WorldWideScience

Sample records for storage seed proteins

  1. Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius

    Directory of Open Access Journals (Sweden)

    Goggin Danica E

    2011-04-01

    Full Text Available Abstract Background In legumes, seed storage proteins are important for the developing seedling and are an important source of protein for humans and animals. Lupinus angustifolius (L., also known as narrow-leaf lupin (NLL is a grain legume crop that is gaining recognition as a potential human health food as the grain is high in protein and dietary fibre, gluten-free and low in fat and starch. Results Genes encoding the seed storage proteins of NLL were characterised by sequencing cDNA clones derived from developing seeds. Four families of seed storage proteins were identified and comprised three unique α, seven β, two γ and four δ conglutins. This study added eleven new expressed storage protein genes for the species. A comparison of the deduced amino acid sequences of NLL conglutins with those available for the storage proteins of Lupinus albus (L., Pisum sativum (L., Medicago truncatula (L., Arachis hypogaea (L. and Glycine max (L. permitted the analysis of a phylogenetic relationships between proteins and demonstrated, in general, that the strongest conservation occurred within species. In the case of 7S globulin (β conglutins and 2S sulphur-rich albumin (δ conglutins, the analysis suggests that gene duplication occurred after legume speciation. This contrasted with 11S globulin (α conglutin and basic 7S (γ conglutin sequences where some of these sequences appear to have diverged prior to speciation. The most abundant NLL conglutin family was β (56%, followed by α (24%, δ (15% and γ (6% and the transcript levels of these genes increased 103 to 106 fold during seed development. We used the 16 NLL conglutin sequences identified here to determine that for individuals specifically allergic to lupin, all seven members of the β conglutin family were potential allergens. Conclusion This study has characterised 16 seed storage protein genes in NLL including 11 newly-identified members. It has helped lay the foundation for efforts to use

  2. Seed storage protein components are associated with curled ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... analysis suggests that the two increased protein spots in mutants were ... The main objective of this work was to gain further understanding of the influence of curled cotyledon on the seed storage protein components in soybean by com- .... cotyledon formation during Arabidopsis embryogenesis: interaction.

  3. Genotypic variability and mutant identification in cicer arietinum L. by seed storage protein profiling

    International Nuclear Information System (INIS)

    Hameed, A.; Iqbal, N.; Shah, T.M.

    2012-01-01

    A collection of thirty-four chickpea genotypes, including five kabuli and twenty-nine desi, were analyzed by SDS-PAGE for seed storage protein profiling. Total soluble seed proteins were resolved on 12% gels. A low level of variability was observed in desi as compared to kabuli genotypes. Dendrogram based on electrophoretic data clustered the thirty-four genotypes in four major groups. As large number of desi genotypes illustrated identical profiles, therefore could not be differentiated on the basis of seed storage protein profiles. One kabuli genotype ILC-195 found to be the most divergent showing 86% similarity with all other genotypes. ILC-195 can be distinguished from its mutant i.e., CM-2000 and other kabuli genotypes on the basis of three peptides i.e. SSP-66, SSP-43 and SSP-39. Some proteins peptides were found to be genotype specific like SSP-26 for ICCV-92311. Uniprot and NCBI protein databases were searched for already reported and characterized seed storage proteins in chickpea. Among 33 observed peptides, only six seed storages proteins from chickpea source were available in databases. On the basis of molecular weight similarity, identified peptides were SSP-64 as Serine/Threonine dehydratase, SSP-56 as Alpha-amylase inhibitor, SSP-50 as Provicillin, SSP-39 as seed imbibition protein, SSP-35 as Isoflavane reductase and SSP-19 as lipid transport protein. Highest variability was observed in vicillin subunits and beta subunits of legumins and its polymorphic forms. In conclusion, seed storage profiling can be economically used to asses the genetic variation, phylogenetic relationship and as markers to differentiate mutants from their parents. (author)

  4. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    Science.gov (United States)

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-10-23

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro.

  5. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    Directory of Open Access Journals (Sweden)

    Hye-Jung Lee

    2015-06-01

    Full Text Available The major seed storage proteins (SSPs in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi, which was generated with RNA interference (RNAi-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  6. Seed storage protein polymorphism in ten elite rice (Oryza sativa L ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... for several economical traits by conserving landrace genotypes and ... plasm, seed storage protein analysis represents a valid alternative ... of each variety was taken and ground into fine powder using pestle and mortal and ...

  7. Effects of storage structures and moisture contents on seed quality attributes of quality protein maize

    Directory of Open Access Journals (Sweden)

    Gopal Bhandari

    2017-12-01

    Full Text Available The study was aimed to examine the effects of various storage structures and moisture contents on seed quality attributes of quality protein maize seed. The quality protein maize (QPM-1 seed was tested in conventional seed storage containers (Fertilizer sack and earthen pot and the improved hermetic ones (Metal bin, Super grain bag, and Purdue Improved Crop Storage (PICS bag at Seed Science and Technology Division, Khumaltar, Nepal during February, 2015 to January 2016. Ten treatments comprising 5 storage devices in two moisture regimes (11% and 9% replicated thrice and laid out in Completely Randomized Design (CRD. Data on temperature, relative humidity (RH, germination, electrical conductivity (EC, seed moisture content (MC were collected bimonthly. The conventional containers were found liable to the external environmental condition whereas the hermetic structures observed with controlled RH level below 40% in all combinations. Electrical conductivity (EC for seed vigor showed that hermetic containers provide higher seed vigor than the conventional ones. Up to 4 months all treatments were found statistically at par for germination. A significant difference was observed in each treatment after 4 months where PICS bag & Super grain bag showed best germination followed by metal bin while fertilizer bag & earthen-pot showed poorer and poorest germination respectively till one year. Almost all treatments with lower MC showed better results than the treatments with higher MC. A negative correlation (R2=69.7% was found between EC and Germination. All six figures from 2 to 12 months on MC showed statistically different where hermetic plastic bags were found maintaining MC as initial whereas MC of fertilizer bags and earthen pot was spiked than the basal figure. The finding evidenced that the hermetic containers and low MC are the seed storage approaches for retaining the quality of seed even in an ambient environmental condition for more than a year.

  8. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Singh

    2016-01-01

    Full Text Available Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE across a broad range 3.0–10.0 immobilized pH gradient (IPG strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana.

  9. Characterization of seed storage protein patterns of Heliotropium digynum.

    Science.gov (United States)

    Alwhibi, Mona Soliman

    2017-09-01

    Heliotropium digynum , is a shrub that has ecological importance. The height of the plant differs from one population to another and the difference in length of the inflorescence can be attributed to environmental factors, such as rainfall or type of soil and temperature. To date, no study has shed light on estimation in seed samples of H. digynum in Saudi Arabia. So, the aim is to evaluate and characterize the protein patterns of seed storage proteins of H. digynum to be used as fingerprint of this plant in Saudi Arabia. It is collected from different locations in the central region of Saudi Arabia and total protein extraction from plant was compared in SDS-PAGE. The genetic relationships among all cultivars were analyzed using UPGMA and NJ using Total Lab TL and in the same way using Jaccard Similarity Coefficient dendrogram using STATISTICA (ver.8) software. Results, our data show that amounts of protein are different, although they are of the same type or from the same geographical region. Amounts ranged between 22 and 1.5 mg/g of dry weight. Less amount of protein was obtained from the group of samples collected from Dir'iyah area, and the highest amount of protein was from the group of samples collected from Dyrab area in general.

  10. Characterization of seed storage protein patterns of Heliotropium digynum

    Directory of Open Access Journals (Sweden)

    Mona Soliman Alwhibi

    2017-09-01

    Full Text Available Heliotropium digynum, is a shrub that has ecological importance. The height of the plant differs from one population to another and the difference in length of the inflorescence can be attributed to environmental factors, such as rainfall or type of soil and temperature. To date, no study has shed light on estimation in seed samples of H. digynum in Saudi Arabia. So, the aim is to evaluate and characterize the protein patterns of seed storage proteins of H. digynum to be used as fingerprint of this plant in Saudi Arabia. It is collected from different locations in the central region of Saudi Arabia and total protein extraction from plant was compared in SDS-PAGE. The genetic relationships among all cultivars were analyzed using UPGMA and NJ using Total Lab TL and in the same way using Jaccard Similarity Coefficient dendrogram using STATISTICA (ver.8 software. Results, our data show that amounts of protein are different, although they are of the same type or from the same geographical region. Amounts ranged between 22 and 1.5 mg/g of dry weight. Less amount of protein was obtained from the group of samples collected from Dir’iyah area, and the highest amount of protein was from the group of samples collected from Dyrab area in general.

  11. Proteomics for exploiting diversity of lupin seed storage proteins and their use as nutraceuticals for health and welfare.

    Science.gov (United States)

    Cabello-Hurtado, Francisco; Keller, Jean; Ley, José; Sanchez-Lucas, Rosa; Jorrín-Novo, Jesús V; Aïnouche, Abdelkader

    2016-06-30

    Lupins have a variety of both traditional and modern uses. In the last decade, reports assessing the benefits of lupin seed proteins have proliferated and, nowadays, the pharmaceutical industry is interested in lupin proteins for human health. Modern genomics and proteomics have hugely contributed to describing the diversity of lupin storage genes and, above all, proteins. Most of these studies have been centered on few edible lupin species. However, Lupinus genus comprises hundreds of species spread throughout the Old and New Worlds, and these resources have been scarcely explored and exploited. We present here a detailed review of the literature on the potential of lupin seed proteins as nutraceuticals, and the use of -omic tools to analyze seed storage polypeptides in main edible lupins and their diversity at the Lupinus inter- and intra-species level. In this sense, proteomics, more than any other, has been a key approach. Proteomics has shown that lupin seed protein diversity, where post-translational modifications yield a large number of peptide variants with a potential concern in bioactivity, goes far beyond gene diversity. The future extended use of second and third generation proteomics should definitely help to go deeper into coverage and characterization of lupin seed proteome. Some important topics concerning storage proteins from lupin seeds are presented and analyzed in an integrated way in this review. Proteomic approaches have been essential in characterizing lupin seed protein diversity, which goes far beyond gene diversity since the protein level adds to the latter differential proteolytic cleavage of conglutin pro-proteins and a diverse array of glycosylation forms and sites. Proteomics has also proved helpful for screening and studying Lupinus germplasm with the future aim of exploiting and improving food production, quality, and nutritional values. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  13. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  14. Functions of the CCCH type zinc finger protein OsGZF1 in regulation of the seed storage protein GluB-1 from rice

    NARCIS (Netherlands)

    Chen, Y.; Sun, A.; Wang, M.; Zhu, Z.; Ouwerkerk, P.B.F.

    2014-01-01

    Glutelins are the most abundant storage proteins in rice grain and can make up to 80 % of total protein content. The promoter region of GluB-1, one of the glutelin genes in rice, has been intensively used as a model to understand regulation of seed-storage protein accumulation. In this study, we

  15. A role for seed storage proteins in Arabidopsis seed longevity

    NARCIS (Netherlands)

    Nguyen, Thu-Phuong|info:eu-repo/dai/nl/328228818; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie|info:eu-repo/dai/nl/241338735

    2015-01-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana

  16. The purification and characterization of a third storage protein (convicilin) from the seeds of pea (Pisum sativum L.).

    OpenAIRE

    Croy, R R; Gatehouse, J A; Tyler, M; Boulter, D

    1980-01-01

    A third storage protein, distinct from legumin and vicilin, has been purified from the seeds of pea (Pisum sativum L.). This protein has been named 'convicilin' and is present in protein bodies isolated from pea seeds. Convicilin has a subunit mol.wt. of 71 000 and a mol.wt. in its native form of 290 000. Convicilin is antigenically dissimilar to legumin, but gives a reaction of identity with vicilin when tested against antibodies raised against both proteins. However, convicilin contains no ...

  17. Irradiation and storage effect on some characteristics of soy seeds

    International Nuclear Information System (INIS)

    Ramirez Ascheri, Diego Palmiro; Devilla, Ivano Alessandro

    2008-01-01

    The irradiation has been applied frequently in seeds conservation to obtain reduction of losses caused by physiologic processes, besides reducing the microbial load. However, the irradiation process for X-rays is not a common practice in seeds; for that, it is necessary to study that process, in order to know irradiation effect on the soy seeds quality. The objective of this work was to verify the irradiation effect of X-rays and the storage period on the water, oil and protein contends of soy seeds (Glycine max L.) variety Emgopa 302. The experiment was represented by the combination of two factors: X-rays dosage with four irradiation levels [0, 50, 65 and 70 kV] and storage period in laboratory atmosphere with five levels (0, 15, 30, 45 and 60 days). The water content, oil and protein in seeds were assayed in the beginning and every 15 days of storage. The results showed the seeds quality stayed unaffected in irradiation function in the beginning of the experience, with alterations after 15 days, was verified a quality decreasing with the increasing of the X-rays dosage. The soy seeds irradiated had reduced quality in elapsing of the storage period. (author)

  18. Proteomic Analysis of Lettuce Seed Germination and Thermoinhibition by Sampling of Individual Seeds at Germination and Removal of Storage Proteins by Polyethylene Glycol Fractionation1

    Science.gov (United States)

    Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  19. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation.

    Science.gov (United States)

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-04-01

    Germination and thermoinhibition in lettuce (Lactuca sativa 'Jianyexianfeng No. 1') seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (Pseeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    OpenAIRE

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S.

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected ...

  1. Engineering of soybean seed storage proteins

    International Nuclear Information System (INIS)

    Dickinson, C.D.; Floener, L.A.; Evans, R.P.; Nielsen, N.C.

    1987-01-01

    Protein engineering is one approach to the improvement of seed quality. With this in mind, a rapid in vitro system has been developed to assay the effect structural modifications have on the assembly of glycinin and β-conglycinin subunit complexes. Transcription plasmids were constructed for production of synthetic glycinin and β-conglycinin mRNAs by SP6 RNA-polymerase. Radiolabeled translation products from these messages were tested for their ability to form complexes. Gy4 and Gy5 proglycinins (group-2 subunits) and the a-subunit of β-conglycinin self-assembled into trimers. Proglycinin Gy2 (group-1 subunit) did not self-assemble, but assembled into mixed trimers in combination with Gy4 proglycinin. No assembly was observed for preproglycinins Gyl and Gy4, or for a Gy4 proglycinin which lacked 27 amino acids in a highly conserved internal sequence. Insertion of alternating MET-ARG residues in predicted turn regions of a hypervariable sequence in Gy4 proglycinin were tolerated when the string was short but inhibited trimer assembly as it became longer. The response to several different long deletions in this hypervariable region have also been tested. Different levels of trimer assembly were obtained and may depend on the secondary structures of the regions being joined in the engineered subunits. This system will be useful to study the assembly of storage protein complexes and to screen against modifications that interfere with subunit assembly

  2. Isolation of Protein Storage Vacuoles and Their Membranes.

    Science.gov (United States)

    Shimada, Tomoo; Hara-Nishimura, Ikuko

    2017-01-01

    Protein-storage vacuoles (PSVs) are specialized vacuoles that sequester large amounts of storage proteins. During seed development, PSVs are formed de novo and/or from preexisting lytic vacuoles. Seed PSVs can be subdivided into four distinct compartments: membrane, globoid, matrix, and crystalloid. In this chapter, we introduce easy methods for isolation of PSVs and their membranes from pumpkin seeds. These methods facilitate the identification and characterization of PSV components.

  3. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition.

    Science.gov (United States)

    Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith

    2011-05-01

    Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Viability and Biochemical Content Changes in Seed Storage of Jabon Putih (Anthocephalus Cadamba (Roxb Miq.

    Directory of Open Access Journals (Sweden)

    Naning Yuniarti

    2015-08-01

    Full Text Available Seed deterioration is the process of deteriorated seed in view of viability that changed the physiological and chemical content. The aim of this research is to find out the effect of moisture content and storage on viability and biochemical content of jabon putih seed. Completely Randomized Design was used for decreasing moisture content based on seed drying time for 0, 24, 48, 72, 96, 120 hours, and Completely Randomized Factorial Design was used for the combination of moisture content (drying time for 0, 24, 48, 72, 96, 120 hours and room storage (ambient room, air-conditioned room, refrigerator. The results of this research are: (1 seed drying time and seed storage affected the change of seed viability and biochemical content, (2 seed drying time and seed storage influence significantly the value of moisture content, germination percentage, and biochemical content (lipid, carbohydrate, protein, (3 The longer time of seed drying and seed storage has decreased the seed moisture content, germination percentage, and the carbohydrate content, but it has increased the content of lipid and protein, and (4 the seeds were stored in refrigerator has better viability compared to dry cold storage and ambient room.

  5. Seed quality preservation advantage of gamma irradiation seed pre-treatment during long term storage in soybean

    International Nuclear Information System (INIS)

    Guha, Sameer Kumar; Sumedha; Singh, Bhupinder

    2014-01-01

    The experiment was conducted to analyse the effect of gamma irradiation seed pre-treatment on insect damage and quality preservation of soybean seeds during long term storage at ambient temperature (27-42 ℃) and relative humidity (50-95%). Freshly harvested seeds of soybean (cv. Pusa-9814) were treated with control (0), 0.01, 0.05, 0.5, 1.0, 3.0, 5.0 kGy gamma radiation on a Gamma irradiator (Gamma Chamber 5000, 60 Co source, activity 12000 Ci, BRIT, Mumbai, India) at the Nuclear Research Laboratory, IARI, New Delhi and were stored over one year in cotton cloth bags under ambient conditions. Protein and oil per cent and fatty acid profile was measured in freshly harvested zero time unirradiated control, aged unirradiated control and other treatments of ionizing radiation. Seed oil was extracted through the soxhlet extraction method and oil profiling was done by gas chromatography. Change in saturated and unsaturated fatty acids like palmitic, stearic, oleic, linolic, linolenic acid and oleic to linoleic ratio was measured. Oil content of unirradiated stored seeds compared to that of the freshly harvested control was lower. However, radiation in general, helped in maintaining a higher seed oil during storage when compared with that of the aged unirradiated control and was insignificantly reduced over the fresh unirrradiated control. Further, gamma irradiation treatment did not yield any adverse affect on the seed protein even after prolonged storage. The results reveal a reduced rate of lipid degradation and improved seed hardness over untreated control with no significant change in fatty acid profile of the irradiated and the unirradiated seeds over a long term storage period. (author)

  6. STORAGE OF Handroanthus umbellatus SEEDS

    Directory of Open Access Journals (Sweden)

    Cibele Chalita Martins

    2014-09-01

    Full Text Available http://dx.doi.org/10.5902/1980509815725Seed storage under controlled environmental conditions represents one of the most important lines of research to be applied on short-lived forest species as Handroanthus. The present research aimed to identify the most suitable seed storage conditions and longevity behavior of Handroanthus umbellatus seeds subject to the following storage treatments: packaging permeable paper bags under a no-controlled laboratory temperature and humidity (control and multiwall semipermeable bag at temperatures of -18 ºC, 1 ºC and 25 ºC. Seeds were dried to 6.3% of water content. Stored seeds were evaluated every three months until 24 months for water content, germination percentage and vigor utilizing first counting test. Seeds of T. umbellata are orthodox, with low longevity under natural conditions, once they remain viable for less than 5 months. The best conditions of seed preservation of these species were obtained by storage at -18° C in multiwall bags. Under these conditions physiological seed quality remains unchanged for a 24-month period.

  7. Diel pattern of circadian clock and storage protein gene expression in leaves and during seed filling in cowpea (Vigna unguiculata).

    Science.gov (United States)

    Weiss, Julia; Terry, Marta I; Martos-Fuentes, Marina; Letourneux, Lisa; Ruiz-Hernández, Victoria; Fernández, Juan A; Egea-Cortines, Marcos

    2018-02-14

    Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock. We identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions. The core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to

  8. Photoinhibition influences protein utilisation during seed ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... Seed storage proteins are mobilised during germination, especially at ... of this study was to examine changes in protein expression during ... MATERIALS AND METHODS ... System (Pharmacia) were 500V for 4.5 h in Phase I and II and 2000 .... characterisation of photoinhibition and recovery during cold.

  9. Tuber storage proteins.

    Science.gov (United States)

    Shewry, Peter R

    2003-06-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose-binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers.

  10. Biochemical Aspects of a Serine Protease from Caesalpinia echinata Lam. (Brazilwood Seeds: A Potential Tool to Access the Mobilization of Seed Storage Proteins

    Directory of Open Access Journals (Sweden)

    Priscila Praxedes-Garcia

    2012-01-01

    Full Text Available Several proteins have been isolated from seeds of leguminous, but this is the first report that a protease was obtained from seeds of Caesalpinia echinata Lam., a tree belonging to the Fabaceae family. This enzyme was purified to homogeneity by hydrophobic interaction and anion exchange chromatographies and gel filtration. This 61-kDa serine protease (CeSP hydrolyses H-D-prolyl-L-phenylalanyl-L-arginine-p-nitroanilide (Km 55.7 μM in an optimum pH of 7.1, and this activity is effectively retained until 50∘C. CeSP remained stable in the presence of kosmotropic anions (PO4 3−, SO4 2−, and CH3COO− or chaotropic cations (K+ and Na+. It is strongly inhibited by TLCK, a serine protease inhibitor, but not by E-64, EDTA or pepstatin A. The characteristics of the purified enzyme allowed us to classify it as a serine protease. The role of CeSP in the seeds cannot be assigned yet but is possible to infer that it is involved in the mobilization of seed storage proteins.

  11. IMPORTANCE OF STORAGE CONDITIONS AND SEED TREATMENT FOR SUNFLOWER HYBRIDS SEEDS GERMINATION

    Directory of Open Access Journals (Sweden)

    Goran Krizmanić

    2014-12-01

    Full Text Available In this research we have determined germination energy and germination of seeds of sunflower hybrids ‘Luka’ and ‘Apolon’, at the beginning of storage and 6, 12 and 18 months after of storage period (2011-2012 in the floor concrete storage at two different air temperatures and humidity (S-1: air temperature 15-18°C and relative air humidity 65-70% as well as in climate chamber (S-2: air temperature 10-12°C and relative air humidity 60-65%, stored in four treatments (Control: processed-untreated seed; T-1: treated with A.I. metalaxyl-M; T-2: treated with A.I. metalaxyl-M + A.I. imidacloprid and T-3: treated with A.I. metalaxyl-M + A.I. clothianidin. Based on the obtained results we have determined that sunflower hybrid ‘Luka’, compared to hybrid ‘Apolon’, in the given storage conditions and with the same seed treatment has 5-8% higher germination energy and seed germination and that in climate chamber both hybrids have 5-7% higher germination energy. Seed treatment of both sunflower hybrids with A.I. imidacloprid maximally reduced initial germination energy and seed germination in all tested periods and conditions of storage. On the average, natural seed, after 18 months of storage did not have better seed quality compared to seed treated with A.I. metalaxyl-M while other treatments had more significant influence on reduction of germination energy and seed germination, 6-15%. On the average, compared to other variants, seeds treated with A.I. metalaxyl-M after 18 months of storage in both storage conditions had higher germination energy by 4-15%, and seed germination by 2-12%.

  12. Investigation of total seed storage proteins of pakistani and japanese maize (zea mays l.) through sds-page markers

    International Nuclear Information System (INIS)

    Shinwari, Z.K.

    2014-01-01

    The assessment of genetic diversity among the members of a species is of vital importance for successful breeding and adaptability. In the present study 83 genotypes of maize of Pakistani and Japanese origin were evaluated for the total seed storage proteins using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) through vertical slab unit. The total protein subunits were separated on 12% polyacrylamide gel using standard protocols. A total of 18 protein subunits were noted out of which 7 (39%) were monomorphic and 11 (61%) were polymorphic, with molecular weight ranging from 10 to 122 kDa. Coefficients of similarity among the accessions ranged between 0.89 and 1.00. The dendrogram obtained through UPGMA clustering method showed two main clusters: 1 and 2. First cluster comprised of 9 genotypes including Sahiwal-2002, while second cluster contained 74 genotypes including Aaiti-2002 and Sadaf. Over all a low level of polymorphism was observed in total seed storage protein patterns of maize genotypes from Pakistan as well as Japan. It is inferred from the present study that more genotypes of maize could be brought under study and more advanced biochemical techniques with more reliable results could be followed to bring assessment of genetic diversity of maize for planning breeding programs. (author)

  13. Physalis peruviana seed storage

    Directory of Open Access Journals (Sweden)

    Cíntia L. M. de Souza

    2016-03-01

    Full Text Available ABSTRACT Physalis peruviana belongs to Solanaceae family and has a high nutritional and nutraceutical potential. The production is intended for fruit consumption and the propagation is mainly by seeds. This study aimed to evaluate the influence of priming on the kinetics of germination of P. peruviana seeds stored at different temperatures. The seeds were stored at 5 and 25 °C in a chamber saturated with zinc chloride solution and in liquid nitrogen (-196 °C. Every 4 months, the seeds were removed from storage for evaluation of germination and moisture content in the laboratory and emergence and development of seedlings in greenhouse. During the last evaluation at 16 months, the seeds under the same conditions were subjected to salt stress. The moisture content varied during the storage period, but was always higher for seeds kept at -196 ºC. These seeds kept high germination percentage in water until 16 months, regardless of the tested temperature; however, in salt solution the germination percentage was significantly reduced.

  14. Seed protein improvement in cereals and grain legumes

    International Nuclear Information System (INIS)

    1979-01-01

    Based upon the recommendations of a panel of experts in 1968, the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture established an international programme to improve the protein content and quality in seed crops of importance to developing countries. Reports of previous meetings held under this programme have been published by the IAEA. The meeting on Seed Protein Improvement in Cereals and Grain Legumes, held in September 1978, marked the formal end of the FAO/IAEA/GSF Co-ordinated Research Programme on Seed Protein Improvement. It reviewed the progress achieved. Volume I covers 27 papers. Following a review of the world protein and nutritional situation, the contributions are grouped under the main headings of the need for and use of variability in protein characteristics; genetics, biochemistry and physiology of seed storage proteins; analytical and nutritional techniques; and coordinated research programmes under a joint FAO/IAEA/GSF programme on grain protein improvement. Individual papers of direct relevance are cited as separate entries in INIS

  15. N-terminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/N-end rule pathway.

    Science.gov (United States)

    Zhang, Hongtao; Gannon, Lucy; Hassall, Kirsty L; Deery, Michael J; Gibbs, Daniel J; Holdsworth, Michael J; van der Hoorn, Renier A L; Lilley, Kathryn S; Theodoulou, Frederica L

    2018-05-01

    The N-end rule pathway of targeted protein degradation is an important regulator of diverse processes in plants but detailed knowledge regarding its influence on the proteome is lacking. To investigate the impact of the Arg/N-end rule pathway on the proteome of etiolated seedlings, we used terminal amine isotopic labelling of substrates with tandem mass tags (TMT-TAILS) for relative quantification of N-terminal peptides in prt6, an Arabidopsis thaliana N-end rule mutant lacking the E3 ligase PROTEOLYSIS6 (PRT6). TMT-TAILS identified over 4000 unique N-terminal peptides representing c. 2000 protein groups. Forty-five protein groups exhibited significantly increased N-terminal peptide abundance in prt6 seedlings, including cruciferins, major seed storage proteins, which were regulated by Group VII Ethylene Response Factor (ERFVII) transcription factors, known substrates of PRT6. Mobilisation of endosperm α-cruciferin was delayed in prt6 seedlings. N-termini of several proteases were downregulated in prt6, including RD21A. RD21A transcript, protein and activity levels were downregulated in a largely ERFVII-dependent manner. By contrast, cathepsin B3 protein and activity were upregulated by ERFVIIs independent of transcript. We propose that the PRT6 branch of the pathway regulates protease activities in a complex manner and optimises storage reserve mobilisation in the transition from seed to seedling via control of ERFVII action. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Mature forms of the major seed storage albumins in sunflower: A mass spectrometric approach.

    Science.gov (United States)

    Franke, Bastian; Colgrave, Michelle L; Mylne, Joshua S; Rosengren, K Johan

    2016-09-16

    Seed storage albumins are abundant, water-soluble proteins that are degraded to provide critical nutrients for the germinating seedling. It has been established that the sunflower albumins encoded by SEED STORAGE ALBUMIN 2 (SESA2), SESA20 and SESA3 are the major components of the albumin-rich fraction of the common sunflower Helianthus annuus. To determine the structure of sunflowers most important albumins we performed a detailed chromatographic and mass spectrometric characterization to assess what post-translational processing they receive prior to deposition in the protein storage vacuole. We found that SESA2 and SESA20 each encode two albumins. The first of the two SESA2 albumins (SESA2-1) exists as a monomer of 116 or 117 residues, differing by a threonine at the C-terminus. The second of the two SESA2 albumins (SESA2-2) is a monomer of 128 residues. SESA20 encodes the albumin SESA20-2, which is a 127-residue monomer, whereas SESA20-1 was not abundant enough to be structurally described. SESA3, which has been partly characterized previously, was found in several forms with methylation of its asparagine residues. In contrast to other dicot albumins, which are generally matured into a heterodimer, all the dominant mature sunflower albumins SESA2, SESA20-2, SESA3 and its post-translationally modified analogue SESA3-a are monomeric. Sunflower plants have been bred to thrive in various climate zones making them favored crops to meet the growing worldwide demand by humans for protein. The abundance of seed storage proteins makes them an important source of protein for animal and human nutrition. This study explores the structures of the dominant sunflower napin-type seed storage albumins to understand what structures evolution has favored in the most abundant proteins in sunflower seed. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  17. Plant storage proteins – the main nourisching products – from biosynthesis to cellular storage depots

    Directory of Open Access Journals (Sweden)

    Agnieszka Chmielnicka

    2017-06-01

    Full Text Available Storage proteins of legumes are one of the main components of the human and animal diet. The substances collected in their seeds have the pro-health values, supporting the prevention of many civilization diseases. However, there are still many uncertainties about the mechanisms leading to the production of nutritious seeds. It is also difficult to identify which of their constituents and in what final form are responsible for the observed protective effects in vivo. In this work, on the background of different types of storage proteins, these deposited mainly in legumes were in the focus of interest. They were characterized on the example of pea (Pisum sativum proteins. Mechanisms associated with their biosynthesis and transport to specific cellular compartments was presented. Ways of their post-translational processing, segregation and storage in the specific vacuoles were also discussed. Therefore, the paper presents the state-of-the-art knowledge concerning the processes making the accumulated protein deposits ready to use by plants, animals and humans.

  18. Seed protein improvement in cereals and grain legumes. Proceedings series

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The following topics were discussed in the five sections of the conference: the world protein and nutritional situation; the need for and use of variability in protein characteristics; genetics, biochemistry, and physiology of seed storage proteins; analytical and nutritional techniques; and coordinated research programs. (HLW)

  19. Seed protein improvement in cereals and grain legumes

    International Nuclear Information System (INIS)

    1979-01-01

    Plant breeders, molecular biologists, analytical chemists and nutritionists report on progress and achievements to date. High-lysine genotypes of maize, barley and sorghum have been produced. One high-protein variety of wheat is reported available for commercial use. Grain legumes already have high seed protein content but, compared to cereals, less of the total biological yield is available as seed, and intensive efforts are being made to produce genotypes with higher seed yield. Genetic variability is available from world germplasm collections and from induced-mutation programmes. In the basic sciences considerable advances are reported. Putative structural genes determining protein quality and quantity have been located on various chromosomes. In vitro synthesis of legume and cereal storage proteins and the isolation of some mRNA and the preparation and cloning of cDNA have been reported. Uptake and incorporation of N into amino acids, their synthesis into proteins, and interaction between protein and carbohydrate biosynthesis during seed development are discussed. Future prospects are considered including potential selection at the cellular rather than the whole plant level. In only a minority of the 64 papers is the use of nuclear techniques indicated specifically enough to justify individual entries in INIS

  20. CHARACTERIZATION OF SEED STORAGE PROTEINS IN SOME IRANIAN DATE PALM CULTIVARS USING SDS-PAGE

    Directory of Open Access Journals (Sweden)

    Sayed Mohammad Reza Khoshroo

    2013-08-01

    Full Text Available The date palm (Phoenix dactylifera L. is most adapted tree to grow in desert areas. It has always been looked on as a key source of stability, survival and evolution of the oasis agro-system since it constitutes the basic features of the ecological pyramid in desert regions. Determining genetic variability and cultivars identification in date palm are two major important factors in breeding programs, characterization of germplasm, and conservation purposes. The genetic variation of seed proteins was assayed by SDS-PAGE for 9 cultivars in Shahdad region in Iran. A total of 16 alternative protein bands with different mobility rates were identified within a molecular weight range of 11 KDa to 350 KDa. Then, electrophorogram for each cultivar was scored, and Jaccard‘s Similarity Index was calculated. Relying on UPGMA and NJ methods, genetic diversity of cultivars was evaluated by constructing the dendrogram for protein bands. Moreover, genetic distance was calculated for all of the cultivars.  It is concluded that seed storage protein profiles could be useful markers in genetic diversity studies and classification of cultivars. The cultivars from Shahdad were well separated from each other. This might have been done due to their unique genetic build-up. The cluster analysis displayed five major classes. In order to precise this assumption, data were computed to perform a PCA. Cluster analysis and PCA demonstrated their validity in establishing genetic diversity. When PCA was studied, the previously described results about Jaccard Similarity Coefficient dendrogram were also visualized.

  1. Chemical properties of Aspergillus flavus-infected soybean seeds exposed to gamma-irradiation during storage

    International Nuclear Information System (INIS)

    Mahrous, S.R.

    2007-01-01

    The aim of the present study was to examine the chemical properties of Aspergillus flavus-infected soybean seeds exposed to different levels of gamma-irradiation; 0 1, 3 and 5 kGy, during storage. The results revealed that there was no effect of irradiation at different dose levels on moisture, protein, total lipids and amino acids content of the seeds for overall 60 days of storage under ambient temperature. At zero time, irradiation of A. flavus- infected-soybean seeds at 5.0 kGy caused a slight increase in peroxide value, no change in acid value, a slight decrease in saponification and iodine values in the crude oil extracted from the seeds. An increase in saturated fatty acids associated with a decrease in un-saturated fatty acids was also observed in the oil extracted from the seeds. Furthermore, at dose level 5 kGy the fungus growth was completely inhibited and there was no detection of aflatoxin B1 after 60 days of storage. It is concluded that gamma-irradiation of A. flavus-infected soybean seeds at dose level 5 kGY is sufficient to inhibit fungus growth and aflatoxin production over a storage period of 60 days without changes in major chemical properties of the seeds and the oil extracted from seeds

  2. Seed storage-mediated dormancy alleviation in Fabaceae from campo rupestre

    Directory of Open Access Journals (Sweden)

    Naïla Nativel

    2015-09-01

    Full Text Available ABSTRACTWe studied the effects of seed storage on germination and dormancy alleviation in three species of Fabaceae endemic to campo rupestrein southeastern Brazil. Fresh seeds of Collaea cipoensis, Mimosa maguirei and Mimosa foliolosawere set to germinate and germination of seeds after four, five and 13 years of storage was tested. Seed viability was maintained for all species after the full storage period. Seed storage significantly increased germination percentage and decreased germination time for C. cipoensisand M. foliolosa, suggesting the alleviation of physical dormancy with storage. However, we did not find evidence of dormancy alleviation in M. maguirei since stored seeds showed a decrease in germination in comparison to that of fresh seeds. Our data indicate species-specific storage-mediated dormancy alleviation, which will have important implications for restoration of campo rupestre.

  3. Storage Potential of Local Brazilian Pine Seed Varieties

    Directory of Open Access Journals (Sweden)

    Cristhyane Garcia Araldi

    2018-03-01

    Full Text Available ABSTRACT Brazilian pine seeds (Araucaria angustifolia are recalcitrant, and there are no studies evaluating the longevity of their different varieties. Our objective was to evaluate the capacity of different varieties of Brazilian pine seeds to maintain their physiological quality during storage. Seeds of the varieties: sancti josephi (I, angustifolia (II, caiova (III and indehiscens (IV were collected from two populations located in Santa Catarina, and stored under laboratory conditions and in a cold room for 90 days. On average, freshly harvested seeds showed 88% viability, and varieties II and III maintained the greatest viability (with the greatest vigor for variety II after 90 days in storage. Varieties I and II maintained their pre-germinative metabolism for a longer period than the other varieties during storage. Therefore, seeds from the angustifolia variety (II have higher storage potential than the other varieties, maintaining approximately 61% viability at 90 days of storage.

  4. Storage requirements for sugar maple seeds

    Science.gov (United States)

    Harry W. Yawney; Clayton M., Jr. Carl

    1974-01-01

    Sugar maple seeds, collected from three trees in northern Vermont, were stored at four temperatures (18, 7, 2, and -10ºC) in combination with four seed moisture contents (35, 25, 17, and 10 percent). Seed moisture content and storage temperature significantly affected keeping ability, and these factors were highly interrelated. Seeds from all trees kept best...

  5. Effect of storage in overcoming seed dormancy of Annona coriacea Mart. seeds

    Directory of Open Access Journals (Sweden)

    DAIANE M. DRESCH

    2014-12-01

    Full Text Available The aim of this study was to evaluate the effect of pre-treatments on overcoming dormancy of A. coriacea seeds. Seeds were processed and stored in polyethylene bags at temperatures of at -18°C (42% RH, 5°C (34% RH, 15°C (60% RH and 25°C (34% RH, during 0, 30, 60, 90, 120 and 150 days. After storage, seeds were immersed in 350 mg.L−1 gibberellic acid for 144 hours. Sowing was carried out in plastic bags containing Red Latosol + Bioplant®. Moisture content, emergence percentage, emergence speed index, length and dry mass of seedlings, were evaluated. The experimental design was completely randomized in a factorial with four replications of 50 seeds each. The seed storage at 5°C and subsequent immersion in gibberellic acid was efficient to reach high percentage, emergence speed and plant growth. A. coriacea seeds showed non-deep simple morphophysiological dormancy wherein the physiological component can be overcome after the seeds are storage at 5°C for a maximum period of 53 days and subsequent immersed in exogenous GA (350 mg.L−1 for 144 hours.

  6. Effect of storage in overcoming seed dormancy of Annona coriacea Mart. seeds.

    Science.gov (United States)

    Dresch, Daiane M; Scalon, Silvana P Q; Masetto, Tathiana E

    2014-12-01

    The aim of this study was to evaluate the effect of pre-treatments on overcoming dormancy of A. coriacea seeds. Seeds were processed and stored in polyethylene bags at temperatures of at -18°C (42% RH), 5°C (34% RH), 15°C (60% RH) and 25°C (34% RH), during 0, 30, 60, 90, 120 and 150 days. After storage, seeds were immersed in 350 mg.L-1 gibberellic acid for 144 hours. Sowing was carried out in plastic bags containing Red Latosol + Bioplant®. Moisture content, emergence percentage, emergence speed index, length and dry mass of seedlings, were evaluated. The experimental design was completely randomized in a factorial with four replications of 50 seeds each. The seed storage at 5°C and subsequent immersion in gibberellic acid was efficient to reach high percentage, emergence speed and plant growth. A. coriacea seeds showed non-deep simple morphophysiological dormancy wherein the physiological component can be overcome after the seeds are storage at 5°C for a maximum period of 53 days and subsequent immersed in exogenous GA (350 mg.L-1 for 144 hours).

  7. Effects of seed collecting date and storage duration on seed ...

    African Journals Online (AJOL)

    The objective of this study was to determine the effect of seed collecting dates (5 to 6 times from mid-November to early January, 10 days intervals) and seed storage duration (4, 8, and 12 months) at room temperature on seed germination of four Artemisia species (Artemisia sieberi, A. diffusa, A. kupetdaghensis, and A.

  8. The proteins of the grape (Vitis vinifera L.) seed endosperm: fractionation and identification of the major components.

    Science.gov (United States)

    Gazzola, Diana; Vincenzi, Simone; Gastaldon, Luca; Tolin, Serena; Pasini, Gabriella; Curioni, Andrea

    2014-07-15

    In the present study, grape (Vitis vinifera L.) seed endosperm proteins were characterized after sequential fractionation, according to a modified Osborne procedure. The salt-soluble fraction (albumins and globulins) comprised the majority (58.4%) of the total extracted protein. The protein fractions analysed by SDS-PAGE showed similar bands, indicating different solubility of the same protein components. SDS-PAGE in non-reducing and reducing conditions revealed the polypeptide composition of the protein bands. The main polypeptides, which were similar in all the grape varieties analysed, were identified by LC-MS/MS as homologous to the 11S globulin-like seed storage proteins of other plant species, while a monomeric 43 kDa protein presented high homology with the 7S globulins of legume seeds. The results provide new insights about the identity, structure and polypeptide composition of the grape seed storage proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    Science.gov (United States)

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  10. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions.

    Science.gov (United States)

    Groot, S P C; Surki, A A; de Vos, R C H; Kodde, J

    2012-11-01

    Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. methods: Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice.

  11. A study of biodiversity using DSS method and seed storage protein comparison of populations in two species of Achillea L. in the west of Iran

    Directory of Open Access Journals (Sweden)

    Hajar Salehi

    2013-11-01

    Full Text Available Intarspecific and interspecific variations are the main reserves of biodiversity and both are important sources of speciation. On this basis, identifing and recognizing the intra and interspecific variations is important in order to recognition of biodiversity. This research was done to study biodiversity and electrophoresis comparison of seed storage proteins in the populations of the two species of the genus Achillea in Hamadan and Kurdistan provinces using of the method of determination of special station (DSS. For this purpose, 12 and 9 special stations were selected for the species A. tenuifolia and A. biebresteinii using the data published in the related flora. Seed storage proteins were extracted and then studied using electrophoresis techniques (SDS-PAGE. In survey of all special stations, 120 plant species were distinguished as associated species. The results of the floristic data for the both species determined six distinctive groups that indicated the existence of intraspecific diversity in this species. The result of analysis of ecological data and seed storage proteins for the two species was in accordance with the floristic data and showed six distinctive groups. The existence of the bands of no. 4, 5, 8, 12 and 13 in the special stations of A. tenuifolia and the bands of 14, 15 and 16 in the special stations of A. biebresteinii o separated the populations of the species in two quite different and distinctive groups.

  12. Effects of gamma radiation and storage on cooked pine seed (Araucaria angustifollia)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Lucia A.C.S.; Modolo, Debora M.; Martinez, Patricia; Piero, Edson A. di; Bigide, Priscila; Arthur, Valter, E-mail: lcasilva@cena.usp.br, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Laboratorio de Radiobiologia e Ambiente, Piracicaba, SP (Brazil); Harder, Marcia N.C.; Arthur, Paula B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The Araucaria angustifolia, is known as the Pinheiro-do-Parana Brazilian pine, Pine, Pine Tree Monkey, emerges as the main representative of the Rain Forest, also known as Araucaria Forest, part of the Atlantic Forest biome (Decree Law 750/1993). Despite being appreciated nutritious food, the gear has been widely used in Brazilian cook as other seeds, and its consumption in the more usual way roasted or boiled, however, certain foods have been developed, such as flour, pine seeds, artisan produced only due to poor commercial expression. Because of this, the aim of this work was to study the effect of storage under vacuum and gamma radiation on samples cooked pinion. Pine seeds after cooking were stored in vacuum packaging and polypropylene irradiated with 0 (control), 0.5, 1.0 and 3.0 kGy. Later they were stored at a temperature of 6 degree C. Analyzes were performed to characterize physical (weight, temperature, percentage of losses) and proximate composition (Humidity, fat, protein, ash and weight loss) of A. angustifolia (Bert.) pine seed after three months of storage. The results indicated that there was no significant difference between treatments at protein parameter. About the other parameters there was an increase humidity and decrease with ash and fat with the treatments. (author)

  13. Effects of gamma radiation and storage on cooked pine seed (Araucaria angustifollia)

    International Nuclear Information System (INIS)

    Silva, Lucia A.C.S.; Modolo, Debora M.; Martinez, Patricia; Piero, Edson A. di; Bigide, Priscila; Arthur, Valter; Harder, Marcia N.C.; Arthur, Paula B.

    2011-01-01

    The Araucaria angustifolia, is known as the Pinheiro-do-Parana Brazilian pine, Pine, Pine Tree Monkey, emerges as the main representative of the Rain Forest, also known as Araucaria Forest, part of the Atlantic Forest biome (Decree Law 750/1993). Despite being appreciated nutritious food, the gear has been widely used in Brazilian cook as other seeds, and its consumption in the more usual way roasted or boiled, however, certain foods have been developed, such as flour, pine seeds, artisan produced only due to poor commercial expression. Because of this, the aim of this work was to study the effect of storage under vacuum and gamma radiation on samples cooked pinion. Pine seeds after cooking were stored in vacuum packaging and polypropylene irradiated with 0 (control), 0.5, 1.0 and 3.0 kGy. Later they were stored at a temperature of 6 degree C. Analyzes were performed to characterize physical (weight, temperature, percentage of losses) and proximate composition (Humidity, fat, protein, ash and weight loss) of A. angustifolia (Bert.) pine seed after three months of storage. The results indicated that there was no significant difference between treatments at protein parameter. About the other parameters there was an increase humidity and decrease with ash and fat with the treatments. (author)

  14. Integrated and comparative proteomics of high-oil and high-protein soybean seeds.

    Science.gov (United States)

    Xu, Xiu Ping; Liu, Hui; Tian, Lihong; Dong, Xiang Bai; Shen, Shi Hua; Qu, Le Qing

    2015-04-01

    We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Arabidopsis Intracellular NHX-Type Sodium-Proton Antiporters are Required for Seed Storage Protein Processing.

    Science.gov (United States)

    Ashnest, Joanne R; Huynh, Dung L; Dragwidge, Jonathan M; Ford, Brett A; Gendall, Anthony R

    2015-11-01

    The Arabidopsis intracellular sodium-proton exchanger (NHX) proteins AtNHX5 and AtNHX6 have a well-documented role in plant development, and have been used to improve salt tolerance in a variety of species. Despite evidence that intracellular NHX proteins are important in vacuolar trafficking, the mechanism of this role is poorly understood. Here we show that NHX5 and NHX6 are necessary for processing of the predominant seed storage proteins, and also influence the processing and activity of a vacuolar processing enzyme. Furthermore, we show by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) technology that the C-terminal tail of NHX6 interacts with a component of Retromer, another component of the cell sorting machinery, and that this tail is critical for NHX6 activity. These findings demonstrate that NHX5 and NHX6 are important in processing and activity of vacuolar cargo, and suggest a mechanism by which NHX intracellular (IC)-II antiporters may be involved in subcellular trafficking. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Proteomic and transcriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition.

    Science.gov (United States)

    Higashi, Yasuhiro; Hirai, Masami Yokota; Fujiwara, Toru; Naito, Satoshi; Noji, Masaaki; Saito, Kazuki

    2006-11-01

    Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Their composition changes according to nutritional conditions. Here, we report the precise molecular identification of seed proteins by proteomic analysis of wild-type Arabidopsis thaliana and methionine-over-accumulating mutant mto1-1 plants. The identities of 50 protein spots were determined in the protein extract of mature Arabidopsis seeds by two-dimensional (2D) gel electrophoresis and subsequent mass spectrometric analysis. Of these protein spots, 42 were identified as derived from 12S globulins or 2S albumins. These results indicate that approximately 84% of protein species in Arabidopsis seeds are derived from a few genes coding for 12S globulins and 2S albumins. Extensive mass spectrometric analysis of the 42 spots revealed that successive C-terminal degradation occurred on the 12S globulins. The feasibility of this C-terminal processing was rationalized by molecular modeling of the three-dimensional structure of 12S globulins. The C-terminal degradation at glutamic acid residues of the 12S globulin subunits was repressed under sulfur-deficient conditions. Transcriptome analysis was combined with proteomic analysis to elucidate the mechanism of changes in seed protein composition in response to sulfur deficiency. The results suggest that seed storage proteins in Arabidopsis undergo multi-layer regulation, with emphasis on post-translational modifications that enable the plant to respond to sulfur deficiency.

  17. Tolerance of Ruppia sinensis Seeds to Desiccation, Low Temperature, and High Salinity With Special Reference to Long-Term Seed Storage

    Directory of Open Access Journals (Sweden)

    Ruiting Gu

    2018-03-01

    Full Text Available Seeds are important materials for the restoration of globally-threatened marine angiosperm (seagrass populations. In this study, we investigated the differences between different Ruppia sinensis seed types and developed two feasible long-term R. sinensis seed storage methods. The ability of R. sinensis seeds to tolerate the short-term desiccation and extreme cold had been investigated. The tolerance of R. sinensis seeds to long-term exposure of high salinity, cold temperature, and desiccation had been considered as potential methods for long-term seed storage. Also, three morphological and nine physiological indices were measured and compared between two types of seeds: Shape L and Shape S. We found that: (1 wet storage at a salinity of 30–40 psu and 0°C were the optimal long-term storage conditions, and the proportion of viable seeds reached over 90% after a storage period of 11 months since the seeds were collected from the reproductive shoots; (2 dry condition was not the optimal choice for long-term storage of R. sinensis seeds; however, storing seeds in a dry condition at 5°C and 33 ± 10% relative humidity for 9 months had a relatively high percentage (74.44 ± 2.22% of viable seeds, consequently desiccation exposure could also be an acceptable seed storage method; (3 R. sinensis seeds would lose vigor in the interaction of extreme cold (-27°C and desiccation; (4 there were significant differences in seed weight, seed curvature, and endocarp thickness between the two types of seeds. These findings provided fundamental physiological information for R. sinensis seeds and supported the long-term storage of its seeds. Our results may also serve as useful reference for seed storage of other threatened seagrass species and facilitate their ex situ conservation and habitat restoration.

  18. Tolerance of Ruppia sinensis Seeds to Desiccation, Low Temperature, and High Salinity With Special Reference to Long-Term Seed Storage.

    Science.gov (United States)

    Gu, Ruiting; Zhou, Yi; Song, Xiaoyue; Xu, Shaochun; Zhang, Xiaomei; Lin, Haiying; Xu, Shuai; Yue, Shidong; Zhu, Shuyu

    2018-01-01

    Seeds are important materials for the restoration of globally-threatened marine angiosperm (seagrass) populations. In this study, we investigated the differences between different Ruppia sinensis seed types and developed two feasible long-term R. sinensis seed storage methods. The ability of R. sinensis seeds to tolerate the short-term desiccation and extreme cold had been investigated. The tolerance of R. sinensis seeds to long-term exposure of high salinity, cold temperature, and desiccation had been considered as potential methods for long-term seed storage. Also, three morphological and nine physiological indices were measured and compared between two types of seeds: Shape L and Shape S. We found that: (1) wet storage at a salinity of 30-40 psu and 0°C were the optimal long-term storage conditions, and the proportion of viable seeds reached over 90% after a storage period of 11 months since the seeds were collected from the reproductive shoots; (2) dry condition was not the optimal choice for long-term storage of R. sinensis seeds; however, storing seeds in a dry condition at 5°C and 33 ± 10% relative humidity for 9 months had a relatively high percentage (74.44 ± 2.22%) of viable seeds, consequently desiccation exposure could also be an acceptable seed storage method; (3) R. sinensis seeds would lose vigor in the interaction of extreme cold (-27°C) and desiccation; (4) there were significant differences in seed weight, seed curvature, and endocarp thickness between the two types of seeds. These findings provided fundamental physiological information for R. sinensis seeds and supported the long-term storage of its seeds. Our results may also serve as useful reference for seed storage of other threatened seagrass species and facilitate their ex situ conservation and habitat restoration.

  19. Assessment of genetic diversity among some accessions of sage (Salvia officinalis L. using electrophoresis of seed storage proteins

    Directory of Open Access Journals (Sweden)

    Seyed Abbas Mirjalili

    2016-06-01

    Full Text Available The genus Salvia (Lamiaceae comprises over 900 species in the world, with a relatively wide dispersion in the Iran’s flora. Until now, about 58 species of the genus have been reported and identified in Iran, in which 17 of them were endemic. In order to study, investigate and evaluate the intraspecific diversity, similarity and dissimilarity among Iranian Salvia officinalis accessions, an experiment was carried out using SDS-PAGE technique. In this study, the seeds from five accessions were collected from gene bank and were evaluated. The seed storage proteins were extracted by buffers and were measured. Phylogenetic relationships were analyzed according to presence and absence of bands on the gel. A dendrogram was prepared using calculation of the accession’s similarity index. Mean comparison were done by Tukey’s test. The seed protein contents showed significant differences (p≤0.01 among accessions. A total of 39 bands were indicated on the gel. The maximum diversity was detected in the accession No. 2 while, the lowest band’s number were recorded with the accessions No. 1 and 5. Based on dendrogram, the accessions were divided into two groups; one includes accession No. 1 and 4 other accessions were located in the second group further classified into two subgroup including accessions No. 2 and 3 in one clade and accessions No. 4 and 5 in the other ones.

  20. The storage capacity of cocoa seeds (Theobroma cacao L.) through giving Polyethylene Glycol (PEG) in the various of storage container

    Science.gov (United States)

    Lahay, R. R.; Misrun, S.; Sipayung, R.

    2018-02-01

    Cocoa is plant which it’s seed character is recalcitrant. Giving PEG and using various of storage containers was hoped to increase storage capacity of cocoa seeds as long as period of saving. The reseach was aimed to identify the storage capacity of cocoa seeds through giving PEG in the various of storage containers. Research took place in Hataram Jawa II, Kabupaten Simalungun, Propinsi Sumatera Utara, Indonesia. The method of this research is spit-split plot design with 3 replication. Storage period was put on main plot which was consisted of 4 level, PEG concentration was put on sub plot, consisted of 4 level and storage container was put on the sub sub plot consisted of 3 types. The results showed that until 4 days at storage with 45 % PEG concentration at all storage container, percentage of seed germination at storage can be decreased to be 2.90 %, and can be defensed until 16 days with 45 % PEG concentration at perforated plastic storage container. Percentage of molded seeds and seed moisture content were increased with added period of storage but seed moisture content was increased until 12 days at storage and was decreased at 16 days in storage.

  1. Lack of Population Structure in Coriander Populations Based on SDS (Seed Storage Protein Page Analysis

    Directory of Open Access Journals (Sweden)

    Gülsüm Yaldiz

    2016-08-01

    Full Text Available Genetic variation is prerequisite for plant breeding. Nothing information existed in the literature for available diversity of Coriander accession in Turkey. Plant breeding activities are negligible in Turkey. So in order to start effective plant breeding program in Turkey, information on the available genetic diversity is viable. Therefore we planned to study the genetic variation and population structure of 29 Coriander accessions by seed storage protein (SDS. SDS analysis elaborated the lack of population structure and genetic bottleneck in the Coriander accessions in Turkey. Based on the results of this study, it was clear that sampling strategy was not appropriate and plant introduction should be made from different sources and diverse genotypes should be used as parents to initialize the effective Turkish Coriander breeding program.

  2. Purification and partial characterization of storage proteins in Lupinus angustifolius seeds

    Directory of Open Access Journals (Sweden)

    Millán, Francisco

    2004-12-01

    Full Text Available Lupinus angustifolius seed proteins have been purified by sequential dialysis and ion exchange chromatography, and their amino acid composition has been studied in order to determine their nutritional value as sources of essential amino acids. Albumins include a great variety of proteins. Globulins were resolved in α, β and δ conglutins. Conglutin α is the main protein in the seeds of L. angustifolius, representing 76.6% of the total. While lysine was found to be the limiting amino acid in L. Angustifolius seed proteins as a whole, tyrosine was the limiting amino acid in albumins, and methione and lysine were limiting in globulins. Lysine, methionine and histidine were limiting amino acids in  α conglutin.Se ha realizado una purificación por diálisis secuencial y cromatografía de intercambio iónico de las proteínas de la semilla de L. angustifolius, y su composición en aminoácidos ha sido estudiada para determinar su valor nutricional como fuentes de aminoácidos esenciales. Las albúminas están compuestas por una compleja mezcla de proteínas. Las globulinas se resolvieron en conglutinas α, β y δ. La conglutina  α es la proteína más abundante en las semillas de L. angustifolius representando el 76.6% del total. Las proteínas de la semilla de L. angustifolius son limitantes en lisina. Las albúminas son limitantes en tirosina y las globulinas en metionina y lisina. La α conglutina es limitante en lisina, metionina e histidina.

  3. Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus.

    Science.gov (United States)

    Jiang, Chunmiao; Cheng, Zaiquan; Zhang, Cheng; Yu, Tengqiong; Zhong, Qiaofang; Shen, J Qingxi; Huang, Xingqi

    2014-01-01

    The total protein contents of rice seeds are significantly higher in the three wild rice species (Oryza rufipogon Grill., Oryza officinalis Wall. and Oryza meyeriana Baill.) than in the cultivated rice (Oryza sativa L.). However, there is still no report regarding a systematic proteomic analysis of seed proteins in the wild rice species. Also, the relationship between the contents of seed total proteins and rice nutritional quality has not been thoroughly investigated. The total seed protein contents, especially the glutelin contents, of the three wild rice species were higher than those of the two cultivated rice materials. Based on the protein banding patterns of SDS-PAGE, O. rufipogon was similar to the two cultivated rice materials, followed by O. officinalis, while O. meyeriana exhibited notable differences. Interestingly, O. meyeriana had high contents of glutelin and low contents of prolamine, and lacked 26 kDa globulin band and appeared a new 28 kDa protein band. However, for O. officinali a 16 kDa protein band was absent and a row of unique 32 kDa proteins appeared. In addition, we found that 13 kDa prolamine band disappeared while special 14 kDa and 12 kDa protein bands were present in O. officinalis. Two-dimensional gel electrophoresis (2-DE) analysis revealed remarkable differences in protein profiles of the wild rice species and the two cultivated rice materials. Also, the numbers of detected protein spots of the three wild rice species were significantly higher than those of two cultivated rice. A total of 35 differential protein spots were found for glutelin acidic subunits, glutelin precursors and glutelin basic subunits in wild rice species. Among those, 18 protein spots were specific and 17 major spots were elevated. Six differential protein spots for glutelin acidic subunits were identified, including a glutelin type-A 2 precursor and five hypothetical proteins. This was the first report on proteomic analysis of the three wild rice species

  4. Genetic diversity in radish germplasm for morphological traits and seed storage proteins

    International Nuclear Information System (INIS)

    Jatoi, S.A.; Siddiqui, S.U.; Masood, M.S.; Javaid, A.; Iqbal, M.; Sayal, O.U.

    2011-01-01

    Genetic variation of forty-nine local and exotic radish genotypes including two checks was studied for morphological traits and seed storage protein electrophoresis using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) markers. A high variation in germplasm for root shape, root length, root colour (internal and external), flesh texture and root type was observed. Among these genotypes, the genetic variation was apparent for most of the characters like plant biomass, root weight, leaf length, root length and root diameter that indicated the potential for crop improvement in these traits through simple selection. Exotic germplasm exhibited higher variation for plant biomass, root weight and root length which could be utilized through breeding programme. Cluster analysis on the basis of genetic diversity for seven quantitative traits resulted into four clusters. No clustering was found on the basis of origin. Low level of variance was observed for SDS-PAGE electrophoresis that suggested acquisition of more germplasm. On the basis of high yield and crispy root texture some genotypes (10076, 10362, 10429, 10658, 10662 and 10667) were identified for further testing under wide range of agro-ecological conditions. (author)

  5. The Effects of Storage on Germination Characteristics and Enzyme Activity of Sorghum Seeds

    Directory of Open Access Journals (Sweden)

    Azadi M.S.

    2013-11-01

    Full Text Available Seed moisture content (MC and storage temperature are the most important factors affecting seed longevity and vigor. Exposure to warm, moist air is principally responsible for this. Proper storage and optimum seed moisture content can affect the grain quality significantly. The purpose of this study was to evaluate the different storage treatments on seed quality of sorghum. The seed materials were fresh without any storage period. For storage treatments, 3 seed moisture contents (6, 10, 14 % were stored for 8 month in 0.5 L capacity sealed aluminum foil packet in 0.3 bar inside incubators set at 4 temperatures (5, 15, 25, 35 °C. After storage time, the higher the storage temperature, the lower was the grain quality of sorghum. The highest germination percentage, germination index, normal seedling percentage were achieved in control conditions (0 day of storage. Our results showed that increasing storage duration resulted higher reduction in germination characteristics. Also our results showed that, germination percentage, means time to germination, germination index, normal seedling percentage decrease significantly by storage. Enzyme activity decrease significantly by increased in storage.

  6. In vitro storage of synthetic seeds: Effect of different storage ...

    African Journals Online (AJOL)

    In vitro derived shoots of olive cv. Moraiolo were employed in synthetic seeds preparation by alginate encapsulation, and then stored in artificial endosperm solution at cold (4°C) and room storage (21 ± 2°C) conditions in interaction with different storage intervals of 0, 15, 30, 45 and 60 days to evaluate the comparative ...

  7. Phisyological quality of Pinus elliotti Engelm. seeds subjected to differents storage methods

    Directory of Open Access Journals (Sweden)

    Adriano Geraldo Fonseca

    2012-09-01

    Full Text Available Due to the growing demand for forest products, it is necessary to increase knowledge about the tree species of economic importance, especially in relation to seed storage. One method to study forest species is the storage of seeds. Cryopreservation is the cheapest and the most efficient method of seed preservation. The objective of this study was to test the behavior of Pinus elliottii Engelm. seeds storaged on liquid nitrogen; laboratory environment and refrigerator. The experiment was conducted in the seed Laboratory of the Federal University of the Jequitinhonha and Mucuri Valley. The seeds were donated by Rigesa Ltda on June 2007. Three types of storage were tested: 1 liquid nitrogen temperature of -196 º C, 2 laboratory environment, 3 refrigerator. All treatments were evaluated at 0, 40, 80 and 120 days of storage. The vigor, germination and germination rate tests were mounted on gerbox with blotters and moistened with distilled water and kept in BOD incubator chamber at 25 º C. Seeds length, green mass and dry mass were also evaluated. The data were subjected to analysis of variance and means compared by Tukey test at 5% significance level. It was found that there was loss of quality of the Pinus elliottii seeds in all treatments. Cryopreservation of P. elliotii seeds can be used as an alternative of storage in genebanks.

  8. Storage of sunflower seeds

    Directory of Open Access Journals (Sweden)

    Denise de Castro Lima

    Full Text Available The sunflower is among the top five crops in the world for the production of edible vegetable oil. The species displays rustic behavior, with an excellent edaphic and climatic adaptability index, being able to be cultivated throughout Brazil. Seed quality is the key to increasing production and productivity in the sunflower. The objective of this work was to monitor the viability of sunflower seeds with a view to their conservation when stored in different environments and packaging. The seeds were packed in paper bags, multilayered paper, black polyethylene and PET bottles; and stored for a period of twelve months in the following environments: dry cold room (10 ºC and 55% RH, the ambient conditions of Fortaleza, Ceará, Brazil (30-32 ºC and 75% RH, refrigerator (4 ºC and 38-43% RH and freezer (-20 ºC. Every three months, the water content of the seeds was determined and germination, accelerated ageing, speed of emergence index, and seedling dry weight were evaluated. The experimental design was completely randomized, in a scheme of split-lots, with four replications. It can be concluded that the natural environment is not suitable for the storage of sunflower seeds. Sunflower seeds remain viable for 12 months when stored in a dry cold room, refrigerator or freezer, irrespective of the type of packaging used.

  9. ASP53, a thermostable protein from Acacia erioloba seeds that protects target proteins against thermal denaturation

    CSIR Research Space (South Africa)

    Mtwisha, L

    2007-02-01

    Full Text Available ) and the Typha pollen D7 protein was found to stabilise sugar glasses in an in vitro system (Wolkers et al. 2001). The cupin family of proteins comprises a wide variety of proteins from both prokaryotes and eukaryotes and includes the seed storage proteins...–268. Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biological Chemistry 275, 5668–5674. doi: 10.1074/jbc.275...

  10. Selected aspects of tiny vetch [Vicia hirsuta (L. Gray S.F.] seed ecology: generative reproduction and effects of seed maturity and seed storage on seed germination

    Directory of Open Access Journals (Sweden)

    Magdalena Kucewicz

    2012-12-01

    Full Text Available Vicia hirsuta (L. Gray S.F. (tiny vetch is a common and persistent segetal weed. Tiny vetch seeds and pods reach different stages of maturity during the crop harvest season. Some seeds that mature before cereal harvest are shed in the field and deposited in the soil seed bank, while others become incorporated into seed material. The objective of this study was to describe selected aspects of tiny vetch seed ecology: to determine the rate of individual reproduction of vetch plants growing in winter and spring grain crops and to evaluate the germination of seeds at different stages of maturity, subject to storage conditions. The seeds and pods of V. hirsuta were sorted according to their development stages at harvest and divided into two groups. The first group was stored under laboratory conditions for two months. In the autumn of the same year, the seeds were subjected to germination tests. The remaining seeds were stored in a storeroom, and were planted in soil in the spring. The germination rate was evaluated after 8 months of storage. Potential productivity (developed pods and flowers, fruit buds was higher in plants fruiting in winter wheat than in spring barley. Vetch plants produced around 17-26% more pods (including cracked, mature, greenish-brown and green pods and around 25% less buds in winter wheat than in spring barley. Immature seeds were characterized by the highest germination capacity. Following storage under laboratory conditions and stratification in soil, mature seeds germinated at a rate of several percent. After storage in a storeroom, seeds at all three development stages broke dormancy at a rate of 72- 75%. The high germination power of tiny vetch seeds stored in a storeroom indicates that this plant can be classified as an obligatory speirochoric weed species.

  11. SDS-Page Seed Storage Protein Profiles in Chili Peppers (Capsicum L.

    Directory of Open Access Journals (Sweden)

    Owk ANIEL KUMAR

    2010-09-01

    Full Text Available Seed protein banding patterns (SDS-PAGE were studied from eighteen genotypes of chili pepper (Capsicum L. A total of 21 protein polypeptide bands with molecular weight ranging from 18.6 to 72.0 kD were recorded. Among the genotypes CA18, CA21 and CA27 represented maximum number of protein bands (12. Band no. (11 and (5,12 are exclusive to C. annuum L. and C. frutescens L. genotypes respectively. Average percent similarity was highest (100% between CA2 and CA8 genotypes and the UPGMA dendrogram represented low genetic diversity. The study revealed that considerable intra and inter-specific differences were found in the genotypes. The variability of protein profiles in the genotypes suggested that these selected genotypes can be a good source for crop improvement through hybridization programs.

  12. Molecular mapping and genomics of soybean seed protein: a review and perspective for the future.

    Science.gov (United States)

    Patil, Gunvant; Mian, Rouf; Vuong, Tri; Pantalone, Vince; Song, Qijian; Chen, Pengyin; Shannon, Grover J; Carter, Tommy C; Nguyen, Henry T

    2017-10-01

    Genetic improvement of soybean protein meal is a complex process because of negative correlation with oil, yield, and temperature. This review describes the progress in mapping and genomics, identifies knowledge gaps, and highlights the need of integrated approaches. Meal protein derived from soybean [Glycine max (L) Merr.] seed is the primary source of protein in poultry and livestock feed. Protein is a key factor that determines the nutritional and economical value of soybean. Genetic improvement of soybean seed protein content is highly desirable, and major quantitative trait loci (QTL) for soybean protein have been detected and repeatedly mapped on chromosomes (Chr.) 20 (LG-I), and 15 (LG-E). However, practical breeding progress is challenging because of seed protein content's negative genetic correlation with seed yield, other seed components such as oil and sucrose, and interaction with environmental effects such as temperature during seed development. In this review, we discuss rate-limiting factors related to soybean protein content and nutritional quality, and potential control factors regulating seed storage protein. In addition, we describe advances in next-generation sequencing technologies for precise detection of natural variants and their integration with conventional and high-throughput genotyping technologies. A syntenic analysis of QTL on Chr. 15 and 20 was performed. Finally, we discuss comprehensive approaches for integrating protein and amino acid QTL, genome-wide association studies, whole-genome resequencing, and transcriptome data to accelerate identification of genomic hot spots for allele introgression and soybean meal protein improvement.

  13. PHYSIOLOGICAL QUALITY OF Araucaria angustifolia (Bertol. Kuntze SEEDS SUBMITTED TO DIFFERENT STORAGE CONDITIONS AND ESCARIFICATION

    Directory of Open Access Journals (Sweden)

    Álvaro Valente Caçola

    2010-08-01

    Full Text Available The seeds of Araucaria angustifolia (Bertol. Kuntze are recalcitrants and, therefore, they lose rapidly the viability after the harvest, limiting their use for nursery production of seedlings. This work was carried out to investigate the effects of cold storage duration, conservation method, and escarification on germination and vigour of seeds of Araucaria angustifolia. The seeds were cold stored (0-1oC/90-95% RH for 0, 60, 120, and 180 days, under normal air condictions (NA, modified atmosphere (MA, and controlled atmosphere (CA storage. For each cold storage duration, after removal from cold storage, the seeds were submitted or not to scarification (by cutting a small portion of the apical seed tegument, avoiding the damage of the endosperm, letting the germinate in a chamber with controlled environment, in plastic trays filled with vermiculite, for 60 days. The experiment followed the completely randomized factorial design (4x3x2, with four cold storage durations (0, 60, 120, and 180 days, three storage methods (NA, MA, and CA, with or without escarification, and four replicates. There was a good preservation of physiological quality for seeds submitted to different conservation methods in cold storage along the 180-day period. However, there was a faster germination and initial growth of seedlings for seeds left in cold storage for 60 days than in seeds assessed at harvest or left in cold storage for 120-180 days. The NA storage of seeds in perfurated plastic bags was as efficient as MA and CA storage to preserve seeds quality. Seeds scarification increased vigor and promoted seedlings initial growth of Araucaria angustifolia after being removed from cold storage.

  14. Incidence of storage fungi and hydropriming on soybean seeds

    OpenAIRE

    Costa,Denis Santiago da; Bonassa,Nathalie; Novembre,Ana Dionisia da Luz Coelho

    2013-01-01

    Priming is a technique applicable to seeds of various plant species; however, for soybean seed there is little available information correlating such technique to the storage fungi. The objective of this study was to assess hydropriming on soybeans seeds and correlate this technique to occurrence of such fungi. For this, soon after acquisition the soybean seeds, cv. M-SOY 7908 RR, were characterized by: moisture content, mechanical damage, viability (seed germination and seedling emergence) a...

  15. Chloroform-assisted phenol extraction improving proteome profiling of maize embryos through selective depletion of high-abundance storage proteins.

    Directory of Open Access Journals (Sweden)

    Erhui Xiong

    Full Text Available The presence of abundant storage proteins in plant embryos greatly impedes seed proteomics analysis. Vicilin (or globulin-1 is the most abundant storage protein in maize embryo. There is a need to deplete the vicilins from maize embryo extracts for enhanced proteomics analysis. We here reported a chloroform-assisted phenol extraction (CAPE method for vicilin depletion. By CAPE, maize embryo proteins were first extracted in an aqueous buffer, denatured by chloroform and then subjected to phenol extraction. We found that CAPE can effectively deplete the vicilins from maize embryo extract, allowing the detection of low-abundance proteins that were masked by vicilins in 2-DE gel. The novelty of CAPE is that it selectively depletes abundant storage proteins from embryo extracts of both monocot (maize and dicot (soybean and pea seeds, whereas other embryo proteins were not depleted. CAPE can significantly improve proteome profiling of embryos and extends the application of chloroform and phenol extraction in plant proteomics. In addition, the rationale behind CAPE depletion of abundant storage proteins was explored.

  16. Identification and characterization of finger millet OPAQUE2 transcription factor gene under different nitrogen inputs for understanding their role during accumulation of prolamin seed storage protein.

    Science.gov (United States)

    Gaur, Vikram Singh; Kumar, Lallan; Gupta, Supriya; Jaiswal, J P; Pandey, Dinesh; Kumar, Anil

    2018-03-01

    In this study, we report the isolation and characterization of the mRNA encoding OPAQUE2 (O2) like TF of finger millet (FM) ( Eleusine coracana) ( EcO2 ). Full-length EcO2 mRNA was isolated using conserved primers designed by aligning O2 mRNAs of different cereals followed by 3' and 5' RACE (Rapid Amplification of cDNA Ends). The assembled full-length EcO2 mRNA was found to contain an ORF of 1248-nt coding the 416 amino acids O2 protein. Domain analysis revealed the presence of the BLZ and bZIP-C domains which is a characteristic feature of O2 proteins. Phylogenetic analysis of EcO2 protein with other bZIP proteins identified using finger millet transcriptome data and O2 proteins of other cereals showed that EcO2 shared high sequence similarity with barley BLZ1 protein. Transcripts of EcO2 were detected in root, stem, leaves, and seed development stages. Furthermore, to investigate nitrogen responsiveness and the role of EcO2 in regulating seed storage protein gene expression, the expression profiles of EcO2 along with an α-prolamin gene were studied during the seed development stages of two FM genotypes (GE-3885 and GE-1437) differing in grain protein content (13.8 and 6.2%, respectively) grown under increasing nitrogen inputs. Compared to GE-1437, the EcO2 was relatively highly expressed during the S2 stage of seed development which further increased as nitrogen input was increased. The Ecα - prolamin gene was strongly induced in the high protein genotype (GE-3885) at all nitrogen inputs. These results indicate the presence of nitrogen responsiveness regulatory elements which might play an important role in accumulating protein in FM genotypes through modulating EcO2 expression by sensing plant nitrogen status.

  17. Germination and storage of caranda seeds (Copernicia alba

    Directory of Open Access Journals (Sweden)

    Tathiana Elisa Masetto

    2012-12-01

    Full Text Available Caranda is a Brazilian native palm tree, belonging to Arecaceae family and occurring, predominan,t in the Brazilian Swampland. This work studied the germination and the caranda seeds storage behavior. The germination study was carried out in the temperatures of 25ºC and 30ºC in constant white light and the alternate temperature of 20/30ºC with 10 hours of darkness for the lowest temperature and 14 hours of light for the highest temperature, using paper and paper roll as substratum. At the end of test, the germination percentage, germination speed index, germination medium time and the primary root length were evaluated. After the seeds improvement, it was obtained two sub-samples destined for 30 days storage in two invironments: cold and dry chamber (16ºC/55% UR and freezer (-18ºC. The following tests, water content, germination, germination medium time and primary root length were evaluated. The caranda seeds germination in paper roll and on paper is favored by the temperature of 20/30ºC in paper roll and on paper and paper roll on 30ºC. The freezing and cold camera storage during 30 days are efficient to reduce the germination medium time of caranda seeds and to keep the germination percentage.

  18. Characterization of volatile production during storage of lettuce (Lactuca sativa) seed.

    Science.gov (United States)

    Mira, Sara; González-Benito, M Elena; Hill, Lisa M; Walters, Christina

    2010-09-01

    The duration that seeds stay vigorous during storage is difficult to predict but critical to seed industry and conservation communities. Production of volatile compounds from lettuce seeds during storage was investigated as a non-invasive and early detection method of seed ageing rates. Over 30 volatile compounds were detected from lettuce seeds during storage at 35 degrees C at water contents ranging from 0.03 to 0.09 g H(2)O g(-1) dw. Both qualitative and quantitative differences in volatile composition were noted as a function of water content, and these differences were apparent before signs of deterioration were visible. Seeds stored at high water content (L >or=0.06 g H(2)O g(-1) dw) emitted molecular species indicative of glycolysis (methanol+ethanol), and evidence of peroxidation was apparent subsequent to viability loss. Seeds containing less water (0.03-0.05 g H(2)O g(-1) dw) produced volatiles indicative of peroxidation and survived longer compared with seeds stored under more humid conditions. Production of glycolysis-related by-products correlated strongly with deterioration rate when measured as a function of water content. This correlation may provide a valuable non-invasive means to predict the duration of the early, asymptomatic stage of seed deterioration.

  19. Effect of hybrid, storage conditions and seed protection on sunflower field emergence

    Directory of Open Access Journals (Sweden)

    Mrđa Jelena

    2010-01-01

    Full Text Available Seed emergence under field conditions decisively and directly determines the number of plants per hectare, which is one of three basic components of yield in the plant world. Influence of chemical treatment on field emergence of three commercial sunflower hybrids stored in different conditions was tested in 2007 and 2008 on experimental field of Institute of Field and Vegetable Crops in Novi Sad. On average, hybrid H1 had the highest value of field emergence (88.79% and for chemical treatment fl udioxonil + metalaxyl + imidacloprid (87.71%. Seed kept in common storage had the highest emergence value in fi eld (87.92%. Seed treated with fl udioxonil + metalaxyl + imidacloprid and stored for one year in common storage had the highest field emergence (90.18%. Considering interaction between storage conditions and genotype, hybrid H1 seed sown after chemical treatment had the highest field emergence (91.82% and seed kept in common storage (90.48%. Hybrid H1 seed compared with other two had the highest field emergence treated with fludioxonil + metalaxyl + imidacloprid (91.84%.

  20. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    Directory of Open Access Journals (Sweden)

    Xiaolin eWu

    2015-01-01

    Full Text Available ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5, deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs, late embryogenesis abundant (LEA proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation.

  1. Surface sterilization and duration of seed storage influenced ...

    African Journals Online (AJOL)

    The effects of factorial combinations of four storage duration (in days after seed extraction) and surface sterilization with three dilution levels of sodium hypochlorite on seedling emergence and seedling quality of African breadfruit were studied. Storage duration significantly influenced days to seedling emergence, ...

  2. Evaluation of Clausena pentaphylla (Roxb.) DC oil as a fungitoxicant against storage mycoflora of pigeon pea seeds.

    Science.gov (United States)

    Pandey, Abhay K; Palni, Uma T; Tripathi, Nijendra N

    2013-05-01

    The present study aimed to evaluate the antifungal activity of 30 essential oils against four dominant fungi Aspergillus flavus Link., A. niger van Tieghem, A. ochraceus Wilhelm and A. terreus Thom of stored pigeon pea seeds at a concentration of 0.36 µL mL(-1). Various fungitoxic properties, such as minimum inhibitory concentration, minimum fungicidal concentration and fungitoxic spectrum, of the most potent oil were determined. The efficacy of the most potent oil in preservation of pigeon pea seeds for 6 months was also carried out by storing 1 kg of seeds in the oil vapour. Clausena pentaphylla and Citrus limon oils were more effective against all the fungi tested, which exhibited 100% per cent mycelial inhibition. The minimum inhibitory concentration of C. pentaphylla oil was determined as 0.07 µL mL(-1) against all the test fungi and was found to be more toxic than Citrus limon oil. C. pentaphylla oil exhibited a broad range of fungitoxicity against 16 other storage fungi of pigeon pea seeds. C. pentaphylla oil significantly protected 1 kg seeds of pigeon pea from fungal deterioration and was superior to synthetic fumigants. The oil did not show any phytotoxicity and the protein content of the seeds was significantly retained for up to 6 months of storage. Thus, C. pentaphylla oil may be used as an effective fumigant in the ecofriendly management of storage fungi of pigeon pea seeds. © 2012 Society of Chemical Industry.

  3. Comparative Biochemical and Proteomic Analyses of Soybean Seed Cultivars Differing in Protein and Oil Content.

    Science.gov (United States)

    Min, Chul Woo; Gupta, Ravi; Kim, So Wun; Lee, So Eui; Kim, Yong Chul; Bae, Dong Won; Han, Won Young; Lee, Byong Won; Ko, Jong Min; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2015-08-19

    This study develops differential protein profiles of soybean (Glycine max) seeds (cv. Saedanbaek and Daewon) varying in protein (47.9 and 39.2%) and oil (16.3 and 19.7%) content using protamine sulfate (PS) precipitation method coupled with a 2D gel electrophoresis (2DGE) approach. Of 71 detected differential spots between Daewon and Saedanbaek, 48 were successfully identified by MALDI-TOF/TOF. Gene ontology analysis revealed that up-regulated proteins in Saedanbaek were largely associated with nutrient reservoir activity (42.6%), which included mainly seed-storage proteins (SSPs; subunits of glycinin and β-conglycinin). Similar results were also obtained in two cultivars of wild soybean (G. soja cv. WS22 and WS15) differing in protein content. Western blots confirmed higher accumulation of SSPs in protein-rich Saedanbaek. Findings presented and discussed in this study highlight a possible involvement of the urea cycle for increased accumulation of SSPs and hence the higher protein content in soybean seeds.

  4. Effect of polyethylene glycol 6000 and storage period on seed quality of cocoa (Theobroma cacao L.

    Directory of Open Access Journals (Sweden)

    Astiti Rahayu

    2014-05-01

    Full Text Available Increased productivity of cocoa needs high quality of cocoa seeds which are generally provided by certified seed gardens located far from smallholders farm, where seed delivery takes long time and may reduce physiological quality of seeds. One effort to maintain the seed quality is by treatment the seeds with polyethylene glycol6000 (PEG 6000. This study was aimed to study the interaction of PEG 6000 concentration and storage period on cocoa seed quality, and to determine the best concentration of PEG 6000 and storage period to maintain cocoa seed quality. The research was conducted in seed storage room, seed laboratory and green houseof PPPPTK, Cianjur. The experimental design used was a factorial completely randomized design and each combination treatment repeated three times. The first factor was concentration of PEG 6000 of 0%, 20%, 40%, and 60%, and the second factor was the storage period of 3 weeks, 6 weeks, 9 weeks, and 12 weeks. The results showed that concentration of PEG 60% with three weeks storage period was able to minimize the number of moldy seeds. The concentration of PEG 20%, 40%, and 60% were able to prevent seed germination in storage until six weeks. Concentration of PEG 6000 20% was able to maintain moisture content, seed germination, and germination rate.Key words:cocoa seed, storage, recalcitrant, PEG

  5. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.

    Science.gov (United States)

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2012-12-07

    Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.

  6. Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential.

    Science.gov (United States)

    Salem, Mohamed A; Li, Yan; Wiszniewski, Andrew; Giavalisco, Patrick

    2017-11-01

    Target of Rapamycin (TOR) is a positive regulator of growth and development in all eukaryotes, which positively regulates anabolic processes like protein synthesis, while repressing catabolic processes, including autophagy. To better understand TOR function we decided to analyze its role in seed development and germination. We therefore performed a detailed phenotypic analysis using mutants of the REGULATORY-ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), a conserved TOR interactor, acting as a scaffold protein, which recruits substrates for the TOR kinase. Our results show that raptor1b plants produced seeds that were delayed in germination and less resistant to stresses, leading to decreased viability. These physiological phenotypes were accompanied by morphological changes including decreased seed-coat pigmentation and reduced production of seed-coat mucilage. A detailed molecular analysis revealed that many of these morphological changes were associated with significant changes of the metabolic content of raptor1b seeds, including elevated levels of free amino acids, as well as reduced levels of protective secondary metabolites and storage proteins. Most of these observed changes were accompanied by significantly altered phytohormone levels in the raptor1b seeds, with increases in abscisic acid, auxin and jasmonic acid, which are known to inhibit germination. Delayed germination and seedling growth, observed in the raptor1b seeds, could be partially restored by the exogenous supply of gibberellic acid, indicating that TOR is at the center of a regulatory hub controlling seed metabolism, maturation and germination. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Pesticidal seed coats based on azadirachtin-A: release kinetics, storage life and performance.

    Science.gov (United States)

    Nisar, Keyath; Kumar, Jitendra; Arun Kumar, M B; Walia, Suresh; Shakil, Najam A; Parsad, Rajender; Parmar, Balraj S

    2009-02-01

    Infestation of seeds by pests during storage leads to deterioration in quality. Seed coating is an effective option to overcome the menace. Unlike synthetic fungicidal seed coats, little is known of those based on botanicals. This study aims at developing azadirachtin-A-based pesticidal seed coats to maintain seed quality during storage. Polymer- and clay-based coats containing azadirachtin-A were prepared and evaluated for quality maintenance of soybean seed during storage. Gum acacia, gum tragacanth, rosin, ethyl cellulose, hydroxyethyl cellulose, polyethyl methacrylate, methyl cellulose, polyethylene glycol, polyvinyl chloride, polyvinyl acetate, polyvinyl pyrrolidone and Agrimer VA 6 polymers and the clay bentonite were used as carriers. The time for 50% release (t(1/2)) of azadirachtin-A into water from the seeds coated with the different coats ranged from 8.02 to 21.36 h. The half-life (T(1/2)) of azadirachtin-A in the coats on seed ranged from 4.37 to 11.22 months, as compared with 3.45 months in azadirachtin-A WP, showing an increase by a factor of nearly 1.3-3.3 over the latter. The coats apparently acted as a barrier to moisture to reduce azadirachtin-A degradation and prevented proliferation of storage fungi. Polyethyl methacrylate, polyvinyl acetate and polyvinyl pyrrolidone were significantly superior to the other polymers. Azadirachtin-A showed a significant positive correlation with seed germination and vigour, and negative correlation with moisture content. Effective polymeric carriers for seed coats based on azadirachtin-A are reported. These checked seed deterioration during storage by acting as a barrier to moisture and reduced the degradation of azadirachtin-A.

  8. CONSERVATION OF THE VIABILITY AND VIGOR OF Araucaria angustifolia (Bert. O. Kuntze SEEDS DURING THE STORAGE

    Directory of Open Access Journals (Sweden)

    Cristhyane Garcia

    2014-12-01

    Full Text Available The conservation of Araucaria seeds is widely compromised in function of their recalcitrant feature, which hampers the planning of recovery actions of the degraded populations. Therefore, the objective of this study was to monitor the physiological changes in Araucaria seeds under controlled storage conditions, in order to get insights as to the viability and vigor conservation. The physiological quality of freshly harvested seeds was evaluated and every 60 days throughout the 180 days-storage period in laboratory ambient without thermal control, refrigerator (5 ° C, and freezer (-18 ° C until the final period of 180 days. After each sampling period, the seed viability (germination and tetrazolium tests and vigor (artificial aging, germination speed index – IVG and electrical conductivity were assessed. A reduction in the normal seedlings percentage was noticed over the period of storage of Araucaria seeds. The conservation in freezer and the lack of thermal control caused a complete loss of the seed viability at 60 and 180 days of storage, respectively. However, the refrigerator storage promoted the conservation of seed viability, with 64% germination after 180 days of storage, an event associated with the reduction of the metabolic activity of seeds. Based on the viability and vigor tests, it was concluded that storage in refrigerator provided longer storage periods to Araucaria seeds in comparison to the other storage conditions herein studied.

  9. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    NARCIS (Netherlands)

    Groot, S.P.C.; Surki, A.A.; Vos, de R.C.H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under

  10. THE TYPE OF PACKAGING MATERIAL AND STORAGE CONDITIONS AS FACTORS FOR WHEAT SEED QUALITY

    Directory of Open Access Journals (Sweden)

    Josip Šimenić

    2000-12-01

    Full Text Available Seed of cereal is normally grown on 5-8% of the overall plots under cereals in the Republic of Croatia. The produced seed meets the needs for high quality seed of wheat, barley, oat and other cereals. Certain quantities of seed remain unsold every year and are kept at various storage conditions and in various packaging material. The objective of this paper was to find out which storage conditions and what sort of packaging material would provide for the best viability of wheat seed. The investigation was carried out at storage simulation and by using various packaging material. In addition to well-known packaging material, such as paper 2 and 4-layer bags, jute bags, and PPR bags, the seed was also packed in the PVC transparent and PVC black bags, as well as in bags made of Aluminium foil. The investigation lasted for two years and was carried out in three various storage conditions, such as in the "New Warehouse" - a warehouse of a new type with thermal isolation in the roof and with uncontrolled conditions, ii the "Old Warehouse" made of filled-in brick and with a roof made of asbestos board, and iii under the "Eaves". The results have shown that the best seed was obtained when packed in 2 and 4-layer paper bags, PVC transparent bags and those made of Aluminium foil. Poorer results were obtained with bags of jute, polypropeline bags and PVC black bags. The storage of seed at "Eaves" has attained the best results in both years of the investigation, as compared to all three types of storage and it can in our circumstances meet the needs for wheat seed storage during one year

  11. Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions.

    Science.gov (United States)

    Schwember, Andrés R; Bradford, Kent J

    2010-10-01

    Lettuce (Lactuca sativa L.) seeds have poor shelf life and exhibit thermoinhibition (fail to germinate) above ∼25°C. Seed priming (controlled hydration followed by drying) alleviates thermoinhibition by increasing the maximum germination temperature, but reduces lettuce seed longevity. Controlled deterioration (CD) or accelerated ageing storage conditions (i.e. elevated temperature and relative humidity) are used to study seed longevity and to predict potential seed lifetimes under conventional storage conditions. Seeds produced in 2002 and 2006 of a recombinant inbred line (RIL) population derived from a cross between L. sativa cv. Salinas×L. serriola accession UC96US23 were utilized to identify quantitative trait loci (QTLs) associated with seed longevity under CD and conventional storage conditions. Multiple longevity-associated QTLs were identified under both conventional and CD storage conditions for control (non-primed) and primed seeds. However, seed longevity was poorly correlated between the two storage conditions, suggesting that deterioration processes under CD conditions are not predictive of ageing in conventional storage conditions. Additionally, the same QTLs were not identified when RIL populations were grown in different years, indicating that lettuce seed longevity is strongly affected by production environment. Nonetheless, a major QTL on chromosome 4 [Seed longevity 4.1 (Slg4.1)] was responsible for almost 23% of the phenotypic variation in viability of the conventionally stored control seeds of the 2006 RIL population, with improved longevity conferred by the Salinas allele. QTL analyses may enable identification of mechanisms responsible for the sensitivity of primed seeds to CD conditions and breeding for improved seed longevity.

  12. Cytogenetic effects of electron-beam radiation on dry seed storage

    International Nuclear Information System (INIS)

    Baojiang, G.; Qishen, P.; Kohlman, A.

    1989-01-01

    Dry seeds of Viciafaba were exposed to 5 MeV electron beam (10–30 Krad) and stored afterwards during 20,40 and 60 days- Induction of chromosomal aberrations in root-tip cells of irradiated seeds has been found dose-dependent. The frequency of chromosomal aberrations (particularly, the bridges and the rings) and the frequency of micronucleated cells is proportional to the length of storage time, but is not significantly influenced by low temperatures (0–6°C) during storage. (author)

  13. Physicochemical Properties and Oxidative Storage Stability of Milled Roselle (Hibiscus sabdariffa L. Seeds

    Directory of Open Access Journals (Sweden)

    Nurul Hanisah Juhari

    2018-02-01

    Full Text Available Milled Roselle (Hibiscus sabdariffa L. seeds of the UMKL cultivar were analyzed for proximate composition, water and oil absorption capacity, and the influence of storage conditions on storage stability. The storage stability was determined under four types of conditions: light/oxygen (air (LO, light/nitrogen (LN, darkness/oxygen (air (DO, and darkness/nitrogen (DN while monitoring for seven consecutive months. During the storage period, the formation of volatiles was determined using dynamic headspace sampling and Gas Chromatography-Mass Spectrometry (GC-MS analysis. In total, 85 volatiles were identified, mainly aldehydes, alcohols, ketones, furans, and acids indicating lipid oxidation. It is recommended that milled Roselle seeds should be flushed with nitrogen and stored in darkness. Under these conditions, the seeds can be stored for at least three months without changes in volatile profile. This is important to ensure the good quality of milled Roselle seeds for further commercialization.

  14. Physicochemical Properties and Oxidative Storage Stability of Milled Roselle (Hibiscus sabdariffa L.) Seeds.

    Science.gov (United States)

    Juhari, Nurul Hanisah; Petersen, Mikael Agerlin

    2018-02-11

    Milled Roselle ( Hibiscus sabdariffa L.) seeds of the UMKL cultivar were analyzed for proximate composition, water and oil absorption capacity, and the influence of storage conditions on storage stability. The storage stability was determined under four types of conditions: light/oxygen (air) (LO), light/nitrogen (LN), darkness/oxygen (air) (DO), and darkness/nitrogen (DN) while monitoring for seven consecutive months. During the storage period, the formation of volatiles was determined using dynamic headspace sampling and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. In total, 85 volatiles were identified, mainly aldehydes, alcohols, ketones, furans, and acids indicating lipid oxidation. It is recommended that milled Roselle seeds should be flushed with nitrogen and stored in darkness. Under these conditions, the seeds can be stored for at least three months without changes in volatile profile. This is important to ensure the good quality of milled Roselle seeds for further commercialization.

  15. Genetic improvement of soybean seed proteins by γ-ray irradiation

    International Nuclear Information System (INIS)

    Kitamura, Keisuke

    1998-01-01

    Although soybeans have the highest protein content among seed crops, the protein quality is poor due to the low content of the sulfur-containing amino acids, cysteine and methionine. Soybean 7S globulin and 11S globulin are the two major protein components, accounting for about 70% of the total seed protein. The 11S globulin contains three to four times more methionine and cysteine per unit protein than that of the 7S globulin. Furthermore, the two globulins show considerable differences in food processing properties such as gel-making ability and emulsifying capacity. The 7S globulin is composed of three kinds of polypeptides, designated as α, α' and β subunits. A variety of soybean cv. Keburi, which lacks α' subunit was identified in a germplasm collection. An induced mutant line which lacks both α and α' subunits, was recently identified in the progeny of γ-ray-irradiated seeds from a line lacking α' subunit. On the other hand, the 11S globulin is composed of the A 1a B 2 , A 1b B 1b , A 2 B 1a , A 3 B 4 and A 4 A 5 B 3 subunits. It has become possible to breed soybeans with markedly modified protein composition from extremely high to extremely low 7S : 11S ratios using mutant genes for the subunits of the two globulins. Lipoxygenase catalyzes the hydroperoxydation of unsaturated fatty acids and polyunsaturated lipids. Soybean seeds contain three lipoxygenase isozymes, called L-1, L-2 and L-3, which are responsible for the generation of grassy-beany and bitter tastes, limiting the use of whole soybeans and soy proteins in certain food products. In the early 1980s, three types of spontaneous mutant soybean varieties lacking L-1, L-2 or L-3 were detected. Soybean cultivars having the lipoxygenase-null traits could become economically valuable for the manufacture of soy products such as soy milk due to their low levels of beany taste and their enhanced storage stability. (J.P.N.)

  16. Activity of water content and storage temperature on the seed-borne mycoflora of lens culinaris

    International Nuclear Information System (INIS)

    Rahim, S.; Dawar, S.

    2014-01-01

    Storage of seeds with high water content and temperatures favors the growth of mould fungi which in turn affect the germination of seeds while low temperature with low water content prevent the growth of storage fungi and help in maintaining seed viability for longer duration of time. Seed sample from Sukkur district was stored at 4 degree C and room temperature (25-30 degree C) with water content of 8, 13 and 17% for about 80 days. The fungi were isolated at 0, 20, 40, 60 and 80 days intervals. Highest infection percentage of fungi was observed at 13 and 17% water contents at room temperature after 20 days of storage. High infection percentage of storage fungi affected the germination of seeds. Aspergillus spp were the most dominant fungi. (author)

  17. Proteomic Comparison between Maturation Drying and Prematurely Imposed Drying of Zea mays Seeds Reveals a Potential Role of Maturation Drying in Preparing Proteins for Seed Germination, Seedling Vigor, and Pathogen Resistance

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Ye, Jian-Qing; Rogowska-Wrzesinska, Adelina

    2014-01-01

    We have studied the role(s) of maturation drying in the acquisition of germinability, seedling vigor and pathogen resistance by comparing the proteome changes in maize embryo and endosperm during mature and prematurely imposed drying. Prematurely imposed dried seeds at 40 days after pollination...... (DAP) germinated almost as well as mature seeds (at 65 DAP), but their seedling growth was slower and they were seriously infected by fungi. A total of 80 and 114 proteins were identified to change at least two-fold (p ... abundant in this group and may contribute to the acquisition of seed germinability. However, a relatively large number of proteins changed in the embryo (47 spots) and endosperm (76 spots) specifically during maturation drying. Among these proteins, storage proteins in the embryo and defense proteins...

  18. PHYSIOLOGICAL CLASSIFICATION OF FOREST SEEDS REGARDING THE DESICCATION TOLERANCE AND STORAGE BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Rafaella Carvalho Mayrinck

    2016-03-01

    Full Text Available This work aims to classify forest seeds native to the Alto Rio Grande region regarding the desiccation tolerance and storage behaviour. Germination and water content tests were performed in seeds of different species. The tests were conducted immediately after seed processing, at 12% and 5% of water content, and at 5% after 3 months of storage in -18°C. Based on the results obtained, seeds were classified into recalcitrant, intermediate and orthodox class. Seeds of Brosimum gaudichaudii, Erythroxylum deciduum, Eugenia pleurantha, Myrcia venulosa, Nectandra megapotamica were classified as recalcitrant (22.7% of all species. Seeds of Aegiphila sellowiana, Aspidosperma parvifolium, Blepharocalyx salicifolius, Casearia lasiophylla, Cassia occidentalis, Dalbergia miscolobium, Diospyros brasiliensis, Diospyros hispida, Ilex brevicuspis, Ilex cerasifolia, Myrocarpus fastigiatus, Senna aversiflora, Senna splendida e Blepharocalyx salicifolius were classified as intermediate (59.1% of all species. Seeds of Miconia albicans, Platycyamus regnellii, Styrax camporum and Piptadenia gonoacantha were classified as orthodox (18.2% of all species.

  19. New insight into quinoa seed quality under salinity: changes in proteomic and amino acid profiles, phenolic content, and antioxidant activity of protein extracts

    Directory of Open Access Journals (Sweden)

    Iris eAloisi

    2016-05-01

    Full Text Available Quinoa (Chenopodium quinoa Willd is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa seeds. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49 and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR, exposed to two levels of salinity (100 and 300 mM NaCl were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC and flavonoid (TFC contents, and antioxidant activity (AA of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace

  20. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts

    Science.gov (United States)

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B.; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the

  1. The technology of storage of a geno-fund of seeds of plants and animals

    International Nuclear Information System (INIS)

    Ombayev, A.M.; Tokhanov, M.T.; Burtebayeva, D.T.; Burtebayev, N.

    2002-01-01

    Because of an absent of special storages a geno-fund of plants seeds are stored mainly in usual unpractical laboratory conditions (in paper packs, in fabric bags, in metal boxes and so on). And during the first year of the storage the many Kinds of seeds begin to reduce a capacity of an inter-growth, and after several years they became to be useless to a sowing. As result, plant - breeders are forced to carry out frequent transplanting of collection samples, but it is connected with both significant material expenditures and a possible loss of a valuable geno-fund of seeds. But, from other hand, it is well known, that for a creation of only one new breed of animals it is necessary to carry out some experiments of during with from 15 to 30 years. With some economical reforms in Kazakhstan high - productive breeds of animals are on the brink of a disappearance. In connection with this the problem of the creation of the storage for the geno-fund of the seeds of the plants and of high - productive breeds of animals in Kazakhstan begins being an actual one. National storages, created in USA, Japan, Italy, Turkey, countries of SIS, correspond to definite standards, where there are maintained strict parameters for the storage active ventilation, storage in cooling state, a storage without of an access for air, a freezing in liquid nitrogen and in other coolants). Our investigations has established, that the storage of seeds of plants in gaseous medium with below-average content of oxygen increases a germinating power of seed. F.e. seeds of arid food plant of 'izen, Kochia prostrata', by natural way, keep the germinating power of seed, during about (6-8) months, and in gaseous medium its germinating power of seed reaches up to 5.5 years. Besides, at maturity of micro -organisms, there ore exterminated insects- pests and rodents. In order to improve mobility and a frost resistance of sperms of high productive stud-rams we had investigated the influence of electromagnetic

  2. EFFECTS OF STORAGE PERIODS AND METHODS OF OVERCOMING DORMANCY IN SEEDS OF PASSIFLORA

    Directory of Open Access Journals (Sweden)

    Telma Miranda dos Santos

    2012-07-01

    Full Text Available The aim of this work was to evaluate the effects of storage period and treatement with hot water at 50ºC or scarification on dormancy break down on Passiflora mucronata seeds. The storage periods were 0, 1, 4 and 12 months. The seeds were sown onto Germitest paper roll and incubated in a germination chamber under 20ºC/8h-30ºC/16h alternate temperature, at 16-h photoperiod (fluorescent light at 32 mol m-2 s-1 irradiance. The percent germination was evaluated, and the seeds germinated on moistened Germitest paper rolls in distilled water at a ratio of two and a half times the paper weight. The seeds were transferred to a germination chamber with alternating temperatures of 20-30º C and photoperiod of 16 h until the end of the experiment at 31 days. The experiment was analyzed as completely randomized designed with four replications, in which each plot was constituted by 50 seeds. The storage periods had significant effect on the variable studied, where the higher germination was obtained at freshly harvested seeds. At the first month of evaluation the germination decreased. After 4 and 12 months of storage, no germination was detected. The treatment with hot water at 50º or scarification favored the germination of the Passiflora seeds stored by one and four months, however even with the stimulus of the treatments, the values of final germination were low. The treatments were not efficient to stimulate the seed germination stored by 12 months.

  3. Proteome analysis reveals an energy-dependent central process for Populus×canadensis seed germination.

    Science.gov (United States)

    Zhang, Hong; Zhou, Ke-Xin; Wang, Wei-Qing; Liu, Shu-Jun; Song, Song-Quan

    2017-06-01

    Poplar (Populus×canadensis) seeds rapidly germinated in darkness at 10, 15, and 20°C and reached 50% seed germination after about 22, 4.5, and 3.5h, respectively. Germination of poplar seeds was markedly inhibited by abscisic acid (ABA) at 50μM and cycloheximide (CHX) at 100μM, and these inhibitive roles were temperature-dependent. In the present study, mature poplar seeds were used to investigate the differentially changed proteome of seeds germinating in water, ABA, and CHX. A total of 130 protein spots showed a significant change (1.5-fold increase/decrease, Pgermination of poplar seeds is closely related with the increase in those proteins involved in amino acid and lipid metabolism, the tricarboxylic acid cycle and pentose phosphate pathway, protein synthesis and destination, cell defense and rescue, and degradation of storage proteins. ABA and CHX inhibit the germination of poplar seeds by decreasing the protein abundance associated with protein proteolysis, protein folding, and storage proteins. We conclude that poplar seed germination is an energy-dependent active process, and is accompanied by increasing amino acid activation, protein synthesis and destination, as well as cell defense and rescue, and degradation of storage proteins. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Quality characteristics of irradiated sesame seeds during storage

    International Nuclear Information System (INIS)

    Swailam, H.M.

    2009-01-01

    The effect of using gamma radiation 60 Co on the microbial load , presence of some pathogens, viscosity, oil, fatty acids and amino acids properties of sesame seeds were investigated.The condition storage at ambient temperature (20-28 deg c) was held for one year. Pre-packaged sesame seeds were found to be heavily contaminated with bacteria and fungi. The total bacterial counts were 1,9x10 4 cfu/g,whereas total fungal counts were 3.4x10 4 cfu/g.Samples showed low number of the pathogenic bacterial in control . It was found that the microbiological population greatly reduced with a dose of 10 kGy without affecting their quality attributes , irradiation doses used linearly reduced the viscosity of sesame seeds samples. These irradiation doses caused a decrease in the content of some fatty acids and amino acids and increase in others. At the end of storage period, it is clear that , irradiation dose of 10 kGy greatly reduced the counts of total bacterial count, total fungal count and spore former bacterial to less than 10 cfu/ g. The average counts of faecal coliforms , staphylococcus aureus and enterococcus faecalis did not detected in samples receiving 5 and 10 kGy . the flow index (n) and consistency index (k) were decreased after 12 month of storage in irradiated sesame with 10 kGy. Also, there was a slight increase in acid and peroxide value of oil extracted from sesame seeds treatment with 10 kGy. Meanwhile, there was a decrease in iodine, saponification value and very little decrease in the refractive index. It was found that slightly decreased in total unsaturated fatty acid (0.12%) and total amino acid (0.63%)in sesame irradiated at 10 kGy . so, it can be concluded that 10 kGy of γ-radiation suffice the purpose of this work

  5. Sensitivity of Canola Seeds Associated Fungi to Gamma Rays During Storage

    International Nuclear Information System (INIS)

    Botros, H.W.

    2011-01-01

    The present study was carried out to investigate the possibility of using the gamma radiation to elongate the storage periods of canola seeds (Brassica naps L.). In this respect, canola seeds were irradiated at doses of 0.5, 1.5, 2.5, 3.5, 5.0 and 7.5 kGy gamma rays and stored at room temperature for periods 0, 3, 6, 9 and 12 months. The isolated fungi from non-irradiated post-harvest canola seeds included different species identified as Aspergillus flavus, A. niger, A. condidus, A. fumigatus, A. ochraceus, A. parasiticus, Fusarium oxysporium, F. moniliforme, Penicillium expansum, P. crysogenum, Alternaria brassicae, A. raphani and Trichoderma spp. It was noticed that the predominant species were A. ochraceus, A. flavus, A. niger and F. oxysporium at percentages 16.18, 14.73, 11.00 and 10.53%, respectively. The effective gamma irradiation on the predominant fungi (the sub-lethal dose) was 3.5 kGy for A. ochraceus and 5.0 kGy for F. oxysporium and F. moniliforme. Increasing the irradiated dose up to 7.5 kGy decreased significantly the growth of most isolated fungi. The data also showed that there was a decrease in the total fungal count in stored seeds under the effect of gamma rays for 12 months storage. Also, mycotoxins at the stored seeds were not detected after 12 months storage

  6. The nuclear protein Poly(ADP-ribose) polymerase 3 (AtPARP3) is required for seed storability in Arabidopsis thaliana.

    Science.gov (United States)

    Rissel, D; Losch, J; Peiter, E

    2014-11-01

    The deterioration of seeds during prolonged storage results in a reduction of viability and germination rate. DNA damage is one of the major cellular defects associated with seed deterioration. It is provoked by the formation of reactive oxygen species (ROS) even in the quiescent state of the desiccated seed. In contrast to other stages of seed life, DNA repair during storage is hindered through the low seed water content; thereby DNA lesions can accumulate. To allow subsequent seedling development, DNA repair has thus to be initiated immediately upon imbibition. Poly(ADP-ribose) polymerases (PARPs) are important components in the DNA damage response in humans. Arabidopsis thaliana contains three homologues to the human HsPARP1 protein. Of these three, only AtPARP3 was very highly expressed in seeds. Histochemical GUS staining of embryos and endosperm layers revealed strong promoter activity of AtPARP3 during all steps of germination. This coincided with high ROS activity and indicated a role of the nuclear-localised AtPARP3 in DNA repair during germination. Accordingly, stored parp3-1 mutant seeds lacking AtPARP3 expression displayed a delay in germination as compared to Col-0 wild-type seeds. A controlled deterioration test showed that the mutant seeds were hypersensitive to unfavourable storage conditions. The results demonstrate that AtPARP3 is an important component of seed storability and viability. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. A functional genomics approach to understand the control and regulation of storage protein biosynthesis in barley grain

    DEFF Research Database (Denmark)

    Vincze, É; Hansen, M; Bowra, S

    2008-01-01

    assembled in our laboratory. To identify coregulated genes, a distance matrix was constructed and we identified three clusters corresponding to the early, middle and late seed development. The gene expression pattern associated with the clusters was investigated using pathway specific analysis with specific......The aim of the study was to obtain an insight into amino acid and storage protein metabolism in the developing barley grain at the molecular level. Our strategy was to analyse the transcriptome of relevant pathways in developing grains of field grown barley using a grain specific microarray...... pathways in the barley grain. The study described here could provide a strong complement to existing knowledge assisting further  understanding of seed development and thereby provide a foundation for plant breeding towards storage protein with improved nutritional quality....

  8. The inhibitory effect of the various seed coating substances against rice seed borne fungi and their shelf-life during storage.

    Science.gov (United States)

    Thobunluepop, Pitipong

    2009-08-15

    Presently, chemical seed treatments are in discussion due to their directly or indirectly impacts on human health or other living organisms. They may also negatively affect the ecosystem and the food chain. In rice seeds, chemicals may cause phytotoxic effects including seed degradation. Eugenol is the main component of clove (Eugenia caryophillis) oil, which was proved to act simultaneously as bactericide, virocide and especially fungicide. The in vitro study was aimed to compare the inhibitory effect of the following seed treatment substances against seed borne fungi and their shelf-life during 12 months of storage; conventional captan (CA), chitosan-lignosulphonate polymer (CL), eugenol incorporated into chitosan-lignosulphonate polymer (E+CL) and control (CO). The obtained results of fungi inhibition were classified in three groups, which showed at first that CA treatment led to a better, i.e., longer, inhibitory effect on Alternaria padwickii, Rhizoctonia solani, Curvularia sp., Aspergillus flavus and Aspergillus niger than E+CL. Secondly, E+CL coating polymer showed the longest inhibitory effect against Bipolaris oryzae and Nigrospora oryzae compared to CA and CL coating polymer. Finally, both CA and E+CL coating polymer had non-significant difference inhibitory effect on Fusarium moniliforme. The variant of CL coating polymer for seed coating was only during the first 6 months of storage able to inhibit all species of the observed seed borne fungi, whereas CA and E+CL coating polymer were capable to inhibit most of the fungi until 9 months of storage.

  9. Isolation and characterization of a reserve protein from the seeds of Opuntia ficus-indica (Cactaceae

    Directory of Open Access Journals (Sweden)

    Uchoa A.F.

    1998-01-01

    Full Text Available We describe here the isolation and characterization of a major albumin from the seeds of Opuntia ficus-indica (Cactaceae. This protein has a molecular mass of 6.5 kDa and was isolated by a combination of gel filtration chromatography and reverse-phase HPLC. The amino acid composition of this protein was determined and it was shown to have similarities with the amino acid composition of several proteins from the 2S albumin storage protein family. The N-terminal amino acid sequence of this protein is Asp-Pro-Tyr-Trp-Glu-Gln-Arg.

  10. Electrophoretic studies on rape seed proteins

    International Nuclear Information System (INIS)

    Chaudry, M.A.; Starr, A.; Bibi, N.

    1992-07-01

    Electrophoresis is a technique which separates biological molecules on the basis of charge and mass properties. The technique is used for separation, purification, characterization and identification of molecules/ compounds. Two major objectives for applications of electrophoresis have been studied in this report i.e. characterization of rape seed proteins and enzymes and identification of rape seed cultivars by polyacrylamide gel electrophoresis (PAGE). Gamma irradiation is being successfully used to create genetic variability and germination which brought about definite changes in the rape seed proteins reflected in different bands. These differences could be used to study variability in crop plants. (A.B.)

  11. Effect of storage of shelled Moringa oleifera seeds from reaping time on turbidity removal.

    Science.gov (United States)

    Golestanbagh, M; Ahamad, I S; Idris, A; Yunus, R

    2011-09-01

    Moringa oleifera is an indigenous plant to Malaysia whose seeds are used for water purification. Many studies on Moringa oleifera have shown that it is highly effective as a natural coagulant for turbidity removal. In this study, two different methods for extraction of Moringa's active ingredient were investigated. Results of sodium chloride (NaCl) and distilled water extraction of Moringa oleifera seeds showed that salt solution extraction was more efficient than distilled water in extracting Moringa's active coagulant ingredient. The optimum dosage of shelled Moringa oleifera seeds extracted by the NaCl solution was comparable with that of the conventional chemical coagulant alum. Moreover, the turbidity removal efficiency was investigated for shelled Moringa oleifera seeds before drying in the oven under different storage conditions (i.e. open and closed containers at room temperature, 27 °C) and durations (fresh, and storage for 2, 4, 6 and 8 weeks from the time the seeds were picked from the trees). Our results indicate that there are no significant differences in coagulation efficiencies and, accordingly, turbidity removals between the examined storage conditions and periods.

  12. Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment.

    Science.gov (United States)

    Rashydov, Namik M; Hajduch, Martin

    2015-01-01

    Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk.

  13. Proteomic dissection of seed germination and seedling establishment in Brassica napus

    Directory of Open Access Journals (Sweden)

    Jianwei Gu

    2016-10-01

    Full Text Available The success of seed germination and the establishment of a normal seedling are key determinants of plant species propagation. At present, only few studies have focused on the genetic control of the seed germination by proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis (2-D DIGE in B. napus. One hundred thirteen differentially expressed proteins (DEPs, which were mainly involved in storage proteins (23.4%, energy metabolism (18.9%, protein metabolism (16.2%, defense/disease (12.6%, seed maturation (11.7%, carbohydrate metabolism (4.5%, lipid metabolism (4.5%, amino acids metabolism (3.6%, cell growth/division (3.6%, and some unclear proteins (2.7% were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed the heterotrophic metabolism could be activated in the process of seed germination and the onset of defense system might start during seed germination. These findings will help us more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of germination process in B. napus.

  14. The Effect of Storage on Some Properties of 3 Different Ground Poppy Seed Fats

    OpenAIRE

    Maden, Besim; Yalçın, Seda

    2017-01-01

    Thepoppy seed is a traditional product in Afyon. There are there type poppy seed. Theseare white poppy seed, yellow poppy seed and gray poppy seed. The objective of thisstudy is to investigate the effect of storage at 15-20⁰C for several times (0, 7,15, 30, 45 and 60 days) on some properties of 3 different poppy seed fats. In thisstudy, fats were obtained from white poppy seed (TMO1), yellow poppy seed (TMO2)and gray poppy seed (Afyon-95). Then free fatty acid amount (%), peroxide value(meq O...

  15. Two-dimensional gel electrophoresis pattern (pH 6-11) and identification of water-soluble barley seed and malt proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Bak-Jensen, K.S.; Laugesen, S.; Roepstorff, P.

    2004-01-01

    A protocol was established for two-dimensional gel electrophoresis (2-DE) of barley seed and malt proteins in the pH range of 6-11. Proteins extracted from flour in a low-salt buffer were focused after cup-loading onto IPG strips. Successful separation in the second dimension was achieved using...... gradient gels in a horizontal SDS-PAGE system. Silver staining of gels visualized around 380 (seed) and 500 (malt) spots. Thirty-seven different proteins from seeds were identified in 60 spots, among these 46 were visualized also in the malt 2-D pattern. Proteins were identified by peptide mass...... in defence against pathogens (21 spots), 4 in storage, folding, and synthesis of proteins, and in nitrogen metabolism (5 spots), 6 in carbohydrate metabolism (11 spots), and 4 in stress and detoxification (9 spots). Six proteins (7 spots) were not grouped in these categories, and 3 were not ascribed...

  16. The role of thioredoxin h in protein metabolism during wheat (Triticum aestivum L.) seed germination.

    Science.gov (United States)

    Guo, Hongxiang; Wang, Shaoxin; Xu, Fangfang; Li, Yongchun; Ren, Jiangping; Wang, Xiang; Niu, Hongbin; Yin, Jun

    2013-06-01

    Thioredoxin h can regulate the redox environment in the cell and play an important role in the germination of cereals. In the present study, the thioredoxin s antisense transgenic wheat with down-regulation of thioredoxin h was used to study the role of thioredoxin h in protein metabolism during germination of wheat seeds, and to explore the mechanism of the thioredoxin s antisense transgenic wheat seeds having high resistance to pre-harvest sprouting. The qRT-PCR results showed that the expression of protein disulfide isomerase in the thioredoxin s antisense transgenic wheat was up-regulated, which induced easily forming glutenin macropolymers and the resistance of storage proteins to degradation. The expression of serine protease inhibitor was also up-regulated in transgenic wheat, which might be responsible for the decreased activity of thiocalsin during the germination. The expression of WRKY6 in transgenic wheat was down-regulated, which was consistent with the decreased activity of glutamine oxoglutarate aminotransferase. In transgenic wheat, the activities of glutamate dehydrogenase, glutamic pyruvic transaminase and glutamic oxaloacetic transaminase were down-regulated, indicating that the metabolism of amino acid was lower than that in wild-type wheat during seed germination. A putative model for the role of thioredoxin h in protein metabolism during wheat seed germination was proposed and discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Convergent evolution of plant and animal embryo defences by hyperstable non-digestible storage proteins.

    Science.gov (United States)

    Pasquevich, María Yanina; Dreon, Marcos Sebastián; Qiu, Jian-Wen; Mu, Huawei; Heras, Horacio

    2017-11-20

    Plants have evolved sophisticated embryo defences by kinetically-stable non-digestible storage proteins that lower the nutritional value of seeds, a strategy that have not been reported in animals. To further understand antinutritive defences in animals, we analysed PmPV1, massively accumulated in the eggs of the gastropod Pomacea maculata, focusing on how its structure and structural stability features affected its capacity to withstand passage through predator guts. The native protein withstands >50 min boiling and resists the denaturing detergent sodium dodecyl sulphate (SDS), indicating an unusually high structural stability (i.e., kinetic stability). PmPV1 is highly resistant to in vitro proteinase digestion and displays structural stability between pH 2.0-12.0 and 25-85 °C. Furthermore, PmPV1 withstands in vitro and mice digestion and is recovered unchanged in faeces, supporting an antinutritive defensive function. Subunit sequence similarities suggest a common origin and tolerance to mutations. This is the first known animal genus that, like plant seeds, lowers the nutritional value of eggs by kinetically-stable non-digestible storage proteins that survive the gut of predators unaffected. The selective pressure of the harsh gastrointestinal environment would have favoured their appearance, extending by convergent evolution the presence of plant-like hyperstable antinutritive proteins to unattended reproductive stages in animals.

  18. Proteomic analysis of Magnolia sieboldii K. Koch seed germination.

    Science.gov (United States)

    Lu, Xiu-Jun; Zhang, Xiao-Lin; Mei, Mei; Liu, Guang-Lin; Ma, Bei-Bei

    2016-02-05

    Magnolia sieboldii is a deciduous tree native to China. This species has a deep dormancy characteristic. To better understand seed germination, we used protein analysis of changes in seed protein at 0, 65, 110 and 150 d of stratification. Comparative 2DE analysis of M. sieboldii seed protein profiles at 0, 65, 110 and 150 d of stratification revealed 80 differentially abundance protein species. Comparative analysis showed that ADP-glucose pyrophosphorylase small subunit was degraded during germination. In particular, it was degraded almost completely at 110 d of germination. Starch granules in the microstructure decreased after 65 d of stratification. Starch granules provided a sufficient amount of substrates and ATPs for subsequent germination. Four storage protein species were identified, of which all were down accumulated. Spots 44 and 46 had different MW and pI values, spots 36 and 46 had nearly the same MW with pI shift in the 2-DE gels, suggesting that they might be present as different isoforms of the same protein family and the post translational modification. Our results suggested that degradation of starch granules and storage protein species prepared the seed embryo for growth, as well as regulated seed germination. The present proteomics analysis provides novel insights into the mobilisation of nutrient reserves during the germination of M. sieboldii seeds. To better understand seed germination, a complex developmental process, we developed a proteome analysis of M. sieboldii seed. We performed the first comprehensive proteomic and microstructure analysis during different seed stratification stages of M. sieboldii. Among the 80 protein species, 26 were identified, 7 and 14 protein species were up or down accumulated significantly. Many of the identified key proteins were involved in embryo development, starch biosynthesis and energy metabolism, Microstructure of stratification seed analysis revealed degradation of starch was used for preparing the seed

  19. Radiation pre-treatment of seed imparts metabolic stability and quality protection during storage under accelerated aging

    International Nuclear Information System (INIS)

    Sumedha; Singh, Bhupinder; Singhal, R.K.

    2014-01-01

    Quality of seed is known to deteriorate due to unfavoured temperature and relative humidity during accelerated aging. Protecting the seed quality during storage is thus a priority challenge for the seed industry till the seeds end up with the end user. Gamma radiation treatment has been shown to improve source to sink transport of photosynthates during terminal heat stress in cereals. An experiment was conducted to measure seed irradiation induced biochemical changes in groundnut cultivar TG-37A stored under accelerated aging at 45±2 ℃ and 95-100 % humidity for 0, 5, 10, 15, 20 and 40 days to aging. The gamma irradiation doses were control (0), 0.005, 0.025, 0.1, 0.5 and 1.0 kGy. Seed samples were periodically evaluated for oil and fatty acid profile by the soxhlet extraction method and gas chromatography mass spectroscopy respectively. Here alike earlier studies variation in fatty acid profile of seed was used as an indicator of seed health under harsh storage conditions of accelerated aging. In the majority of plant species having oil rich seeds, the lipids that are at risk of auto-oxidation contain oleic (18:1), linoleic (18:2) and linolenic (18:3) fatty acid chain. Degree of unsaturation has a significant influence on degree of degradation. Decreased total lipid content in aged sunflower seeds have been reported. Auto-oxidation of unsaturated fatty acids was noticed, especially for linoleic acid in seed of oil crop after seven years of storage. Our results showed radiation treatment did not cause any significant change in oleic (C18:1), linoleic acids (C18:2) and linolenic (C18:3) acid content of seeds. This shows that gamma radiation essentially slows down the lipid peroxidation which essentially protects membrane permeability and reduces the rate of seed deterioration at high temperature and RH. Radiation treatment imparts metabolic stability in seeds during storage under accelerated aging conditions. (author)

  20. Canola/rapeseed protein-functionality and nutrition

    Directory of Open Access Journals (Sweden)

    Wanasundara Janitha P.D.

    2016-07-01

    Full Text Available Protein rich meal is a valuable co-product of canola/rapeseed oil extraction. Seed storage proteins that include cruciferin (11S and napin (2S dominate the protein complement of canola while oleosins, lipid transfer proteins and other minor proteins of non-storage nature are also found. Although oil-free canola meal contains 36–40% protein on a dry weight basis, non-protein components including fibre, polymeric phenolics, phytates and sinapine, etc. of the seed coat and cellular components make protein less suitable for food use. Separation of canola protein from non-protein components is a technical challenge but necessary to obtain full nutritional and functional potential of protein. Process conditions of raw material and protein preparation are critical of nutritional and functional value of the final protein product. The storage proteins of canola can satisfy many nutritional and functional requirements for food applications. Protein macromolecules of canola also provide functionalities required in applications beyond edible uses; there exists substantial potential as a source of plant protein and a renewable biopolymer. Available information at present is mostly based on the protein products that can be obtained as mixtures of storage protein types and other chemical constituents of the seed; therefore, full potential of canola storage proteins is yet to be revealed.

  1. Seed-storage Mycoflora of Peanut Cultivars Grown in Nigerian Savanna

    Directory of Open Access Journals (Sweden)

    Nwankiti, AO.

    2003-01-01

    Full Text Available Storage of peanut is increasingly becoming important both among growers and users of the crop in Nigerian savanna. The aim is to sell the produce and maximize benefits accruing from the crops during scarcity. Very often, these envisaged advantages fail due to unfavourable market forces, thus compelling them to sell at a loss or store them across seasons for periods ranging from one to two years. However, information on fungi associated with storage of such peanuts in Nigerian savanna and its attendant problems are yet to be investigated. Thus, the seed mycoflora and viability seven common peanut cultivars stored under conditions similar to traditional settings were investigated using different isolating techniques. The peanut cultivars were RMP 12, RMP 91, RRB, 48-115B, M554-76, 55-437 Ex-Dakar and a local cultivar. None of these cultivars possessed resistance to in vitro colonization by fungi. Aspergillus niger, Aspergillus flavus and Rhizopus stolonifer were consistently isolated from all the cultivars from almost all isolating techniques. Other fungi were Fusarium chlamydosporium, F. roseum, F. oxysporium, Penicillium spp., Curvularia spp., Botryodiplodia theobromae, Macrophomina phaseolina and Sclerotium rolfsii. Relative percentages, however, varied with individual fungi and peanut cultivars. The test with seven different types of growth media gave the highest fungi recovery rate than the blotter paper technique. Seed viability was lower with peanut seeds stored for two years. Also, the relative percentage occurrence of individual fungi was significantly higher with seeds stored for two years. While we recommend the use of growth media for recovery and study of seed mycoflora, peanut seeds should not be stored for more than one year.

  2. Identification of QTLs for seed germination capability after various storage periods using two RIL populations in rice.

    Science.gov (United States)

    Jiang, Wenzhu; Lee, Joohyun; Jin, Yong-Mei; Qiao, Yongli; Piao, Rihua; Jang, Sun Mi; Woo, Mi-Ok; Kwon, Soon-Wook; Liu, Xianhu; Pan, Hong-Yu; Du, Xinglin; Koh, Hee-Jong

    2011-04-01

    Seed germination capability of rice is one of the important traits in the production and storage of seeds. Quantitative trait loci (QTL) associated with seed germination capability in various storage periods was identified using two sets of recombinant inbred lines (RILs) which derived from crosses between Milyang 23 and Tong 88-7 (MT-RILs) and between Dasanbyeo and TR22183 (DT-RILs). A total of five and three main additive effects (QTLs) associated with seed germination capability were identified in MT-RILs and DT-RILs, respectively. Among them, six QTLs were identified repeatedly in various seed storage periods designated as qMT-SGC5.1, qMT-SGC7.2, and qMT-SGC9.1 on chromosomes 5, 7, and 9 in MT-RILs, and qDT-SGC2.1, qDT-SGC3.1, and qDT-SGC9.1 on chromosomes 2, 3, and 9 in DT-RILs, respectively. The QTL on chromosome 9 was identified in both RIL populations under all three storage periods, explaining up to 40% of the phenotypic variation. Eight and eighteen pairs additive × additive epistatic effect (epistatic QTL) were identified in MT-RILs and DT-RILs, respectively. In addition, several near isogenic lines (NILs) were developed to confirm six repeatable QTL effects using controlled deterioration test (CDT). The identified QTLs will be further studied to elucidate the mechanisms controlling seed germination capability, which have important implications for long-term seed storage.

  3. Properties and regulation of biosynthesis of cottonseed storage proteins. Comprehensive progress report, December 1, 1976 to September 1, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dure, III, L S

    1979-01-01

    The regulation of gene expression in cotton seed embryogenesis was studied by attempting to define what gene products are likely to be highly regulated during this developmental progression. The flow of nitrogen into the free amino acids pools of the developing cotyledons, and into the principal nitrogen nutritional reserve of the seed, the storage proteins was measured. This was continued by following the flow of nitrogen from the storage proteins to the principal exported amino acid asparagine that occurs during the first several days of germination. In this fashion the rise and fall of certain enzymes of amino acid intermediary metabolism could be postulated, and in some cases, verified. The subsets of abundant mRNAs whose appearance and disappearance coincided with developmental events in cotyledon embryogenesis/germination with the short range goal of identifying proteins/enzyme activities were delineated as well as their mRNAs that represent specific developmental stages and the long range goal of using these representatives as probes for studying the mechanisms controlling the rise and fall of these mRNAs and their protein products.

  4. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    Directory of Open Access Journals (Sweden)

    Jun Ren

    2014-01-01

    Full Text Available Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes.

  5. Role of relative humidity in processing and storage of seeds and assessment of variability in storage behaviour in Brassica spp. and Eruca sativa.

    Science.gov (United States)

    Suma, A; Sreenivasan, Kalyani; Singh, A K; Radhamani, J

    2013-01-01

    The role of relative humidity (RH) while processing and storing seeds of Brassica spp. and Eruca sativa was investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species of Brassica was also evaluated. The samples were stored at 40 ± 2°C in sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour, B. rapa and B. juncea were better performers than B. napus and Eruca sativa.

  6. Efficacy of traditional maize (Zea mays L.) seed storage methods in ...

    African Journals Online (AJOL)

    Efficacy of traditional maize (Zea mays L.) seed storage methods in western Kenya. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE (AJOL) ... African Journal of Food, Agriculture, Nutrition and Development.

  7. Application of genetic markers in seed testing and plant breeding

    Directory of Open Access Journals (Sweden)

    Nikolić Zorica

    2010-01-01

    Full Text Available Genetic markers have been used at Institute of Field and Vegetable Crops in Novi Sad for a number of years, both for seed quality control and for research purposes. The Laboratory for Seed Testing was the first in the former Yugoslavia to use the method of control of hybrid seed genetic purity based on enzymatic polymorphism. This paper presents the application of protein markers, isozymes, seed storage proteins and DNA markers for evaluation of seed and breeding materials of various agricultural crops in Serbia.

  8. Shaping of the fungal communities isolated from yellow lupin seeds (Lupinus luteus L. throughout storage time

    Directory of Open Access Journals (Sweden)

    Bożena Cwalina-Ambroziak

    2012-12-01

    Full Text Available The object of the experiment were seeds of two traditional cultivars of yellow lupin (Juno and Amulet cultivated in 1999 in two crop-rotation with 20% and 33% yellow lupine contribution. The quantitative and qualitative composition of the fungal community colonizing the seeds were determined in the laboratory conditions after 0.5-, 1.5- and 2.5-year of storage time. In total 1077 fungal colonies were isolated from the lupin seeds. Fungi representing the species of Penicillium - 29.3%, Alternaria alternata - 26.7% and Rhizopus nigricans - 12.7% were isolated most widely. Among the fungi pathogenic to lupin, the species of Colletotrichum gloeosporioides (16.3% isolates was dominant. The crop rotation with 20% lupin reduced the number of fungal colonies colonizing the seeds including the pathogens from the species of C. gloeosporioides. Seed disinfection decreased the total number of fungal colonies isolated from both cultivars. Higher number of C. gloeosporioides isolates was found in the combination with disinfected seeds. More fungal colonies were obtained from seeds of cv. Amulet than from those of cv. Juno. The storage duration had an effect on the population and the composition of species of fungi isolated from seeds of yellow lupine. With longer storage population of Penicillium spp. and Rhizopus spp. increased, whereas the population of C. gloeosporioides decreased.

  9. Antifungal Activity of Leaf and Latex Extracts of Calotropis procera (Ait.) against Dominant Seed-Borne Storage Fungi of Some Oil Seeds

    OpenAIRE

    Manoorkar V B; Mandge S V; B D Gachande

    2015-01-01

    In present study, aqueous and ethanol extracts of leaf & latex of Calotropis procera (Ait.) was tested for their antifungal activity against dominant storage seed-borne fungi of some oil seeds such as groundnut, soybean, sunflower and mustard. The antifungal effect of ethanol and aqueous extracts of leaf & latex of Calotropis procera (Ait.) against ten seed-borne dominant fungi viz., Cuvularia lunata, Alternaria alternata, Rhizoctonia solani, Fusarium solani, Penicillium chrysogenum, Asperg...

  10. The perspective effects of various seed coating substances on rice seed variety Khao Dawk Mali 105 storability II: the case study of chemical and biochemical properties.

    Science.gov (United States)

    Thobunluepop, P; Pan-in, W; Pawelzik, E; Vearasilp, S

    2009-04-01

    The aim of this study was to investigate the effects of seed coating substances; chemical fungicide (CA) and biological fungicide polymers [chitosan-lignosulphonate polymer (CL) and eugenol incorporated into chitosan-lignosulphonate polymer (E+CL)] on chemical and biochemical changes of rice seeds cv. KDML 105, which have been studied during storage for 12 months. CA significantly affected the rice seed chemical properties and the associated seed deterioration. After 12 months storage, protein content decreased accompanied by declined of lipid content, increased free fatty acids and activated lipoxygenase enzyme. In the case of biological fungicide coated seeds, the antioxidative scavenging enzymes were ascorbate peroxidase and superoxide dismutase and a high antioxidant activity protected them. Moreover, the sugar content was positive correlated with seed germination and vigor. The biological coated seeds were found to maintain high sugar contents inside the seeds, which resulted high seed storability significantly. In contrast, under fungicide stress (CA), those compounds were lost that directly affected seed vigor during storage.

  11. Storage on maternal plants affects light and temperature on requirements during germination in two small seeded halophytes in the arabian deserts

    International Nuclear Information System (INIS)

    Ali, A.; Gairola, S.

    2015-01-01

    Seeds are either stored in a soil seed bank or retained on maternal plants until they are released (aerial seed bank). Though there are extensive studies on the germination requirements of seeds in soil banks of saline habitats, studies conducted for halophytes with aerial seed banks are rare. We assessed the impact of aerial and room-temperature storages on the light and temperature requirements during germination in two small-seeded halophytes: Halocnmum strobilaceum having a short-term aerial seed bank (less than one year) and Halopeplis perfoliata having a longer term aerial seed bank (up to two years). Seed storage in the aerial bank reduced the germination in H. strobilaceum, but either increased it (5-months storage) or had no effect (17-months storage) in H. perfoliata. Seeds of both species that were stored in aerial bank germinated to higher percentages in light than in darkness, indicating that considerable portions of the seed populations are light sensitive. Seeds of H. perfoliata attained less than 5.0 percentage germination in darkness at higher temperatures, compared to more than 90.0 percentage in light. The results support the hypothesis that the aerial seed bank is an adaptive strategy for survival in the saline habitats of the two species. (author)

  12. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism.

    Science.gov (United States)

    Houston, Norma L; Hajduch, Martin; Thelen, Jay J

    2009-10-01

    Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds.

  13. Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.)

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit

    2013-01-01

    In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism...... give important insights into certain aspects of the biology of castor oil seed development such as carbon flow, anabolism, and catabolism of fatty acid and the pattern of deposition of SSPs, toxins, and allergens such as ricin and 2S albumins. We also found, for the first time, some genes of SSP......, seed-storage proteins (SSPs), toxins, and allergens. Additionally, we have used off-line hydrophilic interaction chromatography (HILIC) as a step of peptide fractionation preceding the reverse-phase nanoLC coupled to a LTQ Orbitrap. We were able to identify a total of 1875 proteins, and from these 1748...

  14. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice.

    Directory of Open Access Journals (Sweden)

    Yeon Jeong Kim

    Full Text Available Protein disulfide isomerase (PDI is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER. A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1 during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components.

  15. Cellular recycling of proteins in seed dormancy alleviation and germination

    Directory of Open Access Journals (Sweden)

    Krystyna Oracz

    2016-07-01

    Full Text Available Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway (UPP is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant’s photosynthetic tissues have been well characterized since many years, but in nonphotosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is

  16. Pine seeds radiosensitivity as depended upon their humidity and the term of storage after radiation exposure

    International Nuclear Information System (INIS)

    Porozova, O.A.

    1983-01-01

    The seeds of pine (Pinus silvestris L.) have been used to study the effect of average and so called ''low doses'' of ionizing radiation at different levels of seed humidity (3-4%-dried a little, 6-7%-aerially-dry and 9-10%-humid). The Seeds of every humidity level are irradiated in May in a rather wide dose range 0.5, 1, 2, 5, 10, 20, 30 Gy from a gamma source of 137 Cs at the dose rate of 0.96 Gy/min. After irradiation part of seeds was sown. It is shown that seeds with relatively high water content are more stable to the effect of gamma-radiation. The first indices of radiation injury in humid seeds (9-10% humidity) in the criteria of laboratory growing-out are noticed at the dose of 20 Gy while in dried seeds (3-4% hymidity) - at the dose of 2 Gy. Radiation injury of aerially-dried and dried seeds increases with the increase of radiation dose and periods of their storage. In humid seeds this effect depends on radiation dose alone; their storage for eight months did not produce a noticeable effect on growing-out

  17. Application of neem (Azadirachta indica) as biological pesticides in cocoa seed (Theobroma cacao) storage using various local adsorbent media

    Science.gov (United States)

    Mardiyani, S. A.; Sunawan; Pawestri, A. E.

    2018-03-01

    Cocoa seeds are recalcitrant (the water content is more than 40%) that require special handling. The use of adsorbent media to reduce the decrease in the quality of cocoa seeds and extend their shelf life in this storage has not been widely done. Local adsorbent media such as sawdust, sand and ash have the potential to maintain the viability of cocoa seeds. The objective of this research was to determine the interaction of the application of neem (Azadirachta indica) as biological pesticides and the use of various natural adsorbent media in the storage of cocoa seeds (Theobroma cacao). It was an experimental study with a factorial design composed of three factors. The first factor was the medium adsorbent type for the storage of cocoa seed, which consists of three levels (river sand, ash, and sawdust). The second factor was the concentration of neem leaves for pre-storage treatment with three levels (10, 20, and 30%). The third factor was the storage time (10 and 20 days). The results of the study indicated that the combination of the three factors showed a significant interaction in the height of the plant and the diameter of the stem of the seedling at 28 days after sowing. The fresh weight of the seedlings of the seeds that were stored in ash media gave a better result than the seedlings of seeds that had been stored in the river sand and the sawdust as adsorbent media. The application of 20% extract of neem leaves gave the best influence for the seeds that were stored for 20 days.

  18. Seed protein improvement in cereals and grain legumes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-12-15

    Full text: This Symposium organized in co-operation with the Gesellschaft fur Strahlen- und Umweltforschung mbH (GSF), Neuherberg near Munich, Federal Republic of Germany, was the culmination of the eight year FAO/IAEA/GSF Co-ordinated Research Programme to Improve Protein Content and Quality of Crops by Nuclear Techniques The co-ordinated research programme has stimulated plant breeding in developing countries, assisted in the development of techniques for the identification and evaluation of nutritionally improved mutants and encouraged basic research on seed storage proteins. The Symposium comprised 90 scientific presentations plus equipment displays. Sixty-one scientific papers were orally presented and discussed in eight sessions. An additional 29 scientific contributions were presented as posters and were on display throughout the Symposium. One afternoon of the Symposium was devoted to examination and individual discussion of the poster displays. It was especially notable that this method of presentation and discussion of scientific results was very favourably received. Five items of scientific equipment demonstrated analytical systems in use for protein or amino acid assay in plant breeding programmes. The Symposium clearly demonstrated the reality of nutritional deficiencies in poor countries and outlined plant breeding strategies for overcoming these. Progress was reported in improving the nutritional quality of cereals (wheat, maize, rice, barley, sorghum, millet, triticale, oats), legumes (beans, peas, soybeans, field beans, chick peas, lentils, pigeon peas, cowpeas, grams, peanuts) and some other crops (cotton, buckwheat). Notable results have been achieved, but much of the work has been in progress less than 10 years, which is too short a time for the development, testing and release of commercial varieties. Chemical and nutritional assay methods, including some promising new methods were reviewed and assessed. Rapid developments in knowledge of the

  19. Seed protein improvement in cereals and grain legumes

    International Nuclear Information System (INIS)

    1978-01-01

    Full text: This Symposium organized in co-operation with the Gesellschaft fur Strahlen- und Umweltforschung mbH (GSF), Neuherberg near Munich, Federal Republic of Germany, was the culmination of the eight year FAO/IAEA/GSF Co-ordinated Research Programme to Improve Protein Content and Quality of Crops by Nuclear Techniques The co-ordinated research programme has stimulated plant breeding in developing countries, assisted in the development of techniques for the identification and evaluation of nutritionally improved mutants and encouraged basic research on seed storage proteins. The Symposium comprised 90 scientific presentations plus equipment displays. Sixty-one scientific papers were orally presented and discussed in eight sessions. An additional 29 scientific contributions were presented as posters and were on display throughout the Symposium. One afternoon of the Symposium was devoted to examination and individual discussion of the poster displays. It was especially notable that this method of presentation and discussion of scientific results was very favourably received. Five items of scientific equipment demonstrated analytical systems in use for protein or amino acid assay in plant breeding programmes. The Symposium clearly demonstrated the reality of nutritional deficiencies in poor countries and outlined plant breeding strategies for overcoming these. Progress was reported in improving the nutritional quality of cereals (wheat, maize, rice, barley, sorghum, millet, triticale, oats), legumes (beans, peas, soybeans, field beans, chick peas, lentils, pigeon peas, cowpeas, grams, peanuts) and some other crops (cotton, buckwheat). Notable results have been achieved, but much of the work has been in progress less than 10 years, which is too short a time for the development, testing and release of commercial varieties. Chemical and nutritional assay methods, including some promising new methods were reviewed and assessed. Rapid developments in knowledge of the

  20. Electrical conductivity testing of corn seeds as influenced by temperature and period of storage

    OpenAIRE

    Fessel,Simone Aparecida; Vieira,Roberval Daiton; Cruz,Mara Cristina Pessoa da; Paula,Rinaldo Cesar de; Panobianco,Maristela

    2006-01-01

    The objective of this work was to evaluate the effects of temperature (10, 20, 30, 20/10 and 30/10ºC) and period of storage on electrical conductivity (EC) in four seed lots of corn (Zea mays L.), as well as the mineral composition of the soaking solution. EC test determines indirectly the integrity of seed membrane systems, and is used for the assessment of seed vigor, because this test detects the seed deterioration process since its early phase. The research comprised determinations o...

  1. Proteins induced by salt stress in tomato germinating seeds

    International Nuclear Information System (INIS)

    Torres-Shumann, S.; Godoy, J.A.; del Pozo, O.; Pintor-Toro, J.A.

    1989-01-01

    Salt effects on protein synthesis in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with ( 35 S)-Methionine. Seeds germinating in NaCl were analyzed at three germination stages (4mm long radicals, 15mm long radicles and expanding cotyledons) and compared to those germinating in water. At the first germination stage several basic proteins of M.W. 13Kd, 16Kd, 17Kd and 18Kd were detected in only salt germinating seeds. Other basic proteins of M.W. 12Kd, 50Kd and 54Kd were salt-induced at the second and third stage of germination. One 14Kd acid protein is observed in every assayed stage and shows several phosphorylated forms. The levels of expression of these proteins are directly correlated to assayed NaCl concentrations. All of these proteins, except 17Kd, are also induced by abscisic acid (ABA) in the same germination stages. A cooperative effect on the synthesis of these proteins is observed when both ABA and NaCl are present

  2. Effect of baking and storage on the fatty acid composition of cookies with chia seed meal

    Science.gov (United States)

    Chia (Salvia hispanica L.) seed is an ancient crop of the Aztecs that has recently gained interest as a functional food. Chia seeds are a good source of polyphenolic compounds with antioxidant activity. However, the effect of baking and storage on the antioxidant properties of chia seed meal is not ...

  3. Influence of foliar fertilization with manganese on germination, vigor and storage time of RR soybean seeds

    Directory of Open Access Journals (Sweden)

    Vanessa Leonardo Ignácio

    2015-10-01

    Full Text Available ABSTRACTThis study aimed to evaluate the influence of foliar fertilizer doses containing Mn of phenological stages of suggested application in RR soybeans, to recover management damages with glyphosate at postemergence application on seed vigor in post-harvest and post six months storage. The seeds originated from a field experiment conducted , which included two applications of glyphosate, concomitant with foliar fertilizer in growth stages V4 and V6, with 0.00, 113.50 and 227.00 mg ha-1doses of Mn2+. Germination, GSI (Germination Speed Index, electrical conductivity tests and the first count of seeds were conducted. The application of Mn did not affect the physiological quality of RR soy in postharvest. However, in post-storage, higher doses of Mn had a negative effect on tests of abnormal seedlings, GSI and electrical conductivity. The applications of Mn, regardless of the developmental stage, did not interfere in the germination and first count tests, with and without storage. The electrical conductivity test showed a higher correlation with the seed germination test in the post-harvest treatment.

  4. Development of a Threshold Model to Predict Germination of Populus tomentosa Seeds after Harvest and Storage under Ambient Condition

    Science.gov (United States)

    Wang, Wei-Qing; Cheng, Hong-Yan; Song, Song-Quan

    2013-01-01

    Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range. PMID:23658654

  5. Anticariogenic and Hemolytic Activity of Selected Seed Protein Extracts In vitro conditions.

    Directory of Open Access Journals (Sweden)

    Kalpesh B Ishnava

    2014-10-01

    Full Text Available This study aimed to assess the anticariogenic and hemolytic activity of crude plant seed protein extracts against tooth decaying bacteria.The proteins from seeds of 12 different plants were extracted and used for antimicrobial assay against six different organisms. The extraction was carried out in 10mM of sodium phosphate buffer (pH 7.0. Protein concentrations were determined as described by Bradford method. Anticariogenic activity was studied by agar well diffusion method and Minimum Inhibitory Concentration (MIC was evaluated by the two-fold serial broth dilution method. Hemolytic activity, treatment of proteinase K and Kinetic study in Mimusops elengi crude seed protein extract.The anticariogenic assay demonstrated the activity of Mimusops elengi against Staphylococcus aureus and Streptococcus pyogenes. A minor activity of Glycine wightii against Streptococcus mutans was also found. The protein content of Mimusops elengi seed protein extract was 5.84mg/ml. The MIC values for Staphylococcus aureus and Streptococcus pyogenes against Mimusops elengi seed protein extract were 364.36μg/ml and 182.19μg/ml, respectively. Kinetic study further elucidated the mode of inhibition in the presence of the Mimusops elengi plant seed protein with respect to time. The concentration of crude extract which gave 50% hemolysis compared to Triton X-100 treatment (HC50 value was 1.58 mg/ml; which is more than five times larger than that of the MIC. Treatment with proteinase K of the Mimusops elengi seed protein resulted in absence of the inhibition zone; which clearly indicates that the activity was only due to protein.Our results showed the prominence of Mimusops elengi plant seed protein extract as an effective herbal medication against tooth decaying bacteria.

  6. Oxidative stability of refrigerated fish pates containing loquat seed extract

    Directory of Open Access Journals (Sweden)

    Jaqueline Piccolo

    2014-09-01

    Full Text Available This study investigated the effects of hydroethanolic E. japonica seed extracts (EJSE as inhibitors of lipid and protein oxidation on fish pates subjected to refrigerated storage. Five fish pate formulations were developed. These formulations included two control pates (water-control and ascorbic acid-control and three pates with added EJSE (0.1, 0.2 and 0.4g of seed 100g-1 product, equivalent to 3.4, 6.8 or 13.6mg phenolic compounds kg-1 product, which were then stored under refrigeration for 35 days. Conjugated dienes (CD and peroxide (PV values increased along with the storage time; however, these values decreased and were similar among all samples at the end of 35 days of analysis (P<0.05. However, the thiobarbituric acid reactive substances levels (TBARS did not change along the storage and were not affected by the EJSE. Additionally, there was a linear increase in the protein carbonyl content of fish pates over the storage period (P<0.05, but no effect of EJSE on protein oxidation. The results show that, at the concentrations evaluated, hydroethanolic E. japonica seed extract was unable to inhibit or reduce lipid and protein oxidation in fish pates, but the observed phenolic content emphasizes the need for further studies on the wastes of this fruit.

  7. Effects of Storage and Exogenous Ga3 on Lychee Seed Germination

    Directory of Open Access Journals (Sweden)

    Elizabeth Orika Ono

    2000-01-01

    Full Text Available The effects of storage time and exogenous gibberellic acid on lychee seeds germination were studied. The seeds were removed from ripe fruits, washed, dried, stored at 8°C for 0, 15 and 30 days, and soaked during 24 hours in water and GA3 at 50, 100 and 200 mg.L-1 solutions. As the storage period increased, the germination capacity was lost, and the seeds had a short germinability after 30-day storage period. Gibberellic acid had not significant effect on enhancing both the germination percentage and rate.O trabalho teve como objetivo estudar os efeitos do tempo de armazenamento e de tratamentos com ácido giberélico, no processo germinativo de sementes de lichieira (Litchi chinensis Sonn.. As sementes foram retiradas de frutos maduros, lavadas, secas à sombra e colocadas para germinar imediatamente ou então, armazenadas em geladeira (8°C por 15 e 30 dias. Os tratamentos corresponderam à imersão das sementes por 24 horas nas seguintes soluções com aeração: água, GA3 a 50, 100 e 200 mg.L-1. Através dos resultados obtidos, observou-se que as sementes perderam o poder germinativo, à medida que aumentou-se o tempo de armazenamento, sendo a porcentagem de germinação muito baixa (7% aos 30 dias de armazenamento. O tempo médio de germinação foi menor após 15 dias de armazenamento.

  8. Absence of storage effects on radiation damage after thermal neutron irradiation of dry rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Kowyama, Y. [Mie Univ., Tsu (Japan); Saito, M.; Kawase, T.

    1987-09-15

    Storage effects on dry rice seeds equilibrated to 6.8% moisture content were examined after irradiation with X-rays of 5, 10, 20 and 40 kR and with thermal neutrons of 2.1, 4.2, 6.3 and 8.4×10{sup 13}N{sub th}/cm{sup 2}. Reduction in root growth was estimated from dose response curves after storage periods of 1 hr to 21 days. The longer the storage period, the greater enhancement of radiation damages in X-irradiated seeds. There were two components in the storage effect, i. e., a rapid increase of radiosensitivity within the first 24 hr and a slow increase up to 21 days. An almost complete absence of a storage effect was observed after thermal neutron exposure, in spite of considerably high radioactivities of the induced nuclides, {sup 56}Mn, {sup 42}K and {sup 24}Na, which were detected from gamma-ray spectrometry of the irradiated seeds. The present results suggest that the contributions of gamma-rays from the activated nuclides and of inherent contaminating gamma-rays are little or negligible against the neutron-induced damage, and that the main radiobiological effects of thermal neutrons are ascribed to in situ radiations, i, e., heavy particles resulting from neutron-capture reaction of atom. A mechanism underlying the absence of storage effect after thermal neutron irradiation was briefly discussed on the basis of radical formation and decay. (author)

  9. Proteomic Analysis of the Endosperm Ontogeny of Jatropha curcas L. Seeds.

    Science.gov (United States)

    Shah, Mohibullah; Soares, Emanoella L; Carvalho, Paulo C; Soares, Arlete A; Domont, Gilberto B; Nogueira, Fábio C S; Campos, Francisco A P

    2015-06-05

    Seeds of Jatropha curcas L. represent a potential source of raw material for the production of biodiesel. However, this use is hampered by the lack of basic information on the biosynthetic pathways associated with synthesis of toxic diterpenes, fatty acids, and triacylglycerols, as well as the pattern of deposition of storage proteins during seed development. In this study, we performed an in-depth proteome analysis of the endosperm isolated from five developmental stages which resulted in the identification of 1517, 1256, 1033, 752, and 307 proteins, respectively, summing up 1760 different proteins. Proteins with similar label free quantitation expression pattern were grouped into five clusters. The biological significance of these identifications is discussed with special focus on the analysis of seed storage proteins, proteins involved in the metabolism of fatty acids, carbohydrates, toxic components and proteolytic processing. Although several enzymes belonging to the biosynthesis of diterpenoid precursors were identified, we were unable to find any terpene synthase/cyclase, indicating that the synthesis of phorbol esters, the main toxic diterpenes, does not occur in seeds. The strategy used enabled us to provide a first in depth proteome analysis of the developing endosperm of this biodiesel plant, providing an important glimpse into the enzymatic machinery devoted to the production of C and N sources to sustain seed development.

  10. Effect of some Evaporation Matters on Storability of Sunflower ( Helianthus annuus L.) Seed.

    Science.gov (United States)

    El-Saidy, Aml E A; El-Hai, K M Abd

    This study focuses on finding compounds that are safe to humans and environment, such as propionic and acetic acids that may provide an alternative control of seed-borne pathogens and decrease seed deterioration during storage. The objectives of this study were to reduce sunflower seed deterioration and improve the viability of sunflower seed using environmentally safe organic acids. Propionic and acetic acids were applied on sunflower seed at different concentrations under laboratory conditions during different storage periods. After 6 months storage period, the viability of sunflower seed as well as morphological and physiological characteristics of seedlings were evaluated under greenhouse conditions. Laboratory experiment was conducted in a factorial completely randomized design and randomized complete block design for greenhouse experiment. Propionic and acetic acids at different concentrations showed inhibitory effects on the presence of different fungal genera in all storage periods. Propionic acid was most effective followed by acetic acid. Increasing storage periods from 0-6 months significantly decreased germination percentage, germination energy, seedling characters, survived healthy seedlings and seed oil and protein percentages but dead and rotted seeds, as well as rotted seedlings were increased. Treating sunflower seeds with propionic acid (100%) improved germination criteria, seedling characters and seed chemical characters as well as survival seedlings and minimized the dead seeds, rotted seeds and rotted seedlings as compared with the control under all storage periods. Under greenhouse conditions, the maximum growth parameter and physiological characters (chlorophylls a, b, carotenoids and total phenols) were recorded from seed treated with 100% propionic acid after 6 months of storage. It may be concluded that propionic and acetic acids vapors can have considerable fungicidal activity against sunflower pathogens and improve seed viability

  11. Physicochemical Characteristics of the Seed and Seed Oil of the Potentially Medicinal Plant Ziziphus oenoplia.

    Science.gov (United States)

    Murthy, Hosakatte Niranjana; Joseph, Kadanthottu Sebastian; Madiwal, Abhishek; Gerald, Dinesh Rajen; Badiger, Mahananda; Kolkar, Lakshmi; Hiremath, Reshma

    2017-11-02

    The proximate composition of seeds, physicochemical characteristics, and fatty acid profiles of Ziziphus oenoplia seed oil were determined in this study. The seeds possessed low moisture (4.54%) and high carbohydrate (42.96%) and protein content (40%), making the seed oil suitable for storage and consumption. The saponification value (197.80) of the seed oil makes it a promising source for the soap and shampoo industry. The iodine and saponification values are comparable to those of major edible seed oils such as groundnut and soybean. The high amount of monounsaturated fatty acids (53.41%), especially oleic acid (53.38%), present in the oil makes it a better source for a low-fat diet and may reduce the risk of various heart-related diseases.

  12. The use of protein patterns in genetic diversity analysis in some Brassica napus cultivars

    Directory of Open Access Journals (Sweden)

    Roya Razavizadeh

    2013-11-01

    Full Text Available In this study, protein variations of seeds and five-day old cotyledonal leaves of four selected Brassica napus cultivars including Elite, Ocapy, Tasilo and Zarfam were analyzed by SDS-PAGE to identify protein markers. The amount of total soluble protein of seed storage proteins did not show significant differences in all cultivars whereas it was different in cotyledonal leaves. Protein patterns of seeds and cotyledonal leaves showed significant differences using SDS-PAGE and consequence analysis of bands by ImageJ program. Relative expression of six protein bands in seeds and five-day old cotyledonal leaves were significantly different. Three protein markers were identified by protein patterns of seed and cotyledonal leaves. The results of relationship analysis based on presence and absence of the specific protein bands in protein pattern of seed storage proteins showed that Tasilo and Elite cultivars had the highest similarities.

  13. Genetic mapping and validation of the loci controlling 7S α' and 11S A-type storage protein subunits in soybean [Glycine max (L.) Merr.].

    Science.gov (United States)

    Boehm, Jeffrey D; Nguyen, Vi; Tashiro, Rebecca M; Anderson, Dale; Shi, Chun; Wu, Xiaoguang; Woodrow, Lorna; Yu, Kangfu; Cui, Yuhai; Li, Zenglu

    2018-03-01

    Four soybean storage protein subunit QTLs were mapped using bulked segregant analysis and an F 2 population, which were validated with an F 5 RIL population. The storage protein globulins β-conglycinin (7S subunit) and glycinin (11S subunits) can affect the quantity and quality of proteins found in soybean seeds and account for more than 70% of the total soybean protein. Manipulating the storage protein subunits to enhance soymeal nutrition and for desirable tofu manufacturing characteristics are two end-use quality goals in soybean breeding programs. To aid in developing soybean cultivars with desired seed composition, an F 2 mapping population (n = 448) and an F 5 RIL population (n = 180) were developed by crossing high protein cultivar 'Harovinton' with the breeding line SQ97-0263_3-1a, which lacks the 7S α', 11S A 1 , 11S A 2 , 11S A 3 and 11S A 4 subunits. The storage protein composition of each individual in the F 2 and F 5 populations were profiled using SDS-PAGE. Based on the presence/absence of the subunits, genomic DNA bulks were formed among the F 2 plants to identify genomic regions controlling the 7S α' and 11S protein subunits. By utilizing polymorphic SNPs between the bulks characterized with Illumina SoySNP50K iSelect BeadChips at targeted genomic regions, KASP assays were designed and used to map QTLs causing the loss of the subunits. Soybean storage protein QTLs were identified on Chromosome 3 (11S A 1 ), Chromosome 10 (7S α' and 11S A 4 ), and Chromosome 13 (11S A 3 ), which were also validated in the F 5 RIL population. The results of this research could allow for the deployment of marker-assisted selection for desired storage protein subunits by screening breeding populations using the SNPs linked with the subunits of interest.

  14. Utilization of Durian Seed Flour as Filler Ingredient of Meatball

    Directory of Open Access Journals (Sweden)

    D. R. Malini

    2016-12-01

    Full Text Available Durian seed flour contains starch consisted of amylose and amylopectin like tapioca flour, so it can be utilized as a filler in meatball production. The purposes of this research were to evaluate the nutrient content and quality of durian seed flour, the best level of durian seed flour addition to the meatball production, and the quality of beef meatball during storage in room temperature and refrigerator. Complete randomized design (CRD was used with 3 treatments and 3 replications. The treatments used different filler ingredients consisted of: 1 100% tapioca, 2 50% tapioca + 50% durian seed flour, and 3 100% durian seed flour utilization. The results showed that durian seed flour could affect the protein levels and hardness of beef meatballs. In the organoleptic test, the addition of durian seed flour had no effect on the appearance of the color, flavor, aroma, and texture. The meatballs with 100% durian seed flour had the lowest hardness. The protein content of the meatballs with 100% durian seed flour was the highest. The used of 50% durian seed flour gave the best effect to beef meatball during storage. Meatball could be stored up to 8 h in room temperature while refrigerator could keep it longer up to 12 d. It was concluded that the addition 50% durian seed flour may substitute tapioca flour as filler ingredient of beef meatball.

  15. Some physicochemical and nutritional studies on Karkade (Hibiscus sabdariffa) seed proteins

    International Nuclear Information System (INIS)

    Ahmed, Saif Aldein Bashir

    1998-01-01

    Seeds of Karkade (Al-Rahad variety) were obtained from western Sudan, and investigated perliminary for their chemical composition, the oil of the seed also was investigated. The factors affecting protein extractability such as PH, salt type and concentration and solvent to flour ratio, were studied. The anti nutritional factors investigated were protease inhibitors, gossypol, phytates and tanins, means of inactivation such as heat treatment for trypsin inhibitor and differential solubility for phytates were proposed. Protein fractionation due to solubility was carried out. Other physiochemical properties included polyacrylamide gel electrophersis, ultra violet absorption spectrum and gel filtration pattern. The functional properties investigated were bulk density, solubility, water and oil absorption, emulsifying activity and viscosity. Karkade seed was found to be rich in protein, oil and mineral matter. The amino acid profile of karkade seed proteins indicated the presence of most of essential amino acids in adequate amounts. The relative net protein ratio (RNPR) was found to be 0.75. Protein digestibility-corrected amino acid score of karkade seed protein was found to be 0.63 ( compared to casein in 1.0). The molecular weights of the protein fractions investigated by SDS- PAGE were in the range of 12-82 kDa. UV absorption spectra reflects changes in the molecular structure (native proteins absorb at 280 nm and also interaction with other components e.g. nucleic acids, poly phenols.....etc). Gel filtration pattern reflect changes in molecular size

  16. Some physicochemical and nutritional studies on Karkade (Hibiscus sabdariffa) seed proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Saif Aldein Bashir [Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Khatroum (Sudan)

    1998-01-01

    Seeds of Karkade (Al-Rahad variety) were obtained from western Sudan, and investigated perliminary for their chemical composition, the oil of the seed also was investigated. The factors affecting protein extractability such as PH, salt type and concentration and solvent to flour ratio, were studied. The anti nutritional factors investigated were protease inhibitors, gossypol, phytates and tanins, means of inactivation such as heat treatment for trypsin inhibitor and differential solubility for phytates were proposed. Protein fractionation due to solubility was carried out. Other physiochemical properties included polyacrylamide gel electrophersis, ultra violet absorption spectrum and gel filtration pattern. The functional properties investigated were bulk density, solubility, water and oil absorption, emulsifying activity and viscosity. Karkade seed was found to be rich in protein, oil and mineral matter. The amino acid profile of karkade seed proteins indicated the presence of most of essential amino acids in adequate amounts. The relative net protein ratio (RNPR) was found to be 0.75. Protein digestibility-corrected amino acid score of karkade seed protein was found to be 0.63 ( compared to casein in 1.0). The molecular weights of the protein fractions investigated by SDS- PAGE were in the range of 12-82 kDa. UV absorption spectra reflects changes in the molecular structure (native proteins absorb at 280 nm and also interaction with other components e.g. nucleic acids, poly phenols.....etc). Gel filtration pattern reflect changes in molecular size. 204 refs. , 35 tabs. , 8 figs.

  17. Incidence of fungus and physiological quality of seeds of Jatropha curcas L. after cryogenic storage

    Directory of Open Access Journals (Sweden)

    Míriam Goldfarb

    2010-03-01

    Full Text Available The objective of this work was to evaluate the incidence of fungi in stored seeds of Jatropha curcas. The research was carried out at Cryogenic/UFCG, Sanity/UFPB and Cotton/Embrapa. The material for analysis showed an 8% water level, and 200 seeds were stored for treatment in cryogenic containers with nitrogen in the vapor and liquid phases. Four periods of crioconservation (0, 30, 60 and 90 days, were employed. After each period, the seeds were tested for sanity (Blotter test and germination. Superficial disinfestation, was carried out and seeds were distributed in Petri dishes, for incubation at 25 ± 2ºC, over a period of 7 days. The evaluation of the incidence of fungi was carried out in a stereoscopic microscope with observation of fungal structures, and values were expressed as percentages of seeds with fungus. The statistical experiment was completely randomized with temperature x days of storage. Analysis of variance was conducted and the means were compared by Tukey’s test at 5%. After 30 days of cryogenic storage, a greater incidence of Aspergillus sp., Cladosporium sp. and Fusarium sp. was detected. It was concluded that crioconservation at cryogenic temperatures did not reduce the incidence of fungus on Jatropha curcas seeds. The physiological quality was preserved during the cryoconservation.

  18. Characterization of pea (Pisum sativum) seed protein fractions.

    Science.gov (United States)

    Rubio, Luis A; Pérez, Alicia; Ruiz, Raquel; Guzmán, M Ángeles; Aranda-Olmedo, Isabel; Clemente, Alfonso

    2014-01-30

    Legume seed proteins have to be chemically characterized in order to properly link their nutritional effects with their chemical structure. Vicilin and albumin fractions devoid of cross-contamination, as assessed by mass peptide fingerprinting analysis, were obtained from defatted pea (Pisum sativum cv. Bilbo) meal. The extracted protein fractions contained 56.7-67.7 g non-starch polysaccharides kg⁻¹. The vicilin fraction was higher than legumins in arginine, isoleucine, leucine, phenylalanine and lysine. The most abundant amino acids in the albumin fraction were aspartic acid, glutamic acid, lysine and arginine, and the amounts of methionine were more than double than those in legumins and vicilins. The pea albumin fraction showed a clear enrichment of protease inhibitory activity when compared with the seed meal. In vitro digestibility values for pea proteins were 0.63 ±  0.04, 0.88 ±  0.04 and 0.41 ±  0.23 for legumins, vicilins and albumins respectively. Vicilin and albumin fractions devoid of cross-contamination with other proteins were obtained from pea seed meal. The vicilin fraction also contained low amounts of soluble non-starch polysaccharides and was enriched in isoleucine, leucine, phenylalanine and lysine. In vitro digestibility values for pea proteins were similar or even numerically higher than those for control proteins. © 2013 Society of Chemical Industry.

  19. Preparation and Low Temperature Short-term Storage for Synthetic Seeds of Caladium bicolor

    Directory of Open Access Journals (Sweden)

    Mehpara MAQSOOD

    2015-03-01

    Full Text Available An efficient somatic embryo encapsulation and in vitro plant regeneration technique were established with Caladium bicolor, an important ornamental plant.Tuber derived embryogenic callus (95.50% was obtained on Murashige and Skoog (MS medium amended with 0.5 mg L-1 α-Naphthalene acetic acid (NAA + 0.5 mg L-1 6-Benzyladenine (BA. The embryogenic callus later differentiated into somatic embryos in the same plant growth regulators (PGRs added medium (NAA and BA. The induced embryos matured and developed into plantlets in NAA and BA added media; maximum plantlets development was observed at 1.0 mg L-1 NAA + 1.0 mg L-1 BA supplemented medium. Synthetic seeds were produced by encapsulating embryos in gel containing 3.0% sucrose + 3.0% sodium alginate and 100 mM of calcium chloride.The highest synthetic seed germination (97.6% was observed on medium supplemented with 1.0 mg L-1 NAA + 1.0 mg L-1 BA. The synthetic seeds were kept at low temperatures for storage; the encapsulated beads were viable and demonstrated good germination even after 12 weeks of storage at 4 °C. The plantlet recovery frequency was however declined with time. The synthetic seed derived plantlets were morphologically similar to the mother plant.

  20. Secagem e armazenamento de sementes de juçara Drying and storage of euterpe edulis seeds

    Directory of Open Access Journals (Sweden)

    Cibele Chalita Martins

    2009-08-01

    Full Text Available Com o objetivo de verificar o efeito da secagem parcial e do armazenamento sobre a germinação e vigor de sementes de Euterpe edulis obtidas em três épocas de produção, o lote 1 foi colhido em 10 plantasmatriz (PM, em 02/99; o lote 2 em 15 PM, em 04/00; e o lote 3 em 11 PM, em 08/00. Os frutos foram despolpados e as sementes, colocadas para secar por zero, 20 e 40 h (três sublotes, em câmara seca (temperatura de 27 ºC e umidade relativa de 35%. Os três sublotes foram armazenados a 10 ºC, em sacos plásticos (20 mm de espessura fechados. Durante o armazenamento, a qualidade das sementes foi avaliada a cada seis semanas, por 30 semanas, por meio das seguintes determinações: teor de água (105±3 ºC/24 h, porcentagem de germinação e vigor (primeira contagem e índice de velocidade de germinação. O aumento do tempo de secagem resultou em sementes com teor de água decrescente, em torno de 14 a 21% dos valores iniciais, que se mantiveram praticamente inalterados durante o armazenamento. A germinação e vigor das sementes foram prejudicados pela secagem parcial e pelo aumento do tempo de armazenamento, de forma diferenciada entre as épocas de produção, e ambas as características dependem das condições climáticas vigentes durante o desenvolvimento e maturação das sementes.The objective of this research was to verify the effects of partial drying and storage duration on the germination and vigor of three E. edulis seed lots developed under different weather conditions. Mature fruits were harvested in the palm collection from the Instituto Agronômico, located in Ubatuba, SP., forming three seed lots. Seeds from ten plants were harvested on 02/99 and constituted the Seed lot 1; seed lot 2 was composed of seeds of fifteen plants collected in 04/00, whereas seeds from eleven plants harvested on 08/00 composed seed lot 3. The fruits were depulped and the seeds were dried for 0, 20 and 40 hours, using a drying chamber regulated at

  1. Protein-free cress seed (Lepidium sativum) gum: Physicochemical characterization and rheological properties

    DEFF Research Database (Denmark)

    Razmkhah, Somayeh; Razavi, Seyed Mohammad Ali; Mohammadifar, Mohammad Amin

    2016-01-01

    Protein-free cress seed gum (PFCSG) was obtained by precipitation of crude cress seed gum (CSG) withethanol followed by treatment with protease. Molecular weight, moisture, ash and uronic acids contentdecreased after elimination of protein. Elimination of protein improved significantly rheologica...

  2. A proteomic analysis of seed development in Brassica campestri L.

    Directory of Open Access Journals (Sweden)

    Wenlan Li

    Full Text Available To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination, respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS. These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants.

  3. Characterisation and functional properties of watermelon (Citrullus lanatus) seed proteins.

    Science.gov (United States)

    Wani, Ali Abas; Sogi, Dalbir Singh; Singh, Preeti; Wani, Idrees Ahmed; Shivhare, Uma S

    2011-01-15

    People in developing countries depend largely on non-conventional protein sources to augment the availability of proteins in their diets. Watermelon seed meal is reported to contain an adequate amount of nutritional proteins that could be extracted for use as nutritional ingredients in food products. Osborne classification showed that globulin was the major protein (≥500 g kg (-1)) present in watermelon seed meal, followed by albumin and glutelin. Sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that the polypeptides had low molecular weights ranging from 35 to 47 kDa. Isoelectric focusing revealed that the isoelectric point of most proteins was in the acidic range 4-6. These proteins are rich in aspartic acid, glutamic acid and serine. An increase in pH (5-9) significantly (P watermelon protein fractions respectively, while surface hydrophobicity ranged from 126.4 to 173.2 and from 125.8 to 169.3 respectively. The foaming and emulsifying properties of albumin were better than those of the other proteins studied. The good nutritional and functional properties of watermelon seed meal proteins suggest their potential use in food formulations. Copyright © 2010 Society of Chemical Industry.

  4. Ageing mechanisms in chickpea seeds: Relationship of sugar hydrolysis and lipid peroxidation with Amadori and Millard reactions

    Directory of Open Access Journals (Sweden)

    mahdi shaaban

    2017-05-01

    Full Text Available This experiment was performed in order to study on ageing mechanisms of chickpea seeds (Cicer arietinum L. in natural storage and accelerated ageing conditions in seed laboratory of Gorgan Agricultural Science and Natural Resources, Gorgan, Iran at 2015. Experiment was in completely randomized design arrangement with four replications. Treatments were 2 and 4 years natural storage and 1-5 days of accelerated ageing with control treatment. The results showed that with increasing of natural storage and accelerated ageing duration, germination percentage was decreased. Increasing of ageing duration decreased soluble sugars, non-reducing sugars and soluble proteins but lipid peroxidation, reducing sugars, protein carbonylation and Amadori and Millard reaction were increased. In natural storage condition lipid peroxidation was more than sugar hydrolysis but in accelerated ageing condition sugar hydrolysis was more than lipid peroxidation. These results show that the main reason of Amadori and Millard reaction in chickpea seeds in natural storage condition is lipid peroxidation and in accelerated ageing condition is sugar hydrolysis. Also, the results showed that Amadori reaction in natural storage condition was more than Amadori reaction and in accelerated ageing condition Millard reaction was more than Amadori reaction. The results of the present study showed that sever Millard reaction after Amadori reaction induced higher damage on seed and results to more decrease of seed viability and reduce of seed germination percentage in accelerated ageing than natural storage.

  5. Study on proteins of bean plants originating from gamma-treated seeds

    International Nuclear Information System (INIS)

    Tsonev, D.; Chalykova, M.

    1975-01-01

    Dry seeds of bean variety Stella were radiated with gamma rays using 60 C as a source of radiation. The dose applied was 30 kR at an intensity 9.6 R/s. Irradiation caused disturbances at synthesis and properties of proteins of bean plants originating from gamma treated seeds. Some protein components showed changes in relative content and electrophoretic mobility. New more mobile protein components appeared. Protein complex of overground parts were more radioresistant than protein complex of the roots. (M.Ts.)

  6. Improvement of Protein Digestibility in Jatropha curcas Seed Cakes by Gamma Irradiation

    International Nuclear Information System (INIS)

    Sudprasert, Wanwisa; Pakkong, Pannee; Thiengtham, Jamroen; Chandang, Pipatpong

    2011-06-01

    Full text: The effect of gamma radiation on protein digestibility of Jatropha curcas press cake was investigated using in vitro digestibility technique. Six varieties of Jatropha curcas seeds were subjected to cobalt-60 gamma radiation at doses of 10-100 kGy. All treated seeds were defatted by screw press. In vitro protein digest abilities in defatted seeds were assayed using trinitrobenzene sulphonic acid (TNBS) method, by which the contents of alpha amino induced from the function of enzymes were determined using L-alanine as a reference standard. It was found that irradiation treatment at 60 kGy significantly increased the protein digestibility by 15-92%. Also, the results showed that moisture, crude protein, fat and ash contents were unchanged by irradiation, whereas fiber was significantly decreased (p < 0.05). Therefore, irradiation could serve as a possible processing method for protein utilization improvement in defatted Jatropha curcas seeds before using as a protein supplement in animal feed

  7. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular

  8. Pumpkin (Cucurbita maxima) seed proteins: sequential extraction processing and fraction characterization.

    Science.gov (United States)

    Rezig, Leila; Chibani, Farhat; Chouaibi, Moncef; Dalgalarrondo, Michèle; Hessini, Kamel; Guéguen, Jacques; Hamdi, Salem

    2013-08-14

    Seed proteins extracted from Tunisian pumpkin seeds ( Cucurbita maxima ) were investigated for their solubility properties and sequentially extracted according to the Osborne procedure. The solubility of pumpkin proteins from seed flour was greatly influenced by pH changes and ionic strength, with higher values in the alkaline pH regions. It also depends on the seed defatting solvent. Protein solubility was decreased by using chloroform/methanol (CM) for lipid extraction instead of pentane (P). On the basis of differential solubility fractionation and depending on the defatting method, the alkali extract (AE) was the major fraction (42.1 (P), 22.3% (CM)) compared to the salt extract (8.6 (P), 7.5% (CM)). In salt, alkali, and isopropanol extracts, all essential amino acids with the exceptions of threonine and lysine met the minimum requirements for preschool children (FAO/WHO/UNU). The denaturation temperatures were 96.6 and 93.4 °C for salt and alkali extracts, respectively. Pumpkin protein extracts with unique protein profiles and higher denaturation temperatures could impart novel characteristics when used as food ingredients.

  9. The role of seed coat phenolics on water uptake and early protein synthesis during germination of dimorphic seeds of halopyrum mucronatum (L.) staph

    International Nuclear Information System (INIS)

    Siddiqui, Z. S.; Khan, M.A.

    2010-01-01

    Role of seed coat phenolics on water uptake and early protein synthesis of Halopyrum mucronatum dimorphic seeds during germination were tested. Scanning electron micrographs (SEM) showed seed texture with differential deposition of secondary metabolites in both morphs. Ability of both seed morphs to retain secondary deposition was dependent on exposure to either saline or non-saline conditions. More phenols leached from the brown seed during the initial hours of soaking when compared to black seeds. Water uptake pattern was slightly different in both seed type particularly during initial hours when imbibition in black seeds showed little water uptake while in brown seeds absorption was quick in the first hour under both saline and non saline condition. Change in total protein was somewhat similar in both seeds morphs showing early increase (4 and 8 h), reaching to the maximum (12 h) and decreasing (24 and 48 h) afterward. The results are discussed in relation to seed coat phenolics, water uptake and early protein synthesis during germination. (author)

  10. Changes in soluble carbohydrates during storage of Caesalpinia echinata LAM. (Brazilwood seeds, an endangered leguminous tree from the Brazilian Atlantic Forest

    Directory of Open Access Journals (Sweden)

    I. S. Garcia

    Full Text Available Caesalpinia echinata seeds stored in laboratory environmental conditions lose their viability in one month whilst under low temperatures germination is maintained for 18 months of storage. These seeds are tolerant to desiccation, keeping their viability up to 0.08 gH2O.gDW-1. Since soluble carbohydrates are believed to be involved with desiccation tolerance and seed storability, the aim of this work is to analyze the content and composition of soluble carbohydrates in C. echinata seeds during storage in paper bags (PB and glass flasks (GF at laboratory room (RT and cool (CT temperatures. In freshly harvested seeds, total soluble carbohydrates comprised approximately 10% of the dry weight, decreasing to ca. 8% over 18 months of storage at RT. In seeds stored at CT, sugars varied differently decreasing initially and being restored at the end of the analysis period. The main neutral sugars in seeds from all treatments were sucrose, fructose and glucose. Raffinose and stachyose were present as traces. Free myo-inositol and other cyclitols were also detected. The main tendency observed was the variation in levels of both glucose and fructose in relation to sucrose, the highest levels of monosaccharides which were found in seeds stored at CT. The values of glucose and fructose were practically constant in seeds stored in paper bags for 18 months at CT, decreasing consistently in the other treatments, mainly at RT. Sucrose contents remained relatively stable. Changes in soluble sugars during storage suggest that the loss of germinability of seeds of C. echinata could be associated with low levels of glucose and fructose in relation to sucrose.

  11. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis.

    Science.gov (United States)

    Midhat, Ubaid; Ting, Michael K Y; Teresinski, Howard J; Snedden, Wayne A

    2018-03-01

    We show that the calcium sensor, CML39, is important in various developmental processes from seeds to mature plants. This study bridges previous work on CML39 as a stress-induced gene and highlights the importance of calcium signalling in plant development. In addition to the evolutionarily-conserved Ca 2+ sensor, calmodulin (CaM), plants possess a large family of CaM-related proteins (CMLs). Using a cml39 loss-of-function mutant, we investigated the roles of CML39 in Arabidopsis and discovered a range of phenotypes across developmental stages and in different tissues. In mature plants, loss of CML39 results in shorter siliques, reduced seed number per silique, and reduced number of ovules per pistil. We also observed changes in seed development, germination, and seed coat properties in cml39 mutants in comparison to wild-type plants. Using radicle emergence as a measure of germination, cml39 mutants showed more rapid germination than wild-type plants. In marked contrast to wild-type seeds, the germination of developing, immature cml39 seeds was not sensitive to cold-stratification. In addition, germination of cml39 seeds was less sensitive than wild-type to inhibition by ABA or by treatments that impaired gibberellic acid biosynthesis. Tetrazolium red staining indicated that the seed-coat permeability of cml39 seeds is greater than that of wild-type seeds. RNA sequencing analysis of cml39 seedlings suggests that changes in chromatin modification may underlie some of the phenotypes associated with cml39 mutants, consistent with previous reports that orthologs of CML39 participate in gene silencing. Aberrant ectopic expression of transcripts for seed storage proteins in 7-day old cml39 seedlings was observed, suggesting mis-regulation of early developmental programs. Collectively, our data support a model where CML39 serves as an important Ca 2+ sensor during ovule and seed development, as well as during germination and seedling establishment.

  12. Effective moisture diffusivity and activation energy of rambutan seed under different drying methods to promote storage stability

    Science.gov (United States)

    Ahmad, So'bah; Shamsul Anuar, Mohd; Saleena Taip, Farah; Shamsudin, Rosnah; M, Siti Roha A.

    2017-05-01

    The effects of two drying methods, oven and microwave drying on the effective moisture diffusivity and activation energy of rambutan seed were studied. Effective moisture diffusivity and activation energy are the main indicators used for moisture movement within the material. Hence, it is beneficial to determine an appropriate drying method to attain a final moisture content of rambutan seed that potentially could be used as secondary sources in the industry. An appropriate final moisture content will provide better storage stability that can extend the lifespan of the rambutan seed. The rambutan seeds were dried with two drying methods (oven and microwave) at two level of the process variables (oven temperature; 40°C and 60°C and microwave power; 250W and 1000W) at constant initial moisture contents. The result showed that a higher value of effective moisture diffusivity and less activation energy were observed in microwave drying compared to oven drying. This finding portrays microwave drying expedites the moisture removal to achieve the required final moisture content and the most appropriate drying method for longer storage stability for rambutan seed. With respect to the process variables; higher oven temperatures and lower microwave powers also exhibit similar trends. Hopefully, this study would provide a baseline data to determine an appropriate drying method for longer storage period for turning waste to by-products.

  13. Soybeans Grown in the Chernobyl Area Produce Fertile Seeds that Have Increased Heavy Metal Resistance and Modified Carbon Metabolism

    Science.gov (United States)

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V.; Uvackova, Lubica; Rashydov, Namik M.; Hajduch, Martin

    2012-01-01

    Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis. PMID:23110204

  14. Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism.

    Directory of Open Access Journals (Sweden)

    Katarína Klubicová

    Full Text Available Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis.

  15. Effect of postirradiation storage of seeds on the structural chromosomal mutations in chlorophyll mutants of sunflower (Helianthus annuus L)

    International Nuclear Information System (INIS)

    Sizova, L.I.

    1976-01-01

    The paper comprises the results of the investigation of the storage effect in irradiated seeds on the frequency and the spectrum of structural mutations of chromosomes in normal green plants and in spontaneous chlorophyll mutants of sunflower. The seeds of chlorophyll mutants lutescens and xantha and those of green plants stored for 3 years have been 60 Co gamma-irradiated with doses of 0.5; 1.0; 2.0; 3.0; 5.0 and 10 kr. After the irradiation the seeds have been stored for a year under conventional laboratory conditions. As a result of the post-irradiation storage of seeds for a year the decrease in the proportion of aberrant cells by 3 to 6% at the expense of cells with paired fragments has been observed in green plants. In chlorophyll mutants the storage of seeds after the irradiation results in the 9 to 37% increase of the proportion of aberrant cells at the expense of cells with single and paired bridges and with paired fragments. This gives evidence in favour of the assumption that in spontaneous chlorophyll mutants the processes of the post-irradiation recovery either fail altogether, or proceed at a very low level

  16. Changes in the contents of nitrogen fractions with loosing vital capacity of the Siberian fir Abies sibirica Ledeb. seeds

    Directory of Open Access Journals (Sweden)

    S. G. Prokushkin

    2017-02-01

    Full Text Available Siberian fir seeds often lose their germinating capacity during storage. This results from, among other factors, changing contents of nitrogen compounds in the seeds, especially those of protein fractions. This paper focuses on analyzing changes of these compounds in nonviable seeds of the species depending on ecological and conditions and stand location, as well as on tree growth class (Kraft growth classes I and IV. The contents of the total and protein nitrogen in the nonviable seeds of the trees of growth classes I and IV appeared to vary widely and to depend on stand location and seed location in the tree crown. The maximum contents were in the seeds located in the upper part of the crown. The seeds from the middle and lower crown parts contained much less total and protein nitrogen. The hard-to-solve protein fraction dominated over other protein fraction in the seeds from the upper part of the crowns of the trees of growth classes I and IV. However, this fraction, like prolamines, changed uniformly throughout the crowns, whereas seed glutelin content varied insignificantly among the crown parts. Albumins and globulins showed a uniform crown top-to-bottom decrease. A comparison of viable seed with unviable seeds for contents of the nitrogen forms revealed a marked decrease in the total and protein nitrogen in the latter, especially for the trees of growth class IV. The seeds that lost their germinating capacity exhibited increasingly hard-to-solve protein fraction and drastically decreasing albumins and globulins wherever the seeds were in the crown. Their glutelin and prolamine contents changed inconsiderably.The changes of the quantitative ratio between the protein fractions found by the study cause, along with other physiological and biochemical factors, the loss of viability of Siberian fir seeds during storage.

  17. Jatropha seed protein functional properties for technical applications

    NARCIS (Netherlands)

    Lestari, D.; Mulder, W.J.; Sanders, J.P.M.

    2011-01-01

    Jatropha press cake, by-product after oil expression from Jatropha seeds, contains 24–28% protein on dry basis. Objectives of this research were to investigate functional properties, such as solubility, emulsifying, foaming, film forming, and adhesive properties, of Jatropha press cake proteins and

  18. Rapid evaluation of seed vigor by the absolute content of protein in seed within the same crop.

    Science.gov (United States)

    Wen, Daxing; Hou, Hongcun; Meng, Aiju; Meng, Jie; Xie, Liuyong; Zhang, Chunqing

    2018-04-03

    Seed vigor, an important index of seed quality, determines the potential for rapid and uniform emergence of plants. The objective of this study was to explore a rapid method for evaluating seed vigor. To analyze the correlation of seed traits and seedling traits related to seed vigor, we designed five experiments including nitrogen fertilizer, irrigation and seed sorting treatments in wheat. The results showed that only the absolute content of protein (ACP) in wheat seed was significantly correlated with plant dry weight in five experiments. Subsequently, another experiment including 30 wheat seed lots was used to validate the above results. Although 100-grain weight was also correlated with plant dry weight (R = 0.799, p vigor and could potentially be used for processing and screening high vigor seeds.

  19. Small heat shock proteins can release light dependence of tobacco seed during germination.

    Science.gov (United States)

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia; Hong, Choo Bong

    2015-03-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Effect of cold storage, heat, smoke and charcoal on breaking seed dormancy of Arctostaphylos pungens HBK (Ericaceae)

    OpenAIRE

    Jurado, E; Márquez-Linares, M; Flores, J

    2011-01-01

    We evaluated the effect of cold storage and fire-related cues on seed germination of Arctostaphylos pungens HBK (Mexican Manzanita), a common shrub in poorly managed pine-oak forests in Durango, Mexico. Because this shrub has a high density in previously burnt forests, we investigated the effect that high temperatures, smoke and charcoal might have on seed germination of this species. Seeds were collected fresh from the shrubs. The highest germination was 30% for seeds that had been cold stor...

  1. Genetic similarity of soybean genotypes revealed by seed protein

    Directory of Open Access Journals (Sweden)

    Nikolić Ana

    2005-01-01

    Full Text Available More accurate and complete descriptions of genotypes could help determinate future breeding strategies and facilitate introgression of new genotypes in current soybean genetic pool. The objective of this study was to characterize 20 soybean genotypes from the Maize Research Institute "Zemun Polje" collection, which have good agronomic performances, high yield, lodging and drought resistance, and low shuttering by seed proteins as biochemical markers. Seed proteins were isolated and separated by PAA electrophoresis. On the basis of the presence/absence of protein fractions coefficients of similarity were calculated as Dice and Roger and Tanamoto coefficient between pairs of genotypes. The similarity matrix was submitted for hierarchical cluster analysis of un weighted pair group using arithmetic average (UPGMA method and necessary computation were performed using NTSYS-pc program. Protein seed analysis confirmed low level of genetic diversity in soybean. The highest genetic similarity was between genotypes P9272 and Kador. According to obtained results, soybean genotypes were assigned in two larger groups and coefficients of similarity showed similar results. Because of the lack of pedigree data for analyzed genotypes, correspondence with marker data could not be determined. In plant with a narrow genetic base in their gene pool, such as soybean, protein markers may not be sufficient for characterization and study of genetic diversity.

  2. Producing the target seed: Seed collection, treatment, and storage

    Science.gov (United States)

    Robert P. Karrfalt

    2011-01-01

    The role of high quality seeds in producing target seedlings is reviewed. Basic seed handling and upgrading techniques are summarized. Current advances in seed science and technology as well as those on the horizon are discussed.

  3. Fractionation of hairless canary seed (Phalaris canariensis) into starch, protein, and oil.

    Science.gov (United States)

    Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann; Gray, Danielle

    2010-06-09

    Canary seed is an important specialty crop in Canada. The current market for this true cereal (i.e., belonging to the family Poaceae as wheat) is limited to feed for caged birds. However, canary seed holds a promise for many food and industrial applications based on its composition. Three wet milling procedures based on ethanol (E), water (W), and alkaline (A) extractions used in different order were investigated to determine extraction efficiency and purity of starch, protein, oil, and fiber separated from hairless canary seed, a variety developed for human consumption. Highest extraction efficiencies were obtained when canary seed was defatted with ethanol and then extracted with alkali and water (EAW process). Using this process, approximately 92% pure starch, 75% pure protein, and oil were recovered from canary seed groats. The highest purity of protein, however, was obtained when canary seed was fractionated by the EWA process, that is, defatted and then extracted with water followed by alkali. Fiber component separated prior to alkaline extraction contained high amounts of nonfiber components as indicated by its yield. The EAW extraction process seems to be more promising in canary seed fractionation based on recovery and purity of components.

  4. Effects of storage conditions of Moringa oleifera seeds on its performance in coagulation.

    Science.gov (United States)

    Katayon, S; Noor, M J Megat Mohd; Asma, M; Ghani, L A Abdul; Thamer, A M; Azni, I; Ahmad, J; Khor, B C; Suleyman, A M

    2006-09-01

    Moringa oleifera is a plant whose seeds have coagulation properties for treating water and wastewater. In this study the coagulation efficiency of Moringa oleifera kept in different storage conditions were studied. The Moringa oleifera seeds were stored at different conditions and durations; open container and closed container at room temperature (28 degrees C) and refrigerator (3 degrees C) for durations of 1, 3 and 5 months. Comparison between turbidity removal efficiency of Moringa oleifera kept in refrigerator and room temperature revealed that there was no significant difference between them. The Moringa oleifera kept in refrigerator and room temperature for one month showed higher turbidity removal efficiency, compared to those kept for 3 and 5 months, at both containers. The coagulation efficiency of Moringa oleifera was found to be dependent on initial turbidity of water samples. Highest turbidity removals were obtained for water with very high initial turbidity. In summary coagulation efficiency of Moringa oleifera was found independent of storage temperature and container, however coagulation efficiency of Moringa oleifera decreased as storage duration increased. In addition, Moringa oleifera can be used as a potential coagulant especially for very high turbidity water.

  5. Physiological behavior of bean's seeds and grains during storage

    Directory of Open Access Journals (Sweden)

    FLÁVIA D.R. CASSOL

    2016-06-01

    Full Text Available Beans are one of the most used foods to meet the energy needs of the Brazilian diet, requiring farmers to use high seed physiological potential. The aim was to evaluate the physiological quality of beans stored for 360 days. Analyses were performed at 0, 30, 90, 180, 270, and 360 days after receiving the seeds (S1 and S2 and grains (G1 and G2 of BRS Splendor. Tests of germination, accelerated aging, cold, speed of germination, average length of shoots, and root were performed. The experimental design was completely randomized split-plot in time and the means were compared through Tukey test at 5% probability. Seed germination was not affected in S2, while the drop in S1 and G1 was significant. The vigor of grains from field 1 declined from 91 to 50% and from 93% to 76% by accelerated aging and cold, respectively, after 360 days. The germination speed tests performed showed a decreased during the experiment. The grains from field 1 had lower physiological quality. The accelerated aging and cold tests, through the speed of germination parameter, showed decrease in the vigor of the Splendor BRS. The storage period influenced the physiological quality of the beans tested.

  6. Physiological behavior of bean's seeds and grains during storage.

    Science.gov (United States)

    Cassol, Flávia D R; Fortes, Andréa M T; Mendonça, Lorena C; Buturi, Camila V; Marcon, Thaís R

    2016-05-31

    Beans are one of the most used foods to meet the energy needs of the Brazilian diet, requiring farmers to use high seed physiological potential. The aim was to evaluate the physiological quality of beans stored for 360 days. Analyses were performed at 0, 30, 90, 180, 270, and 360 days after receiving the seeds (S1 and S2) and grains (G1 and G2) of BRS Splendor. Tests of germination, accelerated aging, cold, speed of germination, average length of shoots, and root were performed. The experimental design was completely randomized split-plot in time and the means were compared through Tukey test at 5% probability. Seed germination was not affected in S2, while the drop in S1 and G1 was significant. The vigor of grains from field 1 declined from 91 to 50% and from 93% to 76% by accelerated aging and cold, respectively, after 360 days. The germination speed tests performed showed a decreased during the experiment. The grains from field 1 had lower physiological quality. The accelerated aging and cold tests, through the speed of germination parameter, showed decrease in the vigor of the Splendor BRS. The storage period influenced the physiological quality of the beans tested.

  7. Effect of liquid nitrogen storage on seed germination of 51 tree species

    Science.gov (United States)

    Jill R. Barbour; Bernard R. Parresol

    2003-01-01

    Two liquid nitrogen storage experiments were performed on 51 tree species. In experiment 1, seeds of 9western tree species were placed in a liquid nitrogen tank for 3 time periods: 24 hours, 4 weeks, and 222 days. A corresponding control sample accompanied each treatment. For three species,Calocedrus decurrens, Pinus jefferyi, and ...

  8. Storage on the vigor and viability of macauba seeds from two provenances of Minas Gerais State

    Directory of Open Access Journals (Sweden)

    Patrícia Pereira de Souza

    Full Text Available ABSTRACT: Macauba palm stands out for having favorable features to biodiesel production such as the high oil content of its fruit. Considering the great potential of the species and their applicability in the renewable energy field, it becomes indispensable to establish the right conditions for storing the seeds for propagation purpose. The aim of this research was to evaluate the effect of seed moisture content, packaging, and storage conditions such as temperature and relative humidity on the quality of seeds from Minas Gerais State, during a 12-month storage period. The research had two independent assays: (I the seeds were stored with three moisture contents/ranges 4.0≤6.0%; 6.0≤8.0% and 8.0≤10.0% in impermeable packages, under room temperature and at 10ºC; (II seeds with approximately 5.9% of moisture content were stored in three different types of packages: a permeable, b semi-permeable and c impermeable. Three storing conditions were tested: a room temperature and RH under laboratory conditions; b 15ºC and 45% RH; c 20ºC and 55% RH. Water content, germination rate and germination speed index were evaluated at 0, 4, 8 and 12 months of storing. The best germination results were obtained with the moisture range of 6.0≤8.0%, with seeds kept at room temperature; while the seeds stored at 10ºC, regardless the moisture range, did not survive. The stored seeds with 5.9% moisture content and at both 15ºC/45%RH and 20ºC/55% RH conditions, independently of the package type used, showed the best results. Thus, macaw palm seeds can be classified as intermediates seeds.

  9. Expression of human interferon gamma in Brassica napus seeds

    African Journals Online (AJOL)

    TUOYO

    2010-08-09

    Aug 9, 2010 ... resulted band was purified using the agarose gel DNA extraction kit. (Roche). ..... rape seed napin structure and potential roles of the storage protein. ... the sensitivity of progressive multiple sequence alignment through.

  10. Optimization of Cultivation and Storage Conditions on Red Cabbage Seed Sprouts

    International Nuclear Information System (INIS)

    Baek, K.H.; Jo, D.J.; Park, J.H.; Kwon, J.H.; Kim, G.R.; Lee, G.D.; Kim, J.S.; Kim, Y.R.; Han, B.S.; Yoon, S.R.

    2013-01-01

    This study was carried out to find the optimal conditions for red cabbage seed sprouts in terms of their physicochemical and sensory qualities by electron-beam irradiation, cultivation and storage using the response surface methodology (RSM). Moisture content (R2 = 0.9638) was affected by irradiation dose and cultivation time. Total phenolics content (R2 = 0.9117) was mainly affected by irradiation dose, but carotenoid content (R2 = 0.8338) was affected in the order of irradiation dose, cultivation time and storage time. Sensory properties were also affected by irradiation dose, and thus scores decreased as irradiation dose increased. The optimum conditions estimated by superimposing total phenolics content and overall acceptance were 2.2-3.8 kGy of the irradiation dose, 3.0-4.0 days of cultivation and 2.0-3.0 days of storage

  11. A tripartite approach identifies the major sunflower seed albumins.

    Science.gov (United States)

    Jayasena, Achala S; Franke, Bastian; Rosengren, Johan; Mylne, Joshua S

    2016-03-01

    We have used a combination of genomic, transcriptomic, and proteomic approaches to identify the napin-type albumin genes in sunflower and define their contributions to the seed albumin pool. Seed protein content is determined by the expression of what are typically large gene families. A major class of seed storage proteins is the napin-type, water soluble albumins. In this work we provide a comprehensive analysis of the napin-type albumin content of the common sunflower (Helianthus annuus) by analyzing a draft genome, a transcriptome and performing a proteomic analysis of the seed albumin fraction. We show that although sunflower contains at least 26 genes for napin-type albumins, only 15 of these are present at the mRNA level. We found protein evidence for 11 of these but the albumin content of mature seeds is dominated by the encoded products of just three genes. So despite high genetic redundancy for albumins, only a small sub-set of this gene family contributes to total seed albumin content. The three genes identified as producing the majority of sunflower seed albumin are potential future candidates for manipulation through genetics and breeding.

  12. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size.

    Science.gov (United States)

    Alves, Leonardo Cardoso; Magalhães, Diogo Maciel De; Labate, Mônica Teresa Veneziano; Guidetti-Gonzalez, Simone; Labate, Carlos Alberto; Domingues, Douglas Silva; Sera, Tumoru; Vieira, Luiz Gonzaga Esteves; Pereira, Luiz Filipe Protasio

    2016-02-24

    Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.

  13. Armazenamento de sementes de carolina em diferentes temperaturas e embalagens Storage of carolina seeds in different temperature and packing

    Directory of Open Access Journals (Sweden)

    Camila de Oliveira

    2012-01-01

    Full Text Available O objetivo do presente trabalho foi determinar a embalagem e a temperatura adequadas para o armazenamento de sementes de carolina. As sementes foram armazenadas em sacos de papel e de plástico, mantidas em 0±2; 10±2; 20±2°C e 60 5% de umidade relativa do ar (UR e em temperatura ambiente (23,4±3,3°C e 68,7±9%UR. O teor de água, a germinação e o vigor foram determinados trimestralmente. Durante o armazenamento, o teor de água das sementes foi de aproximadamente 8,9%. A embalagem saco de plástico e a temperatura de 0°C são adequadas para o armazenamento das sementes de carolina.The objective of the present research was to determine the more adequated packing and temperature for storage of "carolina" seeds. The seeds were stored in paper and plastic packings and kept in 0±2; 10±2; 20±2°C and 60 5% air relative humidity (ARH and in ambient temperature (23,4±3,3°C and 68,7±9% ARH. Quarterly, the water seed content, germinative test and seed vigour were avaluated. During storage, the seed water content was approximately 8.9%. The plastic packing (plastic bag and tempertature of 0oC are adequated for storage of "carolina" seeds.

  14. Storage sites in seeds of Caesalpinia echinata and C. ferrea (Leguminosae with considerations on nutrients flow

    Directory of Open Access Journals (Sweden)

    Simone de Pádua Teixeira

    2008-02-01

    Full Text Available The seeds of Caesalpinia echinata and C. ferrea behaved as typical endospermic seeds, despite their different morphological classification (exendospermic seeds were described for C. echinata and endospermic seeds for C. ferrea. Then, the aim of this work was to compare, under ultrastructural and histochemical terms, the nature of the storage substances and their accumulation sites, as well as the nutrient flow in seeds of these species. Cotyledons in C. echinata accumulate carbohydrates, lipids and proteins, which are mobilized from the outer to the inner parts as revealed by the position of plasmodesmata. Endosperm in C. ferrea accumulates carbohydrates and in C. echinata accumulates substances during the initial embryogenic phases. Such tissue develops a chalazal haustorium that is responsible for the transport of substances into the endosperm itself and from it into the embryo, confirmed by the presence of transference cells.As sementes de Caesalpinia echinata e C. ferrea comportam-se como endospérmicas, apesar de descritas na literatura como exendospérmicas e endospérmicas, respectivamente. Desta forma, o objetivo deste trabalho foi comparar, em termos ultra-estrutural e histoquímico, a natureza das substâncias de reserva e seus tecidos acumuladores, bem como o fluxo de nutrientes nas sementes destas espécies. Os cotilédones em C. echinata acumulam carboidratos, lipídios e proteínas, mobilizados da periferia para o centro, como visto pelo posicionamento dos plasmodesmas. O endosperma em C. ferrea acumula carboidratos e lipídios, e em C. echinata, acumula substâncias nos estádios iniciais da embriogênese. Este tecido desenvolve um haustório calazal agressivo, que transporta substâncias para o endosperma propriamente dito e deste para o embrião, fato confirmado pela presença de células de transferência no endosperma.

  15. Development of functional cookies with wheat flour, banana flour (Musa paradisiaca, sesame seeds (Sesamum indicum and storage stability

    Directory of Open Access Journals (Sweden)

    Angélica Loza

    2017-01-01

    Full Text Available Functional cookies were developed using banana flour (BF and sesame seeds (SS. Protein, moisture and ash w ere determined , and farinographic analyzes of flours were performed. The attributes odor, color, flavor, crunch and the IC 50 value of the cookies were determined. The results were evaluated with the C omplete R andomized D esign and the Tukey and Kruskall Wallis test. The flour mixture presented higher protein (10.2%, humidity (14.40 % than BF, but lower than wheat flour. C ookies with 10 % , 15 % and 20% BF and 8% sesame seeds were selected. Flours with 10 % , 15 % and 20% BF had similar values of water absorption (≤ 60% and different values statistically (p ≤ 0.05 for development time, mass stability and degree of softening. Cook ies with 20% BF and 8% SS (SC had IC 50 = 17.52 ± 0.25 mg / mL, with moisture, protein, fat, crude fiber, ash and carbohydrates of 1.88 % , 10.65 % , 22.01 % , 1.01 % , 1.54 % and 62.91%, respectively. SC did not present sensorial statistical differences (p ≤ 0.05 the first two months, the third month decreased the acceptability of the crunch and flavor. In ninety days of storage the IC50 value (29.07 ± 0.92 mg / mL, reducing sugars (1.20 ± 0.02 and pH (5.24 ± 0.01 decreased and humidity (3.83 ± 0.03 increased.

  16. Seed yield and protein content in sunflower depending on stand density

    Directory of Open Access Journals (Sweden)

    Balalić Igor M.

    2016-01-01

    Full Text Available The aim of this research was to investigate the effect of stand density on seed yield and protein content in sunflower hybrids. The field experiment was carried out at Rimski Šančevi location. Six NS sunflower hybrids were examined. Five hybrids are confectionery (NS Goliat, NS Slatki, NS Gricko, Vranac and Cepko, and one is used for bird food (NS-H-6485. The trial was arranged as randomized complete block design (RCBD with four replications. Sowing was done with six different densities (from 20,000 to 70,000 plants per hectare, with an increment of 10,000 plants per hectare. Analysis of variance (ANOVA showed that the effect of hybrid, stand density and hybrid × stand density interation were highly significant for seed yield and protein content. The highest seed yield, on the basis of average for all densities, was found in NS-H-6485 (4.77 t ha-1 and in NS Gricko (4.43 t ha-1. Average seed yield of hybrids significantly increased up to 50,000 plants per ha-1, when it reached the value of 4.50 t ha-1, and then decreased. Significantly higher protein content, taking into account all stand densities, showed hybrid Cepko (16.94%. Protein content, above the overall average value, was achieved in hybrid Vranac (16.11%. The high­est protein content in the average for all six hybrids was at the lowest stand density (20,000 plants per ha-1, and then decreased up to higher densities. The results showed that stand density had significant effect on seed yield and protein content in sunflower hybrids. [Projekat Ministarstva nauke Republike Srbije, br. TR31025: The development of new cultivars and improving the technology of producing oil plant species for different purposes

  17. Induced variability for protein content in bread wheat

    International Nuclear Information System (INIS)

    Singhal, N.C.; Jain, H.K.; Austin, A.

    1978-01-01

    The negative correlation observed between seed weight and percentage of protein in the seeds of bread wheat is a function of the fact that increase in seed size is commonly associated with a disproportionately large deposition of starch relative to the protein. The present study, as well as our earlier analysis, shows that exceptional genotypes of bread wheat do exist in which increase in seed weight is associated with a relatively larger synthesis of protein. In the course of the present investigation on radiation-induced variability, genotypes showing more efficient synthesis of storage proteins in their seeds have been identified in the M 2 and M 3 generations. The induced variability, thus, makes it possible to break the negative correlation between seed weight and percentage of protein in the seed. Based on these findings, it has been suggested that in a protein improvement programme on bread wheat it should be useful to select in the segregating generation plants showing increase in seed size, some of which can be expected to be relatively more efficient in protein synthesis and give higher protein yields. (author)

  18. Soluble carbohydrates in cereal (wheat, rye, triticale seed after storage under accelerated ageing conditions

    Directory of Open Access Journals (Sweden)

    Agnieszka I. Piotrowicz-Cieślak

    2011-01-01

    Full Text Available Germinability and the content of soluble carbohydrates were analysed in cereal seed (winter rye, cv. Warko; spring wheat, cv. Santa; hexaploid winter triticale, cv. Fidelio and cv. Woltario. Seed moisture content (mc was equilibrated over silica gel to 0.08 g H2O/g dry mass and stored in a desiccator at 20oC for up to 205 weeks or were equilibrated to mc 0.06, 0.08 or 0.10 g H2O/g dm and subjected to artificial aging at 35oC in air-tight laminated aluminium foil packages for 205 weeks. It was shown that the rate of seed aging depended on the species and seed moisture content. The fastest decrease of germinability upon storage was observed in seed with the highest moisture level. Complete germinability loss for winter rye, winter triticale cv. Fidelio, winter triticale cv. Woltario and spring wheat seed with mc 0.10 g H2O/g dm3 occurred after 81, 81, 101 and 133 weeks, respectively. Fructose, glucose, galactose, myo-inositol, sucrose, galactinol, raffinose, stachyose and verbascose were the main soluble carbohydrates found in the seed. The obtained data on the contents of specific sugars and the composition of soluble sugars fraction in seed of rye, wheat and triticale did not corroborate any profound effect of reducing sugars, sucrose and oligosaccharides on seed longevity.

  19. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins.

    Science.gov (United States)

    Verma, Pooja; Kaur, Harmeet; Petla, Bhanu Prakash; Rao, Venkateswara; Saxena, Saurabh C; Majee, Manoj

    2013-03-01

    PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) is a widely distributed protein-repairing enzyme that catalyzes the conversion of abnormal l-isoaspartyl residues in spontaneously damaged proteins to normal aspartyl residues. This enzyme is encoded by two divergent genes (PIMT1 and PIMT2) in plants, unlike many other organisms. While the biological role of PIMT1 has been elucidated, the role and significance of the PIMT2 gene in plants is not well defined. Here, we isolated the PIMT2 gene (CaPIMT2) from chickpea (Cicer arietinum), which exhibits a significant increase in isoaspartyl residues in seed proteins coupled with reduced germination vigor under artificial aging conditions. The CaPIMT2 gene is found to be highly divergent and encodes two possible isoforms (CaPIMT2 and CaPIMT2') differing by two amino acids in the region I catalytic domain through alternative splicing. Unlike CaPIMT1, both isoforms possess a unique 56-amino acid amino terminus and exhibit similar yet distinct enzymatic properties. Expression analysis revealed that CaPIMT2 is differentially regulated by stresses and abscisic acid. Confocal visualization of stably expressed green fluorescent protein-fused PIMT proteins and cell fractionation-immunoblot analysis revealed that apart from the plasma membrane, both CaPIMT2 isoforms localize predominantly in the nucleus, while CaPIMT1 localizes in the cytosol. Remarkably, CaPIMT2 enhances seed vigor and longevity by repairing abnormal isoaspartyl residues predominantly in nuclear proteins upon seed-specific expression in Arabidopsis (Arabidopsis thaliana), while CaPIMT1 enhances seed vigor and longevity by repairing such abnormal proteins mainly in the cytosolic fraction. Together, our data suggest that CaPIMT2 has most likely evolved through gene duplication, followed by subfunctionalization to specialize in repairing the nuclear proteome.

  20. Eliminating anti-nutritional plant food proteins: the case of seed protease inhibitors in pea.

    Science.gov (United States)

    Clemente, Alfonso; Arques, Maria C; Dalmais, Marion; Le Signor, Christine; Chinoy, Catherine; Olias, Raquel; Rayner, Tracey; Isaac, Peter G; Lawson, David M; Bendahmane, Abdelhafid; Domoney, Claire

    2015-01-01

    Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving

  1. Characterization of seeds of selected wild species of rice (Oryza) stored under high temperature and humidity conditions.

    Science.gov (United States)

    Das, Smruti; Nayak, Monalisa; Patra, B C; Ramakrishnan, B; Krishnan, P

    2010-06-01

    Wild progenitors of rice (Oryza) are an invaluable resource for restoring genetic diversity and incorporating useful traits back into cultivars. Studies were conducted to characterize the biochemical changes, including SDS-PAGE banding pattern of storage proteins in seeds of six wild species (Oryza alta, O. grandiglumis, O. meridionalis, O. nivara, O. officinalis and O. rhizomatis) of rice stored under high temperature (45 degrees C) and humidity (approixmately 100%) for 15 days, which facilitated accelerated deterioration. Under the treated conditions, seeds of different wild rice species showed decrease in per cent germination and concentrations of protein and starch, but increase in conductivity of leachate and content of sugar. The SDS-PAGE analysis of seed proteins showed that not only the total number of bands, but also their intensity in terms of thickness differed for each species under storage. The total number of bands ranged from 11 to 22, but none of the species showed all the bands. Similarity index for protein bands between the control and treated seeds was observed to be least in O. rhizomatis and O. alta, while the indices were 0.7 and 0.625 for O. officinalis and O. nivara, respectively. This study clearly showed that seed deterioration led to distinctive biochemical changes, including the presence or absence as well as altered levels of intensity of proteins. Hence, SDS-PAGE protein banding pattern can be used effectively to characterize deterioration of seeds of different wild species of rice.

  2. Endophytic bacterial effects on seed germination and mobilization of reserves in ammodendron biofolium

    International Nuclear Information System (INIS)

    Zhu, Y.; She, X.P.

    2017-01-01

    The main aim of this study was to analyze the mobilization of storage reserves during seed germination of Ammodendron bifolium by host plant-endophytic bacteria interaction and to determine the contribution of endophytic bacteria in plant establishment. The seeds were inoculated with three different endophytic bacteria from A. bifolium, Staphylococcus sp. AY3, Kocuria sp. AY9 and Bacillus sp. AG18, and they were germinated in the dark. Fresh weight changes and early seedling growth were assessed, and the content of storage compounds was quantified using biochemical assays in all germinated and non-germinated seeds. To understand the mechanism promoting seed germination, the activities of extracellular enzymes of bacterial isolates were also analyzed by the plate assay method. The results showed that treatment with endophytic bacteria accelerated seed germination; promoted further water absorption and radicle growth; and also promoted degradation of sucrose, protein and lipids during the germination process. At the same time, our results also showed that strain AG18 was able to produce protease and amylase, strain AY9 had only amylase activity, and strain AY3 had no extracellular enzyme activity. In summary, our current study showed that (i) endophytic bacteria improved seed germination and post-germination seedling growth of A. bifolium; (ii) inoculation with endophytic bacteria could promote storage reserve mobilization during or following germination; (iii) the degradation of protein, lipids and sucrose could provide essential energy for post-germination growth; and (iv) three bacterial isolates might have different action mechanisms on seed germination. (author)

  3. Isolation of nuclear proteins from flax (Linum usitatissimum L. seed coats for gene expression regulation studies

    Directory of Open Access Journals (Sweden)

    Renouard Sullivan

    2012-01-01

    Full Text Available Abstract Background While seed biology is well characterized and numerous studies have focused on this subject over the past years, the regulation of seed coat development and metabolism is for the most part still non-elucidated. It is well known that the seed coat has an essential role in seed development and its features are associated with important agronomical traits. It also constitutes a rich source of valuable compounds such as pharmaceuticals. Most of the cell genetic material is contained in the nucleus; therefore nuclear proteins constitute a major actor for gene expression regulation. Isolation of nuclear proteins responsible for specific seed coat expression is an important prerequisite for understanding seed coat metabolism and development. The extraction of nuclear proteins may be problematic due to the presence of specific components that can interfere with the extraction process. The seed coat is a rich source of mucilage and phenolics, which are good examples of these hindering compounds. Findings In the present study, we propose an optimized nuclear protein extraction protocol able to provide nuclear proteins from flax seed coat without contaminants and sufficient yield and quality for their use in transcriptional gene expression regulation by gel shift experiments. Conclusions Routinely, around 250 μg of nuclear proteins per gram of fresh weight were extracted from immature flax seed coats. The isolation protocol described hereafter may serve as an effective tool for gene expression regulation and seed coat-focused proteomics studies.

  4. Effect of thermal processing on estimated metabolizable protein supply to dairy cattle from camelina seeds: relationship with protein molecular structural changes.

    Science.gov (United States)

    Peng, Quanhui; Khan, Nazir A; Wang, Zhisheng; Zhang, Xuewei; Yu, Peiqiang

    2014-08-20

    This study evaluated the effect of thermal processing on the estimated metabolizable protein (MP) supply to dairy cattle from camelina seeds (Camelina sativa L. Crantz) and determined the relationship between heat-induced changes in protein molecular structural characteristics and the MP supply. Seeds from two camelina varieties were sampled in two consecutive years and were either kept raw or were heated in an autoclave (moist heating) or in an air-draft oven (dry heating) at 120 °C for 1 h. The MP supply to dairy cattle was modeled by three commonly used protein evaluation systems. The protein molecular structures were analyzed by Fourier transform/infrared-attenuated total reflectance molecular spectroscopy. The results showed that both the dry and moist heating increased the contents of truly absorbable rumen-undegraded protein (ARUP) and total MP and decreased the degraded protein balance (DPB). However, the moist-heated camelina seeds had a significantly higher (P seeds. The regression equations showed that intensities of the protein molecular structural bands can be used to estimate the contents of ARUP, MP, and DPB with high accuracy (R(2) > 0.70). These results show that protein molecular structural characteristics can be used to rapidly assess the MP supply to dairy cattle from raw and heat-treated camelina seeds.

  5. Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4-induced liver injury in low-protein fed rats.

    Science.gov (United States)

    Nkosi, C Z; Opoku, A R; Terblanche, S E

    2006-11-01

    The effects of pumpkin seed (Cucurbita pepo) protein isolate on the plasma activity levels of catalase (CA), superoxide dismutase (SOD), glutathione peroxidase (GSHpx) and total antioxidant capacity (TAC) as well as glucose-6-phosphatase (G6Pase) in liver homogenates and lipid peroxidation (LPO-malondialdehyde-MDA) levels in liver homogenates and liver microsomal fractions against carbon tetrachloride (CCl(4))-induced acute liver injury in low-protein fed Sprague-Dawley rats (Rattus norvegicus) were investigated. A group of male Sprague-Dawley rats maintained on a low-protein diet for 5 days were divided into three subgroups. Two subgroups were injected with carbon tetrachloride and the other group with an equivalent amount of olive oil. Two hours after CCl(4) intoxication one of the two subgroups was administered with pumpkin seed protein isolate and thereafter switched onto a 20% pumpkin seed protein isolate diet. The other two groups of rats were maintained on the low-protein diet for the duration of the investigation. Groups of rats from the different subgroups were killed at 24, 48 and 72 h after their respective treatments. After 5 days on the low-protein diet the activity levels of all the enzymes as well as antioxidant levels were significantly lower than their counterparts on a normal balanced diet. However, a low-protein diet resulted in significantly increased levels of lipid peroxidation. The CCl(4) intoxicated rats responded in a similar way, regarding all the variables investigated, to their counterparts on a low-protein diet. The administration of pumpkin seed protein isolate after CCl(4) intoxication resulted in significantly increased levels of all the variables investigated, with the exception of the lipid peroxidation levels which were significantly decreased. From the results of the present study it is concluded that pumpkin seed protein isolate administration was effective in alleviating the detrimental effects associated with protein

  6. Protein synthesis in the embryo of Pinus thunbergii seed, 2

    International Nuclear Information System (INIS)

    Yamamoto, Naoaki; Sasaki, Satohiko.

    1977-01-01

    14 C-Amino acid incorporating activity in the absence of exogenous mRNA was found in a cell-free system from embryos of light-germinated Pinus thunbergii seeds, but not in that from dark-imbibed seed embryos. Template activity in the cell-free system from the light-germinated seed embryos was observed in the ribosome fraction, especially the polyribosome fraction, but not in the 100,000 x g supernatant fraction (s100). These facts suggest that the nature of the block in protein synthesis during the imbibition of seeds in the dark is due to the lack or inactivity of mRNA. The s100 from light-germinated seed embryos was found to be less active in amino acid incorporation than that from dark-imbibed seed embryos. (auth.)

  7. Purification and sequencing of radish seed calmodulin antagonists phosphorylated by calcium-dependent protein kinase.

    Science.gov (United States)

    Polya, G M; Chandra, S; Condron, R

    1993-02-01

    A family of radish (Raphanus sativus) calmodulin antagonists (RCAs) was purified from seeds by extraction, centrifugation, batch-wise elution from carboxymethyl-cellulose, and high performance liquid chromatography (HPLC) on an SP5PW cation-exchange column. This RCA fraction was further resolved into three calmodulin antagonist polypeptides (RCA1, RCA2, and RCA3) by denaturation in the presence of guanidinium HCl and mercaptoethanol and subsequent reverse-phase HPLC on a C8 column eluted with an acetonitrile gradient in the presence of 0.1% trifluoroacetic acid. The RCA preparation, RCA1, RCA2, RCA3, and other radish seed proteins are phosphorylated by wheat embryo Ca(2+)-dependent protein kinase (CDPK). The RCA preparation contains other CDPK substrates in addition to RCA1, RCA2, and RCA3. The RCA preparation, RCA1, RCA2, and RCA3 inhibit chicken gizzard calmodulin-dependent myosin light chain kinase assayed with a myosin-light chain-based synthetic peptide substrate (fifty percent inhibitory concentrations of RCA2 and RCA3 are about 7 and 2 microM, respectively). N-terminal sequencing by sequential Edman degradation of RCA1, RCA2, and RCA3 revealed sequences having a high homology with the small subunit of the storage protein napin from Brassica napus and with related proteins. The deduced amino acid sequences of RCA1, RCA2, RCA3, and RCA3' (a subform of RCA3) have agreement with average molecular masses from electrospray mass spectrometry of 4537, 4543, 4532, and 4560 kD, respectively. The only sites for serine phosphorylation are near or at the C termini and hence adjacent to the sites of proteolytic precursor cleavage.

  8. [Analysis of total proteins in the seed of almond (Prunus dulcis) by two-dimensional electrophoresis].

    Science.gov (United States)

    Li, Dong-dong; He, Shao-heng

    2004-07-01

    To analyse the total proteins in the seeds of almond (Prunus dulcis), one of the popular ingestent allergens in China, by two-dimensional electrophoresis. The total proteins of the seeds were extracted by trichloracetic acid (TCA) method, and then separated by isoelectric focusing as first dimension and SDS-PAGE as the second dimension. The spots of proteins were visualized by staining with Coomassie Brilliant Blue R-250. After analysis with software (ImageMaster 2D), 188 different proteins were detected. The isoelectric points (pI) for approximately 28% of total proteins were between 4.5-5.5, and the relative molecular mass (M(r)) of approximately 62% total proteins were between (20-25)x10(3). This was the first high-resolution, two-dimensional protein map of the seed of almond (Prunus dulcis) in China. Our finding has laid a solid foundation for further identification, characterization, gene cloning and standardization of allergenic proteins in the seed of almond (Prunus dulcis).

  9. A genome-wide association study of seed protein and oil content in soybean.

    Science.gov (United States)

    Hwang, Eun-Young; Song, Qijian; Jia, Gaofeng; Specht, James E; Hyten, David L; Costa, Jose; Cregan, Perry B

    2014-01-02

    Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r2) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise

  10. Role of protein and mRNA oxidation in seed dormancy and germination

    Directory of Open Access Journals (Sweden)

    hayat eel-maarouf-bouteau

    2013-04-01

    Full Text Available Reactive oxygen species (ROS are key players in the regulation of seed germination and dormancy. Although their regulated accumulation is a prerequisite for germination, the cellular basis of their action remains unknown, but very challenging to elucidate due to the lack of specificity of these compounds that can potentially react with all biomolecules. Among these, nucleic acids and proteins are very prone to oxidative damage. RNA is highly sensitive to oxidation because of its single-stranded structure and the absence of a repair system. Oxidation of mRNAs induces their decay through processing bodies or results in the synthesis of aberrant proteins through altered translation. Depending on the oxidized amino acid, ROS damage of proteins can be irreversible (i.e. carbonylation thus triggering the degradation of the oxidized proteins by the cytosolic 20S proteasome or can be reversed through the action of thioredoxins, peroxiredoxins or glutaredoxins (cysteine oxidation or by methionine sulfoxide reductase (methionine oxidation. Seed dormancy alleviation in the dry state, referred to as after-ripening, requires both selective mRNA oxidation and protein carbonylation. Similarly, seed imbibition of non-dormant seeds is associated with targeted oxidation of a subset of proteins. Altogether, these specific features testify that such oxidative modifications play important role in commitment of the cellular functioning toward germination completion.

  11. Storage of seeds of Cnidosculus phyllacanthus Pax & K. Hoffm. Armazenamento de sementes de Cnidosculus phyllacanthus Pax & K. Hoffm

    Directory of Open Access Journals (Sweden)

    Lígia M. de M. Silva

    2005-12-01

    Full Text Available This work aimed to determine the best environment for conservation of physiological quality of seeds of Cnidosculus phyllacanthus during storage. Seeds with 8.5% moisture content and 86% germinative capacity were filled in containers of different permeability, and storaged at different conditions during 360 days. Seeds packed in permeable container (paper bag were stored at ordinary room temperature (18 to 25 ºC and 55 to 78% RH, and dry chamber (18 ºC and 60% RH while those packed in semipermeable (polyethylene bag and impermeable (glass containers were stored in cold chamber (10 ºC and 75% RH. Seed moisture content, germinative capacity and germination speed were evaluated each 90 days interval. For all the tested storage conditions, seed germination speed was reduced at first evaluation and stabilized up to 360 days. Great deterioration in seeds stored at ordinary room condition was observed, while those stored in dry chamber maintained its germinative capacity for 270 days. The seed germinative capacity was better retained in cold storage, packaged either in semipemeable or impermeable containers. During storage, the seeds had a behavior classified as orthodox.Este trabalho foi desenvolvido com o objetivo de se verificar o melhor ambiente para conservação da qualidade fisiológica das sementes de Cnidosculus phyllacanthus (faveleira durante o armazenamento. Sementes com 8,5% de água e 86% de capacidade germinativa foram acondicionadas em embalagens de diferentes permeabilidades e armazenadas em ambientes diversos, por 360 dias. As sementes acondicionadas em embalagem permeável (saco de papel foram armazenadas nos ambientes natural de laboratório (18 a 25 ºC e 55 a 78% de umidade relativa-UR e de câmara seca (18 ºC e 60% UR, enquanto as acondicionadas em embalagens semipermeável (saco de polietileno e impermeável (recipiente de vidro foram armazenadas na câmara fria (10 ºC e 75% UR. O teor de água, a capacidade germinativa e a

  12. Biorefinery methods for separation of protein and oil fractions from rubber seed kernel

    NARCIS (Netherlands)

    Widyarani, R.; Ratnaningsih, E.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Biorefinery of rubber seeds can generate additional income for farmers, who already grow rubber trees for latex production. The aim of this study was to find the best method for protein and oil production from rubber seed kernel, with focus on protein recovery. Different pre-treatments and oil

  13. Effect of pre-plant treatments of yam (Dioscorea rotundata setts on the production of healthy seed yam, seed yam storage and consecutive ware tuber production

    Directory of Open Access Journals (Sweden)

    Abiodun Olufunmilayo Claudius-Cole

    2017-12-01

    Full Text Available Numerous pests and diseases of yams are perpetuated from season to season through the use of infected seed material. Developing a system for generating healthy seed material would disrupt this disease cycle and reduce losses in field and storage. The use of various pre-plant treatments was evaluated in field experiments carried out at three sites in Nigeria. Yam tubers of four preferred local cultivars were cut into 100 g setts and treated with pesticide (fungicide + insecticide mixture, neem extract (1 : 5 w/v, hot water (20 min at 53 °C or wood ash (farmers practice and compared with untreated setts. Pesticide treated setts sprouted better than all other treatments and generally led to lower pest and disease damage of yam tubers. Pesticide treatment increased tuber yields over most treatments, depending on cultivar, but effectively doubled the production as compared to the control. Pesticide and hot water treated setts produced the healthiest seed yams, which had lower storage losses than tubers from other treatments. These pre-treated seed yams produced higher yields corresponding to 700 % potential gain compared to the farmers usual practice. Treatments had no obvious influence on virus incidence, although virus-symptomatic plants yielded significantly less than nonsymptomatic plants. This study demonstrated that pre-plant treatment of setts with pesticide is a simple and effective method that guarantees more, heavier and healthier seed yam tubers.

  14. Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying.

    Science.gov (United States)

    Bustamante, Mariela; Oomah, B Dave; Rubilar, Mónica; Shene, Carolina

    2017-02-01

    Mucilage (M) and soluble protein (SP) extracted from chia seed and flaxseed were used as encapsulating material for two probiotic bacteria: Bifidobacterium infantis and Lactobacillus plantarum by spray drying. Probiotic survival and viability after spray drying and during storage were evaluated. B. infantis and L. plantarum displayed high survival (⩾98%) after encapsulation with mixtures of maltodextrin (MD) combined with M and SP from flaxseed (MD:FM:FSP - 7.5:0.2:7.5%, w/w/w) and chia seed (MD:CM:CSP - 7.5:0.6:7.5%, w/w/w), respectively. These ternary blends protected the probiotics and enhanced their resistance to simulated gastric juice and bile solution. Probiotics encapsulated with the ternary blends incorporated in instant juice powder exhibited high viability (>9Log10CFU/g) after 45days refrigerated storage. Encapsulation with the ternary blends reduced particle size of the probiotic powders thereby offering additional functional benefits. Our results reveal that chia seed and flaxseed are excellent sources of probiotic encapsulating agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The importance of heat against antinutritional factors from Chenopodium quinoa seeds

    Directory of Open Access Journals (Sweden)

    José Antonio da Silva

    2015-03-01

    Full Text Available Chenopodium quinoa seeds have high protein content. The nutritional value of quinoa is superior compared with traditional cereals. Its essential amino acid composition is considered next to the ideal, and its quality matches that of milk proteins. In this study, the seed storage proteins from Chenopodium quinoa were extracted, fractionated, partially purified, and characterized. The structural characterization was performed by Tricine-SDS-PAGE and two-dimensional electrophoresis, and it confirmed the presence of proteins of molecular weight of 30 and 7kDa, probably corresponding to lectins and trypsin inhibitors, respectively. The functional characterization of these proteins evidenced their activity as antinutritional factors due to their in vitro digestibility. Quinoa proteins have an excellent amino acid composition with many essential amino acids. In vitro digestibility evaluation indicated that heat-treated samples showed a more complete digestion than the native state samples. Quinoa seeds can be an important cereal in human diet after adequate heat treatment.

  16. Effect of Stirring and Seeding on Whey Protein Fibril Formation

    NARCIS (Netherlands)

    Bolder, S.G.; Sagis, L.M.C.; Venema, P.; Linden, van der E.

    2007-01-01

    The effect of stirring and seeding on the formation of fibrils in whey protein isolate (WPI) solutions was studied. More fibrils of a similar length are formed when WPI is stirred during heating at pH 2 and 80 C compared to samples that were heated at rest. Addition of seeds did not show an

  17. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    Science.gov (United States)

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  18. Subunit composition of seed storage proteins in high-protein soybean genotypes Composição de subunidades de proteínas de reserva em genótipos de soja com alto teor de proteína

    Directory of Open Access Journals (Sweden)

    Ksenija Taski-Ajdukovic

    2010-07-01

    Full Text Available The objective of this work was to quantify the accumulation of the major seed storage protein subunits, β-conglycinin and glycinin, and how they influence yield and protein and oil contents in high-protein soybean genotypes. The relative accumulation of subunits was calculated by scanning SDS-PAGE gels using densitometry. The protein content of the tested genotypes was higher than control cultivar in the same maturity group. Several genotypes with improved protein content and with unchanged yield or oil content were developed as a result of new breeding initiatives. This research confirmed that high-protein cultivars accumulate higher amounts of glycinin and β-conglycinin. Genotypes KO5427, KO5428, and KO5429, which accumulated lower quantities of all subunits of glycinin and β-conglycinin, were the only exceptions. Attention should be given to genotypes KO5314 and KO5317, which accumulated significantly higher amounts of both subunits of glycinin, and to genotypes KO5425, KO5319, KO539 and KO536, which accumulated significantly higher amounts of β-conglycinin subunits. These findings suggest that some of the tested genotypes could be beneficial in different breeding programs aimed at the production of agronomically viable plants, yielding high-protein seed with specific composition of storage proteins for specific food applications.O objetivo deste trabalho foi quantificar o acúmulo das principais subunidades de proteínas de reserva da soja, β-conglicinina e glicinina, e como elas influenciam a produtividade e os conteúdos de proteína e de óleo em genótipos de soja com alto conteúdo de proteína. A acumulação relativa de subunidades foi calculada por escaneamento em géis SDS-PAGE, com uso de densitometria. O conteúdo de proteínas dos genótipos testados foi maior que o da cultivar controle dentro do mesmo grupo de maturação. Vários genótipos com conteúdo de proteína aumentado, mas com produtividade ou conteúdo de

  19. Biochemistry, Structure and Function of Non-Wheat Proteins: Case Study of Barley ß-Amylase

    Science.gov (United States)

    The importance of a protein is not always evident and may be due to its multifunctional nature. ß-Amylase in seeds of barley (Hordeum vulgare L.) constitutes approximately 2% of the total protein in mature seeds and is assumed to be important when storage proteins are mobilized to support protein s...

  20. Differentiation of Vitis vinifera varieties by MALDI-MS analysis of the grape seed proteins.

    Science.gov (United States)

    Pesavento, Ivana Chiara; Bertazzo, Antonella; Flamini, Riccardo; Vedova, Antonio Dalla; De Rosso, Mirko; Seraglia, Roberta; Traldi, Pietro

    2008-02-01

    Until now the study of pathogenic related proteins in grape juice and wine, performed by ESI-MS, LC/ESI-MS, and MALDI/MS, has been proposed for differentiation of varieties. In fact, chitinases and thaumatin-like proteins persist through the vinification process and cause hazes and sediments in bottled wines. An additional instrument, potentially suitable for the grape varieties differentiation, has been developed by MALDI/MS for the grape seed protein analysis. The hydrosoluble protein profiles of seeds extract from three different Vitis vinifera grape (red and white) varieties were analyzed and compared. In order to evaluate the environmental conditions and harvest effects, the seed protein profiles of one grape variety from different locations and harvests were studied. (c) 2008 John Wiley & Sons, Ltd.

  1. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.

    Science.gov (United States)

    Zhao, Wenming; Guan, Chunmei; Feng, Jian; Liang, Yan; Zhan, Ni; Zuo, Jianru; Ren, Bo

    2016-07-01

    In Arabidopsis, the phytohormone abscisic acid (ABA) plays a vital role in inhibiting seed germination and in post-germination seedling establishment. In the ABA signaling pathway, ABI5, a basic Leu zipper transcription factor, has important functions in the regulation of seed germination. ABI5 protein localizes in nuclear bodies, along with AFP, COP1, and SIZ1, and was degraded through the 26S proteasome pathway. However, the mechanisms of ABI5 nuclear body formation and ABI5 protein degradation remain obscure. In this study, we found that the Arabidopsis CROWDED NUCLEI (CRWN) proteins, predicted nuclear matrix proteins essential for maintenance of nuclear morphology, also participate in ABA-controlled seed germination by regulating the degradation of ABI5 protein. During seed germination, the crwn mutants are hypersensitive to ABA and have higher levels of ABI5 protein compared to wild type. Genetic analysis suggested that CRWNs act upstream of ABI5. The observation that CRWN3 colocalizes with ABI5 in nuclear bodies indicates that CRWNs might participate in ABI5 protein degradation in nuclear bodies. Moreover, we revealed that the extreme C-terminal of CRWN3 protein is necessary for its function in the response to ABA in germination. Our results suggested important roles of CRWNs in ABI5 nuclear body organization and ABI5 protein degradation during seed germination. © 2015 Institute of Botany, Chinese Academy of Sciences.

  2. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Bian, Xiao-Hua; Shen, Ming; Ma, Biao; Zhang, Wan-Ke; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Lam, Sin-Man; Shui, Guang-Hou; Chen, Shou-Yi; Zhang, Jin-Song

    2017-04-01

    Seed oil is a momentous agronomical trait of soybean ( Glycine max ) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351 , encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1 , BIOTIN CARBOXYL CARRIER PROTEIN2 , 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III , DIACYLGLYCEROL O-ACYLTRANSFERASE1 , and OLEOSIN2 in transgenic Arabidopsis ( Arabidopsis thaliana ) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean ( Glycine soja ) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. Seed protein improvement in cereals and grain legumes. Vol. 1. Proceedings of an international symposium jointly organized by the IAEA and the FAO in co-operation with the Gesellschaft fuer Strahlen- und Umweltforschung mbH and held in Neuherberg, 4-8 September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Based upon the recommendations of a panel of experts in 1968, the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture established an international programme to improve the protein content and quality in seed crops of importance to developing countries. Reports of previous meetings held under this programme have been published by the IAEA. The meeting on Seed Protein Improvement in Cereals and Grain Legumes, held in September 1978, marked the formal end of the FAO/IAEA/GSF Co-ordinated Research Programme on Seed Protein Improvement. It reviewed the progress achieved. Volume I covers 27 papers. Following a review of the world protein and nutritional situation, the contributions are grouped under the main headings of the need for and use of variability in protein characteristics; genetics, biochemistry and physiology of seed storage proteins; analytical and nutritional techniques; and coordinated research programmes under a joint FAO/IAEA/GSF programme on grain protein improvement. Individual papers of direct relevance are cited as separate entries in INIS.

  4. Enzyme activity and reserve mobilization during Macaw palm ( Acrocomia aculeata seed germination

    Directory of Open Access Journals (Sweden)

    Elisa Monteze Bicalho

    2016-01-01

    Full Text Available ABSTRACT Reserve mobilization in seeds occurs after visible germination, which is marked by the protrusion of the radicle or cotyledonary petiole, as in species of Arecaceae. Acrocomia aculeata (macaw palm, usually produces hard seeds whose endosperm has mannan-rich cell walls. We investigated the composition of storage compounds in macaw palm seed and the roles of two enzymes (endo-β-mannanase, α-galactosidase during and after germination. The seeds were firstly submitted to pre-established protocol to overcome dormancy and promote germination. Enzyme activity in both embryo and endosperm were assayed from the initiation of germinative activities until leaf sheath appearance, and the status of seed structures and reserve compounds were evaluated. Protein content of the embryo decreased with the initiation of imbibition while the lipid content began decreasing six days after removal of the operculum. Increases in enzyme activity and starch content were both observed after visible germination. We suggest that endo-β-mannanase and α-galactosidase become active immediately at germination, facilitating haustorium expansion and providing carbohydrates for initial seedling development. Protein is the first storage compound mobilized during early imbibition, and the observed increase in the starch content of the haustorium was related to lipid degradation in that organ and mannan degradation in the adjacent endosperm.

  5. Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds.

    Science.gov (United States)

    Novikova, Galina V; Tournaire-Roux, Colette; Sinkevich, Irina A; Lityagina, Snejana V; Maurel, Christophe; Obroucheva, Natalie

    2014-09-01

    A key event in seed germination is water uptake-mediated growth initiation in embryonic axes. Vicia faba var. minor (broad bean) seeds were used for studying cell growth, vacuolar biogenesis, expression and function of tonoplast water channel proteins (aquaporins) in embryonic axes during seed imbibition, radicle emergence and growth. Hypocotyl and radicle basal cells showed vacuole restoration from protein storage vacuoles, whereas de novo vacuole formation from provacuoles was observed in cells newly produced by root meristem. cDNA fragments of seven novel aquaporin isoforms including five Tonoplast Intrinsic Proteins (TIP) from three sub-types were amplified by PCR. The expression was probed using q-RT-PCR and when possible with isoform-specific antibodies. Decreased expression of TIP3s was associated to the transformation of protein storage vacuoles to vacuoles, whereas enhanced expression of a TIP2 homologue was closely linked to the fast cell elongation. Water channel functioning checked by inhibitory test with mercuric chloride showed closed water channels prior to growth initiation and active water transport into elongating cells. The data point to a crucial role of tonoplast aquaporins during germination, especially during growth of embryonic axes, due to accelerated water uptake and vacuole enlargement resulting in rapid cell elongation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species.

    Science.gov (United States)

    Zhao, Ming; Zhang, Hongxiang; Yan, Hong; Qiu, Lu; Baskin, Carol C

    2018-01-01

    Since seed reserves can influence seed germination, the quantitative and qualitative differences in seed reserves may relate to the germination characteristics of species. The purpose of our study was to evaluate the correlation between germination and seed reserves, as well as their mobilization during germination of six grassland species ( Chloris virgata , Kochia scoparia , Lespedeza hedysaroides , Astragalus adsurgens , Leonurus artemisia , and Dracocephalum moldavica ) and compare the results with domesticated species. We measured starch, protein, and fat content in dry seeds and the initial absorption of water during imbibition. Starch, soluble protein, fat, and soluble sugar content also were determined at five stages during germination. Starch, protein, and fat reserves in dry seeds were not significantly correlated with germination percentage and rate (speed), but soluble sugar and soluble protein contents at different germination stages were positively significantly correlated with germination rate for the six species. Starch was mainly used during seed imbibition, and soluble protein was used from the imbibition stage to the highest germination stage. Fat content for all species remained relatively constant throughout germination for six species, regardless of the proportion of other seed reserves in the seeds. Our results for fat utilization differ from those obtained for cultivated grasses and legumes. These results provide new insight on the role of seed reserves as energy resources in germination for wild species.

  7. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2018-02-01

    Full Text Available Since seed reserves can influence seed germination, the quantitative and qualitative differences in seed reserves may relate to the germination characteristics of species. The purpose of our study was to evaluate the correlation between germination and seed reserves, as well as their mobilization during germination of six grassland species (Chloris virgata, Kochia scoparia, Lespedeza hedysaroides, Astragalus adsurgens, Leonurus artemisia, and Dracocephalum moldavica and compare the results with domesticated species. We measured starch, protein, and fat content in dry seeds and the initial absorption of water during imbibition. Starch, soluble protein, fat, and soluble sugar content also were determined at five stages during germination. Starch, protein, and fat reserves in dry seeds were not significantly correlated with germination percentage and rate (speed, but soluble sugar and soluble protein contents at different germination stages were positively significantly correlated with germination rate for the six species. Starch was mainly used during seed imbibition, and soluble protein was used from the imbibition stage to the highest germination stage. Fat content for all species remained relatively constant throughout germination for six species, regardless of the proportion of other seed reserves in the seeds. Our results for fat utilization differ from those obtained for cultivated grasses and legumes. These results provide new insight on the role of seed reserves as energy resources in germination for wild species.

  8. The effect of storage temperature of steckling bulbs on seed stalk development and seed yield of shallot (Allium cepa L. var. ascalonicum Backer

    Directory of Open Access Journals (Sweden)

    Maria Tendaj

    2013-10-01

    Full Text Available The aim of this study, conducted in the years 2010–2012, was to evaluate bolting and seed production of shallot depending on storage temperature of steckling bulbs with different diameters. The present study included 4 cultivars (‘Toto’, ‘Ambition F1’, ‘Bonilla F1’, and ‘Matador F1’ and one local population (‘U’. Bulbs with the following diameters: 20–30 mm, 31–40 mm, 41–50 mm, and 51–60 mm, were stored from the first 10-day period of November (2010 and 2011 until the end of March (2011 and 2012 at a temperature of 0–1 oC, 4–6 oC, and 8–10 oC. After they were planted in the field (the second 10-day period of April, observations of bolting were carried out, while the weight of seed umbels and seed yield were determined only for the cultivar ‘Toto’ and the population ‘U’. The storage temperature of steckling bulbs in the range of 4–6 oC and 8–10 oC was most conducive to bolting, in particular in plants grown from large bulbs with a diameter above 40 mm. In the cultivar ‘Toto’, plants from bulbs with a diameter above 40 mm and stored at a temperature of 4–6 oC were characterized by the highest weight of seed umbels. This had an effect on obtaining the highest seed yield (on average 1604.16-2300.7 g per 100 m2 of area. Shallot plants from the population ‘U’ grown from bulbs with a diameter of 20–30 mm were characterized by a distinctly lower percentage of bolting plants compared to the cultivars studied. For this reason, this population does not promise positive effects in shallot production for seed.

  9. Modeling Protein Structures in Feed and Seed Tissues Using Novel Synchrotron-Based Analytical Technique

    International Nuclear Information System (INIS)

    Yu, P.

    2008-01-01

    Traditional 'wet' chemical analyses usually looks for a specific known component (such as protein) through homogenization and separation of the components of interest from the complex tissue matrix. Traditional 'wet' chemical analyses rely heavily on the use of harsh chemicals and derivatization, therefore altering the native feed protein structures and possibly generating artifacts. The objective of this study was to introduce a novel and non-destructive method to estimate protein structures in feed and seeds within intact tissues using advanced synchrotron-based infrared microspectroscopy (SFTIRM). The experiments were performed at the National Synchrotron Light Source in Brookhaven National Laboratory (US Dept. of Energy, NY). The results show that with synchrotron-based SFTIRM, we are able to localize relatively 'pure' protein without destructions of the feed and seed tissues and qualify protein internal structures in terms of the proportions and ratios of a-helix, β-sheet, random coil and β-turns on a relative basis using multi-peak modeling procedures. These protein structure profile (a-helix, β-sheet, etc.) may influence protein quality and availability in animals. Several examples of feed and seeds were provided. The implications of this study are that we can use this new method to compare internal protein structures between feeds and between seed verities. We can also use this method to detect heat-induced the structural changes of protein in feeds.

  10. Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed.

    Science.gov (United States)

    Jimenez-Lopez, Jose C; Zienkiewicz, Agnieszka; Zienkiewicz, Krzysztof; Alché, Juan D; Rodríguez-García, Maria I

    2016-03-01

    Much of our current knowledge about seed development and differentiation regarding reserves synthesis and accumulation come from monocot (cereals) plants. Studies in dicotyledonous seeds differentiation are limited to a few species and in oleaginous species are even scarcer despite their agronomic and economic importance. We examined the changes accompanying the differentiation of olive endosperm and cotyledon with a focus on protein bodies (PBs) biogenesis during legumin protein synthesis and accumulation, with the aim of getting insights and a better understanding of the PBs' formation process. Cotyledon and endosperm undergo differentiation during seed development, where an asynchronous time-course of protein synthesis, accumulation, and differential PB formation patterns was found in both tissues. At the end of seed maturation, a broad population of PBs, particularly in cotyledon cells, was distinguishable in terms of number per cell and morphometric and cytochemical features. Olive seed development is a tissue-dependent process characterized by differential rates of legumin accumulation and PB formation in the main tissues integrating seed. One of the main features of the impressive differentiation process is the specific formation of a broad group of PBs, particularly in cotyledon cells, which might depend on selective accumulation and packaging of proteins and specific polypeptides into PBs. The nature and availability of the major components detected in the PBs of olive seed are key parameters in order to consider the potential use of this material as a suitable source of carbon and nitrogen for animal or even human use.

  11. Control of quality and silo storage of sunflower seeds using near infrared technology

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Martin, I.; Vilaescusa-Garcia, V.; Lopez-Gonzalez, F.; Oiz-Jimenez, C.; Lobos-Ortega, I. A.; Gordillo, B.; Hernandez-Hierro, J. M.

    2013-05-01

    This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low) oleic acid composition. The discriminant model allows the acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation. (Author) 23 refs.

  12. Control of quality and silo storage of sunflower seeds using near infrared technology

    International Nuclear Information System (INIS)

    Gonzalez-Martin, I.; Vilaescusa-Garcia, V.; Lopez-Gonzalez, F.; Oiz-Jimenez, C.; Lobos-Ortega, I. A.; Gordillo, B.; Hernandez-Hierro, J. M.

    2013-01-01

    This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low) oleic acid composition. The discriminant model allows the acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation. (Author) 23 refs.

  13. Use of Acrylic Acid Sodium Acrylate Polymer to Maintain Cocoa Seed Viability

    Directory of Open Access Journals (Sweden)

    Pudji Rahardjo

    2010-08-01

    Full Text Available The main problem of cocoa seed storage is moisture content of the seeds because cocoa seeds will germinate if cocoa seeds moisture content is high. The objective of this research is to maintain the cocoa seeds viability in storage using acrylic acid sodium acrylate polymer (AASAP. The function of AASAP is to absorb humidity in storage due to their ability to retain water and to prevent water loss. The experiment was conducted in a laboratory of Indonesian Coffee and Cocoa Research Institute and in Kaliwining Experimental Garden. This experiment was arranged by factorial randomized complete design, in wich AASAP dosages 0%; 0.1% (0.1 g/100 seeds; 0.2% (0.2 g/100 seeds, 0.3% (0.3 g/100 seeds, 0,4% (0,4g/100 seeds, combined with seeds storage period 1, 2, 3 and 4 weeks. The experiment used 3 replications and each repli cation used 100 seeds. Parameter of observation consisted of percentage of seeds germinated in storage, percentage of seeds infected by fungi in storage, seeds moisture content, percentage of seeds germination after storage, and early growth of cocoa seedlings. The results of the experiment showed that AASAP application with some dosages cocoa seeds storage cause to germinate in storage during 2 weeks. AASAP application with some dosages in cocoa seeds storage for 2 weeks would not result in infection by fungi and did not significantly affect seed germination after storage for 1, 2 and 4 weeks, and percentage of germination of cocoa seed after storage for 3 weeks decreased with increase dosage of AASAP. Higher dosage of AASAP would reduce early growth of cocoa seedling. Key words : Theobroma cacao, seed, acrylic acid sodium acrylate, seed storage, viabilty.

  14. Protein construct storage: Bayesian variable selection and prediction with mixtures.

    Science.gov (United States)

    Clyde, M A; Parmigiani, G

    1998-07-01

    Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.

  15. Characterization of green seed, an enchancer of abi3-1 in Arabidopsis that affects seed longevity

    NARCIS (Netherlands)

    Clerkx, E.J.M.; Vries, de M.H.C.; Ruijs, G.J.; Groot, S.P.C.; Koornneef, M.

    2003-01-01

    Seeds are usually stored in physiological conditions in which they gradually lose their viability and vigor depending on storage conditions, storage time, and genotype. Very little is known about the underlying genetics of seed storability and seed deterioration. We analyzed a mutant in Arabidopsis

  16. Essential oil and their microconstituents of cumin and coriander seeds during storage under the effect of gamma irradiation

    International Nuclear Information System (INIS)

    Sharabash, M.T.M.; Abdullah, M.I.

    1999-01-01

    Both cumin and coriander seeds were treated with gamma irradiation (10 KGy). The volatile oil and micro constituents were identified over seven months of storage. No marked changes were noticed regarding the volatile oil content and oil components between irradiated and non-irradiated of the two spices during the storage period at egyptian ambient temperature

  17. Improving Jatropha curcas seed protein recovery by using counter current multistage extraction

    NARCIS (Netherlands)

    Lestari, D.; Mulder, W.J.; Sanders, J.P.M.

    2010-01-01

    Jatropha curcas seed press cake contains 23 wt% proteins (dry basis). Due to the toxic compounds in Jatropha, we will use the proteins for non-food applications. Related to non-food applications, an efficient protein extraction to obtain a high protein recovery and high protein concentration with

  18. Physiological and proteomic analyses on artificially aged Brassica napus seed

    Directory of Open Access Journals (Sweden)

    Pingfang eYang

    2015-02-01

    Full Text Available Plant seeds lose their viability when they are exposed to long term storage or controlled deterioration treatments, by a process known as seed ageing. Based on previous studies, artificially ageing treatments have been developed to accelerate the process of seed ageing in order to understand its underlying mechanisms. In this study, we used Brassica napus seeds to investigate the mechanisms of ageing initiation. B. napus seeds were exposed to artificially ageing treatment (40 oC and 90% relative humidity and their physio-biochemical characteristics were analyzed. Although the treatment delayed germination, it did not increase the concentration of cellular reactive oxygen species (ROS. Comparative proteomic analysis was conducted among the control and treated seeds at different stages of germination. The proteins responded to the treatment were mainly involved in metabolism, protein modification and destination, stress response, development and miscellaneous enzymes. Except for peroxiredoxin, no changes were observed in the accumulation of other antioxidant enzymes in the artificially aged seeds. Increased content of ABA was observed in the artificially treated seeds which might be involved in the inhibition of germination. Taken together, our results highlight the involvement of ABA in the initiation of seed ageing in addition to the ROS which was previously reported to mediate the seed ageing process.

  19. Tuber Storage Proteins

    OpenAIRE

    SHEWRY, PETER R.

    2003-01-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits act...

  20. Isolation and Characterisation of a Reserve Protein from the Seeds of Cereus jamacaru (Cactaceae

    Directory of Open Access Journals (Sweden)

    Itayguara Ribeiro da Costa

    2001-12-01

    Full Text Available We describe here the isolation and characterisation of a major reserve protein from the seeds of Cereus jamacaru. (Cactaceae. This protein has a molecular mass of 5319 kDa and was isolated by a combination of gel filtration chromatography and reverse phase HPLC. The amino acid composition of the protein was determined and it was shown to have similarities with the amino acid composition of several proteins from the 2S albumin storage protein family. The usefulness of this protein as a molecular marker in the Cactaceae is also discussed.A proteína de reserva mais abundante das sementes de Cereus jamacaru (Cactaceae foi isolada e caracterizada. Esta proteína tem uma massa molecular de 5319 kDa e foi isolada através de uma combinação de técnicas de filtração em gel e HPLC de fase reversa. A composição de aminoácidos da proteína foi determinada e possui similaridade com a composição de aminoácidos de diversas proteínas de reserva de sementes que pertencem à família das albuminas. A utilidade desta proteína como um marcador molecular para as cactáceas é também discutida.

  1. Functional properties and Solubility of date seed proteins as ...

    African Journals Online (AJOL)

    Med ali

    2013-03-06

    Mar 6, 2013 ... Key words: Phoenix dactylifera L, date palm seed, fibre, protein, functional properties. INTRODUCTION. The date .... was employed to perform dynamic measurements. ... are likely to be composed of high-molecular weight.

  2. Effects of seed preparation and oil pressing on milkweed (Asclepias spp.) protein functional properties

    Science.gov (United States)

    The effects of seed cooking and oil processing conditions on functional properties of milkweed seed proteins were determined to identify potential value-added uses for the meal. Milkweed seeds were flaked and then cooked in the seed conditioner at 82°C for 30, 60 or 90 min. Oil was extracted by scre...

  3. Forest Seed Collection, Processing,and Testing

    DEFF Research Database (Denmark)

    Schmidt, Lars Holger

    2016-01-01

    This chapter pertains to the techniques of capturing the best genetic quality seeds a seed source can produce at the optimal time of high physiological maturity and maintaining these qualities throughout the handling processes, all at a minimum cost. Different collection and processing techniques...... apply to different species, seed types, situations, and purposes. Yet the collection and processing toolbox contains a number of “standard” methods for most of these groups. Records and documentation help in evaluating “best practice” for future method improvement, and it helps in linking offspring...... to seed source. Conditions are set for short- and long-term seed storage by their inert storability physiology. The potential storage life of seed may for some robust “orthodox” species be several decades, while no available storage conditions can maintain viability for sensitive “recalcitrant” seed. Seed...

  4. The genotype-environment interaction variance in rice-seed protein determination

    International Nuclear Information System (INIS)

    Ismachin, M.

    1976-01-01

    Many environmental factors influence the protein content of cereal seed. This fact procured difficulties in breeding for protein. Yield is another example on which so many environmental factors are of influence. The length of time required by the plant to reach maturity, is also affected by the environmental factors; even though its effect is not too decisive. In this investigation the genotypic variance and the genotype-environment interaction variance which contribute to the total variance or phenotypic variance was analysed, with purpose to give an idea to the breeder how selection should be made. It was found that genotype-environment interaction variance is larger than the genotypic variance in contribution to total variance of protein-seed determination or yield. In the analysis of the time required to reach maturity it was found that genotypic variance is larger than the genotype-environment interaction variance. It is therefore clear, why selection for time required to reach maturity is much easier than selection for protein or yield. Selected protein in one location may be different from that to other locations. (author)

  5. Protein extractability from defatted Moringa oleifera lam. seeds flour ...

    African Journals Online (AJOL)

    Protein extractability from defatted Moringa oleifera seed flour was studied under various conditions of pH (2-10), time (5-60 minutes), salts (NaCl and CaCl ), salt concentrations (0-2 M) and solvent to flour ratio (10:1-30:1). 2 Results showed that protein extractability was dependent on pH, type of salt, salt concentrations and ...

  6. New insights into the metabolism of aspartate-family amino acids in plant seeds.

    Science.gov (United States)

    Wang, Wenyi; Xu, Mengyun; Wang, Guoping; Galili, Gad

    2018-02-05

    Aspartate-family amino acids. Aspartate (Asp)-family pathway, via several metabolic branches, leads to four key essential amino acids: Lys, Met, Thr, and Ile. Among these, Lys and Met have received the most attention, as they are the most limiting amino acid in cereals and legumes crops, respectively. The metabolic pathways of these four essential amino acids and their interactions with regulatory networks have been well characterized. Using this knowledge, extensive efforts have been devoted to augmenting the levels of these amino acids in various plant organs, especially seeds, which serve as the main source of human food and livestock feed. Seeds store a number of storage proteins, which are utilized as nutrient and energy resources. Storage proteins are composed of amino acids, to guarantee the continuation of plant progeny. Thus, understanding the seed metabolism, especially with respect to the accumulation of aspartate-derived amino acids Lys and Met, is a crucial factor for sustainable agriculture. In this review, we summarized the Asp-family pathway, with some new examples of accumulated Asp-family amino acids, particularly Lys and Met, in plant seeds. We also discuss the recent advances in understanding the roles of Asp-family amino acids during seed development.

  7. The extraction of proteins from the neem seed ( Indica azadirachta A ...

    African Journals Online (AJOL)

    Techniques for maximizing the extraction of protein from the neem seed (Indica azadirachta A. Juss) were investigated. Extractants used were sodium chloride and sodium sulphate solutions of varying concentration and pH. Maximum extractions of 17.86 g of extractable protein was obtained from 1 kg of crude protein, using ...

  8. Increasing the production yield of recombinant protein in transgenic seeds by expanding the deposition space within the intracellular compartment

    OpenAIRE

    Takaiwa, Fumio

    2013-01-01

    Seeds must maintain a constant level of nitrogen in order to germinate. When recombinant proteins are produced while endogenous seed protein expression is suppressed, the production levels of the foreign proteins increase to compensate for the decreased synthesis of endogenous proteins. Thus, exchanging the production of endogenous seed proteins for that of foreign proteins is a promising approach to increase the yield of foreign recombinant proteins. Providing a space for the deposition of r...

  9. Gene divergence of homeologous regions associated with a major seed protein content QTL in soybean

    Directory of Open Access Journals (Sweden)

    Puji eLestari

    2013-06-01

    Full Text Available Understanding several modes of duplication contributing on the present genome structure is getting an attention because it could be related to numerous agronomically important traits. Since soybean serves as a rich protein source for animal feeds and human consumption, breeding efforts in soybean have been directed toward enhancing seed protein content. The publicly available soybean sequences and its genomically featured elements facilitate comprehending of quantitative trait loci (QTL for seed protein content in concordance with homeologous regions in soybean genome. Although parts of chromosome (Chr 20 and Chr 10 showed synteny, QTLs for seed protein content present only on Chr 20. Using comparative analysis of gene contents in recently duplicated genomic regions harboring QTL for protein/oil content on Chrs 20 and 10, a total of 27 genes are present in duplicated regions of both chromosomes. Notably, 4 tandem duplicates of the putative homeobox protein 22 (HB22 are present only on Chr 20 and this Medicago truncatula homolog expressed in endosperm at seed filling stage. These tandem duplicates could contribute on the protein/oil QTL of Chr 20. Our study suggests that non-shared gene contents within the duplicated genomic regions might lead to absence/presence of QTL related to protein/oil content.

  10. Study of total seed proteins pattern of sesame (sesamum indicum l.) landraces via sodium dodecyl sulfate polyacrylamide gel electrophoresis (sds-page)

    International Nuclear Information System (INIS)

    Akbar, F.; Shinwari, Z.K.

    2012-01-01

    The sesame (Sesamum indicum L.) germplasm, comprising of 105 accessions was characterized for total seed storage proteins using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The germplasm was collected from diverse agro-ecological regions of Pakistan. To our information, no studies have yet been carried out in Pakistan on the genetic evaluation of sesame genotypes based on total seed protein. Total seed proteins were electrophoretically separated on 12% polyacrylamide gels by standard protocols. A total of 20 polypeptide bands were observed, of which 14 (70%) were polymorphic and 6 (30%) were monomorphic, with molecular weight ranging from 13.5 to 100 kDa. Six bands i.e., 7, 11, 12, 15, 16 and 18 were common in all genotypes. Similarity coefficients varied fro m 0.50 to 1.00. The dendrogram based on dissimilarity matrix using unweighted pair group method with arithmetic averages (UPGMA) separated all sesame accessions into three main groups i.e., A, B, C, comprising 89, 14 and 2 genotypes, respectively. Overall a low to medium level of genetic variability was observed for SDS-PAGE (single dimension). As SDS-PAGE alone did not reveal high level of genetic variability, hence 2-D gel electrophoresis along with other advanced type DNA markers and more number of sesame accessions from all over the country are recommended for the future genetic evaluation. Our investigation will significantly support the classification, development, genetic evaluation and conservation of sesame germplasm in Pakistan. (author)

  11. Study of total seed proteins pattern of sesame (sesamum indicum l.) landraces via sodium dodecyl sulfate polyacrylamide gel electrophoresis (sds-page)

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, F; Shinwari, Z K [Quaid-e-Azam University, Islamabad (Pakistan). Dept. of Biotechnology; Yousif, N; Masood, M S [Institute of Agri-Biotechnology and Genetic Resources, Islamabad (Pakistan)

    2012-11-15

    The sesame (Sesamum indicum L.) germplasm, comprising of 105 accessions was characterized for total seed storage proteins using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The germplasm was collected from diverse agro-ecological regions of Pakistan. To our information, no studies have yet been carried out in Pakistan on the genetic evaluation of sesame genotypes based on total seed protein. Total seed proteins were electrophoretically separated on 12% polyacrylamide gels by standard protocols. A total of 20 polypeptide bands were observed, of which 14 (70%) were polymorphic and 6 (30%) were monomorphic, with molecular weight ranging from 13.5 to 100 kDa. Six bands i.e., 7, 11, 12, 15, 16 and 18 were common in all genotypes. Similarity coefficients varied fro m 0.50 to 1.00. The dendrogram based on dissimilarity matrix using unweighted pair group method with arithmetic averages (UPGMA) separated all sesame accessions into three main groups i.e., A, B, C, comprising 89, 14 and 2 genotypes, respectively. Overall a low to medium level of genetic variability was observed for SDS-PAGE (single dimension). As SDS-PAGE alone did not reveal high level of genetic variability, hence 2-D gel electrophoresis along with other advanced type DNA markers and more number of sesame accessions from all over the country are recommended for the future genetic evaluation. Our investigation will significantly support the classification, development, genetic evaluation and conservation of sesame germplasm in Pakistan. (author)

  12. Seed coat darkening in Cowpea bean

    Science.gov (United States)

    Seed coat of cowpea bean (Vigna unguiculata L. Walp) slowly browns to a darker color during storage. High temperature and humidity during storage might contribute to this color change. Variation in browning rate among seeds in a lot leads to a mixture of seed colors creating an unacceptable product...

  13. Albizia lebbeck Seed Coat Proteins Bind to Chitin and Act as a Defense against Cowpea Weevil Callosobruchus maculatus.

    Science.gov (United States)

    Silva, Nadia C M; De Sá, Leonardo F R; Oliveira, Eduardo A G; Costa, Monique N; Ferreira, Andre T S; Perales, Jonas; Fernandes, Kátia V S; Xavier-Filho, Jose; Oliveira, Antonia E A

    2016-05-11

    The seed coat is an external tissue that participates in defense against insects. In some nonhost seeds, including Albizia lebbeck, the insect Callosobruchus maculatus dies during seed coat penetration. We investigated the toxicity of A. lebbeck seed coat proteins to C. maculatus. A chitin-binding protein fraction was isolated from seed coat, and mass spectrometry showed similarity to a C1 cysteine protease. By ELM program an N-glycosylation interaction motif was identified in this protein, and by molecular docking the potential to interact with N-acetylglucosamine (NAG) was shown. The chitin-binding protein fraction was toxic to C. maculatus and was present in larval midgut and feces but not able to hydrolyze larval gut proteins. It did not interfere, though, with the intestinal cell permeability. These results indicate that the toxicity mechanism of this seed coat fraction may be related to its binding to chitin, present in the larvae gut, disturbing nutrient absorption.

  14. Dynamic Proteomics Emphasizes the Importance of Selective mRNA Translation and Protein Turnover during Arabidopsis Seed Germination*

    Science.gov (United States)

    Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc

    2014-01-01

    During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [35S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment. PMID:24198433

  15. Analysis of Recombinant Proteins in Transgenic Rice Seeds: Identity, Localization, Tolerance to Digestion, and Plant Stress Response.

    Science.gov (United States)

    Wakasa, Yuhya; Takaiwa, Fumio

    2016-01-01

    Rice seeds are an ideal production platform for high-value recombinant proteins in terms of economy, scalability, safety, and stability. Strategies for the expression of large amounts of recombinant proteins in rice seeds have been established in the past decade and transgenic rice seeds that accumulate recombinant products such as bioactive peptides and proteins, which promote the health and quality of life of humans, have been generated in many laboratories worldwide. One of the most important advantages is the potential for direct oral delivery of transgenic rice seeds without the need for recombinant protein purification (downstream processing), which has been attributed to the high expression levels of recombinant products. Transgenic rice will be beneficial as a delivery system for pharmaceuticals and nutraceuticals in the future. This chapter introduces the strategy for producing recombinant protein in the edible part (endosperm) of the rice grain and describes methods for the analysis of transgenic rice seeds in detail.

  16. Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats.

    Science.gov (United States)

    Lo, Hui-Chen; Wang, Yao-Horng; Chiou, Hue-Ying; Lai, Shan-Hu; Yang, Yu

    2010-07-01

    Diets that ameliorate the adverse effects of uric acid (UA) on renal damage deserve attention. The effects of casein or soya protein combined with palm or safflower-seed oil on various serum parameters and renal histology were investigated on hyperuricaemic rats. Male Wistar rats administered with oxonic acid and UA to induce hyperuricaemia were fed with casein or soya protein plus palm- or safflower-seed oil-supplemented diets. Normal rats and hyperuricaemic rats with or without allopurinol treatment (150 mg/l in drinking water) were fed with casein plus maize oil-supplemented diets. After 8 weeks, allopurinol treatment and soya protein plus safflower-seed oil-supplemented diet significantly decreased serum UA in hyperuricaemic rats (one-way ANOVA; P soya protein and casein attenuated hyperuricaemia-induced decreases in serum albumin and insulin, respectively (two-way ANOVA; P soya protein significantly decreased renal NO and nitrotyrosine and palm oil significantly decreased renal nitrotyrosine, TNF-alpha and interferon-gamma and increased renal transforming growth factor-beta. Casein with safflower-seed oil significantly attenuated renal tubulointerstitial nephritis, crystals and fibrosis. Comparing casein v. soya protein combined with palm or safflower-seed oil, the results support that casein with safflower-seed oil may be effective in attenuating hyperuricaemia-associated renal damage, while soya protein with safflower-seed oil may be beneficial in lowering serum UA and TAG.

  17. Improved protein quality in transgenic soybean expressing a de novo synthetic protein, MB-16.

    Science.gov (United States)

    Zhang, Yunfang; Schernthaner, Johann; Labbé, Natalie; Hefford, Mary A; Zhao, Jiping; Simmonds, Daina H

    2014-06-01

    To improve soybean [Glycine max (L.) Merrill] seed nutritional quality, a synthetic gene, MB-16 was introduced into the soybean genome to boost seed methionine content. MB-16, an 11 kDa de novo protein enriched in the essential amino acids (EAAs) methionine, threonine, lysine and leucine, was originally developed for expression in rumen bacteria. For efficient seed expression, constructs were designed using the soybean codon bias, with and without the KDEL ER retention sequence, and β-conglycinin or cruciferin seed specific protein storage promoters. Homozygous lines, with single locus integrations, were identified for several transgenic events. Transgene transmission and MB-16 protein expression were confirmed to the T5 and T7 generations, respectively. Quantitative RT-PCR analysis of developing seed showed that the transcript peaked in growing seed, 5-6 mm long, remained at this peak level to the full-sized green seed and then was significantly reduced in maturing yellow seed. Transformed events carrying constructs with the rumen bacteria codon preference showed the same transcription pattern as those with the soybean codon preference, but the transcript levels were lower at each developmental stage. MB-16 protein levels, as determined by immunoblots, were highest in full-sized green seed but the protein virtually disappeared in mature seed. However, amino acid analysis of mature seed, in the best transgenic line, showed a significant increase of 16.2 and 65.9 % in methionine and cysteine, respectively, as compared to the parent. This indicates that MB-16 elevated the sulfur amino acids, improved the EAA seed profile and confirms that a de novo synthetic gene can enhance the nutritional quality of soybean.

  18. Correlation of protein content to flatulent galactooligosaccharides and exogenous amino acids in seeds of Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Ryszard Kosson

    2014-01-01

    Full Text Available In order to estimate the possible correlations among constituents of Phaseolus vulgaris seeds, the contents of protein, exogenous amino acids and flatulent galactooligosaccharides (raffinose and stachyose were analyzed in 16 Polish bean cultivars for dry seeds. A negative correlation coefficient (r =-0.9490 was found between protein and methionine contents. High positive correlations among exogenous amino acids, such as lysine and isoleucine, valine and isoleucine, lysine and tyrosine, were observed indicating a chance of selecting far more than one at a time. The small-seeded bean cultivars contained higher contents of protein and galactooligosaccharides than the large-seeded ones.

  19. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells

    Directory of Open Access Journals (Sweden)

    Verena Ibl

    2014-09-01

    Full Text Available The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites.

  20. Radition mutagenesis in lavender. Part 2. Effect of heat shock, moisture and post radiation storage on lavender seed radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Raev, R.C. (Institute of the Rose, Essential Oil and Medicinal Plants, Kazanlyk (Bulgaria))

    1983-01-01

    The influence of three factors which increase radiation tolerance of lavender seeds and reduce the biological injuries with lethal effect in case of gamma-irradiation (Cs/sup 137/) was investigated. Irradiation at -65 deg C increased radiation tolerance and led to increased doses and higher mutagenic effect. Seeds with lowered moisture had higher radiosensitivity in comparison to these having 4.5-5 times more water. Post-radiation storage at 20-22 deg C without loss of moisture increased radiation injuries, which grew along with the prolongation of the period from seed irradiation to germination.

  1. Pengaruh pemberian abu sekam padi sebagai bahan desikan pada penyimpanan benih terhadap daya tumbuh dan pertumbuhan bibit kakao (The effects of rice husk ash as desiccation material of seed storage on viability and cocoa seedling growth.

    Directory of Open Access Journals (Sweden)

    Pudji Rahardjo

    2012-08-01

    Full Text Available Rice husk ash as desiccation material can be used to maintain seed viability in storage through its ability to absorb humidity during its storage. High relative humidity caused seed moisture content to increase so the respiration rate of seed increases and uses faster food stock. Finally the viability of seed is lost. A research on use of rice husk ash as desiccation material of cocoa seed storage was conducted in Agronomy Laboratory and Kaliwining Experimental Station, Indonesian Coffee and Cocoa Research Institute. Completely Randomized Design was used in this research with treatment of rice husk ash application on cocoa seed as follows: 0 g/100 seeds (A, 5 g/100 seeds (B, 10 g/100 seeds (C, 15 g/100 seeds (D, and 20 g/100 seeds (E. This experiment used four replications. Cocoa seeds were stored in plastic bag within carton box in ambient temperature. The storage periods were 1, 2, and 3 weeks, and parameters of observation consisted of electrical conductivity of dipped water of cocoa seeds, percentage of seed germination, percentage of seed emergence, early growth parameters at one month old including seedlings height of seedling, diameter, leaf number, root length, and dry weight. The result of the experiment showed that the use of rice husk ash at 5-10 g/100 seeds could maintain electrical conductivity of dipped water at low level, percentage of seed germination at 99-100 % and percentage of seed emergence at 79-91% after two weeks storage. The use of rice husk ash at 5-10 g/100 seeds after two weeks storage affected height of cacao seedling, but did not affected stem diameters, leaf numbers, root lengths, and dry weights

  2. GIBBERELLINS, FUNGICIDES AND STORAGE EFFECTS ON THE GERMINATION OF Genipa americana L. (RUBIACEAE SEEDS

    Directory of Open Access Journals (Sweden)

    Fábio de Almeida Vieira

    2006-06-01

    Full Text Available The aim of this paper was to verify the effect of different doses of gibberellic acid (GA3 (0, 250, 500, 750 and 1000 µg.L-1, of fungicides of the groups chemical benzimidazol (0, 25, 50 and 100 g.L-1 and ditiocarbamato (0, 1,25, 2,50 and 5,00 g.L-1 on seed germination. Viability of those seeds was evaluated through germination tests at 0, 15, 30 and 60 days. The experiment was carried out in greenhouse. The experimental design was fully randomized one, with five replicates per treatment. The traits evaluated were emergence and index of emergence speed. The treatment with GA3 didn't provide significant so much differences among the germination rates as well as for the emergence speed. It was verified that the use of the fungicides in smaller concentrations (25 g.L-1 of benzimidazol and 1,25 g.L-1 of ditiocarbamato promoted a better germination speed. The seeds of G. americana possess viability period relatively short, with germination absence 60 days period of storage, and it could be associated to the humidity tenors presented by the seeds in this period.

  3. The ultrastructure of protein bodies isolated from Pisum sativum and Iris pseudoacorus L. seeds

    Directory of Open Access Journals (Sweden)

    Barbara Gabara

    2015-01-01

    Full Text Available Protein bodies of Pisum sativum and Iris pseudoacorus seeds have been isolated in sucrose gradient with addition of 50mM citrate buffer, pH 5. Their ultrastructure due to isolation procedure has been described. Two types of protein bodies are present in pea and iris seeds: simple and compex ones - with many inclusions. The method of isolation, used in this paper extracts partly proteins - probably albumins, and also substances present in globoids i.e. phytin and acid phosphatase.

  4. Seed protein variations of Salicornia L. and allied taxa in Turkey.

    Science.gov (United States)

    Yaprak, A E; Yurdakulol, E

    2007-06-01

    Electrophoretic seed protein patterns of a number of accessions of Salicornia europaea L. sl., S. prostrata Palas, S. fragilis P.W. Ball and Tutin, Sarcocornia fruticosa (L.) A. J. Scott, Sarcocornia perennis (Miller.) A. J. Scott, Arthrocnemum glaucum (Del.) Ung.-Sternb., Microcnemum coralloides (Loscos and Pardo) subsp. anatolicum Wagenitz and Halocnemum strobilaceum (Pall.) Bieb. were electrophoretically analysed on SDS-PAGE. In total 48 different bands were identified. The obtained data have been treated numerically using the cluster analysis method of unweighted pair group (UPGMA). Finally it was determined that all species separated according to seed protein profiles. And the cladogram obtained studied taxa have been given.

  5. Interspecific variation of total seed protein in wild rice germplasm using SDS-Page

    International Nuclear Information System (INIS)

    Shah, S.M.A.; Hidayat-ur-Rahman; Abbasi, F.M.; Ashiq, M.; Rabbani, A.M.; Khan, I.A.; Shinwari, Z.K.; Shah, Z.

    2011-01-01

    Variation in seed protein of 14 wild rice species (Oryza spp.) along with cultivated rice species (O. sativa) was studied using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to assess genetic diversity in the rice germplasm. SDS bands were scored as present (1) or absent (0) for protein sample of each genotype. On the basis of cluster analysis, four clusters were identified at a similarity level of 0.85. O. nivara, O. rufipogon and O. sativa with AA genomes constituted the first cluster. The second cluster comprised O. punctata of BB genome and wild rice species of CC genome i.e., O. rhizomatis and O. officinalis. However, it also contained O. barthii and O. glumaepatula of AA genome. O. australiensis with EE genome, and O. latifolia, O. alta and O. grandiglumis having CCDD genomes comprised the third cluster. The fourth cluster consisted of wild rice species, O. brachyantha with EE genome along with two other wild rice species, O. longistaminata and O. meridionalis of AA genome. Overall, on the basis of total seed protein, the grouping pattern of rice genotypes was mostly compatible with their genome status. The results of the present work depicted considerable interspecific genetic variation in the investigated germplasm for total seed protein. Moreover, the results obtained in this study also suggest that analysis of seed protein can also provide a better understanding of genetic affinity of the germplasm. (author)

  6. Protein damage and repair controlling seed vigor and longevity.

    Science.gov (United States)

    Ogé, Laurent; Broyart, Caroline; Collet, Boris; Godin, Béatrice; Jallet, Denis; Bourdais, Gildas; Job, Dominique; Grappin, Philippe

    2011-01-01

    The formation of abnormal isoaspartyl residues derived from aspartyl or asparaginyl residues is a major source of spontaneous protein misfolding in cells. The repair enzyme protein L: -isoaspartyl methyltransferase (PIMT) counteracts such damage by catalyzing the conversion of abnormal isoaspartyl residues to their normal aspartyl forms. Thus, this enzyme contributes to the survival of many organisms, including plants. Analysis of the accumulation of isoaspartyl-containing proteins and its modulation by the PIMT repair pathway, using germination tests, immunodetection, enzymatic assays, and HPLC analysis, gives new insights in understanding controlling mechanisms of seed longevity and vigor.

  7. A new method for protein estimation in large seeds using fast-neutron-activation analysis

    International Nuclear Information System (INIS)

    Gupta, U.C.; Misra, S.C.; Rao, U.S.

    1974-01-01

    A new method was developed for the determination of protein content of large seeds, using powders of different N content. The powders were obtained by mixing glucose with amino acids in different proportions and were irradiated with and without the seeds in the MeV neutron flux. The irradiated samples were counted under identical conditions and their activities were used to calculate the protein content of the seeds. The results were compared with those obtained by conventional activation technique and were found to be in good agreement. This new method has the advantage of being non-destructive. (author)

  8. Storage of sorghum seeds harvested with different moisture levels / Armazenamento de sementes de sorgo submetidas a diferentes graus de umidade de colheita

    Directory of Open Access Journals (Sweden)

    Adílio de Sá Júnior

    2009-12-01

    Full Text Available The aim of this research work was to study the effect of storage in a climatized environment on the physiologic quality of hybrid of sorghum seeds harvested with different moisture contents and submitted to storage, in Uberlândia-MG. The seeds used were collected in a commercial seed production field of Monsanto Brasil Ltd., in the cropping season 2002/2003. The samples were placed in multi-layer paper bags, stored in a climatized warehouse at the processing unit of Monsanto Brasil Ltd. The experimental design was randomized blocks with split plots on time. The experiment had seed samples harvested with four moisture contents (20%, 18%, 14% and 11% and four storage times (beginning of storage, 10, 22 and 28 months. The changes on seed physiologic quality were evaluated by germination test (normal or abnormal seedlings, cold test (vigour. Also, the moisture content of the seeds was analyzed during storage. From the results, it can be concluded that: a as harvest proceeded with greater moisture contents, the physiologic quality of these seeds decreased; b seed physiologic quality decreased significantly; however, the germination percentage remained within the commercialization standard until 28 months.Sementes híbridas de sorgo foram colhidas com diferentes graus de umidade e armazenadas em ambiente climatizado por 28 meses, em Uberlândia-MG. Utilizaram-se sementes obtidas de um experimento conduzido em campo de produção comercial da Monsanto do Brasil Ltda., safra 2002/2003. As amostras das parcelas foram acondicionadas em sacos de papel multifoliados e armazenadas em armazém climatizado (temperatura de 10ºC e umidade relativa de 50% na unidade de beneficiamento da Monsanto do Brasil Ltda. O delineamento experimental foi o de blocos casualizados com parcelas subdivididas no tempo. Na parcela os tratamentos constituíram-se por amostras de sementes colhidas com quatro graus de umidade (20%, 18%, 14% e 11%, e nas subparcelas avaliou

  9. Effects of long-term storage on the quality of soybean, Glycine max ...

    African Journals Online (AJOL)

    Soybean, Glycine max (L.) Merrill, is one of the five most important legumes in the tropics and provides the protein eaten by most people in the region. One of the major constraints to soybean production is that the seed quality deteriorates rapidly during storage. This study was undertaken to assess the effect of some storage ...

  10. Purification and protein composition of oil bodies from Brassica napus seeds

    Directory of Open Access Journals (Sweden)

    Jolivet Pascale

    2006-11-01

    Full Text Available Seed oil bodies are intracellular particles to store lipids as food reserves in oleaginous plants. Description of oil body-associated proteins of Arabidopsis thaliana has been recently reported whereas only few data are available in the case of rapeseed. Oil bodies have been prepared from two double-low varieties of Brassica napus seeds, a standard variety (Explus and an oleic variety (Cabriolet. Oil bodies have been purified using floatation technique in the successive presence of high salt concentration, detergent or urea in order to remove non-specifically trapped proteins. The integrity of the oil bodies has been verified and their size estimated. Their protein and fatty acid contents have been determined. The proteins composing these organelles were extracted, separated by denaturing gel electrophoresis, digested by trypsin and their peptides were subsequently analyzed by liquid chromatography-tandem mass spectrometry. Protein identification was performed using Arabidopsis thaliana protein sequence database and a collection of Expressed Sequence Tag (EST of Brassica napus generated from the framework of the French plant genomics programme “Genoplante”. This led to the identification of a limited number of proteins: eight oleosins showing a high similarity each other and representing up to 75% of oil body proteins, a 11 β hydroxysteroid dehydrogenase-like protein highly homologous to the same protein from A. thaliana, and only few contaminating proteins associated with myrosinase activity.

  11. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication1[OPEN

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Ma, Biao; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Shui, Guang-Hou; Chen, Shou-Yi

    2017-01-01

    Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. PMID:28184009

  12. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.

    Science.gov (United States)

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  13. Physiological quality and gene expression related to heat-resistant proteins at different stages of development of maize seeds.

    Science.gov (United States)

    Andrade, T; Von Pinho, E V R; Von Pinho, R G; Oliveira, G E; Andrade, V; Fernandes, J S

    2013-09-13

    We quantified and characterized the expression of heat-resistant proteins during seed development of maize lines with distinct levels of tolerance to high drying temperature. A corn field was planted for multiplication of seeds of different lines, two tolerant and two non-tolerant to high drying temperatures. Harvest of the seeds was carried out at various stages of development and they were then subjected to tests of moisture content, germination, first count of germination, accelerated aging, and cold test. The seeds were stored in a freezer for later analysis of expression of heat-resistant proteins by means of real-time PCR, electrophoresis, and spectrophotometry. We observed that heat-resistant proteins are expressed in a differential manner in seeds from different lines and at different stages of development. The expression of heat-resistant proteins was earlier in lines tolerant to high drying temperatures. Greater germination and vigor values was found for seeds collected at the last stage of development.

  14. Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean alpha-amylase inhibitor gene.

    Science.gov (United States)

    Chen, Hancai; Bodulovic, Greg; Hall, Prudence J; Moore, Andy; Higgins, Thomas J V; Djordjevic, Michael A; Rolfe, Barry G

    2009-09-01

    Seeds of genetically modified (GM) peas (Pisum sativum L.) expressing the gene for alpha-amylase inhibitor-1 (alphaAI1) from the common bean (Phaseolus vulgaris L. cv. Tendergreen) exhibit resistance to the pea weevil (Bruchus pisorum). A proteomic analysis was carried out to compare seeds from GM pea lines expressing the bean alphaAI1 protein and the corresponding alphaAI1-free segregating lines and non-GM parental line to identify unintended alterations to the proteome of GM peas due to the introduction of the gene for alphaAI1. Proteomic analysis showed that in addition to the presence of alphaAI1, 33 other proteins were differentially accumulated in the alphaAI1-expressing GM lines compared with their non-GM parental line and these were grouped into five expression classes. Among these 33 proteins, only three were found to be associated with the expression of alphaAI1 in the GM pea lines. The accumulation of the remaining 30 proteins appears to be associated with Agrobacterium-mediated transformation events. Sixteen proteins were identified after MALDI-TOF-TOF analysis. About 56% of the identified proteins with altered accumulation in the GM pea were storage proteins including legumin, vicilin or convicilin, phaseolin, cupin and valosin-containing protein. Two proteins were uniquely expressed in the alphaAI1-expressing GM lines and one new protein was present in both the alphaAI1-expressing GM lines and their alphaAI1-free segregating lines, suggesting that both transgenesis and transformation events led to demonstrable changes in the proteomes of the GM lines tested.

  15. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake

    Directory of Open Access Journals (Sweden)

    Worapot Suntornsuk

    2010-12-01

    Full Text Available Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications.

  16. Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified Jatropha curcas seed cake.

    Science.gov (United States)

    Saetae, Donlaporn; Suntornsuk, Worapot

    2010-12-28

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications.

  17. Effectivity of Sugar-Apple (Annona squamosa) Seed Extract with a Different Length of Storage against Culec quinquefasciatus Larvae

    OpenAIRE

    Heni Prasetyowati; Wisnu Satria

    2012-01-01

    Synthetic insecticide have been used to control Culex quinquefasciatus, but the prolonged usage of synthetic insecticide has a bad impact on the environment and may caused resistance. Sugar apple’s (Annona squamosa) seeds which contain alkaloid can be used as an alternative insecticide that was safe for environment. This research aims is to know the effect of sugar apple’s seeds with different length of storage as C. quinquefasciatus larvacide. This research was an experimental study with a r...

  18. Effects of storage and soaking on wheat seeds exposed to gamma rays

    International Nuclear Information System (INIS)

    Ajayi, N.O.

    1975-07-01

    Wheat seeds, variety Starke II, of water content 11,5 per cent of dry weight, irradiated with 60 Co gamma rays over a wide range of absorbed doses were sowed in wet sand. When analysed after eight days, seedling growth was found to have decreased with increasing dose, very rapidly within the first 40 krad and more slowly thereafter until that dose, 500 krad, which made the shoot and the root fail to develop. Storage over three weeks was found to produce greater reduction in the seelding growth at doses below 40 krad, and lowering of the dose at which the seedling failed to develop from about 500 krad to 300 krad. Soaking the irradiated seeds immediately after irradiation for one hour before planting was found to improve the seedling growth in the low dose region compared to when seeds were immediately sowed. It is suggested that the water absorbed during soaking permits the free radicals to recombine and DNA-damage to be repaired. It is thought that radiation seriously affects cellular multiplication and the production of growth promoting homones of the embryo. On the other hand elongation of surviving, presumably non-mitotic cells, is apparently taking place even at high doses, in fact up to 500 krad. (author)

  19. Quality of cowpea seeds treated with chemicals and stored in controlled and uncontrolled temperature and humidity conditions

    Directory of Open Access Journals (Sweden)

    Lucicléia Mendes de Oliveira

    2015-06-01

    Full Text Available The cowpea is a Fabaceae originated in Africa cultivated in the northern and northeastern of Brazil, where stands out as the main source of protein for the population. For the establishment of culture, seeds are treated to control and prevent pest attacks and diseases, can also attach nutrients to the seeds which will be available for plant development. The objective of the research was to evaluate the performance of cowpea seeds treated with chemical products and stored in controlled and uncontrolled temperature and humidity conditions. The following seeds treatments were applied: control (no treatment; micronutrient Comol 118, insecticide thiamethoxam, fipronil and pyraclostrobin+thiophanate-methyl and imidacloprid+thiodicarb were then stored in a cold environment and natural. The assessment of physiological seed quality was made initially and every 45 days through the germination and vigor. Among all products used, the imidacloprid + thiodicarb and fipronil + pyraclostrobin + thiophanate methyl provides stimulating effect on seed performance; seeds treated with thiamethoxam were less affected by storage than the untreated seeds; seeds treated with micronutrients exhibits similar behavior to untreated seeds and storage in a controlled environment better preserves the seed physiological quality.

  20. Seed protein improvement in cereals and grain legumes. Proceedings of an international symposium jointly organized by the IAEA and the FAO in co-operation with the Gesellschaft fuer Strahlen- und Umweltforschung mbH and held in Neuherberg, 4-8 September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Plant breeders, molecular biologists, analytical chemists and nutritionists report on progress and achievements to date. High-lysine genotypes of maize, barley and sorghum have been produced. One high-protein variety of wheat is reported available for commercial use. Grain legumes already have high seed protein content but, compared to cereals, less of the total biological yield is available as seed, and intensive efforts are being made to produce genotypes with higher seed yield. Genetic variability is available from world germplasm collections and from induced-mutation programmes. In the basic sciences considerable advances are reported. Putative structural genes determining protein quality and quantity have been located on various chromosomes. In vitro synthesis of legume and cereal storage proteins and the isolation of some mRNA and the preparation and cloning of cDNA have been reported. Uptake and incorporation of N into amino acids, their synthesis into proteins, and interaction between protein and carbohydrate biosynthesis during seed development are discussed. Future prospects are considered including potential selection at the cellular rather than the whole plant level. In only a minority of the 64 papers is the use of nuclear techniques indicated specifically enough to justify individual entries in INIS.

  1. Seed protein electrophoresis for identification of fine fibre cotton line in Gossypium hirsutum L

    International Nuclear Information System (INIS)

    Gao Guoqiang; Lv Tiexin; Su Xuehe; Liu Xiaoyong; Wu Defang; Zhu Doubei

    2003-01-01

    Gel electrophoresis was conducted to test seed ethanol resolvable protein in cotton. 13 lines were used, including a fine fibre cotton line (98301) in G. hirsutum L., 4 varieties in G. barbadense L. and 8 varieties in G. hirsutum L.. In results of the 98301 line, Zhongmiansuo 12 and Shiyuan 321, no different protein electro-phoresis band pattern was shown among different seeds belong to the same variety, respectively. In comparison among the 98301 seeds sampled from seven different growth sets in Shandong province, their protein band patterns were the same. On the gel plate, three special bands were distinctive to all the varieties in G. hirsutum L. and other three special bands were distinctive to all the varieties in G. barbadense L.. The three characteristic bands of G. hirsutum L. appeared in the protein band pattern of the 98301 line. It showed that the seed protein composition of the line was inclined to G. hirsutum L. mainly. And, a characteristic band of G. Barbadense L. in the band pattern of the 98301 line proved that the fine fibre cotton line derived from a hybrid between G. barbadense and G. hirsutum L.. The 98301 line was easily distinguished from other varieties in G. hirsutum L. by its distinctive band, i.e. band No.1, and another island cotton band, i.e. band No.10

  2. Protein landmarks for diversity assessment in wheat genotypes ...

    African Journals Online (AJOL)

    Grain proteins from 20 Indian wheat genotypes were evaluated for diversity assessment based seed storage protein profiling on sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). Genetic diversity was evaluated using Nei's index, Shannon index and Unweighted pair group method with arithmetic ...

  3. Banking Wyoming big sagebrush seeds

    Science.gov (United States)

    Robert P. Karrfalt; Nancy Shaw

    2013-01-01

    Five commercially produced seed lots of Wyoming big sagebrush (Artemisia tridentata Nutt. var. wyomingensis (Beetle & Young) S.L. Welsh [Asteraceae]) were stored under various conditions for 5 y. Purity, moisture content as measured by equilibrium relative humidity, and storage temperature were all important factors to successful seed storage. Our results indicate...

  4. Impact of storage conditions on seed germination and seedling growth of wild oat (Avena fatua L. at different temperatures

    Directory of Open Access Journals (Sweden)

    Marija Sarić-Krsmanović

    2015-12-01

    Full Text Available The influence of seed storage conditions and different temperatures (5˚C, 10˚C, 15˚C, 20˚C, 25˚C, 30˚C and 26˚C/21˚C during germination and seedling development on seed germination, shoot length and germination rate of wild oat (Avena fatua L. was examined. Germinated seeds were counted daily over a period of ten days and shoot length was measured on the last day, while germination rates were calculated from those measurements. The results showed that seed storage under controlled conditions (T1: temperature 24±1°C, humidity 40-50%; T2: temperature 26±1°C, humidity 70-80% and T3: temperature 4˚C for periods of 3 (t1 and 12 (t2 months had a significant influence on germination of wild oat seeds. The percentage of germinated seeds under all examined temperatures was higher when they were stored for 12 months under controlled temperature and humidity. The results also showed that temperature had a significant effect on the percentage of germination and germination rate of A. fatua seeds. The highest total germination occurred at 15˚C temperature (T1: t1 - 41.25%, t2 - 44.37%; T2: t1 - 28.13%, t2 - 34.37%; T3: t1 - 10.63%, t2 - 12.50%. Germination percentage under an alternating day /night photoperiod at 26˚C/21˚C temperature was higher in all treatment variants (T1: t1 - 8.13%, t2 - 10.00%; T2: t1 - 11.87%, t2 - 13.13%; T3: t1 - 2.42%, t2 - 2.70% than germination in the dark at 25˚C, 30˚C and 5˚C.

  5. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds.

    Science.gov (United States)

    Li, Runzhi; Yu, Keshun; Wu, Yongmei; Tateno, Mizuki; Hatanaka, Tomoko; Hildebrand, David F

    2012-01-01

    Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Protein quantity and quality of safflower seed improved by NP fertilizer and rhizobacteria (Azospirillum and Azotobacter spp.

    Directory of Open Access Journals (Sweden)

    Asia eNosheen

    2016-02-01

    Full Text Available Protein is an essential part of human diet. The aim of present study was to improve the protein quality of safflower seed by the application of plant growth promoting rhizobacteria (PGPR in combination with conventional nitrogen and phosphate (NP fertilizers. The seeds of two safflower cultivar Thori and Saif-32, were inoculated with Azospirillum and Azotobacter and grown under field conditions. Protein content and quality was assessed by crude protein, amino acid analysis and SDS-PAGE. Seed crude protein and amino acids (metheonine, phenylanine and glutamic acid showed significant improvement (55%–1250% by Azotobacter supplemented with quarter dose of fertilizers (BTQ at P≤0.05. Additional protein bands were induced in Thori and Saif-32 by BTQ and BTH (Azotobacter supplemented with half dose of fertilizers respectively. The Azospirillum in combination with half dose of fertilizers (SPH and BTQ enhanced the indole acetic acid (90% and gibberellic acid (23%–27% contents in safflower leaf. Taken together, these data suggest that Azospirillum and Azotobacter along with significantly reduced (up to 75% use of NP fertilizers improved the quality and quantity of safflower seed protein.

  7. Germinação e armazenamento de sementes de Camboatã (Cupania vernalis Cambess. sapindaceae Germination and storage of Cupania vernalis Cambess. seeds - sapindaceae

    Directory of Open Access Journals (Sweden)

    Carlos Vinício Vieira

    2008-04-01

    Full Text Available Sementes de Cupania vernalis Cambess. possuem características recalcitrantes quando submetidas à secagem, além de curta longevidade, necessitando da aplicação de conhecimentos relacionados a fatores que interferem no armazenamento. Objetivou-se com esta pesquisa avaliar as variações fisiológicas de sementes de C. vernalis quando submetidas a diferentes temperaturas e teores de água, durante o armazenamento. No armazenamento, sementes com graus de umidade de 40%, 35% e 30% foram acondicionadas em sacos plásticos e armazenadas sob temperatura controlada de 10ºC e 25ºC, com umidade relativa de 60%, avaliadas quanto ao grau de umidade, porcentagem de germinação e índice de velocidade de emergência, nos tempos de 0, 120 e 240 dias. O tratamento em que as sementes continham 40% de grau de umidade e armazenadas a temperatura de 10ºC favorece a conservação das sementes de C. vernalis.Cupania vernalis Cambess. seeds have a short longevity with a recalcitrant behavior when submitted to drying. This demands development and adoption of technologies to improve storage and conservation of the seeds. Thus, the objective of this work was to evaluate physiological aspects of Cupania vernalis seeds at different storage temperatures and to different seed moisture content. Seeds with 40%, 35% and 30% of water content were conditioned in plastic bags and stored at 10ºC and 25ºC under controlled temperature and relative humidity around of 60%. During 0, 120 and 240 days of storage seeds were taken for evaluation of water content, germination, emergency index. The treatments in which seed contained moisture content of 40% and stored at temperature of 10ºC helps the conservation of seeds of C. vernalis.

  8. Variation in the protein profiles in the gamma-irradiated chick pea (Cicer arietinum L.) seeds

    International Nuclear Information System (INIS)

    Farook, S.A.F.; Nizam, Jafar

    1978-01-01

    Water soluble seed proteins from the control as well as gamma ray treated material from the M 2 generation of Chick pea (Cicer arietinum L.) were separated by disc electrophoresis using 7.5 percent poly acrylamide gels. Average Rf values and percentage of similarity values were calculated. The comparisons of number and Rf values of protein bands were made to elucidate the differences in the treated material. Differences obtained in the seed protein profiles of the treated material suggest the presence of the qualitative variation in the proteins. Attempts were made to correlate the variation in the protein bands with the morphological changes in the mutants. (author)

  9. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L. seeds.

    Directory of Open Access Journals (Sweden)

    Huawu Jiang

    Full Text Available BACKGROUND: Physic nut (Jatropha curcas L. is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. METHODOLOGY/PRINCIPAL FINDINGS: We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP. The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. CONCLUSIONS/SIGNIFICANCE: The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  10. Changes in seed oil and protein contents of maize cultivars at different positions on the ear in response to water limitation

    Directory of Open Access Journals (Sweden)

    Kazem Ghassemi-Golezani

    2016-10-01

    Full Text Available A field experiment was carried out as split-split plot in 2014 to assess the effects of four irrigation treatments (irrigations after 60, 80, 100 and 120 mm evaporation, respectively on oil and protein changes of maize cultivars (SC704, NS640 and DC303: Late, mid and early maturing cultivars, respectively at different seed positions on the ear (upper, middle and lower positions on the ear. Overall, the highest seed yield was obtained from SC704, followed by NS640 and DC303 cultivars. Seed yield of all cultivars was higher at lower seed position on ear than at middle and upper parts of the ear under different irrigation treatments. The highest oil and protein yields were also recorded for seeds at lower position on the ear. Seed yield of all maize cultivars at various seed positions decreased with increasing irrigation intervals. Oil percentage decreased, but protein percentage increased with decreasing water availability. Water limitation decreased oil and protein yields of maize cultivars. Changes in protein and oil yields of maize cultivars at different seed positions and irrigation treatments were attributed to changes in seed yield.

  11. Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated chia (Salvia hispanica L.) seeds.

    Science.gov (United States)

    Imran, Muhammad; Nadeem, Muhammad; Manzoor, Muhammad Faisal; Javed, Amna; Ali, Zafar; Akhtar, Muhammad Nadeem; Ali, Muhammad; Hussain, Yasir

    2016-09-20

    Chia (Salvia hispanica L.) seeds have been described as a good source of lipids, protein, dietary fiber, polyphenolic compounds and omega-3 polyunsaturated fatty acids. The consumption of chia seed oil helps to improve biological markers related to metabolic syndrome diseases. The oil yield and fatty acids composition of chia oil is affected by several factors such as pre-treatment method and size reduction practices. Therefore, the main mandate of present investigate was to study the effect of different seed pre-treatments on yield, fatty acids composition and sensory acceptability of chia oil at different storage intervals and conditions. Raw chia seeds were characterized for proximate composition. Raw chia seeds after milling were passed through sieves to obtain different particle size fractions (coarse, seed particle size ≥ 10 mm; medium, seed particle size ≥ 5 mm; fine, seed particle size ≤ 5 mm). Heat pre-treatment of chia seeds included the water boiling (100 C°, 5 min), microwave roasting (900 W, 2450 MHz, 2.5 min), oven drying (105 ± 5 °C, 1 h) and autoclaving (121 °C, 15 lbs, 15 min) process. Extracted oil from pre-treated chia seeds were stored in Tin cans at 25 ± 2 °C and 4 ± 1 °C for 60-days and examined for physical (color, melting point, refractive index), oxidative (iodine value, peroxide value, free fatty acids), fatty acids (palmitic, stearic, oleic, linoleic, α-linolenic) composition and sensory (appearance, flavor, overall acceptability) parameters, respectively. The proximal composition of chia seeds consisted of 6.16 ± 0.24 % moisture, 34.84 ± 0.62 % oil, 18.21 ± 0.45 % protein, 4.16 ± 0.37 % ash, 23.12 ± 0.29 % fiber, and 14.18 ± 0.23 % nitrogen contents. The oil yield as a result of seed pre-treatments was found in the range of 3.43 ± 0.22 % (water boiled samples) to 32.18 ± 0.34 % (autoclaved samples). The oil samples at day 0 indicated the

  12. Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions.

    Science.gov (United States)

    Li, Dongmei; Zhao, Xue; Han, Yingpeng; Li, Wenbin; Xie, Futi

    2018-01-08

    Soybean is globally cultivated primarily for its protein and oil. The protein and oil contents of the seeds are quantitatively inherited traits determined by the interaction of numerous genes. In order to gain a better understanding of the molecular foundation of soybean protein and oil content for the marker-assisted selection (MAS) of high quality traits, a population of 185 soybean germplasms was evaluated to identify the quantitative trait loci (QTLs) associated with the seed protein and oil contents. Using specific length amplified fragment sequencing (SLAF-seq) technology, a total of 12,072 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) ≥ 0.05 were detected across the 20 chromosomes (Chr), with a marker density of 78.7 kbp. A total of 31 SNPs located on 12 of the 20 soybean chromosomes were correlated with seed protein and oil content. Of the 31 SNPs that were associated with the two target traits, 31 beneficial alleles were identified. Two SNP markers, namely rs15774585 and rs15783346 on Chr 07, were determined to be related to seed oil content both in 2015 and 2016. Three SNP markers, rs53140888 on Chr 01, rs19485676 on Chr 13, and rs24787338 on Chr 20 were correlated with seed protein content both in 2015 and 2016. These beneficial alleles may potentially contribute towards the MAS of favorable soybean protein and oil characteristics. Copyright © 2018. Published by Elsevier Inc.

  13. Regulatory redox state in tree seeds

    Directory of Open Access Journals (Sweden)

    Ewelina Ratajczak

    2017-12-01

    Full Text Available Peroxiredoxins (Prx are important regulators of the redox status of tree seeds during maturation and long-term storage. Thioredoxins (Trx are redox transmitters and thereby regulate Prx activity. Current research is focused on the association of Trx with Prx in tree seeds differing in the tolerance to desiccation. The results will allow for better understanding the regulation of the redox status in orthodox, recalcitrant, and intermediate seeds. The findings will also elucidate the role of the redox status during the loss of viability of sensitive seeds during drying and long-term storage.

  14. Analysis of cDNA libraries from developing seeds of guar (Cyamopsis tetragonoloba (L. Taub

    Directory of Open Access Journals (Sweden)

    Dixon Richard A

    2007-11-01

    Full Text Available Abstract Background Guar, Cyamopsis tetragonoloba (L. Taub, is a member of the Leguminosae (Fabaceae family and is economically the most important of the four species in the genus. The endosperm of guar seed is a rich source of mucilage or gum, which forms a viscous gel in cold water, and is used as an emulsifier, thickener and stabilizer in a wide range of foods and industrial applications. Guar gum is a galactomannan, consisting of a linear (1→4-β-linked D-mannan backbone with single-unit, (1→6-linked, α-D-galactopyranosyl side chains. To better understand regulation of guar seed development and galactomannan metabolism we created cDNA libraries and a resulting EST dataset from different developmental stages of guar seeds. Results A database of 16,476 guar seed ESTs was constructed, with 8,163 and 8,313 ESTs derived from cDNA libraries I and II, respectively. Library I was constructed from seeds at an early developmental stage (15–25 days after flowering, DAF, and library II from seeds at 30–40 DAF. Quite different sets of genes were represented in these two libraries. Approximately 27% of the clones were not similar to known sequences, suggesting that these ESTs represent novel genes or may represent non-coding RNA. The high flux of energy into carbohydrate and storage protein synthesis in guar seeds was reflected by a high representation of genes annotated as involved in signal transduction, carbohydrate metabolism, chaperone and proteolytic processes, and translation and ribosome structure. Guar unigenes involved in galactomannan metabolism were identified. Among the seed storage proteins, the most abundant contig represented a conglutin accounting for 3.7% of the total ESTs from both libraries. Conclusion The present EST collection and its annotation provide a resource for understanding guar seed biology and galactomannan metabolism.

  15. The effect of thermal processing on protein quality and free amino acid profile of Terminalia catappa (Indian Almond) seed.

    Science.gov (United States)

    Adu, O B; Ogundeko, T O; Ogunrinola, O O; Saibu, G M; Elemo, B O

    2015-07-01

    The study examined the effect of various processing methods- boiling, drying and roasting- on the in vitro and in vivo protein digestibility and free amino acid profiles of Terminalia catappa seed. Moisture and crude protein of the various samples were determined. In vitro protein digestibility was determined after pepsin digestion. For the in vivo experiment, defatted T. catappa based diet was fed to 3 weeks old Wistar rats for 4 weeks and compared with animals maintained on casein based and nitrogen- free diets. The biological value (BV), net protein utilisation (NPU) and protein efficiency ratio (PER) of the diets were determined. Free amino acid composition was carried out using thin layer chromatography. Moisture was highest in the boiled T. catappa seed (8.30 ± 0.00 %). The raw, roasted and dried seeds had 5.55 ± 0.07, 3.88 ± 0.22 and 3.75 ± 0.07 % respectively. Crude protein was 19.19, 18.89, 17.62 and 16.36 % in the dried, roasted, boiled and raw seeds respectively. Roasted T. catappa seed had the highest in vitro protein digestibility with 37.52 %, while the dried, boiled and raw samples had digestibility values of 27.57, 27.07 and 24.45 % respectively. All nine essential amino acids were present in T. catappa in high concentrations except methionine and tryptophan. Glutamate was present in the highest concentration. Also, free amino acids were higher in the processed seeds compared to the raw seed. Animals fed T. catappa diet compared favourably with the casein group, thus indicating that the protein is of good quality.

  16. Genetic analysis of seed proteins contents in cowpea ( Vigna ...

    African Journals Online (AJOL)

    In order to select cowpea genotypes with high food value, 10 varieties were genetically screened in Ngaoundéré (Cameroon) for seed crude protein and its soluble fractions contents. Five divergent lines were studied through a 5 x 5 half diallel cross mating. The genotypes presented a significant genetic variability for these ...

  17. Genetic differences in seed longevity of various Arabidopsis mutants

    NARCIS (Netherlands)

    Clerkx, E.J.M.; Vries, de M.H.C.; Ruijs, G.J.; Groot, S.P.C.; Koornneef, M.

    2004-01-01

    Seeds gradually lose their viability during dry storage. The damage that occurs at the biochemical level can alter the seed physiological status and is affected by the storage conditions of the seeds. Although these environmental conditions controlling loss of viability have been investigated

  18. EFFECTS OF NATURAL LONG STORAGE DURATION ON SEED ...

    African Journals Online (AJOL)

    lep

    2013-04-10

    Apr 10, 2013 ... germination and viability, seed vigor index and seed vigor under a 7.3% moisture content when .... containing two disks of Whatman filter papers soaked in distilled water. ..... desiccation tolerance (Review Update). Seed Sci.

  19. Antioxidant effect of mango seed extract and butylated hydroxytoluene in bologna-type mortadella during storage

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Fernandes Pereira

    2011-03-01

    Full Text Available The effects of mango seed extract (MSE and butylated hydroxytoluene (BHT on pH, lipid oxidation, and color of Bologna-type mortadella during refrigerated storage for 21 days were studied. Bologna-type mortadella samples were formulated to contain 0.1% MSE, 0.2% MSE, or 0.01% BHT. After 14 days of storage, the products containing MSE 0.1 or 0.2% had higher pH values than those containing BHT 0.01%. Lipid oxidation values increased with storage time but were not affected by the type of antioxidant. The highest values for color parameter L* were observed for mortadella containing BHT 0.01% after 7, 14, and 21 days of storage. Values for the color parameters a* and b* tended to decrease during mortadella storage. Products containing 0.1 or 0.2% MSE showed higher values for color parameter a* and lower values for color parameter b* compared to those containing 0.01% BHT. It can be concluded that MSE can be used in 0.1 or 0.2% levels in Bologna-type mortadella with similar or better antioxidant effects than those of BHT 0.01%.

  20. Characterization of a methionine-rich protein from the seeds of Cereus jamacaru Mill. (Cactaceae

    Directory of Open Access Journals (Sweden)

    T.C.F.R. Aragão

    2000-08-01

    Full Text Available We describe here the isolation and characterization of a major albumin from the seeds of Cereus jamacaru (Cactaceae, to which we gave the trivial name of cactin. This protein has a molecular mass of 11.3 kDa and is formed by a light chain (3.67 kDa and a heavy chain (7.63 kDa. This protein was isolated using a combination of gel filtration chromatography and reverse-phase HPLC. The amino acid composition of cactin was determined and found to resemble that of the 2S seed reserve protein from the Brazil nut, a protein remarkable for its high methionine content. The usefulness of cactin as a molecular marker in the taxonomy of the Cactaceae is discussed.

  1. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds.

    Science.gov (United States)

    Yu, Xiaomin; Yuan, Fengjie; Fu, Xujun; Zhu, Danhua

    2016-04-01

    Sugar and protein are important quality traits in soybean seeds for making soy-based food products. However, the investigations on both compositions and their relationship have rarely been reported. In this study, a total of 35 soybean germplasms collected from Zhejiang province of China, were evaluated for both water-soluble sugar and protein. The total water-soluble sugar (TWSS) content of the germplasms studied ranged from 84.70 to 140.91 mg/g and the water-soluble protein (WSP) content varied from 26.5% to 36.0%. The WSP content showed positive correlations with the TWSS and sucrose contents but negative correlations with the fructose and glucose contents. The clustering showed the 35 germplasms could be divided into four groups with specific contents of sugar and protein. The combination of water-soluble sugar and protein profiles provides useful information for future breeding and genetic research. This investigation will facilitate future work for seed quality improvement. Copyright © 2015. Published by Elsevier Ltd.

  2. PHYSIOLOGICAL AND SANITARY QUALITIES OF MAIZE LANDRACE SEEDS STORED UNDER TWO CONDITIONS

    Directory of Open Access Journals (Sweden)

    Raquel Stefanello

    2015-08-01

    Full Text Available The preservation of seed quality during the storage period depends not only on the conditions during production and harvesting but also on the storage and maintenance of appropriate storage product conditions. Thus, the aim of this study was to evaluate the physiological and sanitary qualities of maize landrace seeds stored under two conditions. The maize seed batch varieties Oito carreiras, Cabo roxo and Lombo baio were used. Tests included germination, first count, cold test, accelerated aging and sanity. Based on the results it was concluded that the physiological quality of these seed varieties decreased with the storage period. The major fungi identified in the maize seeds during storage were from the genera Aspergillus, Fusarium and Penicillium, which caused deterioration and reduction of the physiological quality. Storage using a paper bag at a temperature of 10 °C did not prevent the deterioration of maize seeds but was more effective at preserving the quality of the seed compared with a plastic bag at room temperature.

  3. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling.

    Directory of Open Access Journals (Sweden)

    Aihua Liu

    Full Text Available Treatments that promote dormancy release are often correlated with changes in seed hormone content and/or sensitivity. To understand the molecular mechanisms underlying the role of after-ripening (seed dry storage in triggering hormone related changes and dormancy decay in wheat (Triticum aestivum, temporal expression patterns of genes related to abscisic acid (ABA, gibberellin (GA, jasmonate and indole acetic acid (IAA metabolism and signaling, and levels of the respective hormones were examined in dormant and after-ripened seeds in both dry and imbibed states. After-ripening mediated developmental switch from dormancy to germination appears to be associated with declines in seed sensitivity to ABA and IAA, which are mediated by transcriptional repressions of PROTEIN PHOSPHATASE 2C, SNF1-RELATED PROTEIN KINASE2, ABA INSENSITIVE5 and LIPID PHOSPHATE PHOSPHTASE2, and AUXIN RESPONSE FACTOR and RELATED TO UBIQUITIN1 genes. Transcriptomic analysis of wheat seed responsiveness to ABA suggests that ABA inhibits the germination of wheat seeds partly by repressing the transcription of genes related to chromatin assembly and cell wall modification, and activating that of GA catabolic genes. After-ripening induced seed dormancy decay in wheat is also associated with the modulation of seed IAA and jasmonate contents. Transcriptional control of members of the ALLENE OXIDE SYNTHASE, 3-KETOACYL COENZYME A THIOLASE, LIPOXYGENASE and 12-OXOPHYTODIENOATE REDUCTASE gene families appears to regulate seed jasmonate levels. Changes in the expression of GA biosynthesis genes, GA 20-OXIDASE and GA 3-OXIDASE, in response to after-ripening implicate this hormone in enhancing dormancy release and germination. These findings have important implications in the dissection of molecular mechanisms underlying regulation of seed dormancy in cereals.

  4. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun

    2015-01-01

    the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination...

  5. Evaluation of the Effect of Storage Temperature, Atmosphere and Packaging Materials on Some Properties of Carum copticum Fruits during Nine Months Storage

    Directory of Open Access Journals (Sweden)

    gonai baghdadi

    2018-03-01

    Full Text Available Introduction: The aim of medicinal plant storage is to preserve qualitative and quantitative properties of active substance. Carum copticum fruits (Zenyan in Persian were used for its therapeutic effects. Seed storage condition after harvest till to extraction time is not suitable in our country and the major part of seed quality deteriorates during the storage period. So, the loss of seed qualitative and quantitative characteristics will increase during unsuitable storage condition. Appropriate storage conditions and management preserve seed active substance, seed viability and vigor for long periods by reducing the rate of seed deterioration. Optimal seed storage can be achieved by modifying the environment around the seeds. Numerous storage systems have evolved over the years for post harvest preservation of crop seeds. The aim of this study is to evaluate the effect of various storage conditions and storage time on essential oil percentage and germination factors in C. copticum seeds during the storage period. The results of this research will be used for optimum storage of these seeds to better preserve their quality. Materials and Methods: In order to investigate the effects of storage conditions (packaging materials and temperature and storage time on quality of C. copticum stored seeds, a split-plot factorial arranged in a randomized complete block design with three replications is performed in Faculty of Agriculture at Ferdowsi University of Mashhad during 2013 and 2014.Tukey's range test was performed to determine the significant difference between treatments. The calculations were conducted by JMP 8 software. Temperature at two levels: 20±3°C and 30±3°C( as main plots and packaging materials (at six levels: paper, polyethylene, aluminum foil under vacuum condition, Polyethylene-polyamide packages under vacuum condition, Polyethylene-polyamide packages with a gas composition of [98%N2 + 2%O2] and [90%N2 +10%O2] and storage periods

  6. Condições de armazenamento na viabilidade e dormência de sementes de videira Effect of storage conditions on the viability and dormancy of grape seeds

    Directory of Open Access Journals (Sweden)

    Jocely Andreuccetti Maeda

    1985-01-01

    Full Text Available A manutenção da viabilidade de sementes por períodos mais ou menos longos está bastante relacionada com as condições em que elas são armazenadas. Temperatura e teor de umidade estão entre os fatores que mais afetam sua longevidade. O objetivo deste trabalho é o estudo da viabilidade e dormência de uva do cultivar Patrícia, armazenada durante 24 meses em dois tipos de recipientes - em vidro hermético e saco de papel - a temperaturas de 10, 20 e 30°C, com dois diferentes teores iniciais de umidade. A porcentagem de sementes dormentes e viáveis foi determinada bimestralmente durante os primeiros 12 meses, e semestralmente nos períodos mais longos. O armazenamento não quebrou a dormência das sementes de uva em nenhuma das condições estudadas. Enquanto as sementes frescas mostraram melhor conservação a 10°C quando embaladas em vidro hermético, sementes secas se conservaram melhor a 20°C. Em saco de papel, foram poucas as diferenças encontradas entre os tratamentos, a não ser nos períodos finais do armazenamento, quando 20°C se mostrou a pior temperatura de conservação. Dessa maneira, a dormência não foi alterada pelo armazenamento, nas condições estudadas, e a viabilidade foi bastante afetada tanto pelo tipo de embalagem como pela temperatura de armazenamento.Longevity of seeds is affected by the storage conditions, being temperature and seed moisture content the major factors to keep seeds viable. Experiments described here are concerned to the study of dormancy ant viability of seeds of grape cv. Patrícia, stored with two different moisture contents, either in moisture proof containers or paper bags, at temperaturss of 10°C, 20°C and 30°C, for 24 months. Samples were taken every two months during the first 12 months and at 6 months intervals in the second year, to determine seed viability and dormancy level. Storage, in the studied conditions, did not alter dormancy levei of the seeds. When stored in hermetical

  7. Soybean seed viability and changes of fatty acids content as ...

    African Journals Online (AJOL)

    The characteristics of soybean seed chemical composition are related to specific processes occurring in seed during storage. These changes lead to seed aging during storage and affect seed vigour and content of fatty acids. In order to reveal severity of their influence, the following vigour tests were applied: Standard ...

  8. New ACE-Inhibitory Peptides from Hemp Seed (Cannabis sativa L.) Proteins.

    Science.gov (United States)

    Orio, Lara P; Boschin, Giovanna; Recca, Teresa; Morelli, Carlo F; Ragona, Laura; Francescato, Pierangelo; Arnoldi, Anna; Speranza, Giovanna

    2017-12-06

    A hemp seed protein isolate, prepared from defatted hemp seed meals by alkaline solubilization/acid precipitation, was subjected to extensive chemical hydrolysis under acid conditions (6 M HCl). The resulting hydrolysate was fractionated by semipreparative RP-HPLC, and the purified fractions were tested as inhibitors of angiotensin converting enzyme (ACE). Mono- and bidimensional NMR experiments and LC-MS analyses led to the identification of four potentially bioactive peptides, i.e. GVLY, IEE, LGV, and RVR. They were prepared by solid-phase synthesis, and tested for ACE-inhibitory activity. The IC 50 values were GVLY 16 ± 1.5 μM, LGV 145 ± 13 μM, and RVR 526 ± 33 μM, confirming that hemp seed may be a valuable source of hypotensive peptides.

  9. Quince tree (cydonia oblonga Mill.)-breeding bases:seed propagation, cytogenetics and radiosensitivity

    International Nuclear Information System (INIS)

    Dall'Orto, F.A.C.

    1982-01-01

    The following aspects of the marmeleiro, cydonia oblonga Mill., were, researched: media nad periods to supply the seed chilling requirement in moist cold storage (5-10 0 c); quince seeds viability prepared by several extraction processes; seed germination and seedling development; cytogenetic aspects; seeds viability influenced by storage conditions and periods of time for storage; preliminary determination of seed radiosensitivity; concentrations of some macro and micronutrients in quince seedlings obtained from irradiated seeds, and radiosensitivity and interphasic nuclear volumes. (MAC) [pt

  10. Purification and characterization of a novel cholesterol-lowering protein from the seeds of Senna obtusifolia

    Institute of Scientific and Technical Information of China (English)

    LI ChuHuai; LI Mei; CHANG WenRui; GUO BaoJiang

    2008-01-01

    "Juemingzi", a source of traditional Chinese herbal medicine, has been demonstrated to play a role in decreasing serum cholesterol concentration. In this study, a novel protein, which has shown an in-hibitory effect on cholesterol biosynthesis, was isolated from Senna obtusifolia L. seed by gel filtration and ion exchange chromatography. The novel protein's molecular mass was 19.7 kD and its pl was 4.80. Both SDS-PAGE and isoelectric-focusing (IEF) revealed a single Coomassie brilliant blue stained band, indicating that the novel protein was a single peptide. The N-terminal amino acid sequence of the pro-tein was IPYISASFPLNIEFLPSE, which had no similarity with any other protein sequences in the NCBI protein database. Circular dichroism (CD) signals indicated that S. obtusifolia seed protein contained 12.5% α-helix, 55.6% β-sheet, and 31.9% random coil.

  11. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling.

    Directory of Open Access Journals (Sweden)

    Yangyong Lv

    Full Text Available Wheat (Triticum aestivum L. is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates and priming (hydro-priming treatment were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism and stress defense (ascorbate and aldarate metabolism. Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation, anabolism (amino acids, and fatty acid synthesis, and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were

  12. Seed protein and nitrogen fixation in chickpea mutant variety Hyprosola

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H E; Gibson, A H; Oram, R N [CSIRO, Division of Plant Industry, Canberra ACT (Australia); Shaikh, M A.Q. [Bangladesh Institute of Nuclear Agriculture, Mymensingh (Bangladesh)

    1989-01-01

    Full text: 'Hyprosola' is a high yielding, high protein mutant cultivar obtained after gamma irradiation from the variety 'Faridpur-1'. The mutant yields 45 % more protein per unit area. The essential amino acid index is unchanged. It is likely that the high nutritional value in 'Hyprosola' seed protein arises from an increase in the albumin:globulin ratio. Nitrogen fixation rates of the mutant during the first 7 weeks of growth were found to be similar to 'Faridpur-1'. Under field conditions, the mutant may be able to nodulate more rapidly and more extensively than the parent variety. (author)

  13. TOTAL AND FRACTIONAL CONTENTS OF PROTEINS IN BEAN SEEDS UNDER THE CONDITIONS OF VARIED FERTILISATION WITH MICROELEMENTS

    Directory of Open Access Journals (Sweden)

    Wojciech KOZERA

    2013-03-01

    Full Text Available Over 2003-2005 at the Experiment Station at Wierzchucinek at the University of Technology and Life Sciences in Bydgoszcz, there was performed a strict one-factor micro-plot experiment in split-splot design. The factor tested was a type of microelements [n=5: Cu, Zn, Mn, Mo, B]. The microelements were foliar sprayed in a chelated form, as the series of Symfonia fertilizers. The study aimed at comparing the effect of five agricultural-engineering basic microelements on the contents and protein composition of the seeds of Aura cultivar. The fertilization applied, boron and manganese in particular, showed an effect on the increase in the contents of total protein in bean seeds. It also modified the fractional composition of the bean seed protein. There was observed a clear increase in the fraction of albumins and globulins in seeds as a result of the microelements applied, except for boron. The fertilization with molybdenum, boron, copper and zinc reduced the content of glutelins, and the sum of glulelins and prolamines in the bean seeds.

  14. Longevidade de sementes de camu-camu submetidas a diferentes ambientes e formas de conservação Longevity camu-camu seeds submitted to different storage environment and forms of conservation

    Directory of Open Access Journals (Sweden)

    Kaoru Yuyama

    2011-06-01

    Full Text Available O camu-camu (Myrciaria dubia (H.B.K. McVaugh produz fruto com grande potencial para extração de ácido ascórbico, que apresenta relevante importância econômica e social, com inúmeras aplicações industriais. O objetivo deste trabalho foi avaliar o efeito de diferentes formas de conservação e ambientes de armazenamento, sobre a manutenção da viabilidade das sementes. O delineamento experimental inteiramente casualizado, utilizando parcelas subsubdivididas, onde os fatores foram: ambiente de armazenamento (ao ar livre, em água, em câmara a 5 e a 10 ºC, forma de conservação (sementes com polpa - CP, sementes sem polpa - SP e sementes lavadas e tratadas - LT e período de armazenamento (0; 2; 4 e 6 meses. O critério de avaliação adotado foi a protrusão da raiz primária. As sementes armazenadas em água, nas formas SP e LT, apresentaram germinação maior que 90%. As sementes nas formas CP e LT, armazenadas a 5 e a 10 ºC, tiveram germinação acima de 89%. O armazenamento em água e ao ar livre não afetou a germinação, podendo as sementes serem armazenadas durante o período de seis e quatro meses, respectivamente. As sementes CP, armazenadas em água, tiveram menor tempo médio para germinação. O índice de velocidade de germinação aumentou com o período de armazenamento e foi maior nas sementes armazenadas na água em todos os períodos. As sementes com polpa apresentaram menor índice de velocidade de germinação em todo o período de armazenamento avaliado.Camu-camu (Myrciaria dubia (H.B.K. McVaugh contains great potential for ascorbic acid extraction, which has economic and social importance, with innumerable industrial applications. The objective of this work was to evaluate the effect of different storage environment and forms of conservation for maintaining the viability of camu-camu seeds. The experimental design was randomized blocks design in split split-plot, with the following factors: storage conditions

  15. Proteome-Level Analysis of Metabolism- and Stress-Related Proteins during Seed Dormancy and Germination in Gnetum parvifolium.

    Science.gov (United States)

    Chang, Ermei; Deng, Nan; Zhang, Jin; Liu, Jianfeng; Chen, Lanzhen; Zhao, Xiulian; Abbas, M; Jiang, Zeping; Shi, Shengqing

    2018-03-21

    Gnetum parvifolium is a rich source of materials for traditional medicines, food, and oil, but little is known about the mechanism underlying its seed dormancy and germination. In this study, we analyzed the proteome-level changes in its seeds during germination using isobaric tags for relative and absolute quantitation. In total, 1,040 differentially expressed proteins were identified, and cluster analysis revealed the distinct time points during which signal transduction and oxidation-reduction activity changed. Gene Ontology analysis showed that "carbohydrate metabolic process" and "response to oxidative stress" were the main enriched terms. Proteins associated with starch degradation and antioxidant enzymes were important for dormancy-release, while proteins associated with energy metabolism and protein synthesis were up-regulated during germination. Moreover, protein-interaction networks were mainly associated with heat-shock proteins. Furthermore, in accord with changes in the energy metabolism- and antioxidant-related proteins, indole-3-acetic acid, Peroxidase, and soluble sugar content increased, and the starch content decreased in almost all six stages of dormancy and germination analyzed (S1-S6). The activity of superoxide dismutase, abscisic acid, and malondialdehyde content increased in the dormancy stages (S1-S3) and then decreased in the germination stages (S4-S6). Our results provide new insights into G. parvifolium seed dormancy and germination at the proteome and physiological levels, with implications for improving seed propagation.

  16. Two proteins for the price of one: Structural studies of the dual-destiny protein preproalbumin with sunflower trypsin inhibitor-1.

    Science.gov (United States)

    Franke, Bastian; James, Amy M; Mobli, Mehdi; Colgrave, Michelle L; Mylne, Joshua S; Rosengren, K Johan

    2017-07-28

    Seed storage proteins are both an important source of nutrition for humans and essential for seedling establishment. Interestingly, unusual napin-type 2S seed storage albumin precursors in sunflowers contain a sequence that is released as a macrocyclic peptide during post-translational processing. The mechanism by which such peptides emerge from linear precursor proteins has received increased attention; however, the structural characterization of intact precursor proteins has been limited. Here, we report the 3D NMR structure of the Helianthus annuus PawS1 ( p repro a lbumin w ith s unflower trypsin inhibitor- 1 ) and provide new insights into the processing of this remarkable dual-destiny protein. In seeds, PawS1 is matured by asparaginyl endopeptidases (AEPs) into the cyclic peptide SFTI-1 ( s un f lower t rypsin i nhibitor- 1 ) and a heterodimeric 2S albumin. The structure of PawS1 revealed that SFTI-1 and the albumin are independently folded into well-defined domains separated by a flexible linker. PawS1 was cleaved in vitro with recombinant sunflower HaAEP1 and in situ using a sunflower seed extract in a way that resembled the expected in vivo cleavages. Recombinant HaAEP1 cleaved PawS1 at multiple positions, and in situ , its flexible linker was removed, yielding fully mature heterodimeric albumin. Liberation and cyclization of SFTI-1, however, was inefficient, suggesting that specific seed conditions or components may be required for in vivo biosynthesis of SFTI-1. In summary, this study has revealed the 3D structure of a macrocyclic precursor protein and provided important mechanistic insights into the maturation of sunflower proalbumins into an albumin and a macrocyclic peptide. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Seed coat color, weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line

    Directory of Open Access Journals (Sweden)

    Reda M. Gaafar

    2016-06-01

    Full Text Available Gamma radiation is a very effective tool for inducing genetic variation in characters of many plants. Black seeds of M2 mutant were obtained after exposure of an Egyptian cowpea cultivar (Kaha 1 to a low dose of gamma rays. Segregation of seed coat color, weight of 100 seeds and seed eye pattern of the black seeds of this mutant line were further examined in this study. Four colors were observed for seed coat in the M3 plants ranging from cream to reddish brown and three eye patterns were distinguished from each other. SDS–PAGE of the seed storage proteins showed 18 protein bands; five of these bands disappeared in the seeds of M3 plants compared to M2 and M0 controls while other 5 protein bands were specifically observed in seeds of M3 plants. PCR analysis using twelve ISSR primers showed 47 polymorphic and 8 unique amplicons. The eight unique amplicons were characteristic of the cream coat color and brown wide eye pattern (M03-G10 while the polymorphic bands were shared by 6 coat-color groups. A PCR fragment of 850 bp was amplified, using primer HB-12, in M3-G04 which showed high-100 seed weight. These results demonstrated the mutagenic effects of gamma rays on seed coat color, weight of 100 seeds and eye pattern of cowpea M3 mutant plants.

  18. Constitutive expression of feedback-insensitive cystathionine γ-synthase increases methionine levels in soybean leaves and seeds

    Institute of Scientific and Technical Information of China (English)

    YU Yang; HOU Wen-sheng; YaeI Hacham; SUN Shi; WU Cun-xiang; Ifat Matityahu; SONG Shikui; RacheI Amir; HAN Tian-fu

    2018-01-01

    Soybean (Glycine max (L.) Merr.) is a major crop that provides plant-origin protein and oil for humans and livestock. Although the soybean vegetative tissues and seeds provide a major source of high-quality protein, they suffer from low concentration of an essential sulfur-containing amino acid, methionine, which significantly limits their nutritional quality. The level of methionine is mainly controlled by the first unique enzyme of methionine synthesis, cystathione γ-synthase (CGS). Aiming to elevate methionine level in vegetative tissues and seeds, we constitutively over-expressed a feedback-insensitive Arabidopsis CGS (AtD-CGS) in soybean cultivars, Zigongdongdou (ZD) and Jilinxiaoli 1 (JX). The levels of soluble methionine increased remarkably in leaves of transgenic soybeans compared to wild-type plants (6.6- and 7.3-fold in two transgenic ZD lines, and 3.7-fold in one transgenic JX line). Furthermore, the total methionine contents were significantly increased in seeds of the transgenic ZD lines (1.5- to 4.8-fold increase) and the transgenic JX lines (1.3- to 2.3-fold increase) than in the wild type. The protein contents of the transgenic soybean seeds were significantly elevated compared to the wild type, suggesting that the scarcity of methionine in soybeans may limit protein accumulation in soybean seeds. The increased protein content did not alter the profile of major storage proteins in the seeds. Generally, this study provides a promising strategy to increase the levels of methionine and protein in soybean through the breeding programs.

  19. Biochemical changes during aging of soybean seed

    Directory of Open Access Journals (Sweden)

    Balešević-Tubić Svetlana

    2009-01-01

    Full Text Available Biochemical changes that occur in the seed as a result of ageing are very significant for seed quality and longevity. Because of its characteristic composition, processes occurring in the seed of oil crops during storage will be typical as well. Six soybean varieties developed in Institute of field and vegetable crops Novi Sad, submitted to accelerated and natural aging, under controlled and conventional storage conditions were used in these trials. The content of malondialdehyde, superoxide dismutase and peroxidase activities were studied. The biochemical processes i.e. lipid peroxidation, as well as the decrease in supeoxide dismutase and peroxidase activities (especially pronounced by applied accelerated aging were caused by both type of aging. The degree of seed damage and the ability of seed to resist the negative consequences of aging were influenced, beside duration of aging period, by type of storage and characteristics of soybean varieties. .

  20. Ribosomal protein NtRPL17 interacts with kinesin-12 family protein NtKRP and functions in the regulation of embryo/seed size and radicle growth.

    Science.gov (United States)

    Tian, Shujuan; Wu, Jingjing; Liu, Yuan; Huang, Xiaorong; Li, Fen; Wang, Zhaodan; Sun, Meng-Xiang

    2017-11-28

    We previously reported that a novel motor protein belonging to the kinesin-12 family, NtKRP, displays critical roles in regulating embryo and seed size establishment. However, it remains unknown exactly how NtKRP contributes to this developmental process. Here, we report that a 60S ribosomal protein NtRPL17 directly interacts with NtKRP. The phenotypes of NtRPL17 RNAi lines show notable embryo and seed size reduction. Structural observations of the NtRPL17-silenced embryos/seeds reveal that the embryo size reduction is due to a decrease in cell number. In these embryos, cell division cycle progression is delayed at the G2/M transition. These phenotypes are similar to that in NtKRP-silenced embryos/seeds, indicating that NtKRP and NtRPL17 function as partners in the same regulatory pathway during seed development and specifically regulate cell cycle progression to control embryo/seed size. This work reveals that NtRPL17, as a widely distributed ribosomal protein, plays a critical role in seed development and provides a new clue in the regulation of seed size. Confirmation of the interaction between NtKRP and NtRPL17 and their co-function in the control of the cell cycle also suggests that the mechanism might be conserved in both plants and animals. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Influence of postradiation moisture alteration on biological after-effect in Crepis seeds

    Energy Technology Data Exchange (ETDEWEB)

    Atayan, R R; Gabrielian, J Y [AN Armyanskoj SSR, Erevan. Inst. Fiziki

    1978-02-01

    A series of X-ray exposures was given to Crepis capillaris seeds of different water contents. Cytogenetic changes in the seeds were determined immediately after irradiation and after storage at different relative humidities. The amount of damage that developed during postirradiation storage as well as the initial radiobiological effect decreased as seed water content increased from 2.4% to 7.6 to 12.6%. Differences in postirradiation damage were revealed within four hours of storage and manifest as a fast component to the curve of storage versus damage. In seeds of 7.6 and 12.6% water content, both the amount of biological after-effect and the rate of injury progression did not depend markedly on relative humidity of storage atmosphere. These seeds demonstrated only a slow after-effect, which appeared to be the same at any seed-moisture level, thus indicating that only the fast component is subject to postirradiation modification. With dry irradiated seeds demonstrating fast postirradiation injury progression, the following results were obtained: (a) after-effect in seeds of 2.4% water content decreased with increasing humidity of storage atmosphere; no after-effect developed when the seeds were stored at 100% relative humidity; (b) after-effect in seeds of 6% water content was significantly increased if they were stored at 0% relative humidity. These results are consistent with the pattern expected of a free radical concept.

  2. Structural mechanics of seed deterioration: Standing the test of time

    Science.gov (United States)

    Seeds die unexpectedly during storage and current understanding of seed quality and storage conditions does not allow reliable means to predict or prevent this critical problem. Chemical degradation of seed components likely occurs through oxidative damage, but the rate of these reactions is domina...

  3. Approaches to improving the nutritional quality of barley seed proteins

    International Nuclear Information System (INIS)

    Shewry, P.R.; Bright, S.W.J.; Burgess, S.R.; Miflin, B.J.

    1984-01-01

    The poor nutritional quality of barley grain is determined by the low level of lysine in the prolamin storage proteins (hordein). These account for between 35 to 50% of the total grain nitrogen, depending on the nutritional status of the plant. There is a reduced proportion of hordein in mutant high lysine lines but these also have reduced synthesis of storage carbohydrates and hence low yields. Three strategies for improvement are discussed. Increases in the lysine content of hordein may be difficult to achieve because of the presence of complex families of structural genes. It would also be necessary to insert a large number of additional lysine residues. Two more promising approaches are to increase the level of expression of genes coding for lysine-rich globulin storage proteins and to increase the pool of free lysine by selecting mutant lines with relaxed feedback regulation of lysine synthesis. (author)

  4. Effectivity of Sugar-Apple (Annona squamosa Seed Extract with a Different Length of Storage against Culec quinquefasciatus Larvae

    Directory of Open Access Journals (Sweden)

    Heni Prasetyowati

    2012-06-01

    Full Text Available Synthetic insecticide have been used to control Culex quinquefasciatus, but the prolonged usage of synthetic insecticide has a bad impact on the environment and may caused resistance. Sugar apple’s (Annona squamosa seeds which contain alkaloid can be used as an alternative insecticide that was safe for environment. This research aims is to know the effect of sugar apple’s seeds with different length of storage as C. quinquefasciatus larvacide. This research was an experimental study with a randomized controlled trial group design approach. The test material was an extract of sugar apple’s seeds which have been kept for 0, 1, 2, and 3 week with LC50 (0,47 ppm was used. Each treatment used 25 C. quinquefasciatus larvae from third instar larvae stage and replicated five times. After exposed for 24 hours, dead larvae counted. The result confirmed that the extract of sugar apple’s seeds which has been stored in 0, 1, 2, and 3 week did not showed any significant different on larvae mortality. Extract of sugar apple’s seeds which have been stored in 0, 1, 2, and 3 week have an equal activity as Culex quinquefasciatus larvicide.

  5. Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination.

    Science.gov (United States)

    Zhou, San; Sekizaki, Haruo; Yang, Zhihong; Sawa, Satoko; Pan, Jun

    2010-10-27

    Hardseededness in annual wild soybean (Glycine soja Sieb. Et Zucc.) is a valuable trait that affects the germination, viability, and quality of stored seeds. Two G. soja ecotypes native to Shandong Province of China have been used to identify the phenolics in the seed coat that correlate with the seed hardness and seed germination. Three major phenolics from the seed coat were isolated and identified as epicatechin, cyanidin 3-O-glucoside, and delphinidin 3-O-glucoside. Of the three phenolics, only the change of epicatechin exhibited a significant positive correlation with the change of hard seed percentages both under different water conditions during seed development and under different gas conditions during seed storage. Epicatechin also reveals a hormesis-like effect on the seed germination of G. soja. Epicatechin is suggested to be functionally related to coat-imposed hardseededness in G. soja.

  6. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    Science.gov (United States)

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  7. Corn Storage Protein - A Molecular Genetic Model

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Joachim [Rutgers Univ., Piscataway, NJ (United States)

    2013-05-31

    Corn is the highest yielding crop on earth and probably the most valuable agricultural product of the United States. Because it converts sun energy through photosynthesis into starch and proteins, we addressed energy savings by focusing on protein quality. People and animals require essential amino acids derived from the digestion of proteins. If proteins are relatively low in certain essential amino acids, the crop becomes nutritionally defective and has to be supplemented. Such deficiency affects meat and fish production and countries where corn is a staple. Because corn seed proteins have relatively low levels of lysine and methionine, a diet has to be supplemented with soybeans for the missing lysine and with chemically synthesized methionine. We therefore have studied genes expressed during maize seed development and their chromosomal organization. A critical technical requirement for the understanding of the molecular structure of genes and their positional information was DNA sequencing. Because of the length of sequences, DNA sequencing methods themselves were insufficient for this type of analysis. We therefore developed the so-called “DNA shotgun sequencing” strategy, where overlapping DNA fragments were sequenced in parallel and used to reconstruct large DNA molecules via overlaps. Our publications became the most frequently cited ones during the decade of 1981-1990 and former Associate Director of Science for the Office of Basic Energy Sciences Patricia M. Dehmer presented our work as one of the great successes of this program. A major component of the sequencing strategy was the development of bacterial strains and vectors, which were also used to develop the first biotechnology crops. These crops possessed new traits thanks to the expression of foreign genes in plants. To enable such expression, chimeric genes had to be constructed using our materials and methods by the industry. Because we made our materials and methods freely available to

  8. IMPACT OF LIQUID NITROGEN EXPOSURE ON SELECTED BIOCHEMICAL AND STRUCTURAL PARAMETERS OF HYDRATED Phaseolus vulgaris L. SEEDS.

    Science.gov (United States)

    Cejas, Inaudis; Rivas, Maribel; Nápoles, Lelurlys; Marrero, Pedro; Yabor, Lourdes; Aragón, Carlos; Pérez, Aurora; Engelmann, Florent; Martínez-Montero, Marcos Edel; Lorenzo, José Carlos

    2015-01-01

    It is well known that cryopreserving seeds with high water content is detrimental to survival, but biochemical and structural parameters of cryostored hydrated common bean seeds have not been published. The objective of this work was to study the effect of liquid nitrogen exposure on selected biochemical and structural parameters of hydrated Phaseolus vulgaris seeds. We cryopreserved seeds at various moisture contents and evaluated: germination; electrolyte leakage; fresh seed weight; levels of chlorophyll pigments, malondialdehyde, other aldehydes, phenolics and proteins; thickness of cotyledon epidermis, parenchyma, and starch storage parenchyma; and radicle and plumule lengths. Germination was totally inhibited when seeds were immersed in water for 50 min (moisture content of 38%, FW basis) before cryopreservation. The combined effects of seed water imbibition and cryostorage decreased phenolics (free, cell wall-linked, total), chlorophyll a and protein content. By contrast, electrolyte leakage and levels of chlorophyll b and other aldehydes increased as a result of the combination of these two experimental factors. These were the most significant effects observed during exposure of humid seed to liquid nitrogen. Further studies are still required to clarify the molecular events taking place in plant cells during cryostorage.

  9. Galactinol as marker for seed longevity

    NARCIS (Netherlands)

    Souza Vidigal, De D.; Willems, L.A.J.; Arkel, van J.; Dekkers, S.J.W.; Hilhorst, H.W.M.; Bentsink, L.

    2016-01-01

    Reduced seed longevity or storability is a major problem in seed storage and contributes to increasedcosts in crop production. Here we investigated whether seed galactinol contents could be predictive forseed storability behavior in Arabidopsis, cabbage and tomato. The analyses revealed a positive

  10. Effects of Long-Term Storage Time and Original Sampling Month on Biobank Plasma Protein Concentrations

    Directory of Open Access Journals (Sweden)

    Stefan Enroth

    2016-10-01

    Full Text Available The quality of clinical biobank samples is crucial to their value for life sciences research. A number of factors related to the collection and storage of samples may affect the biomolecular composition. We have studied the effect of long-time freezer storage, chronological age at sampling, season and month of the year and on the abundance levels of 108 proteins in 380 plasma samples collected from 106 Swedish women. Storage time affected 18 proteins and explained 4.8–34.9% of the observed variance. Chronological age at sample collection after adjustment for storage-time affected 70 proteins and explained 1.1–33.5% of the variance. Seasonal variation had an effect on 15 proteins and month (number of sun hours affected 36 proteins and explained up to 4.5% of the variance after adjustment for storage-time and age. The results show that freezer storage time and collection date (month and season exerted similar effect sizes as age on the protein abundance levels. This implies that information on the sample handling history, in particular storage time, should be regarded as equally prominent covariates as age or gender and need to be included in epidemiological studies involving protein levels.

  11. Meta-Analyses of QTLs Associated with Protein and Oil Contents and Compositions in Soybean [Glycine max (L.) Merr.] Seed.

    Science.gov (United States)

    Van, Kyujung; McHale, Leah K

    2017-06-01

    Soybean [ Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs.

  12. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    International Nuclear Information System (INIS)

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen

    2016-01-01

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.

  13. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen, E-mail: sodmergn@pku.edu.cn

    2016-05-27

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.

  14. Proteomic Analysis of Sauvignon Blanc Grape Skin, Pulp and Seed and Relative Quantification of Pathogenesis-Related Proteins.

    Directory of Open Access Journals (Sweden)

    Bin Tian

    Full Text Available Thaumatin-like proteins (TLPs and chitinases are the main constituents of so-called protein hazes which can form in finished white wine and which is a great concern of winemakers. These soluble pathogenesis-related (PR proteins are extracted from grape berries. However, their distribution in different grape tissues is not well documented. In this study, proteins were first separately extracted from the skin, pulp and seed of Sauvignon Blanc grapes, followed by trypsin digestion and analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS. Proteins identified included 75 proteins from Sauvignon Blanc grape skin, 63 from grape pulp and 35 from grape seed, mostly functionally classified as associated with metabolism and energy. Some were present exclusively in specific grape tissues; for example, proteins involved in photosynthesis were only detected in grape skin and proteins found in alcoholic fermentation were only detected in grape pulp. Moreover, proteins identified in grape seed were less diverse than those identified in grape skin and pulp. TLPs and chitinases were identified in both Sauvignon Blanc grape skin and pulp, but not in the seed. To relatively quantify the PR proteins, the protein extracts of grape tissues were seperated by HPLC first and then analysed by SDS-PAGE. The results showed that the protein fractions eluted at 9.3 min and 19.2 min under the chromatographic conditions of this study confirmed that these corresponded to TLPs and chitinases seperately. Thus, the relative quantification of TLPs and chitinases in protein extracts was carried out by comparing the area of corresponding peaks against the area of a thamautin standard. The results presented in this study clearly demonstrated the distribution of haze-forming PR proteins in grape berries, and the relative quantification of TLPs and chitinases could be applied in fast tracking of changes in PR proteins during grape growth and

  15. The effect of aging on mitochondrial proteins in germinating soybean embryonic axes

    International Nuclear Information System (INIS)

    Furman, K.C.

    1988-01-01

    Aging-induced deterioration is a major problem associated with seed storage. Impairment of mitochondrial function is one of the first effects of aging. The composition and synthesis of nuclear and mito-coded mitochondrial proteins from soybean (Glycine max. L. Merr.) embryonic axes were studied to elucidate the cause of impaired respiratory development during germination of aged seeds. Axes excised from high vigor (HV) seeds and aged or low vigor (LV) seeds were protected from imbibition injury and germinated for various times, or excised from developing seeds, and then radiolabeled for one hour in [ 35 S]methionine. Mitochondria were then isolated and total mitochondrial protein was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by quantitative staining and fluorography of labeled polypeptides. Alternatively, an original two-dimensional native-to-denaturing gel electrophoretic technique was used to analyze native protein associations and to purify a 23 kD polypeptide

  16. Biomimetic materials for protein storage and transport

    Science.gov (United States)

    Firestone, Millicent A [Elmhurst, IL; Laible, Philip D [Villa Park, IL

    2012-05-01

    The invention provides a method for the insertion of protein in storage vehicles and the recovery of the proteins from the vehicles, the method comprising supplying isolated protein; mixing the isolated protein with a fluid so as to form a mixture, the fluid comprising saturated phospholipids, lipopolymers, and a surfactant; cycling the mixture between a first temperature and a second temperature; maintaining the mixture as a solid for an indefinite period of time; diluting the mixture in detergent buffer so as to disrupt the composition of the mixture, and diluting to disrupt the fluid in its low viscosity state for removal of the guest molecules by, for example, dialysis, filtering or chromatography dialyzing/filtering the emulsified solid.

  17. Enhanced seed viability and lipid compositional changes during natural aging by suppressing phospholipase Dα in soybean seed

    Science.gov (United States)

    Lee, Junghoon; Welti, Ruth; Roth, Mary; Schapaugh, William T.; Li, Jiarui; Trick, Harold N.

    2013-01-01

    Summary Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols, i.e. the storage lipids. Phospholipase D (PLD) catalyzes the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild type seeds stored for 33 months were non-viable, 30 to 50% of PLDα-knockdown (PLD-KD) soybean seeds stored for 33 months germinated. Wild type and PLD-KD seeds increased in lysophospholipid levels and in triacylglycerol fatty acid unsaturation during aging, but the levels of lysophospholipids increased more in wild type than in PLD-KD seeds. The loss of viability of wild type seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural aging, PLDα affects the soybean phospholipid profile and the triacylglycerol profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long-term storage. PMID:21895945

  18. Behavior of whey protein concentrates under extreme storage conditions

    Science.gov (United States)

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  19. Conditions Affecting Shelf-Life of Inoculated Legume Seed

    Directory of Open Access Journals (Sweden)

    Greg Gemell

    2012-02-01

    Full Text Available Microbial inoculants are becoming more available as sustainable alternatives to fertilizers and other agrichemicals in broad-acre cropping. However, with the exception of legume inoculants little is understood about effective delivery and survival of the inoculum. Legume inoculants are applied to both seed and soil but seed inoculation is the most economical technique. Large quantities of pasture seed in Australia are inoculated by commercial seed coating companies, but the long-term survival of seed-applied inoculum is variable and monitoring of viability requires specialist microbiology skills and facilities. The aim of our research was to define optimum storage conditions for survival of rhizobia on legume seed and evaluate water activity as a means of monitoring shelf-life. The relationship between survival and water activity varied according to seed species, inoculum preparation, coating ingredients, initial water activity and time suggesting that storage conditions would need to be defined for each different combination. Although drying seeds after coating significantly reduced viable numbers of rhizobia, survival of rhizobia on dried commercially coated lucerne seed after 11 weeks was less variable than seeds that had not been dried. The highest numbers were maintained when seeds remained dry with water activities of between 0.47 and 0.38. The quality of inoculated seed could be improved by reducing the death rate of inoculum during preparation and providing optimum storage conditions for long-term survival.

  20. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development

    Science.gov (United States)

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. PMID:26786011

  1. Identification and Assessment of the Potential Allergenicity of 7S Vicilins in Olive (Olea europaea L. Seeds

    Directory of Open Access Journals (Sweden)

    Jose C. Jimenez-Lopez

    2016-01-01

    Full Text Available Olive seeds, which are a raw material of interest, have been reported to contain 11S seed storage proteins (SSPs. However, the presence of SSPs such as 7S vicilins has not been studied. In this study, following a search in the olive seed transcriptome, 58 sequences corresponding to 7S vicilins were retrieved. A partial sequence was amplified by PCR from olive seed cDNA and subjected to phylogenetic analysis with other sequences. Structural analysis showed that olive 7S vicilin contains 9 α-helixes and 22 β-sheets. Additionally, 3D structural analysis displayed good superimposition with vicilin models generated from Pistacia and Sesamum. In order to assess potential allergenicity, T and B epitopes present in these proteins were identified by bioinformatic approaches. Different motifs were observed among the species, as well as some species-specific motifs. Finally, expression analysis of vicilins was carried out in protein extracts obtained from seeds of different species, including the olive. Noticeable bands were observed for all species in the 15–75 kDa MW interval, which were compatible with vicilins. The reactivity of the extracts to sera from patients allergic to nuts was also analysed. The findings with regard to the potential use of olive seed as food are discussed.

  2. Viability of seeds of two representatives from Apocynaceae family

    Directory of Open Access Journals (Sweden)

    Y.A. Aviekin

    2015-05-01

    Full Text Available The viability of some Apocynaceae seeds depending on the duration of storage under conditions of low temperature was studied. Extracted embryos from the seeds of Pachypodium lamerei Drake and Adenium obesum (Forssk. Roem. et Schult with different storage history were analyzed. Embryos were stained by acidic fuchsine what allows identification of viable and destructed cells. Destructed cells were stained much more intensively, while viable cells remained unstained. Observed results showed dependence of viability of P. lamerei and A. obesum seeds from term of storage. It was obtained that the seeds of investigated succulent species, just like in many other tropical plants, rapidly lost their viability and should be described as microbiotic.

  3. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    Science.gov (United States)

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Electron beam irradiation: laboratory and field studies of cowpea seeds

    International Nuclear Information System (INIS)

    Srinivasan, K.; Chauhan, S.K.; Prasad, T.V.; Pramod, R.; Verma, V.P.; Petwal, V.; Dwivedi, J.; Bhalla, S.

    2015-01-01

    Cowpea (Vigna unguiculata) rich in protein and vitamins is emerging as one of the most important food legumes to tackle malnutrition. Pulse beetles (Callosobruchus chinensis and C. maculatus) are the pests of economic importance causing enormous losses during storage. Although various pest management strategies exist for the control of these pests, environmental concerns necessitate developing ecofriendly strategies. Electron beam (EB) irradiation has the potential to be a viable, non-chemical, residue-free strategy for management of pulse beetles during storage, but higher doses affect seed germination and viability. Hence, the present investigation was taken up to analyse the dosage effect of the irradiation on seed attributes of cowpea. Healthy cowpea seeds were irradiated with low energy electrons at different doses viz., 180, 360, 540, 720, 900, 1080, 1260, 1440 and 1620 Gy at 500 keV using the EB Accelerator facility at Raja Ramanna Centre for Advanced Technology, Indore. EB irradiated seeds were tested for physiological viz., germination, seedling vigour and vigour index and biochemical parameters viz., electrical conductivity of seed leachate, seed viability/tetrazolium test and dehydrogenase activity. Germination and vigour of the irradiated seeds were evaluated as per the ISTA Rules (ISTA, 1996). Vigour index was calculated as the product of germination percentage and seedling vigour. About 3,000 irradiated seeds from each dose were grown in the field at the Experimental farm, National Bureau of Plant Genetic Resources, New Delhi. Seeds harvested from 1500 individual plants of M 1 generation from each dose (50 seeds from each plant individually) were sown in next season and observed for chlorophyll mutations, if any. Results revealed that doses upto 1080 Gy (88%) did not affect the germination of cowpea seeds drastically as compared to untreated seeds (98%). Lower doses viz., 180 and 360 Gy had no impact on vigour components while higher doses (1080 Gy

  5. The effects of feed composition on the sensory quality of organic rainbow trout during ice storage

    DEFF Research Database (Denmark)

    Green-Pedersen, Ditte; Hyldig, Grethe; Jacobsen, Charlotte

    fishmeal and a mixture of protein from organic vegetable, while the lipid sources were fish oil and organic oil from linseed, sunflower, rapeseed and grape seed. Sensory analysis was performed after 3, 5, 7 and 14 days of storage in ice. The results showed that both protein and lipid source in the feed can...... after 14 days of storage, indicating that vegetable protein in the feed increases the self-life of organic rainbow trout.......The focus of this work was to study which effects the type of protein and lipid source in the feed for organic Rainbow trout influences had on the sensory quality of final product. Two and four different protein and lipid sources were used in the experiment respectively. The protein sources were...

  6. Tolerance of Coffea arabica L. seeds to sub zero temperatures

    Directory of Open Access Journals (Sweden)

    Stefania Vilas Boas Coelho

    Full Text Available ABSTRACT Preservation of the quality of coffee seeds is hindered by their intermediate behavior in storage. However, long-term storage at sub zero temperatures may be achieved by adjusting the water content of the seeds. The aim of this study was to evaluate the tolerance of coffee seeds to freezing, in relation to physiological and enzymatic modifications. Coffee seeds were dried in two manners, rapid and slow, to water contents of interest, 0.67, 0.43, 0.25, 0.18, 0.11, and 0.05 g H2O g-¹ dw (dry basis. After drying, the seeds were stored at a temperature of -20 ºC and of 86 ºC for 24 hours and for 12 months, and then compared to seeds in cold storage at 10 ºC. The seeds were evaluated through calculation of percentage of normal seedlings, percentage of seedlings with expanded cotyledonary leaves, dry matter of roots and of hypocotyls, and viability of embryos in the tetrazolium test. Expression of the enzymes superoxide dismutase, catalase, and peroxidase were evaluated by means of electrophoretic analysis. Only seeds dried more slowly to 0.18 g H2O g-1 dw present relative tolerance to storing at -20 °C for 12 months. Coffee seeds do not tolerate storage at a temperature of -86 ºC for 12 months. Water contents below 0.11g H2O g-¹ dw and above 0.43 g H2O g-¹ dw hurt the physiological quality of coffee seeds, regardless of the type of drying, temperature, and storage period. Coffee seed embryos are more tolerant to desiccation and to freezing compared to whole seeds, especially when the seeds are dried to 0.05 g H2O g-¹ dw. The catalase enzyme can be used as a biochemical marker to study tolerance to freezing in coffee seeds.

  7. Biology in the Dry Seed: Transcriptome Changes Associated with Dry Seed Dormancy and Dormancy Loss in the Arabidopsis GA-Insensitive sleepy1-2 Mutant

    Directory of Open Access Journals (Sweden)

    Sven K. Nelson

    2017-12-01

    Full Text Available Plant embryos can survive years in a desiccated, quiescent state within seeds. In many species, seeds are dormant and unable to germinate at maturity. They acquire the capacity to germinate through a period of dry storage called after-ripening (AR, a biological process that occurs at 5–15% moisture when most metabolic processes cease. Because stored transcripts are among the first proteins translated upon water uptake, they likely impact germination potential. Transcriptome changes associated with the increased seed dormancy of the GA-insensitive sly1-2 mutant, and with dormancy loss through long sly1-2 after-ripening (19 months were characterized in dry seeds. The SLY1 gene was needed for proper down-regulation of translation-associated genes in mature dry seeds, and for AR up-regulation of these genes in germinating seeds. Thus, sly1-2 seed dormancy may result partly from failure to properly regulate protein translation, and partly from observed differences in transcription factor mRNA levels. Two positive regulators of seed dormancy, DELLA GAI (GA-INSENSITIVE and the histone deacetylase HDA6/SIL1 (MODIFIERS OF SILENCING1 were strongly AR-down-regulated. These transcriptional changes appeared to be functionally relevant since loss of GAI function and application of a histone deacetylase inhibitor led to decreased sly1-2 seed dormancy. Thus, after-ripening may increase germination potential over time by reducing dormancy-promoting stored transcript levels. Differences in transcript accumulation with after-ripening correlated to differences in transcript stability, such that stable mRNAs appeared AR-up-regulated, and unstable transcripts AR-down-regulated. Thus, relative transcript levels may change with dry after-ripening partly as a consequence of differences in mRNA turnover.

  8. Effects of processing and storage on almond (Prunus dulcis L.) amandin immunoreactivity.

    Science.gov (United States)

    Su, Mengna; Liu, Changqi; Roux, Kenneth H; Gradziel, Thomas M; Sathe, Shridhar K

    2017-10-01

    A murine monoclonal antibody (mAb)-based enzyme-linked immunosorbent assay (ELISA) was used to assess amandin immunoreactivity in processed and long-term stored almonds. The results demonstrated that amandin immunoreactivity is stable in variously processed almond seeds. Using the ELISA, amandin immunoreactivity could be detected in commercial whole raw and processed (blanched, sliced, dry roasted, and indicated combinations thereof) almond seeds stored for eleven years and eight months, defatted almond seed flours from several almond varieties/hybrids and their borate saline buffer-solubilized protein extracts stored for ten years and seven months, and several almond varieties grown in different California counties (full fat flours and their defatted flour counterparts). Roasting Nonpareil whole full fat almond seeds, full fat flour, and defatted flour at 170°C for 20min each with 2, 5, 10, and 20% w/w corn syrup or sucrose did not prevent amandin detection by ELISA. Similarly, amandin detection in select food matrices spiked with Nonpareil almond protein extract was not inhibited. In conclusion, amandin is a stable target protein for almond detection under the tested processing and storage conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biochemical changes in garlic (Allium sativum L.) during storage following γ-irradiation

    International Nuclear Information System (INIS)

    Croci, C.A.; Orioli, G.A.; Arguello, J.A.

    1994-01-01

    The aim of this paper was to evaluate an acute dose of γ-rays (10 Gy) on post-dormant garlic seed cloves in terms of total DNA, total RNA, total protein and soluble carbohydrates in order to correlate these levels with sprouting inhibition induced by γ-irradiation. Decreases in total DNA content were found in inner sprouts immediately and 100 days after irradiation. The total RNA and protein contents and the carbohydrate content of the storage leaf or the inner sprout were not affected by γ-irradiation. The results support the notion that in post-dormant garlic seed cloves, DNA content and its behaviour seem to be among the sensitive cellular responses to radiation. (author)

  10. Biochemical changes in garlic (Allium sativum L. ) during storage following [gamma]-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Croci, C.A.; Orioli, G.A. (Univ. Nacional del Sur, Bahia Blanca (Argentina)); Arguello, J.A. (Univ. Nacional de Cordoba (Argentina))

    1994-02-01

    The aim of this paper was to evaluate an acute dose of [gamma]-rays (10 Gy) on post-dormant garlic seed cloves in terms of total DNA, total RNA, total protein and soluble carbohydrates in order to correlate these levels with sprouting inhibition induced by [gamma]-irradiation. Decreases in total DNA content were found in inner sprouts immediately and 100 days after irradiation. The total RNA and protein contents and the carbohydrate content of the storage leaf or the inner sprout were not affected by [gamma]-irradiation. The results support the notion that in post-dormant garlic seed cloves, DNA content and its behaviour seem to be among the sensitive cellular responses to radiation. (author).

  11. Exploring variation in pea protein composition by natural selection and genetic transformation

    NARCIS (Netherlands)

    Tzitzikas, E.

    2005-01-01

    Pea (Pisumsativum L.) seeds are a rich and valuable source of proteins, which can have potential for food industrial applications. Pea storage proteins are classified into two major classes: the salt-soluble globulins, and the water-soluble

  12. A Methodological Approach for Testing the Viability of Seeds Stored in Short-Term Seed Banks

    Directory of Open Access Journals (Sweden)

    Jose A. FORTE GIL

    2017-12-01

    Full Text Available Efficient management of ‘active’ seed banks – specifically aimed at the short-term storage at room temperature of seeds to be used locally in conservation/regeneration programmes of endemic or endangered plant species – requires establishing the optimal storage time to maintain high seed viability, for each stored species. In this work, germination of seeds of the halophytes Thalictrum maritimum, Centaurea dracunculifolia and Linum maritimum has been investigated. The seeds had been stored for different periods of time in the seed bank of ‘La Albufera’ Natural Park (Valencia, SE Spain after collection in salt marshes of the Park, where small populations of the three species are present. Seeds of T. maritimum and C. dracunculifolia have a relatively short period of viability at room temperature, and should not be stored for more than three years. On the other hand, L. maritimum seeds maintain a high germination percentage and can be kept at room temperature for up to 10 years. T. maritimum seeds, in contrast to those of the other two species, did not germinate in in vitro tests nor when sown directly on a standard substrate, unless a pre-treatment of the seeds was applied, mechanical scarification being the most effective. These results will help to improve the management of the seed bank, to generate more efficiently new plants for reintroduction and reinforcement of populations of these species in their natural ecosystems within the Natural Park.

  13. Utilization of Rubber Seed Meal as a Protein Supplement in Broiler ...

    African Journals Online (AJOL)

    A feeding triai was conducted to evaluate the performance of finisher broiler cbicks fed diets containing different levels of partially defatted rubber seed meal as a replacement for groundnut cake. Four isocaloric and isonitrogenous diets (A, B, C and D) were formulated using groundnut cake (GNC) as the reference protein ...

  14. Vigor of sunflower and soybean aging seed

    OpenAIRE

    Tatić M.; Balešević-Tubić S.; Ðorđević V.; Miklič V.; Vujaković M.; Ðukić V.

    2012-01-01

    Seed aging and deterioration affect seed vigor and viability. The characteristics of the chemical composition of oil crops seed are related to specific processes occurring in the seed during storage. This study was performed to examine the changes in seed vigor of different sunflower and soybean genotypes under controlled and conventional (uncontrolled) conditions of natural aging for six and twelve months. Obtained results show that the degree of seed dama...

  15. Purification, identification and preliminary crystallographic studies of a 2S albumin seed protein from Lens culinaris

    International Nuclear Information System (INIS)

    Gupta, Pankaj; Gaur, Vineet; Salunke, Dinakar M.

    2008-01-01

    A 2S albumin from L. culinaris was purified and crystallized and preliminary crystallographic studies were carried out. Lens culinaris (lentil) is a widely consumed high-protein-content leguminous crop. A 2S albumin protein (26.5 kDa) has been identified using NH 2 -terminal sequencing from a 90% ammonium sulfate saturation fraction of total L. culinaris seed protein extract. The NH 2 -terminal sequence shows very high homology to PA2, an allergy-related protein from Pisum sativum. The 2S albumin protein was purified using a combination of size-exclusion and ion-exchange chromatography. Crystals of the 2S seed albumin obtained using the hanging-drop vapour-diffusion method diffracted to 2.5 Å resolution and were indexed in space group P4 1 (or P4 3 ), with unit-cell parameters a = b = 78.6, c = 135.2 Å

  16. Irradiation and Post-Irradiation Storage of Chicken: Effects on Fat and Proteins

    International Nuclear Information System (INIS)

    Abou-Tarboush, H.M.; Al-Kahtani, H.A.; Abou-Arab, A.A.; Atia, M.; Bajaber, A.S.; Ahmed, M.A.; El-Mojaddidi, M.A.

    1997-01-01

    Chicken were subjected to gamma irradiation doses of 2.5, 5.0, 7.5 and 10.0 KGy and post-irradiation storage of 21 days at 4±2º. The effects on fat and protein of chicken were studied. Rate of formation of total volatile basic-nitrogen was less in irradiated samples particularly in samples treated with 5.0KGy during the entire storage. Fatty acid profiles of chicken lipids were not significantly (P≤ 0.05) affected by irradiation especially at doses of 5.0 KGy. However, irradiation caused a large increase in thiobarbituric acid (TBA) values which continued gradually during storage. Changes in amino acids were minimal. Irradiated and unirradiated samples showed the appearance of protein subunits with molecular weights in the range of 10.0 to 88.0 and 10.0 to 67.0 KD, respectively. No changes were observed in the sarcoplasmic protein but the intensity of bands in all irradiated samples decreased after 21 days of storage

  17. The role of cold storage and seed source in the germination of three Mediterranean shrub species with contrasting dormancy types

    NARCIS (Netherlands)

    Vasques, Ana; Vallejo, V. Ramón; Santos, M. Conceição; Keizer, J. Jacob

    2014-01-01

    Context: The use of native species in ecological restoration is highly recommended but, in practice, it is often impaired by knowledge gaps in the germination ecology of suitable species. Aims: This study aimed to assess the role of storage conditions and seed source on the germination of three

  18. DPPH radical scavenging activity of a mixture of fatty acids and peptide-containing compounds in a protein hydrolysate of Jatropha curcas seed cake.

    Science.gov (United States)

    Phengnuam, Thanyarat; Goroncy, Alexander K; Rutherfurd, Shane M; Moughan, Paul J; Suntornsuk, Worapot

    2013-12-04

    Jatropha curcas, a tropical plant, has great potential commercial relevance as its seeds have high oil content. The seeds can be processed into high-quality biofuel producing seed cake as a byproduct. The seed cake, however, has not gotten much attention toward its potential usefulness. This work was aimed to determine the antioxidant activity of different fractions of a protein hydrolysate from J. curcas seed cake and to elucidate the molecular structures of the antioxidants. Seed cake was first processed into crude protein isolate and the protein was hydrolyzed by Neutrase. The hydrolysate obtained from 1 h of Neutrase hydrolysis showed the strongest antioxidant activity against DPPH radical (2,2-diphenyl-1-picrylhydrazyl). After a purification series of protein hydrolysate by liquid chromatography, chemicals acting as DPPH radical inhibitors were found to be a mixture of fatty acids, fatty acid derivatives, and a small amount of peptides characterized by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy.

  19. The Seed Proteome Web Portal

    Directory of Open Access Journals (Sweden)

    Marc eGalland

    2012-06-01

    Full Text Available The Seed Proteome Web Portal (SPWP; http://www.seedproteome.com/ gives access to information both on quantitative seed proteomic data and on seed-related protocols. Firstly, the SPWP provides access to the 475 different Arabidopsis seed proteins annotated from 2 dimensional electrophoresis (2DE maps. Quantitative data are available for each protein according to their accumulation profile during the germination process. These proteins can be retrieved either in list format or directly on scanned 2DE maps. These proteomic data reveal that 40% of seed proteins maintain a stable abundance over germination, up to radicle protrusion. During sensu stricto germination (24 h upon imbibition about 50% of the proteins display quantitative variations, exhibiting an increased abundance (35% or a decreasing abundance (15%. Moreover, during radicle protrusion (24 h to 48 h upon imbibition, 41% proteins display quantitative variations with an increased (23% or a decreasing abundance (18%. In addition, an analysis of the seed proteome revealed the importance of protein post-translational modifications as demonstrated by the poor correlation (r2 = 0.29 between the theoretical (predicted from Arabidopsis genome and the observed protein isoelectric points. Secondly, the SPWP is a relevant technical resource for protocols specifically dedicated to Arabidopsis seed proteome studies. Concerning 2D electrophoresis, the user can find efficient procedures for sample preparation, electrophoresis coupled with gel analysis and protein identification by mass spectrometry, which we have routinely used during the last 12 years. Particular applications such as the detection of oxidized proteins or de novo synthetized proteins radiolabeled by [35S]-methionine are also given in great details. Future developments of this portal will include proteomic data from studies such as dormancy release and protein turnover through de novo protein synthesis analyses during germination.

  20. Enhanced seed viability and lipid compositional changes during natural ageing by suppressing phospholipase Dα in soybean seed.

    Science.gov (United States)

    Lee, Junghoon; Welti, Ruth; Roth, Mary; Schapaugh, William T; Li, Jiarui; Trick, Harold N

    2012-02-01

    Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols (TAG), i.e. the storage lipids. Phospholipase D (PLD) catalyses the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild-type (WT) seeds stored for 33 months were non-viable, 30%-50% of PLDα-knockdown (PLD-KD) soybean seeds stored for 33 months germinated. WT and PLD-KD seeds increased in lysophospholipid levels and in TAG fatty acid unsaturation during ageing, but the levels of lysophospholipids increased more in WT than in PLD-KD seeds. The loss of viability of WT seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural ageing, PLDα affects the soybean phospholipid profile and the TAG profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long-term storage. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  1. Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions.

    Science.gov (United States)

    Gonzalez, Juan A; Konishi, Yotaro; Bruno, Marcela; Valoy, Mariana; Prado, Fernando E

    2012-04-01

    Quinoa is a good source of protein and can be used as a nutritional ingredient in food products. This study analyses how much growing region and/or seasonal climate might affect grain yield and nutritional quality of quinoa seeds. Seeds of ten quinoa cultivars from the Andean highlands (Bolivia/Argentina site) and Argentinean Northwest (Encalilla site) were analysed for seed yield, protein content and amino acid composition. Grain yields of five cultivars growing at Encalilla were higher, and four were lower, compared with data from the Bolivia/Argentina site. Protein contents ranged from 91.5 to 155.3 and from 96.2 to 154.6 g kg(-1) dry mass for Encalilla and Bolivia/Argentina seeds respectively, while essential amino acid concentrations ranged from 179.9 to 357.2 and from 233.7 to 374.5 g kg(-1) protein respectively. Significant positive correlations were found between the content of essential amino acids and protein percentage. It appears that there are clear variations in seed yield, total protein content and amino acid composition among cultivars from the two sites. Essential amino acid composition was more affected than grain yield and protein level. The study revealed that both environmental and climatic factors influence the nutritional composition of quinoa cultivars growing in different agroecological regions. Copyright © 2011 Society of Chemical Industry.

  2. Analysis of the embryo proteome of sycamore (Acer pseudoplatanus L.) seeds reveals a distinct class of proteins regulating dormancy release.

    Science.gov (United States)

    Pawłowski, Tomasz Andrzej; Staszak, Aleksandra Maria

    2016-05-20

    Acer pseudoplatanus seeds are characterized by a deep physiological embryo dormancy that requires a few weeks of cold stratification in order to promote germination. Understanding the function of proteins and their related metabolic pathways, in conjunction with the plant hormones implicated in the breaking of seed dormancy, would expand our knowledge pertaining to this process. In this study, a proteomic approach was used to analyze the changes occurring in seeds in response to cold stratification, which leads to dormancy release. In addition, the involvement of abscisic (ABA) and gibberellic acids (GA) was also examined. Fifty-three proteins showing significant changes were identified by mass spectrometry. An effect of ABA on protein variation was observed at the beginning of stratification, while the influence of GA on protein abundance was observed during the middle phase of stratification. The majority of proteins associated with dormancy breaking in the presence of only water, and also ABA or GA, were classified as being involved in metabolism and genetic information processing. For metabolic-related proteins, the effect of ABA on protein abundance was stimulatory for half of the proteins and inhibitory for half of the proteins. On the other hand, the effect on genetic information processing related proteins was stimulatory. GA was found to upregulate both metabolic-related and genetic information processing-related proteins. While seed dormancy breaking depends on proteins involved in a variety of processes, proteins associated with methionine metabolism (adenosine kinase, methionine synthase) and glycine-rich RNA binding proteins appear to be of particular importance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Improvement of seed protein in rice through mutation breeding

    International Nuclear Information System (INIS)

    Monyo, J.H.; Sugiyama, T.

    1978-01-01

    Mutants selected from an M 4 generation on the basis of high yield potential and high grain protein content were grown in a preliminary yield trial. The two parent varieties, Faya Theresa and Kihogo Red, were grown as controls. Thirteen mutants originating from Faya Theresa and three mutants derived from Kihogo Red were found to be equal or superior in yield to the controls. The best improvement in protein content through mutagen treatment was 44% increase in a Faya Theresa mutant and 35% increase in a Kihogo Red mutant. The protein values obtained for the same mutants in the M 3 , M 4 and M 5 generations were found to be consistently higher than in the check varieties. Correlations between grain yield and yield attributes including seed protein per cent and protein per grain showed that these were mutagen-dependent. Grain yield showed negative correlations with protein per cent and protein per grain. However, a few mutants were found which combined high grain yield and high protein per cent. The correlation between protein per cent and protein per grain was positive and very highly significant. It was concluded that despite the high negative correlations between grain protein per cent and grain yield screening for high protein per cent in high-yielding mutants provides a great scope for the identification of the correlation breakers which combine high grain yield potential and high protein content. (author)

  4. Arabidopsis IQM4, a Novel Calmodulin-Binding Protein, Is Involved With Seed Dormancy and Germination in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yu Ping Zhou

    2018-06-01

    Full Text Available Seed dormancy and germination are regulated by complex mechanisms controlled by diverse hormones and environmental cues. Abscisic acid (ABA promotes seed dormancy and inhibits seed germination and post-germination growth. Calmodulin (CaM signals are involved with the inhibition of ABA during seed germination and seedling growth. In this study, we showed that Arabidopsis thaliana IQM4 could bind with calmodulin 5 (CaM5 both in vitro and in vivo, and that the interaction was the Ca2+-independent type. The IQM4 protein was localized in the chloroplast and the IQM4 gene was expressed in most tissues, especially the embryo and germinated seedlings. The T-DNA insertion mutants of IQM4 exhibited the reduced primary seed dormancy and lower ABA levels compared with wild type seeds. Moreover, IQM4 plays key roles in modulating the responses to ABA, salt, and osmotic stress during seed germination and post-germination growth. T-DNA insertion mutants exhibited ABA-insensitive and salt-hypersensitive phenotypes during seed germination and post-germination growth, whereas IQM4-overexpressing lines had ABA- and osmotic-hypersensitive, and salt-insensitive phenotypes. Gene expression analyses showed that mutation of IQM4 inhibited the expression of ABA biosynthetic genes NCED6 and NCED9, and seed maturation regulators LEC1, LEC2, ABI3, and ABI5 during the silique development, as well as promoted the expression of WRKY40 and inhibited that of ABI5 in ABA-regulated seed germination. These observations suggest that IQM4 is a novel Ca2+-independent CaM-binding protein, which is positively involved with seed dormancy and germination in Arabidopsis.

  5. Effects of origin, seasons and storage under different temperatures on germination of Senecio vulgaris (Asteraceae seeds

    Directory of Open Access Journals (Sweden)

    Noel Ndihokubwayo

    2016-08-01

    Full Text Available Invasive plants colonize new environments, become pests and cause biodiversity loss, economic loss and health damage. Senecio vulgaris L. (Common groundsel, Asteraceae, a widely distributing cosmopolitan weed in the temperate area, is reported with large populations in the north–eastern and south–western part, but not in southern, central, or north-western parts of China. We studied the germination behavior of S. vulgaris to explain the distribution and the biological invasion of this species in China. We used seeds originating from six native and six invasive populations to conduct germination experiments in a climate chamber and under outdoor condition. When incubated in a climate chamber (15 °C, seeds from the majority of the populations showed >90% germination percentage (GP and the GP was equal for seeds with a native and invasive origin. The mean germination time (MGT was significantly different among the populations. Under outdoor conditions, significant effects of origin, storage conditions (stored at 4 °C or ambient room temperature, ca. 27 °C and seasons (in summer or autumn were observed on the GP while the MGT was only affected by the season. In autumn, the GP (38.6% was higher and the MGT was slightly longer than that in summer. In autumn, seeds stored at 4 °C showed higher GP than those stored at ambient room temperature (ca.27 °C, and seeds from invasive populations revealed higher GP than those from native populations. The results implied that the high temperature in summer has a negative impact on the germination and might cause viability loss or secondary dormancy to S. vulgaris seeds. Our study offers a clue to exploring what factor limits the distribution of S. vulgaris in China by explaining why, in the cities in South-East China and central China such as Wuhan, S. vulgaris cannot establish natural and viable populations.

  6. Effects of origin, seasons and storage under different temperatures on germination of Senecio vulgaris (Asteraceae) seeds.

    Science.gov (United States)

    Ndihokubwayo, Noel; Nguyen, Viet-Thang; Cheng, Dandan

    2016-01-01

    Invasive plants colonize new environments, become pests and cause biodiversity loss, economic loss and health damage. Senecio vulgaris L. (Common groundsel, Asteraceae), a widely distributing cosmopolitan weed in the temperate area, is reported with large populations in the north-eastern and south-western part, but not in southern, central, or north-western parts of China. We studied the germination behavior of S. vulgaris to explain the distribution and the biological invasion of this species in China. We used seeds originating from six native and six invasive populations to conduct germination experiments in a climate chamber and under outdoor condition. When incubated in a climate chamber (15 °C), seeds from the majority of the populations showed >90% germination percentage (GP) and the GP was equal for seeds with a native and invasive origin. The mean germination time (MGT) was significantly different among the populations. Under outdoor conditions, significant effects of origin, storage conditions (stored at 4 °C or ambient room temperature, ca. 27 °C) and seasons (in summer or autumn) were observed on the GP while the MGT was only affected by the season. In autumn, the GP (38.6%) was higher and the MGT was slightly longer than that in summer. In autumn, seeds stored at 4 °C showed higher GP than those stored at ambient room temperature (ca.27 °C), and seeds from invasive populations revealed higher GP than those from native populations. The results implied that the high temperature in summer has a negative impact on the germination and might cause viability loss or secondary dormancy to S. vulgaris seeds. Our study offers a clue to exploring what factor limits the distribution of S. vulgaris in China by explaining why, in the cities in South-East China and central China such as Wuhan, S. vulgaris cannot establish natural and viable populations.

  7. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation.

    Science.gov (United States)

    van Zanten, Martijn; Koini, Maria A; Geyer, Regina; Liu, Yongxiu; Brambilla, Vittoria; Bartels, Dorothea; Koornneef, Maarten; Fransz, Paul; Soppe, Wim J J

    2011-12-13

    Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become desiccation-tolerant and dormant. Growth is resumed after release of dormancy and the occurrence of favorable environmental conditions. Here we show that embryonic cotyledon nuclei of Arabidopsis thaliana seeds have a significantly reduced nuclear size, which is established at the beginning of seed maturation. In addition, the chromatin of embryonic cotyledon nuclei from mature seeds is highly condensed. Nuclei regain their size and chromatin condensation level during germination. The reduction in nuclear size is controlled by the seed maturation regulator ABSCISIC ACID-INSENSITIVE 3, and the increase during germination requires two predicted nuclear matrix proteins, LITTLE NUCLEI 1 and LITTLE NUCLEI 2. Our results suggest that the specific properties of nuclei in ripe seeds are an adaptation to desiccation, independent of dormancy. We conclude that the changes in nuclear size and chromatin condensation in seeds are independent, developmentally controlled processes.

  8. The Circadian Clock-controlled Transcriptome of Developing Soybean Seeds

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson

    2010-07-01

    Full Text Available A number of metabolic and physiological processes in plants are controlled by the circadian clock, which enables a plant to anticipate daily changes in the environment. Relatively little is known about circadian rhythms in developing seeds, which may be important for determining the extent and timing of nutrient storage in grain. Microarray expression profiling was used to identify genes expressed in developing soybean ( seeds that are controlled by the circadian clock. Genes with predicted functions in protein synthesis, fatty acid metabolism, and photosynthesis totaling 1.8% of the mRNAs detected in seed were found to be expressed in a circadian rhythm. Known circadian and light-controlled promoter elements were identified as over-represented in the promoters of clock-controlled seed genes, with the over-represented elements varying according to the phase of circadian expression. A subset of circadian-regulated genes were found to be expressed in different phases in developing seeds with respect to leaves from the same plants, many of which have roles in photosynthesis and carbon metabolism. These results help to characterize the genes and processes in seeds that may be regulated by the circadian clock, and provide some insight into organ-specific phasing of clock controlled gene expression.

  9. Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits.

    Science.gov (United States)

    Schmidt, Monica A; Parrott, Wayne A; Hildebrand, David F; Berg, R Howard; Cooksey, Amanda; Pendarvis, Ken; He, Yonghua; McCarthy, Fiona; Herman, Eliot M

    2015-05-01

    Transgenic soya bean (Glycine max) plants overexpressing a seed-specific bacterial phytoene synthase gene from Pantoea ananatis modified to target to plastids accumulated 845 μg β carotene g(-1) dry seed weight with a desirable 12:1 ratio of β to α. The β carotene accumulating seeds exhibited a shift in oil composition increasing oleic acid with a concomitant decrease in linoleic acid and an increase in seed protein content by at least 4% (w/w). Elevated β-carotene accumulating soya bean cotyledons contain 40% the amount of abscisic acid compared to nontransgenic cotyledons. Proteomic and nontargeted metabolomic analysis of the mid-maturation β-carotene cotyledons compared to the nontransgenic did not reveal any significant differences that would account for the altered phenotypes of both elevated oleate and protein content. Transcriptomic analysis, confirmed by RT-PCR, revealed a number of significant differences in ABA-responsive transcripton factor gene expression in the crtB transgenics compared to nontransgenic cotyledons of the same maturation stage. The altered seed composition traits seem to be attributed to altered ABA hormone levels varying transcription factor expression. The elevated β-carotene, oleic acid and protein traits in the β-carotene soya beans confer a substantial additive nutritional quality to soya beans. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Early harvest increases post-harvest physiological quality of Araucaria angustifolia (Araucariaceae) seeds.

    Science.gov (United States)

    Shibata, Marília; Medeiros Coelho, Cileide Maria

    2016-06-01

    Araucaria angustifolia is a conifer native to Brazil and is an endangered species. Since this species seeds have a short period of viability, its vulnerability is higher. Thus the aim of this study was to evaluate the physiological quality of A. angustifolia seeds during the development and post-storage periods. For this, cones of A. angustifolia were collected from a natural population in Curitibanos, Santa Catarina, Brazil, in March, April, May and June 2012. The collected seeds were classified into developmental stages of cotyledonary, I, II and III according to the month of collection; a total of 10 cones were collected for each stage. Seeds were stored in a refrigerator for 60 and 120 days, and were submitted to a chamber germination test (25 °C-photoperiod 12 h). Additionally, seeds were tested for moisture content (105 °C for 24 hours), tetrazolium (0.1 % for 1 hour) and vigor (electric conductivity [75 mL distilled water at 25 °C], germination speed index, and shoot and root length). Our results showed that during seed development, moisture content decreased from the cotyledonary stage (66.54 %) to stage III (49.69 %), and vigor increased in the last stage. During storage, moisture content at cotyledonary stage and stage I was stable. On the other hand, stored seeds exhibited a decrease in moisture content after 120 days at stages II and III. Physiological quality at the cotyledonary stage resulted in an increased germination rate of 86 % and 93 % after 60 and 120 days of storage, respectively; unlike stages II and III exhibited a decrease in seed viability and vigor after storage. Electrical conductivity was higher for fresh seeds at the cotyledonary stage, than for those stored for 60 and 120 days. However, in other stages, released leachate content after 120 days of storage, increased with the advance of the collection period. Germination speed index and shoot and root lengths after storage were highest for seeds at the cotyledonary stage and stage I

  11. Relationship between proportion and composition of albumins, and in vitro protein digestibility of raw and cooked pea seeds (Pisum sativum L.).

    Science.gov (United States)

    Park, Sei Joon; Kim, Tae Wan; Baik, Byung-Kee

    2010-08-15

    Peas provide an excellent plant protein resource for human diets, but their proteins are less readily digestible than animal proteins. To identify the relationship between composition and in vitro digestibility of pea protein, eight pea varieties with a wide range of protein content (157.3-272.7 g kg(-1)) were determined for the proportion of albumins and globulins, their compositions using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and in vitro protein digestibility (IVPD) before and after heat treatment using a multi-enzyme (trypsin, chymotrypsin and peptidase) method. The proportion of albumins based on total seed protein content decreased from 229 to 147 g kg(-1) as seed protein content increased from 157.3 to 272.7 g kg(-1), while the proportion of globulins increased from 483 to 590 g kg(-1). The IVPDs of eight raw pea seeds were 79.9-83.5%, with significant varietal variations, and those were improved to 85.9-86.8% by cooking. Albumins, including (pea albumins 2) PA2, trypsin inhibitor, lectin and lipoxygenase, were identified as proteolytic resistant proteins. Globulins were mostly digested by protease treatment after heating. The quantitative ratio of albumins and globulins, and the quantitative variations of albumin protein components, including lipoxygenase, PA2, lectins and trypsin inhibitors, appear to influence the protein digestibility of both raw and cooked pea seeds. Copyright (c) 2010 Society of Chemical Industry.

  12. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus Over-Expressing MicroRNA394.

    Directory of Open Access Journals (Sweden)

    Jian Bo Song

    Full Text Available Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus miR394 with its target gene Brassica napus leaf curling responsiveness (BnLCR to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including leafy cotyledon1 (BnLEC1, BnLEC2, and FUSCA3 (FUS3. Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development.

  13. Radiation and storage effects on water uptake and cooking behaviour of mungbean

    International Nuclear Information System (INIS)

    Aurangzeb; Bibi, N.; Badshah, A.; Sattar, A.

    1991-01-01

    Effect of different doses of gamma irradiation (0-10 kGy) and storage for 6 months at room conditions was studied on seed size, water uptake and cooking time of mungbeans. Irradiation exhibited insignificant effect on seed weight, seed volume, density, hydration capacity/index, swelling capacity/index, as well as water hydration capacity (WHC) and pH of flour, but significantly (P .ltoreq. 0.01) reduced the cooking time of mungbean seeds (15.37 to 9.93 min.). Storage time increased the cooking time of this legume (11.55 to 12.75 min.). The water uptake parameters of seed and pH of flour decreased significantly due to storage, whereas seed size (weight and volume) remained unaffected during storage

  14. Functional properties of pumpkin (Cucurbita pepo seed protein isolate and hydrolysate

    Directory of Open Access Journals (Sweden)

    Bučko Sandra Đ.

    2016-01-01

    Full Text Available Pumpkin seed protein isolate (PSPI was enzymatically hydrolysed by pepsin to obtain pumpkin seed protein hydrolysate, PSPH. Investigation on solubility, interfacial and emulsifying properties of both PSPI and PSPH was conducted under different conditions of pH (3-8 and ionic strength (0-1 mol/dm3 NaCl. PSPI had the lowest solubility, i.e. isoelectric point (pI, at pH 5. PSPH had higher solubility than PSPI over whole range of pH and ionic strengths tested. Decrease in surface and interfacial tension evidenced that both PSPI and PSPH adsorb at air/protein solution and oil/protein solution interface. Emulsions (20 % oil in water stabilized by 1 g/100cm3 PSPI or PSPH solution were prepared at pH 3, 5 and 8 and ionic strength of 0 and 0.5 mol/dm3 NaCl. PSPH stabilized emulsions from coalescence at all pH and ionic strengths tested. PSPI was able to stabilize emulsions at pH 3 and 0 mol/dm3 NaCl, and at pH 8 regardless of ionic strength, while emulsions at pH 5 and both 0 and 0.5 mol/dm3 NaCl and at pH 3 when ionic strength was increased separated to oil and serum layer immediately after preparation. All emulsions were susceptible to creaming instability. [Projekat Ministarstva nauke Republike Srbije, br. III 46010

  15. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus

    Directory of Open Access Journals (Sweden)

    Friedt Wolfgang

    2009-07-01

    Full Text Available Abstract Background Serial analysis of gene expression (LongSAGE was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus. The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP. Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species.

  16. The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean

    Directory of Open Access Journals (Sweden)

    Shuxian Li

    2018-04-01

    Full Text Available Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla is the primary cause of Phomopsis seed decay (PSD in soybean, Glycine max (L. Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein–protein interactions (PPI and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI database. Additionally, 149 plant cell wall degrading enzymes (PCWDE were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms.

  17. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions

    Directory of Open Access Journals (Sweden)

    Nacer eBellaloui

    2015-03-01

    Full Text Available Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals determine the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a two-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines. Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source to seed (sink. This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for

  18. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content.

    Science.gov (United States)

    Liu, Hui; Wang, Cuiping; Chen, Fan; Shen, Shihua

    2015-01-15

    spots in the electrophoresis gels. Furthermore, the interaction of OB associated protein species and their contribution to OB formation and stabilization are still blank. In this study, with the overall object of profiling OB protein species from mature J. curcas seeds with different lipid content, we provided a setting of comparative OB proteomics with biochemical data and transient expression to explore the core of OB associated protein species involved in the regulation of OB size and lipid accumulation. The results were important for biotechnological improvement with the aim to a global modification of lipid storage in J. curcas seeds. Meanwhile, this study gave insight into possible associations between OBs and other organelles in mature J. curcas seeds. It may represent new aspects of the biological functions of the OBs during the oil mobilization. Combined the technique of transient transformation, a newly reported protein species, glycine-rich RNA binding protein (GRP) was successfully targeted in OBs. Therefore, further molecular analysis of these protein species is warranted to verify this association and what role they have in OBs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Influence of watermelon seed protein concentrates on dough handling, textural and sensory properties of cookies.

    Science.gov (United States)

    Wani, Ali Abas; Sogi, D S; Singh, Preeti; Khatkar, B S

    2015-04-01

    Fruit processing wastes contain numerous by products of potential use in food & allied industry. Watermelon seeds represent a major by-product of the processing waste and contain high amount of nutritional proteins. Protein rich cereal based products are in demand due to their health promoting benefits. With this aim, wheat flour was fortified with watermelon seed protein concentrates (2.5 %, 5 %, 7.5 % and 10 % levels) to prepare cookies with desirable physical, nutritional, and textural and sensory properties. Substitution levels of 5 % and 10 % significantly (p ≤ 0.05) increased the dough stability and mixing tolerance index, however pasting properties and dough extensibility decreased considerably above 5 % substitution levels. Cookie fracture force (kg) increased significantly (p ≤ 0.05) above 5 % fortification levels. Cookie spread factor (W/T) increased from 2.5 % to 7.5 % fortification levels, further increase showed negative impact. Sensory scores of the cookies showed that protein concentrate may be added up to 7.5 % fortification levels. This study revealed that watermelon protein concentrates can be fortified with protein concentrates upto 5-7.5 % levels in cookies to improve their protein quality.

  20. Tannin, protein contents and fatty acid compositions of the seeds of several Vicia L. species from Turkey

    OpenAIRE

    Kökten, Kağan; Koçak, Alpaslan; Bağci, Eyüp; Akçura, Mevlüt; Çelik, Sait

    2010-01-01

    The seedoils of six Vicia species (Leguminosae) were investigated for their protein, tannin contents and fatty acid compositions. The protein contents of the seeds were found to be between 21.87%-31.33%. The tannin contents of the seeds were found to be between 0.13%-1.07%. The fatty acid compositions of these six different species were determined by the GC of the methyl esters of their fatty acids. The oilseeds of Vicia species contain palmitic and stear...

  1. Do cupins have a function beyond being seed storage proteins? An updated working model for the growth and reproductive success of flax (Linum usitatissimum in a radio-contaminated environment

    Directory of Open Access Journals (Sweden)

    Daša eGábrišová

    2016-01-01

    Full Text Available Plants continue to flourish around the site of the Chernobyl Nuclear Power Plant disaster. The ability of plants to transcend the radio-contaminated environment was not anticipated and is not well understood. The aim of this study was to evaluate the proteome of flax (Linum usitatissimum L. during seed filling by plants grown for a third generation near Chernobyl. For this purpose, seeds were harvested at 2, 4, and 6 weeks after flowering and at maturity, from plants grown in either non-radioactive or radio-contaminated experimental fields. Total proteins were extracted and the two-dimensional gel electrophoresis (2-DE patterns analyzed. This approach established paired abundance profiles for 130 2-DE spots, e.g., profiles for the same spot across seed filling in non-radioactive and radio-contaminated experimental fields. Based on Analysis of Variance (ANOVA followed by sequential Bonferroni correction, eight of the paired abundance profiles were discordant. Results from tandem mass spectrometry show that four 2-DE spots are discordant because they contain fragments of the cupin superfamily-proteins. Most of the fragments were derived from the N-terminal half of native cupins. Revisiting previously published data, it was found that cupin-fragments were also involved with discordance in paired abundance profiles of second generation flax seeds. Based on these observations we present an updated working model for the growth and reproductive success of flax in a radio-contaminated Chernobyl environment. This model suggests that the increased abundance of cupin fragments or isoforms and monomers contributes to the successful growth and reproduction of flax in a radio-contaminated environment.

  2. Biochemical and functional characterization of an albumin protein belonging to the hemopexin superfamily from Lens culinaris seeds.

    Science.gov (United States)

    Scarafoni, Alessio; Gualtieri, Elisa; Barbiroli, Alberto; Carpen, Aristodemo; Negri, Armando; Duranti, Marcello

    2011-09-14

    The present paper reports the purification and biochemical characterization of an albumin identified in mature lentil seeds with high sequence similarity to pea PA2. These proteins are found in many edible seeds and are considered potentially detrimental for human health due to the potential allergenicity and lectin-like activity. Thus, the description of their possible presence in food and the assessment of the molecular properties are relevant. The M(r), pI, and N-terminal sequence of this protein have been determined. The work included the study of (i) the binding properties to hemine to assess the presence of hemopexin structural domains and (ii) the binding properties of the protein to thiamin. In addition, the structural changes induced by heating have been evaluated by means of spectroscopic techniques. Denaturation temperature has also been determined. The present work provides new insights about the structural molecular features and the ligand-binding properties and dynamics of this kind of seed albumin.

  3. Improvement of protein and amino acid contents in seeds of food legumes. A case study in Phaseolus

    Directory of Open Access Journals (Sweden)

    Baudoin J.P.

    1999-01-01

    Full Text Available Food legumes are considered as the major source of dietary proteins among the plant species. Protein and amino acid contents were evaluated in a wide sample of both wild and cultivated genotypes of Phaseolus species, with a view to investigate possibilities of genetic improvement in seed nutritional quality. Results indicate a variation in relation with taxa, biological status within species (such as in P. lunatus, ecological conditions, seed parts (testa, cotyledons and embryonic axis, and major protein groups. However, the sulphur containing amino acids remain a limiting factor, which could be better overcome by mixing food legumes with other plant species such as cereals.

  4. Spatial and temporal activity of the foxtail millet (Setaria italica) seed-specific promoter pF128.

    Science.gov (United States)

    Pan, Yanlin; Ma, Xin; Liang, Hanwen; Zhao, Qian; Zhu, Dengyun; Yu, Jingjuan

    2015-01-01

    pF128 drives GUS specifically expressed in transgenic seeds of foxtail millet and Zea mays with higher activity than the constitutive CaMV35S promoter and the maize seed-specific 19Z promoter. Foxtail millet (Setaria italica), a member of the Poaceae family, is an important food and fodder crop in arid regions. Foxtail millet is an excellent C4 crop model owing to its small genome (~490 Mb), self-pollination and availability of a complete genome sequence. F128 was isolated from a cDNA library of foxtail millet immature seeds. Real-time PCR analysis revealed that F128 mRNA was specifically expressed in immature and mature seeds. The highest F128 mRNA level was observed 5 days after pollination and gradually decreased as the seed matured. Sequence analysis suggested that the protein encoded by F128 is likely a protease inhibitor/seed storage protein/lipid-transfer protein. The 1,053 bp 5' flanking sequence of F128 (pF128) was isolated and fused to the GUS reporter gene. The corresponding vector was then transformed into Arabidopsis thaliana, foxtail millet and Zea mays. GUS analysis revealed that pF128 drove GUS expression efficiently and specifically in the seeds of transgenic Arabidopsis, foxtail millet and Zea mays. GUS activity was also detected in Arabidopsis cotyledons. Activity of pF128 was higher than that observed for the constitutive CaMV35S promoter and the maize seed-specific 19 Zein (19Z) promoter. These results indicate that pF128 is a seed-specific promoter. Its application is expected to be of considerable value in plant genetic engineering.

  5. Study on furundu, a traditional Sudanese fermented roselle (Hibiscus sabdariffa L.) seed: effect on in vitro protein digestibility, chemical composition, and functional properties of the total proteins.

    Science.gov (United States)

    Yagoub, Abu El-Gasim A; Mohamed, Babiker E; Ahmed, Abdel Halim R; El Tinay, Abdullahi H

    2004-10-06

    Furundu, a meat substitute, is traditionally prepared by cooking the karkade (Hibiscus sabdariffa L.) seed and then fermenting it for 9 days. Physicochemical and functional properties of raw and cooked seed and of furundu ferments were analyzed. Furundu preparation resulted in significant changes in karkade seed major nutrients. Total polyphenols and phytic acid were also reduced. The increase in total acidity and fat acidity coupled with a decrease in pH indicates microbial hydrolysis of the major nutrients; proteins, carbohydrates, and fats. In vitro digestibility of the seed proteins reached the maximum value (82.7%) at the sixth day of fermentation, but thereafter it significantly decreased. The effect of furundu preparation on N solubility profiles and functional properties, such as emulsification and foaming properties and other related parameters, is investigated in water and in 1 M NaCl extracts from defatted flour samples. The results show that cooking followed by fermentation affects proteins solubility in water and 1 M NaCl. The foaming capacity (FC) from the flour of raw seed decreased as a result of cooking. Fermentation for 9 days significantly increased the FC of the cooked seed, restoring the inherent value. Foam from fermented samples collapsed more rapidly during a period of 120 min as compared to the foam from raw and cooked karkade seeds; stability in 1 M NaCl was lower as compared to those in water. In water, the emulsion stability (ES) from the fermented samples was significantly higher than that of the raw seed flour. Addition of 1 M NaCl significantly decreased the ES of the fermented samples.

  6. Some agricultural aspects of seed longevity (literature review

    Directory of Open Access Journals (Sweden)

    Roman Hołubowicz

    2013-12-01

    Full Text Available There has been a vast and numerous literature concerning seed longevity. Most of these works however has focused solely on theoretical and biological aspects of this problem. Some works although deal with practical problems of seed storage. vigour or deterioration. have had relatively little connection with agricultural crops. practical farming or gardening. Therefore, there has been a need to look at this problem from the seednian's and farmer's point of view. The paper comments on how long seeds of agricultural crops species can keep their longevity, how long it is economically reasonable to store them. the effect of the seeds chemical composition on their longevity, how seeds storage conditions can be modified in order to eventually improve their longevity and environment circumstances influence on the final seed longevity. The paper contains a synthetic summary of expected seed longevity of the most important agricultural species and many examples of long longevity of agricultural species.

  7. Protein Bread Fortification with Cumin and Caraway Seeds and By-Product Flour.

    Science.gov (United States)

    Sayed Ahmad, Bouchra; Talou, Thierry; Straumite, Evita; Sabovics, Martins; Kruma, Zanda; Saad, Zeinab; Hijazi, Akram; Merah, Othmane

    2018-02-25

    Malnutrition continues to be a key health problem in developing regions. The valorization of food waste appears as an ideal way to prevent malnutrition and improve people's access to food. Cumin ( Cuminum cyminum L.) and caraway ( Carum carvi L.) oilseeds are commonly used for cuisine and medicinal purposes. However, remaining cakes after oil extraction are usually underutilized. In order to assess the usefulness of these by-products in food applications, this study investigated the effect of their addition to protein bread formulations. Different levels (2, 4 and 6%) of whole seeds and cakes flour were used in the study. Fortified protein bread samples were compared to control protein bread and evaluated for their sensory, color, moisture, hardness properties, nutritional values as well as their biological activity. Results indicated that bread fortification shows a significant effect on bread properties depending on fortification level. A higher acceptability was observed specially for bread fortified with by-products flour. Increased tendencies of color darkness, moisture content, bread hardness, nutritional values as well as total phenolic content and radical scavenging activity compared to control bread were observed as the percentage of fortification increased in both cases. The overall results showed that the addition of cumin and caraway seeds and by-product flour can improve the antioxidant potential and overall quality of protein bread.

  8. Protein Bread Fortification with Cumin and Caraway Seeds and By-Product Flour

    Science.gov (United States)

    Sayed Ahmad, Bouchra; Talou, Thierry; Straumite, Evita; Sabovics, Martins; Kruma, Zanda; Saad, Zeinab; Hijazi, Akram

    2018-01-01

    Malnutrition continues to be a key health problem in developing regions. The valorization of food waste appears as an ideal way to prevent malnutrition and improve people’s access to food. Cumin (Cuminum cyminum L.) and caraway (Carum carvi L.) oilseeds are commonly used for cuisine and medicinal purposes. However, remaining cakes after oil extraction are usually underutilized. In order to assess the usefulness of these by-products in food applications, this study investigated the effect of their addition to protein bread formulations. Different levels (2, 4 and 6%) of whole seeds and cakes flour were used in the study. Fortified protein bread samples were compared to control protein bread and evaluated for their sensory, color, moisture, hardness properties, nutritional values as well as their biological activity. Results indicated that bread fortification shows a significant effect on bread properties depending on fortification level. A higher acceptability was observed specially for bread fortified with by-products flour. Increased tendencies of color darkness, moisture content, bread hardness, nutritional values as well as total phenolic content and radical scavenging activity compared to control bread were observed as the percentage of fortification increased in both cases. The overall results showed that the addition of cumin and caraway seeds and by-product flour can improve the antioxidant potential and overall quality of protein bread. PMID:29495324

  9. Protein Bread Fortification with Cumin and Caraway Seeds and By-Product Flour

    Directory of Open Access Journals (Sweden)

    Bouchra Sayed Ahmad

    2018-02-01

    Full Text Available Malnutrition continues to be a key health problem in developing regions. The valorization of food waste appears as an ideal way to prevent malnutrition and improve people’s access to food. Cumin (Cuminum cyminum L. and caraway (Carum carvi L. oilseeds are commonly used for cuisine and medicinal purposes. However, remaining cakes after oil extraction are usually underutilized. In order to assess the usefulness of these by-products in food applications, this study investigated the effect of their addition to protein bread formulations. Different levels (2, 4 and 6% of whole seeds and cakes flour were used in the study. Fortified protein bread samples were compared to control protein bread and evaluated for their sensory, color, moisture, hardness properties, nutritional values as well as their biological activity. Results indicated that bread fortification shows a significant effect on bread properties depending on fortification level. A higher acceptability was observed specially for bread fortified with by-products flour. Increased tendencies of color darkness, moisture content, bread hardness, nutritional values as well as total phenolic content and radical scavenging activity compared to control bread were observed as the percentage of fortification increased in both cases. The overall results showed that the addition of cumin and caraway seeds and by-product flour can improve the antioxidant potential and overall quality of protein bread.

  10. The perspective effects of various seed coating substances on rice seed variety Khao DAWK Mali 105 storability I: the case study of physiological properties.

    Science.gov (United States)

    Thobunluepop, P; Pawelzik, E; Vearasilp, S

    2008-10-01

    This study aimed to evaluate the perspective changes of several physiological performances of rice seeds cv. KDML 105 which were coated with various seed coating substances [chemical fungicide, captan (CA) and biological coating polymers; chitosan-lignosulphonate polymer (CL) and eugenol incorporated into chitosan-lignosulphonate polymer (E + CL)] during storage (12 months). CA significantly increased seed moisture content and seed water activity through out the storage period. The qualities and viability of the seeds were seriously declined by this treatment. Moreover, CA inhibited the shoot and root development, seedling dry weight accumulation, delayed the seed germination and seedling growth rate. CA treated seeds were susceptible to stress conditions that declined the seed germination potential under cold, high moisture and temperature stress conditions. Nevertheless, CL and E + CL coating polymer could maintain seed storability, which significantly improved seed germination and seedling performances. These improvements were attributed to maintain the nutritive reserve and dehydrogenase activity in seeds. Moreover, the biological seed treatment stimulated the embryo growth and so speeding up the seedling emergence when compared untreated seeds.

  11. Selection of single grain seeds by 14N(n,γ)15N nuclear reaction for protein improvement

    International Nuclear Information System (INIS)

    Andras, L.; Csoke, A.; Nagy, A.Z.; Balint, A.

    1979-01-01

    A new non-destructive screening technique was developed for determining the protein (total nitrogen) content of single grain seeds. Here, our first experiment is described where in the case of maize samples, 300 s was used to perform one measurement on a seed with a semiautomatic device. (author)

  12. Effect of seed treatments on the chemical composition and properties of two amaranth species: starch and protein

    NARCIS (Netherlands)

    Gamel, T.H.; Linssen, J.P.H.; Mesallem, A.S.; Damir, A.A.; Shekib, L.A.

    2005-01-01

    The seeds of two Amaranth species were studied. The starch contents were 543 and 623 g kg-1 while crude protein contents were 154 and 169 g kg-1 for Amaranthus caudatus and Amaranthus cruentus seeds, respectively. The effect of several treatments, including cooking, popping and germination and flour

  13. Biorhythms in conifer seed germination during extended storage

    Science.gov (United States)

    James P. Barnett; N.I. Marnonov

    1989-01-01

    A proportion of sound seeds of conifer species do not germinate during certain periods of the year, even when conditions are favorable. Mamonov et al. (1986) report that the non-germinating seeds have apparently undergone physiological changes that affected germination. This phenomenon may be due to seasonal periodicity, or biorhythms. As early as the mid-1930'...

  14. Sequentially Integrated Optimization of the Conditions to Obtain a High-Protein and Low-Antinutritional Factors Protein Isolate from Edible Jatropha curcas Seed Cake.

    Science.gov (United States)

    León-López, Liliana; Dávila-Ortiz, Gloria; Jiménez-Martínez, Cristian; Hernández-Sánchez, Humberto

    2013-01-01

    Jatropha curcas seed cake is a protein-rich byproduct of oil extraction which could be used to produce protein isolates. The purpose of this study was the optimization of the protein isolation process from the seed cake of an edible provenance of J. curcas by an alkaline extraction followed by isoelectric precipitation method via a sequentially integrated optimization approach. The influence of four different factors (solubilization pH, extraction temperature, NaCl addition, and precipitation pH) on the protein and antinutritional compounds content of the isolate was evaluated. The estimated optimal conditions were an extraction temperature of 20°C, a precipitation pH of 4, and an amount of NaCl in the extraction solution of 0.6 M for a predicted protein content of 93.3%. Under these conditions, it was possible to obtain experimentally a protein isolate with 93.21% of proteins, 316.5 mg 100 g(-1) of total phenolics, 2891.84 mg 100 g(-1) of phytates and 168 mg 100 g(-1) of saponins. The protein content of the this isolate was higher than the content reported by other authors.

  15. Assessment of the Antioxidant Activity of Silybum marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Aynur Serçe

    2016-01-01

    Full Text Available Antioxidant properties of ethanol extract of Silybum marianum (milk thistle seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using diff erent in vitro methods, such as lipid peroxidation, 1,1–diphenyl–2–picrylhydrazyl (DPPH and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also effi ciently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE. The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products.

  16. Proteins in olive fruit and oil.

    Science.gov (United States)

    Montealegre, Cristina; Esteve, Clara; García, Maria Concepción; García-Ruiz, Carmen; Marina, Maria Luisa

    2014-01-01

    This paper is a comprehensive review grouping the information on the extraction, characterization, and quantitation of olive and olive oil proteins and providing a practical guide about these proteins. Most characterized olive proteins are located in the fruit, mainly in the seed, where different oleosins and storage proteins have been found. Unlike the seed, the olive pulp contains a lower protein content having been described a polypeptide of 4.6 kDa and a thaumain-like protein. Other important proteins studied in olive fruits have been enzymes which could play important roles in olives characteristics. Part of these proteins is transferred from the fruit to the oil during the manufacturing process of olive oil. In fact, the same polypeptide of 4.6 kDa found in the pulp has been described in the olive oil and, additionally, the presence of other proteins and enzymes have also been described. Protein profiles have recently been proposed as an interesting strategy for the varietal classification of olive fruits and oils. Nevertheless, there is still a lot of knowledge without being explored requiring new studies focused on the determination and characterization of these proteins.

  17. Effect of temperature and duration of maize pollen storage on the seed set rate

    Directory of Open Access Journals (Sweden)

    Babić Vojka

    2017-01-01

    Full Text Available In plant breeding programs, it is often necessary to cross genotypes incompatible in time of flowering. In maize, when the incompatibility in flowering period could not be overcome by different sowing dates, or by the ability of silk to preserve its fertility in 10-15 days, conservation of pollen could be of great importance. For many plant species, the appropriate methods for pollen management have been set up, including methods of collecting, desiccation, testing of viability and longevity, as well as for pollen storage. The longevity of pollen during its storage depends upon plant species, conditions at the time of pollen collecting, pollen moisture content, as well as upon storage temperature and duration. Even within the same plant species, different genotypes exhibit different level of viability preservation during the conservation. Although maize pollen belongs to a tricellular pollen group and rapidly loses viability under field conditions, its preservation is possible. According to the literature, pollen viability could be preserved for 30 days in the conditions of refrigerator (+4°C, while in liquid nitrogen (-196°C up to 120 days. In the majority of studies, pollen viability was evaluated in the laboratory conditions, and the results obtained could largely be differed from those obtained under field conditions, due to impossibility to control a number of environmental factors. This experiment was conducted under field conditions in order to evaluate the ability of pollen from commercial maize inbred line L217, stored under the conditions of +4°C and -20°C, to pollinate maize inbred L73B013 and produce grain. Inbred L73B013 is sown in five sowing dates in order to ensure the longer presence of fresh silk. Pollen samples from line L217 were taken twice, and along with silica gel, stored in refrigerator and freezer. Each of successive pollination included five silks. Except for the expected good ear seed set when silks were

  18. Changes of fatty acids content and vigor of sunflower seed during natural aging

    OpenAIRE

    Balešević-Tubić S.; Tatić M.; Miladinović J.; Pucarević M.

    2007-01-01

    Sunflower seed aging during storage affects seed vigor and content of fatty acids. In order to reveal severity of their influence, the following vigor tests were applied: standard laboratory germination test, cold test and Hiltner test. Five sunflower lines submitted to natural aging process for six and 12 months were tested under conventional storage and controlled conditions. The obtained results revealed that seed aging damaged the seed, which adversely affected seed vigor; most reliable r...

  19. The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis).

    Science.gov (United States)

    Hayashi, Marika; Feilich, Kara L; Ellerby, David J

    2009-01-01

    Explosive dehiscence ballistically disperses seeds in a number of plant species. During dehiscence, mechanical energy stored in specialized tissues is transferred to the seeds to increase their kinetic and potential energies. The resulting seed dispersal patterns have been investigated in some ballistic dispersers, but the mechanical performance of a launch mechanism of this type has not been measured. The properties of the energy storage tissue and the energy transfer efficiency of the launch mechanism were quantified in Impatiens capensis. In this species the valves forming the seed pod wall store mechanical energy. Their mass specific energy storage capacity (124 J kg(-1)) was comparable with that of elastin and spring steel. The energy storage capacity of the pod tissues was determined by their level of hydration, suggesting a role for turgor pressure in the energy storage mechanism. During dehiscence the valves coiled inwards, collapsing the pod and ejecting the seeds. Dehiscence took 4.2+/-0.4 ms (mean +/-SEM, n=13). The estimated efficiency with which energy was transferred to the seeds was low (0.51+/-0.26%, mean +/-SEM, n=13). The mean seed launch angle (17.4+/-5.2, mean +/-SEM, n=45) fell within the range predicted by a ballistic model to maximize dispersal distance. Low ballistic dispersal efficiency or effectiveness may be characteristic of species that also utilize secondary seed dispersal mechanisms.

  20. Survival and death of seeds during liquid nitrogen storage: a case study on seeds with short lifespans.

    Science.gov (United States)

    Ballesteros, D; Pence, V C

    The low temperature of liquid nitrogen is assumed to stop ageing and preserve viability indefinitely, however there are few validating data sets. The use of seeds to test these assumptions is important because other cryopreserved systems lack quantitative measures of viability to allow comparisons among timed points. To evaluate survival of a collection of seeds with short lifespans stored 12-20 years in liquid nitrogen. Seeds from 11 species (26 accessions) were removed from cryostorage and evaluated for germination and normal growth. Germination of Plantago cordata and Betula spp. seeds did not decrease significantly during cryostorage. However, Populus deltoides and most Salix spp. accessions showed a significant decrease in germination, with further loss observed when P. deltoides seedlings were followed to the young plant stage. Seeds of initial low quality showed greater deterioration during cryostorage. Cryostorage maintained viability of Salix and Populus seeds longer than other temperatures. However, ageing was not completely stopped and seed longevity was shorter than that predicted for many other species. A high initial seed quality is important in order to obtain the maximum benefit of cryostorage.

  1. Seed Protein Content and Consistency of Tofu Prepared with Different Magnesium Chloride Concentrations in Six Japanese Soybean Varieties

    OpenAIRE

    Toda, Kyoko; Ono, Tomotada; Kitamura, Keisuke; Hajika, Makita; Takahashi, Koji; Nakamura, Yoshiyuki

    2003-01-01

    The relationship between the protein content of soybean seeds and the consistency of tofu was examined for six Japanese soybean varieties, Enrei, Fukuyutaka, Sachiyutaka, Ayakogane, Hatayutaka and Tachinagaha. The seed protein content was estimated by determining the nitrogen content using the Dumas method. Tofu was prepared from a raw homogenate of water-soaked soybeans by heating and by the addition of MgCl_2 as a coagulant. The tofu consistency was evaluated by measuring the breaking stres...

  2. The Effect of Gamma radiation, microwave radiation, their interaction and storage on chemical composition, antinutritional factors and the activities of trypsin inhibitor and lipoxygenase of soybean seeds

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahim, E A; Abdel-Fatah, O M [Dept. of Biochem., Faculty of Agric., Cairo University. (Egypt); El-Adawy, M; Badea, M Y [Food Technol. Dept., National Center for Research and Radiation Technol., Atomic Energy Authority (Egypt)

    2000-07-01

    The effect of gamma radiation, microwave radiation, interaction between them; and storage of radiated soybean seeds were investigated to find out the best treatment which had to the maximum reduction of antinutrional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 kGy, microwave radiation was at 70 level power for 2 and 4 min; and the storage of seeds was at temperature, R.H. 50-55% for six months. The data revealed that, effects of interaction treatments were more effective than the treatment with microwave or gamma radiation alone.

  3. The Effect of Gamma radiation, microwave radiation, their interaction and storage on chemical composition, antinutritional factors and the activities of trypsin inhibitor and lipoxygenase of soybean seeds

    International Nuclear Information System (INIS)

    Abdel-Rahim, E.A.; Abdel-Fatah, O.M.; El-Adawy, M.; Badea, M.Y.

    2000-01-01

    The effect of gamma radiation, microwave radiation, interaction between them; and storage of radiated soybean seeds were investigated to find out the best treatment which had to the maximum reduction of antinutrional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 kGy, microwave radiation was at 70 level power for 2 and 4 min; and the storage of seeds was at temperature, R.H. 50-55% for six months. The data revealed that, effects of interaction treatments were more effective than the treatment with microwave or gamma radiation alone

  4. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean.

    Science.gov (United States)

    Wang, Xianzhi; Jiang, Guo-Liang; Green, Marci; Scott, Roy A; Song, Qijian; Hyten, David L; Cregan, Perry B

    2014-10-01

    Soybean seeds contain high levels of oil and protein, and are the important sources of vegetable oil and plant protein for human consumption and livestock feed. Increased seed yield, oil and protein contents are the main objectives of soybean breeding. The objectives of this study were to identify and validate quantitative trait loci (QTLs) associated with seed yield, oil and protein contents in two recombinant inbred line populations, and to evaluate the consistency of QTLs across different environments, studies and genetic backgrounds. Both the mapping population (SD02-4-59 × A02-381100) and validation population (SD02-911 × SD00-1501) were phenotyped for the three traits in multiple environments. Genetic analysis indicated that oil and protein contents showed high heritabilities while yield exhibited a lower heritability in both populations. Based on a linkage map constructed previously with the mapping population and using composite interval mapping and/or interval mapping analysis, 12 QTLs for seed yield, 16 QTLs for oil content and 11 QTLs for protein content were consistently detected in multiple environments and/or the average data over all environments. Of the QTLs detected in the mapping population, five QTLs for seed yield, eight QTLs for oil content and five QTLs for protein content were confirmed in the validation population by single marker analysis in at least one environment and the average data and by ANOVA over all environments. Eight of these validated QTLs were newly identified. Compared with the other studies, seven QTLs for seed yield, eight QTLs for oil content and nine QTLs for protein content further verified the previously reported QTLs. These QTLs will be useful for breeding higher yield and better quality cultivars, and help effectively and efficiently improve yield potential and nutritional quality in soybean.

  5. Seed Dormancy in Arabidopsis Requires Self-Binding Ability of DOG1 Protein and the Presence of Multiple Isoforms Generated by Alternative Splicing.

    Directory of Open Access Journals (Sweden)

    Kazumi Nakabayashi

    2015-12-01

    Full Text Available The Arabidopsis protein DELAY OF GERMINATION 1 (DOG1 is a key regulator of seed dormancy, which is a life history trait that determines the timing of seedling emergence. The amount of DOG1 protein in freshly harvested seeds determines their dormancy level. DOG1 has been identified as a major dormancy QTL and variation in DOG1 transcript levels between accessions contributes to natural variation for seed dormancy. The DOG1 gene is alternatively spliced. Alternative splicing increases the transcriptome and proteome diversity in higher eukaryotes by producing transcripts that encode for proteins with altered or lost function. It can also generate tissue specific transcripts or affect mRNA stability. Here we suggest a different role for alternative splicing of the DOG1 gene. DOG1 produces five transcript variants encoding three protein isoforms. Transgenic dog1 mutant seeds expressing single DOG1 transcript variants from the endogenous DOG1 promoter did not complement because they were non-dormant and lacked DOG1 protein. However, transgenic plants overexpressing single DOG1 variants from the 35S promoter could accumulate protein and showed complementation. Simultaneous expression of two or more DOG1 transcript variants from the endogenous DOG1 promoter also led to increased dormancy levels and accumulation of DOG1 protein. This suggests that single isoforms are functional, but require the presence of additional isoforms to prevent protein degradation. Subsequently, we found that the DOG1 protein can bind to itself and that this binding is required for DOG1 function but not for protein accumulation. Natural variation for DOG1 binding efficiency was observed among Arabidopsis accessions and contributes to variation in seed dormancy.

  6. Plant seeds as sources of potential industrial chemicals, pharmaceuticals, and pest control agents.

    Science.gov (United States)

    Powell, Richard G

    2009-03-27

    Investigations of natural products isolated from seeds have resulted in a remarkable variety of compounds having unusual structures. Seeds of many plant species contain uncommon fatty acids and lipids, some of which have found uses in the cosmetic industry or as renewable (non-petroleum based) industrial raw materials. In addition to proteins and energy storage substances such as carbohydrates and lipids, seeds generally contain, or have the ability to produce, protective compounds that are active as plant growth regulators, fungicides, insecticides, and repellents of herbivores; seeds occasionally contain compounds that are toxic to most other organisms. These compounds may also be present in other plant parts, but often are found at higher concentrations in seeds. Other compounds of interest have been associated with plant-endophyte interactions that are of mutual benefit to both organisms. Tests of seed extracts for cytotoxic and antitumor activity, toxicity to insects, and relationships to several animal disease syndromes have been revealing. Examples of compounds isolated from plant seeds that have served as lead compounds for additional research, or that continue to be of interest to researchers in multiple areas, are reviewed.

  7. Antisense-mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile, and amino acid composition

    DEFF Research Database (Denmark)

    Hansen, Mette; Lange, Marianne; Friis, Carsten

    2007-01-01

    Antisense- or RNAi-mediated suppression of the biosynthesis of nutritionally inferior storage proteins is a promising strategy for improving the amino acid profile of seeds. However, the potential pleiotropic effects of this on interconnected pathways and the agronomic quality traits need...... to be addressed. In the current study, a transcriptomic analysis of an antisense C-hordein line of barley was performed, using a grain-specific cDNA array. The C-hordein antisense line is characterized by marked changes in storage protein and amino acid profiles, while the seed weight is within the normal range...... and no external morphological irregularities were observed. The results of the transcriptome analysis showed excellent correlation with data on changes in the relative proportions of storage proteins and amino acid composition. The antisense line had a lower C-hordein level and down-regulated transcript encoding...

  8. Oxygen requirement of germinating flax seeds

    Science.gov (United States)

    Kuznetsov, Oleg A.; Hasenstein, K. H.

    2003-05-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax ( Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume = 14 mL) and after 36 h measured the root length. At 90 μl O 2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O 2 we determined the lower limit of reliable germination to be 10 vol. % O 2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination.

  9. Baking quality parameters of wheat in relation to endosperm storage proteins

    Directory of Open Access Journals (Sweden)

    Daniela Horvat

    2012-01-01

    Full Text Available Wheat storage proteins of twelve winter wheat cultivars grown at the experimental field of the Agricultural Institute Osijek in 2009 were studied for their contribution to the baking quality. Composition of high molecular weight glutenin subunits (HMW-GS was analyzed by SDS-PAGE method, while the proportions of endosperm storage proteins were determined by RP-HPLC method. Regarding the proportion of storage proteins, results of the linear correlation (p<0.05 showed that protein (P and wet gluten (WG content were highly negatively correlated with albumins and globulins (AG and positively with α- gliadins (GLI. A strong negative correlation between AG and water absorption (WA capacity of flour was found, while α- GLI had positive influence on this property. Dough development time (DDT was positively significantly correlated with HMW-GS and negatively with AG. Degree of dough softening (DS was strongly positively affected by γ- GLI and gliadins to glutenins ratio (GLI/GLU and negatively by total GLU and HMW-GS. Dough energy (E and maximum resistance (RMAX were significantly positively affected by Glu-1 score and negatively by GLI/GLU ratio. Resistance to extensibility ratio (R/EXT was significantly negatively correlated with total GLI. Bread volume was significantly negatively influenced by AG.

  10. Effects of Cooking and Screw-Pressing on Functional Properties of Protein in Milkweed (Asclepias spp.) Seed Meals and Press Cakes

    Science.gov (United States)

    This study determined the effects of oil processing conditions on functional properties of milkweed seed proteins to evaluate their potential for value-added uses. Flaked milkweed seeds were cooked at 82 degrees C (180 degrees F) for 30, 60 or 90 min in the seed conditioner, and then screw-pressed ...

  11. Equilibrium relative humidity as a tool to monitor seed moisture

    Science.gov (United States)

    Robert P. Karrfalt

    2010-01-01

    The importance of seed moisture in maintaining high seed viability is well known. The seed storage chapters in the Tropical Tree Seed Manual (Hong and Ellis 2003) and the Woody Plant Seed Manual (Bonner 2008a) give a detailed discussion and many references on this point. Working with seeds in an operational setting requires a test of seed moisture status. It is...

  12. Effect of nigella sativa seeds extract on serum c-reactive protein in albino rats

    International Nuclear Information System (INIS)

    Bashir, M.U.; Qureshi, H.

    2014-01-01

    C-reactive protein (CRP) is an acute phase protein. It predicts future risk of cardiovascular diseases. Different medicinal plants and their active ingredients possess the ability to reduce serum CRP levels and hence inflammatory disorders and cardiovascular diseases. In our study, ethanolic extract of Nigella sativa seeds was evaluated in albino rats for its possible effect on serum CRP levels. Objective: The objective of this study was to determine the effect of ethanolic extract of Nigella sativa seeds on an acute inflammatory biomarker/mediator, C-reactive protein (CRP) in albino rats. Study Design: Randomized controlled trial (RCT). Place and Duration of Study: Physiology Department, Services Institute of Medical Sciences (SIMS), Lahore; from September to November, 2009. Subjects and Methods: The study was carried out on 90 male albino rats. Five percent (5%) formalin in a dose of 50 meu1 was injected into sub-plantar surface of right hind paw of each rat to produce inflammation. The rats were randomly divided into three groups of thirty each. Group A was given normal saline (control); group B was given Nigella sativa seed extract; and group C received diclofenac sodium, as a reference drug. CRP levels in each group were measured from blood samples taken 25 hours after giving formalin. Results: The ethanolic extract of Nigella sativa seeds, given intraperitoneally, caused highly significant (p<0.001) reduction in serum CRP levels as compared to control group. The reduction in CRP levels by ethanolic extract of Nigella sativa was also significantly (p<0.05) more than that produced by diclofenac sodium. Conclusion: Our results suggest that Nigella sativa possesses ability to reduce serum CRP levels significantly, after production of artificial inflammation, in albino rats. (author)

  13. Relationships among oil content, protein content and seed size in soybeans

    Directory of Open Access Journals (Sweden)

    Mario Marega Filho

    2001-03-01

    Full Text Available During 1995/96 and 1996/97, experiments were carried out at Londrina State University, aiming at quantifying the oil and protein contents in two groups of soybean genotypes; estimating the phenotypic, genotypic and environmental correlations existent among oil, protein content and seed size, and identifying genotypes for direct human consumption with high protein content. The evaluated characters were Weight of a Hundred Seeds (WHS, expressed in grams/100 seeds, Oil Content (OC and Protein Content (PC, expressed in %. In the experiment carried out in the field, OC ranged from 12 to 20.37 % and PC from 35.66 to 41.75% while in the experiment carried out in the greenhouse OC ranged from 12.26 to 21.79 % and PC from 32.95 to 41.56 % . The correlations between oil and protein were negative and significant. The relationship among WHS with OC and PC was low and higly affected by the time effect. Due to their high protein content and stability to oil and protein contents, there were distinction among the treatments carried out in the field (GA23 and GA20, and those carried out in the greenhouse (PI408251, Waseda, B6F4 (L-3 less, PI423909 and Tambagura.Durante 1995/96 e 1996/97, foram conduzidos experimentos na Universidade Estadual de Londrina, visando: quantificar os teores de óleo e proteína em dois grupos de genótipos de soja tipo alimento; estimar as correlações fenotípicas e genotípicas existentes entre os teores de óleo, proteína e tamanho das sementes; e, identificar genótipos para consumo humano de forma direta, com elevado teor de proteína. Foram avaliados os caracteres Peso de Cem Sementes (PCS, expresso em gramas / 100 sementes, Teor de Óleo (TO, e Teor de Proteína (TP, expressos em %. Na população conduzida a campo, a característica TO variou de 12 a 20,4 %, e TP de 35,7 a 41,8 %. A população conduzida em casa de vegetação apresentou uma variação de 12,3 a 21,8 % para TO, e de 33 a 41,6 % para TP. As correla

  14. Embryo development and corresponding factors affecting in vitro germination of Cymbidium faberi × C. sinense hybrid seeds

    Directory of Open Access Journals (Sweden)

    Li Fengtong

    2016-01-01

    Full Text Available A better understanding of embryo development would provide insights into seed quality and subsequent germination events in the interspecific hybridization of Cymbidium faberi ‘Jiepeimei’ × C. sinense ‘Qijianheimo’. At the mature stage, 26.1% of the ovules were abnormal. Most of the hybrid embryos could develop normally. Abortions mainly occurred at the zygote (9.5% and 2-4-celled embryo (15.1% stages. No germination was observed at 90 and 105 days after pollination (DAP, when the embryo was at the early globular stage, with abundant organelles but no storage materials. During 110-130 DAP, the globular embryo was formed and the starch grains began to accumulate in plastids. The hybrid seeds collected at 120 DAP showed initiation of germination. Germination significantly increased at 135 DAP and was maximal at 150 DAP, during which period the hybrid embryos developed into the late globular stage. The storage materials, i.e. lipid and protein bodies, began to accumulate and the filamentary structures derived from suspensor cells still persisted. After the seeds matured (160 DAP, the germination percentage declined sharply. Safranin staining revealed that the outer seed coat was totally cuticularized and the inner seed coat appeared as a cuticle layer enclosing the embryo proper tightly, which may be the main factor inhibiting the subsequent germination of hybrid seeds. In conclusion, 150 DAP should be the opportune time for the in vitro germination of C. faberi ‘Jiepeimei’ × C. sinense ‘Qijianheimo’ hybrid seeds.

  15. Seed origin, storage conditions, and gibberellic acid on in vitro ...

    African Journals Online (AJOL)

    It might help seed conservation and species propagation. The purpose of this study was to evaluate in vitro germination of guavira seeds collected from different sites and stored under different conditions. Also, the sowing of these seeds in MS medium supplemented with different concentrations of gibberellic acid (GA3) was ...

  16. Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination.

    Science.gov (United States)

    Han, Caixia; Zhen, Shoumin; Zhu, Gengrui; Bian, Yanwei; Yan, Yueming

    2017-06-01

    In this study, we performed the first comparative metabolomic analysis of the wheat embryo and endosperm during seed germination using GC-MS/MS. In total, 82 metabolites were identified in the embryo and endosperm. Principal component analysis (PCA), metabolite-metabolite correlation and hierarchical cluster analysis (HCA) revealed distinct dynamic changes in metabolites between the embryo and endosperm during seed germination. Generally, the metabolite changes in the embryo were much greater than those in the endosperm, suggesting that the embryo is more active than the endosperm during seed germination. Most amino acids were upregulated in both embryo and endosperm, while polysaccharides and organic acids associated with sugars were mainly downregulated in the embryo. Most of the sugars showed an upregulated trend in the endosperm, but significant changes in lipids occurred only in the embryo. Our results suggest that the embryo mobilises mainly protein and lipid metabolism, while the endosperm mobilises storage starch and minor protein metabolism during seed germination. The primary energy was generated mainly in the embryo by glycolysis during seed imbibition. The embryo containing most of the genetic information showed increased nucleotides during seed germination process, indicating more active transcription and translation metabolisms. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Identification of thioredoxin target disulfides in proteins released from barley aleurone layers

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, J.; Yang, Fen

    2010-01-01

    Thioredoxins are ubiquitous disulfide reductases involved in a wide range of cellular processes including DNA synthesis, oxidative stress response and apoptosis. In cereal seeds thioredoxins are proposed to facilitate the germination process by reducing disulfide bonds in storage proteins and other...

  18. In vitro storage of synthetic seeds: Effect of different storage ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... comparative regrowth and conversion capacity of synthetic seeds. Cold stored .... solution for 35 min. After complexation, the hardened alginate ... difference (LSD) test at 5% probability level (Steel et al., 1997). RESULTS AND ..... dure already proposed by Roussos and Pontikis (2002) that simplified the ...

  19. Influence of Chemical Extraction on Rheological Behavior, Viscoelastic Properties and Functional Characteristics of Natural Heteropolysaccharide/Protein Polymer from Durio zibethinus Seed

    Directory of Open Access Journals (Sweden)

    Hamed Mirhosseini

    2012-11-01

    Full Text Available In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05 effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05 effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like behavior compared to the viscous (liquid like behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed.

  20. Assessment of genetic fidelity in Rauvolfia serpentina plantlets grown from synthetic (encapsulated) seeds following in vitro storage at 4 °C.

    Science.gov (United States)

    Faisal, Mohammad; Alatar, Abdulrahman A; Ahmad, Naseem; Anis, Mohammad; Hegazy, Ahmad K

    2012-05-03

    An efficient method was developed for plant regeneration and establishment from alginate encapsulated synthetic seeds of Rauvolfia serpentina. Synthetic seeds were produced using in vitro proliferated microshoots upon complexation of 3% sodium alginate prepared in Llyod and McCown woody plant medium (WPM) and 100 mM calcium chloride. Re-growth ability of encapsulated nodal segments was evaluated after storage at 4 °C for 0, 1, 2, 4, 6 and 8 weeks and compared with non-encapsulated buds. Effects of different media viz; Murashige and Skoog medium; Lloyd and McCown woody Plant medium, Gamborg’s B5 medium and Schenk and Hildebrandt medium was also investigated for conversion into plantlets. The maximum frequency of conversion into plantlets from encapsulated nodal segments stored at 4 °C for 4 weeks was achieved on woody plant medium supplement with 5.0 μM BA and 1.0 μM NAA. Rooting in plantlets was achieved in half-strength Murashige and Skoog liquid medium containing 0.5 μM indole-3-acetic acid (IAA) on filter paper bridges. Plantlets obtained from stored synseeds were hardened, established successfully ex vitro and were morphologically similar to each other as well as their mother plant. The genetic fidelity of Rauvolfia clones raised from synthetic seeds following four weeks of storage at 4 °C were assessed by using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. All the RAPD and ISSR profiles from generated plantlets were monomorphic and comparable to the mother plant, which confirms the genetic stability among the clones. This synseed protocol could be useful for establishing a particular system for conservation, short-term storage and production of genetically identical and stable plants before it is released for commercial purposes.

  1. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed.

    Science.gov (United States)

    Goffman, Fernando D; Alonso, Ana P; Schwender, Jörg; Shachar-Hill, Yair; Ohlrogge, John B

    2005-08-01

    The conversion of photosynthate to seed storage reserves is crucial to plant fitness and agricultural production, yet quantitative information about the efficiency of this process is lacking. To measure metabolic efficiency in developing seeds, rapeseed (Brassica napus) embryos were cultured in media in which all carbon sources were [U-14C]-labeled and their conversion into CO2, oil, protein, and other biomass was determined. The conversion efficiency of the supplied carbon into seed storage reserves was very high. When provided with 0, 50, or 150 micromol m(-2) s(-1) light, the proportion of carbon taken up by embryos that was recovered in biomass was 60% to 64%, 77% to 86%, and 85% to 95%, respectively. Light not only improved the efficiency of carbon storage, but also increased the growth rate, the proportion of 14C recovered in oil relative to protein, and the fixation of external 14CO2 into biomass. Embryos grown at 50 micromol m(-2) s(-1) in the presence of 5 microM 1,1-dimethyl-3-(3,4-dichlorophenyl) urea (an inhibitor of photosystem II) were reduced in total biomass and oil synthesis by 3.2-fold and 2.8-fold, respectively, to the levels observed in the dark. To explore if the reduced growth and carbon conversion efficiency in dark were related to oxygen supplied by photosystem II, embryos and siliques were cultured with increased oxygen. The carbon conversion efficiency of embryos remained unchanged when oxygen levels were increased 3-fold. Increasing the O2 levels surrounding siliques from 21% to 60% did not increase oil synthesis rates either at 1,000 micromol m(-2) s(-1) or in the dark. We conclude that light increases the growth, efficiency of carbon storage, and oil synthesis in developing rapeseed embryos primarily by providing reductant and/or ATP.

  2. Germination of tropical forage seeds stored for six years in ambient and controlled temperature and humidity conditions in Thailand

    Directory of Open Access Journals (Sweden)

    Michael D. Hare

    2018-01-01

    Full Text Available The germination performances of fresh seed lots were determined for 5 tropical forage species: Mulato II hybrid brachiaria [Urochloa ruziziensis (syn. Brachiaria ruziziensis x U. decumbens (syn. B. decumbens x U. brizantha (syn. B. brizantha], Mombasa guinea [Megathyrsus maximus (syn. Panicum maximum], Tanzania guinea [M. maximus (syn. P. maximum], Ubon paspalum (Paspalum atratum and Ubon stylo (Stylosanthes guianensis, stored under ambient conditions in Thailand (mean monthly temperatures 23‒34 ºC; mean monthly relative humidity 40‒92% or in a cool room (18‒20 ºC and 50% relative humidity for up to 6 years. The first paper of this study showed all seeds, except unscarified Ubon stylo seed, were dead after a single year of storage in ambient conditions. This second paper shows that cool-room storage extended seed viability, but performance varied considerably between species. Germination percentage under laboratory conditions declined to below 50%, after 3 years storage for Mombasa guinea seed and Tanzania guinea seed, 4 years for Ubon paspalum seed and 4‒5 years for Mulato II seed. Ubon stylo seed maintained high germination for 5 years, in both cool-room storage (96% and ambient-room storage (84%. Apparent embryo dormancy in acid-scarified Mulato II seed steadily increased with time in cool-storage and this seed had to be acid-scarified again each year at the time of germination testing to overcome dormancy. Physical dormancy of Mulato II seeds, imposed by the tightly bound lemma and palea in unscarified seed, was not overcome by length of time in cool-storage and these seeds had to be acid-scarified to induce germination. Hardseeded percentage in Ubon stylo seed remained high throughout the study and could be overcome only by acid-scarification. The difficulties of maintaining acceptable seed germination percentages when storing forage seeds in the humid tropics are discussed.

  3. Barley seed proteomics from spots to structures

    DEFF Research Database (Denmark)

    Finnie, Christine; Svensson, Birte

    2009-01-01

    forms on 2D-gels. Specific protein families, including peroxidases and alpha-amylases have been subjected to in-depth analysis resulting in characterisation of different isozymes, post-translational. modifications and processing. A functional proteomics study focusing on the seed thioredoxin system has...... with information from rice and other cereals facilitate identification of barley proteins. Several hundred barley seed proteins are identified and lower abundance proteins including membrane proteins are now being analysed. In the present review we focus on variation in protein profiles of seed tissues during...

  4. Imbibition and germination in the seeds of Heliotropium supinum L.

    Directory of Open Access Journals (Sweden)

    Ramesh C. Bhatia

    2014-01-01

    Full Text Available Imbibition in the seeds of Heliotropium supinum L. varies under different temperatures. The optimum temperatures for imbibition and germination are also different. For germination 39% imbibition is essential, and this capability is achieved by 12-week-old seeds. With duration of dry storage imbibition increases. The imbibition and germination percentages decline on re-dry storage of seeds after embeding in mud. A soil moisture of 44% is optimal for germination. A correlation exists between imbibition and germination.

  5. Roasting pumpkin seeds and changes in the composition and oxidative stability of cold-pressed oils.

    Science.gov (United States)

    Raczyk, Marianna; Siger, Aleksander; Radziejewska-Kubzdela, Elżbieta; Ratusz, Katarzyna; Rudzińska, Magdalena

    2017-01-01

    Pumpkin seed oil is valuable oil for its distinctive taste and aroma, as well as supposed health- promoting properties. The aim of this study was to investigate how roasting pumpkin seeds influences the physicochemical properties of cold-pressed oils. The fatty acid composition, content of phytosterols, carotenoids and tocopherols, oxidative stability and colour were determined in oils after cold pressing and storage for 3 months using GC-FID, GCxGC-ToFMS, HPLC, Rancimat and spectrophotometric methods. The results of this study indicate that the seed-roasting and storage process have no effect on the fatty acid composition of pumpkin seed oils, but does affect phytosterols and tocopherols. The carotenoid content decreased after storage. The colour of the roasted oil was darker and changed significantly during storage. Pumpkin oil obtained from roasted seeds shows better physicochemical properties and oxidative stability than oil from unroasted seeds.

  6. Multi-Population Selective Genotyping to Identify Soybean [Glycine max (L.) Merr.] Seed Protein and Oil QTLs.

    Science.gov (United States)

    Phansak, Piyaporn; Soonsuwon, Watcharin; Hyten, David L; Song, Qijian; Cregan, Perry B; Graef, George L; Specht, James E

    2016-06-01

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which is mainly protein and oil, in soybean [Glycine max (L.) Merr.]. Identification of genetic loci governing those two traits would facilitate that effort. Though genome-wide association offers one such approach, selective genotyping of multiple biparental populations offers a complementary alternative, and was evaluated here, using 48 F2:3 populations (n = ∼224 plants) created by mating 48 high protein germplasm accessions to cultivars of similar maturity, but with normal seed protein content. All F2:3 progeny were phenotyped for seed protein and oil, but only 22 high and 22 low extreme progeny in each F2:3 phenotypic distribution were genotyped with a 1536-SNP chip (ca 450 bimorphic SNPs detected per mating). A significant quantitative trait locus (QTL) on one or more chromosomes was detected for protein in 35 (73%), and for oil in 25 (52%), of the 48 matings, and these QTL exhibited additive effects of ≥ 4 g kg(-1) and R(2) values of 0.07 or more. These results demonstrated that a multiple-population selective genotyping strategy, when focused on matings between parental phenotype extremes, can be used successfully to identify germplasm accessions possessing large-effect QTL alleles. Such accessions would be of interest to breeders to serve as parental donors of those alleles in cultivar development programs, though 17 of the 48 accessions were not unique in terms of SNP genotype, indicating that diversity among high protein accessions in the germplasm collection is less than what might ordinarily be assumed. Copyright © 2016 Phansak et al.

  7. Genetic Basis of Variation in Rice Seed Storage Protein (Albumin, Globulin, Prolamin, and Glutelin) Content Revealed by Genome-Wide Association Analysis.

    Science.gov (United States)

    Chen, Pingli; Shen, Zhikang; Ming, Luchang; Li, Yibo; Dan, Wenhan; Lou, Guangming; Peng, Bo; Wu, Bian; Li, Yanhua; Zhao, Da; Gao, Guanjun; Zhang, Qinglu; Xiao, Jinghua; Li, Xianghua; Wang, Gongwei; He, Yuqing

    2018-01-01

    Rice seed storage protein (SSP) is an important source of nutrition and energy. Understanding the genetic basis of SSP content and mining favorable alleles that control it will be helpful for breeding new improved cultivars. An association analysis for SSP content was performed to identify underlying genes using 527 diverse Oryza sativa accessions grown in two environments. We identified more than 107 associations for five different traits, including the contents of albumin (Alb), globulin (Glo), prolamin (Pro), glutelin (Glu), and total SSP (Total). A total of 28 associations were located at previously reported QTLs or intervals. A lead SNP sf0709447538, associated for Glu content in the indica subpopulation in 2015, was further validated in near isogenic lines NIL(Zhenshan97) and NIL(Delong208), and the Glu phenotype had significantly difference between two NILs. The association region could be target for map-based cloning of the candidate genes. There were 13 associations in regions close to grain-quality-related genes; five lead single nucleotide polymorphisms (SNPs) were located less than 20 kb upstream from grain-quality-related genes ( PG5a , Wx , AGPS2a , RP6 , and, RM1 ). Several starch-metabolism-related genes ( AGPS2a , OsACS6 , PUL , GBSSII , and ISA2 ) were also associated with SSP content. We identified favorable alleles of functional candidate genes, such as RP6 , RM1 , Wx , and other four candidate genes by haplotype analysis and expression pattern. Genotypes of RP6 and RM1 with higher Pro were not identified in japonica and exhibited much higher expression levels in indica group. The lead SNP sf0601764762, repeatedly detected for Alb content in 2 years in the whole association population, was located in the Wx locus that controls the synthesis of amylose. And Alb content was significantly and negatively correlated with amylose content and the level of 2.3 kb Wx pre-mRNA examined in this study. The associations or candidate genes identified would

  8. Genetic Basis of Variation in Rice Seed Storage Protein (Albumin, Globulin, Prolamin, and Glutelin Content Revealed by Genome-Wide Association Analysis

    Directory of Open Access Journals (Sweden)

    Pingli Chen

    2018-05-01

    Full Text Available Rice seed storage protein (SSP is an important source of nutrition and energy. Understanding the genetic basis of SSP content and mining favorable alleles that control it will be helpful for breeding new improved cultivars. An association analysis for SSP content was performed to identify underlying genes using 527 diverse Oryza sativa accessions grown in two environments. We identified more than 107 associations for five different traits, including the contents of albumin (Alb, globulin (Glo, prolamin (Pro, glutelin (Glu, and total SSP (Total. A total of 28 associations were located at previously reported QTLs or intervals. A lead SNP sf0709447538, associated for Glu content in the indica subpopulation in 2015, was further validated in near isogenic lines NIL(Zhenshan97 and NIL(Delong208, and the Glu phenotype had significantly difference between two NILs. The association region could be target for map-based cloning of the candidate genes. There were 13 associations in regions close to grain-quality-related genes; five lead single nucleotide polymorphisms (SNPs were located less than 20 kb upstream from grain-quality-related genes (PG5a, Wx, AGPS2a, RP6, and, RM1. Several starch-metabolism-related genes (AGPS2a, OsACS6, PUL, GBSSII, and ISA2 were also associated with SSP content. We identified favorable alleles of functional candidate genes, such as RP6, RM1, Wx, and other four candidate genes by haplotype analysis and expression pattern. Genotypes of RP6 and RM1 with higher Pro were not identified in japonica and exhibited much higher expression levels in indica group. The lead SNP sf0601764762, repeatedly detected for Alb content in 2 years in the whole association population, was located in the Wx locus that controls the synthesis of amylose. And Alb content was significantly and negatively correlated with amylose content and the level of 2.3 kb Wx pre-mRNA examined in this study. The associations or candidate genes identified would provide

  9. Oxygen requirement of germinating flax seeds

    Science.gov (United States)

    Kuznetsov, Oleg A.; Hasenstein, K. H.; Hasentein, K. H. (Principal Investigator)

    2003-01-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination. c2003 Published by Elsevier Ltd on behalf of COSPAR.

  10. Qualidade fisiológica de sementes de soja tratadas e armazenadas - Physiological quality of treated and stored soybean seeds.

    Directory of Open Access Journals (Sweden)

    Gustavo Cruvinel Rocha

    2017-07-01

    During storage as seeds or grains may suffer in their chemical composition, because of the storage environment. In view of this, a production of high quality physiological seeds will depend on the sum of all genetic, physical, physiological and sanitary attributes. However, little is known about the effects of seeds by harvesting, drying, processing and storage for long periods of time. Therefore, it was conducted in the seed laboratory of the University of Rio Verde, in order to evaluate a physiological quality of seeds treated under different storage conditions. The experimental design was used for the completely randomized 2x5x7, two storage conditions (conventional and air conditioned warehouse, five seed treatments and seven evaluation periods, with four replications. At 0, 20, 40, 60, 80, 100, 120 days after an imposition of treatments for evaluated germination, emergence speed index, accelerated aging and root length. The chemical treatments applied in soybean seeds (cultivar M 7739 IPRO reduced seed vigor. Keywords: Glycine max, germination, vigor.

  11. Evolution of plant cell wall: Arabinogalactan-proteins from three moss genera show structural differences compared to seed plants.

    Science.gov (United States)

    Bartels, Desirée; Baumann, Alexander; Maeder, Malte; Geske, Thomas; Heise, Esther Marie; von Schwartzenberg, Klaus; Classen, Birgit

    2017-05-01

    Arabinogalactan-proteins (AGPs) are important proteoglycans of plant cell walls. They seem to be present in most, if not all seed plants, but their occurrence and structure in bryophytes is widely unknown and actually the focus of AGP research. With regard to evolution of plant cell wall, we isolated AGPs from the three mosses Sphagnum sp., Physcomitrella patens and Polytrichastrum formosum. The moss AGPs show structural characteristics common for AGPs of seed plants, but also unique features, especially 3-O-methyl-rhamnose (trivial name acofriose) as terminal monosaccharide not found in arabinogalactan-proteins of angiosperms and 1,2,3-linked galactose as branching point never found in arabinogalactan-proteins before. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Storage behavior and changes in concentrations of abscisic acid and gibberellins during dormancy break and germination in seeds of Phellodendron amurense var. wilsonii (Rutaceae).

    Science.gov (United States)

    Chen, Shun-Ying; Chien, Ching-Te; Baskin, Jerry M; Baskin, Carol C

    2010-02-01

    The medicinal Asian plant genus Phellodendron is known to contain several very important compounds that have biological action. The main purpose of this study was to determine whether seeds of Phellodendron amurense var. wilsonii can be stored and to characterize their dormancy. Seeds of this taxon stored at -20 and -80 degrees C and in liquid nitrogen retained their high germinability, indicating that they have orthodox storage behavior. Intact seeds from freshly collected fruits were dormant and required 12 weeks of cold stratification at 4 degrees C for complete germination. Scarifying the seed coat was partially effective in breaking seed dormancy. Exogenous gibberellins (GA(3), GA(4) and GA(4+7)) promoted germination of scarified seeds, GA(4) and GA(4+7) being more effective than GA(3). Fluridone, an abscisic acid (ABA) biosynthesis inhibitor, was efficient in breaking dormancy, but it was less effective than GA(4) or GA(4+7) alone. Paclobutrazol, a GA biosynthesis inhibitor, inhibited seed germination, and the inhibitory effect was reversed completely by GA(4) and by GA(4+7). ABA content of seeds subjected to cold stratification or to incubation at 35/10 degrees C, which enhanced seed germination, was reduced about four- to sixfold compared to that of fresh seeds. Higher concentrations of GA(3), GA(4) and GA(7) were detected in nondormant seeds and in seeds with an emerged radicle than in fresh seeds. Present results seem to indicate that dormancy in P. amurense var. wilsonii seeds is imposed partially by the seed coat and partially by high ABA content. ABA content decreased and GA(3), GA(4) and GA(7) content increased during germination.

  13. Purification and Initial Functions of Sex-Specific Storage Protein 2 in Bombyx mori.

    Science.gov (United States)

    Chen, Jianqing; Shu, Tejun; Chen, Jian; Ye, Man; Lv, Zhengbing; Nie, Zuoming; Gai, Qijing; Yu, Wei; Zhang, Yaozhou

    2015-08-01

    In this study, we identified a heat-resistant protein from the chrysalis stage of the silkworm which we named sex-specific storage protein 2 (SSP2). This protein was stable even at 80 °C, and has an amino acid sequence that is 90.65 % homologous to SP2. We utilized the heat-resistant characteristics of SSP2 to purify the protein and maintain its biological activity. In addition, using flow cytometry and the MTT assay, we found that SSP2 had anti-apoptotic effects on BmN cells, and that SSP2 could also inhibit cell apoptosis induced by chemical factors. These results suggest that SSP2 has a cell-protective function, and provides a basis for future work on the function of storage proteins in silkworm.

  14. Whey protein concentrate storage at elevated temperature and humidity

    Science.gov (United States)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  15. Light Enables a Very High Efficiency of Carbon Storage in Developing Embryos of Rapeseed1

    Science.gov (United States)

    Goffman, Fernando D.; Alonso, Ana P.; Schwender, Jörg; Shachar-Hill, Yair; Ohlrogge, John B.

    2005-01-01

    The conversion of photosynthate to seed storage reserves is crucial to plant fitness and agricultural production, yet quantitative information about the efficiency of this process is lacking. To measure metabolic efficiency in developing seeds, rapeseed (Brassica napus) embryos were cultured in media in which all carbon sources were [U-14C]-labeled and their conversion into CO2, oil, protein, and other biomass was determined. The conversion efficiency of the supplied carbon into seed storage reserves was very high. When provided with 0, 50, or 150 μmol m−2 s−1 light, the proportion of carbon taken up by embryos that was recovered in biomass was 60% to 64%, 77% to 86%, and 85% to 95%, respectively. Light not only improved the efficiency of carbon storage, but also increased the growth rate, the proportion of 14C recovered in oil relative to protein, and the fixation of external 14CO2 into biomass. Embryos grown at 50 μmol m−2 s−1 in the presence of 5 μm 1,1-dimethyl-3-(3,4-dichlorophenyl) urea (an inhibitor of photosystem II) were reduced in total biomass and oil synthesis by 3.2-fold and 2.8-fold, respectively, to the levels observed in the dark. To explore if the reduced growth and carbon conversion efficiency in dark were related to oxygen supplied by photosystem II, embryos and siliques were cultured with increased oxygen. The carbon conversion efficiency of embryos remained unchanged when oxygen levels were increased 3-fold. Increasing the O2 levels surrounding siliques from 21% to 60% did not increase oil synthesis rates either at 1,000 μmol m−2 s−1 or in the dark. We conclude that light increases the growth, efficiency of carbon storage, and oil synthesis in developing rapeseed embryos primarily by providing reductant and/or ATP. PMID:16024686

  16. Fractionation, amino acid profiles, antimicrobial and free radical scavenging activities of Citrullus lanatus seed protein.

    Science.gov (United States)

    Dash, Priyanka; Ghosh, Goutam

    2017-12-01

    In the present study, a modified Osborne fractionation method was followed to isolate albumin (C alb ), globulin (C glo ), prolamin (C pro ) and glutelin (C glu ) successively from seeds of Citrullus lanatus (watermelon). This research work was undertaken to investigate the antimicrobial and antioxidant activities of isolated protein fractions of C. lanatus seed. Amino acid composition and molecular weight distribution were determined to establish their relationship with antimicrobial and antioxidant activity. Among all the fractions, C pro was found to be most effective against A. baumannii followed by C alb and C glo . The results showed that growth of inhibition of these protein fractions differ significantly from each other (p ≤ 0.05). In view of antioxidant potential, C glo exhibited strongest antioxidant capacity while C glu showed weakest antioxidant potential.

  17. Seed reserve utilization and hydrolytic enzyme activities in germinating seeds of sweet corn

    International Nuclear Information System (INIS)

    Cheng, X.; Xiong, F.; Wang, C.; He, S.; Zhou, Y.

    2018-01-01

    In this study, two sh2 sweet corn cultivars (i.e., the initial seed dry weight for FT018 and TB010 was 0.16+-0.02 g/grain and 0.09+-0.01 g/grain, respectively) were used to determine the physiological characteristics of seed reserve utilization in germination. The data implied that the weight of mobilized seed reserve (WMSR) and seed reserve utilization efficiency (SRUE) increased with seed germination. FT018 exhibited higher SRUE than TB010 due to its sufficient energy production for growth. Sugar (sucrose and fructose) contents were at different levels in the germinating seed of sh2 sweet corn. The protein content and number of protein species were highest in the early stage of germination. Enzyme activity in the germinating seed indicated that enzymes for starch and sugar hydrolysis were important and that enzyme activities significantly differed at each germination stage and between the cultivars under dark conditions. Succinate dehydrogenase, sucrose synthase, and glucose-6-phosphate dehydrogenase accumulated in the late germination stage. Thus, appropriate efforts should be focused on improving the seed reserve utilization in sweet corn by identifying the physiological mechanism of germinating seed. (author)

  18. Investigation of isolation conditions and ion-exchange purification of protein coagulation components from common bean seed

    Directory of Open Access Journals (Sweden)

    Antov Mirjana G.

    2007-01-01

    Full Text Available Investigation of an extraction procedure of protein coagulants from common bean seed regarding concentration of NaCl and pH was performed. High values of protein concentration and coagulation activity in crude extract (9.19 g/l and 23.9%, respectively were obtained when the extraction was performed using 0.5 mol/l NaCl and water as solvent, which represents an advantage for economic and environmental reasons. Crude extract of common bean seed was purified by precipitation at two different percentages of (NH42SO4 saturation, followed by batch ion-exchange chromatography. The highest obtained coagulation activity, 45%, was determined in fraction that was eluated at 1.75 mol/l NaCl from resin loaded with proteins precipitated upon 80-100% (NH42SO4 saturation. High values of coagulation activity showed by some eluates suggest their application as natural coagulant for water purification. .

  19. An Integrated “Multi-Omics” Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality

    Directory of Open Access Journals (Sweden)

    Marc Galland

    2017-11-01

    Full Text Available Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive “multi-omics” dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered “multi-omics” study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.

  20. Impact of Gamma Irradiation on The Metabolism of Some Seed Borne Fungi

    International Nuclear Information System (INIS)

    Afifi, M.A.; Ahmad, S.M.; Moussa, H.R.; Ismael, M.A.

    2014-01-01

    The influence of gamma irradiation on the metabolism of some seed born fungi isolated from maize and wheat grains, collected from different localities of El-Gharbia Governorate, Egypt, was the target of this study. The most common fungi isolated are Aspergillus terricola and Aspergillus fumigatus. Mostly all doses of gamma irradiation applied decreased carbohydrates and total lipids. Meanwhile, certain doses increased total proteins which suggested that protein might play a part in protection against the harmful effect of radiation. Application of gamma irradiation treatment inhibited α-amylase activities but increased cellulase, protease and organic acids production by Aspergillus terricola and Aspergillus fumigatus. The present data showed a pronounced reduction in total free amino acids upon increasing the gamma radiation doses. The results showed that 69 protein bands of molecular weights from 11.5 to 178 kDa were observed. Aspergillus fumigatus contains 31 protein bands from 15 to 120 kDa and Aspergillus terricola contains 27 protein bands from 12 to 91 kDa. According to the results from SDS-PAGE, 5 common bands could be seen between A. fumigatus and A. terricola while SDS-PAGE electrophoresis demonstrated emphasis of 2 new bands under influence of gamma irradiation with molecular weights of 60.4 kDa identified as phytochelatin synthase in Aspergillus fumigatus treated with 1 kGy and 66.7 kDa as protein from chaperone family in Aspergillus terricola treated with 1 kGy. It could be concluded that the major advantages of gamma irradiation treatment to maize and wheat seeds before storage can reduce the pathogenic fungi and preserve the quality and quantity of processed d seeds

  1. Qualidade fisiológica de sementes de palmiteiro-vermelho em função da desidratação e do armazenamento Physiological quality of Euterpe espiritosantensis seeds as affected by partial drying and storage

    Directory of Open Access Journals (Sweden)

    Cibele C Martins

    2007-06-01

    recalcitrant, presenting sensibility to dehydration and difficulty for storage. In some species with recalcitrant seeds, partial drying favors the maintenance of viability during storage. The objective of this research was to study the effects of partial drying and storage on germination and vigor of E. espiritosantensis seeds. Two seed lots (L1 and L2 were dried for 0; 20, and 40 hours in a dry chamber and stored at 15ºC in closed plastic bags. An assay for each seed lot was carried out on a completely randomized design, with treatments arranged in an 3 x 6 (L1 and 3 x 10 (L2 factorial scheme, corresponding to three seed drying periods and six or ten weeks of storage. Seed quality was evaluated every six weeks, during 30 and 54 weeks for L1 and L2, respectively. Seed water content (U, percentage of germination (G and vigor (first counting of germination test and index germination rate were assessed. Water content during storage, were, in both lots, on average 46; 40, and 36%, respectively, for 0; 20, and 40 hours of drying, without important changes due to storage period. For non-stored seeds, drying reduced significantly vigor, but did not interfere with germination. Seed lot L1 presented viable seeds in all sub lots until the end of the storage period (G = 71, 61 and 45% for 0; 20 and 40 hours, respectively. Seeds on lot L2 lost viability completely in the 30th week in the 40 hours of drying treatment (U=36%. Seeds in other treatments remained viable up to 54 weeks of storage (G = 46%. Partial drying reduced vigor and decreased seed longevity. Seeds from E. espiritosantensis can be stored without drying, with 45-46% of water content.

  2. Chemical Characteristics of Pumpkin Seed Tempeh From Soybean and Pumpkin Seeds

    OpenAIRE

    Pujilestari, Shanti; Sandrasari, Diny A; Marida, Rimmaria

    2017-01-01

    The aim of this research was to find the effect of the combination of soybean and pumpkin seeds on the chemical characteristics of pumpkin seed tempeh. The pumpkin seed tempeh samples were analyzed for its water, ash, protein, fat, carbohydrate and crude fiber. Meanwhile, support data were isoflavone and zinc. Sensory hedonic was conducted by 25 untrained panelists for selecting the best formulation of soybean and pumpkin seeds in tempeh. The result shows the formulation of soybean and pumpki...

  3. Antioxidant and Antihypertensive Potential of Protein Fractions from Flour and Milk Substitutes from Canary Seeds (Phalaris canariensis L.).

    Science.gov (United States)

    Valverde, María Elena; Orona-Tamayo, Domancar; Nieto-Rendón, Blanca; Paredes-López, Octavio

    2017-03-01

    Canary seed (Phalaris canariensis) is used to feed birds but it has been recently considered a promising cereal with nutraceutical potential for humans. The aim of this work was to analyze the protein fractions from canary seed flour and from milk substitutes (prepared by soaking the seeds in water 12 and 24 h), and to evaluate antioxidant and antihypertensive capacity of peptides obtained after in vitro digestion. Prolamins were the major protein fraction, followed by glutelins. After digestion, albumins and prolamins fractions from milks presented higher levels of peptides than flour, globulins showed more peptides in flour and glutelins were found in similar concentrations in all samples; 24 h milk prolamins had the highest concentration of peptides. Purification by high performance liquid chromatography (HPLC), sequencing of peptides, in vitro antioxidant ABTS (2,2'-azino-bis, 3-ethylbenzothiazoline-6-sulphonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) assays, and antihypertensive capacity (angiotensin converting enzyme (ACE) assay), indicated that peptides from canary seed prolamins were the most efficient compounds with antioxidant and antihypertensive activity. Canary seeds may be considered an accessible and cheap source to prepare milk substitutes with high contents of bioactive peptides with remarkable functional properties to promote better human health and healthy ageing.

  4. Establishment of post-harvest early-developmental categories for viability maintenance of Araucaria angustifolia seeds

    Directory of Open Access Journals (Sweden)

    Cristhyane Garcia Araldi

    2015-12-01

    Full Text Available Araucaria angustifolia seeds are recalcitrant, and their metabolism remains high during storage. This research aimed to describe the initiation of germination in A. angustifolia seeds during storage in order to standardize the assessment of physiological quality and to promote seed conservation. Seeds were collected from two populations and stored for 270 days in the natural laboratory environment and cold chamber. Seeds were classified according to four early developmental stages: I - mature seeds; II - seeds with elongation along the embryonic axis; III - beginning of root protrusion; IV - advanced germination stage, with seedling shoots. After categorization, physical and physiological quality was assessed. In freshly collected seeds, only category I was observed. At 270 days, approximately 40% of seeds were in category III in laboratory conditions, while the maintenance in a cold chamber delayed germinative metabolism. Viability tests showed that seeds in categories III and IV were more susceptible to damage caused by storage. In conclusion, the percentage of viable A. angustifolia seeds depends on the development stage after collection. Seeds that have reached early developmental category III should be prioritized for propagation, while those remaining in categories I and II should be longer stored with periodic assessment for reduction in physiological quality.

  5. Implications of Partial Conjugation of Whey Protein Isolate to Durian Seed Gum through Maillard Reactions: Foaming Properties, Water Holding Capacity and Interfacial Activity

    Directory of Open Access Journals (Sweden)

    Bahareh Tabatabaee Amid

    2013-12-01

    Full Text Available This paper deals with the conjugation of durian seed gum (DSG with whey protein isolate (WPI through Maillard reactions. Subsequently, the functional properties of durian seed gum in the non-conjugated (control sample and conjugated forms were compared with several commercial gums (i.e., Arabic gum, sodium alginate, kappa carrageenan, guar gum, and pectin. The current study revealed that the conjugation of durian seed gum with whey protein isolate significantly (p < 0.05 improved its foaming properties. In this study, the conjugated durian seed gum produced the most stable foam among all samples. On the other hand, the emulsion stabilized with the conjugated durian seed gum also showed more uniform particles with a larger specific surface area than the emulsion containing the non-conjugated durian seed gum. The conjugated durian seed gum showed significant different foaming properties, specific surface area, particle uniformity and water holding capacity (WHC as compared to the target polysaccharide gums. The conjugated durian seed gum showed more similar functional properties to Arabic gum rather than other studied gums.

  6. Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea

    Directory of Open Access Journals (Sweden)

    Hari Deo eUpadhyaya

    2016-03-01

    Full Text Available Identification of potential genes/alleles governing complex seed-protein content (SPC trait is essential in marker-assisted breeding for quality trait improvement of chickpea. Henceforth, the present study utilized an integrated genomics-assisted breeding strategy encompassing trait association analysis, selective genotyping in traditional bi-parental mapping population and differential expression profiling for the first-time to understand the complex genetic architecture of quantitative SPC trait in chickpea. For GWAS (genome-wide association study, high-throughput genotyping information of 16376 genome-based SNPs (single nucleotide polymorphism discovered from a structured population of 336 sequenced desi and kabuli accessions [with 150-200 kb LD (linkage disequilibrium decay] was utilized. This led to identification of seven most effective genomic loci (genes associated [10 to 20% with 41% combined PVE (phenotypic variation explained] with SPC trait in chickpea. Regardless of the diverse desi and kabuli genetic backgrounds, a comparable level of association potential of the identified seven genomic loci with SPC trait was observed. Five SPC-associated genes were validated successfully in parental accessions and homozygous individuals of an intra-specific desi RIL (recombinant inbred line mapping population (ICC 12299 x ICC 4958 by selective genotyping. The seed-specific expression, including differential up-regulation (> 4-fold of six SPC-associated genes particularly in accessions, parents and homozygous individuals of the aforementioned mapping population with high level of contrasting seed-protein content (21-22% was evident. Collectively, the integrated genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in six potential candidate genes regulating SPC trait in chickpea. Of these, a non-synonymous SNP allele-carrying zinc finger transcription factor gene exhibiting strong association with SPC trait

  7. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos.

    Science.gov (United States)

    Smolikova, Galina; Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej; Medvedev, Sergei

    2017-09-16

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN ( SGR ) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  8. Comparative studies on the carbohydrate, protein and acid phosphatase contents in seeds of some rye (Secale cereale varieties

    Directory of Open Access Journals (Sweden)

    B. Morawiecka

    2015-01-01

    Full Text Available The contents of sugars. proteins and acid phosphatase extracted with 0.1 M acetate buffer, pH 5.1, from some rye varieties were determined. The total sugar level amounted to 3.25-9.70 g per 100 g of seeds; the estimates for pentoses were 1.7-2.9 g and those for proteins 0.91-1.60 g per 100 g of seeds. Acid phosphatase showed and activity level between 0.18 and 1.26 units/mg protein. After disc electrophoresis proteins were separated into 10 to 11 bands: at pH 9.4 or into 4-7 bands at pH 3.8. Essential variety differences were expressed in protein patterns after electrophoresis at pH 3.8. Acid phosphatase was separated into 5 and 4 activity bands at pH 9.4 and 3.3,. respectively. No variations in zymogram patterns were observed in respect to variety differences or cultivation in various climate and soil conditions.

  9. Germination, carbohydrate composition and vigor of cryopreserved Caesalpinia echinata seeds

    Directory of Open Access Journals (Sweden)

    Rafael Fonsêca Zanotti

    2012-10-01

    Full Text Available The present study investigated the germination and vigor of Caesalpinia echinata (Brazilwood seeds stored at negative temperatures. Recently harvested seeds were cryopreserved at -18º or -196ºC and periodically evaluated for germination, seed vigor and carbohydrate composition. The temperatures did not influence the germination percentages or vigor. The germination percentage decreased from 88% in recently harvested seeds to 60% after 730 days of storage. The different temperature and storage times tested did not affect the vigor seed germination as indicated by the measures of plant growth and survival. The different temperatures used did not cause changes in the carbohydrate composition. The tegument cell walls were rich in lignin, arabinose and xylose. The cytoplasm of the cotyledons and embryos had high levels of glucose, fructose, and sucrose. The cryopreservation technique here presented was effective in the conservation of Brazilwood seeds for the medium term.

  10. The effects of frozen tissue storage conditions on the integrity of RNA and protein.

    Science.gov (United States)

    Auer, H; Mobley, J A; Ayers, L W; Bowen, J; Chuaqui, R F; Johnson, L A; Livolsi, V A; Lubensky, I A; McGarvey, D; Monovich, L C; Moskaluk, C A; Rumpel, C A; Sexton, K C; Washington, M K; Wiles, K R; Grizzle, W E; Ramirez, N C

    2014-10-01

    Unfixed tissue specimens most frequently are stored for long term research uses at either -80° C or in vapor phase liquid nitrogen (VPLN). There is little information concerning the effects such long term storage on tissue RNA or protein available for extraction. Aliquots of 49 specimens were stored for 5-12 years at -80° C or in VPLN. Twelve additional paired specimens were stored for 1 year under identical conditions. RNA was isolated from all tissues and assessed for RNA yield, total RNA integrity and mRNA integrity. Protein stability was analyzed by surface-enhanced or matrix-assisted laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS, MALDI-TOF-MS) and nano-liquid chromatography electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS). RNA yield and total RNA integrity showed significantly better results for -80° C storage compared to VPLN storage; the transcripts that were preferentially degraded during VPLN storage were these involved in antigen presentation and processing. No consistent differences were found in the SELDI-TOF-MS, MALDI-TOF-MS or nLC-ESI-MS/MS analyses of specimens stored for more than 8 years at -80° C compared to those stored in VPLN. Long term storage of human research tissues at -80° C provides at least the same quality of RNA and protein as storage in VPLN.

  11. Conservation of polypyrimidine tract binding proteins and their putative target RNAs in several storage root crops.

    Science.gov (United States)

    Kondhare, Kirtikumar R; Kumar, Amit; Hannapel, David J; Banerjee, Anjan K

    2018-02-07

    Polypyrimidine-tract binding proteins (PTBs) are ubiquitous RNA-binding proteins in plants and animals that play diverse role in RNA metabolic processes. PTB proteins bind to target RNAs through motifs rich in cytosine/uracil residues to fine-tune transcript metabolism. Among tuber and root crops, potato has been widely studied to understand the mobile signals that activate tuber development. Potato PTBs, designated as StPTB1 and StPTB6, function in a long-distance transport system by binding to specific mRNAs (StBEL5 and POTH1) to stabilize them and facilitate their movement from leaf to stolon, the site of tuber induction, where they activate tuber and root growth. Storage tubers and root crops are important sustenance food crops grown throughout the world. Despite the availability of genome sequence for sweet potato, cassava, carrot and sugar beet, the molecular mechanism of root-derived storage organ development remains completely unexplored. Considering the pivotal role of PTBs and their target RNAs in potato storage organ development, we propose that a similar mechanism may be prevalent in storage root crops as well. Through a bioinformatics survey utilizing available genome databases, we identify the orthologues of potato PTB proteins and two phloem-mobile RNAs, StBEL5 and POTH1, in five storage root crops - sweet potato, cassava, carrot, radish and sugar beet. Like potato, PTB1/6 type proteins from these storage root crops contain four conserved RNA Recognition Motifs (characteristic of RNA-binding PTBs) in their protein sequences. Further, 3´ UTR (untranslated region) analysis of BEL5 and POTH1 orthologues revealed the presence of several cytosine/uracil motifs, similar to those present in potato StBEL5 and POTH1 RNAs. Using RT-qPCR assays, we verified the presence of these related transcripts in leaf and root tissues of these five storage root crops. Similar to potato, BEL5-, PTB1/6- and POTH1-like orthologue RNAs from the aforementioned storage root

  12. Roles of endoplasmic reticulum stress and unfolded protein response associated genes in seed stratification and bud endodormancy during chilling accumulation in Prunus persica.

    Directory of Open Access Journals (Sweden)

    Xi Ling Fu

    Full Text Available Dormancy mechanisms in seeds and buds arrest growth until environmental conditions are optimal for development. A genotype-specific period of chilling is usually required to release dormancy, but the underlying molecular mechanisms are still not fully understood. To discover transcriptional pathways associated with dormancy release common to seed stratification and bud endodormancy, we explored the chilling-dependent expression of 11 genes involved in endoplasmic reticulum stress and the unfolded protein response signal pathways. We propose that endoplasmic reticulum stress and the unfolded protein response impact on seed as well as bud germination and development by chilling-dependent mechanisms. The emerging discovery of similarities between seed stratification and bud endodormancy status indicate that these two processes are probably regulated by common endoplasmic reticulum stress and unfolded protein response signalling pathways. Clarification of regulatory pathways common to both seed and bud dormancy may enhance understanding of the mechanisms underlying dormancy and breeding programs may benefit from earlier prediction of chilling requirements for uniform blooming of novel genotypes of deciduous fruit tree species.

  13. Seed dormancy, seedling establishment and dynamics of the soil seed bank of Stipa bungeana (Poaceae on the Loess Plateau of northwestern China.

    Directory of Open Access Journals (Sweden)

    Xiao Wen Hu

    Full Text Available Studying seed dormancy and its consequent effect can provide important information for vegetation restoration and management. The present study investigated seed dormancy, seedling emergence and seed survival in the soil seed bank of Stipa bungeana, a grass species used in restoration of degraded land on the Loess Plateau in northwest China. Dormancy of fresh seeds was determined by incubation of seeds over a range of temperatures in both light and dark. Seed germination was evaluated after mechanical removal of palea and lemma (hulls, chemical scarification and dry storage. Fresh and one-year-stored seeds were sown in the field, and seedling emergence was monitored weekly for 8 weeks. Furthermore, seeds were buried at different soil depths, and then retrieved every 1 or 2 months to determine seed dormancy and seed viability in the laboratory. Fresh seeds (caryopses enclosed by palea and lemma had non-deep physiological dormancy. Removal of palea and lemma, chemical scarification, dry storage (afterripening, gibberellin (GA3 and potassium nitrate (KNO3 significantly improved germination. Dormancy was completely released by removal of the hulls, but seeds on which hulls were put back to their original position germinated to only 46%. Pretreatment of seeds with a 30% NaOH solution for 60 min increased germination from 25% to 82%. Speed of seedling emergence from fresh seeds was significantly lower than that of seeds stored for 1 year. However, final percentage of seedling emergence did not differ significantly for seeds sown at depths of 0 and 1 cm. Most fresh seeds of S. bungeana buried in the field in early July either had germinated or lost viability by September. All seeds buried at a depth of 5 cm had lost viability after 5 months, whereas 12% and 4% seeds of those sown on the soil surface were viable after 5 and 12 months, respectively.

  14. The seed coat of Phaseolus vulgaris interferes with the development of the cowpea weevil [Callosobruchus maculatus (F. (Coleoptera: Bruchidae

    Directory of Open Access Journals (Sweden)

    Silva Luciana B.

    2004-01-01

    Full Text Available We have confirmed here that the seeds of the common bean (Phaseolus vulgaris, L. do not support development of the bruchid Callosobruchus maculatus (F., a pest of cowpea [Vigna unguiculata (L. Walp] seeds. Analysis of the testa (seed coat of the bean suggested that neither thickness nor the levels of compounds such as tannic acid, tannins, or HCN are important for the resistance. On the other hand, we have found that phaseolin (vicilin-like 7S storage globulin, detected in the testa by Western blotting and N-terminal amino acid sequencing, is detrimental to the development of C. maculatus. As for the case of other previously studied legume seeds (Canavalia ensiformis and Phaseolus lunatus we suggest that the presence of vicilin-like proteins in the testa of P. vulgaris may have had a significant role in the evolutionary adaptation of bruchids to the seeds of leguminous plants.

  15. Nutrient composition of Dacryodes edulis seed and seed coat mixture

    Directory of Open Access Journals (Sweden)

    C.U. OGUNKA-NNOKA

    2017-07-01

    Full Text Available This study investigated the nutrient composition of D. edulis seed and seed coat mixture. Qualitative and quantitative phytochemicals, proximate, and vitamin compositions were evaluated using standard methods. Saponins were very high, alkaloids, flavonoids, and tannins were high, while terpenoids were low, and glycosides, aldehydes, and steroids were absent. The quantitative phytochemical determination followed the order; saponin > kaempferol > rutin > catechin > tannin > sapogenin > lunamarine > phenol > ribalinidine > anthocyanin > oxalate > phytate. For the proximate composition, carbohydrates had the highest concentration, followed by lipids and fibre, while, protein concentration was the lowest. Vitamin E (5.42 mg/100g, vitamin C (3.24 mg/100g, and vitamin A (2.84 mg/100g were the highest occurring constituent vitamins while vitamin B12 (0.035 mg/100g and vitamin B2 (0.075 mg/100g were the least occurring vitamins. This study has shown the rich phytochemical composition of D. edulis seed and seed coat mixture while showing deficiencies in proteins, distinct vitamins, and ash contents.

  16. Bruchid egg induced transcript dynamics in developing seeds of black gram (Vigna mungo.

    Directory of Open Access Journals (Sweden)

    Indrani K Baruah

    Full Text Available Black gram (Vigna mungo seeds are a rich source of digestible proteins, however, during storage these seeds are severely damaged by bruchids (Callosobruchus spp., reducing seed quality and yield losses. Most of the cultivated genotypes of black gram are susceptible to bruchids, however, few tolerant genotypes have also been identified but the mechanism of tolerance is poorly understood. We employed Suppression Subtractive Hybridization (SSH to identify specifically, but rarely expressed bruchid egg induced genes in black gram. In this study, Suppression Subtractive Hybridization (SSH library was constructed to study the genes involved in defense response in black gram against bruchid infestation. An EST library of 277 clones was obtained for further analyses. Based on CAP3 assembly, 134 unigenes were computationally annotated using Blast2GOPRO software. In all, 20 defense related genes were subject to quantitative PCR analysis (qPCR out of which 12 genes showed up-regulation in developing seeds of the pods oviposited by bruchids. Few major defense genes like defensin, pathogenesis related protein (PR, lipoxygenase (LOX showed high expression levels in the oviposited population when compared with the non-oviposited plants. This is the first report on defense related gene transcript dynamics during the bruchid-black gram interaction using SSH library. This library would be useful to clone defense related gene(s such as defensin as represented in our library for crop improvement.

  17. Correlation between seed size, protein and oil contents, and fatty acid composition in soybean genotypes

    Directory of Open Access Journals (Sweden)

    Maestri, Damián M.

    1998-12-01

    Full Text Available Eighteen soybean genotypes (Glycine max (L. Merrill with maturity groups IV, V, VI or VII were grown in 1995/96 at the Estación Experimental Agropecuaria (EEA-INTA of Manfredi and Marcos Juárez, Argentina. The aim of this research was to determine possible associations between seed size, protein and oil contents, and fatty composition. Seed size varied between 13.9-21.0 g/100 seeds. Protein and oil contents ranged from 331 to 448 and from 198 to 267 g kg-1, respectively, and showed no significant correlation with seed size. There were significant correlations between seed size and individual fatty adds: positive with stearic and oleic and negative with linoleic. The results obtained suggest that seed size and its relationship with individual fatty acids must be considered in soybean breeding programs.

    Se analizaron 18 genotipos de soja (Glycine max (L. Merrill con grupos de madurez IV, V, VI o VIl, cultivados en 1995/96 en la Estación Experimental Agropecuaria (EEA-INTA de Manfredi y Marcos Juárez, Argentina. El propósito de la investigación fue determinar posibles asociaciones entre el tamaño del grano, los contenidos de proteínas y aceite y la composición de ácidos grasos del mismo. El tamaño del grano varió entre 13.9-21.0 g/100 granos. Los porcentajes de proteínas y aceite estuvieron comprendidos entre 331-448 y entre 198-267 g kg-1 respectivamente, y no mostraron correlaciones significativas con el tamaño del grano. Se observaron correlaciones significativas entre el tamaño del grano y determinados ácidos grasos: positivas con esteárico y oleico y negativa con linoleico. Las asociaciones encontradas podrían ser de utilidad en programas de mejoramiento de soja.

  18. Nutritional evaluation of dried tomato seeds.

    Science.gov (United States)

    Persia, M E; Parsons, C M; Schang, M; Azcona, J

    2003-01-01

    Two samples of tomato seeds, a by-product of the tomato canning industry were evaluated to determine proximate analysis, amino acid content, and digestibility, TMEn, and protein efficiency ratio. Tomato seeds were also used to replace corn and soybean meal (SBM) in a chick diet on an equal true amino acid digestibility and TMEn basis. Tomato seeds were found to contain 8.5% moisture, 25% CP, 20.0% fat, 3.1% ash, 35.1% total dietary fiber, 0.12% Ca, 0.58% P, and 3,204 kcal/kg of TMEn. The total amounts of methionine, cystine, and lysine in the tomato seeds were 0.39, 0.40, and 1.34%, respectively, and their true digestibility coefficients, determined in cecectomized roosters, were 75, 70, and 54%, respectively. The protein efficiency ratio (weight gain per unit of protein intake) value when fed to chicks at 9% CP was 2.5 compared to 3.6 for SBM (P seeds could replace corn and SBM without any adverse affects on chick weight gain, feed intake, or gain:feed ratio from 8 to 21 d posthatch. Tomato seeds at any level in the diet did not significantly affect skin pigmentation. Although the protein quality of tomato seeds may not be as high as SBM, tomato seeds do contain substantial amounts of digestible amino acids and TMEn. When formulating diets on a true digestible amino acid and TMEn basis, tomato seeds can be supplemented into chick rations at up to 15% without any adverse affects on growth performance.

  19. Recombinant expression of homodimeric 660 kDa human thyroglobulin in soybean seeds: an alternative source of human thyroglobulin.

    Science.gov (United States)

    Powell, Rebecca; Hudson, Laura C; Lambirth, Kevin C; Luth, Diane; Wang, Kan; Bost, Kenneth L; Piller, Kenneth J

    2011-07-01

    Soybean seeds possess many qualities that make them ideal targets for the production of recombinant proteins. However, one quality often overlooked is their ability to stockpile large amounts of complex storage proteins. Because of this characteristic, we hypothesized that soybean seeds would support recombinant expression of large and complex proteins that are currently difficult or impossible to express using traditional plant and non-plant-based host systems. To test this hypothesis, we transformed soybeans with a synthetic gene encoding human thyroglobulin (hTG)-a 660 kDa homodimeric protein that is widely used in the diagnostic industry for screening and detection of thyroid disease. In the absence of a recombinant system that can produce recombinant hTG, research and diagnostic grade hTG continues to be purified from cadaver and surgically removed thyroid tissue. These less-than-ideal tissue sources lack uniform glycosylation and iodination and therefore introduce variability when purified hTG is used in sensitive ELISA screens. In this study, we report the successful expression of recombinant hTG in soybean seeds. Authenticity of the soy-derived protein was demonstrated using commercial ELISA kits developed specifically for the detection of hTG in patient sera. Western analyses and gel filtration chromatography demonstrated that recombinant hTG and thyroid-purified hTG are biologically similar with respect to size, mass, charge and subunit interaction. The recombinant protein was stable over three generations and accumulated to ~1.5% of total soluble seed protein. These results support our hypothesis that soybeans represent a practical alternative to traditional host systems for the expression of large and complex proteins.

  20. Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis

    DEFF Research Database (Denmark)

    Kjærsgård, Inger Vibeke Holst; Nørrelykke, M.R.; Jessen, Flemming

    2006-01-01

    Multivariate data analysis has been combined with proteomics to enhance the recovery of information from 2-DE of cod muscle proteins during different storage conditions. Proteins were extracted according to 11 different storage conditions and samples were resolved by 2-DE. Data generated by 2-DE...... was subjected to principal component analysis (PCA) and discriminant partial least squares regression (DPLSR). Applying PCA to 2-DE data revealed the samples to form groups according to frozen storage time, whereas differences due to different storage temperatures or chilled storage in modified atmosphere...... light chain 1, 2 and 3, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase A and two ?-actin fragments, and a nuclease diphosphate kinase B fragment to change in concentration, during frozen storage. Application of proteomics, multivariate data analysis and MS/MS to analyse...

  1. The ribosome-inactivating, antiproliferative and teratogenic activities and immunoreactivities of a protein from seeds of Luffa aegyptiaca (Cucurbitaceae).

    Science.gov (United States)

    Ng, T B; Chan, W Y; Yeung, H W

    1993-05-01

    1. The protein isolated from Luffa aegyptiaca seeds was capable of inhibiting protein synthesis in a rabbit reticulocyte lysate system and [3H]thymidine uptake by mouse melanoma (B16) cells. 2. It also adversely affected the development of mouse embryos in culture. 3. In enzyme-linked immunosorbent assay it reacted with antisera raised against other ribosome-inactivating proteins.

  2. Lipid peroxidation and seed emergency in progenies of the yellow passion fruit plant

    Directory of Open Access Journals (Sweden)

    João Paulo Bestete de Oliveira

    2012-09-01

    Full Text Available The objective was to evaluate the percentage of emergency plantlets and lipid peroxidation in seeds of 29 half-sib progenies of yellow passion fruit (Passiflora edulis Sims. after 24 months under storage. The experimental design was completely randomized, with four replications of 50 seeds each, from which the treatments were the progenies (1-29. The evaluation of the percent plantlet emergency was accomplished at 14 and 28 days after sowing. The lipid peroxidation of the seeds was expressed as malondialdehyde (MDA content that was determined by the TBARS method. Approximately 21% of those half-sib progenies maintained the viability of their seeds for twenty-four months under storage. The results point out a remarkable genetic variability for vigor and emergency of the yellow passion fruit plantlets, with occurrence of individuals with high and other ones with low capacity to maintaining the physiologic quality of their seeds after storage.

  3. An analysis of the development of cauliflower seed as a model to improve the molecular mechanism of abiotic stress tolerance in cauliflower artificial seeds.

    Science.gov (United States)

    Rihan, Hail Z; Al-Issawi, Mohammed; Fuller, Michael P

    2017-07-01

    The development stages of conventional cauliflower seeds were studied and the accumulation of dehydrin proteins through the maturation stages was investigated with the aim of identifying methods to improve the viability of artificial seeds of cauliflower. While carbohydrate, ash and lipids increased throughout the development of cauliflower traditional seeds, proteins increased with the development of seed and reached the maximum level after 75 days of pollination, however, the level of protein started to decrease after that. A significant increase in the accumulation of small size dehydrin proteins (12, 17, 26 KDa) was observed during the development of cauliflower seeds. Several experiments were conducted in order to increase the accumulation of important dehydrin proteins in cauliflower microshoots (artificial seeds). Mannitol and ABA (Absisic acid) increased the accumulation of dehydrins in cauliflower microshoots while cold acclimation did not have a significant impact on the accumulation of these proteins. Molybdenum treatments had a negative impact on dehydrin accumulation. Dehydrins have an important role in the drought tolerance of seeds and, therefore, the current research helps to improve the accumulation of these proteins in cauliflower artificial seeds. This in turns improves the quality of these artificial seeds. The current results suggest that dehydrins do not play an important role in cold tolerance of cauliflower artificial seeds. This study could have an important role in improving the understanding of the molecular mechanism of abiotic stress tolerance in plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Preparation and Low Temperature Short-term Storage for Synthetic Seeds of Caladium bicolor

    Directory of Open Access Journals (Sweden)

    Mehpara MAQSOOD

    2015-03-01

    Full Text Available An efficient somatic embryo encapsulation and in vitro plant regeneration technique were established with Caladium bicolor, an important ornamental plant.Tuber derived embryogenic callus (95.50% was obtained on Murashige and Skoog (MS medium amended with 0.5 mg L-1 α-Naphthalene acetic acid (NAA + 0.5 mg L-1 6-Benzyladenine (BA. The embryogenic callus later differentiated into somatic embryos in the same plant growth regulators (PGRs added medium (NAA and BA. The induced embryos matured and developed into plantlets in NAA and BA added media; maximum plantlets development was observed at 1.0 mg L-1 NAA + 1.0 mg L-1 BA supplemented medium. Synthetic seeds were produced by encapsulating embryos in gel containing 3.0% sucrose + 3.0% sodium alginate and 100 mM of calcium chloride.The highest synthetic seed germination (97.6% was observed on medium supplemented with 1.0 mg L-1 NAA + 1.0 mg L-1 BA. The synthetic seeds were kept at low temperatures for storage; the encapsulated beads were viable and demonstrated good germination even after 12 weeks of storage at 4 °C. The plantlet recovery frequency was however declined with time. The synthetic seed derived plantlets were morphologically similar to the mother plant.

  5. Armazenamento de sementes de braquiária peletizadas e tratadas com fungicida e inseticida Brachiaria coated seed storage treated with fungicide and insecticide

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Pereira

    2011-12-01

    Full Text Available A qualidade de sementes é fundamental para o sucesso da formação de pastagem, de forma que é importante viabilizar tecnologias para elas. Assim, objetivou-se com este trabalho avaliar o desempenho de sementes de Brachiaria decumbens peletizadas e tratadas com fungicida e inseticida, durante o armazenamento. As sementes foram tratadas com thiabendazol na dosagem de 200mL 100kg-1 de sementes, com fipronil na dosagem de 500mL 100kg-1 de sementes e com a mistura de ambos (nas mesmas dosagens e parte não foi submetida a esses tratamentos (testemunha. Posteriormente, as sementes foram peletizadas utilizando-se uma mistura de areia + microcelulose e cola Cascorex - PVA (20%, as quais em seguida foram armazenadas em condições ambientais em armazém convencional (temperatura e umidade relativa do ar média de 21,9°C e 68%, respectivamente, durante 12 meses. As sementes foram avaliadas inicialmente e a cada quatro meses com as seguintes avaliações: teor de água, teste de germinação, índice de velocidade de germinação, teste de emergência e índice de velocidade de emergência. A peletização das sementes de Brachiaria decumbens com areia e microcelulose prejudica a porcentagem e velocidade de germinação, bem como a emergência de plântulas durante o armazenamento. Sementes de Brachiaria decumbens cv. 'Basilisk' tratadas com fipronil, thiabendazol, ou com ambos, não devem ser armazenadas por mais de oito meses.The quality of seed is crucial to the success of pasture formation. Thus the aim of this research was to evaluate the performance of Brachiaria decumbens seeds pelleted and treated with fungicides and insecticides during storage. The seeds were treated with thiabendazole at a dosage of 200mL 100kg-1 of seeds, with fipronil at a dosage of 500mL 100kg-1 of seeds and a mixture of both (in the same dosages and some was not subjected to such treatment (control. Subsequently the seeds were coated using a mixture of sand

  6. Stress, storage and survival of neem seed

    NARCIS (Netherlands)

    Sacandé, M.

    2000-01-01

    Neem ( Azadirachta indica ) is an important multipurpose tropical tree species, frequently used in planting programmes in the arid tropics. However, its seeds are difficult to store for extended periods of time, as are those of many other tropical species which display

  7. Effects of water deficit on breadmaking quality and storage protein compositions in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhou, Jiaxing; Liu, Dongmiao; Deng, Xiong; Zhen, Shoumin; Wang, Zhimin; Yan, Yueming

    2018-03-12

    Water deficiency affects grain proteome dynamics and storage protein compositions, resulting in changes in gluten viscoelasticity. In this study, the effects of field water deficit on wheat breadmaking quality and grain storage proteins were investigated. Water deficiency produced a shorter grain-filling period, a decrease in grain number, grain weight and grain yield, a reduced starch granule size and increased protein content and glutenin macropolymer contents, resulting in superior dough properties and breadmaking quality. Reverse phase ultra-performance liquid chromatography analysis showed that the total gliadin and glutenin content and the accumulation of individual components were significantly increased by water deficiency. Two-dimensional gel electrophoresis detected 144 individual storage protein spots with significant accumulation changes in developing grains under water deficit. Comparative proteomic analysis revealed that water deficiency resulted in significant upregulation of 12 gliadins, 12 high-molecular-weight glutenin subunits and 46 low-molecular-weight glutenin subunits. Quantitative real-time polymerase chain reaction analysis revealed that the expression of storage protein biosynthesis-related transcription factors Dof and Spa was upregulated by water deficiency. The present results illustrated that water deficiency leads to increased accumulation of storage protein components and upregulated expression of Dof and Spa, resulting in an improvement in glutenin strength and breadmaking quality. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  8. Effect of Long Period Cooling Storage on the Nucleic Acid of Harvested Cowpea Seeds ( Vigna Sinensis L.) Treated by Gamma Irradiation and Micro Elements

    International Nuclear Information System (INIS)

    Saleh, O.I.; Salama, I.M.

    2015-01-01

    Cowpea seeds ( Vigna sinensis L.) were exposed to 40 and 80 Gy gamma radiation, in order to study the effect of long period under cooling storage by using RAPD and ISSR PCR facilities. The obtained results indicated that RAPD protocol gave 65% monomorphic and 56% polymorphic fragments between the samples as compared to storage and non-storage controls. While , ISSR protocol gave 83% monomorphic and 85% polymorphic fragments. It should be mentioned that other percentage s 86% and 91% were found among samples in case of using another primers. The results could be summarized as follow: 1-Primer OP - B01 gave 7 monomorphic and 13 polymorphic fragments (65%). 2 - The Primer OP - B02 and Primer OP - B05 gave 4 monomorphic fragments with 14 polymorphic fragments (79%). 3 - The Primer HA-98 gave 4 monomorphic fragments with 19 detected polymorphic 83%. 4 - The Primer HA - 99 and HB-12 gave 3 monomorphic fragments and 17 polymorphic 85 and 86%, respectively. 5 - The Primer HB - 13 gave 2 monomorphic fragments with 21 detected polymorphic fragments 91%. 6 - The primer HA-98 gave 83% while the primer HA - 99 gave 85%. The previous results showed some polymorphism differences among the samples, while the primer HB-12 gave 86% and the primer HB-13 91% exhibited high levels of polymorphism. The DNA of stored cowpea seeds which were exposed to 80 Gy in the presence of zinc showed the highest differentiation , while radiation dose 40 Gy treated with zinc or boron, 80 Gy with boron and 40 or 80 Gy treatment alone compared to the two controls (storage and non storage)

  9. Grain Handling and Storage.

    Science.gov (United States)

    Harris, Troy G.; Minor, John

    This text for a secondary- or postecondary-level course in grain handling and storage contains ten chapters. Chapter titles are (1) Introduction to Grain Handling and Storage, (2) Elevator Safety, (3) Grain Grading and Seed Identification, (4) Moisture Control, (5) Insect and Rodent Control, (6) Grain Inventory Control, (7) Elevator Maintenance,…

  10. The Longevity of Crop Seeds Stored Under Long-term Condition in the National Gene Bank of Bulgaria

    Directory of Open Access Journals (Sweden)

    Desheva Gergana

    2016-10-01

    Full Text Available Seed accessions from 7 plant families and 28 species stored for above 20 years in the National gene bank of Bulgaria were evaluated. All seed accessions were maintained as base collection under long-term storage conditions with low moisture contents (5±2% in hermetically closed containers at −18°C. On the basis of experimental data, the seed storage characters σ (standard deviation of seed death in storage, P50% (the time for viability to fall to 50% and P10% (the time for viability reduction of 10% were determined allowing the prediction of seed storage life and the regeneration needs. The results showed significant differences in loss of seed viability among species and within the species. After 20–24 years of storage, eleven crops showed minimal viability decline under 5% as compared to the initial viability (oats, barley, maize, bread wheat, durum wheat, smooth brome grass, faba bean, chickpea, sunflower, cucumber and pepper. For the same storage time, another group of crops (sorghum, triticale, orchard grass, tall fescue, common vetch, grass pea, lentil, common bean, rapeseed, tobacco, flax, cabbage and tomatoes presented 5–10% reduction of seed viability. More significant changes in seed viability – above 10% – were detected for peanuts, lettuce, soybean and rye. The σ values varied from 20.41 years (Arachis hypogaea L. to 500 years (for Avena sativa L. and Triticum aestivum L. There was wide variation across species, both in time taken for the viability to fall to 50% and in time taken for the seed viability reduction of 10%. The study illustrates the positive effect of both seed storability early monitoring and prediction of regeneration needs as a tool for limiting undesired losses.

  11. Cucurbitaceae Seed Protein Hydrolysates as a Potential Source of Bioactive Peptides with Functional Properties

    Directory of Open Access Journals (Sweden)

    César Ozuna

    2017-01-01

    Full Text Available Seeds from Cucurbitaceae plants (squashes, pumpkins, melons, etc. have been used both as protein-rich food ingredients and nutraceutical agents by many indigenous cultures for millennia. However, relatively little is known about the bioactive components (e.g., peptides of the Cucurbitaceae seed proteins (CSP and their specific effects on human health. Therefore, this paper aims to provide a comprehensive review of latest research on bioactive and functional properties of CSP isolates and hydrolysates. Enzymatic hydrolysis can introduce a series of changes to the CSP structure and improve its bioactive and functional properties, including the enhanced protein solubility over a wide range of pH values. Small-sized peptides in CSP hydrolysates seem to enhance their bioactive properties but adversely affect their functional properties. Therefore, medium degrees of hydrolysis seem to benefit the overall improvement of bioactive and functional properties of CSP hydrolysates. Among the reported bioactive properties of CSP isolates and hydrolysates, their antioxidant, antihypertensive, and antihyperglycaemic activities stand out. Therefore, they could potentially substitute synthetic antioxidants and drugs which might have adverse secondary effects on human health. CSP isolates and hydrolysates could also be implemented as functional food ingredients, thanks to their favorable amino acid composition and good emulsifying and foaming properties.

  12. Dependence of the legume seeds vigour on their maturity and method of harvest

    Directory of Open Access Journals (Sweden)

    Stanisław Grzesiuk

    2014-01-01

    Full Text Available Several methods were used to study 'the vigour and viability of legume seeds (Pisum sativum L. cv. Hamil, Piston arvense L. cv. Mazurska and Lupinus luteus L. cv. Tomik harvested at three main stages of seed repening (green, wax and full. The seeds were tested immediately after harvest (series A and after two weeks of storage in pods (series B. It was found that: 1 the vigour of ripening legume seeds increases with maturation; 2 post-harvest storage in pods increases the degree of ripeness and. consequently. vigour; 3 seeds attain full vigour later than full viability; 4 seed leachate conductivity method gives erroneous results in assessing the vigour of immature seeds: 5 full vigour of maturing seeds of various degrees of ripeness can be determined by simultaneous application of both biological (eg. seedling growth analysis, VI and biochemical (e.g. total dehydrogenase activity methods.

  13. Moessbauer spectroscopic studies of iron-storage proteins

    Energy Technology Data Exchange (ETDEWEB)

    St. Pierre, T.G.

    1986-01-01

    /sup 57/Fe Moessbauer spectroscopy was used to study iron storage proteins. Various cryostats and a superconducting magnet were used to obtain sample environment temperatures from 1.3 to 200K and applied magnetic fields of up to 10T. The Moessbauer spectra of ferritins isolated from iron-overloaded human spleen, limpet (Patella vulgata), giant limpet (Patella laticostata) and chiton (Clavarizona hirtosa) hemolymph, and bacterial (Pseudomonas aeruginosa) cells are used to gain information on the magnetic ordering- and superparamagnetic transition temperatures of the microcrystalline cores of the proteins. Investigations were made about the cause of the difference in the magnetic anisotropy constants of the cores of iron-overloaded human spleen ferritin and hemosiderin. Livers taken from an iron-overloaded hornbill and artificially iron-loaded rats showed no component with a superparamagnetic transition temperature approaching that of the human spleen hemosiderin.

  14. Functionality-driven fractionation of lupin seeds

    NARCIS (Netherlands)

    Berghout, J.A.M.

    2015-01-01

    Functionality-driven fractionation of lupin seeds

    The growth in the world population requires an increase in the production of protein-rich foods from plant-based materials. Lupin seeds have potential to become a novel plant protein source for food products because they are rich

  15. Tratamento fungicida e peliculização de sementes de soja submetidas ao armazenamento Fungicide treatment and film coating of soybean seeds submitted to storage

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Pereira

    2011-02-01

    Full Text Available O tratamento de sementes de soja com fungicidas vem sendo utilizado como importante ferramenta no controle de patógenos. Nesse trabalho, objetivou-se estudar o desempenho de sementes de soja tratadas com fungicidas e peliculizadas, antes e após o armazenamento. Foram utilizados cinco lotes de sementes, cultivar Monsoy 6101, submetidos aos tratamentos: thiabendazole+thiram sem polímero, carbendazin+thiram sem polímero, sem fungicida (testemunha sem polímero, além desses tratamentos realizados via peliculização (com polímero. A qualidade fisiológica e sanitária das sementes foi avaliada inicialmente e após seis meses de armazenamento em condições ambientais, pelas seguintes determinações: teor de água, teste de germinação, emergência em bandeja, teste de frio e de sanidade. Conclui-se que a peliculização, em associação com fungicidas, não afeta a qualidade fisiológica das sementes de soja e o tratamento de lotes de sementes de soja com os fungicidas thiabendazole+thiram e carbendazin+thiram melhora seu desempenho e qualidade sanitária.The treatment of soybean seeds by fungicides has been used as an important tool in pathogen control. The objective of this work was to verify the performance of soybean seeds treated with fungicide and film coating, prior and after storage. Five seed lots, cultivar Monsoy 6101, were treated with thiabendazole+thiram without polymer, carbendazin+thiram without polymer, without fungicide (control, without polymer, and treatments by film coating (with polymer. The physiological and sanitary quality of the seeds was evaluated initially and after six months storage, under environmental conditions, according to the following characteristics: water content, test of germination and emergence on tray, blotter test and cold test. The film coating associated with fungicides does not affect the physiological quality of soybean seeds and the soybean seed treatment with the fungicides thiabendazole

  16. Structural Insights into Triglyceride Storage Mediated by Fat Storage-Inducing Transmembrane (FIT) Protein 2

    Science.gov (United States)

    Gross, David A.; Snapp, Erik L.; Silver, David L.

    2010-01-01

    Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2) belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9)AAA) in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9)AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation. PMID:20520733

  17. Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (FIT protein 2.

    Directory of Open Access Journals (Sweden)

    David A Gross

    2010-05-01

    Full Text Available Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2 belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9AAA in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation.

  18. Control of seed development in Arabidopsis thaliana by atmospheric oxygen

    Science.gov (United States)

    Kuang, A.; Crispi, M.; Musgrave, M. E.

    1998-01-01

    Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5.1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2 and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16.2 kPa, and seeds from plants grown in 2.5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5.1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5.1 kPa O2, at around the curled cotyledon stage in 10.1 kPa O2, and at the premature stage in 16.2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2.5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis.

  19. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos

    Directory of Open Access Journals (Sweden)

    Galina Smolikova

    2017-09-01

    Full Text Available The embryos of some angiosperms (usually referred to as chloroembryos contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR genes are the principle ones. On the biochemical level, abscisic acid (ABA is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  20. Is gene transcription involved in seed dry after-ripening?

    Directory of Open Access Journals (Sweden)

    Patrice Meimoun

    Full Text Available Orthodox seeds are living organisms that survive anhydrobiosis and may display dormancy, an inability to germinate at harvest. Seed germination potential can be acquired during a prolonged period of dry storage called after-ripening. The aim of this work was to determine if gene transcription is an underlying regulatory mechanism for dormancy alleviation during after-ripening. To identify changes in gene transcription strictly associated with the acquisition of germination potential but not with storage, we used seed storage at low relative humidity that maintains dormancy as control. Transcriptome profiling was performed using DNA microarray to compare change in gene transcript abundance between dormant (D, after-ripened non-dormant (ND and after-ripened dormant seeds (control, C. Quantitative real-time polymerase chain reaction (qPCR was used to confirm gene expression. Comparison between D and ND showed the differential expression of 115 probesets at cut-off values of two-fold change (p<0.05. Comparisons between both D and C with ND in transcript abundance showed that only 13 transcripts, among 115, could be specific to dormancy alleviation. qPCR confirms the expression pattern of these transcripts but without significant variation between conditions. Here we show that sunflower seed dormancy alleviation in the dry state is not related to regulated changes in gene expression.

  1. Developing eco-friendly biofungicide for the management of major seed borne diseases of rice and assessing their physical stability and storage life.

    Science.gov (United States)

    Naveenkumar, Ramasamy; Muthukumar, Arjunan; Sangeetha, Ganesan; Mohanapriya, Ramanathan

    2017-04-01

    Three plant oils (Cymbopogon citratus, Cymbopogon martini, and Pelargonium graveolens) were developed as EC formulations and tested for their physical stabilities. EC formulations (10EC, 20EC and 30EC) of C. citratus, C. martini and P. graveolens had emulsion stability, spontaneity property, heat and cold stability. EC formulated plant oils were screened against the major seed borne fungi of rice such as Curvularia lunata, Fusarium moniliforme, Bipolaris oryzae, and Sarocladium oryzae. The level of inhibition varied among the concentrations of EC formulations. Among the three EC formulations, that of C. citratus oil 30EC recorded 100% inhibition on the mycelial growth of test pathogens. In the blotter paper method, rice seeds treated with a formulation of C. citratus oil 30EC controlled the infection of C. lunata, F. moniliforme, B. oryzae and S. oryzae in rice seed to the tune of 66.0%, 60.4%, 66.0% and 69.1%, respectively. Seed soaking with formulation of C. citratus oil 30EC showed the highest percentage of normal seedlings, the lowest number of abnormal seedling and fresh ungerminated seeds when tested with the roll-towel method. Seed soaking with 30EC formulation of C. citratus oil increased seed germination, shoot length, root length and vigour of rice seedlings when tested with the plastic tray method. Transmission of pathogens from seed to seedling was reduced significantly by the 30EC formulation of C. citratus oil when tested with the plastic pot method. The effect of the storage life of the 30EC formulation of C. citratus oil showed that it had retained their antifungal effect till the end of the incubation period (120 days), and is able to inhibit the mycelial growth of all test pathogens to the 100% level. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  2. 11S Storage globulin from pumpkin seeds: regularities of proteolysis by papain.

    Science.gov (United States)

    Rudakova, A S; Rudakov, S V; Kakhovskaya, I A; Shutov, A D

    2014-08-01

    Limited proteolysis of the α- and β-chains and deep cleavage of the αβ-subunits by the cooperative (one-by-one) mechanism was observed in the course of papain hydrolysis of cucurbitin, an 11S storage globulin from seeds of the pumpkin Cucurbita maxima. An independent analysis of the kinetics of the limited and cooperative proteolyses revealed that the reaction occurs in two successive steps. In the first step, limited proteolysis consisting of detachments of short terminal peptides from the α- and β-chains was observed. The cooperative proteolysis, which occurs as a pseudo-first order reaction, started at the second step. Therefore, the limited proteolysis at the first step plays a regulatory role, impacting the rate of deep degradation of cucurbitin molecules by the cooperative mechanism. Structural alterations of cucurbitin induced by limited proteolysis are suggested to generate its susceptibility to cooperative proteolysis. These alterations are tentatively discussed on the basis of the tertiary structure of the cucurbitin subunit pdb|2EVX in comparison with previously obtained data on features of degradation of soybean 11S globulin hydrolyzed by papain.

  3. Seed Nutrition and Quality, Seed Coat Boron and Lignin Are Influenced by Delayed Harvest in Exotically-Derived Soybean Breeding Lines under High Heat.

    Science.gov (United States)

    Bellaloui, Nacer; Smith, James R; Mengistu, Alemu

    2017-01-01

    The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and

  4. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  5. TALEN-Based Mutagenesis of Lipoxygenase LOX3 Enhances the Storage Tolerance of Rice (Oryza sativa) Seeds.

    Science.gov (United States)

    Ma, Lei; Zhu, Fugui; Li, Zhenwei; Zhang, Jianfu; Li, Xin; Dong, Jiangli; Wang, Tao

    2015-01-01

    The deterioration of rice grain reduces the quality of rice, resulting in serious economic losses for farmers. Lipoxygenases (LOXs) catalyze the dioxygenation of polyunsaturated fatty acids with at least one cis,cis-1,4-pentadiene to form hydroperoxide, which is a major factor influencing seed longevity and viability. Recently, genome editing, an essential tool employed in reverse genetics, has been used experimentally to investigate basic plant biology or to modify crop plants for the improvement of important agricultural traits. In this study, we performed targeted mutagenesis in rice using transcription activator-like effector nucleases (TALENs) to improve seed storability. A modified ligation-independent cloning method (LIC) was employed to allow for the quick and efficient directional insertion of TALEN monomer modules into destination vectors used in plants. We demonstrated the feasibility and flexibility of the technology by developing a set of modular vectors for genome editing. After construction and validation, the TALEN pairs were used to create stable transgenic rice lines via Agrobacterium-mediated transformation. One heterozygous mutant (4%) was recovered from 25 transgenic NPTII-resistant lines, and the mutation was transmitted to the next generation. Further molecular and protein level experiments verified LOX3 deficiency and demonstrated the improvement of seed storability. Our work provides a flexible genome editing tool for improving important agronomic traits, as well as direct evidence that Lox3 has only a limited impact on seed longevity.

  6. TALEN-Based Mutagenesis of Lipoxygenase LOX3 Enhances the Storage Tolerance of Rice (Oryza sativa Seeds.

    Directory of Open Access Journals (Sweden)

    Lei Ma

    Full Text Available The deterioration of rice grain reduces the quality of rice, resulting in serious economic losses for farmers. Lipoxygenases (LOXs catalyze the dioxygenation of polyunsaturated fatty acids with at least one cis,cis-1,4-pentadiene to form hydroperoxide, which is a major factor influencing seed longevity and viability. Recently, genome editing, an essential tool employed in reverse genetics, has been used experimentally to investigate basic plant biology or to modify crop plants for the improvement of important agricultural traits. In this study, we performed targeted mutagenesis in rice using transcription activator-like effector nucleases (TALENs to improve seed storability. A modified ligation-independent cloning method (LIC was employed to allow for the quick and efficient directional insertion of TALEN monomer modules into destination vectors used in plants. We demonstrated the feasibility and flexibility of the technology by developing a set of modular vectors for genome editing. After construction and validation, the TALEN pairs were used to create stable transgenic rice lines via Agrobacterium-mediated transformation. One heterozygous mutant (4% was recovered from 25 transgenic NPTII-resistant lines, and the mutation was transmitted to the next generation. Further molecular and protein level experiments verified LOX3 deficiency and demonstrated the improvement of seed storability. Our work provides a flexible genome editing tool for improving important agronomic traits, as well as direct evidence that Lox3 has only a limited impact on seed longevity.

  7. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake

    OpenAIRE

    Worapot Suntornsuk; Donlaporn Saetae

    2010-01-01

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The ob...

  8. Extraction and identification of α-amylase inhibitor peptides from Nephelium lappacheum and Nephelium mutabile seed protein using gastro-digestive enzymes.

    Science.gov (United States)

    Evaristus, Natashya Anak; Wan Abdullah, Wan Nadiah; Gan, Chee-Yuen

    2018-04-01

    The potential of N. lappacheum and N. mutabile seed as a source of α-amylase inhibitor peptides was explored based on the local traditional practice of using the seed. Different gastro-digestive enzymes (i.e. pepsin or chymotrypsin) or a sequential digestion were used to extract the peptides. The effects of digestion time and enzyme to substrate (E:S) ratio on the α-amylase inhibitory activity were investigated. Results showed that chymotrypsin was effective in producing the inhibitor peptides from rambutan seed protein at E:S ratio 1:20 for 1 h, whereas pepsin was more effective for pulasan seed protein under the same condition. A total of 20 and 31 novel inhibitor peptides were identified, respectively. These peptides could bind with the subsites of α-amylase (i.e. Trp58, Trp59, Tyr62, Asp96, Arg195, Asp197, Glu233, His299, Asp300, and His305) and formed a sliding barrier that preventing the formation of enzyme/substrate intermediate leading to lower α-amylase activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Effect of Gamma Radiation on Microbial Load and Chemical Constituents of Stored Black Cumin Seeds (Negilla sativa)

    International Nuclear Information System (INIS)

    Ahmed, A.S.; Abd-El-Hamid, G.; Botros, H.W.; Abo-El-Seoud, M.A.

    2008-01-01

    The present work was carried out in an effort to study the possibility of making use of gamma radiation to elongate the storage periods of black cumin seeds (Negilla sativa). In this respect, black cumin seeds were irradiated at doses of 0, 5, 10, 20 and 40 KGy and stored at room temperature for periods of 0, 4, 8 and 12 months. Samples from the irradiated and nonirradiated black cumin seeds were taken during the different storage periods and analyzed for volatile oil, carbohydrates, soluble and reducing sugars and fatty acids contents. Besides, the microbial decontamination was also investigated. Results showed that storage caused deterioration in volatile oil constituents (especially in the main component; thyloquinone), decline in total carbohydrates of the seed, enhancement of total soluble sugars, and reduction in reducing sugars content. However, gamma radiation doses up to 40 KGy maintained the quality of the seed and volatile oil components as it lowered the deterioration during storage up to 12 months. In addition, gamma radiation showed promising effect to decontaminate the microbial load of the studied seeds

  10. Factors Affecting Isoflavone Content in Soybean Seeds Grown in Thailand

    Directory of Open Access Journals (Sweden)

    Supanimit Teekachunhatean

    2013-01-01

    Full Text Available Soybeans are the most common source of isoflavones in human foods. The objectives of this study were to determine the effects of Thai soybean variety, planting date, physical seed quality, storage condition, planting location, and crop year on isoflavone content, as well as to analyze the relationship between seed viability and isoflavone content in soybean seeds grown in Thailand. Isoflavone content in Thai soybeans varied considerably depending on such factors as variety, physical seed quality, crop year, planting date (even in the same crop year, and planting location. Most varieties (except for Nakhon Sawan 1 and Sukhothai 1 had significantly higher isoflavone content when planted in early rather than in late dry season. Additionally, seed viability as well as long-term storage at 10∘C or at ambient condition seemed unlikely to affect isoflavone content in Thai soybean varieties. Isoflavone content in soybean seeds grown in Thailand depends on multiple genetic and environmental factors. Some varieties (Nakhon Sawan 1 and Sukhothai 1 exhibited moderately high isoflavone content regardless of sowing date. Soybeans with decreased seed viability still retained their isoflavone content.

  11. Growing functional modules from a seed protein via integration of protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Dimitrakopoulou Konstantina

    2007-10-01

    Full Text Available Abstract Background Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. Results In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. Conclusion The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.

  12. Influence of planting date on seed protein oil sugars minerals and nitrogen metabolism in soybean under irrigated and non-irrigated enviroments

    Science.gov (United States)

    Information on the effect of planting date and irrigation on soybean [Glycine max (L.) Merr.] seed composition in the Early Soybean Production System is deficient, and what is available is inconclusive. The objective of this research was to investigate the effects of planting date on seed protein, o...

  13. Rebalance between 7S and 11S globulins in soybean seeds of differing protein content and 11SA4.

    Science.gov (United States)

    Yang, A; Yu, X; Zheng, A; James, A T

    2016-11-01

    Protein content and globulin subunit composition of soybean seeds affect the quality of soy foods. In this proteomic study, the protein profile of soybean seeds with high (∼45.5%) or low (∼38.6%) protein content and with or without the glycinin (11S) subunit 11SA4 was examined. 44 unique proteins and their homologues were identified and showed that both protein content and 11SA4 influenced the abundance of a number of proteins. The absence of 11SA4 exerted a greater impact than the protein content, and led to a decreased abundance of glycinin G2/A2B1 and G5/A5A4B3 subunits, which resulted in lower total 11S with a concomitant higher total β-conglycinin (7S). Low protein content was associated with higher glycinin G3/A1aB1b and lower glycinin G4/A5A4B3. Using the proteomic approach, it was demonstrated that 11SA4 deficiency induced compensatory accumulation of 7S globulins and led to a similar total abundance for 7S+11S irrespective of protein content or 11SA4. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Mitochondrion-Located Protein OsB12D1 Enhances Flooding Tolerance during Seed Germination and Early Seedling Growth in Rice

    Directory of Open Access Journals (Sweden)

    Dongli He

    2014-07-01

    Full Text Available B12D belongs to a function unknown subgroup of the Balem (Barley aleurone and embryo proteins. In our previous work on rice seed germination, we identified a B12D-like protein encoded by LOC_Os7g41350 (named OsB12D1. OsB12D1 pertains to an ancient protein family with an amino acid sequence highly conserved from moss to angiosperms. Among the six OsB12Ds, OsB12D1 is one of the major transcripts and is primarily expressed in germinating seed and root. Bioinformatics analyses indicated that OsB12D1 is an anoxic or submergence resistance-related gene. RT-PCR results showed OsB12D1 is induced remarkably in the coleoptiles or roots by flooding during seed germination and early seedling growth. The OsB12D1-overexpressed rice seeds could protrude radicles in 8 cm deep water, further exhibiting significant flooding tolerance compared to the wild type. Moreover, this tolerance was not affected by the gibberellin biosynthesis inhibitor paclobutrazol. OsB12D1 was identified in the mitochondrion by subcellular localization analysis and possibly enhances electron transport through mediating Fe and oxygen availability under flooded conditions. This work indicated that OsB12D1 is a promising gene that can help to enhance rice seedling establishment in farming practices, especially for direct seeding.

  15. Modification of the radiosensitivity of barley seed by post-treatment with caffeine

    International Nuclear Information System (INIS)

    Kesavan, P.C.; Nadkarni, S.

    1977-01-01

    The oxygen-dependent damage which developed in barley seeds with approximately 7.8 per cent moisture content disappeared after post-irradiation storage in vacuo for 48 hours at 40 0 C and for 24 hours at 50 0 C. When the duration of storage at 40 0 C was extended to 384 hours, oxygen-independent damage became potentiated. There was oxygen-dependent damage in seeds of approximately 13.3 per cent moisture content and after the seeds had been stored in vacuo at 50 0 C, the oxygen-independent damage began to increase by 168 hours, and it was significantly potentiated by 192 hours. Under these circumstances, caffeine acted as a radioprotector only as long as the precursors of oxic damage were present in the seeds. Once these sites were lost, caffeine acted only as a radiosensitizer. The oxygen-independent damage which increased with storage at high temperature was further potentiated by caffeine. (author)

  16. Identification of the chemical forms of selenium in soy protein

    International Nuclear Information System (INIS)

    Rodibaugh, R.

    1989-01-01

    Soybeans (Glycine max. L. Merr., Century) were grown hydroponically and intrinsically radiolabeled with 75 Se, an isotope of selenium (Se). The isotope was provided as 75 Se-Na 2 SeO 3 during the reproductive stage of growth until onset of senescence. Harvested seeds were processed into defatted soy meal. Soluble proteins were extracted in 20mM Tris-HCl buffer and fractionated into 11S, 7S, and 2S protein fractions by isoelectric precipitation. The 11S and 7S globulins, containing the glycinin and conglycinin storage proteins respectively, constitute the majority of extractable soy proteins. These storage proteins are the predominant proteins in soy protein isolate frequently used in food for human consumption. Approximately 24% of the defatted meal was soluble protein and accounted for 65% of the radioactivity associated with the soybean meal. The 11S fraction contained approximately 31% of the extracted protein and 27% of the extracted radioactivity. The 7S fraction contained approximately 32% and 35% of the extractable protein and radioactivity, respectively. The 2S fraction, containing the sulfur (S)-rich trypsin inhibitors, accounted for 17% of the protein and 27% of the radioactivity extracted from the defatted soy meal. Purification of the storage proteins by gel filtration and affinity chromatography showed higher levels of radioactivity associated with glycinin than conglycinin. Purified 11S proteins contained 1.09 ng Se per mg protein while 7S proteins contained 0.36 ng Se per mg protein

  17. Angiotensin-converting enzyme-inhibitory activity in protein hydrolysates from normal and anthracnose disease-damaged Phaseolus vulgaris seeds.

    Science.gov (United States)

    Hernández-Álvarez, Alan Javier; Carrasco-Castilla, Janet; Dávila-Ortiz, Gloria; Alaiz, Manuel; Girón-Calle, Julio; Vioque-Peña, Javier; Jacinto-Hernández, Carmen; Jiménez-Martínez, Cristian

    2013-03-15

    Bean seeds are an inexpensive source of protein. Anthracnose disease caused by the fungus Colletotrichum lindemuthianum results in serious losses in common bean (Phaseolus vulgaris L.) crops worldwide, affecting any above-ground plant part, and protein dysfunction, inducing the synthesis of proteins that allow plants to improve their stress tolerance. The aim of this study was to evaluate the use of beans damaged by anthracnose disease as a source of peptides with angiotensin-converting enzyme (ACE-I)-inhibitory activity. Protein concentrates from beans spoiled by anthracnose disease and from regular beans as controls were prepared by alkaline extraction and precipitation at isolelectric pH and hydrolysed using Alcalase 2.4 L. The hydrolysates from spoiled beans had ACE-I-inhibitory activity (IC(50) 0.0191 mg protein mL(-1)) and were very similar to those from control beans in terms of ACE-I inhibition, peptide electrophoretic profile and kinetics of hydrolysis. Thus preparation of hydrolysates using beans affected by anthracnose disease would allow for revalorisation of this otherwise wasted product. The present results suggest the use of spoiled bean seeds, e.g. anthracnose-damaged beans, as an alternative for the isolation of ACE-I-inhibitory peptides to be further introduced as active ingredients in functional foods. © 2012 Society of Chemical Industry.

  18. Quality protein maize (QPM) seeds grown in Côte d'Ivoire: A source ...

    African Journals Online (AJOL)

    Quality protein maize (QPM) seeds grown in Côte d'Ivoire: A source of high value edible oil. ... Biochemical and nutritive analysis have revealed the following assets: unsaponifiable matter (1.43 ± 0.21 and 1.70 ± 0.10%), phosphorus (0.10 ± 0.02 mg/g), carotenoids (0.86 ± 0.01 and 1.06 ± 0.01 mg/g), vitamin A (0.45 ± 0.01 ...

  19. seed storage proteins arl2 and its variants from the apa locus of wild ...

    African Journals Online (AJOL)

    sion of arcelin and ARL2 tepary bean proteins. Furthermore, a reduction in size and weight of emerged adult insects to almost half was observed. This work demonstrates the superior resistance common bean backcross lines to A. obtectus conferred by the presence of the APA proteins introgressed from tepary bean.

  20. Purification and characterization of a CkTLP protein from Cynanchum komarovii seeds that confers antifungal activity.

    Directory of Open Access Journals (Sweden)

    Qinghua Wang

    Full Text Available BACKGROUND: Cynanchum komarovii Al Iljinski is a desert plant that has been used as analgesic, anthelminthic and antidiarrheal, but also as a herbal medicine to treat cholecystitis in people. We have found that the protein extractions from C. komarovii seeds have strong antifungal activity. There is strong interest to develop protein medication and antifungal pesticides from C. komarovii for pharmacological or other uses. METHODOLOGY/PRINCIPAL FINDINGS: An antifungal protein with sequence homology to thaumatin-like proteins (TLPs was isolated from C. komarovii seeds and named CkTLP. The three-dimensional structure prediction of CkTLP indicated the protein has an acid cleft and a hydrophobic patch. The protein showed antifungal activity against fungal growth of Verticillium dahliae, Fusarium oxysporum, Rhizoctonia solani, Botrytis cinerea and Valsa mali. The full-length cDNA was cloned by RT-PCR and RACE-PCR according to the partial protein sequences obtained by nanoESI-MS/MS. The real-time PCR showed the transcription level of CkTLP had a significant increase under the stress of abscisic acid (ABA, salicylic acid (SA, methyl jasmonate (MeJA, NaCl and drought, which indicates that CkTLP may play an important role in response to abiotic stresses. Histochemical staining showed GUS activity in almost the whole plant, especially in cotyledons, trichomes and vascular tissues of primary root and inflorescences. The CkTLP protein was located in the extracellular space/cell wall by CkTLP::GFP fusion protein in transgenic Arabidopsis. Furthermore, over-expression of CkTLP significantly enhanced the resistance of Arabidopsis against V. dahliae. CONCLUSIONS/SIGNIFICANCE: The results suggest that the CkTLP is a good candidate protein or gene for contributing to the development of disease-resistant crops.