radar system, hydrogeochemical logging, low permeability measurement methods, geophysical methods for rock mass evaluation, modeling methods for rock joints. Those methods are comprehensive, advanced, innovative, practical, reliable and of high accuracy. The comprehensive utilization of those methods in granite mass will help to obtain systematic parameters of

  14. Subsurface characterization and geohydrologic site evaluation West Chestnut Ridge site

    International Nuclear Information System (INIS)

    1984-01-01

    The West Chestnut Ridge Site at the Oak Ridge National Laboratory is being considered for use as a repository for low-level radioactive waste. The purposes of this study were to provide a geohydrological characterization of the site for use in pathways analysis, and to provide preliminary geotechnical recommendations that would be used for development of a site utilization plan. Subsurface conditions were investigated at twenty locations and observation wells were installed. Field testing at each location included the Standard Penetration Test and permeability tests in soil and rock. A well pumping test was ocmpleted at one site. Laboratory testing included permeability, deformability, strength and compaction tests, as well as index and physical property tests. The field investigations showed that the subsurface conditions include residual soil overlying a weathered zone of dolomite which grades into relatively unweathered dolomite at depth. The thickness of residual soil is typically 80 ft (24 m) on the ridges, but can be as little as 10 ft (3 m) in the valleys. Trench excavations to depths of 30 ft (9 m) should not present serious slope stability problems above the water table. On-site soils can be used for liners or trench backfill but these soils may require moisture conditioning to achieve required densities. 19 figures, 8 tables

  15. Criteria and evaluation of shallow land burial sites

    International Nuclear Information System (INIS)

    Chandra, U.

    1986-01-01

    The criteria for shallow ground disposal of radioactive wastes as developed by Nuclear Regulatory Commission-US and International Atomic Energy Agency are discussed. Emphasis has been given to: elaboration of various basic components of a national Strategy for radioactive waste disposal; development of technical requirements; environmental standards, consensus among scientific community and public confidence. Aspects of site selection, evaluation/characterization and site suitability are dealt with. Some results of characterization of a site for tempory storage of low level solid radioactive wastes in Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/Sao Paulo are described. The methods used for hydrological characterization include use of artificial tritium for unsaturated zone and radioactive tracers like I-131, Cr 51 Cl 3 , Cr 51 EDTA, Br 82 for the saturated zone. (Author) [pt

  16. Criteria and evaluation of shallow land burial sites

    International Nuclear Information System (INIS)

    Chandra, U.

    1987-01-01

    The criteria for shallow ground disposal of radioactive wastes as developed by Nuclear Regulatory Comission-US and International Atomic Energy Agency are discussed. Emphasis has been given to: elaboration of various basic components of a national strategy for radioactive waste disposal; development of technical requirements; environmental standards, consensus among scientific community and public confidence. Aspects of site selection, evaluation/characterization and site suitability are dealt with. Some results of characterization of a site for temporary storage of low level solid radioactive wastes in Instituto de Pesquisas Energeticas e Nucleares - IPEN - CNEN/Sao Paulo are described. The methods used for hydrological characterization include use of artificial tritium for unsaturated zone and radioactive tracers like I - 131, Cr 51 Cl 3 , Cr 51 EDTA, Br 82 for the saturated zone. (Author) [pt

  17. Site-specific investigations of aquifer thermal energy storage for space and process cooling

    International Nuclear Information System (INIS)

    Brown, D.R.

    1991-01-01

    This paper reports on the Pacific Northwest Laboratory (PNL) that has completed three preliminary site-specific feasibility studies that investigated aquifer thermal energy storage (ATES) for reducing space and process cooling costs. Chilled water stored in an ATES system could be used to meet all or part of the process and/or space cooling loads at the three facilities investigated. Seasonal or diurnal chill ATES systems could be significantly less expensive than a conventional electrically-driven, load-following chiller system at one of the three sites, depending on the cooling water loop return temperature and presumed future electricity escalation rate. For the other two sites investigated, a chill ATES system would be economically competitive with conventional chillers if onsite aquifer characteristics were improved. Well flow rates at one of the sites were adequate, but the expected thermal recovery efficiency was too low. The reverse of this situation was found at the other site, where the thermal recovery efficiency was expected to be adequate, but well flow rates were too low

  18. A Remote Characterization System for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.; Martinson, L.

    1992-06-01

    This paper describes a development project that will provide new technology for characterizing hazardous waste burial sites. The project is a collaborative effort by five of the national laboratories, involving the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface

  19. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent

  20. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Cox, D. H.

    2000-01-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved

  1. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2000-07-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved.

  2. 1994 Characterization report for the state approved land disposal site

    International Nuclear Information System (INIS)

    Swanson, L.C.

    1994-01-01

    This report summarizes the results of characterization activities at the proposed state-approved land disposal site (SALDS); it updates the original characterization report with studies completed since the first characterization report. The initial characterization report discusses studies from two characterization boreholes, 699-48-77A and 699-48-77B. This revision includes data from implementation of the Groundwater Monitoring Plan and the Aquifer Test Plan. The primary sources of data are two down-gradient groundwater monitoring wells, 699-48-77C and 699-48-77D, and aquifer testing of three zones in well 699-48-77C. The SALDS is located on the Hanford Site, approximately 183 m north of the 200 West Area on the north side of the 200 Areas Plateau. The SALDS is an infiltration basin proposed for disposal of treated effluents from the 200 Areas of Hanford

  3. An object-oriented approach to site characterization decision support

    International Nuclear Information System (INIS)

    Johnson, R.

    1995-01-01

    Effective decision support for site characterization is key to determining the nature and extent of contamination and the associated human and environmental risks. Site characterization data, however, present particular problems to technical analysts and decision-makers. Such data are four dimensional, incorporating temporal and spatial components. Their sheer volume can be daunting -- sites with hundreds of monitoring wells and thousands of samples sent for laboratory analyses are not uncommon. Data are derived from a variety of sources including laboratory analyses, non-intrusive geophysical surveys, historical information, bore logs, in-field estimates of key physical parameters such as aquifer transmissivity, soil moisture content, depth-to-water table, etc. Ultimately, decisions have to be made based on data that are always incomplete, often confusing, inaccurate, or inappropriate, and occasionally wrong. In response to this challenge, two approaches to environmental decision support have arisen, Data Quality Objectives (DQOS) and the Observational Approach (OA). DQOs establish criteria for data collection by clearly defining the decisions that need to be made, the uncertainty that can be tolerated, and the type and amount of data that needs to be collected to satisfy the uncertainty requirements. In practice, DQOs are typically based on statistical measures. The OA accepts the fact that the process of characterizing and remediating contaminated sites is always uncertain. Decision-making with the OA is based on what is known about a site, with contingencies developed for potential future deviations from the original assumptions about contamination nature, extent, and risks posed

  4. Storage - Nuclear wastes are overflowing

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2016-01-01

    This article highlights that the dismantling of French nuclear installations will generate huge volumes of radioactive wastes and that France may lack space to store them. The Cigeo project (underground storage) only concerns 0.2 per cent of the nuclear waste volume produced by France in 50 years. If storage solutions exist for less active wastes, they will soon be insufficient, notably because of the quantity of wastes produced by the dismantling of existing reactors and fuel processing plants. Different assessments of these volumes are evoked. In order to store them, the ANDRA made a second call for innovating projects which would enable a reduction of this volume by 20 to 30 per cent. The article also evokes projects selected after the first call for projects. They mainly focus on nuclear waste characterization which will result in a finer management of wastes regarding their storage destination. Cost issues and the opposition of anti-nuclear NGOs are still obstacles to the development of new sites

  5. Revised analysis of in-migrating workers during site characterization

    International Nuclear Information System (INIS)

    1987-10-01

    The Deaf Smith Environmental Assessment's analysis of in-migrating workers and community service impacts was predicated on the assumption that a peak of approximately 480 workers would be needed on location to conduct site characterization activities. This analysis assumed that DOE's prime contractor(s) would have a limited staff in the area; the majority of the workers would be on site for the construction of the exploratory shaft and to conduct geologic and environmental studies. Since the time when the Environmental Assessment was prepared, the prime contractors [Battelle-ISSC and the Technical Field Service Contractor (TFSC)] were requested to move their offices to the site area. Therefore, many more administrative and technical workers would be expected to relocate in the Deaf Smith County regions. A change in the expected number of in-migrants could also change the expected nature of community service impacts. It is the purpose of this analysis to evaluate the site characterization workforce and thresholds for local community services. 22 refs., 24 tabs

  6. Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net

    Science.gov (United States)

    Poggi, V.; Burjanek, J.; Michel, C.; Fäh, D.

    2017-08-01

    The Swiss Seismological Service (SED) has recently finalised the installation of ten new seismological broadband stations in northern Switzerland. The project was led in cooperation with the National Cooperative for the Disposal of Radioactive Waste (Nagra) and Swissnuclear to monitor micro seismicity at potential locations of nuclear-waste repositories. To further improve the quality and usability of the seismic recordings, an extensive characterization of the sites surrounding the installation area was performed following a standardised investigation protocol. State-of-the-art geophysical techniques have been used, including advanced active and passive seismic methods. The results of all analyses converged to the definition of a set of best-representative 1-D velocity profiles for each site, which are the input for the computation of engineering soil proxies (traveltime averaged velocity and quarter-wavelength parameters) and numerical amplification models. Computed site response is then validated through comparison with empirical site amplification, which is currently available for any station connected to the Swiss seismic networks. With the goal of a high-sensitivity network, most of the NAGRA stations have been installed on stiff-soil sites of rather high seismic velocity. Seismic characterization of such sites has always been considered challenging, due to lack of relevant velocity contrast and the large wavelengths required to investigate the frequency range of engineering interest. We describe how ambient vibration techniques can successfully be applied in these particular conditions, providing practical recommendations for best practice in seismic site characterization of high-velocity sites.

  7. Baseline and premining geochemical characterization of mined sites

    Science.gov (United States)

    Nordstrom, D. Kirk

    2015-01-01

    A rational goal for environmental restoration of new, active, or inactive mine sites would be ‘natural background’ or the environmental conditions that existed before any mining activities or other related anthropogenic activities. In a strictly technical sense, there is no such thing as natural background (or entirely non-anthropogenic) existing today because there is no part of the planet earth that has not had at least some chemical disturbance from anthropogenic activities. Hence, the terms ‘baseline’ and ‘pre-mining’ are preferred to describe these conditions. Baseline conditions are those that existed at the time of the characterization which could be pre-mining, during mining, or post-mining. Protocols for geochemically characterizing pre-mining conditions are not well-documented for sites already mined but there are two approaches that seem most direct and least ambiguous. One is characterization of analog sites along with judicious application of geochemical modeling. The other is reactive-transport modeling (based on careful synoptic sampling with tracer-injection) and subtracting inputs from known mining and mineral processing. Several examples of acidic drainage are described from around the world documenting the range of water compositions produced from pyrite oxidation in the absence of mining. These analog sites provide insight to the processes forming mineralized waters in areas untouched by mining. Natural analog water-chemistry data is compared with the higher metal concentrations, metal fluxes, and weathering rates found in mined areas in the few places where comparisons are possible. The differences are generally 1–3 orders of magnitude higher for acid mine drainage.

  8. On-site storage of spent nuclear fuel assemblies in German nuclear power plants

    International Nuclear Information System (INIS)

    Banck, J.

    1999-01-01

    The selection of back-end strategies for spent fuel assemblies is influenced by a number of different factors depending on the given situation in any specific country. In Germany, the back-end strategy implemented in the past was almost exclusively reprocessing. This strategy was required by the German Atomic Energy Act. Since 1994, when the Atomic Energy Act was amended, the option of direct final disposal has been granted the equivalent status by law to that afforded to reprocessing (and reuse of valuable materials). As a result, German utilities may now choose between these two alternatives. Another important condition for optimizing the back-end policy is the fact that fuel cycle costs in Germany are directly dependent on spent fuel volumes (in contrast to the US, for example, such costs are related to the amount of power generated). Another boundary condition for German utilities with respect to spent fuel management is posed by the problems with militant opponents of nuclear energy during transportation of spent fuel to interim storage sites. These facts have given rise to a reconsideration of the fuel cycle back-end, which has resulted in a change in strategy by most German utilities in favour of the following: Preference for long-term storage and maximized use of on-site storage capacity; Reduction in the amount of spent fuel by increasing burnup as much as possible. These decisions have also been driven by the deregulation of energy markets in Europe, where utilities are now permitted to sell electric power to consumers beyond their original supply network and must therefore offer electric power on a very cost competitive basis. (author)

  9. A new ground-penetrating radar system for remote site characterization

    International Nuclear Information System (INIS)

    Davis, K.C.; Sandness, G.A.

    1994-08-01

    The cleanup of waste burial sites and military bombing ranges involves the risk of exposing field personnel to toxic chemicals, radioactive materials, or unexploded munitions. Time-consuming and costly measures are required to provide protection from those hazards. Therefore, there is a growing interest in developing remotely controlled sensors and sensor platforms that can be employed in site characterization surveys. A specialized ground-penetrating radar has been developed to operate on a remotely controlled vehicle for the non-intrusive subsurface characterization of buried waste sites. Improved radar circuits provide enhanced performance, and an embedded microprocessor dynamically optimizes operation. The radar unit is packaged to survive chemical contamination and decontamination

  10. Initial ORNL site assessment report on the storage of 233U

    International Nuclear Information System (INIS)

    Bereolos, P.J.; Yong, L.K.; Sadlowe, A.R.; Ramey, D.W.; Krichinsky, A.M.

    1998-03-01

    The 233 U storage facility at ORNL is Building 3019. The inventory stored in Building 3019 consists of 426.5 kg of 233 U contained in 1,387.1 kg of total uranium. The inventory is primarily in the form of uranium oxides; however, uranium metal and other compounds are also stored. Over 99% of the inventory is contained in 1,007 packages stored in tube vaults within the facility. A tank of thorium nitrate solution, the P-24 Tank, contains 0.13 kg of 233 U in ∼ 4,000 gal. of solution. The facility is receiving additional 233 U for storage from the remediation of the Molten Salt Reactor Experiment (MSRE) at ORNL. Consolidation of material from sites with small holdings is also adding to the 233 U inventory. Additionally, small quantities ( 233 U are in other research facilities at ORNL. A risk assessment process was chosen to evaluate the stored material and packages based on available package records. The risk scenario was considered the failure of a package (or a group of similar packages) in the Building 3019 inventory. The probability of such a failure depends on packaging factors such as the age and material of construction of the containers. The consequence of such a failure depends on the amount and form of the material within the packages. One thousand seven packages were categorized with this methodology resulting in 859 low-risk packages, 147 medium-risk packages, and 1 high-risk package. This initial assessment also documents the status of the evaluation of the Building 3019 and its systems for safe storage of 233 U. The final assessment report for ORNL storage of 233 U is scheduled for June 1999. The report will document the facility assessments, the specific package inspection plan, and the results of initial package inspections

  11. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  12. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  13. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Lee

    2005-09-15

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  14. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    International Nuclear Information System (INIS)

    Lee, T.A.

    2005-01-01

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  15. Use of artificial barriers in a site for surface storage of radioactive waste

    International Nuclear Information System (INIS)

    Gros, J.C.; Madoz-Escande, C.; Metivier, J.M.; Grimaud, P.

    1990-01-01

    The objective is the on site study of the influence of an injection screen on the flow in a water table of a porous medium, in order to improve the safety of a surface radioactive waste storage site. A hydrodispersive study has provided information for the definition of the role of the screen: the transfer times of the pollutant in the water table are increased by a factor of 2 and, in comparison, the concentration are clearly reduced by a factor of 10. The implantation of an injection screen in the ground should result in an improvement in the restrictive quality of the barrier and the contamination of an aquifer should be slower without interruption to the flow

  16. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs

  17. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

  18. Environmental impact assessment of decommissioning treatment about radioactive model plant waste ore storage site

    International Nuclear Information System (INIS)

    Bei Xinyu

    2012-01-01

    Aiming at decommissioning treatment project of radioactive model plant waste ore storage site, based on the detailed investigations of source terms and project description, systematic environmental impacts have been identified. The environmental impacts both during decommissioning treatment, radioactive waste transportation and after treatment are assessed. Some specific environmental protection measures are proposed so as to minimize the adverse environmental impacts. (author)

  19. Niagara Falls Storage Site environmental report for calendar year 1989, Lewiston, New York

    International Nuclear Information System (INIS)

    1990-05-01

    The environmental monitoring program, which began in 1981, was continued during 1989 at the Niagara Falls Storage Site (NFSS), a United States Department of Energy (DOE) surplus facility located in Niagara County, New York, that is currently used for interim storage of radioactive residues, contaminated soils, and rubble. The monitoring program is being conducted by Bechtel National, Inc. The monitoring program at NFSS measures radon concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the conservative scenario described in this report, this hypothetical individual receives an annual external exposure equivalent to approximately 2 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than a person receives during a one-way flight from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of NFSS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. Results of the 1989 monitoring show that NFSS is in compliance with applicable DOE radiation protection standards. 18 refs., 26 figs., 18 tabs

  20. Site-specific issues related to structural/seismic design of an underground independent spent fuel storage installation (ISFSI)

    International Nuclear Information System (INIS)

    Tripathi, B.P.

    2005-01-01

    Utilities owning and operating commercial nuclear power plants (NPP) in USA may choose to build an underground Independent Spent Fuel Storage Installation (ISFSI) to store the spent nuclear fuels. The regulatory requirements and other guidance are based on 10 CFR Part 72, Regulatory Guide RG 3.73, Standard Review Plans NUREG-1536 and NUREG-1567, and Interim staff Guidance (ISG) documents as applicable. Structures, Systems, and Components (SSCs) classified as important to safety are designed to withstand the effects of site-specific environmental conditions and natural phenomena such as earthquake, tornado, flood, etc. An underground ISFSI for storage of spent nuclear fuel, presents some unique analysis and design challenges. This paper will briefly address some of these challenges and discuss site-specific loads, including seismic for the ISFSI design. (authors)

  1. SiteChar. Characterisation of European CO2 storage. Deliverable D8.1. Qualitative and quantitative social site characterisations

    Energy Technology Data Exchange (ETDEWEB)

    Brunsting, S.; Pol, M.; Paukovic, M. [ECN Policy Studies, Energy research Centre of the Netherlands ECN, Amsterdam (Netherlands); Kaiser, M.; Zimmer, R. [Unabhaengiges Institut fuer Umweltfragen UfU, Berlin (Germany); Shackley, S.; Mabon, L. [Scottish Carbon Capture and Storage SCCS, Edinburg, Scotland (United Kingdom); Hepplewhite, F.; Loveridge, R. [Energy Markets Unit, Scottish Government, Edinburg, Scotland (United Kingdom); Mazurowski, M.; Polak-Osiniak, D. [Polish Oil and Gas Company PGNiG, Warszawa (Poland); Rybicki, C. [AGH University of Science and Technology, Krakow (Poland)

    2012-10-15

    At local level, public support has proven crucial to the implementation of CO2 capture and storage (CCS) demonstration projects. Whereas no method exists to guarantee public acceptability of any project, a constructive stakeholder engagement process does increase the likelihood thereof. Social site characterisation can be used as an instrument to explore, plan and evaluate a process of active and constructive local stakeholder engagement in a prospective CCS project as a parallel activity to technical site characterisation. It roughly consists of a formative research phase to get acquainted with the area followed by a series of public information and engagement activities. This deliverable presents results from the first phase for the social site characterisations of a prospective CCS site in Poland (onshore) and the UK (offshore), using qualitative as well as quantitative research methods, as a first step to planning of local public engagement activities and evaluation of these activities that will be undertaken by this consortium at both sites in the near future. Although the term social site characterisation actually refers to the entire process of formative research and subsequent public outreach, and hence to the complete package of awareness work undertaken as part of SiteChar, in the present deliverable the term only refers to the formative research activities as undertaken up to now and as described in this deliverable. The qualitative part of the social site characterisation consisted of (1) a description of relevant social site characteristics such as local history; (2) interviews with relevant local stakeholders; (3) a media analysis of local newspapers. The quantitative part of the social site characterisation consisted of surveys using representative samples to characterise the local population in terms of awareness, knowledge and perceptions of CCS, felt involvement in decision making, extent of local activism, level of trust in representatives and

  2. The Niagara Falls Storage Site Remedial Action Project. Status update and summary of special features

    International Nuclear Information System (INIS)

    Campbell, L.F.; Coxon, G.D.

    1986-01-01

    The U.S. Department of Energy (DOE) and its Project Management Contractor, Bechtel National, Inc., are conducting remedial action at the Niagara Falls Storage Site (NFSS) near Lewiston, New York to stabilize low-level radioactive wastes stored at the site and to decontaminate over two dozen contaminated vicinity properties. Over the past 4 years a 10-acre interim waste containment facility has been developed at the site to hold the approximately 250,000 yd/sup 3/ of contaminated soil and rubble from the cleanup operations. Several existing buildings were demolished or modified for burial inside the containment area. In addition, residues inside a 165-ft-high concrete tower were transferred to one of the buildings inside the containment area using hydraulic mining techniques. The residues were dewatered and covered with clay to minimize radom emanation; the tower was demolished and the rubble disposed of in the containment area. Environmental monitoring will continue throughout the interim storage period. In addition, the surface and subsurface condition of the containment structure will be monitored to ensure that undesirable trends are detected in time for corrective action to be taken. The DOE Record of Decision on the long-term disposition of the NFSS is expected to be made by the end of April, 1986

  3. Progress and future direction for the interim safe storage and disposal of Hanford high level waste (HLW)

    International Nuclear Information System (INIS)

    Wodrich, D.D.

    1996-01-01

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the US DOE and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described

  4. The search for a storage site for low-level and long-life wastes. December 2008 report

    International Nuclear Information System (INIS)

    2008-01-01

    After having recalled the methodology and approach implemented for the search and selection of radioactive waste storage sites, this report proposes a brief synthesis of contacts taken during the call for candidates. It comments the results of this call, describes the project technical constraints (waste inventory, studied solutions, graphite and radiferous wastes, programmed investigations on preselected sites), gives the results of the geological analysis (methodology, geological context, site ranking), of the environmental analysis (context and principles, collected information), and of the socio-economic analysis of the candidate sites. The last chapter discusses the identification of possible preselected sites. Some more detailed information are available in appendix: candidate list, geological sheets and maps, environmental and socio-economic analysis of candidate towns or districts

  5. Structural acceptance criteria for the evaulation of existing double-shell waste storage tanks located at the Hanford site, Richland, Washington

    International Nuclear Information System (INIS)

    Julyk, L.J.; Day, A.D.; Dyrness, A.D.; Moore, C.J.; Peterson, W.S.; Scott, M.A.; Shrivastava, H.P.; Sholman, J.S.; Watts, T.N.

    1995-09-01

    The structural acceptance criteria contained herein for the evaluation of existing underground double-shell waste storage tanks located at the Hanford Site is part of the Life Management/Aging Management Program of the Tank Waste Remediation System. The purpose of the overall life management program is to ensure that confinement of the waste is maintained over the required service life of the tanks. Characterization of the present condition of the tanks, understanding and characterization of potential degradation mechanisms, and development of tank structural acceptance criteria based on previous service and projected use are prerequisites to assessing tank integrity, to projecting the length of tank service, and to developing and applying prudent fixes or repairs. The criteria provided herein summarize the requirements for the analysis and structural qualification of the existing double-shell tanks for continued operation. Code reconciliation issues and material degradation under aging conditions are addressed. Although the criteria were developed for double-shell tanks, many of the provisions are equally applicable to single-shell tanks. However, the criteria do not apply to the evaluation of tank appurtenances and buried piping

  6. Dry spent fuel storage licensing

    International Nuclear Information System (INIS)

    Sturz, F.C.

    1995-01-01

    In the US, at-reactor-site dry spent fuel storage in independent spent fuel storage installations (ISFSI) has become the principal option for utilities needing storage capacity outside of the reactor spent fuel pools. Delays in the geologic repository operational date at or beyond 2010, and the increasing uncertainty of the US Department of Energy's (DOE) being able to site and license a Monitored Retrievable Storage (MRS) facility by 1998 make at-reactor-site dry storage of spent nuclear fuel increasingly desirable to utilities and DOE to meet the need for additional spent fuel storage capacity until disposal, in a repository, is available. The past year has been another busy year for dry spent fuel storage licensing. The licensing staff has been reviewing 7 applications and 12 amendment requests, as well as participating in inspection-related activities. The authors have licensed, on a site-specific basis, a variety of dry technologies (cask, module, and vault). By using certified designs, site-specific licensing is no longer required. Another new cask has been certified. They have received one new application for cask certification and two amendments to a certified cask design. As they stand on the brink of receiving multiple applications from DOE for the MPC, they are preparing to meet the needs of this national program. With the range of technical and licensing options available to utilities, the authors believe that utilities can meet their need for additional spent fuel storage capacity for essentially all reactor sites through the next decade

  7. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  8. Survey of geophysical techniques for site characterization in basalt, salt and tuff

    International Nuclear Information System (INIS)

    Jones, G.M.; Blackey, M.E.; Rice, J.E.; Murphy, V.J.; Levine, E.N.; Fisk, P.S.; Bromery, R.W.

    1987-07-01

    Geophysical techniques may help determine the nature and extent of faulting in the target areas, along with structural information that would be relevant to questions concerning the future integrity of a high-level-waste repository. Chapters focus on particular geophysical applications to four rock types - basalt, bedded salt, domal salt and tuff - characteristic of the sites originally proposed for site characterization. No one geophysical method can adequately characterize the geological structure beneath any site. The seismic reflection method, which is generally considered to be the most incisive of the geophysical techniques, has to date provided only marginal information on structure at the depth of the proposed repository at the Hanford, Washington, site, and no useful results at all at the Yucca Mountain, Nevada, site. This result is partially due to geological complexity beneath these sites, but may also be partially attributed to the use of inappropriate acquisition and processing parameters. To adequately characterize a site using geophysics, modifications will have to be made to standard techniques to emphasize structural details at the depths of interest. 137 refs., 43 figs., 4 tabs

  9. Characterization of biogas bibliography measures on sites; Caracterisation des Biogaz bibliographie mesures sur sites

    Energy Technology Data Exchange (ETDEWEB)

    Poulleau, J.

    2002-10-15

    The aim of this study is to define the pollutants emissions related to the combustion of biogas of different sources: motors, furnaces, flares...The project is presented in three parts: a bibliographic study on the chemical characterization of the biogas, a first series of measures on production sites and a second series of measures on a site of valorization and destruction of biogas. (A.L.B.)

  10. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  11. Hanford Site National Environmental Policy Act (NEPA) Characterization

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided

  12. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems

    DEFF Research Database (Denmark)

    Patil, Ravi; Colls, Jeremy J; Steven, Michael D

    2010-01-01

    Carbon capture and storage in geological formations has potential risks in the long-term safety because of the possibility of CO2 leakage. Effects of leaking gas, therefore, on vegetation, soil, and soil-inhabiting organisms are critical to understand. An artificial soil gassing and response...... detection field facility developed at the University of Nottingham was used to inject CO2 gas at a controlled flow rate (1 l min-1) into soil to simulate build-up of soil CO2 concentrations and surface fluxes from two land use types: pasture grassland, and fallow followed by winter bean. Mean soil CO2....... This study showed adverse effects of CO2 gas on agro-ecosystem in case of leakage from storage sites to surface....

  13. An economic analysis of a monitored retrievable storage site for Tennessee. Final report and appendices

    Energy Technology Data Exchange (ETDEWEB)

    Fox, W.F.; Mayo, J.W.; Hansen, L.T.; Quindry, K.E.

    1985-12-17

    The United States Department of Energy is charged with the task of identifying potential sites for a Monitored Retrievable Storage (MRS) Facility and reporting the results of its analysis to Congress by January 1986. DOE chose three finalist sites from 11 sites DOE analysts evaluated earlier. All three are in Tennessee, including two in Oak Ridge and one in Trousdale/Smith Counties. This paper is a summary of research undertaken on the economic effects of establishing the MRS facility in Tennessee. All three locations were considered in the analysis, but on some occasions attention is focused on the site preferred by DOE. The research was undertaken by the Center for Business and Economic Research (CBER), College of Business Administration, the University of Tennessee, Knoxville, under contract with the Tennessee Department of Economic and Community Development.

  14. Site characterization and site response in Port-au-Prince, Haiti

    Science.gov (United States)

    Hough, Susan E.; Yong, Alan K.; Altidor, Jean Robert; Anglade, Dieuseul; Given, Douglas D.; Mildor, Saint-Louis

    2011-01-01

    Waveform analysis of aftershocks of the Mw7.0 Haiti earthquake of 12 January 2010 reveals amplification of ground motions at sites within the Cul de Sac valley in which Port-au-Prince is situated. Relative to ground motions recorded at a hard-rock reference site, peak acceleration values are amplified by a factor of approximately 1.8 at sites on low-lying Mio-Pliocene deposits in central Port-au-Prince and by a factor of approximately 2.5–3 on a steep foothill ridge in the southern Port-au-Prince metropolitan region. The observed amplitude, predominant periods, variability, and polarization of amplification are consistent with predicted topographic amplification by a steep, narrow ridge. A swath of unusually high damage in this region corresponds with the extent of the ridge where high weak-motion amplifications are observed. We use ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery to map local geomorphology, including characterization of both near-surface and of small-scale topographic structures that correspond to zones of inferred amplification.

  15. Integrated test plan for crosswell compressional and shear wave seismic tomography for site characterization at the VOC Arid Site

    International Nuclear Information System (INIS)

    Elbring, G.J.; Narbutovskih, S.M.

    1994-01-01

    This integrated test plan describes the demonstration of the crosswell acoustic tomography technique as part of the Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID). The purpose of this demonstration is to image the subsurface seismic velocity structure and to relate the resulting velocity model to lithology and saturation. In fiscal year (FY) 1994 an initial fielding will test three different downhole sources at two different sites at the Hanford US Department of Energy facility to identify which sources will provide the energy required to propagate between existing steel-cased wells at these two sites. Once this has been established, a second fielding will perform a full compressional and shear wave tomographic survey at the most favorable site. Data reduction, analysis, and interpretation of this full data set will be completed by the end of this fiscal year. Data collection for a second survey will be completed by the end of the fiscal year, and data reduction for this data set will be completed in FY 1995. The specific need is detailed subsurface characterization with minimum intrusion. This technique also has applications for long term vadose zone monitoring for both Resource Conservation and Recovery Act (RCRA) waste storage facilities and for remediation monitoring. Images produced are continuous between boreholes. This is a significant improvement over the single point data derived solely from core information. Saturation changes, either naturally occurring (e.g., perched water tables) or remediation induced (e.g., water table mounding from injection wells or during inwell air sparging) could be imaged. These crosswell data allow optimal borehole placement for groundwater remediation, associated monitoring wells and possibly evaluation of the effective influence of a particular remediation technique

  16. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  17. Potential for a process-based monitoring method above geologic carbon storage sites using dissolved gases in freshwater aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Romanak, Katherine [Gulf Coast Carbon Center, Bureau of Economic Geology, The University of Texas at Austin, TX 78713 (United States); Dobeck, Laura; Spangler, Lee [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Dixon, Tim [IEA Greenhouse Gas R and D Programme, Cheltenham GL52 7RZ (United Kingdom)

    2013-07-01

    The process-based method is a new technique for monitoring CO{sub 2} storage permanence in the vadose zone above geologic carbon storage (GCS) sites. This method uses ratios of coexisting gas species to understand geochemical processes rather than comparing CO{sub 2} concentrations with large baseline data sets, thereby making monitoring more efficient. In the vadose zone, ratios among coexisting gases (CO{sub 2}, O{sub 2}, N{sub 2} and CH{sub 4}) have been used to distinguish biologic respiration, water-rock-CO{sub 2} interaction, and methane oxidation from a leakage signal. We report the preliminary results of a feasibility test conducted in July 2012 at the Zero Emission Research and Technology Center (ZERT) controlled release site in Montana, USA to discern whether the method could be applied to dissolved gases in groundwater, thereby enhancing groundwater monitoring. Preliminary results are favorable, making the process-based approach potentially useful for monitoring shallow freshwater aquifers above GCS sites. (authors)

  18. Physical chemistry characterization of soils of the Storage Center of Radioactive Wastes

    International Nuclear Information System (INIS)

    Hernandez T, U. O.; Fernandez R, E.; Monroy G, F.; Anguiano A, J.

    2011-11-01

    Any type of waste should be confined so that it does not causes damage to the human health neither the environment and for the storage of the radioactive wastes these actions are the main priority. In the Storage Center of Radioactive Wastes the radioactive wastes generated in Mexico by non energy applications are storage of temporary way. The present study is focused in determining the physical chemistry properties of the lands of the Storage Center of Radioactive Wastes like they are: real density, ph, conductivity percentage of organic matter and percentage of humidity. With what is sought to make a characterization to verify the reaction capacity of the soils in case of a possible flight of radioactive material. The results show that there are different density variations, ph and conductivity in all the soil samples; the ph and conductivity vary with regard to the contact time between the soil and their saturation point in water, for the case of the density due to the characteristics of the same soil; for what is not possible to establish a general profile, but is necessary to know the properties of each soil type more amply. Contrary case is the content of organic matter and humidity since both are in minor proportions. (Author)

  19. Groundwater geochemistry near the storage sites of low-level radioactive waste: Implications for uranium migration

    Energy Technology Data Exchange (ETDEWEB)

    Gaskova, Olga L.; Boguslavsky, Anatoly E. [Institute of Geology and Mineralogy SB RAS, Ac. Koptyug prosp. 3, Novosibirsk 630090 (Russian Federation)

    2013-07-01

    This paper presents results of detailed sampling of groundwater and surface water near the storage sites of radioactive waste from the Electrochemical Plant ECP (Zelenogorsk, Krasnoyarsk region, Russia) and the Angarsk Electrolysis Chemical Complex AEC (Angarsk, Irkutsk region, Russia), both of which have produced enriched uranium since 1960's. The liquid (LRW) and solid (SRW) radioactive wastes belong to the category of low-level activity waste. The main result is that the uranium is below the recommended MPC for drinking waters in all types of groundwater around the sludge of ECP and AEC. But alkaline nitrate solutions have been penetrating and spreading into the aquifers under the LRW sludge pits. According to our calculations, redox conditions in the groundwater influenced by discharge are controlled by the couple NO{sub 3}{sup -}/NO{sub 2}{sup -} that facilitates U(VI) migration. The groundwater under SRW repositories is distinguished by its low mineralization and neutral pH. Co-contaminants, such as Mo, V, and Zr may serve as markers of techno-genous contamination in storage sites of the LRW sludge. (authors)

  20. Perspectives on innovative characterization and remediation technologies for contaminated sites

    International Nuclear Information System (INIS)

    Kovalick, W.W. Jr.

    2002-01-01

    Contaminated soil and groundwater have been the subject of legislative attention in the U.S. for about 20 years. Major strides in implementing cleanup programs have been accomplished. From complex abandoned hazardous waste sites to underground petroleum storage tanks to (more recently) Brownfields redevelopment, much assessment and remediation work have been carried out. This paper describes some of the data on the kinds of contamination, media, and technologies deployed to deal with problems at these sites. In addition, it highlights technology partnerships that have evolved to demonstrate and verify site measurement and clean-up technologies and to assure a more robust set of clean-up options. Finally, the advent of the Internet has increased access to a considerable body of publicly available information on the cost and performance of these technologies that might be of interest. (author)

  1. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  2. Post-decontamination and dismantlement (D ampersand D) characterization report for CFA-669 site

    International Nuclear Information System (INIS)

    Smith, D.L.

    1995-01-01

    This report presents results of post-decontamination and dismantling (D ampersand D) characterization surveys performed by EG ampersand G Idaho, Inc. (EG ampersand G Idaho), at Central Facilities Area (CFA)-669, which was the Hot Laundry Facility. The site was characterized to determine and document the radiological and chemical conditions of the site following D ampersand D and to determine if the site satisfies the release criteria. Constructed in 1950, CFA-669 served as the ''hot'' and ''cold'' laundry for Idaho National Engineering Laboratory site contractors until the boiler exploded in 1981. The building was shut down at that time. Before D ampersand D activities began in 1992, the facility was characterized and the results documented. D ampersand D activities were completed in July 1994. The post-D ampersand D radiological characterization consisted of radiation measurements and analyses of soil samples to identify man-made radionuclides and determine the specific activity of each sample. The chemical characterization consisted of toxicity characterization leaching procedure (TCLP) analysis for metals and for volatile and semivolatile organic contamination

  3. Comprehensive Characterization a Tidal Energy Site (Invited)

    Science.gov (United States)

    Polagye, B. L.; Thomson, J. M.; Bassett, C. S.; Epler, J.; Northwest National Marine Renewable Energy Center

    2010-12-01

    Northern Admiralty Inlet, Puget Sound, Washington is the proposed location of a pilot tidal energy project. Site-specific characterization of the physical and biological environment is required for device engineering and environmental analysis. However, the deep water and strong currents which make the site attractive for tidal energy development also pose unique challenges to collecting comprehensive information. This talk focuses on efforts to optimally site hydrokinetic turbines and estimate their acoustic impact, based on 18 months of field data collected to date. Additional characterization efforts being undertaken by the University of Washington branch of the Northwest National Marine Renewable Energy Center and its partners include marine mammal presence and behavior, water quality, seabed geology, and biofouling potential. Because kinetic power density varies with the cube of horizontal current velocity, an accurate map of spatial current variations is required to optimally site hydrokinetic turbines. Acoustic Doppler profilers deployed on the seabed show operationally meaningful variations in flow characteristics (e.g., power density, directionality, vertical shear) and tidal harmonic constituents over length scales of less than 100m. This is, in part, attributed to the proximity of this site to a headland. Because of these variations, interpolation between stationary measurement locations introduces potentially high uncertainty. The use of shipboard acoustic Doppler profilers is shown to be an effective tool for mapping peak currents and, combined with information from seabed profilers, may be able to resolve power density variations in the project area. Because noise levels from operating turbines are expected to exceed regulatory thresholds for incidental harassment of marine mammals known to be present in the project area, an estimate of the acoustic footprint is required to permit the pilot project. This requires site-specific descriptions of pre

  4. Hydrodynamic Characterization of a Surface Storage Zone in a Natural Stream

    Science.gov (United States)

    Sandoval Ulloa, J. C.; Escauriaza, C. R.; Mignot, E.; Mao, L.

    2015-12-01

    Flow developed in surface storage zones in rivers is very important for many physical and biogeochemical processes. These regions are characterized by low velocities compared to the flow in the main channel and long residence times that favor the deposition of contaminants, nutrient uptake and interactions with reactive sediments. The dynamics of the turbulent flows in these zones is very complex, typically characterized by a shear layer that induces a recirculating area, with multiple large-scale coherent structures of different temporal and spatial scales. In this work we present the methodology and analysis of measurements in a natural surface storage zone. We report detailed information of a field campaign carried out in the Lluta River, located in northern Chile in the high altitude Andean environment known as the Altiplano (~4,000 masl). The area of study has great interest for the river ecosystem, since the water has high concentration levels of arsenic and other metals. The Lluta River is also a water source for many agricultural communities and urban centers located in the lower parts of the watershed. Field information obtained was: detailed topography, 3D velocity components in several points, and sediment arsenic concentration in the main channel and in the recirculating region of the natural surface storage zone. Topography was obtained through DGPS and digital image processing. The 3D velocity field was measured with an acoustic Doppler velocimeter (ADV) and surface velocity data was obtained through the LSPIV technique. Arsenic concentration was obtained by sediment sampling analysis. With this data we analyze the flow topology and characteristics features of the velocity, which constitute the controlling mechanisms of contaminant transport in the field. In addition, we contrast with preliminary results of a three-dimensional (3D) numerical simulation, to determine the influence of different parameters on the transport and mixing processes in natural

  5. Underground Storage Tank Integrated Demonstration (UST-ID)

    International Nuclear Information System (INIS)

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m 3 ) to 10 6 gallons (3785 m 3 ). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina

  6. Effectiveness of interim remedial actions at the Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    Devgun, J.S.; Beskid, N.J.; Seay, W.M.; McNamee, E.

    1990-01-01

    There are 190,000 m 3 of contaminated soils, wastes, and residues stored at the Niagara Falls Storage Site (NFSS). The residues have a volume of 18,000 m 3 and contain about 1,930 Ci of 226 Ra, which accounts for most of the radioactivity. Since 1980, actions have been taken to minimize potential radiological risks and prevent radionuclide migration. Interim actions included capping vents, sealing pipes, relocating the perimeter fence (to limit radon risk), transferring and consolidating wastes, upgrading storage buildings, constructing a clay cutoff wall (to limit potential ground-water transport of contaminants), treating and releasing contaminated water, using a synthetic liner, and using an interim clay cap. An interim waste containment facility was completed in 1986. Environmental monitoring showed a decrease in radon concentrations and in external gamma radiation from 1982 to 1986; levels have been stable since 1986. Uranium and radium concentrations in surface water have decreased; very low concentrations have been detected in stream sediments, and concentrations in ground water have remained stable. Recent monitoring showed that NFSS is in compliance with the U.S. Department of Energy's (DOE's) radiation protection standards

  7. Site characterization and validation. Stage 2 - Preliminary predictions

    International Nuclear Information System (INIS)

    Olsson, O.; Black, J.H.; Gale, J.E.; Holmes, D.C.

    1989-05-01

    The Site Characterization and Validation (SCV) project is designed to assess how well we can characterize a volume of rock prior to using it as a repository. The programme of work focuses on the validation of the techniques used in site characterization. The SCV project contains 5 stages of work arranged in two 'cycles' of data-gathering, prediction, and validation. The first stage of work has included drilling of 6 boreholes (N2, N3, N4, W1, W2 and V3) and measurements of geology, fracture characteristics, stess, single borehole geophysical logging, radar, seismics and hydrogeology. The rock at the SCV site is granite with small lithological variations. Based essentially on radar and seismic results 5 'fracture zones' have been identified, named GA, GB, GC, GH and GI. They all extend acroos the entire SCV site. They aer basically in in two groups (GA, GB, GC and GH, GI). The first group are aligned N40 degree E with a dip of 35 degree to the south. The second group are aligned approximately N10 degree W dipping 60 degree E. From the stochastic analysis of the joint data it was possible to identify three main fracture orientation clusters. The orientation of two of these clusters agree roughly with orientation of the main features. Cluster B has roughly the same orientation as GH and GI, while features GA, GB and GC have an orientation similar to the more loosely defined cluster C. The orientation of the third cluster (A) is northwest with a dip to northeast. It is found that 94% of all measured hydraulic transmissivity is accounted for by 4% of the tested rock, not all of this 'concentrated' transmissivity is with the major features defined by geophysics. When the hydraulic connections across the site are examied they show that there are several welldefined zones which permit rapid transmission of hydraulic signals. These are essentially from the northeast to the southwest. (66 figs., 21 tabs., 33 refs.)

  8. Transport processes investigation: A necessary first step in site scale characterization plans

    International Nuclear Information System (INIS)

    Roepke, C.; Glass, R.J.; Brainard, J.; Mann, M.; Kriel, K.; Holt, R.; Schwing, J.

    1995-01-01

    We propose an approach, which we call the Transport Processes Investigation or TPI, to identify and verify site-scale transport processes and their controls. The TPI aids in the formulation of an accurate conceptual model of flow and transport, an essential first step in the development of a cost effective site characterization strategy. The TPI is demonstrated in the highly complex vadose zone of glacial tills that underlie the Fernald Environmental Remediation Project (FEMP) in Fernald, Ohio. As a result of the TPI, we identify and verify the pertinent flow processes and their controls, such as extensive macropore and fracture flow through layered clays, which must be included in an accurate conceptual model of site-scale contaminant transport. We are able to conclude that the classical modeling and sampling methods employed in some site characterization programs will be insufficient to characterize contaminant concentrations or distributions at contaminated or hazardous waste facilities sited in such media

  9. Wayne Interim Storage Site annual environmental report for calendar year 1991, Wayne, New Jersey

    International Nuclear Information System (INIS)

    1992-09-01

    This document describes the envirormental monitoring program at the Wayne Interim Storage Site (WISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of WISS and surrounding area began in 1984 when Congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. WISS is a National Priorities List site. The environmental monitoring program at WISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium concentrations in surface water, sediment, and groundwater. Several nonradiological parameters are also measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides, dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment

  10. Feasibility assessment grants in support of volunteer siting of a monitored retrievables storage facility

    International Nuclear Information System (INIS)

    Benson, A.; Weisman, N.M.; Morgan, W.

    1993-01-01

    The Monitored Retrievable Storage facility (MRS) is an integral component of the planned Federal radioactive waste management system. The MRS will temporarily store spent fuel from commercial nuclear power plants prior to shipment to a geologic repository for permanent disposal. To facilitate voluntary siting of an MRS facility, Congress, in 1987, authorized the award of feasibility assessment grants by the Department of Energy to assist potentially interested jurisdictions to consider the possibility of hosting an MRS. This paper addresses the experience with MRS feasibility assessment grants to date, reviewing the current status of grant applications and presenting observations on the grant program and the voluntary siting approach, which it supports. The authors note that although the voluntary siting process has yet to identify an MRS host, the feasibility assessment grants have been successful in generating interest and active consideration and debate regarding MRS siting among States, Indian Tribes, and affected units of local government. Continued information efforts about the grant process and more proactive DOE support for and participation in the voluntary siting process are among the recommendations offered

  11. An optimization of the ALICE XRootD storage cluster at the Tier-2 site in Czech Republic

    International Nuclear Information System (INIS)

    Adamova, D; Horky, J

    2012-01-01

    ALICE, as well as the other experiments at the CERN LHC, has been building a distributed data management infrastructure since 2002. Experience gained during years of operations with different types of storage managers deployed over this infrastructure has shown, that the most adequate storage solution for ALICE is the native XRootD manager developed within a CERN - SLAC collaboration. The XRootD storage clusters exhibit higher stability and availability in comparison with other storage solutions and demonstrate a number of other advantages, like support of high speed WAN data access or no need for maintaining complex databases. Two of the operational characteristics of XRootD data servers are a relatively high number of open sockets and a high Unix load. In this article, we would like to describe our experience with the tuning/optimization of machines hosting the XRootD servers, which are part of the ALICE storage cluster at the Tier-2 WLCG site in Prague, Czech Republic. The optimization procedure, in addition to boosting the read/write performance of the servers, also resulted in a reduction of the Unix load.

  12. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  13. Site characterization information needs for a high-level waste geologic repository

    International Nuclear Information System (INIS)

    Gupta, D.C.; Nataraja, M.S.; Justus, P.S.

    1987-01-01

    At each of the three candidate sites recommended for site characterization for High-Level Waste Geologic Repository development, the DOE has proposed to conduct both surface-based testing and in situ exploration and testing at the depths that wastes would be emplaced. The basic information needs and consequently the planned surface-based and in situ testing program will be governed to a large extent by the amount of credit taken for individual components of the geologic repository in meeting the performance objectives and siting criteria. Therefore, identified information to be acquired from site characterization activities should be commensurate with DOE's assigned performance goals for the repository system components on a site-specific basis. Because of the uncertainties that are likely to be associated with initial assignment of performance goals, the information needs should be both reasonably and conservatively identified

  14. Restructured site characterization program at Yucca Mountain

    International Nuclear Information System (INIS)

    Dyer, J.R.; Vawter, R.G.

    1995-01-01

    During 1994 and the early part of 1995, the US Department of Energy's Yucca Mountain Site Characterization Office (YMSCO) and its parent organization, the Office of Civilian Radioactive Waste Management (OCRWM) underwent a significant restructuring. Senior Department officials provided the leadership to reorient the management, technical, programmatic, and public interaction approach to the US High Level Radioactive Waste Disposal Program. The restructuring involved reorganizing the federal staff, conducting meaningful strategic planning, improving the management system, rationalizing contractor responsibilities, focusing upon major products, and increasing stakeholder involvement. The restructured program has prioritized technical and scientific activities toward meeting major regulatory milestones in a timely and cost-effective manner. This approach has raised concern among elements of technical, scientific, and oversight bodies that suitability and licensing decisions could be made without obtaining sufficient technical information for this first-of-its-kind endeavor. Other organizations, such as congressional committees, industrial groups, and rate payers believe characterization goals can be met in a timely manner and within the limitation of available funds. To balance these contrasting views in its decision making process, OCRWM management has made a special effort to communicate its strategy to oversight bodies, the scientific community and other stakeholders and to use external independent peer review as a key means of demonstrating scientific credibility. Site characterization of Yucca Mountain in Nevada is one of the key elements of the restructured program

  15. Plutonium storage criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D. [Scientech, Inc., Germantown, MD (United States); Ascanio, X. [Dept. of Energy, Germantown, MD (United States)

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  16. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E. C.; Spalding, B. P.; Lee, S. Y.; Hyder, L. K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  17. Corrective Action Investigation Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    David Strand

    2006-01-01

    Corrective Action Unit 166 is located in Areas 2, 3, 5, and 18 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit (CAU) 166 is comprised of the seven Corrective Action Sites (CASs) listed below: (1) 02-42-01, Cond. Release Storage Yd - North; (2) 02-42-02, Cond. Release Storage Yd - South; (3) 02-99-10, D-38 Storage Area; (4) 03-42-01, Conditional Release Storage Yard; (5) 05-19-02, Contaminated Soil and Drum; (6) 18-01-01, Aboveground Storage Tank; and (7) 18-99-03, Wax Piles/Oil Stain. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 28, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 166. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 166 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Perform field screening. (4) Collect and submit environmental samples for laboratory analysis to determine if

  18. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  19. Resource Conservation and Recovery Act industrial site environmental restoration site characterization plan. Area 6 Decontamination Pond Facility. Revision 1

    International Nuclear Information System (INIS)

    1996-08-01

    This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility at the Nevada Test Site which will be conducted for the US Department of Energy, Nevada Operations Office, Environmental Restoration Division. The objectives of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and around the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site characterization and waste management purposes

  20. Annotated bibliography for biologic overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Collins, E.; O'Farrell, T.P.; Rhoads, W.A.

    1981-12-01

    This annotated bibliography was compiled to accompany the Biologic Overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada, EG and G, Santa Barbara Operations Report No. EGG 1183-2443, which documents and synthesizes important biotic information related to Nevada Nuclear Waste Storage Investigations (NNWSI). As such, it is an important part of the NNWSI screening process that was designed to include a systematic, traceable, defensible, and documented basis for a decision to proceed or not with site-specific phases on NTS. Included are all published, and available but unpublished, baseline information on life histories, habitat requirements, distributions, and ecological relationships of the flora and fauna of the region. Special effort was made to include information on endangered, threatened, or sensitive species. 131 references

  1. Continuous, environmental radon monitoring program at the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Liu, N.; Sorensen, C.D.; Tung, C.H.; Orchard, C.R.

    1995-01-01

    A continuous, environmental radon monitoring program has been established in support of the Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP). The monitoring program is to characterize the natural radon emissions at the YMP site, to understand the existing radon concentrations in the environmental background, and to assess and control the potential work exposure. Based upon a study of the monitoring results, this paper presents a preliminary understanding of the magnitudes, characteristics, and exposure levels of radon at the YMP site

  2. PUREX Storage Tunnels waste analysis plan. Revision 1

    International Nuclear Information System (INIS)

    Stephenson, M.J.

    1995-11-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources

  3. A proposed descriptive methodology for environmental geologic (envirogeologic) site characterization

    International Nuclear Information System (INIS)

    Schwarz, D.L.; Snyder, W.S.

    1994-01-01

    We propose a descriptive methodology for use in environmental geologic (envirogeologic) site characterization. The method uses traditional sedimentologic descriptions augmented by environmental data needs, and facies analysis. Most other environmental methodologies for soil and sediment characterization use soil engineering and engineering geology techniques that classify by texture and engineering properties. This technique is inadequate for envirogeologic characterization of sediments. In part, this inadequacy is due to differences in the grain-size between the Unified soil Classification and the Udden-Wentworth scales. Use of the soil grain-size classification could easily cause confusion when attempting to relate descriptions based on this classification to our basic understanding of sedimentary depositional systems. The proposed envirogeologic method uses descriptive parameters to characterize a sediment sample, suggests specific tests on samples for adequate characterization, and provides a guidelines for subsurface facies analysis, based on data retrieved from shallow boreholes, that will allow better predictive models to be developed. This methodology should allow for both a more complete site assessment, and provide sufficient data for selection of the appropriate remediation technology, including bioremediation. 50 refs

  4. Yucca Mountain Site Characterization Project: Technical data catalog,(quarterly supplement)

    International Nuclear Information System (INIS)

    1993-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year

  5. Carbon storage as affected by different site preparation techniques two years after mixed forest stand installation

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, F.; Figueiredo, T. de; Martins, A.

    2014-06-01

    Aim of study: This study aims at evaluating the impact of site preparation techniques prior to plantation on carbon storage and distribution in a young mixed stand of Pseudotsuga menziesii (PM) and Castanea sativa (CS). Area of study: The experimental field was established near Macedo de Cavaleiros, Northern Portugal, at 700 m elevation, mean annual temperature 12 degree centigrade and mean annual rainfall 678 mm. Material and methods: The experimental layout includes three replicates, where the different treatments corresponding to different tillage intensities were randomly distributed (high, moderate and slight intensity), in plots with an area of 375 m{sup 2} each. Twenty six months after forest stand installation, samples of herbaceous vegetation (0.49 m{sup 2} quadrat), forest species (8 PM and 8 CS) and mineral soil (at 0-5, 5-15, 15-30 and 30-60 cm depth) were collected in 15 randomly selected points in each treatment, processed in laboratory and analyzed for carbon by elemental carbon analyzer. Main results: The results obtained showed that: (i) more than 90% of the total carbon stored in the system is located in the soil, increasing in depth with tillage intensity; (ii) the contribution of herbaceous vegetation and related roots to the carbon storage is very low; (iii) the amount of carbon per tree is higher in CS than in PM; (iv) the global carbon storage was affected by soil tillage generally decreasing with the increase of tillage intensity. Accordingly, carbon storage capacity as affected by the application of different site preparation techniques should be a decision support tool in afforestation schemes. (Author)

  6. Guidelines for interim storage of low level waste

    International Nuclear Information System (INIS)

    Hornibrook, C.; Castagnacci, A.; Clymer, G.; Kelly, J.; Naughton, M.; Saunders, P.; Stoner, P.; Walker, N.; Cazzolli, R.; Dettenmeier, R.; Loucks, L.; Rigsby, M.; Spall, M.; Strum, M.

    1992-12-01

    This report presents an overview of on-site storage of Low Level Waste while providing guidelines for using the complete Interim On-Site Storage of Low Level Waste report series. Overall, this report provides a methodology for planning and implementing on-site storage

  7. Expeditious Methods for Site Characterization and Risk Assessment at Department of Defense Hazardous Waste Sites in the Republic of Korea

    National Research Council Canada - National Science Library

    Hartman, Dean

    1999-01-01

    ...) with preferred innovative site characterization technologies and risk assessment methods to meet their needs in obtaining hazardous waste site data and then prioritizing those sites for remediation based upon risk...

  8. Dry storage of Magnox fuel

    International Nuclear Information System (INIS)

    1986-09-01

    This work, commissioned by the CEGB, studies the feasibility of a combination of short-term pond storage and long-term dry storage of Magnox spent fuel as a cheaper alternative to reprocessing. Storage would be either at the reactor site or a central site. Two designs are considered, based on existing design work done by GEC-ESL and NNC; the capsule design developed by NNC and with storage in passive vaults for up to 100 yrs and the GEC-ESL tube design developed at Wylfa for the interim storage of LWR. For the long-term storage of Magnox spent fuel the GEC-ESL tubed vault all-dry storage method is recommended and specifications for this method are given. (U.K.)

  9. Nevada Test Site Perspective on Characterization and Loading of Legacy Transuranic Drums Utilizing the Central Characterization Project

    International Nuclear Information System (INIS)

    R.G. Lahoud; J. F. Norton; I. L. Siddoway; L. W. Griswold

    2006-01-01

    The Nevada Test Site (NTS) has successfully completed a multi-year effort to characterize and ship 1860 legacy transuranic (TRU) waste drums for disposal at the Waste Isolation Pilot Plant (WIPP), a permanent TRU disposal site. This has been a cooperative effort among the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), the U.S. Department of Energy, Carlsbad Field Office (DOE/CBFO), the NTS Management and Operations (M and O) contractor Bechtel Nevada (BN), and various contractors under the Central Characterization Project (CCP) umbrella. The success is due primarily to the diligence, perseverance, and hard work of each of the contractors, the DOE/CBFO, and NNSA/NSO, along with the support of the U.S. Department of Energy, Headquarters (DOE/HQ). This paper presents, from an NTS perspective, the challenges and successes of utilizing the CCP for obtaining a certified characterization program, sharing responsibilities for characterization, data validation, and loading of TRU waste with BN to achieve disposal at WIPP from a Small Quantity Site (SQS) such as the NTS. The challenges in this effort arose from two general sources. First, the arrangement of DOE/CBFO contractors under the CCP performing work and certifying waste at the NTS within a Hazard Category 2 (HazCat 2) non-reactor nuclear facility operated by BN, presented difficult challenges. The nuclear safety authorization basis, safety liability and responsibility, conduct of operations, allocation and scheduling of resources, and other issues were particularly demanding. The program-level and field coordination needed for the closely interrelated characterization tasks was extensive and required considerable effort by all parties. The second source of challenge was the legacy waste itself. None of the waste was generated at the NTS. The waste was generated at Lawrence Livermore National Laboratory (LLNL), Lawrence Berkeley Laboratory (LBL), Lynchburg, Rocky

  10. The Cigeo project: an industrial storage site for radioactive wastes in deep underground

    International Nuclear Information System (INIS)

    Krieguer, Jean-Marie

    2017-01-01

    In 2006, France has decided to store its high-level and long-lived radioactive wastes, mostly issued from the nuclear industry, in a deep geological underground disposal site. This document presents the Cigeo project, a deep underground disposal site (located in the East of France) for such radioactive wastes, which construction is to be started in 2021 (subject to authorization in 2018). After a brief historical review of the project, started 20 years ago, the document presents the radioactive waste disposal context, the ethical choice of underground storage (in France and elsewhere) for these types of radioactive wastes, the disposal site safety and financing aspects, the progressive development of the underground facilities and, of most importance, its reversibility. In a second part, the various works around the site are presented (transport, buildings, water and power supply, etc.) together with a description of the various radioactive wastes (high and intermediate level and long-lived wastes and their packaging) that will be disposed in the site. The different steps of the project are then reviewed (the initial design and initial construction phases, the pilot industrial phase (expected in 2030), the operating phase, and the ultimate phases that will consist in the definitive closure of the site and its monitoring), followed by an extensive description of the various installations of surface and underground facilities, their architecture and their equipment

  11. Comparison of Dry Gas Seasonal Storage with CO2 Storage and Re-Use Potential

    OpenAIRE

    Killerud, Marie

    2013-01-01

    To make large-scale CO2 storage economic, many groups have proposed using CO2in EOR projects to create value for CO2 storage. However, CO2 EOR projectsgenerally require a large and variable supply of CO2 and consequently may requiretemporary storage of CO2 in geological formations. In order to store CO2 atoffshore sites as a source for CO2 EOR projects, the CO2 needs to be extractedfrom a storage site to a certain extent. Alternatively, CO2 EOR projects maybe developed alongside saline aquife...

  12. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 121, Storage Tanks and Miscellaneous Sites. CAU 121 is currently listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO, 1996) and consists of three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site (NTS): CAS 12-01-01, Aboveground Storage Tank; CAS 12-01-02, Aboveground Storage Tank; and CAS 12-22-26, Drums; 2 AST's. CASs 12-01-01 and 12-01-02 are located to the west of the Area 12 Camp, and CAS 12-22-26 is located near the U-12g Tunnel, also known as G-tunnel, in Area 12 (Figure 1). The aboveground storage tanks (ASTs) present at CASs 12-01-01 and 12-01-02 will be removed and disposed of at an appropriate facility. Soil below the ASTs will be sampled to identify whether it has been impacted with chemicals or radioactivity above action levels. If impacted soil above action levels is present, the soil will be excavated and disposed of at an appropriate facility. The CAS 12-22-26 site is composed of two overlapping areas, one where drums had formerly been stored, and the other where an AST was used to dispense diesel for locomotives used at G-tunnel. This area is located above an underground radioactive materials area (URMA), and within an area that may have elevated background radioactivity because of containment breaches during nuclear tests and associated tunnel reentry operations. CAS 12-22-26 does not include the URMA or the elevated background radioactivity. An AST that had previously been used to store liquid magnesium chloride (MgCl) was properly disposed of several years ago, and releases from this tank are not an environmental concern. The diesel AST will be removed and disposed of at an appropriate facility. Soil at the former drum area and the diesel AST area will be sampled to identify whether it has been impacted by releases, from the drums or the

  13. Radioactivity measurements using storage phosphor technology

    International Nuclear Information System (INIS)

    Cheng, Y.T.; Hwang, J.; Hutchinson, M.R.

    1995-01-01

    We propose to apply a recently developed charged particle radiation imaging concept in bio-medical research for fast, cost-effective characterization of radionuclides in contaminated sites and environmental samples. This concept utilizes sensors with storage photostimulable phosphor (SPP) technology as radiation detectors. They exhibit high sensitivity for all types of radiation and the response is linear over a wide dynamic range (>10 5 ), essential for quantitative analysis. These new sensors have an active area of up to 35 cm x 43 cm in size and a spatial resolution as fine as 50 μm. They offer considerable promise as large area detectors for fast characterization of radionuclides with an added ability to locate and identify hot spots

  14. Immobilized low-activity waste site borehole 299-E17-21

    International Nuclear Information System (INIS)

    Reidel, S.P.; Reynolds, K.D.; Horton, D.G.

    1998-08-01

    The Tank Waste Remediation System (TWRS) is the group at the Hanford Site responsible for the safe underground storage of liquid waste from previous Hanford Site operations, the storage and disposal of immobilized tank waste, and closure of underground tanks. The current plan is to dispose of immobilized low-activity tank waste (ILAW) in new facilities in the southcentral part of 200-East Area and in four existing vaults along the east side of 200-East Area. Boreholes 299-E17-21, B8501, and B8502 were drilled at the southwest corner of the ILAW site in support of the Performance Assessment activities for the disposal options. This report summarizes the initial geologic findings, field tests conducted on those boreholes, and ongoing studies. One deep (480 feet) borehole and two shallow (50 feet) boreholes were drilled at the southwest corner of the ILAW site. The primary factor dictating the location of the boreholes was their characterization function with respect to developing the geohydrologic model for the site and satisfying associated Data Quality Objectives. The deep borehole was drilled to characterize subsurface conditions beneath the ILAW site, and two shallow boreholes were drilled to support an ongoing environmental tracer study. The tracer study will supply information to the Performance Assessment. All the boreholes provide data on the vadose zone and saturated zone in a previously uncharacterized area

  15. Assessment of remote sensing technologies to discover and characterize waste sites

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once the sites and problems have been located and characterized and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated waste forms in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirement for long-term monitoring

  16. Summary Report for Capsule Dry Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    JOSEPHSON, W S

    2003-09-04

    There are 1.936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project (CDSP) is conducted under the assumption the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event vitrification of the capsule contents is pursued. A cut away drawing of a typical cesium chloride (CsCI) capsule and the capsule property and geometry information are provided in Figure 1.1. Strontium fluoride (SrF{sub 2}) capsules are similar in design to CsCl capsules. Further details of capsule design, current state, and reference information are given later in this report and its references. Capsule production and life history is covered in WMP-16938, Capsule Characterization Report for Capsule Dry Storage Project, and is briefly summarized in Section 5.2 of this report.

  17. Characterizing the Sensitivity of Groundwater Storage to Climate variation in the Indus Basin

    Science.gov (United States)

    Huang, L.; Sabo, J. L.

    2017-12-01

    Indus Basin represents an extensive groundwater aquifer facing the challenge of effective management of limited water resources. Groundwater storage is one of the most important variables of water balance, yet its sensitivity to climate change has rarely been explored. To better estimate present and future groundwater storage and its sensitivity to climate change in the Indus Basin, we analyzed groundwater recharge/discharge and their historical evolution in this basin. Several methods are applied to specify the aquifer system including: water level change and storativity estimates, gravity estimates (GRACE), flow model (MODFLOW), water budget analysis and extrapolation. In addition, all of the socioeconomic and engineering aspects are represented in the hydrological system through the change of temporal and spatial distributions of recharge and discharge (e.g., land use, crop structure, water allocation, etc.). Our results demonstrate that the direct impacts of climate change will result in unevenly distributed but increasing groundwater storage in the short term through groundwater recharge. In contrast, long term groundwater storage will decrease as a result of combined indirect and direct impacts of climate change (e.g. recharge/discharge and human activities). The sensitivity of groundwater storage to climate variation is characterized by topography, aquifer specifics and land use. Furthermore, by comparing possible outcomes of different human interventions scenarios, our study reveals human activities play an important role in affecting the sensitivity of groundwater storage to climate variation. Over all, this study presents the feasibility and value of using integrated hydrological methods to support sustainable water resource management under climate change.

  18. Environmental surveillance results for 1995 for the Hazelwood Interim Storage Site

    International Nuclear Information System (INIS)

    McCague, J.C.

    1996-01-01

    This memorandum presents and interprets analytical results and measurements obtained as part of the 1995 environmental surveillance program for the Hazelwood Interim Storage Site (HISS) under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The discussion provides a comparative analysis of average historical background conditions and applicable regulatory criteria to the 1995 results reported for external gamma radiation and for samples from the media investigated (air, surface water, sediment, groundwater, and stormwater). Results from the 1995 environmental surveillance program at HISS indicate that, with the exception of thorium-230 in streambed sediment, applicable US Department of Energy (DOE) guidelines were not exceeded for any measured parameter or for any dose calculated for potentially exposed members of the general public. In the absence of sediment guidelines, DOE soil guidelines serve as a standard of comparison for data obtained from stream bed sediment; two samples from downstream locations contained concentrations of thorium-230 that exceeded DOE soil guidelines. All stormwater sample results were in compliance with permit-specified limits. Other radioactive materials include radium 226 and natural uranium

  19. Hazelwood Interim Storage Site annual environmental report for calendar year 1991, Hazelwood, Missouri

    International Nuclear Information System (INIS)

    1992-09-01

    This document describes the environmental monitoring program at the Hazelwood Interim Storage Site (HISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at HISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and radium-226, thorium-230, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards and DCGs are established to protect public health and the environment

  20. West Siberian Basin hydrogeology: Site characterization of Mayak, Tomsk-7, and Krasnoyarsk-26

    International Nuclear Information System (INIS)

    Hoover, K.A.; Foley, M.G.; Allen, E.A.; Alexander, L.J.; McKinley, M.I.

    1997-01-01

    The former Soviet Union has extensive defense-related nuclear production facilities that have released large amounts of hazardous and radioactive waste materials into the air, surface water, and ground water in areas surrounding the production sites. The key sites of concern are Mayak, Tomsk-7, and Krasnoyarsk-26, all located within the West siberian Basin. The Pacific Northwest National Laboratory (PNNL), in cooperation with the Russian Ministry of Atomic Energy (Minatom), has been conducted contaminant-migration studies of Mayak, Tomsk-7, and Krasnoyarsk-26 in Western Siberia since 1993. The intent of this program is to maximize use of US and Russian site characterization, contaminant transport modeling, and remediation technology for the benefit of DOE and Minatom site-cleanup activities. Site characterization activities conducted during FY 1996 comprised evaluating the existing database, developing methods for synthesizing missing data, and designing an effective means of data and technology transfer. Comparison of the database, most of the contents of which have been acquired remotely with contaminant transport modeling data requirements allowed the authors to evaluate the utility of data acquired remotely for modeling purposes, and to identify gaps in the characterization of Russian waste-disposal sites. Identifying these gaps led to the second activity, which was to develop methods for synthesizing missing data from an evaluation of existing data. The authors tested these methods by evaluating geologic fracturing at the Mayak site. The third activity was the development of an effective procedure for data and technology transfer. The goal was to provide the site characterization database to Russian modelers in such a way that the data were easily transported, viewed, and manipulated for use in their models. This report summarizes the results of the three site characterization activities performed during FY 1996

  1. StoRMon: an event log analyzer for Grid Storage Element based on StoRM

    International Nuclear Information System (INIS)

    Zappi, Riccardo; Dal Pra, Stefano; Dibenedetto, Michele; Ronchieri, Elisabetta

    2011-01-01

    Managing a collaborative production Grid infrastructure requires to identify and handle every issue, which might arise, in a timely manner. Currently, the most complex problem of the data Grid infrastructure relates to the data management because of its distributed nature. To ensure that problems are quickly addressed and solved, each site should contribute to the solution providing any useful information about services that run in its administrative domain. Often Grid sites' administrators to be effective must collect, organize and examine the scattered logs events that are produced from every service and component of the Storage Element. This paper focuses on the problem of gathering the events logs on a Grid Storage Element and describes the design of a new service, called StoRMon. StoRMon will be able to collect, archive, analyze and report on events logs produced by each service of Storage Element during the execution of its tasks. The data and the processed information will be available to the site administrators by using a single contact-point to easily identify security incidents, fraudulent activity, and the operational issues mainly. The new service is applied to a Grid Storage Element characterized by StoRM, GridFTP and YAMSS, and collects the usage data of StoRM, transferring and hierarchical storage services.

  2. Geologic, geochemical, microbiologic, and hydrologic characterization at the In Situ Redox Manipulation Test Site

    International Nuclear Information System (INIS)

    Vermeul, V.R.; Teel, S.S.; Amonette, J.E.

    1995-07-01

    This report documents results from characterization activities at the In Situ Redox Manipulation (ISRM) Field Test Site which is located within the 100-HR-3 Operable Unit of the US Department of Energy's (DOE's) Hanford Site in Richland, Washington. Information obtained during hydrogeologic characterization of the site included sediment physical properties, geochemical properties, microbiologic population data, and aquifer hydraulic properties. The purpose of obtaining this information was to improve the conceptual understanding of the hydrogeology beneath the ISRM test site and provide detailed, site specific hydrogeologic parameter estimates. The resulting characterization data will be incorporated into a numerical model developed to simulate the physical and chemical processes associated with the field experiment and aid in experiment design and interpretation

  3. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1990--March 31, 1991

    International Nuclear Information System (INIS)

    1991-10-01

    In accordance with the requirements of Section 113 (b) (3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the US Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1990, through March 31, 1991. This report is the fourth in a series of reports that are issued at intervals of approximately six months during site characterization. The report covers a number of initiatives to improve the effectiveness of the site characterization program, and covers continued efforts related to preparatory activities, Study Plans, and performance assessment

  4. Waste handling and storage in the decontamination pilot projects of JAEA for environments of Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, S.; Kawase, K.; Iijima, K.; Kato, M. [Fukushima Environmental Safety Center, Headquarters of Fukushima Partnership Operations, Japan Atomic Energy Agency, Fukushima (Japan)

    2013-07-01

    After the Fukushima Daiichi nuclear accident, Japan Atomic Energy Agency (JAEA) was chosen by the national government to conduct decontamination pilot projects at selected sites in Fukushima prefecture. Despite tight boundary conditions in terms of timescale and resources, the projects served their primary purpose to develop a knowledge base to support more effective planning and implementation of stepwise regional remediation of the evacuated zone. A range of established, modified and newly developed techniques were tested under realistic field conditions and their performance characteristics were determined. The results of the project can be summarized in terms of site characterization, cleanup and waste management. A range of options were investigated to reduce the volumes of waste produced and to ensure that decontamination water could be cleaned to the extent that it could be discharged to normal drainage. Resultant solid wastes were packaged in standard flexible containers, labelled and stored at the remediation site (temporary storage until central interim storage becomes available). The designs of such temporary storage facilities were tailored to available sites, but all designs included measures to ensure mechanical stability (e.g., filling void spaces between containers with sand, graded cover with soil) and prevent releases to groundwater (impermeable base and cap, gravity flow drainage including radiation monitors and catch tanks). Storage site monitoring was also needed to check that storage structures would not be perturbed by external events that could include typhoons, heavy snowfalls, freeze/thaw cycles and earthquakes. (authors)

  5. DSND report on radio-ecological monitoring of INBS and management of radioactive waste old storage sites

    International Nuclear Information System (INIS)

    2010-01-01

    In its first part, this report describes the radiological monitoring of secret base nuclear installations (INBS): applicable arrangements and actors in terms of transparency and information on nuclear safety, regulatory arrangements related to surveillance of underground and surface water quality, assessment of the application of regulatory arrangements, arrangements in terms of public information, and actions of the ASND. The second part describes the management of nuclear waste old storage sites: INBS coming under the ministry of defence (air force sites, military harbors), INBS coming under the minister in charge of energy

  6. Concrete characterization for the 300 Area Solvent Evaporator Closure Site

    International Nuclear Information System (INIS)

    Prignano, A.L.

    1995-01-01

    This report summarizes the sampling activities undertaken and the analytical results obtained in a concrete sampling and analyses study performed for the 300 Area Solvent Evaporator (300 ASE) closure site. The 300 ASE is identified as a Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) unit that will be closed in accordance with the applicable laws and regulations. No constituents of concern were found in concentrations indicating contamination of the concrete by 300 ASE operations

  7. A teleoperated system for remote site characterization

    International Nuclear Information System (INIS)

    Sandness, G.A.; Richardson, B.S.; Pence, J.

    1993-08-01

    The detection and characterization of buried objects and materials is an important first step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. To address the need to minimize the exposure of on-site personnel to the hazards associated with such sites, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by an radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS). The sensors are environmentally protected, internally cooled, and interchangeable based on mission requirements. To date, the RCS has been successfully tested at the Oak Ridge National Laboratory and the Idaho National Engineering Laboratory

  8. Hanford Site National Evnironmental Policy Act (NEPA) characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  9. Review of criterias for shallow burial sites and geohydrological evaluation around the site of temporary storage of low-level solid radioactive wastes of IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Chandra, U.; Marcelino, S.

    1986-01-01

    Some comments about norms of pollutants release from nuclear and other industries are made. For radioactive discharges, the strictly implemented national norms/criterias, are much more advanced technically than those existing for other pollutants. Based on the criterias of site selection and site evaluations, the site of IPEN for temporary storage of low level solid radioactive waster has been evaluated geohydrologically. Rainfall infiltration rate (297 cm/y) was determined by tritium labelling technique. Ground water velocity (max. 46.1 cm/d) and direction (to north) was determined by various radioactive (Br-82, I-131, Cr-51) tracers using single well techniques. (Author) [pt

  10. Refraction and reflection seismic investigations for geological energy-storage site characterization: Dalby (Tornquist Zone), southwest Sweden

    Science.gov (United States)

    Malehmir, Alireza; Bergman, Bo; Andersson, Benjamin; Sturk, Robert; Johansson, Mattis

    2017-04-01

    Three high-resolution, 5 m shot and receiver spacing using 141-172 receivers, refraction and reflection seismic profiles for the planning of a major underground energy-storage site near the town of Dalby-Lund within the Scania Tornquist suture zone in southwest of Sweden were acquired during August 2015. The site is situated ca. 1 km north of the RFZ (Romeleåsen fault and flexure zone) with a complex geologic and tectonic history. Near vertical dikes are observed from several quarries in the area crosscutting granitic-gneissic-amphibiotic rocks and form clear magnetic lineaments. These dikes likely have also acted as surfaces on which further faulting have occurred. Although a major high-speed and traffic road runs in the middle of the study area, the seismic data show excellent quality particularly for the data along two profiles (profiles 2 and 3) perpendicular to the road, and slightly noisy, due to high wind, for the data along a profile (profile 4) parallel to the road. A bobcat-mounted drop hammer (500 kg) was used to generate the seismic signal. To provide continuity from one side of the road to another, 51 wireless recorders connected to 10 Hz geophones and operating in an autonomous mode were used. GPS times of the source impacts were used to extract the data from the wireless recorders and then merged with the data from the cabled recorders (also 10 Hz geophones). Three shot records per source position were generated and vertically stacked to improve the signal-to-noise ratio. First arrivals are clear in most shot gathers allowing them to be used for traditional refraction seismic data analysis and also for more advanced traveltime tomography. The velocity models obtained through traveltime tomography clearly depict bedrock surface and its undulations and in many places show good correlation with the boreholes recently drilled in the area. At places where bedrock is intersected at greater depths than usual, for example 25 m at one place, depression

  11. Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage

    Directory of Open Access Journals (Sweden)

    Yannan Zhang

    2016-10-01

    Full Text Available To store low-temperature heat below 100 °C, novel composite sorbents were developed by impregnating LiCl into expanded vermiculite (EVM in this study. Five kinds of composite sorbents were prepared using different salt concentrations, and the optimal sorbent for application was selected by comparing both the sorption characteristics and energy storage density. Textural properties of composite sorbents were obtained by extreme-resolution field emission scanning electron microscopy (ER-SEM and an automatic mercury porosimeter. After excluding two composite sorbents which would possibly exhibit solution leakage in practical thermal energy storage (TES system, thermochemical characterizations were implemented through simulative sorption experiments at 30 °C and 60% RH. Analyses of thermogravimetric analysis/differential scanning calorimetry (TGA/DSC curves indicate that water uptake of EVM/LiCl composite sorbents is divided into three parts: physical adsorption of EVM, chemical adsorption of LiCl crystal, and liquid–gas absorption of LiCl solution. Energy storage potential was evaluated by theoretical calculation based on TGA/DSC curves. Overall, EVMLiCl20 was selected as the optimal composite sorbent with water uptake of 1.41 g/g, mass energy storage density of 1.21 kWh/kg, and volume energy storage density of 171.61 kWh/m3.

  12. Hydrogen Storage in Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-28

    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing a high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H2 adsorption measurements, to provide a comprehensive picture of H2 adsorption at all relevant pressures. A

  13. Final Hanford Site Transuranic (TRU) Waste Characterization Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP

  14. Model environmental assessment for a property-cleanup/interim-storage remedial action at a formerly utilized site

    International Nuclear Information System (INIS)

    Merry-Libby, P.

    1982-07-01

    This document has been prepared as a model for the preparation of an Environmental Assessment (EA) for a property-cleanup/interim-storage type of remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). For major federal actions significantly affecting the quality of the human environment, an Environmental Impact Statement (EIS) must be prepared to aid DOE in making its decision. However, when it is not clear that an action is major and the impacts are significant, an EA may be prepared to determine whether to prepare an EIS or a finding of no significant impact (FONSI). If it is likely that an action may be major and the impacts significant, it is usually more cost-effective and timely to directly prepare an EIS. If it is likely that a FONSI can be reached after some environmental assessment, as DOE believes may be the case for most property-cleanup/interim-storage remedial actions, preparation of site-specific EAs is an effective means of compliance with NEPA

  15. Site Characterization Work Plan for the Gnome-Coach Site, New Mexico (Rev. 1, January 2002)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

    2002-01-14

    Project Gnome was the first nuclear experiment conducted under the U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE), Plowshare Program. The Plowshare Program focused on developing nuclear devices exclusively for peaceful purposes. The intent of the Gnome experiment was to evaluate the effects of a nuclear detonation in a salt medium. Historically, Project Gnome consisted of a single detonation of a nuclear device on December 10, 1961 with the Salado Formation. Since the Gnome detonation, the AEC/DOE has conducted surface restoration, site reconnaissance, and decontamination and decommissioning activities at the site. In addition, annual groundwater sampling is performed under a long-term hydrological monitoring program begun in 1972. Coach, an experiment to be located near the Gnome project, was initially scheduled for 1963. Although construction and rehabilitation were completed for Coach, the experiment was canceled and never executed. Known collectively as Project Gnome-Coach, the site is located approximately 25 miles east of Carlsbad, New Mexico, in Eddy County, and is comprised of nearly 680 acres, of which approximately 60 acres are disturbed from the combined AEC/DOE operations. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the project. The subsurface at the Gnome-Coach site has two contaminant sources that are fundamentally different in terms of both their stratigraphic location and release mechanism. The goal of this characterization is to collect data of sufficient quantity and quality to establish current site conditions and to use the data to identify and evaluate if further action is required to protect human health and the environment and achieve permanent closure of the site. The results of these activities will be presented in a subsequent corrective action decision document.

  16. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  17. Niagara Falls Storage Site annual environmental report for calendar year 1991, Lewiston, New York

    International Nuclear Information System (INIS)

    1992-09-01

    This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment

  18. Site characterization design and techniques used at the Southern Shipbuilding Corporation site

    International Nuclear Information System (INIS)

    Mueller, J.P.; Geraghty, C.A.; Moore, G.W.; Mullins, J.R.

    1995-01-01

    The Southern Shipbuilding Corporation (SSC) site is an inactive barge/ship manufacturing and repair facility situated on approximately 54 acres in Slidell, St. Tammany Parish, Louisiana. Two unlined surface impoundments (North and South impoundments) are situated on the northwest portion of the site and are surrounded on three sides by Bayou Bonfouca. These impoundments are the sources of carcinogenic polynuclear aromatic hydrocarbon (CPAH) contamination at the site. Inadequate containment has resulted in the release of impoundment wastes into the bayou. To evaluate potential response alternatives for the site, an Engineering Evaluation/Cost Analysis (EE/CA) field investigation was conducted from July through October 1994. A two phase sampling approach was used in combination with innovative and traditional sampling techniques, field screening technologies, and exploitation of the visual characteristics of the waste to determine the extent of waste migration with limited off-site laboratory confirmation. A skid-mounted mobile drilling unit, secured to a specialized sampling platform designed for multiple applications, was used for collection of sediment cores from the bayou as well as tarry sludge cores from the impoundments. Field screening of core samples was accomplished on site using an organic vapor analyzer and a total petroleum hydrocarbon (TPH) field analyzer. Pollutants of concern include metals, cyanide, dioxin, and organic compounds. This paper presents details on the sampling design and characterization techniques used to accomplish the EE/CA field investigation

  19. Characterizing and packaging BN-350 spent fuel for long-term dry storage

    International Nuclear Information System (INIS)

    Lambert, J. D. B.; Bolshinsky, I.; Haues, S.L.; Allen, K.J.; Howden, E.A.; Hill, R.N.; Planchon, H.P.; Staples, P.; Karaulov, V.N.; Blynskij, A.P.; Yakovlev, I.K.; Maev, V.; Dumchev, I. A.

    2000-01-01

    The Republic of Kazakhstan is being assisted by the U.S. Department of Energy in preparing spent fuel from the BN-350 fast reactor for long term dry storage. Argonne National Laboratory was assigned responsibility for the physical and nuclear characterization of the spent fuel, for the design and safety analysis of 6-pac and 4-pac canisters used to contain spent fuel assemblies for storage, and for the design, testing and installation of a closure station at the reactor in which the canisters of fuel are dried, filled with inert gas and welded shut. This paper briefly describes the specialized components and equipment used, the process followed, and experience gained in packaging the spent fuel. Olsen et al and Schaefer separately discuss overall safety and criticality considerations of the packaging process in parallel papers to this conference

  20. Site characterization and validation - geophysical single hole logging

    International Nuclear Information System (INIS)

    Andersson, Per

    1989-05-01

    A total of 15 boreholes have been drilled for preliminary characterization of a previously unexplored site at the 360 and 385 m level in the Stripa mine. To adequately described the rock mass in the vicinity of these boreholes, a comprehensive program utilizing a large number of geophysical borehole methods has been carried out in 10 of these boreholes. The specific geophysical character of the rock mass and the major deformed units distinguished in the vicinity of the boreholes are recognized, and in certain cases also correlated between the boreholes. A general conclusion based on the geophysical logging results, made in this report, is that the preliminary predictions made in stage 2, of the site characterization and validation project (Olsson et.al, 1988), are adequate. The results from the geophysical logging can support the four predicted fracture/ fracture zones GHa, GHb, GA and GB whereas the predicted zones GC and GI are hard to confirm from the logging results. (author)

  1. Soil Characterization at the Linde FUSRAP Site and the Impact on Soil Volume Estimates

    International Nuclear Information System (INIS)

    Boyle, J.; Kenna, T.; Pilon, R.

    2002-01-01

    The former Linde site in Tonawanda, New York is currently undergoing active remediation of Manhattan Engineering District's radiological contamination. This remediation is authorized under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The focus of this paper will be to describe the impact of soil characterization efforts as they relate to soil volume estimates and project cost estimates. An additional objective is to stimulate discussion about other characterization and modeling technologies, and to provide a ''Lessons Learned'' scenario to assist in future volume estimating at other FUSRAP sites. Initial soil characterization efforts at the Linde FUSRAP site in areas known to be contaminated or suspected to be contaminated were presented in the Remedial Investigation Report for the Tonawanda Site, dated February 1993. Results of those initial characterization efforts were the basis for soil volume estimates that were used to estimate and negotiate the current remediation contract. During the course of remediation, previously unidentified areas of contamination were discovered, and additional characterization was initiated. Additional test pit and geoprobe samples were obtained at over 500 locations, bringing the total to over 800 sample locations at the 135-acre site. New data continues to be collected on a routine basis during ongoing remedial actions

  2. Thermo-aeraulics of high level waste storage facilities

    International Nuclear Information System (INIS)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume; Duret, Bernard

    2006-01-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete structures; - GALATEE

  3. Thermo-aeraulics of high level waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume [CEA/Valrho, B.P. 17171, F-30207 Bagnols-sur-Ceze (France); Duret, Bernard [CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-07-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete

  4. Initial Characterization of the Wave Resource at Several High Energy U.S. Sites

    OpenAIRE

    Dallman, Ann; Neary, Vincent S.

    2014-01-01

    Wave energy resource characterization efforts are critical for developing knowledge of the physical conditions experienced by wave energy converter (WEC) devices and arrays. Developers are lacking a consistent characterization of possible wave energy test sites, and therefore Sandia National Laboratories (SNL) has been tasked with developing a catalogue characterizing three high energy U.S. test sites. The initial results and framework for the catalogue are discussed in this paper. U.S. De...

  5. Technical data management at the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Statler, J.; Newbury, C.M.; Heitland, G.W.

    1992-01-01

    The Department of Energy/Office of Civilian Radioactive waste Management (DOE/OCRWM) is responsible for the characterization of Yucca Mountain, Nevada, to determine its potential as a site of a high-level radioactive waste repository. The characterization of Yucca Mountain encompasses many diverse investigations, both onsite and in laboratories across the country. Investigations are being conducted of the geology, hydrology, mineralogy, paleoclimate, geotechnical properties, and archeology of the area, to name a few. Effective program management requires that data from site investigations be processed, interpreted and disseminated in a timely manner to support model development and validation, repository design, and performance assessment. The Program must also meet regulatory requirements for making the technical data accessible to a variety of external users throughout the life of the Project. Finally, the DOE/OCRWM must make available the data or its description and access location available for use in support of the license application and supporting documentation. To accomplish these objectives, scientific and engineering data, generated by site characterization activities, and technical data, generated by environmental and socioeconomic impact assessment activities, must be systematically identified, cataloged, stored and disseminated in a controlled manner

  6. Public storage for the Open Science Grid

    International Nuclear Information System (INIS)

    Levshina, T; Guru, A

    2014-01-01

    The Open Science Grid infrastructure doesn't provide efficient means to manage public storage offered by participating sites. A Virtual Organization that relies on opportunistic storage has difficulties finding appropriate storage, verifying its availability, and monitoring its utilization. The involvement of the production manager, site administrators and VO support personnel is required to allocate or rescind storage space. One of the main requirements for Public Storage implementation is that it should use SRM or GridFTP protocols to access the Storage Elements provided by the OSG Sites and not put any additional burden on sites. By policy, no new services related to Public Storage can be installed and run on OSG sites. Opportunistic users also have difficulties in accessing the OSG Storage Elements during the execution of jobs. A typical users' data management workflow includes pre-staging common data on sites before a job's execution, then storing for a subsequent download to a local institution the output data produced by a job on a worker node. When the amount of data is significant, the only means to temporarily store the data is to upload it to one of the Storage Elements. In order to do that, a user's job should be aware of the storage location, availability, and free space. After a successful data upload, users must somehow keep track of the data's location for future access. In this presentation we propose solutions for storage management and data handling issues in the OSG. We are investigating the feasibility of using the integrated Rule-Oriented Data System developed at RENCI as a front-end service to the OSG SEs. The current architecture, state of deployment and performance test results will be discussed. We will also provide examples of current usage of the system by beta-users.

  7. Public storage for the Open Science Grid

    Science.gov (United States)

    Levshina, T.; Guru, A.

    2014-06-01

    The Open Science Grid infrastructure doesn't provide efficient means to manage public storage offered by participating sites. A Virtual Organization that relies on opportunistic storage has difficulties finding appropriate storage, verifying its availability, and monitoring its utilization. The involvement of the production manager, site administrators and VO support personnel is required to allocate or rescind storage space. One of the main requirements for Public Storage implementation is that it should use SRM or GridFTP protocols to access the Storage Elements provided by the OSG Sites and not put any additional burden on sites. By policy, no new services related to Public Storage can be installed and run on OSG sites. Opportunistic users also have difficulties in accessing the OSG Storage Elements during the execution of jobs. A typical users' data management workflow includes pre-staging common data on sites before a job's execution, then storing for a subsequent download to a local institution the output data produced by a job on a worker node. When the amount of data is significant, the only means to temporarily store the data is to upload it to one of the Storage Elements. In order to do that, a user's job should be aware of the storage location, availability, and free space. After a successful data upload, users must somehow keep track of the data's location for future access. In this presentation we propose solutions for storage management and data handling issues in the OSG. We are investigating the feasibility of using the integrated Rule-Oriented Data System developed at RENCI as a front-end service to the OSG SEs. The current architecture, state of deployment and performance test results will be discussed. We will also provide examples of current usage of the system by beta-users.

  8. Ground deformation monitoring using RADARSAT-2 DInSAR-MSBAS at the Aquistore CO2 storage site in Saskatchewan (Canada)

    OpenAIRE

    Czarnogorska, M.; Samsonov, S.; White, D.

    2014-01-01

    The research objectives of the Aquistore CO2 storage project are to design, adapt, and test non-seismic monitoring methods for measurement, and verification of CO2 storage, and to integrate data to determine subsurface fluid distributions, pressure changes and associated surface deformation. Aquistore site is located near Estevan in Southern Saskatchewan on the South flank of the Souris River and west of the Boundary Dam Power Station and the historical part of Estevan coal mine in s...

  9. Detailed site characterization for final disposal of spent fuel in Finland - Case study Loviisa

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Ruotsalainen, P.; Cosma, C.; Keskinen, J.; Hinkkanen, H.; Rouhiainen, P.; Oehberg, A.

    1998-01-01

    The spent fuel from the Finnish nuclear power plants will be disposed of in the Finnish bedrock. Pos iva Oy is responsible for the site selection programme carried out in accordance with the governmental decisions. Preliminary site investigations were made in five areas in 1987-1992. Based on the results, three areas, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki, were selected for the detailed site characterization in 1993-2000. The final site will be selected by the end of the year 2000. The interim reporting of the detailed studies of the three areas was made in 1996. In 1997, the island of Haestholmen, as the host to the Loviisa NPP, was included as a fourth candidate site in the programme for the detailed site investigations. The goal is to characterize this site also in detail by the end of 2000 to attain the same level of knowledge as available from the three other sites. The background information existing from the studies made for the construction of the repository for the low-and intermediate-level wastes will create a good basis to reach the target. The research programme for the detailed site characterization has mainly been focused on groundwater flow and geochemistry due to their importance in terms of long-term safety of the repository. Equipment and methodology development by Posiva has introduced new tools that provide more accurate data on relevant parameters than the ones used in previous stages of site characterization. The programme also contains studies for additional information of the structural and geological properties of the bedrock towards the depth. Also predictive modelling has been made for evaluating the relevance of the assumptions made. The methods applied in the site characterization have comprised, e.g., geological mapping, deep core drilling, groundwater sampling and analyzing, hydraulic testing and geophysical measurements

  10. Detailed site characterization for final disposal of spent fuel in Finland - Case study Loviisa

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [IVO Power Engineering Ltd. (Finland); Ahokas, H.; Ruotsalainen, P. [Fintact Oy (Finland); Cosma, C.; Keskinen, J. [Vibrometric Oy (Finland); Hinkkanen, H. [Posiva Oy (Finland); Rouhiainen, P. [PRG-Tec Oy (Finland); Oehberg, A. [Saanio and Riekkola Consulting Engineers (Finland)

    1998-09-01

    The spent fuel from the Finnish nuclear power plants will be disposed of in the Finnish bedrock. Pos iva Oy is responsible for the site selection programme carried out in accordance with the governmental decisions. Preliminary site investigations were made in five areas in 1987-1992. Based on the results, three areas, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki, were selected for the detailed site characterization in 1993-2000. The final site will be selected by the end of the year 2000. The interim reporting of the detailed studies of the three areas was made in 1996. In 1997, the island of Haestholmen, as the host to the Loviisa NPP, was included as a fourth candidate site in the programme for the detailed site investigations. The goal is to characterize this site also in detail by the end of 2000 to attain the same level of knowledge as available from the three other sites. The background information existing from the studies made for the construction of the repository for the low-and intermediate-level wastes will create a good basis to reach the target. The research programme for the detailed site characterization has mainly been focused on groundwater flow and geochemistry due to their importance in terms of long-term safety of the repository. Equipment and methodology development by Posiva has introduced new tools that provide more accurate data on relevant parameters than the ones used in previous stages of site characterization. The programme also contains studies for additional information of the structural and geological properties of the bedrock towards the depth. Also predictive modelling has been made for evaluating the relevance of the assumptions made. The methods applied in the site characterization have comprised, e.g., geological mapping, deep core drilling, groundwater sampling and analyzing, hydraulic testing and geophysical measurements 23 refs, 4 figs

  11. The Nirex Sellafield site investigation: the role of geophysical interpretation

    International Nuclear Information System (INIS)

    Muir Wood, R.; Woo, G.; MacMillan, G.

    1992-01-01

    This report reviews the methods by which geophysical data are interpreted, and used to characterize the 3-D geology of a site for potential storage of radioactive waste. The report focuses on the NIREX site investigation at Sellafield, for which geophysical observations provide a significant component of the structural geological understanding. In outlining the basic technical principles of seismic data processing and interpretation, and borehole logging, an attempt has been made to identify errors, uncertainties, and the implicit use of expert judgement. To enhance the reliability of a radiological probabilistic risk assessment, recommendations are proposed for independent use of the primary NIREX geophysical site investigation data in characterizing the site geology. These recommendations include quantitative procedures for undertaking an uncertainty audit using a combination of statistical analysis and expert judgement. (author)

  12. Spent fuel handling system for a geologic storage test at the Nevada Test Site

    International Nuclear Information System (INIS)

    Duncan, J.E.; House, P.A.; Wright, G.W.

    1980-01-01

    The Lawrence Livermore Laboratory is conducting a test of the geologic storage of encapsulated spent commercial reactor fuel assemblies in a granitic rock at the Nevada Test Site. The test, known as the Spent Fuel Test-Climax (SFT-C), is sponsored by the US Department of Energy, Nevada Operations Office. Eleven pressurized-water-reactor spent fuel assemblies are stored retrievably for three to five years in a linear array in the Climax stock at a depth of 420 m

  13. Safety Assessment Document for the Spent Reactor Fuel Geologic Storage Test in the Climax Granite Stock at the Nevada Test site

    International Nuclear Information System (INIS)

    1980-01-01

    The objective of the Spent Fuel Geologic Storage Test in the Climax Granite Stock is to evaluate the response of a granitic rock mass to the underground storage of encapsulated spent reactor fuel in a geometry that simulates a module of a large-scale geologic repository. This document reports an assessment of the safety of conducting this test. Descriptions are provided of the geography, meteorology, hydrology, geology, and seismology of the Climax Site; the effects of postulated natural phenomena and other activities at the nevada Test Site on the safety of the test; and the design and operation of the test facility and associated equipment. Evaluations are made of both the radiological and nonradiological impacts of normal operations, abnormal operations, and postulated accidents. It is concluded that conduct of the spent fuel test at the Climax Site will not result in any undue risk to the public, property, environment, or site employees

  14. Polyvalent intermediate storage: first step in the cleaning of the Cogema Marcoule site

    Energy Technology Data Exchange (ETDEWEB)

    Cabe, J.M. [Cogema, 30 - Marcoule (France); Seurat, Ph. [Societe Generale pour les Techniques Nouvelles, SGN, 30 - Bagnols sur Ceze (France)

    1998-07-01

    Cleaning operations of Marcoule site consist, beside the permanent stop and the dismantling of the Cogema 's nuclear fuel reprocessing plant U.P.1., in assuring waste retaking and conditioning not dispatched to C.S.M., for the moment stored on production or pretreatment facilities, under a stabilized form. The Polyvalent Intermediate Storage (E.I.P.) receives preconditioned waste before treatment and reconditioning, receives storing over about 50 years conditioned waste before a permanent repository. Its main function is to wait for the construction of long term repository. (N.C.)

  15. Polyvalent intermediate storage: first step in the cleaning of the Cogema Marcoule site

    International Nuclear Information System (INIS)

    Cabe, J.M.; Seurat, Ph.

    1998-01-01

    Cleaning operations of Marcoule site consist, beside the permanent stop and the dismantling of the Cogema 's nuclear fuel reprocessing plant U.P.1., in assuring waste retaking and conditioning not dispatched to C.S.M., for the moment stored on production or pretreatment facilities, under a stabilized form. The Polyvalent Intermediate Storage (E.I.P.) receives preconditioned waste before treatment and reconditioning, receives storing over about 50 years conditioned waste before a permanent repository. Its main function is to wait for the construction of long term repository. (N.C.)

  16. Niagara falls storage site: Annual site environmental report, Lewiston, New York, Calendar Year 1988: Surplus Facilities Management Program (SFMP)

    International Nuclear Information System (INIS)

    1989-04-01

    The monitoring program at the Niagara Falls Storage Site (NFSS) measures radon concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the conservative scenario described in this report, this hypothetical individual receives an annual external exposure approximately equivalent to 6 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than a person receives during two round-trip flights from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. Results of the 1988 monitoring show that the NFSS is in compliance with applicable DOE radiation protection standards. 17 refs., 31 figs., 20 tabs

  17. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  18. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo-Jin; Lee, Seul-Yi [Department of Chemistry, Inha University, 253 Nam-gu, Incheon 402-751 (Korea, Republic of)

    2010-12-15

    In this work, the hydrogen storage behaviors of multi-walled carbon nanotubes (MWNTs) loaded by crystalline platinum (Pt) particles were studied. The microstructure of the Pt/MWNTs was characterized by X-ray diffraction and transmission electron microscopy. The pore structure and total pore volumes of the Pt/MWNTs were analyzed by N{sub 2}/77 K adsorption isotherms. The hydrogen storage capacity of the Pt/MWNTs was evaluated at 298 K and 100 bar. From the experimental results, it was found that Pt particles were homogeneously distributed on the MWNT surfaces. The amount of hydrogen storage capacity increased in proportion to the Pt content, with Pt-5/MWNTs exhibiting the largest hydrogen storage capacity. The superior amount of hydrogen storage was linked to an increase in the number of active sites and the optimum-controlled micropore volume for hydrogen adsorption due to the well-dispersed Pt particles. Therefore, it can be concluded that Pt particles play an important role in hydrogen storage characteristics due to the hydrogen spillover effect. (author)

  19. TWRS phase I privatization site environmental baseline and characterization plan

    International Nuclear Information System (INIS)

    Shade, J.W.

    1997-01-01

    This document provides a plan to characterize and develop an environmental baseline for the TWRS Phase I Privatization Site before construction begins. A site evaluation study selected the former Grout Disposal Area of the Grout Treatment Facility in the 200 East Area as the TWRS Phase I Demonstration Site. The site is generally clean and has not been used for previous activities other than the GTF. A DQO process was used to develop a Sampling and Analysis Plan that would allow comparison of site conditions during operations and after Phase I ends to the presently existing conditions and provide data for the development of a preoperational monitoring plan

  20. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E. [Pacific Northwest Lab., Richland, WA (United States); Weiss, S.G.; Stegen, J.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  1. Final Hanford Site Transuranic (TRU) Waste Characterization Qualit Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP)

  2. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

  3. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    International Nuclear Information System (INIS)

    1999-01-01

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy's (DOE's) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites

  4. From Site Characterization through Safe and Successful CO2 Injection Operation to Post-injection Monitoring and Site Closure - Closing the Full Life Cycle Research at the Ketzin Pilot Site, Germany

    Science.gov (United States)

    Liebscher, Axel

    2017-04-01

    Initiated in 2004, the Ketzin pilot site near Berlin, Germany, was the first European onshore storage project for research and development on geological CO2 storage. After comprehensive site characterization the site infrastructure was build comprising three deep wells and the injection facility including pumps and storage tanks. The operational CO2 injection period started in June 2008 and ended in August 2013 when the site entered the post-injection closure period. During these five years, a total amount of 67 kt of CO2 was safely injected into an Upper Triassic saline sandstone aquifer at a depth of 630 m - 650 m. In fall 2013, the first observation well was partially plugged in the reservoir section with CO2 resistant cement; full abandonment of this well finished in 2015 after roughly 2 years of cement plug monitoring. Abandonment of the remaining wells will be finished by summer 2017 and hand-over of liability to the competent authority is scheduled for end of 2017. The CO2 injected was mainly of food grade quality (purity > 99.9%). In addition, 1.5 kt of CO2 from the oxyfuel pilot capture facility "Schwarze Pumpe" (purity > 99.7%) was injected in 2011. The injection period terminated with a CO2-N2 co-injection experiment of 650 t of a 95% CO2/5% N2 mixture in summer 2013 to study the effects of impurities in the CO2 stream on the injection operation. During regular operation, the CO2 was pre-heated on-site to 40°C prior to injection to ensure a single-phase injection process and avoid any phase transition or transient states within the injection facility or the reservoir. Between March and July 2013, just prior to the CO2-N2 co-injection experiment, the injection temperature was stepwise decreased down to 10°C within a "cold-injection" experiment to study the effects of two-phase injection conditions. During injection operation, the combination of different geochemical and geophysical monitoring methods enabled detection and mapping of the spatial and

  5. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    International Nuclear Information System (INIS)

    Costin, L.S.

    1997-10-01

    In this paper, the major elements of the site selection and characterization processes used in the US high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the US program, these processes, which are well defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the US program

  6. Data Centre Infrastructure & Data Storage @ Facebook

    CERN Multimedia

    CERN. Geneva; Garson, Matt; Kauffman, Mike

    2018-01-01

    Several speakers from the Facebook company will present their take on the infrastructure of their Data Center and Storage facilities, as follows: 10:00 - Facebook Data Center Infrastructure, by Delfina Eberly, Mike Kauffman and Veerendra Mulay Insight into how Facebook thinks about data center design, including electrical and cooling systems, and the technology and tooling used to manage data centers. 11:00 - Storage at Facebook, by Matt Garson An overview of Facebook infrastructure, focusing on different storage systems, in particular photo/video storage and storage for data analytics. About the speakers Mike Kauffman, Director, Data Center Site Engineering Delfina Eberly, Infrastructure, Site Services Matt Garson, Storage at Facebook Veerendra Mulay, Infrastructure

  7. On-site storage of high level nuclear waste: Attitudes and perceptions of local residents

    International Nuclear Information System (INIS)

    Bassett, G.W. Jr.; Jenkins-Smith, H.C.; Silva, C.

    1996-01-01

    No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and - more generally - the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three countries where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste. 24 refs., 7 figs., 5 tabs

  8. On-site storage of high level nuclear waste: attitudes and perceptions of local residents.

    Science.gov (United States)

    Bassett, G W; Jenkins-Smith, H C; Silva, C

    1996-06-01

    No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and-more generally-the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three counties where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste.

  9. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-01-15

    This study is focused on the preparation, characterization, and determination of thermal properties of microencapsulated docosane with polymethylmethacrylate (PMMA) as phase change material for thermal energy storage. Microencapsulation of docosane has been carried out by emulsion polymerization. The microencapsulated phase change material (MEPCM) was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Thermal properties and thermal stability of MEPCM were measured by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC analysis indicated that the docosane in the microcapsules melts at 41.0 C and crystallizes at 40.6 C. It has latent heats of 54.6 and -48.7 J/g for melting and crystallization, respectively. TGA showed that the MEPCM degraded in three distinguishable steps and had good chemical stability. Accelerated thermal cycling tests also indicated that the MEPCM had good thermal reliability. Based on all these results, it can be concluded that the microencapsulated docosane as MEPCMs have good potential for thermal energy storage purposes such as solar space heating applications. (author)

  10. Managing the process for storage and disposal of immobilized high- and low-level tank waste at the Hanford Site

    International Nuclear Information System (INIS)

    Murkowski, R.J.

    1998-01-01

    Lockheed Martin Hanford Corporation (LMHC) is one of six subcontractors under Fluor Daniel Hanford, Inc., the Management and Integration contractor for the Project Hanford Management Contract working for the US Department of Energy. One of LMHC's responsibilities is to prepare storage and disposal facilities to receive immobilized high and low-level tank waste by June of 2002. The immobilized materials are to be produced by one or more vendors working under a privatization contract. The immobilized low-activity waste is to be permanently disposed of at the Hanford Site while the immobilized high-level waste is to be stored at the Hanford Site while awaiting shipment to the offsite repository. Figure 1 is an overview of the entire cleanup mission with the disposal portion of the mission. Figure 2 is a representation of major activities required to complete the storage and disposal mission. The challenge for the LNIHC team is to understand and plan for accepting materials that are described in the Request for Proposal. Private companies will submit bids based on the Request for Proposal and other Department of Energy requirements. LMHC, however, must maintain sufficient flexibility to accept modifications that may occur during the privatization bid/award process that is expected to be completed by May 1998. Fundamental to this planning is to minimize the risks of stand-by costs if storage and disposal facilities are not available to receive the immobilized waste. LMHC has followed a rigorous process for the identification of the functions and requirements of the storage/disposal facilities. A set of alternatives to meet these functions and requirements were identified and evaluated. The alternatives selected were (1) to modify four vaults for disposal of immobilized low-activity waste, and (2) to retrofit a portion of the Canister Storage Building for storage of immobilized high-level waste

  11. Fast-turnaround RCRA site characterization of former TA-42 at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pratt, A.R.; Gainer, G.M.; Thomson, C.N.; Hutton, R.D.

    1994-01-01

    This report describes the results of an accelerated characterization to evaluate contamination at the site of former Technical Area (TA)-42. This characterization supported the construction validation for the Nuclear Safeguards Technology Laboratory (NSTL), which will be constructed at the site

  12. Revised corrective action plan for underground storage tank 2331-U at the Building 9201-1 Site

    International Nuclear Information System (INIS)

    Bohrman, D.E.; Ingram, E.M.

    1993-09-01

    This document represents the Corrective Action Plan for underground storage tank (UST) 2331-U, previously located at Building 9201-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2331-U, a 560-gallon UST, was removed on December 14, 1988. This document presents a comprehensive summary of all environmental assessment investigations conducted at the Building 9201-1 Site and the corrective action measures proposed for remediation of subsurface petroleum product contamination identified at the site. This document is written in accordance with the regulatory requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-15-.06(7)

  13. Use of geostatistics in high level radioactive waste repository site characterization

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, P G [Pacific Northwest Laboratory, Richland, WA (USA)

    1980-09-01

    In evaluating and characterizing sites that are candidates for use as repositories for high-level radioactive waste, there is an increasing need to estimate the uncertainty in hydrogeologic data and in the quantities calculated from them. This paper discusses the use of geostatistical techniques to estimate hydrogeologic surfaces, such as the top of a basalt formation, and to provide a measure of the uncertainty in that estimate. Maps of the uncertainty estimate, called the kriging error, can be used to evaluate where new data should be taken to affect the greatest reduction in uncertainty in the estimated surface. The methods are illustrated on a set of site-characterization data; the top-of-basalt elevations at the Hanford Site near Richland, Washington.

  14. Comparative study of hydrogen storage on metal doped mesoporous materials

    Science.gov (United States)

    Carraro, P. M.; Sapag, K.; Oliva, M. I.; Eimer, G. A.

    2018-06-01

    The hydrogen adsorption capacity of mesoporous materials MCM-41 modified with Co, Fe, Ti, Mg and Ni at 77 K and 10 bar was investigated. Various techniques including XRD, N2 adsorption and DRUV-vis were employed for the materials characterization. The results showed that a low nickel loading on MCM-41 support promoted the presence of hydrogen-favorable sites, increasing the hydrogen storage capacity.

  15. Dry Cask Storage Characterization Project - Phase 1: CASTOR V/21 Cask Opening and Examination

    Energy Technology Data Exchange (ETDEWEB)

    Bare, Walter Claude; Ebner, Matthias Anthony; Torgerson, Laurence Dale

    2001-08-01

    This report documents visual examination and testing conducted in 1999 and early 2000 at the Idaho National Engineering and Environmental Laboratory (INEEL) on a Gesellschaft für Nuklear Service (GNS) CASTOR V/21 pressurized water reactor (PWR) spent fuel dry storage cask. The purpose of the examination and testing is to develop a technical basis for renewal of licenses and Certificates of Compliance for dry storage systems for spent nuclear fuel and high-level waste at independent spent fuel storage installation sites. The examination and testing was conducted to assess the condition of the cask internal and external surfaces, cask contents consisting of 21 Westinghouse PWR spent fuel assemblies from Dominion’s (formerly named Virginia Power) Surry Power Station and cask concrete storage pad. The assemblies have been continuously stored in the CASTOR cask since 1985. Cask exterior surface and selected fuel assembly temperatures, and cask surface gamma and neutron dose rates were measured. Cask external/internal surfaces, fuel basket components including accessible weldments, fuel assembly exteriors, and primary lid seals were visually examined. Selected fuel rods were removed from one fuel assembly, visually examined, and then shipped to Argonne National Laboratory for nondestructive, destructive, and mechanical examination. Cask interior crud samples and helium cover gas samples were collected and analyzed. The results of the examination and testing indicate the concrete storage pad, CASTOR V/21 cask, and cask contents exhibited sound structural and seal integrity and that long-term storage has not caused detectable degradation of the spent fuel cladding or the release of gaseous fission products between 1985 and 1999.

  16. Geological characterization of contaminated sites near the city of Horsens, Denmark

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Poulsen, Søren Erbs; Thomsen, Peter

    characterization of three contaminated sites situated in urban and semi-urban areas around the city of Horsens in corporation with authorities. The existing data from the three field sites include lithological profiles from boreholes. In order to increase the data density, Electrical Resistivity Tomography (ERT...

  17. Radioactive solid waste inventories at United States Department of Energy burial and storage sites

    International Nuclear Information System (INIS)

    Watanabe, T.

    1986-06-01

    Radioactive solid waste inventories are given for United States Department of Energy (DOE) burial and storage sites. These data are obtained from the Solid Waste Information Management System (SWIMS) and reflect the inventories as of the end of the calendar year 1985. This report differs from previous issues in that the data cutoff date is December 31, 1985, rather than the fiscal year end. Another difference from previous issues is that data for the TRU categories 1 and 6 have been omitted

  18. Reversible deep storage: reversibility options for storage in deep geological formations

    International Nuclear Information System (INIS)

    2009-01-01

    This report describes the definition approach to reversibility conditions, presents the main characteristics of high-activity and intermediate-activity long-lived wastes, describes the storage in deep geological formations (safety functions, general description of the storage centre), discusses the design options for the different types of wastes (container, storage module, handling processes, phenomenological analysis, monitoring arrangements) and the decision process in support reversibility (steering of the storage process, progressive development and step-by-step closing), and reports and discusses the researches concerning the memory of the storage site

  19. Environmental concern-based site screening of carbon dioxide geological storage in China.

    Science.gov (United States)

    Cai, Bofeng; Li, Qi; Liu, Guizhen; Liu, Lancui; Jin, Taotao; Shi, Hui

    2017-08-08

    Environmental impacts and risks related to carbon dioxide (CO 2 ) capture and storage (CCS) projects may have direct effects on the decision-making process during CCS site selection. This paper proposes a novel method of environmental optimization for CCS site selection using China's ecological red line approach. Moreover, this paper established a GIS based spatial analysis model of environmental optimization during CCS site selection by a large database. The comprehensive data coverage of environmental elements and fine 1 km spatial resolution were used in the database. The quartile method was used for value assignment for specific indicators including the prohibited index and restricted index. The screening results show that areas classified as having high environmental suitability (classes III and IV) in China account for 620,800 km 2 and 156,600 km 2 , respectively, and are mainly distributed in Inner Mongolia, Qinghai and Xinjiang. The environmental suitability class IV areas of Bayingol Mongolian Autonomous Prefecture, Hotan Prefecture, Aksu Prefecture, Hulunbuir, Xilingol League and other prefecture-level regions not only cover large land areas, but also form a continuous area in the three provincial-level administrative units. This study may benefit the national macro-strategic deployment and implementation of CCS spatial layout and environmental management in China.

  20. The status of Yucca Mountain site characterization activities

    International Nuclear Information System (INIS)

    Gertz, Carl P.; Larkin, Erin L.; Hamner, Melissa

    1992-01-01

    The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is continuing its studies to determine if Yucca Mountain, Nevada, can safely isolate high-level nuclear waste for the next ten thousand years. As mandated by Congress in 1987, DOE is studying the rocks, the climate, and the water table at Yucca Mountain to ensure that the site is suitable before building a repository adopt 305 meters below the surface. Yucca Mountain, located 160.9 kilometers northwest of Las Vegas, lies on the western edge of the Nevada Test Site. Nevada and DOE have been in litigation over environmental permits needed to conduct studies, but recent court decisions have allowed limited new work to begin. This paper will examine progress made on the Yucca Mountain Site Characterization Project (YMP) during 1991 and continuing into 1992, discuss the complex legal issues and describe new site drilling work. Design work on the underground exploratory studies facility (ESF) will also be discussed. (author)

  1. Cast iron transport, storage and disposal containers for use in UK nuclear licensed sites - 59412

    International Nuclear Information System (INIS)

    Viermann, Joerg; Messer, Matthias P.

    2012-01-01

    Document available in abstract form only. Full text of publication follows: Ductile Cast Iron Containers of the types GCVI (UK trademark -GNS YELLOW BOX R ) and MOSAIK R have been in use in Germany for transport, storage and disposal of intermediate level radioactive waste (ILW) for more than two decades. In 2009 a number of containers of these types were delivered to various Magnox sites as so called pathfinders to test their suitability for Magnox waste streams. The results were encouraging. Therefore the Letter of Compliance (LoC) procedure was started to prove the suitability of packages using these types of containers for the future UK Geological Disposal Facility (GDF) and a conceptual Letter of Compliance (cLoC) was obtained from RWMD in 2010. Waste stream specific applications for Interim Stage Letters of Compliance (ILoC) for a number of waste streams from different Magnox sites and from the UK's only pressurised water reactor, Sizewell B are currently being prepared and discussed with RWMD. In order to achieve a package suitable for interim storage and disposal the contents of a Ductile Cast Iron Container only has to be dried. Mobile drying facilities are readily available. Containers and drying facilities form a concerted system

  2. High-level wastes: DOE names three sites for characterization

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    DOE announced in May 1986 that there will be there site characterization studies made to determine suitability for a high-level radioactive waste repository. The studies will include several test drillings to the proposed disposal depths. Yucca Mountain, Nevada; Deaf Smith Country, Texas, and Hanford, Washington were identified as the study sites, and further studies for a second repository site in the East were postponed. The affected states all filed suits in federal circuit courts because they were given no advance warning of the announcement of their selection or the decision to suspend work on a second repository. Criticisms of the selection process include the narrowing or DOE options

  3. Site characterization progress report: Yucca Mountain, Nevada. October 1, 1996--March 31, 1997

    International Nuclear Information System (INIS)

    1997-10-01

    The report is the sixteenth in a series issued approximately every six months to report progress and results of site characterization activities being conducted to evaluate Yucca Mountain as a possible geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. This report highlights work started, in progress, and completed during the reporting period. In addition, this report documents and discusses changes to the Office of Civilian Radioactive Waste Management (OCRWM) Site Characterization Program (Program) resulting from the ongoing collection and evaluation of site information, systems analyses, development of repository and waste package designs, and results of performance assessment activities. Details on the activities summarized can be found in the numerous technical reports cited throughout the progress report. Yucca Mountain Site Characterization Project (Project) activities this period focused on implementing the near-term objectives of the revised Program Plan issued last period. Near-term objectives of the revised Program Plan include updating the US Department of Energy's (DOE) repository siting guidelines to be consistent with a more focused performance-driven program; supporting an assessment in 1998 of the viability of continuing with actions leading to the licensing of a repository; and if the site is suitable, submittal of a Secretarial site recommendation to the President in 2001 and license application the US Nuclear Regulatory Commission (NRC) in 2002. During this reporting period, the Project developed and baselined its long-range plan in December 1996. That revision reflected the detailed fiscal year (FY) 1997 work scope and funding plan previously baselined at the end of FY 1996. Site characterization activities have been focused to answer the major open technical issues and to support the viability assessment

  4. Housekeeping Closure Report for Corrective Action Unit 119: Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, US Department of Energy, and US Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purpose of determining appropriate corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 19 CASs with in CAU 119 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Activities included verification of the prior removal of both aboveground and underground gas/oil storage tanks, gas sampling tanks, pressure fuel tanks, tank stands, trailers, debris, and other material. Based on these former activities, no further action is required at these CASs

  5. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    International Nuclear Information System (INIS)

    Costin, L.S.

    1997-01-01

    In this paper, the major elements of the site selection and characterization processes used in the U. S. high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the U. S. program, these processes, which are well-defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the U. S. program. (author). 3 refs., 2 tabs., 5 figs

  6. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Costin, L.S. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    In this paper, the major elements of the site selection and characterization processes used in the U. S. high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the U. S. program, these processes, which are well-defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the U. S. program. (author). 3 refs., 2 tabs., 5 figs.

  7. Environmental monitoring and mitigation plan for site characterization: Revision 1

    International Nuclear Information System (INIS)

    1988-01-01

    The purpose of the EMMP is: to identify, in consultation with the affected states and Indian tribes, potentially significant adverse environmental impacts that could result from site characterization activities, to describe data collection methods that will be used to monitor any such identified impacts, and procedures for mitigating them. Chapter 2 of the EMMP provides an overview of the background and scope of the document. Chapter 3 of the EMMP provides a description of site characterization phase activities planned to assess the geologic condition of the site and construct the exploratory shafts and surface support facilities. The rationale for developing environmental monitoring studies is presented in Chapeter 4. Chapter 5 contains descriptions of the environmental monitoring and mitigation procedures whenever they are applicable. Additionally, in Chapter 6, the EMMP includes a procedure for modifying the monitoring and mitigation program and an approach for reporting monitoring results to interested parties. 21 figs., 10 tabs

  8. Decommissioning of the 105-F and 105-H fuel storage basin in the 100 Area at the Hanford Site

    International Nuclear Information System (INIS)

    Griffin, P.W.

    1991-09-01

    The US Department of Energy (DOE) owns the eight surplus production reactors at the Hanford Site north of Richland, Washington. The fuel storage basins at the 105-F and 105-H reactors were filled with equipment, associated with the operation of the basins and clean fill in 1970. This was done to stabilize the residual sediment and a few feet of water in the reactors' fuel storage basins. This project investigates the subject basins to locate and remove overlooked fuel elements left in the basins

  9. Energy storage

    Science.gov (United States)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  10. Site Characterization Work Plan for the Gnome-Coach Site, New Mexico (Rev. 1, January 2002); FINAL

    International Nuclear Information System (INIS)

    2002-01-01

    Project Gnome was the first nuclear experiment conducted under the U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE), Plowshare Program. The Plowshare Program focused on developing nuclear devices exclusively for peaceful purposes. The intent of the Gnome experiment was to evaluate the effects of a nuclear detonation in a salt medium. Historically, Project Gnome consisted of a single detonation of a nuclear device on December 10, 1961 with the Salado Formation. Since the Gnome detonation, the AEC/DOE has conducted surface restoration, site reconnaissance, and decontamination and decommissioning activities at the site. In addition, annual groundwater sampling is performed under a long-term hydrological monitoring program begun in 1972. Coach, an experiment to be located near the Gnome project, was initially scheduled for 1963. Although construction and rehabilitation were completed for Coach, the experiment was canceled and never executed. Known collectively as Project Gnome-Coach, the site is located approximately 25 miles east of Carlsbad, New Mexico, in Eddy County, and is comprised of nearly 680 acres, of which approximately 60 acres are disturbed from the combined AEC/DOE operations. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the project. The subsurface at the Gnome-Coach site has two contaminant sources that are fundamentally different in terms of both their stratigraphic location and release mechanism. The goal of this characterization is to collect data of sufficient quantity and quality to establish current site conditions and to use the data to identify and evaluate if further action is required to protect human health and the environment and achieve permanent closure of the site. The results of these activities will be presented in a subsequent corrective action decision document

  11. 1996 Hanford site report on land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site

  12. 1996 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  13. Streamlined approach for environmental restoration closure report for Corrective Action Unit No. 456: Underground storage tank release site 23-111-1, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    The underground storage tank (UST) release site 23-111-1 is located in Mercury, Nevada. The site is in Area 23 of the Nevada Test Site, (NTS) located on the north side of Building 111. The tank associated with the release was closed in place using cement grout on September 6, 1990. The tank was not closed by removal due to numerous active underground utilities, a high-voltage transformer pad, and overhead power lines. Soil samples collected below the tank bottom at the time of tank closure activities exceeded the Nevada Administrative Code Action Level of 100 milligrams per kilogram (mg/kg) for petroleum hydrocarbons. Maximum concentrations detected were 119 mg/kg. Two passive venting wells were subsequently installed at the tank ends to monitor the progress of biodegradation at the site. Quarterly air sampling from the wells was completed for approximately one year, but was discontinued since data indicated that considerable biodegradation was not occurring at the site

  14. Characterization of Rous sarcoma virus polyadenylation site use in vitro

    International Nuclear Information System (INIS)

    Maciolek, Nicole L.; McNally, Mark T.

    2008-01-01

    Polyadenylation of Rous sarcoma virus (RSV) RNA is inefficient, as approximately 15% of RSV RNAs represent read-through transcripts that use a downstream cellular polyadenylation site (poly(A) site). Read-through transcription has implications for the virus and the host since it is associated with oncogene capture and tumor induction. To explore the basis of inefficient RSV RNA 3'-end formation, we characterized RSV polyadenylation in vitro using HeLa cell nuclear extracts and HEK293 whole cell extracts. RSV polyadenylation substrates composed of the natural 3' end of viral RNA and various lengths of upstream sequence showed little or no polyadenylation, indicating that the RSV poly(A) site is suboptimal. Efficiently used poly(A) sites often have identifiable upstream and downstream elements (USEs and DSEs) in close proximity to the conserved AAUAAA signal. The sequences upstream and downstream of the RSV poly(A) site deviate from those found in efficiently used poly(A) sites, which may explain inefficient RSV polyadenylation. To assess the quality of the RSV USEs and DSEs, the well-characterized SV40 late USEs and/or DSEs were substituted for the RSV elements and vice versa, which showed that the USEs and DSEs from RSV are suboptimal but functional. CstF interacted poorly with the RSV polyadenylation substrate, and the inactivity of the RSV poly(A) site was at least in part due to poor CstF binding since tethering CstF to the RSV substrate activated polyadenylation. Our data are consistent with poor polyadenylation factor binding sites in both the USE and DSE as the basis for inefficient use of the RSV poly(A) site and point to the importance of additional elements within RSV RNA in promoting 3' end formation

  15. Integrated use of surface geophysical methods for site characterization — A case study in North Kingstown, Rhode Island

    Science.gov (United States)

    Johnson, Carole D.; Lane, John W.; Brandon, William C.; Williams, Christine A.P.; White, Eric A.

    2010-01-01

    A suite of complementary, non‐invasive surface geophysical methods was used to assess their utility for site characterization in a pilot investigation at a former defense site in North Kingstown, Rhode Island. The methods included frequency‐domain electromagnetics (FDEM), ground‐penetrating radar (GPR), electrical resistivity tomography (ERT), and multi‐channel analysis of surface‐wave (MASW) seismic. The results of each method were compared to each other and to drive‐point data from the site. FDEM was used as a reconnaissance method to assess buried utilities and anthropogenic structures; to identify near‐surface changes in water chemistry related to conductive leachate from road‐salt storage; and to investigate a resistive signature possibly caused by groundwater discharge. Shallow anomalies observed in the GPR and ERT data were caused by near‐surface infrastructure and were consistent with anomalies observed in the FDEM data. Several parabolic reflectors were observed in the upper part of the GPR profiles, and a fairly continuous reflector that was interpreted as bedrock could be traced across the lower part of the profiles. MASW seismic data showed a sharp break in shear wave velocity at depth, which was interpreted as the overburden/bedrock interface. The MASW profile indicates the presence of a trough in the bedrock surface in the same location where the ERT data indicate lateral variations in resistivity. Depths to bedrock interpreted from the ERT, MASW, and GPR profiles were similar and consistent with the depths of refusal identified in the direct‐push wells. The interpretations of data collected using the individual methods yielded non‐unique solutions with considerable uncertainty. Integrated interpretation of the electrical, electromagnetic, and seismic geophysical profiles produced a more consistent and unique estimation of depth to bedrock that is consistent with ground‐truth data at the site. This test case shows that using

  16. Comprehensive Monitoring for Heterogeneous Geographically Distributed Storage

    Energy Technology Data Exchange (ETDEWEB)

    Ratnikova, N. [Fermilab; Karavakis, E. [CERN; Lammel, S. [Fermilab; Wildish, T. [Princeton U.

    2015-12-23

    Storage capacity at CMS Tier-1 and Tier-2 sites reached over 100 Petabytes in 2014, and will be substantially increased during Run 2 data taking. The allocation of storage for the individual users analysis data, which is not accounted as a centrally managed storage space, will be increased to up to 40%. For comprehensive tracking and monitoring of the storage utilization across all participating sites, CMS developed a space monitoring system, which provides a central view of the geographically dispersed heterogeneous storage systems. The first prototype was deployed at pilot sites in summer 2014, and has been substantially reworked since then. In this paper we discuss the functionality and our experience of system deployment and operation on the full CMS scale.

  17. Design report for the interim waste containment facility at the Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    1986-05-01

    Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection

  18. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  19. Applicability of slug interference testing of hydraulic characterization of contaminated aquifer sites

    International Nuclear Information System (INIS)

    Spane, F.A.; Swanson, L.C.

    1993-10-01

    Aquifer test methods available for characterizing hazardous waste sites are sometimes restricted because of problems with disposal of contaminated groundwater. These problems, in part, have made slug tests a more desirable method of determining hydraulic properties at such sites. However, in higher permeability formations (i.e., transmissivities ≥ 1 x 10 -3 m 2 /s), slug test results often cannot be analyzed and give, at best, only a lower limit for transmissivity. A need clearly exists to develop test methods that can be used to characterize higher permeability aquifers without removing large amounts of contaminated groundwater. One hydrologic test method that appears to hold promise for characterizing such sites is the slug interference test. To assess the applicability of this test method for use in shallow alluvial aquifer systems, slug interference tests have been conducted, along with more traditional aquifer testing methods, at several Hanford multiple-well sites. Transmissivity values estimated from the slug interference tests were comparable (within a factor of 2 to 3) to values calculated using traditional testing methods, and made it possible to calculate the storativity or specific yield for the intervening test formation. The corroboration of test results indicates that slug interference testing is a viable hydraulic characterization method in transmissive alluvial aquifers, and may represent one of the few test methods that can be used in sensitive areas where groundwater is contaminated

  20. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-05-01

    Volume II contains appendices for the following: (1) remote sensing and surface mapping techniques; (2) subsurface mapping methods for site characterization; (3) gravity technique; (4) audio-frequency magnetotelluric technique; (5) seismic refraction technique; (6) direct-current electrical resistivity method; (7) magnetic technique; (8) seismic reflection technique; (9) seismic crosshole method; (10) mechanical downhole seismic velocity survey method; (11) borehole geophysical logging techniques; (12) drilling and coring methods for precharacterization studies; (13) subsurface drilling methods for site characterization; (14) geomechanical/thermomechanical techniques for precharacterization studies; (15)geomechanical/thermal techniques for site characterization studies; (16) exploratory geochemical techniques for precharacterization studies; (17) geochemical techniques for site characterization; (18) hydrologic techniques for precharacterization studies; (19) hydrologic techniques for site characterization; and (20) seismological techniques.