WorldWideScience

Sample records for storage ring cavities

  1. Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings

    International Nuclear Information System (INIS)

    Sanjari, M S; Chen, X; Hülsmann, P; Litvinov, Yu A; Nolden, F; Piotrowski, J; Steck, M; Stöhlker, Th

    2015-01-01

    Position sensitive beam monitors are indispensable for the beam diagnostics in storage rings. Apart from their applications in the measurements of beam parameters, they can be used in non-destructive in-ring decay studies of radioactive ion beams as well as enhancing precision in the isochronous mass measurement technique. In this work, we introduce a novel approach based on cavities with elliptical cross-section, in order to compensate the limitations of known designs for the application in ion storage rings. The design is aimed primarily for future heavy ion storage rings of the FAIR project. The conceptual design is discussed together with simulation results. (paper)

  2. Computer-aided studies of the ALS 500 MHz storage ring cavity

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.

    1989-03-01

    The design of the ALS storage ring 500 MHz cavity has been modeled with Mafia and Urmel codes. The effects of the holes cut for the drive port, the higher order mode damping port, the probe port and tuner plunger were modeled with the Mafia codes. The frequency dependence on the shape and spacing of the nose cones and the general shape of the cavity were modeled with Urmel codes. 9 refs., 7 figs., 1 tab

  3. Cooling the APS storage ring radio-frequency accelerating cavities: Thermal/stress/fatigue analysis and cavity cooling configuration

    International Nuclear Information System (INIS)

    Primdahl, K.; Kustom, R.

    1995-01-01

    The 7-GeV Advanced Photon Source positron storage ring requires sixteen separate 352-MHz radio-frequency (rf) accelerating cavities. Cavities are installed as groups of four, in straight sections used elsewhere for insertion devices. They occupy the first such straight section after injection, along with the last three just before injection. Cooling is provided by a subsystem of the sitewide deionized water system. Pumping equipment is located in a building directly adjacent to the accelerator enclosure. A prototype cavity was fabricated and tested where cooling was via twelve 19-mm-diameter [3/4 in] brazed-on tubes in a series-parallel flow configuration. Unfortunately, the thermal contact to some tubes was poor due to inadequate braze filler. Here, heat transfer studies, including finite-element analysis and test results, of the Advanced Photon Source (APS) storage ring 352-MHz rf accelerating cavities are described. Stress and fatigue life of the copper are discussed. Configuration of water cooling is presented

  4. Calculation of wake field and couple impedance of upgraded and old RF cavity in Hefei electron storage ring

    International Nuclear Information System (INIS)

    Xu Hongliang; Wang Lin; Sun Baogen; Li Weimin; Liu Jinying; He Duohui

    2003-01-01

    The phase II upgrading project of Hefei 800 MeV electron storage ring is being done, and the important component of the project, the RF cavity, will be finished soon. The old RF cavity with many disadvantages will be replaced by the new one. To estimate the effect of RF cavity coupling impedance to storing bunch intensity fully, the wake potential and the broad band couple impedance of RF cavity were calculated with MAFIA program. And the calculation results were compared between new and old cavity, it is found that the impedance of the new is bigger than that of the old

  5. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  6. Comparison of SW and TW non-synchronous accelerating cavities as used in electron beam storage rings

    International Nuclear Information System (INIS)

    Zolfaghari, A.; Demos, P.T.; Flanz, J.B.; Jacobs, K.

    1991-01-01

    The authors relate the parameters of detuned standing wave (SW) and non-synchronous beam travelling wave (TW) accelerating cavities of equivalent equilibrium performance when used to compensate for radiation and parasitic energy losses by electrons circulating in a high energy electron storage ring. The relationship is expressed in terms of the coupling parameter β and cavity tuning angle ψ of the TW accelerator's equivalent SW system. A given TW cavity corresponds to a standing wave system possessing specific settings of β and ψ. This is shown for the constant impedance TW waveguide, for which β and ψ can be expressed as explicit functions of TW cavity length 1, attenuation factor I, RF electric field phase velocity V p , and shunt impedance r. Coupling parameter β depends additionally on SW cavity shunt impedance R. The basis they have used for formulating the equivalence of the two systems follows Travelling Wave Cavity Non-Synchronous Beam Loading theory developed by G.A. Loew and Standing Wave Circuit Analysis theory as described by P.B. Wilson

  7. On a possibility of using a superconducting cavity in the RF system of the storage ring LESR-N100

    CERN Document Server

    Androsov, V P; Telegin, Yu P

    2002-01-01

    In the Kharkov Institute of Physics and Technology the design project of the 200 MeV electron storage ring LESR-N100 is under development. The essential feature of this facility is the large beam energy spread (of about 1%). To ensure a reasonable beam lifetime the RF-system should provide the accelerating voltage of about 0.5 MV, while the total energy losses do not exceed approx 700 eV/turn. The power dissipated in two 700 MHz normal-conducting (NC) cavities much exceeds the power transmitted to the beam. We considered a possibility to use in LESR-N100 a high-Q superconducting RF-cavity (SRF-cavity) in which the dissipated power is the same order of magnitude as the beam-transmitted power. The studies show that the system with SRF-cavity cannot operate in the standard mode when the cavity is matched to the power transmission line at some nominal beam current. The optimal operation mode with high overcoupling is proposed that requires the RF-power one order of magnitude less than in the case of Nc-cavities.

  8. Multiple-bunch-length operating mode design for a storage ring using hybrid low alpha and harmonic cavity method

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Weiwei, E-mail: gaomqr@mail.ustc.edu.cn [College of Mathematics and Physics, Fujian University of Technology, Fuzhou 350118 (China); Wang, Lin; Li, Heting [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2017-03-11

    In this paper we design a simultaneous three bunch length operating mode at the HLS-II (Hefei Light Source II) storage ring by installing two harmonic cavities and minimizing the momentum compaction factor. The short bunches (2.6 mm) presented in this work will meet the requirement of coherent millimeter-wave and sub-THz radiation experiments, while the long bunches (20 mm) will efficiently increase the total beam current. Therefore, this multiple-bunch-length operating mode allows present synchrotron users and coherent millimeter-wave users (or sub THz users) to carry out their experiments simultaneously. Since the relatively low energy characteristic of HLS-II we achieve the multiple-bunch-length operating mode without multicell superconducting RF cavities, which is technically feasible.

  9. LEP superconducting cavities go into storage

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Superconducting radio-frequency cavities from the LEP-2 phase (1996-2000) are put into storage in the tunnel that once housed the Intersecting Storage Rings (ISR), the world’s first proton collider, located at CERN.

  10. RF cavities of CESAR (2 MeV electron storage ring).

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1968-01-01

    RF cavity. There were 2 identical ones: one for stacking (accumulation) procedures; the other for scanning with "empty buckets" (measurement of beam density distribution). Both were operated at h=2 (2nd harmonic of the revolution frequency), i.e. at around 24.4 MHz. Voltage, frequency and phase were programmed with analogue circuits.

  11. CESAR, 2 MeV electron storage ring; construction period; RF cavity.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1962-01-01

    RF cavity. There were 2 identical ones: one for stacking (accumulation) procedures; the other for scanning with "empty buckets" (measurement of beam density distribution). Both were operated at h=2 (2nd harmonic of the revolution frequency), i.e. at around 24.4 MHz. Voltage, frequency and phase were programmed with analogue circuits.

  12. HOM (higher-order mode) test of the storage ring single-cell cavity with a 20-MeV e- beam for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Song, J.; Kang, Y.W.; Kustom, R.

    1993-01-01

    To test the effectiveness of damping techniques of the APS storage ring single-cell cavity, a beamline has been designed and assembled to use the ANL Chemistry Division linac beam (20-MeV, FWHM of 20 ps). A single-cell cavity will be excited by the electron beam to investigate the effect on higher-order modes (HOMs) with and without coaxial dampers (H-loop damper, E-probe damper), and wideband aperture dampers. In order for the beam to propagate on- and off-center of the cavity, the beamline consists of two sections -- a beam collimating section and a cavity measurement section -- separated by two double Aluminum foil windows. RF cavity measurements were made with coupling loops and E-probes. The results are compared with both the TBCI calculations and 'cold' measurements with the bead-perturbation method. The data acquisition system and beam diagnostics will be described in a separate paper

  13. Storage ring group summary

    International Nuclear Information System (INIS)

    King, N.M.

    1980-01-01

    The Storage Ring Group set out to identify and pursue salient problems in accelerator physics for heavy ion fusion, divorced from any particular reference design concept. However, it became apparent that some basic parameter framework was required to correlate the different study topics. As the Workshop progressed, ring parameters were modified and updated. Consequently, the accompanying papers on individual topics will be found to refer to slightly varied parameters, according to the stage at which the different problems were tackled

  14. Heavy ion storage rings

    International Nuclear Information System (INIS)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs

  15. APS storage ring vacuum system performance

    International Nuclear Information System (INIS)

    Noonan, J.R.; Gagliano, J.; Goeppner, G.A.

    1997-01-01

    The Advanced Photon Source (APS) storage ring was designed to operated with 7-GeV, 100-mA positron beam with lifetimes > 20 hours. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented

  16. SXLS storage ring design

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    X-ray lithography has emerged as a strong candidate to meet the demands of ever finer linewidths on integrated circuits, particularly for linewidths less than .25 microns. Proximity printing X-ray lithography makes use of soft X-rays to shadow print an image of a mask onto a semiconductor wafer to produce integrated circuits. To generate the required X-rays in sufficient quantities to make commercial production viable, electron storage rings have been proposed as the soft X-ray sources. Existing storage rings have been used to do the initial development work and the success of these efforts has led the lithographers to request that new rings be constructed that are dedicated to X-ray lithography. As a result of a series of workshops held at BNL [10.3] which were attended by both semiconductor and accelerator scientists, the following set of zeroth order specifications' on the light and electron beam of a storage ring for X-ray lithography were developed: critical wavelength of light: λ c = 6 to 10 angstroms, white light power: P = 0.25 to 2.5 watts/mrad, horizontal collection angle per port: θ = 10 to 50 mrad, electron beam sizes: σ x ∼ σ y y ' < 1 mrad

  17. Compact electron storage rings

    International Nuclear Information System (INIS)

    Williams, G.P.

    1987-01-01

    There have been many recent developments in the area of compact storage rings. Such rings would have critical wavelengths of typically 10 A, achieved with beam energies of several hundreds of MeV and superconducting dipole fields of around 5 Tesla. Although the primary motivation for progress in this area is that of commercial x-ray lithography, such sources might be an attractive source for college campuses to operate. They would be useful for many programs in materials science, solid state, x-ray microscopy and other biological areas. We discuss the properties of such sources and review developments around the world, primarily in the USA, japan and W. Germany

  18. Proton storage rings

    International Nuclear Information System (INIS)

    Rau, R.R.

    1978-04-01

    A discussion is given of proton storage ring beam dynamic characteristics. Topics considered include: (1) beam energy; (2) beam luminosity; (3) limits on beam current; (4) beam site; (5) crossing angle; (6) beam--beam interaction; (7) longitudinal instability; (8) effects of scattering processes; (9) beam production; and (10) high magnetic fields. Much of the discussion is related to the design parameters of ISABELLE, a 400 x 400 GeV proton---proton intersecting storage accelerator to be built at Brookhaven National Laboratory

  19. Progress on a prototype main ring rf cavity

    International Nuclear Information System (INIS)

    Swain, G.; Kandarian, R.; Thiessen, H.A.; Poirier, R.; Smythe, W.R.

    1989-01-01

    A prototype rf cavity and rf drive system for a hadron facility main ring has been designed and will be tested in the Proton Storage Ring (PSR) at Los Alamos as a part of a collaborative effort between LANL and TRIUMF. The cavity uses an orthogonally biased ferrite tuner. The design provides for accelerating gap voltages up to 200 kV for the 49.3 to 50.8 MHz range. Progress on the cavity construction and testing is described. 13 refs., 5 figs

  20. Femtoslicing in Storage Rings

    CERN Document Server

    Khan, Shaukat

    2005-01-01

    The generation of ultrashort synchrotron radiation pulses by laser-induced energy modulation of electrons and their subsequent transverse displacement, now dubbed "femtoslicing," was demonstrated at the Advanced Light Source in Berkeley. More recently, a femtoslicing user facility was commissioned at the BESSY storage ring in Berlin, and another project is in progress at the Swiss Light Source. The paper reviews the principle of femtoslicing, its merits and shortcomings, as well as the variations of its technical implementation. Various diagnostics techniques to detect successful laser-electron interaction are discussed and experimental results are presented.

  1. Storage ring development at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design

  2. The circular RFQ storage ring

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1998-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features used in a conventional storage ring and an ion trap, and is basically a linear RFQ bend on itself. In summary the advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  3. The Circular RFQ Storage Ring

    International Nuclear Information System (INIS)

    Ruggiero, A. G.

    1999-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features of conventional storage rings and ion traps, and is basically a linear RFQ bent on itself. The advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  4. Polarized particles in storage rings

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.

    1977-01-01

    Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented

  5. Autumn study on storage rings

    CERN Multimedia

    1974-01-01

    The first two weeks of October have seen storage ring people from accelerator Laboratories throughout the world at CERN to study the fundamental problems of very high energy protonproton colliding beam machines.

  6. Bifurcation structure of an optical ring cavity

    DEFF Research Database (Denmark)

    Kubstrup, C.; Mosekilde, Erik

    1996-01-01

    One- and two-dimensional continuation techniques are applied to determine the basic bifurcation structure for an optical ring cavity with a nonlinear absorbing element (the Ikeda Map). By virtue of the periodic structure of the map, families of similar solutions develop in parameter space. Within...

  7. Pulsed rf systems for large storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1979-03-01

    The possibility is considered that by using a pulsed rf system a substantial reduction can be made in the rf power requirement for the next generation of large storage rings. For a ring with a sufficiently large circumference, the time between bunch passages, T/sub b/, can exceed the cavity filling time, T/sub f/. As the ratio T/sub b//T/sub f/ increases, it is clear that at some point the average power requirement can be reduced by pulsing the rf to the cavities. In this mode of operation, the rf power is turned on a filling time or so before the arrival of a bunch and is switched off again at the time of bunch passage. There is no rf energy in the accelerating structure, and hence no power dissipation, for most of the period between bunches

  8. A new storage-ring light source

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  9. Proton storage ring summer workshop

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Cooper, R.K.

    1977-10-01

    During the week of August 16, 1976 a Workshop was held at the Los Alamos Scientific Laboratory (LASL) on the Proton Storage Ring (PSR) for the Weapons Neutron Research Facility (WNRF). Written contributions were solicited from each of the participants in the Workshop, and the contributions that were received are presented. The papers do not represent polished or necessarily complete work, but rather represent ''first cuts'' at their respective areas. Topics covered include: (1) background information on the storage ring; (2) WNRF design; (3) rf transient during filling; (4) rf capture; (5) beam bunch compression; (6) transverse space charge limits; (7) transverse resistive instability in the PSR; (8) longitudinal resistive instability; (9) synchrotron frequency splitting; (10) E Quintus Unum--off resonance; (11) first harmonic bunching in the storage ring; (12) kicker considerations; (13) beam extraction; (14) ferrite kicker magnets; and (15) E Quintus Unum: a possible ejection scheme

  10. Low emittance electron storage rings

    Science.gov (United States)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  11. The Cryogenic Storage Ring CSR

    OpenAIRE

    von Hahn, Robert; Becker, Arno; Berg, Felix; Blaum, Klaus; Breitenfeldt, Christian; Fadil, Hisham; Fellenberger, Florian; Froese, Michael; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth A.; Heber, Oded; Herwig, Philipp

    2016-01-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion a...

  12. Ring cavity for a Raman capillary waveguide amplifier

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  13. Ring cavity for a Raman capillary waveguide amplifir

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  14. Ring cavity surface emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Mujagic, E.

    2010-01-01

    Quantum cascade lasers (QCLs) are electrically driven semiconductor lasers, which have undergone a steady improvement since the first demonstration in 1994. These are now well established as reliable sources of coherent light in the mid-infrared (MIR) and terahertz (THz)range of the electromagnetic spectrum (3-300 μm). The rapid progress of this type of lasers is based on a high degree of freedom in tailoring the emission wavelength within a large variety of semiconductor heterostructure designs and materials. These properties have attracted the attention of various applications such as gas analysis, chemical sensing, spectral imaging and free-space telecommunication. In order to improve the selectivity, sensitivity and efficiency of today's sensor systems, high optical power, continuous wave and room temperature performance, single-mode operation and low divergence optical beams, are highly desirable qualities of a compact laser source in this field of research. Since all of these features cannot be provided by a conventional edge-emitting device at the same time, research has put focus on the development of surface emitting devices. Nowadays, the vertical cavity surface emitting lasers (VCSELs) are the most prominent representative for this type of light emitters. With its capability of producing narrow circular beams, the feasibility of two-dimensional arrays and on-wafer testing, such a coherent light source results in a reduction of the fabrication effort and production costs. Since the radiation in QCLs is strictly polarized normal to the epitaxial layer plane, fabrication of VCSELs based on QC structures is not viable. The subject of this work is the design and realization of 'ring cavity surface emitting lasers' (ring-CSELs). This type of lasers employs a circular ring cavity and a resonant distributed feedback (DFB) surface grating. Ring-CSELs were fabricated on the basis of MIR and THz QC structures, which cover a wavelength range from 4 μm to 93

  15. Storage-ring FEL for the vuv

    International Nuclear Information System (INIS)

    Peterson, J.M.; Bisognano, J.J.; Garren, A.A.; Halbach, K.; Kim, K.J.; Sah, R.C.

    1984-09-01

    A free-electron laser for the vuv operating in a storage ring requires an electron beam of high density and low energy spread and a short wavelength, narrow-gap undulator. These conditions tend to produce longitudinal and transverse beam instabilities, excessive beam growth through multiple intrabeam scattering, and a short gas-scattering lifetime. Passing the beam only occasionally through the undulator in a by-pass straight section, as proposed by Murphy and Pellegrini, allows operation in a high-gain, single-pass mode and a long gas-scattering lifetime. Several storage ring designs have been considered to see how best to satisfy the several requirements. Each features a by-pass, a low-emittance lattice, and built-in wigglers for enhanced damping to counteract the intra-beam scattering. 15 references, 3 figures, 2 tables

  16. Study of RF system of Hefei storage ring under injection

    International Nuclear Information System (INIS)

    Xu Hongliang; Wang Lin; Li Yongjun; Huang Guirong; Zhang Pengfei; Li Weimin; Liu Zuping; He Duohui

    2004-01-01

    In this paper, the beam loading effect of RF system and the conditions of Robinson instability are analyzed in detail. By the study of the injection beam intensity limit dependent on detune angle and visible detune angle, it is found that the storage ring can be injected to more than 300 mA current intensity to attain the design target of phase II project in the lower energy injection situation of Hefei Storage Ring if a certain power is feed in the RF cavity and a certain tuning angle of the RF cavity is set

  17. Fourth-generation storage rings

    International Nuclear Information System (INIS)

    Galayda, J. N.

    1999-01-01

    It seems clear that a linac-driven free-electron laser is the accepted prototype of a fourth-generation facility. This raises two questions: can a storage ring-based light source join the fourth generation? Has the storage ring evolved to its highest level of performance as a synchrotrons light source? The answer to the second question is clearly no. The author thinks the answer to the first question is unimportant. While the concept of generations has been useful in motivating thought and effort towards new light source concepts, the variety of light sources and their performance characteristics can no longer be usefully summed up by assignment of a ''generation'' number

  18. Broadband impedance of the NESTOR storage ring

    International Nuclear Information System (INIS)

    Androsov, V.P.; Gladkikh, P.I.; Gvozd, A.M.; Karnaukhov, I.M.; Telegin, Yu.N.

    2011-01-01

    The contributions from lossy and inductive vacuum chamber components to the broadband impedance of the NESTOR storage ring are obtained by using both low-frequency analytical approaches and computer simulations. As was expected considering the small ring circumference (15.44m), the main contributions both to the longitudinal impedance Z || /n and the loss factor k loss come from the RF-cavity. Cavity impedance was also estimated with CST Microwave Studio (CST Studio Suite TM 2006) by simulating coaxial wire method commonly used for impedance measurements. Both estimates agree well. Finally, we performed the simulations of a number of inductive elements with CST Particle Studio 2010 by using wake field solver. We have also evaluated the bunch length in NESTOR taking the conservative estimate of 3 Ohm for the ring broadband impedance and have found that the bunch length s z = 0.5 cm could be obtained in steady state operation mode for the designed bunch current of 10 mA and RF-voltage of 250 kV.

  19. Two superconducting storage rings: ISABELLE

    International Nuclear Information System (INIS)

    Sanford, J.R.

    1978-01-01

    The general features of the design and the status of the ISABELLE storage ring project at the present time are reported. It brings up to date the results reported at the National Particle Accelerator Conference in March 1977. The most significant change since that time has been an upgrading of the energy of the overall facility, and acceptance of the project by the Department of Energy

  20. The LSU Electron Storage Ring, the first commercially-built storage ring

    International Nuclear Information System (INIS)

    Sah, R.

    1990-01-01

    The Brobeck Division of Maxwell Laboratories, Inc., is building the first industrially-produced storage ring. It will be located at Louisiana State University (LSU) at the Center for Advanced Microstructures and Devices (CAMD) in Baton Rouge. The purpose of this electron storage ring is to provide intense beams of x-rays to advance the state-of-the-art in lithography and to permit research in a broad area. This facility consists of a 1.2 GeV, 400 mA electron storage ring with a 200 MeV linac injector. The magnet lattice is a Chasman-Green design (double-bend achromat), and the ring circumference is 55.2 meters. There are four 3.0 meter, dispersion-free straight sections, one for injection, one for the 500 MHz RF cavity, and two for possible future insertion devices. The storge ring construction project is in the detailed-design stage, and many systems are in the initial stages of fabrication. 4 figs., 1 tab

  1. Transverse Periodic Beam Loading Effects in a Storage Ring

    International Nuclear Information System (INIS)

    Thompson, J.R.; Byrd, J.M.

    2009-01-01

    Uneven beam fill patterns in storage rings, such as gaps in the fill patterns, leads to periodic, or transient loading of the modes of the RF cavities. We show that an analogous effect can occur in the loading of a dipole cavity mode when the beam passes off the electrical center of the cavity mode. Although this effect is small, it results in a variation of the transverse offset of the beam along the bunch train. For ultralow emittance beams, such as optimized third generation light sources and damping rings, this effect results in a larger projected emittance of the beam compared with the single bunch emittance. The effect is particularly strong for the case when a strong dipole mode has been purposely added to the ring, such as a deflecting, or 'crab' cavity. We derive an approximate analytic solution for the variation of the beam-induced deflecting voltage along the bunch train.

  2. Upgraded cavities for the positron accumulator ring of the APS

    International Nuclear Information System (INIS)

    Kang, Y.W.; Jiang, X.; Mangra, D.

    1997-01-01

    Upgraded versions of cavities for the APS positron accumulator ring (PAR) have been built and are being tested. Two cavities are in the PAR: a fundamental 9.8-MHz cavity and a twelfth harmonic 117.3-MHz cavity. Both cavities have been manufactured for higher voltage operation with improved Q-factors, reliability, and tuning capability. Both cavities employ current-controlled ferrite tuners for control of the resonant frequency. The harmonic cavity can be operated in either a pulsed mode or a CW mode. The rf properties of the cavities are presented

  3. Neutrino Signals in Electron-Capture Storage-Ring Experiments

    Directory of Open Access Journals (Sweden)

    Avraham Gal

    2016-06-01

    Full Text Available Neutrino signals in electron-capture decays of hydrogen-like parent ions P in storage-ring experiments at GSI are reconsidered, with special emphasis placed on the storage-ring quasi-circular motion of the daughter ions D in two-body decays P → D + ν e . It is argued that, to the extent that daughter ions are detected, these detection rates might exhibit modulations with periods of order seconds, similar to those reported in the GSI storage-ring experiments for two-body decay rates. New dedicated experiments in storage rings, or using traps, could explore these modulations.

  4. A muon storage ring for neutrino beams

    International Nuclear Information System (INIS)

    Lee, W.; Neuffer, D.

    1988-01-01

    A muon storage ring can provide electron and muon neutrino beams of precisely knowable flux. Constraints on muon collection and storage-ring design are discussed. Sample muon storage rings are presented and muon and neutrino intensities are estimated. Experimental use of the ν-beams, detector properties, and possible variations are described. Future directions for conceptual designs are outlined. 11 refs., 4 figs., 3 tabs

  5. Longitudinal dynamics in storage rings

    International Nuclear Information System (INIS)

    Colton, E.P.

    1986-01-01

    The single-particle equations of motion are derived for charged particles in a storage ring. Longitudinal space charge is included in the potential assuming an infinitely conducting circular beam pipe with a distributed inductance. The framework uses Hamilton's equations with the canonical variables phi and W. The Twiss parameters for longitudinal motion are also defined for the small amplitude synchrotron oscillations. The space-charge Hamiltonian is calculated for both parabolic bunches and ''matched'' bunches. A brief analysis including second-harmonic rf contributions is also given. The final sections supply calculations of dynamical quantities and particle simulations with the space-charge effects neglected

  6. Storage ring proton EDM experiment

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    sensitivity of 10^-29 e-cm.  The strength of the method originates from the fact that there are high intensity polarized proton beams available and the fact that the so-called geometric phase systematic error background cancels with clock-wise and counter-clock-wise storage possible in electric rings. The ultimate sensitivity of the method is 10^-30 e-cm. At this level it will either detect a non-zero EDM or it will eliminate electro-weak baryogenesis.

  7. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud

    2015-05-14

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  8. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud; Farooq, Aamir

    2015-01-01

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  9. The cryogenic storage ring CSR

    Science.gov (United States)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  10. The cryogenic storage ring CSR.

    Science.gov (United States)

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  11. The cryogenic storage ring CSR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. von; Becker, A.; Berg, F.; Blaum, K.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); and others

    2016-06-15

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm{sup −3} is derived, equivalent to a room-temperature pressure below 10{sup −14} mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  12. Low-emittance Storage Rings

    CERN Document Server

    Wolski, Andrzej

    2014-01-01

    The effects of synchrotron radiation on particle motion in storage rings are discussed. In the absence of radiation, particle motion is symplectic, and the beam emittances are conserved. The inclusion of radiation effects in a classical approximation leads to emittance damping: expressions for the damping times are derived. Then, it is shown that quantum radiation effects lead to excitation of the beam emittances. General expressions for the equilibrium longitudinal and horizontal (natural) emittances are derived. The impact of lattice design on the natural emittance is discussed, with particular attention to the special cases of FODO-, achromat- and theoretical-minimum-emittance-style lattices. Finally, the effects of betatron coupling and vertical dispersion (generated by magnet alignment and lattice tuning errors) on the vertical emittance are considered.

  13. Electron beam cooling at a magnetic storage ring, TARN II, and an electrostatic storage ring

    International Nuclear Information System (INIS)

    Tanabe, Tetsumi

    2006-01-01

    At the High Energy Accelerator Research Organization (KEK), a magnetic storage ring, TARN II, with an electron cooler was operated from 1989 to 1999, while an electrostatic storage ring with a small electron cooler has been operational since 2000. In this paper, the electron cooling at TARN II and the electrostatic storage ring is described. (author)

  14. Computer program for calculating the resonant frequency, shunt impedance and quality factor of a pill-box cavity in a storage ring

    International Nuclear Information System (INIS)

    Aguero, V.M.; Ng, K.Y.

    1983-10-01

    Keil and Zotter have analyzed the electromagnetic fields excited by the longitudinal density fluctuations of an unbunched relativistic particle beam drifting in a corrugated vacuum chamber of circular cross section. At higher frequencies, these corrugations become resonant cavities. Zotter has written a computer program known as KN7C to compute the resonant frequencies. However, in the actual use of KN7C, some difficulties are encountered. To surmount these difficulties, the program known as CAVITY was written to analyze this pill-box shaped resonant cavity. Although there are many input variables to this program, only two are essential and need to be specified. They are BD = b/d = the ratio of the circular beampipe radius to that of the pill-box cavity and GD = g/d where g is the length of the cavity. When they are specified, CAVITY will print out the dimensionless normalized fundamental resonant frequency FD, shunt impedance Z and figure of merit Q. From these, the actual resonant frequency, shunt impedance and figure of merit can be deduced. The program is described and a listing is provided

  15. Collective effects in isochronous storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.; Kim, K.-J.

    1996-01-01

    We studied the collective instabilities in isochronous storage rings using a linac-type analysis. Simple criteria for avoiding the longitudinal and transverse instabilities are developed by employing a two-particle model. Numerical examples show that these conditions do not impose serious performance restrictions for two of the currently proposed isochronous storage rings

  16. Collective effects of the PLS 2 GeV storage ring

    International Nuclear Information System (INIS)

    Yoon, M.; Choi, J.; Lee, T.

    1993-01-01

    Collective effects of the PLS storage ring are discussed. Evaluation of the PLS storage ring coupling impedances is presented. RF cavity Impedances are emphasized. Single-bunch threshold current is studied and longitudinal coupled-bunch instabilities caused by RF narrow-band resonances are analyzed

  17. Proton storage ring: man/machine interface

    International Nuclear Information System (INIS)

    Lander, R.F.; Clout, P.N.

    1985-01-01

    The human interface of the Proton Storage Ring Control System at Los Alamos is described in some detail, together with the software environment in which operator interaction programs are written. Some examples of operator interaction programs are given

  18. National synchrotron light source VUV storage ring

    International Nuclear Information System (INIS)

    Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Krinsky, S.; Schuchman, J.; van Steenbergen, A.

    1979-01-01

    A 700 MeV electron storage ring designed for synchrotron radiation applications is described. Lattice and stability calculations are presented and the vacuum, correction and injection systems are discussed

  19. The "g-2" Muon Storage Ring

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The "g-2" muon storage ring, shortly before completion in June 1974. Bursts of pions (from a target, hit by a proton beam from the 26 GeV PS) are injected and polarized muons from their decay are captured on a stable orbit. When the muons decay too, their precession in the magnetic field of the storage ring causes a modulation of the decay-electron counting rate, from which the muon's anomalous magnetic moment can be determined. In 1977, the "g-2" magnets were modified to build ICE (Initial Cooling Experiment), a proton and antiproton storage ring for testing stochastic and electron cooling. Later on, the magnets had a 3rd life, when the ion storage ring CELSIUS was built from them in Uppsala. For later use as ICE, see 7711282, 7802099, 7809081,7908242.

  20. Storage rings, internal targets and PEP

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1986-11-01

    Storage rings with internal targets are described, using PEP as an example. The difference between electrons and heavier particles such as protons, antiprotons, and heavy ions is also discussed because it raises possibilities of bypass insertions for more exotic experiments. PEP is compared to other rings in various contexts to verify the assertion that it is an ideal ring for many fundamental and practical applications that can be carried on simultaneously

  1. Evaluation of ring impedance of the Photon Factory storage ring

    International Nuclear Information System (INIS)

    Kiuchi, T.; Izawa, M.; Tokumoto, S.; Hori, Y.; Sakanaka, S.; Kobayashi, M.; Kobayakawa, H.

    1992-05-01

    The loss parameters of the ducts in the Photon Factory (PF) storage ring were evaluated using the wire method and the code TBCI. Both the measurement and the calculation were done for a different bunch length (σ) ranging from 23 to 80 ps. The PF ring impedance was estimated to be |Z/n|=3.2 Ω using the broadband impedance model. The major contribution to the impedance comes from the bellows and the gate valve sections. Improvements of these components will lower the ring impedance by half. (author)

  2. Driven-Dissipative Supersolid in a Ring Cavity

    Science.gov (United States)

    Mivehvar, Farokh; Ostermann, Stefan; Piazza, Francesco; Ritsch, Helmut

    2018-03-01

    Supersolids are characterized by the counterintuitive coexistence of superfluid and crystalline order. Here we study a supersolid phase emerging in the steady state of a driven-dissipative system. We consider a transversely pumped Bose-Einstein condensate trapped along the axis of a ring cavity and coherently coupled to a pair of degenerate counterpropagating cavity modes. Above a threshold pump strength the interference of photons scattered into the two cavity modes results in an emergent superradiant lattice, which spontaneously breaks the continuous translational symmetry towards a periodic atomic pattern. The crystalline steady state inherits the superfluidity of the Bose-Einstein condensate, thus exhibiting genuine properties of a supersolid. A gapless collective Goldstone mode correspondingly appears in the superradiant phase, which can be nondestructively monitored via the relative phase of the two cavity modes on the cavity output. Despite cavity-photon losses the Goldstone mode remains undamped, indicating the robustness of the supersolid phase.

  3. Polarized gas targets for storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1990-01-01

    It is widely recognized that polarized gas targets in electron storage rings represent a new opportunity for precision nuclear physics studies. New developments in polarized target technology specific to internal applications will be discussed. In particular, polarized gas targets have been used in the VEPP-3 electron ring in Novosibirsk. A simple storage cell was used to increase the total target thickness by a factor of 15 over the simple gas jet target from an atomic beam source. Results from the initial phase of this project will be reported. In addition, the plans for increasing the luminosity by an additional order or magnitude will be presented. The application of this work to polarized hydrogen and deuterium targets for the HERA ring will be noted. The influence of beam-induced depolarization, a phenomena encountered in short-pulse electron storage rings, will be discussed. Finally, the performance tests of laser-driven sources will be presented. 8 refs., 12 figs., 1 tab

  4. First results of cavity ring down signals from exhaled air

    Science.gov (United States)

    Revalde, G.; Grundšteins, K.; Alnis, J.; Skudra, A.

    2017-12-01

    In this paper we report first results from the developed cavity ring-down spectrometer for application in human breath analysis for the diagnostics of diabetes and later for early detection of lung cancer. Our cavity ring-down spectrometer works in UV region with pulsed Nd:YAG laser at 266 nm wavelength. First experiments allow us to determine acetone and benzene at the level bellow ppm. In our experiment, first results from breath samples from volunteers after doing different activities were collected and examined. Influence of the smoking on the breath signals also was examined.

  5. The multi-bend achromat storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Mikael [MAX IV Laboratory Ole Römers v. 1 22100 Lund Sweden (Sweden)

    2016-07-27

    Not very long ago, the 3{sup rd} generation storage ring technology was judged as mature. Most of the 3{sup rd} generation storage rings used the Double-Bend Achromat (DBA) or Triple-Bend Achromat (TBA) concepts. It was however a well-known fact that increasing the number of magnet cells in the rings is a powerful way of decreasing the electron beam emittance and thus the source brilliance, but at the penalty of increasing the size and cost of the rings. Preserving the Dynamic Aperture (DA) in the rings became also an issue when increasing the number of magnet cells. The Multi-Bend Achromat (MBA) concept, including a miniaturization of the ring elements, has now drastically changed the picture. The MBA rings, now in construction or being planned, offer orders of magnitudes higher brilliance than rings of conventional designs. Several light sources around the world are now implementing or planning to implement this MBA concept. This article touches on the science drivers for higher brilliance. We will then describe the MBA concept with its advantages as well as its challenges. A short survey of the MBA activity around the world will also be presented. The author apologies for focusing on the MAX IV project regarding technical solutions. This is motivated by that MAX IV is the facility he knows best and it might be regarded as a fore-runner for the MBA concept.

  6. The multi-bend achromat storage rings

    International Nuclear Information System (INIS)

    Eriksson, Mikael

    2016-01-01

    Not very long ago, the 3"r"d generation storage ring technology was judged as mature. Most of the 3"r"d generation storage rings used the Double-Bend Achromat (DBA) or Triple-Bend Achromat (TBA) concepts. It was however a well-known fact that increasing the number of magnet cells in the rings is a powerful way of decreasing the electron beam emittance and thus the source brilliance, but at the penalty of increasing the size and cost of the rings. Preserving the Dynamic Aperture (DA) in the rings became also an issue when increasing the number of magnet cells. The Multi-Bend Achromat (MBA) concept, including a miniaturization of the ring elements, has now drastically changed the picture. The MBA rings, now in construction or being planned, offer orders of magnitudes higher brilliance than rings of conventional designs. Several light sources around the world are now implementing or planning to implement this MBA concept. This article touches on the science drivers for higher brilliance. We will then describe the MBA concept with its advantages as well as its challenges. A short survey of the MBA activity around the world will also be presented. The author apologies for focusing on the MAX IV project regarding technical solutions. This is motivated by that MAX IV is the facility he knows best and it might be regarded as a fore-runner for the MBA concept.

  7. Stable CSR in storage rings: A model

    International Nuclear Information System (INIS)

    Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Venturini, Marco; Abo-Bakr, Michael; Feikes, Jorge; Holldack, Karsten; Kuske, Peter; Wustefeld, Godehart; Hubers, Heinz-Willerm; Warnock, Robert

    2005-01-01

    A comprehensive historical view of the work done on coherent synchrotron radiation (CSR) in storage rings is given in reference [1]. Here we want just to point out that even if the issue of CSR in storage rings was already discussed over 50 years ago, it is only recently that a considerable number of observations have been reported. In fact, intense bursts of coherent synchrotron radiation with a stochastic character were measured in the terahertz frequency range, at several synchrotron light source storage rings [2-8]. It has been shown [8-11], that this bursting emission of CSR is associated with a single bunch instability, usually referred as microbunching instability (MBI), driven by the fields of the synchrotron radiation emitted by the bunch itself. Of remarkably different characteristics was the CSR emission observed at BESSY II in Berlin, when the storage ring was tuned into a special low momentum compaction mode [12, 13]. In fact, the emitted radiation was not the quasi-random bursting observed in the other machines, but a powerful and stable flux of broadband CSR in the terahertz range. This was an important result, because it experimentally demonstrated the concrete possibility of constructing a stable broadband source with extremely high power in the terahertz region. Since the publication of the first successful experiment using the ring as a CSR source [14], BESSY II has regular scheduled user s shifts dedicated to CSR experiments. At the present time, several other laboratories are investigating the possibility of a CSR mode of operation [15-17] and a design for a new ring optimized for CSR is at an advanced stage [18]. In what follows, we describe a model that first accounts for the BESSY II observations and then indicates that the special case of BESSY II is actually quite general and typical when relativistic electron storage rings are tuned for short bunches. The model provides a scheme for predicting and optimizing the performance of ring

  8. Stable CSR in Storage Rings: A Model

    International Nuclear Information System (INIS)

    Sannibale, F.

    2005-01-01

    A comprehensive historical view of the work done on coherent synchrotron radiation (CSR) in storage rings is given in reference [1]. Here we want just to point out that even if the issue of CSR in storage rings was already discussed over 50 years ago, it is only recently that a considerable number of observations have been reported. In fact, intense bursts of coherent synchrotron radiation with a stochastic character were measured in the terahertz frequency range, at several synchrotron light source storage rings [2-8]. It has been shown [8-11], that this bursting emission of CSR is associated with a single bunch instability, usually referred as microbunching instability (MBI), driven by the fields of the synchrotron radiation emitted by the bunch itself. Of remarkably different characteristics was the CSR emission observed at BESSY II in Berlin, when the storage ring was tuned into a special low momentum compaction mode [12, 13]. In fact, the emitted radiation was not the quasi-random bursting observed in the other machines, but a powerful and stable flux of broadband CSR in the terahertz range. This was an important result, because it experimentally demonstrated the concrete possibility of constructing a stable broadband source with extremely high power in the terahertz region. Since the publication of the first successful experiment using the ring as a CSR source [14], BESSY II has regular scheduled user's shifts dedicated to CSR experiments. At the present time, several other laboratories are investigating the possibility of a CSR mode of operation [15-17] and a design for a new ring optimized for CSR is at an advanced stage [18]. In what follows, we describe a model that first accounts for the BESSY II observations and then indicates that the special case of BESSY II is actually quite general and typical when relativistic electron storage rings are tuned for short bunches. The model provides a scheme for predicting and optimizing the performance of ring

  9. Nonlinear dynamics aspects of modern storage rings

    International Nuclear Information System (INIS)

    Helleman, R.H.G.; Kheifets, S.A.

    1986-01-01

    It is argued that the nonlinearity of storage rings becomes an essential problem as the design parameters of each new machine are pushed further and further. Yet the familiar methods of classical mechanics do not allow determination of single particle orbits over reasonable lengths of time. It is also argued that the single particle dynamics of a storage ring is possibly one of the cleanest and simplest nonlinear dynamical systems available with very few degrees of freedom. Hence, reasons are found for accelerator physicists to be interested in nonlinear dynamics and for researchers in nonlinear dynamics to be interested in modern storage rings. The more familiar methods of treating nonlinear systems routinely used in acclerator theory are discussed, pointing out some of their limitations and pitfalls. 39 refs., 1 fig

  10. Quantum lifetime in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1977-02-01

    One of the mechanisms which contribute to beam lifetime in electron storage rings is the quantum emission of energetic photons causing particles to be lost from the rf bucket. This quantum lifetime is among other things important in defining the required aperture in a storage ring. An approximate expression of quantum lifetime, predicted by a one-dimensional model which takes into account only the betatron motion, has been used in most storage ring designs. If the beam is aperture-limited at a position with nonzero dispersion, both the betatron and synchrotron motions have to be included and a two-dimensional model must be used. An exact expression of quantum lifetime for the one-dimensional case and an approximate expression for the two-dimensional case are given

  11. Quantum lifetime in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1977-01-01

    One of the mechanisms which contributes to beam lifetime in electron storage rings is the quantum emission of energetic photons causing particles to be lost from the rf bucket. This quantum lifetime is among other things important in defining the required aperture in a storage ring. An approximate expression of quantum lifetime, predicted by a one-dimensional model which takes into account only the betatron motion, has been used in most storage ring designs. If the beam is aperture-limited at a position with nonzero dispersion, both the betatron and synchrotron motions have to be included, and a two-dimensional model must be used. An exact expression of quantum lifetime for the one-dimensional case and an approximate expression for the two-dimensional case are given

  12. Latest on polarization in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1983-01-01

    The field of beam polarization in electron storage rings is making rapid progress in recent several years. This report is an attempt to summarize some of these developments concerning how to produce and maintain a high level of beam polarization. Emphasized will be the ideas and current thoughts people have on what should and could be done on electron rings being designed at present such as HERA, LEP and TRISTAN. 23 references

  13. High duty factor structures for e+e- storage rings

    International Nuclear Information System (INIS)

    Allen, M.A.; Karvonen, L.G.

    1976-01-01

    The next generation e + e - storage rings will need rf systems similar to those required for a continuous-duty linac of over 50 MeV. For the PEP Storage Ring at 18 GeV, it is presently planned to provide a peak accelerating voltage of 77 MV in 18 aluminum accelerating structures, each structure consisting of five slot-coupled cells operating in the π mode. Operating experience with the SPEAR five-cell structure is discussed. Power to each structure is provided by a 125-kW high-efficiency four-cavity klystron. No isolation has been used and the resulting interaction between the accelerating structures, klystrons and the stored beams is discussed

  14. Injection envelope matching in storage rings

    International Nuclear Information System (INIS)

    Minty, M.G.; Spence, W.L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the β-tron frequency indicate the presence of a β-mismatch, while envelope oscillations at the β-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported

  15. Beam loading in high-energy storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1974-06-01

    The analysis of beam loading in the RF systems of high-energy storage rings (for example, the PEP e/sup /minus//e/sup +/ ring) is complicated by the fact that the time, T/sub b/, between the passage of successive bunches is comparable to the cavity filling time, T/sub b/. In this paper, beam loading expressions are first summarized for the usual case in which T/sub b/ /much lt/ T/sub f/. The theory of phase oscillations in the heavily-beam-loaded case is considered, and the dependence of the synchrotron frequency and damping constant for the oscillations on beam current and cavity tuning is calculated. Expressions for beam loading are then derived which are valid for any value of the ratio T/sub b//T/sub f/. It is shown that, for the proposed PEP e/sup /minus//e/sup +/ ring parameters, the klystron power required is increased by about 3% over that calculated using the standard beam loading expressions. Finally, the analysis is extended to take into account the additional losses associated with the excitation of higher-order cavity modes. A rough numerical estimate is made of the loss enhancement to be expected for PEP RF system. It is concluded that this loss enhancement might be substantial unless appropriate measures are taken in the design and tuning of the accelerating structure

  16. From accelerators to storage rings to

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1983-02-01

    This talk gives a general but highly subjective overview of the expectation for accelerators and colliders for high energy physics, but not extended developments of accelerators and storage rings for application to nuclear structure physics, synchrotron radiation, medical applications or industrial use

  17. Electron Storage Ring Development for ICS Sources

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, Roderick [Lyncean Technologies, Inc., Palo Alto, CA (United States)

    2015-09-30

    There is an increasing world-wide interest in compact light sources based on Inverse Compton Scattering. Development of these types of light sources includes leveraging the investment in accelerator technology first developed at DOE National Laboratories. Although these types of light sources cannot replace the larger user-supported synchrotron facilities, they offer attractive alternatives for many x-ray science applications. Fundamental research at the SLAC National Laboratory in the 1990’s led to the idea of using laser-electron storage rings as a mechanism to generate x-rays with many properties of the larger synchrotron light facilities. This research led to a commercial spin-off of this technology. The SBIR project goal is to understand and improve the performance of the electron storage ring system of the commercially available Compact Light Source. The knowledge gained from studying a low-energy electron storage ring may also benefit other Inverse Compton Scattering (ICS) source development. Better electron storage ring performance is one of the key technologies necessary to extend the utility and breadth of applications of the CLS or related ICS sources. This grant includes a subcontract with SLAC for technical personnel and resources for modeling, feedback development, and related accelerator physics studies.

  18. Antiproton chain of the FAIR storage rings

    International Nuclear Information System (INIS)

    Katayama, T; Kamerdzhiev, V; Lehrach, A; Maier, R; Prasuhn, D; Stassen, R; Stockhorst, H; Herfurth, F; Lestinsky, M; Litvinov, Yu A; Steck, M; Stöhlker, T

    2015-01-01

    In the Modularized Start Version of the Facility of Antiproton and Ion Research (FAIR) at Darmstadt Germany, the 3 GeV antiprotons are precooled in the collector ring and accumulated in the high energy storage ring (HESR). They are further accelerated to 14 GeV or decelerated to 1 GeV for the experiments with a high-density internal target. The powerful beam cooling devices, stochastic cooling and electron cooling will support the provision of a high-resolution antiproton beam. The other option of FAIR is to prepare the low energy, 300 keV antiproton beam connecting the existing storage rings ESR and CRYRING with HESR. Beam physics issues related with these concepts are described. (paper)

  19. The Storage Ring Proton EDM Experiment

    Science.gov (United States)

    Semertzidis, Yannis; Storage Ring Proton EDM Collaboration

    2014-09-01

    The storage ring pEDM experiment utilizes an all-electric storage ring to store ~1011 longitudinally polarized protons simultaneously in clock-wise and counter-clock-wise directions for 103 seconds. The radial E-field acts on the proton EDM for the duration of the storage time to precess its spin in the vertical plane. The ring lattice is optimized to reduce intra-beam scattering, increase the statistical sensitivity and reduce the systematic errors of the method. The main systematic error is a net radial B-field integrated around the ring causing an EDM-like vertical spin precession. The counter-rotating beams sense this integrated field and are vertically shifted by an amount, which depends on the strength of the vertical focusing in the ring, thus creating a radial B-field. Modulating the vertical focusing at 10 kHz makes possible the detection of this radial B-field by a SQUID-magnetometer (SQUID-based BPM). For a total number of n SQUID-based BPMs distributed around the ring the effectiveness of the method is limited to the N = n /2 harmonic of the background radial B-field due to the Nyquist sampling theorem limit. This limitation establishes the requirement to reduce the maximum radial B-field to 0.1-1 nT everywhere around the ring by layers of mu-metal and aluminum vacuum tube. The metho's sensitivity is 10-29 e .cm , more than three orders of magnitude better than the present neutron EDM experimental limit, making it sensitive to SUSY-like new physics mass scale up to 300 TeV.

  20. Gain-assisted broadband ring cavity enhanced spectroscopy

    Science.gov (United States)

    Selim, Mahmoud A.; Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2017-02-01

    Incoherent broadband cavity enhanced spectroscopy can significantly increase the effective path length of light-matter interaction to detect weak absorption lines over broad spectral range, for instance to detect gases in confined environments. Broadband cavity enhancement can be based on the decay time or the intensity drop technique. Decay time measurement is based on using tunable laser source that is expensive and suffers from long scan time. Intensity dependent measurement is usually reported based on broadband source using Fabry-Perot cavity, enabling short measurement time but suffers from the alignment tolerance of the cavity and the cavity insertion loss. In this work we overcome these challenges by using an alignment-free ring cavity made of an optical fiber loop and a directional coupler, while having a gain medium pumped below the lasing threshold to improve the finesse and reduce the insertion loss. Acetylene (C2H2) gas absorption is measured around 1535 nm wavelength using a semiconductor optical amplifier (SOA) gain medium. The system is analyzed for different ring resonator forward coupling coefficient and loses, including the 3-cm long gas cell insertion loss and fiber connector losses used in the experimental verification. The experimental results are obtained for a coupler ratio of 90/10 and a fiber length of 4 m. The broadband source is the amplified spontaneous emission of another SOA and the output is measured using a 70pm-resolution optical spectrum analyzer. The absorption depth and the effective interaction length are improved about an order of magnitude compared to the direct absorption of the gas cell. The presented technique provides an engineering method to improve the finesse and, consequently the effective length, while relaxing the technological constraints on the high reflectivity mirrors and free-space cavity alignment.

  1. Transient beam loading in electron-positron storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1978-01-01

    In this note the fundamental of transient beam loading in electron-positron storage rings will be reviewed. The notation, and some of the material, has been introduced previously. The present note is, however, more tutorial in nature, and in addition the analysis is extended to include the transient behaviour of the cavity fields and reflected power between bunch passages. Since we are not bound here by the rigid space limitations of a paper for publication, an attempt is made to give a reasonably coherent and complete discussion of transient beam loading that can hopefully be followed even by the uninitiated. The discussion begins with a consideration of the beam-cavity interaction in the ''single-pass'' limit. In this limit it is assumed that the fields induced in the cavity by the passage of a bunch have decayed essentially to zero by the time the next bunch has arrived. The problem of the maximum energy that can be extracted from a cavity by a bunch is given particular attention, since this subject seems to be the source of some confusion. The analysis is then extended to the ''multiple-pass'' case, where the beam-induced fields do not decay to zero between bunches, and to a detailed consideration of the transient variation of cavity fields and reflected power. The note concludes with a brief discussion of the effect of transient beam loading on quantum lifetime

  2. Instabilities in passive dispersion oscillating fiber ring cavities

    Science.gov (United States)

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Biancalana, Fabio; Trillo, Stefano

    2017-05-01

    We investigate theoretically and experimentally the development of instabilities in passive ring cavities with stepwise longitudinal variation of the dispersion. We derive an extended version of the Lugiato-Lefever equation that permits to model dispersion oscillating cavities and we demonstrate that this equation is valid well beyond the mean field approximation. We review the theory of Turing (modulational) and Faraday (parametric) instability in inhomogeneous fiber cavities. We report the experimental demonstration of the generation of stable Turing and Faraday temporal patterns in the same device, which can be controlled by changing the detuning and/or the input power. Moreover, we experimentally record the round-trip-to-round-trip dynamics of the spectrum, which shows that Turing and Faraday instabilities not only differ by their characteristic frequency but also by their dynamical behavior. Contribution to the Topical Issue: "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  3. Continuous wave room temperature external ring cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W. [Physics and Astronomy Department, The University of Sheffield, S3 7RH Sheffield (United Kingdom); Hempler, N.; Maker, G. T.; Malcolm, G. P. A. [M Squared Lasers Ltd., G20 0SP Glasgow (United Kingdom)

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  4. Continuous wave room temperature external ring cavity quantum cascade laser

    International Nuclear Information System (INIS)

    Revin, D. G.; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W.; Hempler, N.; Maker, G. T.; Malcolm, G. P. A.

    2015-01-01

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm −1 is realized by the incorporation of a diffraction grating into the cavity

  5. Low emittance optics of photon factory storage ring at KEK

    International Nuclear Information System (INIS)

    Kamiya, Y.; Katoh, M.; Honjo, I.; Araki, A.; Kihara, M.

    1987-01-01

    A new optics is being successfully tested at the Photon Factory Storage Ring (PF-RING) in order to reduce the emittance to 0.13 mm mrad, about one third of the present value. This optics with four additional quadrupole magnets is a modified version of one of the optics designed as an option at the early period of PF construction. One advantage of this new optics is that the beta-function at RF-sections is smaller than that of the old option. The other advantage is that the dispersion function is zero at the long straight sections for insertion devices and RF cavities. The aim of this paper is to describe the new low-emittance optics as well as the parameters of the new quadrupole magnets and power supplies. Some preliminary results of machine study are also presented

  6. RF cavity R and D at LBNL for the NLC Damping Rings, FY2000/2001

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Atkinson, D.; Corlett, J.N.; Koehler, G.; Li, D.; Hartman, N.; Rasson, J.; Saleh, T.; Weidenbach, W.

    2001-01-01

    This report contains a summary of the R and D activities at LBNL on RF cavities for the NLC damping rings during fiscal years 2000/2001. This work is a continuation of the NLC RF system R and D of the previous year [1]. These activities include the further optimization and fine tuning of the RF cavity design for both efficiency and damping of higher-order modes (HOMs). The cavity wall surface heating and stresses were reduced at the same time as the HOM damping was improved over previous designs. Final frequency tuning was performed using the high frequency electromagnetic analysis capability in ANSYS. The mechanical design and fabrication methods have been developed with the goals of lower stresses, fewer parts and simpler assembly compared to previous designs. This should result in substantial cost savings. The cavity ancillary components including the RF window, coupling box, HOM loads, and tuners have been studied in more detail. Other cavity options are discussed which might be desirable to either further lower the HOM impedance or increase the stored energy for reduced transient response. Superconducting designs and the use of external ''energy storage'' cavities are discussed. A section is included in which the calculation method is summarized and its accuracy assessed by comparisons with the laboratory measurements of the PEP-II cavity, including errors, and with the beam-sampled spectrum

  7. Nonlinear dynamics aspects of modern storage rings

    International Nuclear Information System (INIS)

    Helleman, R.H.G.; Kheifets, S.A.

    1986-01-01

    The authors try to address the following two questions: a. Why should accelerator physicists to be interested in the recent, sometimes abstract, developments in Nonlinear Dynamics, a field which will recently was mainly studied by mathematicians, theoretical physicists and astronomers? That such an interest to some extent already exists is apparent from the fact that many accelerator physicists attended this School and several analogous meetings in the past. b. Why should researchers from nonlinear dynamics be interested in modern Storage Rings which are largely designed and built by experimental physicists and engineers? At the moment few 'nonlinear scientists' work on storage rings (or in the field of accelerator physics). It is a hopeful sign that many (more) attended this School

  8. Infrared synchrotron radiation from electron storage rings

    International Nuclear Information System (INIS)

    Duncan, W.D.; Williams, G.P.

    1983-01-01

    Simple and useful approximations, valid at infrared wavelengths, to the equations for synchrotron radiation are presented and used to quantify the brightness and power advantage of current synchrotron radiation light sources over conventional infrared broadband laboratory sources. The Daresbury Synchrotron Radiation Source (SRS) and the Brookhaven National Synchrotron Light Source (vacuum ultraviolet) [NSLS(VUV)] storage rings are used as examples in the calculation of the properties of infrared synchrotron radiation. The pulsed nature of the emission is also discussed, and potential areas of application for the brightness, power, and time structure advantages are presented. The use of infrared free electron lasers and undulators on the next generation of storage ring light sources is briefly considered

  9. Radiation safety design for SSRL storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)]. E-mail: khater1@llnl.gov; Liu, James [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2006-12-15

    In 2003, the Stanford Synchrotron Radiation Laboratory (SSRL) had upgraded its storage ring to a 3rd generation storage ring (SPEAR3). SPEAR3 is deigned to operate at 500-mA stored beam current and 3-GeV energy. The 234-m circumference SPEAR3 ring utilizes 60-cm-thick concrete lateral walls, 30-cm-thick concrete roof, as well as 60- or 90-cm-thick concrete ratchet walls. A total of 3.5x10{sup 15}e{sup -}/y will be injected into the ring with an injection power of 4W and an injection efficiency of 75%. Normal beam losses occur due to both injection and stored beam operations in the total of 20 low loss as well as 3 high loss limiting apertures. During the 6-min injection period, an instantaneous power loss of 0.05W occurs at each low loss aperture. When averaged over the operational year, the loss of both the injection and the stored beams is equivalent to an average loss of 2mW at each low loss aperture. On the other hand, the average losses in the high loss apertures are 16mW for the injection septum, 47mW for the beam abort dump, and 13mW for the ring stoppers. The shielding requirements for losses in the new ring were based on a generic approach that used both FLUKA Monte Carlo particle generation and transport code and empirical computer codes and formulae.

  10. Storage rings: Past, present and future

    International Nuclear Information System (INIS)

    Krisch, A.D.

    2000-01-01

    This lecture will attempt to review storage rings: past, present and future. I will spend more time on the past, because the past has produced most of our data, while the present can be rather brief. There is not yet much future data, but there are some plans about what we hope for. Professor Andy Sessler of Berkeley, who recently reviewed the early history of colliders, loaned me his slides; for this I have much appreciation

  11. FLSR - The Frankfurt low energy storage ring

    International Nuclear Information System (INIS)

    Stiebing, K.E.; Alexandrov, V.; Doerner, R.; Enz, S.; Kazarinov, N.Yu.; Kruppi, T.; Schempp, A.; Schmidt Boecking, H.; Voelp, M.; Ziel, P.; Dworak, M.; Dilfer, W.

    2010-01-01

    An electrostatic storage ring for low-energy ions with a design energy of 50 keV is presently being set up at the Institut fuer Kernphysik der Johann Wolfgang Goethe-Universitaet Frankfurt am Main, Germany (IKF). This new device will provide a basis for new experiments on the dynamics of ionic and molecular collisions, as well as for high precision and time resolved laser spectroscopy. In this article, the design parameters of this instrument are reported.

  12. A compact electron storage ring design

    International Nuclear Information System (INIS)

    Swenson, C.A.

    1992-01-01

    Electron storage rings are sources of synchrotron radiation in the soft and hard parts of the x-ray spectrum. X-ray lithography is an ideal candidate technology for the production of microelectronic devices with sizes between 0.3-0.5 microns. Industrial x-ray lithography requires the x-ray source, which is the electron storage ring, to be as compact and reliable as possible. In this thesis the author reviews and develops the basic physical principles governing the design of compact electron synchrotrons for x-ray lithography. He explores the various aspects of lattice design for this application. He argues that the optimal storage ring design consists of a four fold symmetric cell lattice with two quadrupole families and 90 degrees zero gradient dipole magnets. It is demonstrated that radiation requirements for lithography and the use of zero gradient magnetic dipole fields constrains the lattice to four or more dipole magnets. The author develops a lattice design for x-ray lithography following this logic. He then develops a dipole magnet design for a machine using this lattice. Particle tracking data is integrated into the magnet design and used to optimize the end coil configurations of the magnets. The author then reviews the magnet's physical construction and measurement. He develops a cryogenic Hall probe mapping apparatus for this magnet and measure its excitation curves

  13. Beam position monitor system for storage rings

    International Nuclear Information System (INIS)

    Nakamura, M.; Hinkson, J.A.

    1985-05-01

    Beam position monitors (BPM) for synchrotron light storage rings usually consist of beam pickup electrodes, coaxial relays and a narrowband receiver. While accurate, these systems are slow and of limited use in the commissioning of an accelerator. A beam position monitor is described which is intended to be a principal diagnostic during debug and routine running of a storage ring. It is capable of measuring the position of a single bunch on the first or nth orbit to an accuracy of a few percent. Stored beam position is more accurately measured with averaging techniques. Beam position changes can be studied in a bandwidth from DC to a few MHz. The beam monitor electronics consist of a separate amplification, detection, and sampling channel for each beam pickup electrode. Fast switches in each channel permit selection of the nth turn for measurement (single bunch mode). A calibration pulse is injected into each channel after beam measurement to permit gain offsets to be measured and removed from the final data. While initially more costly than the usual beam position monitor system, this sytem will pay for itself in reduced storage ring debug and trouble shooting time. 5 refs., 5 figs

  14. Early 500 MHz prototype LEP RF Cavity with superposed storage cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    The principle of transferring the RF power back and forth between the accelerating cavity and a side-coupled storage cavity was demonstrated with this 500 MHz prototype. In LEP, the accelerating frequency was 352.2 MHz, and accelerating and storage cavities were consequently larger. See also 8002294, 8006061, 8407619X, and Annual Reports 1980, p.115; 1981, p.95; 1985, vol.I, p.13.

  15. LASL high-current proton storage rings

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Cooper, R.K.; Hudgings, D.W.; Spalek, G.; Jason, A.J.; Higgins, E.F.; Gillis, R.E.

    1980-01-01

    The Proton Storage Ring at LAMPF is a high-current accumulator designed to convert long 800-MeV linac pulses into very short high-intensity proton bunches ideally suited to driving a pulsed polyenergetic neutron source. The Ring, authorized for construction at $19 million, will operate in a short-bunch high-frequency mode for fast neutron physics and a long-bunch low-frequency mode for thermal neutron-scattering programs. Unique features of the project include charge-changing injection with initial conversion from H - to H 0 , a high repetition rate fast-risetime extraction kicker, and high-frequency and first-harmonic bunching system

  16. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    Horan, D.

    1999-01-01

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control and permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands

  17. Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Venturini, Marco

    2002-01-01

    We take a detour from the main theme of this volume and present a discussion of coherent synchrotron radiation (CSR) in the context of storage rings rather than single-pass systems. Interest in this topic has been revived by a series of measurements carried out at several light source facilities. There is strong evidence that the observed coherent signal is accompanied by a beam instability, possibly driven by CSR itself. In this paper we review a ''self-consistent'' model of longitudinal beam dynamics in which CSR is the only agent of collective forces. The model yields numerical solutions that appear to reproduce the main features of the observations

  18. Superconducting conversion of the Intersecting storage Rings

    International Nuclear Information System (INIS)

    1977-01-01

    A study is presented of design, performances and cost estimates for superconducting proton storage rings in the existing ISR tunnel at CERN. By using a proven technology for the superconducting magnets an energy of 120 GeV is attainable, which corresponds to a bending field of 5.12 T. Using injection from the PS and stacking at 25 GeV, followed by phase displacement acceleration, luminosities of up to 4.10 33 cm -2 s -1 at 120 GeV are obtained. (Auth.)

  19. Orbit stability of the ALS storage ring

    International Nuclear Information System (INIS)

    Keller, R.; Nishimura, H.; Biocca, A.

    1997-05-01

    The Advanced Light Source (ALS) storage ring, a synchrotron light source of the third generation, is specified to maintain its electron orbit stable within one tenth of the rms beam size. In the absence of a dedicated orbit feed-back system, several orbit-distorting effects were investigated, aided by a new interactive simulation tool, the code TRACY V. The effort has led to a better understanding of the behavior of a variety of accelerator subsystems and in consequence produced a substantial improvement in day-to-day orbit stability

  20. FLSR - The Frankfurt low energy storage ring

    Science.gov (United States)

    Stiebing, K. E.; Alexandrov, V.; Dörner, R.; Enz, S.; Kazarinov, N. Yu.; Kruppi, T.; Schempp, A.; Schmidt Böcking, H.; Völp, M.; Ziel, P.; Dworak, M.; Dilfer, W.

    2010-02-01

    An electrostatic storage ring for low-energy ions with a design energy of 50 keV is presently being set up at the Institut für Kernphysik der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany (IKF). This new device will provide a basis for new experiments on the dynamics of ionic and molecular collisions, as well as for high precision and time resolved laser spectroscopy. In this article, the design parameters of this instrument are reported.

  1. Vacuum characteristics of the rf cavity for TRISTAN main ring

    International Nuclear Information System (INIS)

    Mizuno, H.; Akemoto, M.; Sakai, S.; Yamazaki, Y.; Higo, T.; Morozumi, Y.; Takata, K.

    1987-01-01

    In the TRISTAN main ring 52 accelerating units of alternating periodic structure (APS) are to be installed into the 6 straight sections around the Fuji, Tsukuba and Oho experimental areas. An accelerating unit which is 5365 mm long is composed of two 9 accelerating cell structures. At present (Jan. 1987) 32 units have been installed and under operation at a beam energy of 25 GeV. The remaining 20 units will be set up in this summer. To achieve the necessary beam life longer than 5 hours, the cavity sections should be pumped down to the pressure less than 5 X 10 -9 Torr with an operating RF power of 200 kW per each 9-cell cavity and the e+- beam. For this purpose a sufficient baking which is the most efficient method of reducing the outgassing rates of the parts of vacuum system is required for the APS cavity. A circulating water boiler system with electric heaters and a water pump was developed for the easy operation and maintenance of the RF vacuum system. The cavity unit is made of low-carbon steel S25C, and inner surface is electro-plated with copper of 100 μm thickness in a pyrophosphorous-acid bath. The area of inner surface and the volume of the cavity are about 18 M 2 and 1 m 3 , respectively. The unit is baked at 135 0 C by circulating 145 0 C hot water in the cooling channel. After the bake-out process for 24 hours the outgassing rate is dominated by the hydrogen permeation from the cooling water channel through the iron wall into the vacuum. to suppress this permeation, the anti-corrosion agent is added to the water by 5% in volume. All of the units were baked for 10 days at 135 0 C before they were installed into the straight sections

  2. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy.

    Science.gov (United States)

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-09-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity's free spectral range imparts extreme linearity and precision to the measured spectrum's wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control.

  3. Polarized beams in high energy storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Montague, B W [European Organization for Nuclear Research, Geneva (Switzerland)

    1984-11-01

    In recent years there has been a considerable advance in understanding the spin motion of particles in storage rings and accelerators. The survey presented here outlines the early historical development in this field, describes the basic ideas governing the kinetics of polarized particles in electromagnetic fields and shows how these have evolved into the current description of polarized beam behaviour. Orbital motion of particles influences their spin precession, and depolarization of a beam can result from excitation of spin resonances by orbit errors and oscillations. Electrons and positrons are additionally influenced by the quantized character of synchrotron radiation, which not only provides a polarizing mechanism but also enhances depolarizing effects. Progress in the theoretical formulation of these phenomena has clarified the details of the physical processes and suggested improved methods of compensating spin resonances. Full use of polarized beams for high-energy physics with storage rings requires spin rotators to produce longitudinal polarization in the interaction regions. Variants of these schemes, dubbed Siberian snakes, provide a curious precession topology which can substantially reduce depolarization in the high-energy range. Efficient polarimetry is an essential requirement for implementing polarized beams, whose utility for physics can be enhanced by various methods of spin manipulation.

  4. Status of the Cryogenic Storage Ring (CSR)

    Energy Technology Data Exchange (ETDEWEB)

    Menk, Sebastian; Becker, Arno; Berg, Felix; Blaum, Klaus; Fellenberger, Florian; Froese, Michael; Goullon, Johannes; Grieser, Manfred; Krantz, Claude; Lange, Michael; Laux, Felix; Repnow, Roland; Schornikov, Andrey; Hahn, Robert von; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik (MPIK), 69117 Heidelberg (Germany); Spruck, Kaija [Institut fuer Atom- und Molekuelphysik Justus-Liebig-Universitaet, 35392 Giessen (Germany)

    2012-07-01

    A novel cryogenic storage ring is currently under construction at the MPIK. By electrostatic ion optical elements, the 35 m circumference Cryogenic Storage Ring will be able to store ions at energies of up to 300 keV per charge unit without any mass limitations. The CSR consists of a cryogenic ({proportional_to}5 K) beam pipe surrounded by two radiation shields (40 and 80 K) in a large outer, thermal insulation vacuum. Extreme vacuum (density {proportional_to}10{sup 3} cm{sup -3}) will be achieved by 2 K cryopumping as demonstrated in a prototype ion beam trap. The ion optics was completely assembled within the precision cryogenic mounting and shielding structure of the first corner. There, cooldown tests to {proportional_to}40 K were performed which confirmed the required sub-millimeter accuracy of the specially designed electrode positioning under large temperature changes. The high-voltage connections to the cryogenic electrodes were installed and breakdown tests will be reported. Based on the test results the beam pipe, electrode mounting and shielding structures are under final construction for mounting during 2012.

  5. Present status of storage ring free electron laser experiment at ETL

    International Nuclear Information System (INIS)

    Yamazaki, T.; Nakamura, T.; Tomimasu, T.; Sugiyama, S.; Noguchi, T.

    1988-01-01

    Outline is described of the present status of the ETL storage-ring free electron laser project. The structure and the performance of the ETL-type transverse optical klystron are given. A modification of the dispersive section has decreased the degradation of the shape of the spontaneous-emission spectrum due to energy spread of the electron beam. Relevant parameters of the stored beam are presented. Measurement of the optical-cavity loss is under way. (author)

  6. VUV Optics Development for the Elettra Storage Ring FEL

    CERN Document Server

    Guenster, Stefan

    2004-01-01

    Vacuum ultraviolet optical components for the storage ring FEL at Elettra are under continuous development in the European research consortium EUFELE. Target of the project is the progress to shorter lasing wavelengths in the VUV spectral range. The current status allows lasing with oxide mirror systems down to 190 nm. The main obstacles for the development of optical coatings for shorter wavelengths is the high energetic background of the synchrotron radiation impinging onto the front mirror in the laser cavity. Investigations in single layer systems and multilayer stacks of oxide or fluoride materials demonstrate that fluoride mirrors reach highest reflectivity values down to 140 nm, and oxide coatings possess a satisfactory resistance against the high energetic background irradiation. However, pure oxide multilayer stacks exhibit significant absorption below 190 nm and pure fluoride stacks suffer from strong degradation effects under synchrotron radiation. A solution could be hybrid systems, combining fluo...

  7. Klystron 'efficiency loop' for the ALS storage ring RF system

    International Nuclear Information System (INIS)

    Kwiatkowski, Slawomir; Julian, Jim; Baptiste, Kenneth

    2002-01-01

    The recent energy crisis in California has led us to investigate the high power RF systems at the Advanced Light Source (ALS) in order to decrease the energy consumption and power costs. We found the Storage Ring Klystron Power Amplifier system operating as designed but with significant power waste. A simple proportional-integrator (PI) analog loop, which controls the klystron collector beam current, as a function of the output RF power, has been designed and installed. The design considerations, besides efficiency improvement, were to interface to the existing system without major expense. They were to also avoid the klystron cathode power supply filter's resonance in the loop's dynamics, and prevent a conflict with the existing Cavity RF Amplitude Loop dynamics. This efficiency loop will allow us to save up to 700 MW-hours of electrical energy per year and increase the lifetime of the klystron

  8. Commissioning of the diamond light source storage ring vacuum system

    International Nuclear Information System (INIS)

    Cox, M P; Boussier, B; Bryan, S; Macdonald, B F; Shiers, H S

    2008-01-01

    The Diamond storage ring has been operating with a 3 GeV electron beam since September 2006 and 190 A.h of beam dose have been accumulated. The pressure in the storage ring is 4.2 10 -10 mbar without beam, rising to 7.9 10 -10 mbar with 125 mA of stored beam. Data on the storage ring vacuum performance and experience from commissioning and beam conditioning are presented

  9. Stochastic beam dynamics in storage rings

    International Nuclear Information System (INIS)

    Pauluhn, A.

    1993-12-01

    In this thesis several approaches to stochastic dynamics in storage rings are investigated. In the first part the theory of stochastic differential equations and Fokker-Planck equations is used to describe the processes which have been assumed to be Markov processes. The mathematical theory of Markov processes is well known. Nevertheless, analytical solutions can be found only in special cases and numerical algorithms are required. Several numerical integration schemes for stochastic differential equations will therefore be tested in analytical solvable examples and then applied to examples from accelerator physics. In particular the stochastically perturbed synchrotron motion is treated. For the special case of a double rf system several perturbation theoretical methods for deriving the Fokker-Planck equation in the action variable are used and compared with numerical results. The second part is concerned with the dynamics of electron storage rings. Due to the synchrotron radiation the electron motion is influenced by damping and exciting forces. An algorithm for the computation of the density function in the phase space of such a dissipative stochastically excited system is introduced. The density function contains all information of a process, e.g. it determines the beam dimensions and the lifetime of a stored electron beam. The new algorithm consists in calculating a time propagator for the density function. By means of this propagator the time evolution of the density is modelled very computing time efficient. The method is applied to simple models of the beam-beam interaction (one-dimensional, round beams) and the results of the density calculations are compared with results obtained from multiparticle tracking. Furthermore some modifications of the algorithm are introduced to improve its efficiency concerning computing time and storage requirements. Finally, extensions to two-dimensional beam-beam models are described. (orig.)

  10. Search for electric dipole moments in storage rings

    Directory of Open Access Journals (Sweden)

    Lenisa Paolo

    2016-01-01

    Full Text Available The JEDI collaboration aims at making use of storage ring to provide the most precise measurement of the electric dipole moments of hadrons. The method makes exploits a longitudinal polarized beam. The existence an electric dipole moment would generate a torque slowly twisting the particle spin out of plan of the storage ring into the vertical direction. The observation of non zero electric dipole moment would represent a clear sign of new physics beyond the Standard Model. Feasiblity tests are presently undergoing at the COSY storage ring Forschungszentrum Jülich (Germany, to develop the novel techniques to be implemented in a future dedicated storage ring.

  11. Rf stability, control and bunch lengthening in electron synchrotron storage rings

    International Nuclear Information System (INIS)

    Wachtel, J.M.

    1989-09-01

    A self-consistent theory for nonlinear longitudinal particle motion and rf cavity excitation in a high energy electron storage ring is developed. Coupled first order equations for the motion of an arbitrary number of particles and for the field in several rf cavities are given in the form used in control system theory. Stochastic quantum excitation of synchrotron motion is included, as are the effects of rf control system corrections. Results of computations for double cavity bunch lengthening are given. 11 refs., 4 figs., 1 tab

  12. Dependence of mis-alignment sensitivity of ring laser gyro cavity on cavity parameters

    Energy Technology Data Exchange (ETDEWEB)

    Sun Feng; Zhang Xi; Zhang Hongbo; Yang Changcheng, E-mail: sunok1234@sohu.com [Huazhong Institute of Electro-Optics - Wuhan National Lab for Optoelectronics, Wuhan, Hubei (China)

    2011-02-01

    The ring laser gyroscope (RLG), as a rotation sensor, has been widely used for navigation and guidance on vehicles and missiles. The environment of strong random-vibration and large acceleration may deteriorate the performance of the RLG due to the vibration-induced tilting of the mirrors. In this paper the RLG performance is theoretically analyzed and the parameters such as the beam diameter at the aperture, cavity mirror alignment sensitivities and power loss due to the mirror tilting are calculated. It is concluded that by carefully choosing the parameters, the significant loss in laser power can be avoided.

  13. Damping rates of the SRRC storage ring

    International Nuclear Information System (INIS)

    Hsu, K.T.; Kuo, C.C.; Lau, W.K.; Weng, W.T.

    1995-01-01

    The SRRC storage ring is a low emittance synchrotron radiation machine with nominal operation energy 1.3 GeV. The design damping time due to synchrotron radiation is 10.7, 14.4, 8.7 ms for the horizontal, vertical and longitudinal plane, respectively. The authors measured the real machine damping time as a function of bunch current, chromaticity, etc. To damp the transverse beam instability, especially in the vertical plane, they need to increase chromaticity to large positive value. The damping rates are much larger than the design values. Landau damping contribution in the longitudinal plane is quite large, especially in the multibunch mode. The estimated synchrotron tune spread from the Landau damping is in agreement with the measured coherent longitudinal coupled bunch oscillation amplitude

  14. Superconducting magnets for high energy storage rings

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1977-01-01

    Superconducting dipole and quadrupole magnets were developed for the proton-proton intersecting storage accelerator ISABELLE. Full size prototypes of both kinds of magnets were constructed and successfully tested. The coils are fabricated from a single layer of wide braided superconductor and employ a low temperature iron core. This method of construction leads to two significant performance advantages; little or no training, and the ability of the coil to absorb its total magnetic stored energy without damage. A high pressure (15 atm) helium gas system is used for cooling. Measurements of the random field errors are compared with the expected field distribution. Three magnets (two dipoles and one quadrupole) were assembled into a segment of the accelerator ring structure (half cell). The performance of this magnet array, which is coupled in series both electrically and cryogenically, is also summarized

  15. Introductory statistical mechanics for electron storage rings

    International Nuclear Information System (INIS)

    Jowett, J.M.

    1986-07-01

    These lectures introduce the beam dynamics of electron-positron storage rings with particular emphasis on the effects due to synchrotron radiation. They differ from most other introductions in their systematic use of the physical principles and mathematical techniques of the non-equilibrium statistical mechanics of fluctuating dynamical systems. A self-contained exposition of the necessary topics from this field is included. Throughout the development, a Hamiltonian description of the effects of the externally applied fields is maintained in order to preserve the links with other lectures on beam dynamics and to show clearly the extent to which electron dynamics in non-Hamiltonian. The statistical mechanical framework is extended to a discussion of the conceptual foundations of the treatment of collective effects through the Vlasov equation

  16. Unicell structure for superconducting storage rings

    International Nuclear Information System (INIS)

    Danby, G.; DeVito, B.; Jackson, J.

    1985-01-01

    Mechanically integrated, magnetically decoupled storage rings were designed for a heavy ion collider for 100 GeV/amu Au, at B = 2.7T. New concepts were developed, including detailed engineering design and cost estimates. A ''unicell'' contains a half-cell of both rings within a single He vessel. The unicell design is optimized for economical mass production. Survey pads welded to the laminations provide external fiducials to locate the magnet cores. Roller bearing self aligning supports accommodate cool-down shrinkage. The design tolerates relative motion of components resulting from longitudinal shrinkage in the approx.15 m long unicell without affecting performance. Magnetic and physical lengths are the same, eliminating waste space. ''Achromatic'' quadrupoles with sextupoles at both ends are located on a common precision beam tube which aligns and supports a pick-up electrode. The unicell accommodates longer dipoles compared to conventional designs, reducing B/sub max/, stored energy, and the volume of iron and superconductor. Applications to future machines will be discussed

  17. Unicell structure for superconducting storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; DeVito, B.; Jackson, J.; Keohane, G.; Lee, Y.Y.; Phillips, R.; Plate, S.; Repeta, L.; Skaritka, J.; Smith, L.

    1985-10-01

    Mechanically integrated, magnetically decoupled storage rings were designed for a heavy ion collider for 100 GeV/amu Au, at B=2.7T. New concepts were developed, including detailed engineering design and cost estimates. A ''unicell'' contains a half-cell of both rings within a single He vessel. The unicell design is optimized for economical mass production. Survey pads welded to the laminations provide external fiducials to locate the magnet cores. Roller bearing self aligning supports accommodate cool-down shrinkage. The design tolerates relative motion of components resulting from longitudinal shrinkage in the about15 m long unicell without affecting performance. Magnetic and physical lengths are the same, eliminating waste space. ''Achromatic'' quadrupoles with sextupoles at both ends are located on a common precision beam tube which aligns and supports a pick-up electrode. The unicell accommodates longer dipoles compared to conventional designs, reducing B /SUB max'/ stored energy, and the volume of iron and superconductor. Applications to future machines will be discussed.

  18. Unicell structure for superconducting storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; DeVito, B.; Jackson, J.; Keohane, G.; Lee, Y.Y.; Phillips, R.; Plate, S.; Repeta, L.; Skaritka, J.; Smith, L.

    1985-01-01

    Mechanically integrated, magnetically decoupled storage rings were designed for a heavy ion collider for 100 GeV/amu Au, at B = 2.7T. New concepts were developed, including detailed engineering design and cost estimates. A ''unicell'' contains a half-cell of both rings within a single He vessel. The unicell design is optimized for economical mass production. Survey pads welded to the laminations provide external fiducials to locate the magnet cores. Roller bearing self aligning supports accommodate cool-down shrinkage. The design tolerates relative motion of components resulting from longitudinal shrinkage in the approx.15 m long unicell without affecting performance. Magnetic and physical lengths are the same, eliminating waste space. ''Achromatic'' quadrupoles with sextupoles at both ends are located on a common precision beam tube which aligns and supports a pick-up electrode. The unicell accommodates longer dipoles compared to conventional designs, reducing B/sub max/, stored energy, and the volume of iron and superconductor. Applications to future machines will be discussed.

  19. HISTRAP [Heavy Ion Storage Ring for Atomic Physics] prototype hardware studies

    International Nuclear Information System (INIS)

    Olsen, D.K.; Atkins, W.H.; Dowling, D.T.; Johnson, J.W.; Lord, R.S.; McConnell, J.W.; Milner, W.T.; Mosko, S.W.; Tatum, B.A.

    1989-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 2.67-Tm synchrotron/cooler/storage ring optimized for advanced atomic physics research which will be injected with ions from either the HHIRF 25-MV tandem accelerator or a dedicated ECR source and RFQ linac. Over the last two years, hardware prototypes have been developed for difficult and long lead-time components. A vacuum test stand, the rf cavity, and a prototype dipole magnet have been designed, constructed, and tested. 7 refs., 8 figs., 2 tabs

  20. A design of a quasi-isochronous storage ring

    International Nuclear Information System (INIS)

    Lee, S.Y.; Trbojevic, D.

    1993-07-01

    Isochronous electron storage rings may offer advantages for future high luminosity meson factories. A Quasi-isochronous lattice based on the design principle of flexible γτ lattice is studied. The emittance and chromatic properties of such a lattice are studied. Applications of this design techniques for electron storage rings will be discussed

  1. Pressure bump instability in very large cold bore storage rings

    International Nuclear Information System (INIS)

    Limon, P.

    1983-12-01

    Calculations have been done to estimate the circulating current necessary to induce the onset of a pressure bump instability in a cold bore storage ring. For a wide range of storage ring parameters, the instability threshold current is more than an order of magnitude higher than the operating current. 4 references, 2 tables

  2. Requirements on internal targets for the Aladdin storage ring

    International Nuclear Information System (INIS)

    Holt, R.J.

    1984-01-01

    The feasibility of performing electron scattering experiments with polarized targets in electron storage rings is explored by considering an electron-deuteron scattering experiment at the Aladdin storage ring. It is noted that this new method is compatible with recent proposals for linac-stretcher-ring accelerator designs. A new method for producing a polarized hydrogen or deuterium target is proposed and some preliminary results are described. 21 references, 6 figures, 1 table

  3. Control of ring lasers by means of coupled cavities

    DEFF Research Database (Denmark)

    Buchhave, Preben; Abitan, Haim; Tidemand-Lichtenberg, Peter

    2000-01-01

    Variable phase coupling to an external ring is used to control a unidirectional ring laser. The observed behavior of the coupled rings is explained theoretically. We have found experimentally that by quickly changing the phase of the feedback from the external ring it is possible to Q......-switch the ring laser. Also, at certain values of the phase of the feedback in the external ring, instabilities in the total system occur and oscillations arise in the ring laser....

  4. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  5. The proton storage ring: Problems and solutions

    International Nuclear Information System (INIS)

    Macek, R.J.

    1988-01-01

    The Los Alamos Proton Storage Ring (PSR) now operates with 35μA at 20-Hz pulse repetition rate. Beam availability during 1988 suffered because of a number of problems with hardware reliability and from narrow operating margins for beam spill in the extraction line. A strong effort is underway to improve reliability with an eventual goal of obtaining beam availability in excess of 75%. Beam losses and the resulting component activation have limited operating currents to their present values. In detailed studies of the problem, loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two-step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. It is now apparent that the key to reducing losses is in reducing the number of foil traversals. A program of upgrades to reduce losses and improve the operating current is being planned. 8 refs., 17 figs., 2 tabs

  6. MAGNETS FOR A MUON STORAGE RING

    International Nuclear Information System (INIS)

    PARKER, B.; ANERELLA, M.; GHOSH, A.; GUPTA, R.; HARRISON, M.; SCHMALZLE, J.; SONDERICKER, J.; WILLEN, E.

    2002-01-01

    We present a new racetrack coil magnet design, with an open midplane gap, that keeps decay particles in a neutrino factory muon storage ring from directly hitting superconducting coils. The structure is very compact because coil ends overlap middle sections top and bottom for skew focusing optics. A large racetrack coil bend radius allows ''react and wind'' magnet technology to be used for brittle Nb 3 Sn superconductors. We describe two versions: Design-A, a magnet presently under construction and Design-B, a further iterated concept that achieves the higher magnetic field quality specified in the neutrino factory feasibility Study-II report. For Design-B reverse polarity and identical end design of consecutive long and short coils offers theoretically perfect magnet end field error cancellation. These designs avoid the dead space penalty from coil ends and interconnect regions (a large fraction in machines with short length but large aperture magnets) and provide continuous bending or focusing without interruption. The coil support structure and cryostat are carefully optimized

  7. Status of PSR [Proton Storage Ring

    International Nuclear Information System (INIS)

    Macek, R.J.

    1989-01-01

    The Los Alamos Proton Storage Ring (PSR) now operates with 35μA at 20-Hz pulse repetition rate. Beam availability during 1988 suffered because of a number of problems with hardware reliability and from narrow operating margins for beam spill in the extraction line. A strong effort is underway to improve reliability with an eventual goal of obtaining beam availability in excess of 75%. Beam losses and the resulting component activation have limited operating currents to their present values. In detailed studies of the problem, loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two-step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. It is now apparent that the key to reducing losses is in reducing the number of foil traversals. A program of upgrades to reduce losses and improve the operating current is being planned. 8 refs., 16 figs

  8. The proton storage ring: Problems and solutions

    International Nuclear Information System (INIS)

    Macek, R.J.

    1989-01-01

    The Los Alamos Proton Storage Ring (PSR) now operates with 35μA at 20-Hz pulse repetition rate. Beam availability during 1988 suffered because of a number of problems with hardware reliability and from narrow operating margins for beam spill in the extraction line. A strong effort is underway to improve reliability with an eventual goal of obtaining beam availability in excess of 75%. Beam losses and the resulting component activation have limited operating currents to their present values. In detail studies of the problem, loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two-step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. It is now apparent that the key to reducing losses is in reducing the number of foil traversals. A program of upgrades to reduce losses and improve the operating current is being planned. 8 refs., 17 figs., 2 tabs

  9. APS Storage Ring Monopulse RF BPM Upgrade

    Science.gov (United States)

    Lill, R.; Pietryla, A.; Norum, E.; Lenkszus, F.

    2004-11-01

    The Advanced Photon Source (APS) is a third-generation synchrotron light source in its ninth year of operation. The storage ring monopulse radio frequency (rf) beam position monitor (BPM) was designed to measure single-turn and multi-turn beam positions for operations and machine physics studies. Many of the components used in the original design are obsolete and costly to replace. In this paper we present a proposal to upgrade the monopulse rf BPMs in which the existing system hardware is repartitioned and the aging data acquisition system is replaced. By replacing only the data acquisition system, we will demonstrate a cost-effective approach to improved beam stability, reliability, and enhanced postmortem capabilities. An eight-channel ADC/digitizer VXI board with sampling rate of up to 105 MHz (per channel) and 14-bit resolution coupled with a field-programmable gate array and embedded central processing will provide the flexibility to revitalize this system for another decade of operation. We will discuss the upgrade system specifications, design, and prototype test results.

  10. High duty factor structures for e+e- storage rings

    International Nuclear Information System (INIS)

    Allen, M.A.; Karvonen, L.G.

    1976-01-01

    The next generation of e + e - storage rings will need rf systems similar to those required for a continuous-duty linac of over 50 MeV. For the PEP Storage Ring at 18 GeV, it is presently planned to provide a peak accelerating voltage of 77 MV in 18 aluminum accelerating structures, each structure consisting of five slot-coupled cells operating in the π mode. The power dissipation will be 100 kW per cell for a total of 500 kW per five-cell structure at 353 MHz. A two-cell model was designed and built to dissipate 100 kW per cell or a total of 200 kW. This structure was powered (cw) to over 100 kW per cell, and detailed calorimetric data were taken and compared with the original heat transfer calculations. The power level achieved corresponds to a peak accelerating field (transit-time factor included) in the two-cell model of 0.8 MV per cell or 1.9 MV/meter. Operating experience with the SPEAR five-cell structure is discussed. The four SPEAR structures are each designed to operate with wall losses of 75 kW and up to 50 kW into the stored beam. Power to each structure is provided by a 125-kW high-efficiency four-cavity klystron. No isolation has been used and the resulting interaction between the accelerating structures, klystrons, and the stored beams is discussed

  11. Small electrostatic storage rings; also for highly charged ions?

    International Nuclear Information System (INIS)

    Moeller, S.P.; Pedersen, U.V.

    2001-01-01

    Two years ago, a small electrostatic storage ring ELISA (electrostatic ion storage ring, Aarhus) was put into operation. The design of this small 7 m circumference ring was based on electrostatic deflection plates and quadrupoles. This is in contrast to the larger ion storage rings, which are based on magnetic focusing and deflection. The result is a small, relatively inexpensive, storage ring being able to store ions of any mass and any charge at low energy ( -11 mbar resulting in storage times of several tens of seconds for singly charged ions. The maximum number of singly charged ions that can be stored is a few 10 7 . Several experiments have already been performed in ELISA. These include lifetime studies of metastable ions and studies of fullerenes and metal-cluster ions. Lasers are also used for excitation of the circulating ions. Heating/cooling of the ring is possible. Cooling of the ring leads to significantly lower pressures, and correspondingly longer lifetimes. A change of the temperature of the vacuum chambers surrounding the ion beam also leads to a change of the spectrum of the black-body radiation, which has a significant influence on weakly bound negative ions. At the time of writing, at least two other electrostatic storage rings are being built, and more are planned. In the following, the electrostatic storage ring ELISA will be described, and results from some of the initial experiments demonstrating the performance will be shown. The relative merits of such a ring, as opposed to the larger magnetic rings and the smaller ion traps will be discussed. The potential for highly charged ions will be briefly mentioned. (orig.)

  12. S-Nitrosothiols Observed Using Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Rad, Mary Lynn; Gaston, Benjamin M.; Lehmann, Kevin

    2017-06-01

    The biological importance of nitric oxide has been known for nearly forty years due to its role in cardiovascular and nervous signaling. The main carrier molecules, s-nitrosothiols (RSNOs), are of additional interest due to their role in signaling reactions. Additionally, these compounds are related to several diseases including muscular dystrophy, stroke, myocardial infarction, Alzheimer's disease, Parkinson's disease, cystic fibrosis, asthma, and pulmonary arterial hypertension. One of the main barriers to elucidating the role of these RSNOs is the low (nanomolar) concentration present in samples of low volume (typically ˜100 μL). To this end we have set up a cavity ring-down spectrometer tuned to observe ^{14}NO and ^{15}NO released from cell growth samples. To decrease the limit of detection we have implemented a laser locking scheme employing Zeeman modulation of NO in a reference cell and have tuned the polarization of the laser using a half wave plate to optimize the polarization for the inherent birefringence of the CRDS mirrors. Progress toward measuring RSNO concentration in biological samples will be presented.

  13. Medical Diagnostic Breath Analysis by Cavity Ring Down Spectroscopy

    Science.gov (United States)

    Guss, Joseph S.; Metsälä, Markus; Halonen, Lauri

    2009-06-01

    Certain medical conditions give rise to the presence of chemicals in the bloodstream. These chemicals - known as biomarkers - may also be present in low concentrations in human breath. Cavity ring down spectroscopy possesses the requisite selectivity and sensitivity to detect such biomarkers in the congested spectrum of a breath sample. The ulcer-causing bacterium, Helicobacter pylori, is a prolific producer of the enzyme urease, which catalyses the breakdown of urea ((NH_2)_2CO) in the stomach as follows: (NH_2)_2CO + H_2O ⟶ CO_2 + 2NH_3 Currently, breath tests seeking altered carbon-isotope ratios in exhaled CO_2 after the ingestion of ^{13}C- or ^{14}C-labeled urea are used to diagnose H. pylori infection. We present recent results from an ongoing collaboration with Tampere Area University Hospital. The study involves 100 patients (both infected and uninfected) and concerns the possible correlation between the bacterial infection and breath ammonia. D. Y. Graham, P. D. Klein, D. J. Evans, Jr, D. G. Evans, L. C. Alpert, A. R. Opekun, T. W. Boutton, Lancet 1(8543), 1174-7 March 1987.

  14. Survey and alignment of the Fermilab recycler antiproton storage ring

    International Nuclear Information System (INIS)

    Arics, Babatunde O.O.

    1999-01-01

    In June of 1999 Fermilab commissioned a newly constructed antiproton storage ring, the 'Recycler Ring', in the Main Injector tunnel directly above the Main Injector beamline. The Recycler Ring is a fixed 8 GeV kinetic energy storage ring and is constructed of strontium ferrite permanent magnets. The 3319.4-meter-circumference Recycler Ring consists of 344 gradient magnets and 100 quadrupoles all of which are permanent magnets. This paper discusses the methods employed to survey and align these permanent magnets within the Recycler Ring with the specified accuracy. The Laser Tracker was the major instrument used for the final magnet alignment. The magnets were aligned along the Recycler Ring with a relative accuracy of ±0.25 mm. (author)

  15. The performance of gas storage cavities leached in salt

    International Nuclear Information System (INIS)

    Hugout, B.; Roger, C.

    1990-01-01

    Unlike other underground gas storage techniques, the gas storage cavities leached in salt and operated by compression-expansion are able to operate at high send-out rates with relatively small amounts of immobilized gas. The entire working gas capacity can be withdrawn within a period of between a few days and a few weeks, as opposed to several months for an aquifer or depleted field storage. To evaluate the deliverability of a cavity, which varies considerably during withdrawal, it is necessary to know at all times the gas pressure and temperature in the cavity and at all points in the production well and surface equipment, up to the point of injection into the network (manifold, filter, dehydration unit, meter run, and pressure governor). For this, a code (SITHERGAZ) based on the integration of thermodynamics and fluid mechanics equations was developed by Gaz be France. It has been operational since 1980. The experience acquired by Gaz de France in the operation of around twenty cavities, some of which have been in service for years, and the results of numerous simulations using the SITHERGAZ programme have made it possible to prove the legitimacy of a certain number of simplifying hypotheses. Using these hypotheses, the performance of cavities can be evaluated with reasonable accuracy by simple means. This paper describes the test procedures which provide a simple means to determine the flow pressure-loss coefficients and presents the practical calculation of cavity performance. (author). 5 figs

  16. Ion-ion collisions and ion storage rings

    International Nuclear Information System (INIS)

    Mowat, J.R.

    1988-01-01

    Improved understanding of fundamental ion-ion interactions is expected to emerge from research carried out with ion storage rings. In this short survey the significant advantages and unique features that make stored ions useful targets for collision experiments are reviewed and discussed. It is pointed out that improvements to existing ion-ion experiments, as well as qualitatively new experiments, should occur over the next few years as ion storage rings become available for atomic physics. Some new experiments are suggested which are difficult if not impossible with present-day technology, but which seem feasible at storage rings facilities. (orig.)

  17. Perpendicular biased ferrite tuned RF cavity for the TRIUMF KAON Factory booster ring

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enegren, T.; Haddock, C.

    1989-03-01

    The rf cavity for the booster ring requires a frequency swing of 46 MHz to 62 MHz at a repetition rate of 50 Hz. The possibility of using the LANL booster cavity design with a yttrium garnet ferrite tuner biased perpendicular to the rf field, in the longitudinal direction, is being investigated. In order to minimize the stray magnetic biasing field on the beam axis, an alternative scheme similar to the design being proposed for the LANL main ring cavity in which the ferrite is perpendicular biased in the radial direction, is being considered. The behaviour of the rf cavity and the magnetizing circuit for both designs are discussed

  18. Polarization Studies for the eRHIC Electron Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, Eliana [Fermilab; Tepikian, S. [Brookhaven

    2018-04-01

    A hadron/lepton collider with polarized beams has been under consideration by the scientific community since some years, in the U.S. and Europe. Among the various proposals, those by JLAB and BNL with polarized electron and proton beams are currently under closer study in the U.S. Experimenters call for the simultaneous storage of electron bunches with both spin helicity. In the BNL based Ring-Ring design, electrons are stored at top energy in a ring to be accommodated in the existing RHIC tunnel. The transversely polarized electron beam is injected into the storage ring at variable energies, between 5 and 18 GeV. Polarization is brought into the longitudinal direction at the IP by a couple of spin rotators. In this paper results of first studies of the attainable beam polarization level and lifetime in the storage ring at 18 GeV are presented.

  19. Estimates of CSR Instability Thresholds for Various Storage Rings

    CERN Document Server

    Zimmermann, Frank

    2010-01-01

    We review the key predictions and conditions by several authors for the onset of longitudinal instabilities due to coherent synchrotron radiation (CSR), and evaluate them numerically for various storage rings, namely the KEKB High Energy Ring (HER) & Low Energy Ring (LER), SuperKEKB HER & LER, old and new designs of the SuperKEKB Damping Ring (DR), SuperB HER & LER, CLIC DR (2009 and 2010 design parameters), SLC DR, and ATF DR. We show that the theoretical uncertainty in the instability onset is at least at the level of 20-30% in bunch intensity. More importantly, we present some doubts about the general applicability for many of these storage rings of some commonly used formulae. To cast further light on these questions, an experiment at lower beam energy on the ATF Damping Ring is proposed.

  20. Evaluation of radiative spin polarization in an electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A W [Stanford Linear Accelerator Center, CA (USA)

    1981-02-15

    We have developed a matrix formalism that provides an accurate way of evaluating the degree of spin polarization built up through the process of synchrotron radiation under a wide variety of storage ring operation conditions.

  1. Orbital dynamics in a storage ring with electrostatic bending

    International Nuclear Information System (INIS)

    Mane, S.R.

    2008-01-01

    A storage ring where electrostatic fields contribute to the bending and focusing of the orbital motion has some novel features because, unlike a magnetostatic field, an electrostatic field can change the kinetic energy of the particles. I present analytical formulas to calculate the linear focusing gradient, dispersion, momentum compaction and natural chromaticity for a storage ring with a radial electrostatic field. I solve the formulas explicitly for a weak focusing model.

  2. Some topics in beam dynamics of storage rings

    International Nuclear Information System (INIS)

    Mais, H.

    1996-06-01

    In the following report we want to review some beam dynamics problems in accelerator physics. Theoretical tools and methods are introduced and discussed, and it is shown how these concepts can be applied to the study of various problems in storage rings. The first part treats Hamiltonian systems (proton accelerators) whereas the second part is concerned with explicitly stochastic systems (e.g. electron storage rings). (orig.)

  3. Storage ring at HIE-ISOLDE Technical design report

    NARCIS (Netherlands)

    Grieser, M.; Litvinov, Yu. A.; Raabe, R.; Blaum, K.; Blumenfeld, Y.; Butler, P. A.; Wenander, F.; Woods, P. J.; Aliotta, M.; Andreyev, A.; Artemyev, A.; Atanasov, D.; Aumann, T.; Balabanski, D.; Barzakh, A.; Batist, L.; Bernardes, A. -P.; Bernhardt, D.; Billowes, J.; Bishop, S.; Borge, M.; Borzov, I.; Boston, A. J.; Brandau, C.; Catford, W.; Catherall, R.; Cederkall, J.; Cullen, D.; Davinson, T.; Dillmann, I.; Dimopoulou, C.; Dracoulis, G.; Duellmann, Ch. E.; Egelhof, P.; Estrade, A.; Fischer, D.; Flanagan, K.; Fraile, L.; Fraser, M. A.; Freeman, S. J.; Geissel, H.; Gerl, J.; Greenlees, P.; Grisenti, R. E.; Habs, D.; von Hahn, R.; Hagmann, S.; Hausmann, M.; He, J. J.; Heil, M.; Huyse, M.; Jenkins, D.; Jokinen, A.; Jonson, B.; Joss, D. T.; Kadi, Y.; Kalantar-Nayestanaki, N.; Kay, B. P.; Kiselev, O.; Kluge, H. -J.; Kowalska, M.; Kozhuharov, C.; Kreim, S.; Kroell, T.; Kurcewicz, J.; Labiche, M.; Lemmon, R. C.; Lestinsky, M.; Lotay, G.; Ma, X. W.; Marta, M.; Meng, J.; Muecher, D.; Mukha, I.; Mueller, A.; Murphy, A. St J.; Neyens, G.; Nilsson, T.; Nociforo, C.; Noertershaeuser, W.; Page, R. D.; Pasini, M.; Petridis, N.; Pietralla, N.; Pfuetzner, M.; Podolyak, Z.; Regan, P.; Reed, M. W.; Reifarth, R.; Reiter, P.; Repnow, R.; Riisager, K.; Rubio, B.; Sanjari, M. S.; Savin, D. W.; Scheidenberger, C.; Schippers, S.; Schneider, D.; Schuch, R.; Schwalm, D.; Schweikhard, L.; Shubina, D.; Siesling, E.; Simon, H.; Simpson, J.; Smith, J.; Sonnabend, K.; Steck, M.; Stora, T.; Stoehlker, T.; Sun, B.; Surzhykov, A.; Suzaki, F.; Tarasov, O.; Trotsenko, S.; Tu, X. L.; Van Duppen, P.; Volpe, C.; Voulot, D.; Walker, P. M.; Wildner, E.; Winckler, N.; Winters, D. F. A.; Wolf, A.; Xu, H. S.; Yakushev, A.; Yamaguchi, T.; Yuan, Y. J.; Zhang, Y. H.; Zuber, K.; Bosch, F.M.

    We propose to install a storage ring at an ISOL-type radioactive beam facility for the first time. Specifically, we intend to setup the heavy-ion, low-energy ring TSR at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored secondary beams

  4. Storage of laser pulses in a Fabry-Perot optical cavity for high flux x-ray

    International Nuclear Information System (INIS)

    Takezawa, K.; Honda, Y.; Sasao, N.; Araki, S.; Higashi, Y.; Taniguchi, T.; Urakawa, J.; Nomura, M.; Sakai, H.

    2004-01-01

    We have a plan to produce a high flux x-ray for medical use by using a Fabry-Perot optical cavity in which the lower pulses from a mode-locked laser are stored and enhanced. In this plan, the X-ray is produced from the Compton scattering of electrons in a storage ring with the laser light in the optical cavity. In order to increase X-ray flux, high power laser light is necessary. We show the enhancement of the laser power from the model locked laser with a Fabry-Perot optical cavity. (author)

  5. Non-destructive splitter of twisted light based on modes splitting in a ring cavity.

    Science.gov (United States)

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2016-02-08

    Efficiently discriminating beams carrying different orbital angular momentum (OAM) is of fundamental importance for various applications including high capacity optical communication and quantum information processing. We design and experimentally verify a distinguished method for effectively splitting different OAM-carried beams by introducing Dove prisms in a ring cavity. Because of rotational symmetry broken of two OAM-carried beams with opposite topological charges, their transmission spectra will split. When mode and impedance matches between the cavity and one OAM-carried beam are achieved, this beam will transmit through the cavity and other beam will be reflected, both beams keep their spatial shapes. In this case, the cavity acts like a polarized beam splitter. Besides, the transmitting beam can be selected at your will, the splitting efficiency can reach unity if the cavity is lossless and it completely matches the beam. Furthermore, beams carry multi-OAMs can also be split by cascading ring cavities.

  6. Modelling of the nonlinear soliton dynamics in the ring fibre cavity

    Science.gov (United States)

    Razukov, Vadim A.; Melnikov, Leonid A.

    2018-04-01

    Using the cabaret method numerical realization, long-time spatio-temporal dynamics of the electromagnetic field in a nonlinear ring fibre cavity with dispersion is investigated during the hundreds of round trips. Formation of both the temporal cavity solitons and irregular pulse trains is demonstrated and discussed.

  7. Low emittance lattices for electron storage rings revisited

    International Nuclear Information System (INIS)

    Trbojevic, D.; Courant, E.

    1994-01-01

    Conditions for the lowest possible emittance of the lattice for electron storage rings are obtained by a simplified analytical approach. Examples of electron storage lattices with minimum emittances are presented. A simple graphical presentation in the normalized dispersion space (Floquet's transformation) is used to illustrate the conditions and results

  8. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terabayashi, Ryohei, E-mail: terabayashi.ryouhei@h.mbox.nagoya-u.ac.jp; Sonnenschein, Volker, E-mail: volker@nagoya-u.jp; Tomita, Hideki, E-mail: tomita@nagoya-u.jp; Hayashi, Noriyoshi, E-mail: hayashi.noriyoshi@h.mbox.nagoya-u.ac.jp; Kato, Shusuke, E-mail: katou.shuusuke@f.mbox.nagoya-u.ac.jp; Jin, Lei, E-mail: kin@nuee.nagoya-u.ac.jp; Yamanaka, Masahito, E-mail: yamanaka@nuee.nagoya-u.ac.jp; Nishizawa, Norihiko, E-mail: nishizawa@nuee.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan); Sato, Atsushi, E-mail: atsushi.sato@sekisui.com; Nozawa, Kohei, E-mail: kohei.nozawa@sekisui.com; Hashizume, Kenta, E-mail: kenta.hashizume@sekisui.com; Oh-hara, Toshinari, E-mail: toshinari.ohara@sekisui.com [Sekisui Medical Co., Ltd., Drug Development Solutions Center (Japan); Iguchi, Tetsuo, E-mail: t-iguchi@nucl.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan)

    2017-11-15

    A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.

  9. Optical fibre cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser

    Science.gov (United States)

    Zhou, Kaiming; Webb, David; Mou, Chengbo; Farries, Mark; Hayes, Neil; Bennion, Ian

    2009-10-01

    μA microchannel was inscribed in the fibre of a ring cavity which was constructed from two 0.1%:99.9% couplers and a 10m fibre loop. Cavity ring down spectroscopy (CRDS) was used to measure the refractive index (RI) of gels infused into the microchannel with high resolution. The ring down time discloses a nonlinear increase with respect to the RI of the gel and sensitivity up to 300μs/RI unit (RIU) and resolution of 5×10-4 were obtained.

  10. Antiprotons in the CERN intersecting storage rings

    International Nuclear Information System (INIS)

    Bryant, P.J.

    1984-01-01

    High-sensitivity electronics for TTl and ring 2 had been developed and installed, the original experimental stochastic cooling systems in the ISR were rebuilt and considerably improved, the split-field magnet (SFM) vacuum chamber was modified, some steering dipoles were designed, made and installed, and finally innumerable interlocks and computer programs were revised for antiproton operation. (orig./HSI)

  11. Response of APS storage ring basemat to ambient vibration

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1992-08-01

    The storage ring of the Advanced Photon Source (APS) facility at Argonne is very sensitive to vibration. Large vibration amplitudes would result in degraded machine performance. Because the storage ring assembly is supported on the storage ring basemat, the dynamics of the basemat are critical to successful operation. Before construction began, a survey of site ground vibration indicated that the site was acceptable from a vibration standpoint. When construction of the linear accelerator (Linac) floor slab and shielding walls was completed, dynamic-response measurements were conducted. The slab/wall system showed attenuation of soilborne vibrations in the horizontal directions, but an amplification (approximately a factor of 1.5) of vertical vibration at a frequency of 7.7 Hz. Vibration response of the slab/wall system at all other frequencies showed attenuation of soilborne vibrations. Dynamic-response measurements were also conducted on an incomplete section of the storage ring basemat. Although this section was not prototypical, results were similar to those of the Linac floor in the horizontal direction, showing large damping and attenuation of horizontal soilborne vibrations. While the basemat followed the soil vibration in the vertical direction, no large amplification was observed. However, measured vertical amplitudes on the basemat were a function of location, indicating a modal response. A series of vibration response measurements was conducted on a completed section of the storage ring basemat/tunnel adjacent and to the west of the Early Assembly Area (EAA) on May 21, 1992, and is the subject of this report

  12. Cavity enhanced eigenmode multiplexing for volume holographic data storage

    Science.gov (United States)

    Miller, Bo E.; Takashima, Yuzuru

    2017-08-01

    Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.

  13. Status of the Frankfurt low energy electrostatic storage ring (FLSR)

    International Nuclear Information System (INIS)

    King, F; Kruppi, T; Müller, J; Dörner, R; Schmidt, L Ph H; Schmidt-Böcking, H; Stiebing, K E

    2015-01-01

    Frankfurt low-energy storage ring (FLSR) is an electrostatic storage ring for low-energy ions up to q · 80 keV (q being the ion charge state) at Institut für Kernphysik der Goethe-Universität, Frankfurt am Main, Germany. It has especially been designed to provide a basis for experiments on the dynamics of ionic and molecular collisions in complete kinematics, as well as for high precision and time resolved laser spectroscopy. The ring has ‘racetrack’ geometry with a circumference of 14.23 m. It comprises four experimental/diagnostic sections with regions of enhanced ion density (interaction regions). First beam has successfully been stored in FLSR in summer 2013. Since then the performance of the ring has continuously been improved and an electron target for experiments on dissociative recombination has been installed in one of the experimental sections. (paper)

  14. Status of the Frankfurt low energy electrostatic storage ring (FLSR)

    Science.gov (United States)

    King, F.; Kruppi, T.; Müller, J.; Dörner, R.; Schmidt, L. Ph H.; Schmidt-Böcking, H.; Stiebing, K. E.

    2015-11-01

    Frankfurt low-energy storage ring (FLSR) is an electrostatic storage ring for low-energy ions up to q · 80 keV (q being the ion charge state) at Institut für Kernphysik der Goethe-Universität, Frankfurt am Main, Germany. It has especially been designed to provide a basis for experiments on the dynamics of ionic and molecular collisions in complete kinematics, as well as for high precision and time resolved laser spectroscopy. The ring has ‘racetrack’ geometry with a circumference of 14.23 m. It comprises four experimental/diagnostic sections with regions of enhanced ion density (interaction regions). First beam has successfully been stored in FLSR in summer 2013. Since then the performance of the ring has continuously been improved and an electron target for experiments on dissociative recombination has been installed in one of the experimental sections.

  15. Model calibration and beam control systems for storage rings

    International Nuclear Information System (INIS)

    Corbett, W.J.; Lee, M.J.; Ziemann, V.

    1993-04-01

    Electron beam storage rings and linear accelerators are rapidly gaining worldwide popularity as scientific devices for the production of high-brightness synchrotron radiation. Today, everybody agrees that there is a premium on calibrating the storage ring model and determining errors in the machine as soon as possible after the beam is injected. In addition, the accurate optics model enables machine operators to predictably adjust key performance parameters, and allows reliable identification of new errors that occur during operation of the machine. Since the need for model calibration and beam control systems is common to all storage rings, software packages should be made that are portable between different machines. In this paper, we report on work directed toward achieving in-situ calibration of the optics model, detection of alignment errors, and orbit control techniques, with an emphasis on developing a portable system incorporating these tools

  16. Alignment of Duke free electron laser storage ring and optical beam delivery system

    International Nuclear Information System (INIS)

    Emamian, M.; Hower, N.

    1999-01-01

    Duke Free Electron Laser Laboratory (DFELL) hosts a 1.1 GeV electron beam storage ring facility which is capable of generating beams in the range of nearly monochromatic gamma rays to high peak power infra red (IR) laser. In this report specifications and procedures for alignment of OK-4 /Duke storage ring FEL wiggler and optical cavity mirrors will be discussed. The OK-4 FEL lasing has demonstrated a series of world record in the last few years. In August of this year the OK-4 FEL successfully commissioned to laser at 193.7 nm. Also in this article, alignment of the γ-ray and UV optical beam delivery system that is currently in progress will be described. (authors)

  17. Beam-beam interaction in e+-e- storage rings

    International Nuclear Information System (INIS)

    Le Duff, J.

    1977-01-01

    Colliding beams in electron-positron storage rings are discussed with particular reference to the space charge forces occuring during beam-beam interactions and their effect on beam current and consequently machine performance (maximum luminosity). The first section deals with linear beam-beam effects and discussses linear tune shift; the second section considers non-linear beam-beam effects and the creation on non-linear resonances. The last section poses questions of the possibility of extrapolating present results to future machines and discusses optimization of storage ring performance. (B.D.)

  18. Infrared Spectroscopy Beamline Based on a Tabletop Storage Ring

    OpenAIRE

    Haque, Md. Monirul; Moon, Ahsa; Yamada, Hironari

    2012-01-01

    An optical beamline dedicated to the infrared (IR) spectroscopy has been constructed at MIRRORCLE, a tabletop storage ring. The beamline has been designed for the use of infrared synchrotron radiation (IRSR) emitted from a bending magnet of 156 mm bending radius with the acceptance angle of 355(H) × 138(V) mrad to obtain high flux. The IR emission is forced by an exactly circular optics, named photon storage ring (PhSR), placed around the electron orbit and is collected by a “magic mirror” as...

  19. Genetic algorithm for chromaticity correction in diffraction limited storage rings

    Directory of Open Access Journals (Sweden)

    M. P. Ehrlichman

    2016-04-01

    Full Text Available A multiobjective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime.

  20. The motion of trapped secondary particles in a storage ring

    International Nuclear Information System (INIS)

    Shamovskij, V.G.

    1994-01-01

    The longitudinal motion of secondary electrons and ions trapped by an electron circulating beam field in nonuniform magnetic field of the storage ring is studied analytically. The conditions for their reflection in the fringe field of the storage ring magnet and in the sing-alternating field of the undulator are found. The calculations are made for the probability of this reflection in the case of ion generated in a straight section, in the region of a zero magnetic field. 12 refs.; 4 figs

  1. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  2. A model describing stable coherent synchrotron radiation in storage rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wuestefeld, G.; Huebers, H.-W.; Warnock, R.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  3. Workshop on compact storage ring technology: applications to lithography

    International Nuclear Information System (INIS)

    1986-01-01

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems

  4. New routes of XAFS with the low emittance storage rings

    International Nuclear Information System (INIS)

    Fontaine, A.

    1993-01-01

    New routes of XAFS should come from the extreme focusing and the polarization tunability of the new storage rings. It is certainly of interest to recall that fundamental ideas in X-ray absorption spectroscopy should come from direct soft X-ray excitations, currently accessible with the national facilities but also via inelastic scattering by electronic excitations more relevant of the new storage rings. Because of the ESRF proximity, references come from the European development, but it is only due to my ignorance if pertinent quotations of the American and Japanese efforts are missing. (author)

  5. Compact electron storage ring JESCOS with normalconducting or superconducting magnets for X-ray lithography

    International Nuclear Information System (INIS)

    Anton, F.; Klein, U.; Krischel, D.; Anderberg, B.

    1992-01-01

    The layouts of a normal conducting electron storage ring and a storage ring with superconducting bending magnets are presented. The storage rings have a critical wavelength of 1 nm and are designed as compact sources for X-ray lithography. Each ring fits into a shielded room with a diameter of 14 m. (author) 3 refs.; 5 figs.; 1 tab

  6. Isochronicity correction in the CR storage ring

    International Nuclear Information System (INIS)

    Litvinov, S.; Toprek, D.; Weick, H.; Dolinskii, A.

    2013-01-01

    A challenge for nuclear physics is to measure masses of exotic nuclei up to the limits of nuclear existence which are characterized by low production cross-sections and short half-lives. The large acceptance Collector Ring (CR) [1] at FAIR [2] tuned in the isochronous ion-optical mode offers unique possibilities for measuring short-lived and very exotic nuclides. However, in a ring designed for maximal acceptance, many factors limit the resolution. One point is a limit in time resolution inversely proportional to the transverse emittance. But most of the time aberrations can be corrected and others become small for large number of turns. We show the relations of the time correction to the corresponding transverse focusing and that the main correction for large emittance corresponds directly to the chromaticity correction for transverse focusing of the beam. With the help of Monte-Carlo simulations for the full acceptance we demonstrate how to correct the revolution times so that in principle resolutions of Δm/m=10 −6 can be achieved. In these calculations the influence of magnet inhomogeneities and extended fringe fields are considered and a calibration scheme also for ions with different mass-to-charge ratio is presented

  7. The vibration measurements at the photon factory storage ring building

    International Nuclear Information System (INIS)

    Haga, K.; Nakayama, M.; Masuda, K.; Ishizaki, H.; Kura, M.; Meng, L.; Oku, Y.

    1999-01-01

    The Photon Factory is a 2.5 GeV electron storage ring and has been operating since 1982 as a dedicated SR source. At the Photon Factory, we have been pursuing the various sources of the beam instabilities which deteriorated the SR beam quality in the wide frequency range. Some of the sources were the vibrations of magnets and floor of the ring tunnel, temperature change of the cooling water and the elongation of the storage ring building roof due to sunshine that induced the diurnal motion of the SR beam axis. This article presents the results of the vibration measurements that have been performed at the Photon Factory storage ring building. (1) The vibrations of the ring tunnel floor and the experimental hall floor, comparing with the vibration of the ground surrounding the storage ring building, are same order in the 1 ∼ 5 Hz range, and 1/3 ∼ 1/5 in the 5 ∼ 100 Hz range, in the vertical and the horizontal direction. (2) The effects of the vibration arising from the operating eight air-conditioners can be seen in the Fourier spectrum of the vibration of the ring tunnel floor, experimental floor, Q-magnets and BPM vacuum duct. (3) The vibrations of the Q-magnet and girder at frequencies near their fundamental resonant frequencies have been amplified 100 limes in the lateral direction comparing to the floor vibration. (4) Correlation between the vibration of the BPM vacuum duct and the vibration of the electron beam motion is unknown for the lack of the precise data. (authors)

  8. State of development of CERN proton storage rings

    CERN Document Server

    Huber, H

    1973-01-01

    The storage rings are briefly described and the 'luminosity', meaning a standardised counting method, is stated for the energies available at the centre of gravity. The maximum of luminosity reached so far is compared with the maximum possible luminosity and the reasons for the discrepancy are discussed. An example shows graphs of luminosity and of the beams after completion of the storage process, as functions of time. (2 refs).

  9. Design studies for the electron storage ring EUTERPE

    International Nuclear Information System (INIS)

    Xi Boling.

    1995-01-01

    The 400 MeV electron storage ring EUTERPE is under construction at Eindhoven University of Technology. The ring is to be used as an experimental tool for accelerator physics studies and synchroton radiation applications. The main task of the current research work is the electron optical design of the ring. Lattice design is a basis for machine design as a whole. Design aspects regarding the basic lattice, based on single particle dynamics, include determination of the equilibrium beam size and bunch length, design of achromatic bending sections, selection of tune values, correction of chromaticity, and minimization of the natural emittance in the ring. The basic lattice designed for the EUTERPE ring has a high flexibility so that different electron optical modes can be realized easily. In low energy storage rings with a high beam current, collective effects can cause a significant change in the bunch length, the transverse emittance and the beam lifetime. In order to ensure a good optical performance for the ring, the choice of suitable parameters concerning the vacuum and RF system are essential as far as collective effects are concerned. An estimation of the collective effects in the ring is given. The injector for EUTERPE is a 75 MeV racetrack microtron which is injected from a 10 MeV linac. In order to get sufficient beam current in the ring, a special procedure of continuous injection with an adjustable locally shifted closed orbit has been presented. Details of the injection procedure and numerical simulations are given. (orig./HSI)

  10. Design studies for the electron storage ring EUTERPE

    Energy Technology Data Exchange (ETDEWEB)

    Boling, Xi

    1995-05-18

    The 400 MeV electron storage ring EUTERPE is under construction at Eindhoven University of Technology. The ring is to be used as an experimental tool for accelerator physics studies and synchroton radiation applications. The main task of the current research work is the electron optical design of the ring. Lattice design is a basis for machine design as a whole. Design aspects regarding the basic lattice, based on single particle dynamics, include determination of the equilibrium beam size and bunch length, design of achromatic bending sections, selection of tune values, correction of chromaticity, and minimization of the natural emittance in the ring. The basic lattice designed for the EUTERPE ring has a high flexibility so that different electron optical modes can be realized easily. In low energy storage rings with a high beam current, collective effects can cause a significant change in the bunch length, the transverse emittance and the beam lifetime. In order to ensure a good optical performance for the ring, the choice of suitable parameters concerning the vacuum and RF system are essential as far as collective effects are concerned. An estimation of the collective effects in the ring is given. The injector for EUTERPE is a 75 MeV racetrack microtron which is injected from a 10 MeV linac. In order to get sufficient beam current in the ring, a special procedure of continuous injection with an adjustable locally shifted closed orbit has been presented. Details of the injection procedure and numerical simulations are given. (orig./HSI).

  11. Pseudo-single-bunch mode for a 100 MHz storage ring serving soft X-ray timing experiments

    Science.gov (United States)

    Olsson, T.; Leemann, S. C.; Georgiev, G.; Paraskaki, G.

    2018-06-01

    At many storage rings for synchrotron light production there is demand for serving both high-flux and timing users simultaneously. Today this is most commonly achieved by operating inhomogeneous fill patterns, but this is not preferable for rings that employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. For these rings, inhomogeneous fill patterns could severely reduce the effect of the harmonic cavities. It is therefore of interest to develop methods to serve high-flux and timing users simultaneously without requiring gaps in the fill pattern. One such method is pseudo-single-bunch (PSB), where one bunch in the bunch train is kicked onto another orbit by a fast stripline kicker. The light emitted from the kicked bunch can then be separated by an aperture in the beamline. Due to recent developments in fast kicker design, PSB operation in multibunch mode is within reach for rings that operate with a 100 MHz RF system, such as the MAX IV and Solaris storage rings. This paper describes machine requirements and resulting performance for such a mode at the MAX IV 1.5 GeV storage ring. A solution for serving all beamlines is discussed as well as the consequences of beamline design and operation in the soft X-ray energy range.

  12. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    Science.gov (United States)

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  13. Large permanent magnet quadrupoles for an electron storage ring

    International Nuclear Information System (INIS)

    Herb, S.W.

    1987-01-01

    We have built large high quality permanent magnet quadrupoles for use as interaction region quadrupoles in the Cornell Electron Storage Ring where they must operate in the 10 kG axial field of the CLEO experimental detector. We describe the construction and the magnetic measurement and tuning procedures used to achieve the required field quality and stability. (orig.)

  14. Interactive orbit control package for INDUS-2 storage ring

    International Nuclear Information System (INIS)

    Walia, A.A.S.; Ghodke, A.D.; Fatnani, Pravin; Bhujle, A.G.; Singh, Gurnam

    2003-01-01

    Maintaining the proper electron beam orbit is very important for all light sources. This package designed in Meatball provides for orbit control by just drag and drop. Simulation of Indus-2 storage ring in this package makes it useful for beam dynamic studies as well. Package functionality and architecture is described. (author)

  15. Interactive orbit control package for INDUS-2 storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Walia, A A.S.; Ghodke, A D; Fatnani, Pravin; Bhujle, A G; Singh, Gurnam [Centre for Advanced Technology, Indore (India)

    2003-07-01

    Maintaining the proper electron beam orbit is very important for all light sources. This package designed in Meatball provides for orbit control by just drag and drop. Simulation of Indus-2 storage ring in this package makes it useful for beam dynamic studies as well. Package functionality and architecture is described. (author)

  16. Undulator sources at a 8 GeV storage ring

    International Nuclear Information System (INIS)

    Harami, Taikan.

    1989-06-01

    The use of undulators plays an important role as a high brilliance sources of synchrotron photon at a facility having an electron (or positron) storage ring. This paper describes the characteristics, tunability from gap variation and brilliance of synchrotron photon from undulators at a 8 GeV storage ring. The numerical studies show the following results. (1) Undulators for a 8 GeV storage ring can cover the first harmonic photon energy range from about 0.3 to 30 keV and the third harmonic photon from 0.85 to 70 keV. (2) The brilliance of undulator can be expected to be the order of 10 21 photons/(sec mm 2 mrad 2 0.1% band width mA), without size and angular spread in the electron beam (diffraction limit). (3) The peak brilliance has a broad maximum as a function of β function of the lattice and is shown to be practically independent on the β function. The peak brilliance is calculated to be the order of 10 16 photons/(sec mm 2 mrad 2 0.1% band width mA) at the electron beam emittance of 5 x 10 -9 m·rad (undulator length 2 m). (4) The nuclei of 57 Fe, 119 Sn and 238 U are expected to be the candidates for the Moessbauer scattering experiment using synchrotron photon from a 8 GeV storage ring. (author)

  17. Computation of a quadrupole magnet for the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.; Kim, S.H.; Thompson, K.M.

    1990-01-01

    The storage ring of the Advanced Photon Source will include 400 quadrupole magnets for focusing the beam. A prototype quadrupole has been designed, constructed, and measured. This paper describes the two- and three-dimensional (2-D and 3-D) field computations performed for this design. 2 refs., 6 figs., 1 tab.

  18. Workshop on performance optimization of synchrotron radiation storage rings

    International Nuclear Information System (INIS)

    Decker, G.

    1995-01-01

    The purpose of this workshop was to provide a forum, with user participation, for accelerator physicists the synchrotron light source field to discuss current and planned state-of-the-art techniques storage ring performance. The scope of the workshop focused on two areas: lattice characterization and measurement, and fundamental limitations on low frequency beam stability

  19. New Storage Ring Light Sources on the Horizon

    CERN Document Server

    Podobedov, Boris

    2005-01-01

    The world's appetite for light sources keeps growing as new ones are under construction or being proposed for every continent but Antarctica. While some viable alternatives are emerging, the great majority of new light sources are based on mature electron storage ring technology. We review the design and performance of the new machines worldwide and speculate on the future directions.

  20. Proton storage ring (PSR) diagnostics and control system

    International Nuclear Information System (INIS)

    Clout, P.

    1983-01-01

    When any new accelerator or storage ring is built that advances the state of the art, the diagnostic system becomes extremely important in tuning the facility to full specification. This paper will discuss the various diagnostic devices planned or under construction for the PSR and their connection into the control system

  1. Project of the compact superconducting storage ring Siberia-SM

    Energy Technology Data Exchange (ETDEWEB)

    Anashin, V V; Arbuzov, V S; Blinov, G A; Veshcherevich, V G; Vobly, P D; Gorniker, E I; Zinevich, N I; Zinin, E I; Zubkov, N I; Kiselev, V A; Kollerov, E P; Kulipanov, G N; Matveev, Yu G; Medvedko, A S; Mezentsev, N A; Morgunov, L G; Petrov, V M; Petrov, S P; Repkov, V V; Roenko, V A; Skrinsky, A N; Sukhanov, S V; Tokarev, Yu I; Trakhtenberg, E M [AN SSSR, Novosibirsk. Inst. Yadernoj Fiziki

    1989-10-10

    In the last decade researches dealing with the creation of technology for X-ray lithography and for appropriate production equipment have been performed in many countries. The basic aim of these works is to provide a mass production of inexpensive devices with submicron structures (0.7-0.1 {mu}m). Bringing X-ray lithographic technology into commercial practice necessitates to design and build a dedicated SR source for the electronic industry. The use of superconducting bending magnets with 40-70 kG field strength enables the storage ring circumference to be reduced by a factor of 2-5 and the injection energy by a factor of 3-4 as compared to the conventional designs of storage rings. In the present paper we consider a storage ring which was designed for a maximum energy of 600 MeV, with 60 kG field strength in its bending magnets and 10 m circumference. The critical SR wavelength is 8.6 A. The electrons are injected into the storage ring at 50-60 MeV and the maximum stored current is assumed to be equal to 0.3 A. (orig.).

  2. New method of measuring electric dipole moments in storage rings

    NARCIS (Netherlands)

    Farley, FJM; Jungmann, K; Miller, JP; Morse, WM; Orlov, YF; Roberts, BL; Semertzidis, YK; Silenko, A; Stephenson, EJ

    2004-01-01

    A new highly sensitive method of looking for electric dipole moments of charged particles in storage rings is described. The major systematic errors inherent in the method are addressed and ways to minimize them are suggested. It seems possible to measure the muon EDM to levels that test speculative

  3. Rf systems for high-energy e/sup /minus//e/sup /plus// storage rings

    International Nuclear Information System (INIS)

    Allen, M.A.; Wilson, P.B.

    1974-01-01

    Electron or positron beams in a storage ring radiate electromagnetic energy at a rate proportional to the fourth power of the recirculating energy, and this loss must be supplied by an rf system. Furthermore, a substantial overvoltage is required to contain the stored beam against losses due to quantum fluctuations in the emitted photons. As an example, an improvement program, SPEAR II, is now underway to increase the energy of the SPEAR ring to 4.5 GeV. At this energy, the radiation loss per turn is 2.8 MeV, and to maintain a reasonable lifetime against quantum fluctuations, a peak voltage of 7.5 MeV is required. Thus, the SPEAR II rf system is similar to a continuously-operating 7.5 MeV linear accelerator. Furthermore, the available straight-section space in the ring which is suitable for containing the accelerating structures is limited, and this means that a cavity design must be sought with a high shunt impedance per losses will be held to a reasonable level. In the case of SPEAR, about 9 meters of straight section space is available for accelerating cavities, requiring a gradient of close to 1 MV per meter. The PEP 15-GeV ring would require peak accelerating voltages of around 50 MV, with about 60 meters of straight-section space available for accelerating structures. 8 refs

  4. HISTRAP proposal: heavy-ion storage ring for atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D K; Alton, G D; Datz, S; Dittner, P F; Dowling, D T; Haynes, D L; Hudson, E D; Johnson, J W; Lee, I Y; Lord, R S

    1987-04-01

    HISTRAP, Heavy-Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charge very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 T m and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  5. Dual-etalon, cavity-ring-down, frequency comb spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Kevin E.; Chandler, David W.

    2010-10-01

    The 'dual etalon frequency comb spectrometer' is a novel low cost spectometer with limited moving parts. A broad band light source (pulsed laser, LED, lamp ...) is split into two beam paths. One travels through an etalon and a sample gas, while the second arm is just an etalon cavity, and the two beams are recombined onto a single detector. If the free spectral ranges (FSR) of the two cavities are not identical, the intensity pattern at the detector with consist of a series of heterodyne frequencies. Each mode out of the sample arm etalon with have a unique frequency in RF (radio-frequency) range, where modern electronics can easily record the signals. By monitoring these RF beat frequencies we can then determine when an optical frequencies is absorbed. The resolution is set by the FSR of the cavity, typically 10 MHz, with a bandwidth up to 100s of cm{sup -1}. In this report, the new spectrometer is described in detail and demonstration experiments on Iodine absorption are carried out. Further we discuss powerful potential next generation steps to developing this into a point sensor for monitoring combustion by-products, environmental pollutants, and warfare agents.

  6. Storage ring free electron laser, pulse propagation effects and microwave type instabilities

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.

    2000-01-01

    It has been developed a dynamical model accounting for the storage Ring Free Electron Laser evolution including pulse propagation effects and e-beam instabilities of microwave type. It has been analyzed the general conditions under which the on set of the laser may switch off the instability and focus everybody attention on the interplay between cavity mismatch, laser pulsed behavior and e-beam instability dynamics. Particular attention is also devoted to the laser operation in near threshold conditions, namely at an intracavity level just enough to counteract the instability, that show in this region new and interesting effects arises [it

  7. The amplitude and phase control of the ALS Storage Ring RF System

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Baptiste, K.

    1995-03-01

    A 500MHz, 300KW Klystron power amplifier provides RF power to the ALS Storage Ring. In order to accommodate the amplitude and phase changes during beam stacking and decay, which demand continuously varying power levels from the Klystron, four loops are used to keep the system operating properly, with two of those loops dedicated to keeping the two cavity tuners on tune. Description of the control loops and their performance data will be given. Using the modulation anode of the Klystron in the amplitude loop will be discussed

  8. Lifetime and performance of NSLS storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Halama, H.J.

    1988-01-01

    The performance of synchrotron light sources is measured primarily in terms of beam lifetime, beam size, and the recovery of normal operation after a section of the machine has been brought to atmospheric pressure. The beam lifetime and the beam size depend on the following phenomena: Beam gas interaction which can be either elastic or inelastic scattering on residual gas nuclei or electrons. With the exception of low energy machines, this phenomenon represents the main limiting factor on lifetime; Beam interaction with trapped ions causing both beam loss and defocussing. Residual gas molecules are ionized both by circulating beam and synchrotron radiation. The cross sections for both processes are comparable. The effects of this phenomenon are most troublesome at low energies. The problem can be eliminated by switching to positron beams. Installing clearing electrodes has also been successful; Intrabeam scattering (Touschek effect) is caused by Coulomb scattering among electrons of the same bunch as they execute betatron oscillations. The Touschek effect is strongly dependent on energy and in general is a problem only in low energy machines; and Various instabilities causing both slow and fast beam decay which have been observed in both NSLS rings. A special case due to dust particles that fall into the electron beam is commonly observed in early stages of conditioning. Coherent collective instabilities will not be discussed in this paper. 19 refs., 4 figs., 1 tab.

  9. Lifetime and performance of NSLS storage rings

    International Nuclear Information System (INIS)

    Halama, H.J.

    1988-01-01

    The performance of synchrotron light sources is measured primarily in terms of beam lifetime, beam size, and the recovery of normal operation after a section of the machine has been brought to atmospheric pressure. The beam lifetime and the beam size depend on the following phenomena: Beam gas interaction which can be either elastic or inelastic scattering on residual gas nuclei or electrons. With the exception of low energy machines, this phenomenon represents the main limiting factor on lifetime; Beam interaction with trapped ions causing both beam loss and defocussing. Residual gas molecules are ionized both by circulating beam and synchrotron radiation. The cross sections for both processes are comparable. The effects of this phenomenon are most troublesome at low energies. The problem can be eliminated by switching to positron beams. Installing clearing electrodes has also been successful; Intrabeam scattering (Touschek effect) is caused by Coulomb scattering among electrons of the same bunch as they execute betatron oscillations. The Touschek effect is strongly dependent on energy and in general is a problem only in low energy machines; and Various instabilities causing both slow and fast beam decay which have been observed in both NSLS rings. A special case due to dust particles that fall into the electron beam is commonly observed in early stages of conditioning. Coherent collective instabilities will not be discussed in this paper. 19 refs., 4 figs., 1 tab

  10. Complex ABCD transformations for optical ring cavities with losses and gain

    International Nuclear Information System (INIS)

    Kudashov, V N; Radin, A M; Plachenov, A B

    1999-01-01

    Complex ABCD field transformations are investigated for inhomogeneous optical ring cavities with losses and gain. It is shown that the sets of eigenfunctions, corresponding to counterpropagating waves, are really biorthogonal: the functions in each of these sets are really orthogonal relative to one another, and have a complex weighting factor independent of the mode number. Bidirectional and unidirectional stability conditions are formulated for such cavities. These conditions are qualitatively different from those for loss-free cavities. A simple algorithm is proposed for the evaluation of the ABCD matrix for a medium with an arbitrary longitudinal inhomogeneity along the beam. (laser applications and other topics in quantum electronics)

  11. Permanent cavity seal ring for a nuclear reactor containment arrangement

    International Nuclear Information System (INIS)

    Swidwa, K.J.; Salton, R.B.; Marshall, J.R.

    1990-01-01

    This patent describes a nuclear reactor containment arrangement. It comprises: a reactor pressure vessel which thermally expands and contracts during cyclic operation of the reactor, the vessel having a peripheral wall and a horizontally outwardly extending flange thereon; a containment wall having a shelf, the wall spaced from and surrounding the peripheral wall of the reactor pressure vessel defining an annular expansion gap therebetween, and an annular ring seal extending across the annular expansion gap to provide a water-tight seal therebetween

  12. Beam vacuum system of Brookhaven's muon storage ring

    International Nuclear Information System (INIS)

    Hseuth, H.C.; Snydstrup, L.; Mapes, M.

    1995-01-01

    A storage ring with a circumference of 45 m is being built at Brookhaven to measure the g-2 value of the muons to an accuracy of 0.35 ppm.. The beam vacuum system of the storage ring will operate at 10 -7 Torr and has to be completely non-magnetic. It consists of twelve sector chambers. The chambers are constructed of aluminum and are approximately 3.5 m in length with a rectangular cross-section of 16.5 cm high by 45 cm at the widest point. The design features, fabrication techniques and cleaning methods for these chambers are described. The beam vacuum system will be pumped by forty eight non-magnetic distributed ion pumps with a total pumping speed of over 2000 ell/sec. Monte Carlo simulations of the pressure distribution in the muon storage region are presented

  13. Nonlinear estimation of ring-down time for a Fabry-Perot optical cavity.

    Science.gov (United States)

    Kallapur, Abhijit G; Boyson, Toby K; Petersen, Ian R; Harb, Charles C

    2011-03-28

    This paper discusses the application of a discrete-time extended Kalman filter (EKF) to the problem of estimating the decay time constant for a Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The data for the estimation process is obtained from a CRDS experimental setup in terms of the light intensity at the output of the cavity. The cavity is held in lock with the input laser frequency by controlling the distance between the mirrors within the cavity by means of a proportional-integral (PI) controller. The cavity is purged with nitrogen and placed under vacuum before chopping the incident light at 25 KHz and recording the light intensity at its output. In spite of beginning the EKF estimation process with uncertainties in the initial value for the decay time constant, its estimates converge well within a small neighborhood of the expected value for the decay time constant of the cavity within a few ring-down cycles. Also, the EKF estimation results for the decay time constant are compared to those obtained using the Levenberg-Marquardt estimation scheme.

  14. Permanent seal ring for a nuclear reactor cavity

    International Nuclear Information System (INIS)

    Hankinson, M.F.; Marshall, J.R.

    1988-01-01

    A nuclear reactor containment arrangement is described including: a. a reactor vessel which thermally expands and contracts during cyclic operation of the reactor and which has a peripheral wall; b. a containment wall spaced apart from and surrounding the peripheral wall of the reactor vessel and defining an annular thermal expansion gap therebetween for accommodating thermal expansion; and c. an annular ring seal which sealingly engages and is affixed to and extends between the peripheral wall of the reactor vessel and the containment wall

  15. Cavity ring-down technique for measurement of reflectivity of high ...

    Indian Academy of Sciences (India)

    Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085,. India. *Corresponding author. E-mail: gsridhar@barc.gov.in. Abstract. A simple, accurate and reliable method for measuring the reflectivity of laser- ... Keywords. Cavity ring-down method; reflectivity measurement; optical resonator.

  16. Cavity ring-down technique for measurement of reflectivity of high

    Indian Academy of Sciences (India)

    grade mirrors ( > 99.5 %) based on cavity ring-down (CRD) technique has been success-fully demonstrated in our laboratory using a pulsed Nd:YAG laser. A fast photomultiplier tube with an oscilloscope was used to detect and analyse the CRD ...

  17. Chaos in coherent two-photon processes in a ring cavity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S; Agarwal, G S

    1983-08-01

    The output of a ring cavity containing a resonant medium undergoing two photon transitions is shown to become chaotic, after following a series of bifurcations involving 2 to the nth cycles, as the strength of the driving field is increased. The chaotic regime is followed by a sequence of period doubling bifurcations in reverse order. 14 references.

  18. Self-injection locking of the DFB laser through an external ring fiber cavity: Polarization behavior

    Directory of Open Access Journals (Sweden)

    J.L. Bueno Escobedo

    Full Text Available We study stability of self-injection locking realized with DFB laser coupled with an external fiber optic ring cavity. Polarization behavior of the radiation circulating in the feedback loop is reported. Two regimes of mode hopping have been observed; one of them is accompanied by polarization bistability involving two orthogonal polarization states. Keywords: Self-injection locking, Polarization, Optical fiber

  19. Very low intensity storage-ring profile monitor

    International Nuclear Information System (INIS)

    Hardek, T.; Kells, W.; Lai, H.

    1981-01-01

    The Fermilab Colliding Beams Group has now accomplished several cooling experiments (electron and stochastic methods) on proton beams in the ''electron cooling'' synchrotron ring built for this purpose. A key to analyzing the performance of any test cooling system is a complete set of beam diagnostics to measure the beam emittances in all three planes. For longitudinal emittance the authors use Schottky scans (although very low intensities make this difficult, necessitating a departure from the conventional method by bunching the beams). A description is given of the MCP telescope and readout which evolved independently as a complete monitor system using residual gas in lieu of Mg vapor. To date all transverse measurements of coasting beam profiles have been obtained in this mode. 2 refs

  20. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.

    2013-01-01

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments

  1. Injection into the LNLS UVX electron storage ring

    International Nuclear Information System (INIS)

    Lin, Liu

    1991-01-01

    To inject the 1.15 GeV electron storage ring - UVX - a beam from a linear accelerator - MAIRA - is used. The electrons are injected and accumulated at low energy (100MeV) until the nominal current of 100 mA is reached and than are ramped to the nominal energy. A study on a conventional injection scheme has been carried out. Two injection modes are investigated: injection with the phase ellipse parameters matched and mismatched to the ring's acceptance. The mismatched mode is optimized to fit the maximum of the injected beam into the acceptance

  2. Electron--positron storage ring PETRA: plans and status

    International Nuclear Information System (INIS)

    Voss, G.A.

    1977-01-01

    Construction of the Electron-Positron Storage Ring PETRA was authorized October 20, 1975. At present most of the civil engineering work is completed and ring installation work is under way. All major components are on order and series production of bending magnets, quadrupoles, vacuum chambers and rf-resonators has started. Start-up of the machine is planned with a fourfold symmetry configuration with four active beam-beam interaction points. Five experimental facilities have been recommended for the first round of experiments scheduled to begin mid 79

  3. Atomic and molecular physics with ion storage rings

    International Nuclear Information System (INIS)

    Larsson, M.

    1995-01-01

    Advances in ion-source, accelerator and beam-cooling technology have made it possible to produce high-quality beams of atomic ions in arbitrary charged states as well as molecular and cluster ions are internally cold. Ion beams of low emittance and narrow momentum spread are obtained in a new generation of ion storage-cooler rings dedicated to atomic and molecular physics. The long storage times (∼ 5 s ≤ τ ≤ days) allow the study of very slow processes occurring in charged (positive and negative) atoms, molecules and clusters. Interactions of ions with electrons and/or photons can be studied by merging the stored ion beam with electron and laser beams. The physics of storage rings spans particles having a charge-to-mass ratio ranging from 60 + and C 70 + ) to 0.4 - 1.0 (H + , D + , He 2+ , ..., U 92+ ) and collision processes ranging from <1 meV to ∼ 70 GeV. It incorporates, in addition to atomic and molecular physics, tests of fundamental physics theories and atomic physics bordering on nuclear and chemical physics. This exciting development concerning ion storage rings has taken place within the last five to six years. (author)

  4. Experience with the New Digital RF Control System at the CESR Storage Ring

    CERN Document Server

    Liepe, Matthias; Dobbins, John; Kaplan, Roger; Strohman, Charles R; Stuhl, Benjamin K

    2005-01-01

    A new digital control system has been developed, providing great flexibility, high computational power and low latency for a wide range of control and data acquisition applications. This system is now installed in the CESR storage ring and stabilizes the vector sum field of two of the superconducting CESR 500 MHz cavities and the output power from the driving klystron. The installed control system includes in-house developed digital and RF hardware, very fast feedback and feedforward control, a state machine for automatic start-up and trip recovery, cw and pulsed mode operation, fast quench detection, and cavity frequency control. Several months of continuous operation have proven high reliability of the system. The achieved field stability surpasses requirements.

  5. Compensation of longitudinal coupled-bunch instability in the advanced photon source storage ring

    International Nuclear Information System (INIS)

    Harkay, K.C.; Nassiri, A.; Song, J.J.; Kang, Y.W.; Kustom, R.L.

    1997-01-01

    A longitudinal couple-bunch (CB) instability was encountered in the 7-GeV storage ring. This instability was found to depend on the bunch fill pattern as well as on the beam intensity. The beam spectrum exhibited a coupled-bunch signature, which could be reproduced by an analytical model. The oscillations were also observed on a horizontal photon monitor. The beam fluctuations exhibited two periodicities, which were found to be correlated with the rf cavity temperatures. This correlation is consistent with the measured temperature dependence of the higher-order mode (HOM) frequencies. The HOM impedance drives the beam when brought into resonance with the CB mode by the temperature variation. Increasing the inlet cavity water temperature suppressed the instability. The experimental results are compared to an analytical model which characterizes the fill-pattern dependence. Studies to identify the offending HOMs are also presented

  6. Spin-dependent heat and thermoelectric currents in a Rashba ring coupled to a photon cavity

    Science.gov (United States)

    Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2018-01-01

    Spin-dependent heat and thermoelectric currents in a quantum ring with Rashba spin-orbit interaction placed in a photon cavity are theoretically calculated. The quantum ring is coupled to two external leads with different temperatures. In a resonant regime, with the ring structure in resonance with the photon field, the heat and the thermoelectric currents can be controlled by the Rashba spin-orbit interaction. The heat current is suppressed in the presence of the photon field due to contribution of the two-electron and photon replica states to the transport while the thermoelectric current is not sensitive to changes in parameters of the photon field. Our study opens a possibility to use the proposed interferometric device as a tunable heat current generator in the cavity photon field.

  7. A potpourri of impedance measurements at the advanced photon source storage ring

    International Nuclear Information System (INIS)

    Sereno, N.S.; Chae, Y.C.; Harkay, K.C.; Lumpkin, A.H.; Milton, S.V.; Yang, B.X.

    1997-01-01

    Machine coupling impedances were determined in the APS storage ring from measurements of the bunch length, synchronous phase, and synchrotron and betatron tunes vs single-bunch current. The transverse measurements were performed for various numbers of small gap insertion device (ID) chambers installed in the ring. The transverse impedance is determined from measurements of the transverse tunes and bunch length as a function of single-bunch current. The shift in the synchrotron tune was measured as a function of bunch current from which the total cavity impedance was extracted. The loss factor was determined by measuring the relative synchronous phase as a function of bunch current. The longitudinal resistive impedance is calculated using the loss factor dependence on the bunch length. From these results, the authors can estimate what the impedance would be for a full set of ID chambers

  8. A model of ATL ground motion for storage rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Walker, Nicholas J.

    2003-01-01

    Low emittance electron storage rings, such as those used in third generation light sources or linear collider damping rings, rely for their performance on highly stable alignment of the lattice components. Even if all vibration and environmental noise sources could be suppressed, diffusive ground motion will lead to orbit drift and emittance growth. Understanding such motion is important for predicting the performance of a planned accelerator and designing a correction system. A description (known as the ATL model) of ground motion over relatively long time scales has been developed and has become the standard for studies of the long straight beamlines in linear colliders. Here, we show how the model may be developed to include beamlines of any geometry. We apply the model to the NLC and TESLA damping rings, to compare their relative stability under different conditions

  9. CONSIDERATIONS ABOUT PROTON - NEUTRON INTERACTIONS IN THE INTERSECTING STORAGE RINGS

    CERN Document Server

    Bartl, W; Steuer, M; Hubner, K

    1969-01-01

    The pos'sibility of proton-neutron scattering experiments at the CERN Intersecting Storage Rings is studied. The use of proton-deuteron collisions to measure the reaction p+d •*• p*pv+n,witheitherp.orn,asspectator nucléon is discussed. An analysing magnet around the deuteron beamline allows to detect both nucléons of the deuteron up to the zero-momentum-transfer" région. Accélération and storage of deuteron beams is considered.

  10. Feasibility of beam crystallization in a cooler storage ring

    Directory of Open Access Journals (Sweden)

    Yosuke Yuri

    2005-11-01

    Full Text Available It has been known theoretically that a charged-particle beam circulating in a storage ring exhibits an “ordered” configuration at the space-charge limit. Such an ultimate state of matter is called a crystalline beam whose emittance is ideally equal to zero except for quantum noise. This paper discusses how close one can come to various ordered states by employing currently available accelerator technologies. The dynamic nature of ultracold beams and conditions required for crystallization are briefly reviewed. Molecular dynamics simulations are performed to study the feasibility of this unique phenomenon, considering practical situations in general cooling experiments. It is pointed out that several essential obstacles must be overcome to reach a three-dimensional crystalline state in a storage ring. Doppler laser cooling of ion beams is also numerically simulated to explore the possibility of beam crystallization in an existing machine.

  11. The Storage Ring Magnets of the Australian Synchrotron

    International Nuclear Information System (INIS)

    Barg, B.; Jackson, A.; LeBlanc, G.; Melbourne U.; Huttel, E.; Karlsruhe, Forschungszentrum; Tanabe, J.; SLAC

    2005-01-01

    A 3 GeV Synchrotron Radiation Source is being built in Melbourne, Australia. Commissioning is foreseen in 2006. The Storage ring has a circumference of 216 m and has a 14 fold DBA structure. For the storage ring the following magnets will be installed: 28 dipoles with a field of 1.3 T, and a gradient of 3.35 T/m; 56 quadrupoles with a gradient of 18 T/m and 28 with a gradient of 10 T/m; 56 sextupoles with a strength of B'' = 350 T/m and 42 with 150 T/m. The sextupoles are equipped with additional coils for horizontal and vertical steering and for a skew quadrupole. The pole profile was determined by scaling the pole profile of the SPEAR magnets [1] to the aperture of the ASP magnets. The magnets are to be supplied by Buckley Systems Ltd in Auckland, New Zealand

  12. The g-2 storage ring superconducting magnet system

    International Nuclear Information System (INIS)

    Green, M.A.

    1993-09-01

    The g-2 μ lepton (muon) storage ring is a single dipole magnet that is 44 meters in circumference. The storage ring dipole field is created by three large superconducting solenoid coils. A single outer solenoid, 15.1 meters in diameter, carries 254 kA. Two inner solenoids, 13.4 meters in diameter, carry 127 kA each in opposition to the current carried by the outer solenoid. A room temperature C shaped iron yoke returns the magnetic flux and shapes the magnetic field in a 180 mm gap where the stored muon beam circulates. The gap induction will be 1.47 T. This report describes the three large superconducting solenoids, the cryogenic system needed to keep them cold, the solenoid power supply and the magnet quench protection system

  13. Dissociative recombination and excitation in ion storage rings

    International Nuclear Information System (INIS)

    Larsson, Mats

    2000-01-01

    The application of ion storage rings to the study of electron-molecular ion interaction has led to an experimental breakthrough. The development since the first experiments with molecular ions in storage rings about seven years ago, which in themselves represented a big leap forward, has been striking, and was impossible to envision at the outset. The development has been driven by advances in accelerator physics, detector technology, challenging applications in astrophysics and atmospheric physics, and by a close interplay with theory. Despite the remarkable progress, many important questions remain unanswered. For example, even for someone with a good knowledge of molecular physics it may come as a surprise that it is far from understood how the simplest polyatomic molecule H 3 + recombines with electrons, and it remains an experimental controversy at what rate it recombines

  14. Survey of Digital Feedback Systems in High Current Storage Rings

    International Nuclear Information System (INIS)

    Teytelman, Dmitry

    2003-01-01

    In the last decade demand for brightness in synchrotron light sources and luminosity in circular colliders led to construction of multiple high current storage rings. Many of these new machines require feedback systems to achieve design stored beam currents. In the same time frame the rapid advances in the technology of digital signal processing allowed the implementation of these complex feedback systems. In this paper I concentrate on three applications of feedback to storage rings: orbit control in light sources, coupled-bunch instability control, and low-level RF control. Each of these applications is challenging in areas of processing bandwidth, algorithm complexity, and control of time-varying beam and system dynamics. I will review existing implementations as well as comment on promising future directions

  15. Global coupling and decoupling of the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.C.; Liu, J.; Teng, L.C.

    1993-07-01

    This paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the 7-GeV Advanced Photon Source (APS) storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Twenty skew quadrupoles are arranged in the 40 sectors of the storage ring and powered in such a way so as to generate both quadrature components of the required 21st harmonic. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadruples. It is shown that even with the rather large rms roll error of 2 mrad, the coupling effects can be compensated for with 20 skew quadrupoles each having maximum strength one order of magnitude lower than the typical normal quadrupole strength.

  16. Vacuum system for the NIJI-III compact storage ring

    International Nuclear Information System (INIS)

    Miura, F.; Tsutsui, Y.; Takada, H.

    1990-01-01

    The NIJI-III is a compact storage ring measuring about 15 m in circumference with four superconducting bending magnets. It is under development as a synchrotron light source for X-ray lithography with a stored beam current of 200 mA at a stored beam current of 200 mA at a stored energy level of 615 MeV. The vacuum system is designed to attain a pressure of less than 1 x 10 -9 Torr at beam storage. The compact ring design makes it difficult to install a large number of pumps able to satisfy the required pumping speed. For the purpose of realizing a high pumping speed, a cryopump as a result of cooling the superconducting magnet duct wall to the liquid helium (LHe) temperature is adopted, as a result the total pumping speed to 2.8 x 10 4 l/s is obtained. (author)

  17. On the ''circular vacuum noise'' in electron storage rings

    International Nuclear Information System (INIS)

    Rosu, H.

    1992-02-01

    We clarify in some essential points the proposal of Bell and Leinaas to measure the circular Unruh effect in storage rings. In particular the term 'circular Unruh effect' is inappropriate and should be replaced by the better 'circular vacuum noise'. This concept has been used by Takagi in his PTP Supplement of 1986 and corresponds best to the BL discussion. The BL resonance behavior does not fit to the SPEAR first order betatron resonance at 3.605 GeV, but of course, the real experimental situation is much more complicated, corresponding, as a matter of fact, to the rather general term 'synchrotron noise'. The detailed aspects of the synchrotron noise are, as yet, not very well understood. Besides, the much more practical accelerator jargon is to be preferred. We also include a section with comments on radiometry at storage rings. (author). 27 refs

  18. FEL radiation power available in electron storage rings

    International Nuclear Information System (INIS)

    Miyahara, Yoshikazu

    1994-01-01

    FEL radiation power available in electron storage rings was studied in the small signal regime in considering the increase of the energy spread of the electron beam caused by the FEL interaction and the decrease of the FEL gain with the increase of the energy spread in addition to the radiation damping and the quantum excitation. All these effects were considered separately, and combined with FEL power equations. The radiation power available was expressed explicitly with the parameters of the storage ring, the wiggler and the mirrors. The transient process of FEL lasing is simulated with the power equations. A rough estimation is made of the radiation power available by the FEL at different beam energies, and optimization of FEL parameters for a higher radiation power is discussed. ((orig.))

  19. Controlling the optical field chaos in storage ring free-electron lasers

    International Nuclear Information System (INIS)

    Wang Wenjie

    1995-01-01

    The controlling of optical field chaos in a storage ring free-electron laser oscillator is discussed by using a phenomenal model. A novel method (which is called the 'beating method') of controlling chaos in a nonlinear dynamical system described by non-autonomous ordinary differential equations was developed. The result of theoretical analysis and numerical simulation shows that the optical field chaos in a storage ring free-electron laser oscillator can be suppressed and a periodic laser intensity can be obtained when a weak periodic control field is added to the optical cavity. The validity of this method of eliminating chaos is confirmed by the fact that the leading Lyapunov characteristic exponent of the system changes from a positive real number to a negative one. A further research is carried out, and it is found that only when the period of the control field equals to an integral multiple of that of the gain modulation in the optical cavity can the optical field chaos be suppressed. This means that the 'beating method' of controlling chaos is a kind of resonant method. A way to determine the 'best beating position' in the phase trajectory has also been obtained

  20. Mid-Ir Cavity Ring-Down Spectrometer for Biological Trace Nitric Oxide Detection

    Science.gov (United States)

    Kan, Vincent; Ragab, Ahemd; Stsiapura, Vitali; Lehmann, Kevin K.; Gaston, Benjamin M.

    2011-06-01

    S-nitrosothiols have received much attention in biochemistry and medicine as donors of nitrosonium ion (NO^+) and nitric oxide (NO) - physiologically active molecules involved in vasodilation and signal transduction. Determination of S-nitrosothiols content in cells and tissues is of great importance for fundamental research and medical applications. We will report on our ongoing development of a instrument to measure trace levels of nitric oxide gas (NO), released from S-nitrosothiols after exposure to UV light (340 nm) or reaction with L-Cysteine+CuCl mixture. The instrument uses the method of cavity ring-down spectroscopy, probing rotationally resolved lines in the vibrational fundamental transition near 5.2 μm. The laser source is a continuous-wave, room temperature external cavity quantum cascade laser. An acousto-optic modulator is used to abruptly turn off the optical power incident on the cavity when the laser and cavity pass through resonance.

  1. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output...... frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical conversion...

  2. Magnet power supplies for the DORIS intersecting storage ring

    International Nuclear Information System (INIS)

    Narciss, H.; Hrabal, D.; Schlueter, W.

    1975-01-01

    Extremely precise, stable magnetic fields are required for guiding, deflecting and focussing electron and positron beams in the DORIS intersecting storage ring of the German Electron Synchrotron DESY. For the magnets producing these fields, Siemens has supplied a total of 29 precision-controlled power supplies in 17 different versions ranging from 1.5 kW to 4.9 kW. (orig.) [de

  3. Electrostatic storage rings for atomic and molecular physics

    International Nuclear Information System (INIS)

    Schmidt, H T

    2015-01-01

    A significant number of electrostatic ion-storage rings have been built since the late 1990s or are currently in their construction or commisioning phases. In this short contribution, we attempt to supply an overview of these different facilities, while we also mention a selection of the electrostatic ion-beam traps that has been developed through the same time period and by some of the same research groups. (paper)

  4. Storage ring free electron lasers and saw-tooth instability

    CERN Document Server

    Dattoli, Giuseppe; Migliorati, M; Palumbo, L; Renieri, A

    1999-01-01

    We show that Free Electron Lasers (FEL) operating with storage rings may counteract beam instabilities of the Saw Tooth (STI) type. We use a model based on a set of equations that couple those describing the FEL evolution to those accounting for the STI dynamics. The analysis provides a clear picture of the FEL-STI mutual feedback and clarifies the mechanisms of the instability inhibition. The reliability of the results is supported by a comparison with fully numerical codes.

  5. The physics design of the Australian synchrotron storage ring

    International Nuclear Information System (INIS)

    Boldeman, J.W.; Einfeld, D.

    2004-01-01

    This paper describes the physics design of the Australian Synchrotron Storage Ring--Boomerang, which is currently under construction on a site adjacent to Monash University in Melbourne, Victoria. It also includes brief historical notes on the development of the proposal, some background material on the Australian synchrotron research community and preliminary information on possible research programs on the new facility. The facility itself is now in the early stages of construction under the leadership of Seaborne and Jackson

  6. Bunch lengthening with bifurcation in electron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-San; Hirata, Kohji [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    The mapping which shows equilibrium particle distribution in synchrotron phase space for electron storage rings is discussed with respect to some localized constant wake function based on the Gaussian approximation. This mapping shows multi-periodic states as well as double bifurcation in dynamical states of the equilibrium bunch length. When moving around parameter space, the system shows a transition/bifurcation which is not always reversible. These results derived by mapping are confirmed by multiparticle tracking. (author)

  7. An induction accelerator for the Heidelberg Test Storage Ring TSR

    International Nuclear Information System (INIS)

    Ellert, C.; Habs, D.; Music, M.; Schwalm, D.; Wolf, A.; Jaeschke, E.; Kambara, T.; Sigray, P.

    1992-01-01

    An induction accelerator has been installed in the heavy ion test storage ring TSR in Heidelberg. It allows for constant acceleration or deceleration of stored coasting ion beams without affecting their velocity profile and is well suited for ion beam manipulation in cooling experiments and for measurements of velocity dependent cooling forces. The design and operation of the device and first applications to laser cooling and to measurements of laser and electron cooling forces are described. (orig.)

  8. PRELIMINARY IMPEDANCE BUDGET FOR NSLS-II STORAGE RING.

    Energy Technology Data Exchange (ETDEWEB)

    BLEDNYKH,A.; KRINSKY, S.

    2007-06-25

    The wakefield and impedance produced by the components of the NSLS-II storage ring have been computed for an electron bunch length of 3mm rms. The results are summarized in a table giving for each component, the loss factor ({kappa}{sub {parallel}}), the imaginary part of the longitudinal impedance at low frequency divided by the revolution harmonic (ImZ{sub {parallel}}/n), and the transverse kick factors ({kappa}{sub x}, {kappa}{sub y}).

  9. Laser-Cooled Ions and Atoms in a Storage Ring

    International Nuclear Information System (INIS)

    Kleinert, J.; Hannemann, S.; Eike, B.; Eisenbarth, U.; Grieser, M.; Grimm, R.; Gwinner, G.; Karpuk, S.; Saathoff, G.; Schramm, U.; Schwalm, D.; Weidemueller, M.

    2003-01-01

    We review recent experiments at the Heidelberg Test Storage Ring which apply advanced laser cooling techniques to stored ion beams. Very high phase-space densities are achieved by three-dimensional laser cooling of a coasting 9 Be + beam at 7.3 MeV. Laser-cooled, trapped Cs atoms are used as an ultracold precision target for the study of ion-atom interactions with a 74 MeV beam of 12 C 6+ ions.

  10. An electrostatic storage ring for low kinetic energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Reddish, T J; Tessier, D R; Sullivan, M R; Thorn, P A [Department of Physics, University of Windsor, Windsor, N9B 3P4 (Canada); Hammond, P; Alderman, A J [School of Physics, CAMSP, University of Western Australia, Perth WA 6009 (Australia); Read, F H [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2009-11-01

    The criteria are presented for stable multiple orbits of charged particles in a race-track shaped storage ring and applied to an electrostatic system consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses. The results of charged particle simulations and the formal matrix theory, including aberrations in the energy-dispersive electrostatic 'prisms', are in good agreement with the observed experimental operating conditions for this Electron Recycling Spectrometer (ERS).

  11. Beam-beam force and storage ring parameters

    International Nuclear Information System (INIS)

    Herrera, J.C.

    1979-01-01

    The fundamental aspects of the beam--beam force as it occurs in Intersecting Storage Rings are reported. The way in which the effect of the beam--particle electromagnetic force (weak--strong interaction) is different in the case of unbunched proton beams which cross each other at an angle (as in the ISR and in ISABELLE) is shown, as compared to the case of electron--positron beams where bunches collide head-on

  12. Investigation of longitudinal dynamic in laser electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, I.; Zelinsky, A. E-mail: zelinsky@kipt.kharkov.ua; Telegin, Yu

    2001-09-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  13. Investigation of longitudinal dynamic in laser electron storage ring

    CERN Document Server

    Karnaukhov, I; Telegin, Yu P

    2001-01-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  14. Multiple Coulomb ordered strings of ions in a storage ring

    International Nuclear Information System (INIS)

    Hasse, Rainer W.

    2002-01-01

    We explain that the anomalous frequency shifts of very close masses measured in the high precision mass measurement experiments in the ESR storage ring result from the locking of Coulomb interacting strings of ions. Here two concentric strings which run horizontally close to each other for many revolutions are captured into a single string if their thermal clouds overlap. They give up their identity and lock into an average frequency

  15. Physics and technology of superthin internal targets in storage rings

    International Nuclear Information System (INIS)

    Popov, S.G.

    1989-01-01

    The new generation of accelerators for coincidence electronuclear investigations is discussed. The luminosity and beam parameters are calculated for an electron storage ring with an internal target operating in the superthin regime. The advantages and disadvantages in comparison with conventional operation using an external beam and target are described. The intermediate results for 2 GeV electron scattering on polarized internal deuterium target are given (joint Novosibirsk-Argonne experiment). 32 refs.; 5 figs

  16. Fundamentals of Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Martin, M.C.; Venturini, M.

    2004-01-01

    We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission

  17. Simulation investigation of storage ring optical klystron spontaneous emission

    International Nuclear Information System (INIS)

    Xu Hongliang; Liu Jinying; He Duohui; Diao Caozheng; Jia Qika; Sun Baogen

    1998-01-01

    The spontaneous emission of TOK in Hefei storage ring was simulated with Monte Carlo method. Section one described the structure of the permanent magnet TOK and the magnet field of TOK. Section two simulated results, and simulated results illustrated how the energy spread and emittance of electron beam impose on the spectrum of spontaneous emission. And with help of simulated results, the causes of small modulation factor which was measured by experiment was discussed

  18. Internal target effects in ion storage rings with beam cooling

    International Nuclear Information System (INIS)

    Gostishchev, Vitaly

    2008-06-01

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  19. Internal target effects in ion storage rings with beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gostishchev, Vitaly

    2008-06-15

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  20. Confinement and stability of crystalline beams in storage rings

    International Nuclear Information System (INIS)

    Haffmans, A.F.

    1995-01-01

    We present a fully analytical approach to the study of the confinement and stability of open-quote open-quote Crystalline Beams close-quote close-quote in storage rings, in terms of such fundamental accelerator concepts as tune shift and stopband. We consider a open-quote open-quote Crystalline Beam close-quote close-quote consisting of substrings, arranged symmetrically around the reference trajectory, and we examine the motion of a slightly perturbed test particle on one of them. Our approach quite naturally leads to the conclusion, that (a) storage rings need to be operated below the transition energy, and (b) the open-quote open-quote Crystalline Beam close-quote close-quote has the same periodicity as the storage ring. Each open-quote open-quote Crystalline Beam close-quote close-quote has an upper and lower limit of the spacing between the ions. The upper limit is determined by condition (b), and the lower limit is set by the stability of the test particle motion around the equilibrium. copyright 1995 American Institute of Physics

  1. Electron density enhancement in a quasi isochronous storage ring

    International Nuclear Information System (INIS)

    Pellegrini, C.; Robin, D.

    1991-01-01

    The six dimensional phase-space density of an electron beam in a storage ring is determined by the emission of synchrotron radiation, and by the transverse and longitudinal focusing forces determining the particle trajectories. In the simplest case of uncoupled horizontal, vertical and longitudinal motion, the phase space volume occupied by the beam can be characterized by the product of its three projections on the single degree of freedom planes, the horizontal, vertical, and longitudinal emittances. To minimize the beam phase space volume the authors can minimize the transverse and longitudinal emittances. In the case of transverse emittances this problem is very important for synchrotron radiation sources, and has been studied by several authors. A method to minimize the longitudinal emittance, and produce electron bunches with a short pulse length, small energy spread and large peak current has been proposed and discussed recently by C. Pellegrini and D. Robin. This method uses a ring in which the revolution period is weakly dependent on the particle energy, Quasi Isochronous Ring (QIR), in other words a ring with a momentum compaction nearly zero. In this paper they will extend the previous analysis of the conditions for stable single particle motion in such a ring, and give simple criteria for the estimate of the energy spread and phase acceptance of a QIR

  2. Some uses of REPMM's in storage rings and colliders

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1985-04-01

    Improvements for existing rings and techniques for building new rings composed entirely of passive, Rare Earth Permanent Magnet Multipoles (REPMM's) are considered using circular dipoles, quadrupoles and sextupoles. Over the past few years we have made such magnets using a single size SmCo 5 block with up to five easy-axis orientations. The final production scheme is modular in that magnets are built-up from quantized layers. All multipole layers are made in exactly the same way using algorithms differing only by the desired multipole symmetry. The method is simple, efficient and inexpensive and allows a ''do-it-yourself'' approach to constructing new magnetic elements. For rings these might include focusing optical klystrons, rotatable multipoles for diagnostics, correction or extraction, or possibly combined function systems for the unit cells. A high quality, low-beta, PMQ insertion which can change beta, tune and energy is described as well as the PMS's for the SD and SF elements of the North SLC damping ring. Because these sextupoles will be the first optical use of PM's in storage rings they are discussed in detail together with the advantages, problems and requirements of such applications. 8 refs., 4 figs

  3. Development of Low Level RF Control Systems for Superconducting Heavy Ion Linear Accelerators, Electron Synchrotrons and Storage Rings

    CERN Document Server

    Aminov, Bachtior; Kolesov, Sergej; Pekeler, Michael; Piel, Christian; Piel, Helmut

    2005-01-01

    Since 2001 ACCEL Instruments is supplying low level RF control systems together with turn key cavity systems. The early LLRF systems used the well established technology based on discrete analogue amplitude and phase detectors and modulators. Today analogue LLRF systems can make use of advanced vector demodulators and modulators combined with a fast computer controlled analogue feed back loop. Feed forward control is implemented to operate the RF cavity in an open loop mode or to compensate for predictable perturbations. The paper will introduce the general design philosophy and show how it can be adapted to different tasks as controlling a synchrotron booster nc RF system at 500 MHz, or superconducting storage ring RF cavities, as well as a linear accelerator at 176 MHz formed by a chain of individually driven and controlled superconducting λ/2 cavities.

  4. Measurement of RF characteristics of magnetic alloys for an RF cavity of the accumulator cooler ring

    International Nuclear Information System (INIS)

    Watanabe, M.; Chiba, Y.; Katayama, T.; Koseki, T.; Ohtomo, K.; Tsutsui, H.

    2004-01-01

    The magnetic alloy (MA)-loaded RF cavity has been studied for an RF stacking system of the accumulator cooler ring (ACR). RF characteristics of several high-permeability MA cores were measured in the frequency range between 1 and 50 MHz. The effects of the cut-core configuration, cutting the core and leaving air gaps between two circular halves, were also investigated. The results show that the shunt impedance remains high and the appropriate inductance and Q-value can be obtained by increasing the gap width of the cut core in the frequency region of the ACR cavity

  5. Estimate of the coupling impedance for the storage rings of the NSLS

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1979-08-01

    The most important ingredient to evaluate the stability of a particle beam in a storage ring is the longitudinal coupling impedance Z/n and the transverse impedance Z/sub perpendicular/ which is usually associated to the former. These impedances are calculated for the two storage rings which are part of the NSLS, namely the Ultra Violet Ring (UVR) and the X-Ray Ring (XRR)-the parameters for these two rings which are used throughout the paper are shown

  6. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    International Nuclear Information System (INIS)

    Cai, Yunhai

    2012-01-01

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we

  7. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend

  8. Some models of spin coherence and decoherence in storage rings

    International Nuclear Information System (INIS)

    Heinemann, K.

    1997-09-01

    I present some simple exactly solvable models of spin diffusion caused by synchrotron radiation noise in storage rings. I am able to use standard stochastic differential equation and Fokker-Planck methods and I thereby introduce, and exploit, the polarization density. This quantity obeys a linear evolution equation of the Bloch type, which is, like the Fokker-Planck equation, universal in the sense that it is independent of the state of the system. I also briefly consider Bloch equations for other local polarization quantities derived from the polarization density. One of the models chosen is of relevance for some existing and proposed low energy electron (positron) storage rings which need polarization. I present numerical results for a ring with parameters typical of HERA and show that, where applicable, the results of my approach are in satisfactory agreement with calculations using SLIM. These calculations provide a numerical check of a basic tenet of the conventional method of calculating depolarization using the n-vector-axis. I also investigate the equilibrium behaviour of the spin ensemble when there is no synchrotron radiation. Finally, I summarize other results which I have obtained using the polarization density and which will be published separately. (orig.)

  9. Measurements of the electron cloud in the APS storage ring

    International Nuclear Information System (INIS)

    Harkey, K. C.

    1999-01-01

    Synchrotron radiation interacting with the vacuum chamber walls in a storage ring produce photoelectrons that can be accelerated by the beam, acquiring sufficient energy to produce secondary electrons in collisions with the walls. If the secondary-electron yield (SEY) coefficient of the wall material is greater than one, as is the case with the aluminum chambers in the Advanced Photon Source (APS) storage ring, a runaway condition can develop. As the electron cloud builds up along a train of stored positron or electron bunches, the possibility exists that a transverse perturbation of the head bunch will be communicated to trailing bunches due to interaction with the cloud. In order to characterize the electron cloud, a special vacuum chamber was built and inserted into the ring. The chamber contains 10 rudimentary electron-energy analyzers, as well as three targets coated with different materials. Measurements show that the intensity and electron energy distribution are highly dependent on the temporal spacing between adjacent bunches and the amount of current contained in each bunch. Furthermore, measurements using the different targets are consistent with what would be expected based on the SEY of the coatings. Data for both positron and electron beams are presented

  10. Performance of the SRRC storage ring and wiggler commissioning

    International Nuclear Information System (INIS)

    Kuo, C.C.; Hsu, K.T.; Luo, G.H.

    1995-01-01

    A 1.3 GeV synchrotron radiation storage ring at SRRC has been operated for more than a year since October 1993. Starting from April 1994, the machine has been open to the user community. In February 1995, the authors installed a wiggler magnet of 1.8 tesla 25-pole in the ring and successfully commissioned. The machine was scheduled for the users' runs from the middle of April this year. The authors describe the performance of the machine without wiggler magnet system and then report the wiggler effects on the beam dynamics of the storage ring, e.g., tune shift, beta-beating, orbit change, nonlinear dynamics effect, etc. Some measurements are compared with the model prediction and agreement between them was fairly good. Possible actions to minimize wiggler effects have been taken, such as orbit correction as a function wiggler gap change. The machine improvement projects, such as longitudinal and transverse damping systems as well as orbit stability feedback system are under construction and will be in use soon

  11. Equilibrium beam distribution in an electron storage ring near linear synchrobetatron coupling resonances

    Directory of Open Access Journals (Sweden)

    Boaz Nash

    2006-03-01

    Full Text Available Linear dynamics in a storage ring can be described by the one-turn map matrix. In the case of a resonance where two of the eigenvalues of this matrix are degenerate, a coupling perturbation causes a mixing of the uncoupled eigenvectors. A perturbation formalism is developed to find eigenvalues and eigenvectors of the one-turn map near such a linear resonance. Damping and diffusion due to synchrotron radiation can be obtained by integrating their effects over one turn, and the coupled eigenvectors can be used to find the coupled damping and diffusion coefficients. Expressions for the coupled equilibrium emittances and beam distribution moments are then derived. In addition to the conventional instabilities at the sum, integer, and half-integer resonances, it is found that the coupling can cause an instability through antidamping near a sum resonance even when the symplectic dynamics are stable. As one application of this formalism, the case of linear synchrobetatron coupling is analyzed where the coupling is caused by dispersion in the rf cavity, or by a crab cavity. Explicit closed-form expressions for the sum/difference resonances are given along with the integer/half-integer resonances. The integer and half-integer resonances caused by coupling require particular care. We find an example of this with the case of a crab cavity for the integer resonance of the synchrotron tune. Whether or not there is an instability is determined by the value of the horizontal betatron tune, a unique feature of these coupling-caused integer or half-integer resonances. Finally, the coupled damping and diffusion coefficients along with the equilibrium invariants and projected emittances are plotted as a function of the betatron and synchrotron tunes for an example storage ring based on PEP-II.

  12. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    Science.gov (United States)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  13. Rapid-swept CW cavity ring-down laser spectroscopy for carbon isotope analysis

    International Nuclear Information System (INIS)

    Tomita, Hideki; Watanabe, Kenichi; Takiguchi, Yu; Kawarabayashi, Jun; Iguchi, Tetsuo

    2006-01-01

    With the aim of developing a portable system for an in field isotope analysis, we investigate an isotope analysis based on rapid-swept CW cavity ring-down laser spectroscopy, in which the concentration of a chemical species is derived from its photo absorbance. Such a system can identify the isotopomer and still be constructed as a quite compact system. We have made some basic experimental measurements of the overtone absorption lines of carbon dioxide ( 12 C 16 O 2 , 13 C 16 O 2 ) by rapid-swept cavity ring-down spectroscopy with a CW infrared diode laser at 6,200 cm -1 (1.6 μm). The isotopic ratio has been obtained as (1.07±0.13)x10 -2 , in good agreement with the natural abundance within experimental uncertainty. The detection sensitivity in absorbance has been estimated to be 3x10 -8 cm -1 . (author)

  14. Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring

    Science.gov (United States)

    Ghorbani, Saeed; Dashti, Mohammad Ali; Jabbari, Masoud

    2018-06-01

    In this paper, a refractive index plasmonic sensor including a waveguide of metal–insulator–metal with side coupled octagonal cavity ring has been suggested. The sensory and transmission feature of the structure has been analyzed numerically using Finite Element Method numerical solution. The effect of coupling distance and changing the width of metal–insulator–metal waveguide and refractive index of the dielectric located inside octagonal cavity—which are the effective factors in determining the sensory feature—have been examined so completely that the results of the numerical simulation show a linear relation between the resonance wavelength and refractive index of the liquid/gas dielectric material inside the octagonal cavity ring. High sensitivity of the sensor in the resonance wavelength, simplicity and a compact geometry are the advantages of the refractive plasmonic sensor advised which make that possible to use it for designing high performance nano-sensor and bio-sensing devices.

  15. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    International Nuclear Information System (INIS)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Rakitzis, T. Peter; Tzallas, Paraskevas; Loppinet, Benoit

    2015-01-01

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces

  16. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    Science.gov (United States)

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  17. Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy

    OpenAIRE

    McCartt, A. Daniel; Ognibene, Ted J.; Bench, Graham; Turteltaub, Kenneth W.

    2016-01-01

    A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels...

  18. Compact near-IR and mid-IR cavity ring down spectroscopy device

    Science.gov (United States)

    Miller, J. Houston (Inventor)

    2011-01-01

    This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.

  19. Cooler Storage Ring at China Institute of Modern Physics

    CERN Document Server

    Wen-Xia, Jia; Zhan, W

    2005-01-01

    CSR, a new ion cooler-storage-ring project in China IMP, is a double ring system, and consists of a main ring (CSRm) and an experimental ring (CSRe). The two existing cyclotrons SFC (K=69) and SSC (K=450) of the Heavy Ion Research Facility in Lanzhou (HIRFL) will be used as its injector system. The heavy ion beams with the energy range of 7-30 MeV/nucleus from the HIRFL will be accumulated, cooled and accelerated to the higher energy range of 100-500 MeV/ nucleus in CSRm, and then extracted fast to produce radioactive ion beams or highly charged heavy ions. Those secondary beams will be accepted and stored or decelerated by CSRe for many internal-target experiments or high precision spectroscopy with beam cooling. On the other hand, the beams with the energy range of 100-1000MeV/ nucleus will also be extracted from CSRm by using slow extraction or fast extraction for many external-target experiments. CSR project was started in the end of 1999 and will be finished in 2006. In this paper the outline and the act...

  20. Fast cooling of bunches in compton storage rings*

    CERN Document Server

    Bulyak, E; Zimmermann, F

    2011-01-01

    We propose an enhancement of laser radiative cooling by utilizing laser pulses of small spatial and temporal dimensions, which interact only with a fraction of an electron bunch circulating in a storage ring. We studied the dynamics of such electron bunch when laser photons scatter off the electrons at a collision point placed in a section with nonzero dispersion. In this case of ‘asymmetric cooling’, the stationary energy spread is much smaller than under conditions of regular scattering where the laser spot size is larger than the electron beam; and the synchrotron oscillations are damped faster. Coherent oscillations of large amplitude may be damped within one synchrotron period, so that this method can support the rapid successive injection of many bunches in longitudinal phase space for stacking purposes. Results of extensive simulations are presented for the performance optimization of Compton gamma-ray sources and damping rings.

  1. A short history of e+e- storage rings

    International Nuclear Information System (INIS)

    Perez-y-Jorba, J.

    A quick survey of the history of electron-positron colliding-beam physics is given. First, the main physical characteristics of storage rings are recalled and the kinematical and dynamical properties of e + e - annihilation reactions are described. Then an account is made of the most important results obtained in particle physics with e + e - colliding rings. With the first generation of machines at low energies, the precise study of the vector mesons and the form factors of pions and kaons was made. Then at intermediate energies came the astonishing result that the total cross-section was keeping much higher than previously expected. Last but not least, a new realm of physics was opened by the discovery of the new particles, of their decays to intermediate states, by the possible existence of heavy leptons and of charmed mesons

  2. Nomenclature and name assignment rules for the APS storage ring

    International Nuclear Information System (INIS)

    Decker, G.

    1992-01-01

    Because the APS accelerators are moving into the fabrication/assembly/installation stage, it is important for consistent naming conventions to be used throughout the project. The intent of this note is to dictate the rules to be adhered to when naming devices in the storage ring. These rules are generic in nature, and shall be applied in principle to the other machines as well. It is essential that every component have a unique and, hopefully, easily recognizable name. Every ASD and XFD group, except for magnets, must interface with the control system. For this reason all device names were developed keeping in mind their actual function, such as controlling or monitoring some device in the ring. Even though magnets are not directly interfaced to the control system, their power supplies are; therefore, a magnet will have the same name as its associated power supply

  3. Time resolved super continuum Cavity Ring-Down Spectroscopy for multicomponent gas detection

    International Nuclear Information System (INIS)

    Nakaema, Walter Morinobu

    2010-01-01

    In this work, we present a variation of the technique CRDS (Cavity Ring-Down Spectroscopy) to obtain simultaneously a multicomponent absorption spectrum in a broad visible range. This new approach uses the Supercontinuum (SC) spectrum (resulting from irradiation of nonlinear media by femtosecond lasers, or simply generated by compact sources) as a light source to illuminate the cavity. In this context it is described the features of the modules assembling a MC-SC-CRDS (Multicomponent Supercontinuum Cavity Ring-Down Spectroscopy): a set of high reflectivity mirrors, the resonant cavity and the detection system. Some problems related to the multimode excitation, stray light, effective use of the dynamic range of the detector, the poor resolution of the instrument to resolve narrow absorption lines are issued. We present the absorption spectra of H 2 O (polyads 4υ, 4υ + δ) and O 2 (spin-forbidden b-X branch) measured simultaneously by this technique in the visible range and a comparison with the absorption lines based on HITRAN database is made to demonstrate the functionality of this method. (author)

  4. A single-frequency, ring cavity Tm-doped fiber laser based on a CMFBG filter

    International Nuclear Information System (INIS)

    Li, Qi; Yan, Fengping; Peng, Wanjing; Liu, Shuo; Feng, Ting; Tan, Siyu; Liu, Peng

    2013-01-01

    A single-frequency (SF), continuous-wave (CW), ring cavity Tm-doped fiber laser has been proposed and demonstrated. A chirped moiré fiber grating (CMFBG) was used as an ultra-narrow filter in the laser cavity to ensure SF operation. When the launched pump power was fixed at 2 W, this proposed laser was in stable operation with a central wavelength, optical signal-to-noise ratio, and full width at half maximum of 1942.8140 nm, 47 dB, and 0.0522 nm, respectively, with a resolution of 0.05 nm. The maximum output power of this laser is 95 mW, a higher output power is restricted by the optical circulator that is used in the cavity. The SF operation of this laser was confirmed by the self-homodyne method. To the best of the authors’ knowledge, this is the first report on an SF, CW, ring cavity Tm-doped fiber laser with a CMFBG filter. (letter)

  5. Vacuum characteristics of the RF-cavity for TRISTAN main ring

    International Nuclear Information System (INIS)

    Mizuno, H.

    1987-10-01

    Vacuum characteristics of the RF-cavity for TRISTAN main ring were tested. An APS (Alternating Periodic Structure) 18-cell cavity unit was made of low carbon steel S25C, and inner surface was electro-plated with copper of 100 μm in a pyrophosphorous-acid bath. After 24-hours bake-out at 140 deg C by a boiler, the outgassing rate of a test cavity was mainly dominated by the hydrogen permeation from the cooling water channel through the low carbon steel wall into the vacuum. By the use of anti-corrosion agent, the outgassing rate of the test cavity was decreased down to 1 x 10 -13 Torr · l/sec · cm 2 , after the bake-out at 140 deg C for 24 hours. After hydrogen degassing at 140 deg C for 10-days, the APS cavity unit was baked at 140 deg C for 24 hours, the ultimate pressure of the cavity reached down to 6 x 10 -10 Torr, and 2.7 x 10 -10 Torr, pumped by four 300 l/sec ion-pumps and by two 300 l/sec ion-pumps and two Ti-sublimation pumps with liquid nitrogen shroud respectively. The APS cavity unit was conditioned up to 250 kW/9-cell for 36 hours pumped by four 300 l/sec ion pumps, the ultimate pressure of the cavity was 5 x 10 -9 Torr with the RF power of 150 kW/9-cell on. (author)

  6. Magnet design for a low-emittance storage ring

    International Nuclear Information System (INIS)

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The magnet design of the MAX IV 3 GeV storage ring replaces the conventional support girder + discrete magnets scheme of previous third-generation light sources with a compact integrated design having several consecutive magnet elements precision-machined out of a common solid iron block. The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk

  7. Light ion EDM search in magnetic storage rings

    International Nuclear Information System (INIS)

    Onderwater, C. J. G.

    2006-01-01

    Permanent electric dipole moments (EDMs) violate parity and time-reversal symmetry. Within the Standard Model (SM), they require CP violation and are many orders of magnitude below present experimental sensitivity. Many extensions of the SM predict much larger EDMs, which are therefore an excellent probe for the existence of 'new physics.' So far only electrically neutral systems were used for sensitive searches of EDMs. Several techniques, based on storing fast particles in a magnetic storage ring, are being developed to probe charged particles for an EDM. With the introduction of these novel experimental methods, high sensitivity for charged systems, in particular light nuclei, is within reach.

  8. Data exchange system in cooler-storage-ring virtual accelerator

    International Nuclear Information System (INIS)

    Liu Wufeng; Qiao Weimin; Jing Lan; Guo Yuhui

    2009-01-01

    The data exchange system of the cooler-storage-ring (CSR) control system for heavy ion radiotherapy has been introduced for the heavy ion CSR at Lanzhou (HIRFL-CSR). Using techniques of Java, component object model (COM), Oracle, DSP and FPGA, this system can achieve real-time control of magnet power supplies sanctimoniously, and control beams and their switching in 256 energy levels. It has been used in the commissioning of slow extraction for the main CSR (CSRm), showing stable and reliable performance. (authors)

  9. Interaction of crystalline beams with a storage ring lattice

    International Nuclear Information System (INIS)

    Hofmann, I.; Struckmeier, J.

    1989-01-01

    We present the results of numerical calculations for beams in realistic storage ring lattices under conditions, where crystalline order could be expected, at least in principle. In particular we discuss the effect of space charge, envelope instabilities, bending magnets and of cooling strength. Our conclusions on the lattice design require high symmetry and a small betatron tune. For three-dimensional ordering we find in addition that typically an e-folding of cooling is necessary after each bending section. The formation of order in a one- dimensional chain puts no restriction on the lattice, and a fraction of an e-folding of cooling once per revolution has been found sufficient. (orig.)

  10. Free electron laser on the ACO storage ring

    International Nuclear Information System (INIS)

    Elleaume, P.

    1984-06-01

    This dissertation presents the design and characteristics of a Free Electron Laser built on the electron storage ring ACO at Orsay. The weak optical gain available (approximately 0.1% per pass) necessitated the use of an optical klystron instead of an undulator and the use of mirror with extremely high reflectivity. The laser characteristics: spectra, micro and macro-temporal structures, transverse structure and power are presented. They are in very good agreement with a classical theory based on the Lorentz force and Maxwell equations [fr

  11. Optical distortions in electron/positron storage rings

    International Nuclear Information System (INIS)

    Brown, K.L.; Donald, M.; Servranckx, R.

    1983-01-01

    We have studied the optical distortions in the PEP electron/positron storage ring for various optical configurations using the computer programs DIMAT, HARMON, PATRICIA, and TURTLE. The results are shown graphically by tracing several thousand trajectories from one interaction region to the next using TURTLE and by tracing a few selected rays several hundred turns using the programs DIMAT and PATRICIA. The results show an interesting correlation between the calculated optical cleanliness of a particular lattice configuration and the observed operating characteristics of the machine

  12. The Cornell electron-positron storage ring - CESR

    International Nuclear Information System (INIS)

    DeWire, J.W.

    1977-01-01

    At the Laboratory of Nuclear Studies of Cornell University we are working on a project to convert the present 12 GeV electron synchrotron complex into the Cornell Electron-Positron Storage Ring - CESR. The design studies for this new device were begun in early 1975. During the past eighteen months the National Science Foundation has supported a program of research and development on CESR and funds to begin construction are included in the NSF budget now before the U.S. Congress. Our goal is to have CESR in operation in the fall of 1979. (orig.) [de

  13. The radiation environment of proton accelerators and storage rings

    International Nuclear Information System (INIS)

    Stevenson, G.R.

    1976-01-01

    These lecture notes survey the physical processes that give rise to the stray-radiation environment of proton synchrotrons and storage rings, with emphasis on their importance for radiation protection. The origins of the prompt radiation field (which disappears when the accelerator is switched off) are described in some detail: proton-nucleus interactions, extranuclear cascades, muon generation and transport. The effects of induced radioactivity in the accelerator structure and surroundings, notably in iron, concrete, air, and water, are discussed and methods for monitoring hadrons in the radiation environment outside the accelerator are listed. Seventy-six references to the literature are included. (Author)

  14. Radiation environment of proton accelerators and storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, G R

    1976-03-08

    These lecture notes survey the physical processes that give rise to the stray-radiation environment of proton synchrotrons and storage rings, with emphasis on their importance for radiation protection. The origins of the prompt radiation field (which disappears when the accelerator is switched off) are described in some detail: proton-nucleus interactions, extranuclear cascades, muon generation and transport. The effects of induced radioactivity in the accelerator structure and surroundings, notably in iron, concrete, air, and water, are discussed, and methods for monitoring hadrons in the radiation environment outside the accelerator are listed. Seventy-six references to the literature are included.

  15. Laser-Cooled Ions and Atoms in a Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, J.; Hannemann, S.; Eike, B.; Eisenbarth, U.; Grieser, M.; Grimm, R.; Gwinner, G.; Karpuk, S.; Saathoff, G.; Schramm, U.; Schwalm, D.; Weidemueller, M., E-mail: m.weidemueller@mpi-hd.mpg.de [Max-Planck-Insitut fuer Kernphysik (Germany)

    2003-03-15

    We review recent experiments at the Heidelberg Test Storage Ring which apply advanced laser cooling techniques to stored ion beams. Very high phase-space densities are achieved by three-dimensional laser cooling of a coasting {sup 9}Be{sup +} beam at 7.3 MeV. Laser-cooled, trapped Cs atoms are used as an ultracold precision target for the study of ion-atom interactions with a 74 MeV beam of {sup 12}C{sup 6+} ions.

  16. SPARC experiments at the high-energy storage ring

    International Nuclear Information System (INIS)

    Stöhlker, Thomas; Litvinov, Yuri A; Bagnoud, Vincent; Dimopoulou, Christina; Dolinskii, Alexei; Geppert, Christopher; Hagmann, Siegbert; Katayama, Takeshi; Kühl, Thomas; Nörtershäuser, Wilfried; Steck, Markus; Bechstedt, Ulf; Maier, Rudolf; Prasuhn, Dieter; Stockhorst, Hans; Schuch, Reinhold

    2013-01-01

    The physics program of the SPARC collaboration at the Facility for Antiproton and Ion Research (FAIR) focuses on the study of collision phenomena in strong and even extreme electromagnetic fields and on the fundamental interactions between electrons and heavy nuclei up to bare uranium. Here we give a short overview on the challenging physics opportunities of the high-energy storage ring at FAIR for future experiments with heavy-ion beams at relativistic energies with particular emphasis on the basic beam properties to be expected. (paper)

  17. Run permit software for the proton storage ring

    International Nuclear Information System (INIS)

    Bair, S.S.

    1985-01-01

    The Run Permit system is intended to protect equipment from radiation effects caused by having beam enabled when required equipment is not operational. This system will not allow beam unless certain devices are ready and will drop beam if any of these devices become inoperative. A system to provide such protection might be implemented in hardware. However, because the several operating modes of the Proton Storage Ring/Weapons Neutron Research facility require certain devices to be in different states (depending on mode), a dynamic configuration capability is needed, that is, a software solution is more feasible

  18. Sensitivity enhancement of fiber loop cavity ring-down pressure sensor.

    Science.gov (United States)

    Jiang, Yajun; Yang, Dexing; Tang, Daqing; Zhao, Jianlin

    2009-11-10

    We present a theoretical and experimental study on sensitivity enhancement of a fiber-loop cavity ring-down pressure sensor. The cladding of the sensing fiber is etched in hydrofluoric acid solution to enhance its sensitivity. The experimental results demonstrate that the pressure applied on the sensing fiber is linearly proportional to the difference between the reciprocals of the ring-down time with and without pressure, and the relative sensitivity exponentially increases with decreasing the cladding diameter. When the sensing fiber is etched to 41.15 microm, its sensitivity is about 36 times that of nonetched fiber in the range of 0 to 32.5 MPa. The measured relative standard deviation of the ring-down time is about 0.15% and, correspondingly, the least detectable loss is about 0.00069 dB.

  19. Experimental techniques and physics in a polarized storage ring

    International Nuclear Information System (INIS)

    Dueren, M.

    1995-01-01

    In May 1994 spin rotators were brought into operation at HERA and for the first time longitudinal electron polarization was produced in a high energy storage ring. A Compton polarimeter is used for empirical optimization of the polarization to values of up to 70%. HERMES makes use of the stored polarized beam with an internal polarized target. The density of a gas target is increased by a storage cell by two orders of magnitude compared to a free gas jet. Data taking begins in 1995 with measurements on polarized spin structure functions and also on semi-inclusive polarized hadron production. The inclusive physics program is in competition with experiments at CERN and SLAC. The semi-inclusive physics program promises to solve basic questions of the spin structure of matter by decomposing the spin contributions of the different quark flavors. (author) 24 figs., 3 tabs., 44 refs

  20. Status report on the Los Alamos proton storage ring

    International Nuclear Information System (INIS)

    Colton, E.; Neuffer, D.; Thiessen, H.A.

    1988-01-01

    The proton storage ring currently operates at an average current of 30 μA corresponding to 1.25 /times/ 10 13 protons per pulse (ppp) at a repetition rate of 15 Hz. The design operating current for the machine is 100 μA. We are limited to running at the reduced yield because of beam losses during the accumulation period. These losses are understood and arise mainly from emittance growths during the injection and multiple scattering in the stripping foil during the storage. During beam studies we have succeeded in accumulating in excess of 3.7 /times/ 10 13 ppp. We have also observed a coherent transverse instability at high charge levels. The signature for the instability is rapid coherent growth of the transverse beam size followed by a loss of beam in the machine. The threshold for the instability depends most strongly upon rf voltage and beam size. 3 refs., 1 fig., 1 tab

  1. Astrochemistry in TSR and CSR Ion Storage Rings

    Science.gov (United States)

    Novotny, Oldrich

    2017-04-01

    Dissociative recombination (DR) of molecular ions plays a key role in controlling the charge density and composition of the cold interstellar medium (ISM). Experimental data on DR are required in order to understand the chemical network in the ISM and related processes such as star formation from molecular clouds. Needed data include not only total reaction cross sections, but also the chemical composition and excitation states of the neutral products. Utilizing the TSR storage ring in Heidelberg, Germany, we have carried out DR measurements for astrophysically important molecular ions. We use a merged electron-ion beams technique combined with event-by-event fragment counting and fragment imaging. The count rate of detected neutral DR products yields the absolute DR rate coefficient. Imaging the distribution of fragment distances provides information on the kinetic energy released including the states of both the initial molecule and the final products. Additional kinetic energy sensitivity of the employed detector allows for identification of fragmentation channels by fragment-mass combination within each dissociation event. Such combined information is essential for studies on DR of polyatomic ions with multi-channel breakup. The recently commissioned Cryogenic Storage Ring (CSR) in Heidelberg, Germany, extends the experimental capabilities of TSR by operation at cryogenic temperatures down to 6 K. At these conditions residual gas densities down to 100 cm-3 can be reached resulting in beam storage times of several hours. Long storage in the cold environment allows the ions to relax down to their rotational ground state, thus mimicking well the conditions in the cold ISM. A variety of astrophysically relevant reactions will be investigated at these conditions, such as DR, electron impact excitation, ion-neutral collisions, etc. We report our TSR results on DR of HCl+ and D2Cl+. We also present first results from the CSR commissioning experiments.

  2. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-01-01

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  3. Magnetic measurements on the ring dipoles and quadrupoles for the Los Alamos proton storage ring

    International Nuclear Information System (INIS)

    Schermer, R.I.; Blind, B.; Jason, A.J.; Sawyer, G.A.

    1985-01-01

    This paper discusses magnetic measurements and shimming performed on the ring dipoles and quadrupoles for the Los Alamos Proton Storage Ring (PSR). For the dipoles, point-by-point field maps were obtained using a search coil that could be scanned over a three-dimensional grid. By appropriate machining of removable end blocks, all magnet lengths were adjusted to within 0.01% of a nominal value and all integrated multipoles were set within tolerance. Integrated fields of 20 PSR quadrupoles were measured using a rotating ''Morgan Coil'' and a digital spectrum analyzer. The magnets were shimmed to specifications by adjusting steel bolts threaded through the field clamps. 3 refs., 5 figs., 4 tabs

  4. SOR-RING: an electron storage ring dedicated to spectroscopy, 2

    International Nuclear Information System (INIS)

    Kitamura, H.; Miyahara, T.; Sato, S.; Watanabe, M.; Mitani, S.

    1976-01-01

    A 300 MeV electron storage ring to be used exclusively as a synchrotron radiation source for spectroscopy has been constructed in Institute for Nuclear Study (INS), University of Tokyo, Tanashi. Its useful spectral range lies between 40 and 2200 A. The 1.3 GeV electron synchrotron of INS currently being operated for high energy particle experiments serves as an injector. Electron beams are extracted from the synchrotron at 300 MeV, transported about twenty meters, and injected to the ring one pulse per second. In the test operation a current of 10 mA was stored with a lifetime of one hour, while the design goal determined by the Touschek effect is 100 mA with one hour, for operation in 300 MeV. Increase of operating energy up to 375 MeV is feasible with a minor modification of the present design. (auth.)

  5. Design of a lattice for JAERI storage ring (JSR)

    International Nuclear Information System (INIS)

    Harada, Shunji; Yokomizo, Hideaki; Yanagida, Kenichi

    1990-08-01

    The new 8GeV synchrotron radiation facility (SPring-8) is planned to be constructed in Japan, and our institute (JAERI) are involved in this project with RIKEN. A compact electron storage ring JSR has been constructed in JAERI in order to study various kind of accelerator technologies, to test some devices such as the insertion devices and the beam monitors, and to train young researchers. The ring size is limited by the available space of a linac building, so that the circumference of JSR becomes 20.546 m. However, even in this small ring, one straight section with the length of ∼1.5 m, where the dispersion is free, is provided for the insertion device study. JSR takes Chasman-Green lattice with a superperiodicity of three. JSR is possible not only to suppress the dispersion but also to leave it on the long straight section. An electron beam from a linac is accepted into JSR in any operating modes. (author)

  6. CIRCE: A dedicated storage ring for coherent THz synchrotron radiation

    International Nuclear Information System (INIS)

    Byrd, J.M.; Martin, Michael C.; McKinney, W.R.; Munson, D.V.; Nishimura, H.; Robin, D.S.; Sannibale, F.; Schlueter, R.D.; Thur, W.G.; Jung, J.Y.; Wan, W.

    2003-01-01

    We present the concepts for an electron storage ring dedicated to and optimized for the production of stable coherent synchrotron radiation (CSR) over the far-infrared terahertz wavelength range from 200 mm to about one cm. CIRCE (Coherent InfraRed CEnter) will be a 66 m circumference ring located on top of the ALS booster synchrotron shielding tunnel and using the existing ALS injector. This location provides enough floor space for both the CIRCE ring, its required shielding, and numerous beamlines. We briefly outline a model for CSR emission in which a static bunch distortion induced by the synchrotron radiation field is used to significantly extend the stable CSR emission towards higher frequencies. This model has been verified with experimental CSR results. We present the calculated CIRCE photon flux where a gain of 6-9 orders of magnitude is shown compared to existing far-IR sources. Additionally, the particular design of the dipole vacuum chamber has been optimized to allow an excellent transmission of these far-infrared wavelengths. We believe that the CIRCE source can be constructed for a modest cost

  7. Ultra-low energy storage ring at FLAIR

    International Nuclear Information System (INIS)

    Welsch, Carsten P.; Papash, A. I.; Gorda, O.; Harasimowicz, J.; Karamyshev, O.; Karamysheva, G.; Newton, D.; Panniello, M.; Putignano, M.; Siggel-King, M. R. F.; Smirnov, A.

    2012-01-01

    The Ultra-low energy electrostatic Storage Ring (USR) at the future Facility for Low-energy Antiproton and Ion Research (FLAIR) will provide cooled beams of antiprotons in the energy range between 300 keV down to 20 keV and possibly less. The USR has been completely redesigned over the past three years. The ring structure is based on a “split achromat” lattice that allows in-ring experiments with internal gas jet target. Beam parameters might be adjusted in a wide range: from very short pulses in the nanosecond regime to a Coasting beam. In addition, a combined fast and slow extraction scheme was developed that allows for providing external experiments with cooled beams of different time structure. Detailed investigations of the USR, including studies into the ring’s long term beam dynamics, life time, equilibrium momentum spread and equilibrium lateral spread during collisions with an internal target were carried out. New tools and beam handling techniques for diagnostics of ultra-low energy ions at beam intensities less than 10 6 were developed by the QUASAR Group. In this paper, progress on the USR project will be presented with an emphasis on the expected beam parameters available to the experiments at FLAIR.

  8. Design of the WNR proton storage ring lattice

    International Nuclear Information System (INIS)

    Cooper, R.K.; Lawrence, G.P.

    1977-01-01

    The Weapons Neutron Research Facility, now approaching operational status, is a pulsed neutron time-of-flight facility utilizing bursts of 800 MeV protons from the LAMPF linac. The protons strike a heavy metal target and produce a broad energy spectrum of neutrons via spallation reactions. Ideally the width of the proton pulse should approach a delta function in order to achieve good neutron energy resolution. Practically, the shortest pulse that can be employed in the facility is that produced by a single LAMPF micropulse, which, at design current, contains approximately 5 x 10 8 protons. With the addition of a storage ring capable of accumulating many micropulses, this intensity can be increased, as can the repetition rate. Moreover, by storing an unbunched beam, a low repetition rate, very intense proton burst can be generated. This latter mode of usage allows neutron time-of-flight studies using large neutron targets, for which pulse lengths of the order of several hundred nanoseconds are suitable. The primary goals of the ring are reported: (i) to increase the intensity of the burst to 10 11 protons while retaining a short pulse length; (ii) to increase the repetition rate of the bursts by at least a factor of six; and (iii) to store as many particles as possible, uniformly distributed around the ring

  9. Phase measurement for driven spin oscillations in a storage ring

    Science.gov (United States)

    Hempelmann, N.; Hejny, V.; Pretz, J.; Soltner, H.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Heberling, D.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Nikolaev, N. N.; Nioradze, M.; Pesce, A.; Prasuhn, D.; Rathmann, F.; Rosenthal, M.; Saleev, A.; Schmidt, V.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Stahl, A.; Stassen, R.; Stephenson, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Żurek, M.; JEDI Collaboration

    2018-04-01

    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in Jülich using a vector polarized, bunched 0.97 GeV /c deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles.

  10. Analysis of spin depolarizing effects in electron storage rings

    International Nuclear Information System (INIS)

    Boege, M.

    1994-05-01

    In this thesis spin depolarizing effects in electron storage rings are analyzed and the depolarizing effects in the HERA electron storage ring are studied in detail. At high beam energies the equilibrium polarization is limited by nonlinear effects. This will be particularly true in the case of HERA, when the socalled ''spin rotators'' are inserted which are designed to provide longitudinal electron polarization for the HERMES experiment in 1994 and later for the H1 and ZEUS experiment. It is very important to quantify the influence of these effects theoretically by a proper modelling of HERA, so that ways can be found to get a high degree of polarization in the real machine. In this thesis HERA is modelled by the Monte-Carlo tracking program SITROS which was originally written by J. Kewisch in 1982 to study the polarization in PETRA. The first part of the thesis is devoted to a detailed description of the fundamental theoretical concepts on which the program is based. Then the approximations which are needed to overcome computing time limitations are explained and their influence on the simulation result is discussed. The systematic and statistical errors are studied in detail. Extensions of the program which allow a comparison of SITROS with the results given by ''linear'' theory are explained. (orig.)

  11. Precision Magnetic Elements for the SNS Storage Ring

    International Nuclear Information System (INIS)

    Danby, G.; Jackson, J.; Spataro, C.

    1999-01-01

    Magnetic elements for an accumulator storage ring for a 1 GeV Spallation Neutron Source (SNS) have been under design. The accumulation of very high intensity protons in a storage ring requires beam optical elements of very high purity to minimize higher order resonances in the presence of space charge. The parameters of the elements required by the accumulator lattice design have been reported. The dipoles have a 17 cm gap and are 124 cm long. The quadrupoles have a physical length to aperture diameter ratio of 40 cm/21 cm and of 45 cm/31 cm. Since the elements have a large aperture and short length, optimizing the optical effects of magnet ends is the major design challenge. Two dimensional (2D) computer computations can, at least on paper, produce the desired accuracy internal to magnets, i.e. constant dipole fields and linear quadrupole gradients over the desired aperture to 1 x 10 -4 . To minimize undesirable end effects three dimensional (3D) computations can be used to design magnet ends. However, limitations on computations can occur, such as necessary finite boundary conditions, actual properties of the iron employed, hysteresis effects, etc., which are slightly at variance with the assumed properties. Experimental refinement is employed to obtain the desired precision

  12. CESAR, 2 MeV electron storage ring; general view.

    CERN Multimedia

    CERN PhotoLab

    1964-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  13. CESAR, 2 MeV electron storage ring.

    CERN Multimedia

    CERN PhotoLab

    1967-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  14. Constrained multi-objective optimization of storage ring lattices

    Science.gov (United States)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  15. Magnet design for a low-emittance storage ring

    Science.gov (United States)

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  16. Modeling photo-desorption in high current storage rings

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1991-01-01

    High luminosity flavor factories are characterized by high fluxes of synchrotron radiation that lead to thermal management difficulties. The associated photo-desorption from the vacuum chamber walls presents an additional design challenge, providing a vacuum system suitable for maintaining acceptable beam-gas lifetimes and low background levels of scattered radiation in the detector. Achieving acceptable operating pressures (1-10 nTorr) with practical pumping schemes requires the use of materials with low photodesorption efficiency operating in a radiation environment beyond that of existing storage rings. Extrapolating the existing photo-desorption data base to the design requirements of high luminosity colliders requires a physical model of the differential cleaning in the vacuum chamber. The authors present a simple phenomenological model of photodesorption that includes effects of dose dependence and diffuse photon reflection to compute the leveling of gas loads in beamlines of high current storage rings that typify heavy flavor factories. This model is also used to estimate chamber commissioning times

  17. Helium Leak Test for the PLS Storage Ring Chamber

    International Nuclear Information System (INIS)

    Choi, M. H.; Kim, H. J.; Choi, W. C.

    1993-01-01

    The storage ring vacuum system for the Pohang Light Source (PLS) has been designed to maintain the vacuum pressure of 10 1 0 Torr which requires UHV welding to have helium leak rate less than 1x10 1 0 Torr·L/sec. In order to develop new technique (PLS) welding technique), a prototype vacuum chamber has been welded by using Tungsten Inert Gas welding method and all the welded joints have been tested with a non-destructive method, so called helium leak detection, to investigate the vacuum tightness of the weld joints. The test was performed with a detection limit of 1x10 1 0 Torr·L/sec for helium and no detectable leaks were found for all the welded joints. Thus the performance of welding technique is proven to meet the criteria of helium leak rate required in the PLS Storage Ring. Both the principle and the procedure for the helium leak detection are also discussed

  18. ACCELERATORS: Beam based alignment of the SSRF storage ring

    Science.gov (United States)

    Zhang, Man-Zhou; Li, Hao-Hu; Jiang, Bo-Cheng; Liu, Gui-Min; Li, De-Ming

    2009-04-01

    There are 140 beam position monitors (BPMs) in the Shanghai Synchrotron Radiation Facility (SSRF) storage ring used for measuring the closed orbit. As the BPM pickup electrodes are assembled directly on the vacuum chamber, it is important to calibrate the electrical center offset of the BPM to an adjacent quadrupole magnetic center. A beam based alignment (BBA) method which varies individual quadrupole magnet strength and observes its effects on the orbit is used to measure the BPM offsets in both the horizontal and vertical planes. It is a completely automated technique with various data processing methods. There are several parameters such as the strength change of the correctors and the quadrupoles which should be chosen carefully in real measurement. After several rounds of BBA measurement and closed orbit correction, these offsets are set to an accuracy better than 10 μm. In this paper we present the method of beam based calibration of BPMs, the experimental results of the SSRF storage ring, and the error analysis.

  19. Evanescent-wave cavity ring-down spectroscopy for enhanced detection of surface binding under flow injection analysis conditions

    NARCIS (Netherlands)

    Van Der Sneppen, L.; Ariese, F.; Gooijer, C.; Ubachs, W.

    2008-01-01

    In evanescent-wave cavity ring-down spectroscopy, one (or more) of the re°ections inside the cavity is a total internal re°ection (TIR) event. Only the evanescent wave associated with this TIR is being used for prob-ing the sample. This technique is therefore highly surface-speci-c and attractive

  20. Theoretical aspects of some collective instabilities in high-energy particle storage rings

    International Nuclear Information System (INIS)

    Ruggiero, F.

    1986-01-01

    After an introduction to single-particle dynamics, based on a unified Hamiltonian treatment of betatron and synchrotron oscillations, we consider two examples of collective instabilities which can limit the performances of high-energy storage rings: the transverse mode coupling instability, due to wake fields, and the incoherent beam-beam instability. Special emphasis is placed on the localization of the interactions between particles and surrounding structures, such as the accelerating RF cavities. We derive an exact invariant for the linearized synchrotron motion and, starting from the Vlasov equation, we discuss the coherent synchro-betatron resonances caused by localized impedance. Under suitable assumptions, we show that the effect of the beam-beam kicks in electron-positron machines can be described by new diffusive terms in a ''renormalized'' Fokker-Planck equation and is therefore equivalent to an additional source of noise for the betatron oscillations. (orig.)

  1. Simultaneous computation of intrabunch and interbunch collective beam motions in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Skripka, Galina, E-mail: galina.skripka@maxlab.lu.se [MAX IV Laboratory, Lund University, SE-22100 Lund (Sweden); Nagaoka, Ryutaro, E-mail: ryutaro.nagaoka@synchrotron-soleil.fr [Synchrotron SOLEIL, Saint Aubin, 91192 Gif-sur-Yvette (France); Klein, Marit; Cullinan, Francis [Synchrotron SOLEIL, Saint Aubin, 91192 Gif-sur-Yvette (France); Tavares, Pedro F. [MAX IV Laboratory, Lund University, SE-22100 Lund (Sweden)

    2016-01-11

    We present the multibunch tracking code mbtrack developed to simulate, in 6-dimensional phase space, single- and multibunch collective instabilities driven by short- and long-range wakefields in storage rings. Multiple bunches, each composed of a large number of macroparticles, are tracked, allowing simulation of both intra- and interbunch motions. Besides analytical impedance models, the code allows employment of numerical wake potentials computed with electromagnetic (EM) field solvers. The corresponding impedances are fitted to a number of known analytical functions and the coefficients obtained in the fit are used as an input to the code. mbtrack performs a dynamic treatment of long-range resistive-wall and harmonic cavity fields, which are likely to be the two major factors impacting multibunch collective motions in many present and future ring-based light sources. Furthermore, it is capable of simulating beam-ion interactions as well as transverse bunch-by-bunch feedback. We describe the physical effects considered in the code and their implementation, which makes use of parallel processing to significantly shorten the computation time. mbtrack is benchmarked against other codes and applied to the MAX IV 3 GeV ring as an example, where the importance of the interplay of various physical effects as well as coupling among different degrees of freedom is demonstrated. - Highlights: • A new 6D multibunch multiparticle tracking code is developed. • The code employs numerical impedance computed for realistic vacuum components. • Effects of passive harmonic cavity and resistive wall are treated. • A method to model interplay between intra- and interbunch motions is developed.

  2. RF cavity R and D at LBNL for the NLC damping rings, FY1999

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Corlett, J.N.; Koehler, G.; Li, D.; Hartman, N.; Rasson, J.; Saleh, T.

    1999-01-01

    This report contains a summary of the R and D activities at LBNL on RF cavities for the NLC damping rings during fiscal year19999. These activities include the optimization of the RF design for both efficiency and damping of higher-order (HOMs), by systematic study of the cavity profile, the effect of the beam pipe diameter, nosecone angle and gap, the cross section and position of the HOM damping waveguides and the coupler. The effect of the shape of the HOM waveguides and their intersection with the cavity wall on the local surface heating is also an important factor, since it determines the highest stresses in the cavity body. This was taken into account during the optimization so that the stresses could be reduced at the same time as the HOP damping was improved over previous designs. A new method of calculating the RF heating was employed, using a recently released high frequency electromagnetic element in ANSYS. This greatly facilitates the thermal and stress analysis of the design and fabrication methods have been developed with the goals of lower stresses, fewer parts and simpler assembly compared to previous designs. This should result in substantial cost savings. Preliminary designs are described for the cavity ancillary components including the RF window, HOM loads, and tuners. A preliminary manufacturing plan is included, with an initial estimate of the resource requirements. Other cavity options are discussed which might be desirable to either lower the R/Q, for reduced transient response, or lower the residual HOM impedance to reduce coupled-bunch growth rates further still

  3. GHz-bandwidth upconversion detector using a unidirectional ring cavity to reduce multilongitudinal mode pump effects

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter

    2017-01-01

    We demonstrate efficient upconversion of modulated infrared (IR) signals over a wide bandwidth (up to frequencies in excess of 1 GHz) via cavity-enhanced sum-frequency generation (SFG) in a periodically poled LiNbO3. Intensity modulated IR signal is produced by combining beams from two 1547 nm...... narrow-linewidth lasers in a fiber coupler while tuning their wavelength difference down to 10 pm or less. The SFG crystal is placed inside an Nd:YVO4 ring cavity that provides 1064 nm circulating pump powers of up to 150 W in unidirectional operation. Measured Fabry-Perot spectrum at 1064 nm confirms...... the enhanced spectral stability from multiple to single longitudinal mode pumping condition. We describe analytically and demonstrate experimentally the deleterious effects of using a multimode pump to the high-bandwidth RF spectrum of the 630 nm SFG output. Offering enhanced sensitivity without the need...

  4. Feasibility of maintaining in-plane polarization for a storage ring EDM search

    Science.gov (United States)

    Stephenson, Edward; Storage Ring EDM Collaboration

    2014-09-01

    A search for an electric dipole moment (EDM) on charged particles using a storage ring requires beam polarization lifetimes approaching 1000 s for in-plane polarization. A feasibility study using beam bunching and sextupole field adjustment is underway with a 0.97-GeV/c vector-polarized deuteron beam at COSY. The polarimeter consists of a thick carbon target positioned at the edge of the beam and the EDDA scintillation detectors. The DAQ system assigns a clock time to each polarimeter event. Once calibrated against the RF-cavity, the clock time is used to select events associated with a maximal sideways polarization (precessing at 120 kHz). With this tool, the in-plane polarization magnitude is tracked versus time. Electron cooling reduces the depolarization from finite emittance and second-order momentum spread acting through synchrotron oscillations. Further lifetime improvement to the level of hundreds of seconds is achieved by adjusting sextupole fields located in the COSY ring arcs at places of large transverse beta functions and dispersion. The dependence of the reciprocal of the lifetime on sextupole field strength is nearly linear, permitting an easy location of the best field values. These typically occur near loci of zero chromaticity. A search for an electric dipole moment (EDM) on charged particles using a storage ring requires beam polarization lifetimes approaching 1000 s for in-plane polarization. A feasibility study using beam bunching and sextupole field adjustment is underway with a 0.97-GeV/c vector-polarized deuteron beam at COSY. The polarimeter consists of a thick carbon target positioned at the edge of the beam and the EDDA scintillation detectors. The DAQ system assigns a clock time to each polarimeter event. Once calibrated against the RF-cavity, the clock time is used to select events associated with a maximal sideways polarization (precessing at 120 kHz). With this tool, the in-plane polarization magnitude is tracked versus time. Electron

  5. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    Science.gov (United States)

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  6. Modeling multipulsing transition in ring cavity lasers with proper orthogonal decomposition

    International Nuclear Information System (INIS)

    Ding, Edwin; Shlizerman, Eli; Kutz, J. Nathan

    2010-01-01

    A low-dimensional model is constructed via the proper orthogonal decomposition (POD) to characterize the multipulsing phenomenon in a ring cavity laser mode locked by a saturable absorber. The onset of the multipulsing transition is characterized by an oscillatory state (created by a Hopf bifurcation) that is then itself destabilized to a double-pulse configuration (by a fold bifurcation). A four-mode POD analysis, which uses the principal components, or singular value decomposition modes, of the mode-locked laser, provides a simple analytic framework for a complete characterization of the entire transition process and its associated bifurcations. These findings are in good agreement with the full governing equation.

  7. Stable optical soliton in the ring-cavity fiber system with carbon nanotube as saturable absorber

    Science.gov (United States)

    Li, Bang-Qing; Ma, Yu-Lan; Yang, Tie-Mei

    2018-01-01

    Main attention focuses on the theoretical study of the ring-cavity fiber laser system with carbon nanotubes (CNT) as saturable absorber (SA). The system is modelled as a non-standard Schrödinger equation with the coefficients blended real and imaginary numbers. New stable exact soliton solution is constructed by the bilinear transformation method for the system. The influences of the key parameters related to CNTs and SA on the optical pulse soliton are discussed in simulation. The soliton amplitude and phase can be tuned by choosing suitable parameters.

  8. [Development of a hydrogen and deuterium polarized gas target for application in storage rings]: Progress report

    International Nuclear Information System (INIS)

    Haeberli, W.

    1989-01-01

    This paper briefly discusses the following topics: the Wisconsin test facility for storage cells; results of target tests; the new UHV target test system; funding request for a new atomic beam system; and planning of storage ring experiments

  9. Study of orbit stability in the SSRF storage ring

    International Nuclear Information System (INIS)

    Dai Zhimin; Liu Guimin; Huang Nan

    2003-01-01

    In this paper, analysis of the beam orbit stability and conceptual study of the dynamic orbit feedback in the SSRF storage ring are presented. It is shown that beam orbit position movement at the photon source points is smaller than the orbit stability requirements in horizontal plane, but exceeds the orbit stability requirements in vertical plane. A dynamic global orbit feedback system, which consists of 38 high-bandwidth air-coil correctors and 40 high-precise BPMs, is proposed to suppress the vertical beam orbit position movement. Numerical simulations show that this dynamic orbit feedback system can stabilize the vertical beam orbit position movement in the frequency range up to 100 Hz

  10. Ion trapping in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hinterberger, Frank [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik

    2011-10-15

    The problem of ion trapping in the high-energy storage ring HESR is studied in the present report. Positive ions are trapped in the negative potential well of the antiproton beam. The ions are produced by the interaction between the antiproton beam and the residual gas. The adverse effects of ion trapping like tune shifts, tune spreads and coherent instabilities are reviewed. The ion production rate by ionization of the residual gas molecules is estimated. The negative potential well and the corresponding electric fields of the antiproton beam are evaluated in order to study the transverse and longitudinal motion of the ions and the accumulation in trapping pockets. The removal of ions can be achieved using clearing electrodes and under certain conditions resonant transverse beam shaking. Diagnostic tools and measurements of trapped ion effects are sketched. (orig.)

  11. Commissioning results of the APS storage ring diagnostics systems

    International Nuclear Information System (INIS)

    Lumpkin, A.H.

    1996-01-01

    Initial commissionings of the Advanced Photon Source (APS) 7-GeV storage ring and its diagnostics systems have been done. Early studies involved single-bunch measurements for beam transverse size (σ x ∼ 150 μm, σ y ∼ 50 μm), current, injection losses, and bunch length. The diagnostics have been used in studies related to the detection of an extra contribution to beam jitter at ∼ 6.5 Hz frequency; observation of bunch lengthening (σ ∼ 30 to 60 ps) with single-bunch current; observation of an induced vertical, head-tail instability; and detection of a small orbit change with insertion device gap position. More recently, operations at 100-mA stored-beam current, the baseline design goal, have been achieved with the support of beam characterizations

  12. Radiative polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1989-01-01

    Electron and positron beams circulating in high-energy storage rings become spontaneously polarized by the emission of synchrotron radiation. The asymptotic degree of polarization that can be attained is strongly affected by so-called depolarizing resonances. Detailed experimental measurements of the polarization were made SPEAR about ten years ago, but due to lack of a suitable theory only a limited theoretical fit to the data has so far been achieved. The author presents a general formalism for calculating depolarizing resonances, which has been coded into a computer program called SMILE, and use it to fit the SPEAR data. By the use of suitable approximations, the author is able to fit both higher order and nonlinear resonances, and thereby to interpret many hitherto unexplained features in the data, and to resolve a puzzle concerning the asymmetry of certain resonance widths seen in the data. 18 refs., 2 figs

  13. Beam scraping problems in storage rings: the black cloud

    International Nuclear Information System (INIS)

    Jones, L.W.

    1980-01-01

    The heavy ion, multi-GeV drivers for inertial confinement fusion are being designed to produce beams of an energy, power, and specific ionization sufficient to raise matter to thermonuclear temperatures. The magnitude of these parameters is so far beyond current experience that some problems raised warrant careful scrutiny. In particular, the consequence of some fraction of the beam lost on storage ring inflection septa, extraction channels, and beam-defining collimators seems potentially very serious. Unless carefully contained, a beam halo can easily vaporize the best refractory materials, and the resulting vapor cloud will interact destructively within microseconds with the following beam. The limits on beam flux which may be so lost for particular examples are orders of magnitude below current experience

  14. Study of a ''relaxed'' ALS storage ring lattice

    International Nuclear Information System (INIS)

    Keller, R.; Forest, E.; Nishimura, H.; Zisman, M.S.

    1990-06-01

    The lattice of the Advanced Light Source (ALS) 1--1.9 GeV electron storage ring was reexamined, introducing an additional family of focusing quadrupoles and looking for a working point with larger dynamic aperture. In the first part of this study, the ideal lattice was investigated to confirm the anticipated behavior, and indeed conditions with increased dynamic aperture were found. In the second part, realistic magnet errors and an undulator in one of the straight sections were taken into account. Under these conditions the dynamic aperture could not be significantly improved over the nominal configuration. Further studies included investigation of the Touschek momentum acceptance of the lattice. In this case too, no net benefit was obtained from the additional quadrupoles. 6 refs., 5 figs. , 2 tabs

  15. Impact of storage rings on elementary particle physics

    International Nuclear Information System (INIS)

    Trilling, G.H.

    1979-03-01

    It is well known that new experimental discoveries often closely follow the development of new technology. There is hardly a better example of this than the close coupling between new discoveries in the frontiers of elementary particle physics and the development of the art and science of making high-energy accelerators. It is almost twenty-five years since the construction of the Bevatron made possible the discovery of the antiproton; and, since that time, knowledge and understanding of particle physics has made enormous strides in step with new developments in both the accelerator and the detector arts. An attempt is made to document how intimately many of the recent advances have been tied to the success in the development of storage rings and colliding beams

  16. Emittance measurements in low energy ion storage rings

    Science.gov (United States)

    Hunt, J. R.; Carli, C.; Resta-López, J.; Welsch, C. P.

    2018-07-01

    The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA.

  17. A polarized sup 3 He internal target for storage rings

    CERN Document Server

    Poolman, H R; Bulten, H J; Doets, M; Ent, R; Ferro-Luzzi, M; Geurts, D G; Harvey, M; Mul, F A

    2000-01-01

    A polarized sup 3 He internal target was employed at the internal target facility of the Amsterdam electron Pulse Stretcher and Storage ring (AmPS) at the Dutch National Institute for Nuclear and High-Energy Physics (NIKHEF). The unique features of internal targets such as chemical and isotopic purity, high and rapidly reversible polarization, and the ability to manipulate the target spin orientation were successfully demonstrated. A nuclear polarization of 0.50 (0.42) at a sup 3 He gas flow of 1.0 (2.0)x10 sup 1 sup 7 at s sup - sup 1 could be obtained. Operation at a nominal flow of 1x10 sup 1 sup 7 at s sup - sup 1 resulted in a target thickness of 0.7x10 sup 1 sup 5 at cm sup - sup 2 at a target temperature of 17 K.

  18. New Upgrade Project for the Photon Factory Storage Ring

    International Nuclear Information System (INIS)

    Asaoka, S.; Haga, K.; Harada, K.; Honda, T.; Hori, Y.; Izawa, M.; Kasuga, T.; Kobayashi, M.; Kobayashi, Y.; Maezawa, H.; Minagawa, Y.; Mishina, A.; Mitsuhashi, T.; Miyajima, T.; Miyauchi, H.; Nagahashi, S.; Nogami, T.; Obina, T.; Pak, C. O.; Sakanaka, S.

    2004-01-01

    A new project for upgrading the 2.5-GeV Photon Factory (PF) storage ring is now being undertaken to create six new short-straight sections and to lengthen the existing eight straight sections. The short-straight sections will provide an opportunity to install short-period narrow-gap undulators, while the extensions of existing straight sections will be taken advantage of updating current insertion devices to the latest models in future. To this end, the lattice configuration around the straight sections is modified by replacing old quadrupole magnets with new shorter ones and placing them closer to the near-by bending magnets. Necessary replacement of the vacuum ducts and the beamline front ends will be carried out together. This project will be completed by the end of September, 2005, after six months of shutdown

  19. Manufacture of the ALS storage ring vacuum system

    International Nuclear Information System (INIS)

    Kennedy, K.

    1990-11-01

    The Advanced Light Source (ALS) storage rings has a 4.9 meter magnetic radius and an antechamber type vacuum chamber. These two requirements makes conventional bent tube manufacturing techniques difficult. The ALS sector vacuum chambers have been made by matching two halves out of aluminum plate and welding at the mid plane. Each of these chambers have over 50 penetrations with metal sealed flanges and seven metal sealed poppet valves which use the chamber wall as the valve seat. The sector chambers are 10 meter long and some features in the chambers must be located to .25 mm. This paper describes how and how successfully these features have been achieved. 2 refs., 5 figs

  20. Emittance growth induced by electron cloud in proton storage rings

    CERN Document Server

    Benedetto, Elena; Coppa, G

    2006-01-01

    In proton and positron storage rings with many closely spaced bunches, a large number of electrons can accumulate in the beam pipe due to various mechanisms (photoemission, residual gas ionization, beam-induced multipacting). The so-formed electron cloud interacts with the positively charged bunches, giving rise to instabilities, emittance growth and losses. This phenomenon has been observed in several existing machines such as the CERN Super Proton Synchrotron (SPS), whose operation has been constrained by the electron-cloud problem, and it is a concern for the Large Hadron Collider (LHC), under construction at CERN. The interaction between the beam and the electron cloud has features which cannot be fully taken into account by the conventional and known theories from accelerators and plasma physics. Computer simulations are indispensable for a proper prediction and understanding of the instability dynamics. The main feature which renders the beam-cloud interactions so peculiar is that the the electron cloud...

  1. Some hadron calorimeter properties relevant to storage rings

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.; Ellis, N.; Garvey, J.; Grant, D.; Homer, R.J.; Kenyon, I.R.; McMahon, T.; Schanz, G.; Sumorok, K.C.T.O.; Watkins, P.M.; Wilson, J.A.; Eisenhandler, E.; Gibson, W.R.; Kalmus, P.I.P.; Thompson, G.; Arnison, G.; Astbury, A.; Grayer, G.; Haynes, W.J.; Hill, D.; Nandi, A.K.; Roberts, C.; Shah, T.P.

    1982-01-01

    At wide angles in a storage ring environment, a substantial part of the energy seen by a hadron calorimeter can be in the form of very low momentum particles such as jet fragments or resonance cascade decay products. Data are presented on the deviations from Gaussian resolution and linear response for such low momentum particles. The differing responses to incident e - , μ - , π +- , K +- , p and anti p at momenta below 10 GeV/c are also compared. In addition, the authors discuss the significance of angle effects for a 4π calorimeter, and the problems of combining data from calorimeters with different physical characteristics. Experimental data are presented on the difference in hadron response between a fine grain (electromagnetic) lead calorimeter and a coarser (hadron) iron calorimeter, and on the dependence of the response on the energy sharing between the two calorimeters. (Auth.)

  2. MATLAB based beam orbit correction system of HLS storage ring

    International Nuclear Information System (INIS)

    Ding Shichuan; Liu Gongfa; Xuan Ke; Li Weimin; Wang Lin; Wang Jigang; Li Chuan; Bao Xun; Guo Weiqun

    2006-01-01

    The distortion of closed orbit usually causes much side effect which is harmful to synchrotron radiation source such as HLS, so it is necessary to correct the distortion of closed orbit. In this paper, the correction principle, development procedure and test of MATLAB based on beam orbit correction system of HLS storage ring are described. The correction system is consisted of the beam orbit measure system, corrector magnet system and the control system, and the beam orbit correction code based on MATLAB is working on the operation interface. The data of the beam orbit are analyzed and calculated firstly, and then the orbit is corrected by changing corrector strength via control system. The test shows that the distortion of closed orbit is from max 4.468 mm before correction to max 0.299 mm after correction as well as SDEV is from 2.986 mm to 0.087 mm. So the correction system reaches the design goal. (authors)

  3. Cryogenic systems for large superconducting accelerators/storage rings

    International Nuclear Information System (INIS)

    Brown, D.P.

    1981-01-01

    Particle accelerators and storage rings which utilize superconducting magnets have presented cryogenic system designers, as well as magnet designers, with many new challenges. When such accelerators were first proposed, little operational experience existed to guide the design. Two superconducting accelerators, complete with cryogenic systems, have been designed and are now under construction. These are the Fermilab Doubler Project and the Brookhaven National Laboratory ISABELLE Project. The cryogenic systems which developed at these two laboratories share many common characteristics, especially as compared to earlier cryogenic systems. Because of this commonality, these characteristics can be reasonably taken as also being representative of future systems. There are other areas in which the two systems are dissimilar. In those areas, it is not possible to state which, if either, will be chosen by future designers. Some of the design parameters for the two systems are given

  4. Numerical simulation of crystalline ion beams in storage ring

    CERN Document Server

    Meshkov, I N; Katayama, T; Sidorin, A; Smirnov, A Yu; Syresin, E M; Trubnikov, G; Tsutsui, H

    2004-01-01

    The use of crystalline ion beams can increase luminosity in the collider and in experiments with targets for investigation of rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M (Proceedings of the Fourth All Union Conference on Charged Particle Accelerators, Vol. 2, Nauka, Moscow, 1975 (in Russian); Part. Accel. 7 (1976) 197; At. Energy 40 (1976) 49; Preprint CERN/PS/AA 79-41, Geneva, 1979) (Novosibirsk), ESR (Phys. Rev. Lett. 77 (1996) 3803) and SIS (Proceedings of EPAC'2000, 2000) (Darmstadt), CRYRING (Proceedings of PAC'2001, 2001) (Stockholm) and PALLAS (Proceedings of the Conference on Applications of Accelerators in Research and Industry, AIP Conference Proceedings, p. 576, in preparation) (Munchen). New criteria of the beam orderliness are derived and verified with a new program code. Molecular dynamics technique is inserted in BETACOOL program (Proceedings of Beam Cooling and Related Topics, Bad Honnef, Germany, 2001) and used for numeric...

  5. Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results

    International Nuclear Information System (INIS)

    Sanjari, Mohammad Shahab

    2013-01-01

    Nuclear astrophysics studies on highly charged radionuclides benefit from accelerator facilities with storage rings, where exotic nuclides produced with small yields can be efficiently investigated. Currently there are two accelerator facilities capable of storing highly charged heavy ions, GSI in Darmstadt and IMP in Lanzhou. Non-destructive detection methods are often used for in-flight measurements based on frequency analysis. The sensitivity of such detection systems are of primary importance specially when number of stored ions is small. Furthermore, since the exotic nuclides of interest are as a rule short-lived, the detectors must be fast. One common form of such detectors are parallel plate SCHOTTKY monitors, on which particles induce a mirror charge at each passage. This method has been successfully used at ESR experimental storage ring of GSI since 1991. In this work we describe a new resonant SCHOTTKY pickup operating as a high sensitive cavity current monitor which was mounted and commissioned in the ESR early 2010. It was successfully used in several storage ring experiments. A very similar pickup was mounted in CSRe at IMP Lanzhou in 2011. First in-ring tests have been performed and new experimental results are pending. The spectral analysis of acquired signals by the new detector has enabled a broad range of new physics experiments. The theory of operation and first experimental results and future perspectives are presented in this thesis.

  6. Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Sanjari, Mohammad Shahab

    2013-04-26

    Nuclear astrophysics studies on highly charged radionuclides benefit from accelerator facilities with storage rings, where exotic nuclides produced with small yields can be efficiently investigated. Currently there are two accelerator facilities capable of storing highly charged heavy ions, GSI in Darmstadt and IMP in Lanzhou. Non-destructive detection methods are often used for in-flight measurements based on frequency analysis. The sensitivity of such detection systems are of primary importance specially when number of stored ions is small. Furthermore, since the exotic nuclides of interest are as a rule short-lived, the detectors must be fast. One common form of such detectors are parallel plate SCHOTTKY monitors, on which particles induce a mirror charge at each passage. This method has been successfully used at ESR experimental storage ring of GSI since 1991. In this work we describe a new resonant SCHOTTKY pickup operating as a high sensitive cavity current monitor which was mounted and commissioned in the ESR early 2010. It was successfully used in several storage ring experiments. A very similar pickup was mounted in CSRe at IMP Lanzhou in 2011. First in-ring tests have been performed and new experimental results are pending. The spectral analysis of acquired signals by the new detector has enabled a broad range of new physics experiments. The theory of operation and first experimental results and future perspectives are presented in this thesis.

  7. Proceedings of the workshop on polarized targets in storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1984-08-01

    Polarization phenomena have played an increasingly important part in the study of nuclei and nucleons in recent years. Polarization studies have been hampered by the relatively few and rather fragile polarized targets which are presently available. The concept of polarized gas targets in storage rings opens a much wider range of possibilities than is available in the external target geometry. This novel method will represent a considerable advance in nuclear physics and will continue to receive much attention in plans for future facilities. An internal, polarized-target station is being planned for the cooler ring at the Indiana University Cyclotron Facility. Internal targets are compatible with recent designs of electron accelerators proposed by the Massachusetts Institute of Technology and the Southeastern Universities Research Association. The key to nuclear-science programs based on internal targets pivots on recent developments in polarized atomic beam methods, which include the more recent laser-driven polarized targets. The workshop drew together a unique group of physicists in the fields of high-energy, nuclear and atomic physics. The meeting was organized in a manner that stimulated discussion among the 58 participants and focused on developments in polarized target technology and the underlying atomic physics. An impressive array of future possibilities for polarized targets as well as current developments in polarized target technology were discussed at the workshop. Abstracts of individual items from the workshop were prepared separately for the data base

  8. Nonlinear interaction of colliding beams in particle storage rings

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.

    1979-01-01

    When two beams of high energy particles moving in opposite directions are brought into collision, a large amount of energy is available for the production of new particles. However to obtain a sufficiently high event rate for rare processes, such as the production of the intermediate vector boson (Z 0 and W +- ), large beam currents are also required. Under this circumstance, the high charge density of one beam results in a classical electromagnetic interaction on the particles in the other beam. This very nonlinear space charge force, caled the beam-beam force, limits the total circulating charge and, thereby, the ultimate performance of the colliding ring system. The basic nature of the beam-beam force is discussed, indicating how it is quite different in the case of continuous beams, which cross each other at an angle as compared to the case of bunched beams which collide head-on. Some experimental observations on the beam-beam interaction in proton-proton and electron-positron beams are then reviewed and interpreted. An important aspect of the beam-beam problem in storage rings is to determine at what point in the analysis of the particle dynamics is it relevant to bring in the concepts of stochasticity, slow diffusion, and resonance overlap. These ideas are briefly discussed

  9. Parallel bias vs perpendicular bias of a ferrite tuned cavity for the TRIUMF KAON Factory booster ring

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enegren, T.A.

    1988-06-01

    The RF cavity reference design for the KAON Factory booster ring is a double gap drift-tube cavity with parallel biased ferrite tuners to vary the frequency from 46 MHz to 62 MHz. LAMPF has developed a single gap cavity with perpendicularly biased ferrite to vary the frequency from 50 MHz to 60 MHz. Measurements on the LAMPF cavity have indicated that their frequency range could be extended to cover our requirements while still maintaining a reasonable magnetic Q. The analysis and comparison of the RF circuit and the AC magnetizing circuit for both designs are reported. (Author) (14 refs., 6 figs.)

  10. Experimental techniques and physics in a polarized storage ring

    International Nuclear Information System (INIS)

    Dueren, M.

    1994-12-01

    In May 1994 spin rotators were brought into operation at HERA and for the first time longitudinal electron polarization was produced in a high energy storage ring. A Compton polarimeter is used for optimization of the polarization to values of up to 70%. HERMES is a new experiment designed to study the spin structure of the nucleon by deep inelastic scattering from the proton and neutron using the longitudinally polarized electron beam at HERA and internal polarized gas targets. The density of the gas targets is increased by a storage cell by two orders of magnitude compared to a free gas jet. Data taking begins in 1995 with measurements on polarized spin structure functions and also on semi-inclusive polarized hadron production. The inclusive physics program is in competition with experiments at CERN and SLAC. The semi-inclusive physics program promises to solve basic questions of the spin structure of matter by decomposing the spin contributions of the different quark flavors. (orig.)

  11. Mass and lifetime measurements of exotic nuclei in storage rings

    International Nuclear Information System (INIS)

    Franzke, B.; Geissel, H.; Muenzenberg, G.

    2007-11-01

    Mass and lifetime measurements lead to the discovery and understanding of basic properties of matter. The isotopic nature of the chemical elements, nuclear binding, and the location and strength of nuclear shells are the most outstanding examples leading to the development of the first nuclear models. More recent are the discoveries of new structures of nuclides far from the valley of stability. A new generation of direct mass measurements which allows the exploration of extended areas of the nuclear mass surface with high accuracy has been opened up with the combination of the Experimental Storage Ring ESR and the FRragment Separator FRS at GSI Darmstadt. In-flight separated nuclei are stored in the ring. Their masses are directly determined from the revolution frequency. Dependent on the half-life two complementary methods are applied. Schottky Mass Spectrometry SMS relies on the measurement of the revolution frequency of electron cooled stored ions. The cooling time determines the lower half-life limit to the order of seconds. For Isochronous Mass Spectrometry IMS the ring is operated in an isochronous ion-optical mode. The revolution frequency of the individual ions coasting in the ring is measured using a time-of-flight method. Nuclides with lifetimes down to microseconds become accessible. With SMS masses of several hundreds nuclides have been measured simultaneously with an accuracy in the 2 x 10 -7 -range. This high accuracy and the ability to study large areas of the mass surface are ideal tools to discover new nuclear structure properties and to guide improvements for theoretical mass models. In addition, nuclear half-lives of stored bare and highly-charged ions have been measured. This new experimental development is a significant progress since nuclear decay characteristics are mostly known for neutral atoms. For bare and highly-charged ions new nuclear decay modes become possible, such as bound-state beta decay. Dramatic changes in the nuclear lifetime

  12. Miniature chemical sensor combining molecular recognition with evanescent wave cavity ring-down spectroscopy

    International Nuclear Information System (INIS)

    Pipino, Andrew C. R.

    2004-01-01

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages

  13. Numerical simulation study on new RF system of Hefei storage ring

    International Nuclear Information System (INIS)

    Xu Hongliang; Wang Lin; Huang Guirong; Zhang Pengfei; Li Weimin; Liu Zuping; He Duohui

    2005-01-01

    The two injection ways of new RF system of Hefei storage ring were discussed. In the process of both large detuning injection and tuning injection, the variation of tuning angle and visual detuning angle with beam current intensity was analyzed. The calculation results show that the two injection ways are manipulable for new RF system in phase II project of Hefei storage ring. (author)

  14. Moeller polarimeter for VEPP-3 storage ring based on internal polarized gas jet target

    International Nuclear Information System (INIS)

    Dyug, M.V.; Grigoriev, A.V.; Kiselev, V.A.; Lazarenko, B.A.; Levichev, E.B.; Mikaiylov, A.I.; Mishnev, S.I.; Nikitin, S.A.; Nikolenko, D.M.; Rachek, I.A.; Shestakov, Yu.V.; Toporkov, D.K.; Zevakov, S.A.; Zhilich, V.N.

    2005-01-01

    A new method to determine the polarization of an electron beam circulating in a storage ring by a non-destructive way, based on measuring the asymmetry in scattering of beam electrons on electrons of the internal polarized gas jet target, has been developed and tested at the VEPP-3 storage ring

  15. Progress on the Design of the Storage Ring Vacuum System for the Advanced Photon Source Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Stillwell, B.; Billett, B.; Brajuskovic, B.; Carter, J.; Kirkus, E.; Lale, M.; Lerch, J.; Noonan, J.; O' Neill, M.; Rocke, B.; Suthar, K.; Walters, D.; Wiemerslage, G.; Zientek, J.

    2017-06-20

    Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction and rf cavity straight sections. An overview of progress in these areas is presented.

  16. Development of a pulsed laser with emission at 1053 nm for Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Cavalcanti, Fabio

    2014-01-01

    In this work, a pulsed and Q-switched laser resonator was developed using the double-beam mode-controlling technique. A Nd:LiYF4 crystal with 0,8mol% of doping concentration was used to generate a giant pulse with duration of 5,5 ns (FWHM), 1,2 mJ of energy and 220 kW peak power for the Cavity Ring-Down Spectroscopy (CRDS) technique. The CRDS technique is used to measure absorption spectra for gases, liquids and solids. With the CRDS technique it is possible to measure losses with high degree of accuracy, underscoring the sensitivity that is confirmed by the use of mirrors with high reflectivity. With this technique, the losses by reflection and scattering of transparent materials were evaluated. By calibrating the resonant cavity, it was possible to measure the losses in the samples with resolution of 0,045%, the maximum being reached by 0,18%. The calibration was possible because there was obtained to measure a decay time of approximately 20 μs with the empty cavity. Besides was obtained a method for determining the refractive index of transparent materials with accuracy of five decimals. (author)

  17. Technical design study. BESSY VSR. Variable pulse length Storage Ring. Upgrade of BESSY II

    International Nuclear Information System (INIS)

    2015-06-01

    BESSY-VSR is a novel approach to create in the Storage Ring BESSY II long and short photon pulses simultaneously for all beam lines through a pair of superconducting bunch compression cavities. Pulse-picking schemes will allow each individual user to freely switch between high average flux for X-ray spectroscopy, microscopy and scattering and picosecond pulses up to 500 MHz repetition rate for dynamic studies. Thus BESSY-VSR preserves the present average brilliance of BESSY II and adds the new capability of user accessible picosecond pulses at high repetition rate. In addition, high intensities for THz radiation with intrinsic synchronization of THz and X-ray pulses can be extracted from BESSY-VSR. For the scientific challenges of quantum materials for energy, future information technologies and basic energy science BESSY-VSR is the multi-user Synchrotron Radiation facility that allows with the flexible switching between high repetition rate for picosecond dynamics and high average brightness to move classical 3rd generation Synchrotron Radiation science from the observation of static properties and their quantum mechanical description towards the function and the control of materials properties, technologically relevant switching processes and chemical dynamics and kinetics on the picosecond time scale. Strategic relevance of BESSY-VSR for science with photons BESSY-VSR creates for the highly productive Synchrotron Radiation community a uniquely attractive multi user storage ring adding the soft X-ray picosecond dynamics at MHz repetition rate. In particular investigations on reversible dynamics and switching in molecular systems and materials are accessible in a non destructive way. The investigations with X-rays from BESSY-VSR are highly complementary and compatible to dynamic studies conducted by users with optical lasers at their home universities and laboratories. Technologically, the employed superconducting bunch compression cavities in BESSY-VSR are a

  18. Technical design study. BESSY VSR. Variable pulse length Storage Ring. Upgrade of BESSY II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    BESSY-VSR is a novel approach to create in the Storage Ring BESSY II long and short photon pulses simultaneously for all beam lines through a pair of superconducting bunch compression cavities. Pulse-picking schemes will allow each individual user to freely switch between high average flux for X-ray spectroscopy, microscopy and scattering and picosecond pulses up to 500 MHz repetition rate for dynamic studies. Thus BESSY-VSR preserves the present average brilliance of BESSY II and adds the new capability of user accessible picosecond pulses at high repetition rate. In addition, high intensities for THz radiation with intrinsic synchronization of THz and X-ray pulses can be extracted from BESSY-VSR. For the scientific challenges of quantum materials for energy, future information technologies and basic energy science BESSY-VSR is the multi-user Synchrotron Radiation facility that allows with the flexible switching between high repetition rate for picosecond dynamics and high average brightness to move classical 3rd generation Synchrotron Radiation science from the observation of static properties and their quantum mechanical description towards the function and the control of materials properties, technologically relevant switching processes and chemical dynamics and kinetics on the picosecond time scale. Strategic relevance of BESSY-VSR for science with photons BESSY-VSR creates for the highly productive Synchrotron Radiation community a uniquely attractive multi user storage ring adding the soft X-ray picosecond dynamics at MHz repetition rate. In particular investigations on reversible dynamics and switching in molecular systems and materials are accessible in a non destructive way. The investigations with X-rays from BESSY-VSR are highly complementary and compatible to dynamic studies conducted by users with optical lasers at their home universities and laboratories. Technologically, the employed superconducting bunch compression cavities in BESSY-VSR are a

  19. Commissioning of the Cryogenic Plant for the Cryogenic Storage Ring (CSR) at Heidelberg

    CERN Document Server

    von Hahn, R; Grieser, M; Haberstroh, C; Kaiser, D; Lange, M; Laux, F; Menk, S; Orlov, D A; Repnow, R; Sieber, T; Quack, H; Varju, J; Wolf A

    2009-01-01

    At the Max-Planck-Institute for Nuclear Physics in Heidelberg a next generation electrostatic storage ring for low velocity atomic and molecular ion beams is under construction. In contrast to existing electrostatic storage rings, the Cryogenic Storage Ring CSR will be cooled down to temperatures below 2 K. Thus acting as a large cryopump it will provide long storage times and, in addition, open a new field of quantum state controlled molecular physics due to a low heat radiation background from space-like environment. A concept for cooling the storage ring has been developed and is presently tested by means of a linear trap as a prototype with a length of 1/10 of the planned ring. A commercial refrigerator with 21 W at 2 K has been successfully commissioned and was connected to the prototype. This paper presents the status of the cryogenic plant after the commissioning and one year of operation.

  20. Lattice design of HISTRAP: Heavy ion storage ring for atomic physics

    International Nuclear Information System (INIS)

    Lee, I.Y.; Martin, J.A.; McGrory, J.B.; Milner, W.T.; Olsen, D.K.; Young, G.R.

    1987-01-01

    HISTRAP, a Heavy-Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, cool, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. This four-fold symmetrical ring has a maximum bending power of 2 Tm. It has achromatic bends and uses quadrupole triplets for focusing

  1. Cavity-enhanced eigenmode and angular hybrid multiplexing in holographic data storage systems.

    Science.gov (United States)

    Miller, Bo E; Takashima, Yuzuru

    2016-12-26

    Resonant optical cavities have been demonstrated to improve energy efficiencies in Holographic Data Storage Systems (HDSS). The orthogonal reference beams supported as cavity eigenmodes can provide another multiplexing degree of freedom to push storage densities toward the limit of 3D optical data storage. While keeping the increased energy efficiency of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modification of current angular multiplexing HDSS.

  2. Effects of beam-beam collisions on storage-ring performance - a pedagogical review

    International Nuclear Information System (INIS)

    Schonfeld, J.F.

    1983-01-01

    This paper presents a survey of the experimental and theoretical literature on colliding-beam effects in both leptonic and hadronic storage rings. For the most part, this literature is rather technical and, to the novice, both obscurely written and hard to locate. Although there have already been several symposia on the subject, as well as a number of reviews for specialists there has up till now been no unified and pedagogical exposition. The present work represents an attempt to fill this gap. The material is grouped into four major areas: observational phenomenology, computer simulation, mathematical background, and theoretical models. 113 references, 36 figures

  3. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    Energy Technology Data Exchange (ETDEWEB)

    Talman, Richard [Cornell Univ., Ithaca, NY (United States)

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such an electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)

  4. Searching for the electron EDM in a storage ring

    International Nuclear Information System (INIS)

    Kawall, D

    2011-01-01

    Searches for permanent electric dipole moments (EDM) of fundamental particles have been underway for more than 50 years with null results. Still, such searches are of great interest because EDMs arise from radiative corrections involving processes that violate parity and time-reversal symmetries, and through the CPT theorem, are sensitive to CP-violation. New models of physics beyond the standard model predict new sources of CP-violation leading to dramatically enhanced EDMs possibly within the reach of a new generation of experiments. We describe a new approach to electron EDM searches using molecular ions stored in a tabletop electrostatic storage ring. Molecular ions with long-lived paramagnetic states such as tungsten nitride WN + can be injected and stored in larger numbers and with longer coherence times than competing experiments, leading to high sensitivity to an electron EDM. Systematic effects mimicking an EDM such as those due to motional magnetic fields and geometric phases are found not to limit the approach in the short term, and sensitivities of δ|d e | ∼ 10 -30 e·cm/day appear possible under conservative conditions.

  5. Use of eigenvectors in understanding and correcting storage ring orbits

    International Nuclear Information System (INIS)

    Friedman, A.; Bozoki, E.

    1994-01-01

    The response matrix A is defined by the equation X=AΘ, where Θ is the kick vector and X is the resulting orbit vector. Since A is not necessarily a symmetric or even a square matrix we symmetrize it by using A T A. Then we find the eigenvalues and eigenvectors of this A T A matrix. The physical interpretation of the eigenvectors for circular machines is discussed. The task of the orbit correction is to find the kick vector Θ for a given measured orbit vector X. We are presenting a method, in which the kick vector is expressed as linear combination of the eigenvectors. An additional advantage of this method is that it yields the smallest possible kick vector to correct the orbit. We will illustrate the application of the method to the NSLS X-ray and UV storage rings and the resulting measurements. It will be evident, that the accuracy of this method allows the combination of the global orbit correction and local optimization of the orbit for beam lines and insertion devices. The eigenvector decomposition can also be used for optimizing kick vectors, taking advantage of the fact that eigenvectors with corresponding small eigenvalue generate negligible orbit changes. Thus, one can reduce a kick vector calculated by any other correction method and still stay within the tolerance for orbit correction. The use of eigenvectors in accurately measuring the response matrix and the use of the eigenvalue decomposition orbit correction algorithm in digital feedback is discussed. (orig.)

  6. Electron spin polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1987-01-01

    In a high energy storage ring, a single photon emission has relatively little effect on the orbital motion, but it can produce a relatively large change in the electron spin state. Hence the unperturbed orbital motion can be satisfactorily described using classical mechanics, but the spin must be treated quantum mechanically. The electron motion is therefore treated semi-classically in this thesis. It is explained how to diagonalize the unperturbed Hamiltonian to the leading order in Planck's constant. The effects of perturbations are then included, and the relevant time-scales and ensemble averages are elucidated. The Derbenev-Kondratenko formula for the equilibrium degree of polarization is rederived. Mathematical details of the rederivation are given. Since the original authors used a different formalism, a proof is offered of the equivalence between their method and the one used in this thesis. An algorithm is also presented to evaluate the equilibrium polarization. It has a number of new features, which enable the polarization to be calculated to a higher degree of approximation than has hitherto been possible. This facilitates the calculation of so-called spin resonances, which are points at which the polarization almost vanishes. A computer program has been written to implement the above algorithm, in the approximation of linear orbital dynamics, and sample results are presented

  7. Storage ring lattice calibration using resonant spin depolarization

    Directory of Open Access Journals (Sweden)

    K. P. Wootton

    2013-07-01

    Full Text Available This paper presents measurements of the GeV-scale electron beam energy for the storage rings at the synchrotron light source facilities Australian Synchrotron (AS and SPEAR3 at SLAC. Resonant spin depolarization was employed in the beam energy measurement, since it is presently the highest precision technique and an uncertainty of order 10^{-6} was achieved at SPEAR3 and AS. Using the resonant depolarization technique, the beam energy was measured at various rf frequencies to measure the linear momentum compaction factor. This measured linear momentum compaction factor was used to evaluate models of the beam trajectory through combined-function bending magnets. The main bending magnets of both lattices are rectangular, horizontally defocusing gradient bending magnets. Four modeling approaches are compared for the beam trajectory through the bending magnet: a circular trajectory, linear and nonlinear hyperbolic cosine trajectories, and numerical evaluation of the trajectory through the measured magnetic field map. Within the uncertainty of the measurement the momentum compaction factor is shown to agree with the numerical model of the trajectory within the bending magnet, and disagree with the hyperbolic cosine approximation.

  8. Beam position determination for the Test Storage Ring

    International Nuclear Information System (INIS)

    Baumann, P.

    1987-01-01

    The Test Storage Ring (TSR) for heavy ions, currently under design and construction at the Max Planck Institute for Nuclear Physics in Heidelberg, requires an extensive beam diagnostics system in order to enable it to operate without friction. This thesis concerns the beam position determination sub-system of this diagnostics system which is intended to determine the beam center of gravity of a bunched beam inside the cross section of the beam tube in a non-destructive manner. An electrostatic pickup is used to sense the location of the beam; the mode of operation of this device will be explained in detail. The signals go to a preamplifier from where they are then sent via a multiplex system to the measuring unit. This point also represents the interface to the computer system that controls the TSR. The prototype developed here was tested with the aid of a particle beam, as well as with other measurement methods. Resolutions of better than 1 mm about the center have been measured. In order to achieve or even improve such resolutions later in actual operation, it is possible to determine the properties of the preamplifiers with the aid of calibration signals and to take these into account in the course of the signal evaluation in the computer. The differences between the individual electrodes of a given pickup must also be compensated. These procedures and their associated electronic circuits are also described in this paper

  9. Global coupling and decoupling of the APS storage ring

    International Nuclear Information System (INIS)

    Chae, Yong-Chul; Liu, Jianyang; Teng, L.C.

    1995-01-01

    This Paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the APS storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Using smooth approximation, we obtained the formulae to estimate the coupling ratio defined as the ratio of the vertical and horizontal emittances or, for a single particle, the ratio of the maximum values of the Courant Snyder invariants. Since we knew that the coupling is mostly enhanced by the 21st harmonic content of skew quadrupole distribution, we carried out the harmonic analysis in order to find the optimum arrangement of the skew quadrupoles. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadrupoles. It is shown that even with the rather large rms roll error of 2 mrad we can reduce the Coupling from 70 percent to 10 percent with a skew quadrupole strength which is one order of magnitude lower than the typical normal quadrupole strength

  10. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  11. Resonant beam behavior studies in the Proton Storage Ring

    Directory of Open Access Journals (Sweden)

    S. Cousineau

    2003-07-01

    Full Text Available We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR at Los Alamos National Laboratory. We investigate the profile broadening through detailed particle-in-cell simulations of several experiments and obtain results in good agreement with the measurements. We interpret these results within the framework of coherent resonance theory. With increasing intensity, our simulations show strong evidence for the presence of a quadrupole-mode resonance of the beam envelope with the lattice in the vertical plane. Specifically, we observe incoherent tunes crossing integer values, and large amplitude, nearly periodic envelope oscillations. At the highest operating intensities, we observe a continuing relaxation of the beam through space charge forces leading to emittance growth. The increase of emittance commences when the beam parameters encounter an envelope stop band. Once the stop band is reached, the emittance growth balances the intensity increase to maintain the beam near the stop band edge. Additionally, we investigate the potential benefit of a stop band correction to the high intensity PSR beam.

  12. Selected programs at the new SURF III electron storage ring

    International Nuclear Information System (INIS)

    Furst, Mitchell L.; Arp, Uwe; Cauchon, Gilles P.; Graves, Rossie M.; Hamilton, Andrew D.; Hughey, Lanny R.; Lucatorto, Thomas B.; Tarrio, Charles

    2000-01-01

    The conversion of the electron storage ring at NIST (the National Institute of Standards and Technology) to SURF III (the Synchrotron Ultraviolet Radiation Facility) has resulted in a significant improvement to the azimuthal uniformity of the magnetic field as well as the capability for operating at higher beam energies. Measurements of magnetic field strength revealed azimuthal uniformity of better than ±0.05% at field strengths equivalent to operating energies of 52 MeV to 417 MeV. Initial operation is restricted to energies up to 331 MeV due to temporary limitations in the rf transmission system. Even at 331 MeV there is already a significant extension of the usable short wavelength range of the synchrotron radiation as compared to the range available at the 284 MeV operating energy of SURF II. These and other improvements have a major impact on SURF programs including: the Nanodetector, a conversion microscope which is a prototype real-time imaging system for EUV (extreme ultraviolet) lithography; the Spectrometer Calibration Beamline, used for high-accuracy absolute calibration of spectrometers; and the National EUV Reflectometry Facility, used to measure optical constants of thin-film multilayer optics

  13. A pinger system for the Los Alamos Proton Storage Ring

    International Nuclear Information System (INIS)

    Hardek, T.W.; Thiessen, H.A.

    1991-01-01

    Developers at the Proton Storage Ring have long desired a modulator and electrode combination capable of kicking the 800-MeV proton beam enough to conduct tune measurements with full intensity beams. At present this has been accomplished by reducing the voltage on one extraction kicker modulator and turning the other off. This method requires that all of the accumulated beam be lost on the walls of the vacuum chamber. In addition to tune measurements a more recent desire is to sweep out beam that may have leaked into the area between bunches. A four-meter electrode has been designed and constructed for the purpose. The design is flexible in that the electrode may be split in the center and rotated in order to provide vertical and horizontal electrodes each 2 meters long. In addition two solid-state pulse modulators that can provide 10kV in burst mode at up to 700 KHz have been purchased. This hardware and its intended use are described. 3 refs., 2 figs., 1 tab

  14. Local beam position feedback experiments on the ESRF storage ring

    International Nuclear Information System (INIS)

    Chung, Y.; Kahana, E.; Kirchman, J.

    1995-01-01

    This paper describes the results of local beam position feedback experiments conducted on the ESRF storage ring using digital signal processing (DSP) under the trilateral agreement of collaboration among ESRF, APS, and SPring-8. Two rf beam position monitors (BPMS) in the, upstream and downstream of the insertion device (ID) and two x-ray BPMs in the sixth cell were used to monitor the electron beam and the x-ray beam emitted from the ID, respectively. The local bump coefficients were obtained using the technique of singular value decomposition (SVD) on the global response matrix for the bump magnets and all the available BPMs outside the local bump. The local response matrix was then obtained between the two three-magnet bumps and the position monitors. The data sampling frequency was 4 kHz and a proportional, integral, and derivative (PID) controller was used. The result indicates the closed-loop feedback bandwidth close to 100 Hz and clear attenuation (∼ -40 dB) of the 7-Hz beam motion due to girder vibration resonance. Comparison of the results using the rf BPMs and x-ray BPMs will be also discussed

  15. Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry

    Directory of Open Access Journals (Sweden)

    E. Segre

    2008-03-01

    Full Text Available In this study, we measure the extinction efficiency at 532 nm of absorbing aerosol particles coated with a non-absorbing solid and liquid organic shell with coating thickness varying between 5 and 100 nm using cavity ring down aerosol spectrometry. For this purpose, we use nigrosin, an organic black dye, as a model absorbing core and two non-absorbing organic substances as shells, glutaric acid (GA and Di-Ethyl-Hexyl-Sebacate (DEHS. The measured behavior of the coated particles is consistent with Mie calculations of core-shell particles. Errors between measured and calculated values for nigrosin coated with GA and DEHS are between 0.5% and 10.5% and between 0.5% and 9%, respectively. However, it is evident that the calculations are in better agreement with the measured results for thinner coatings. Possible reasons for these discrepancies are discussed.

  16. Determination of dissolved methane in natural waters using headspace analysis with cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Hannah M.; Shiller, Alan M., E-mail: alan.shiller@usm.edu

    2015-01-26

    Highlights: • A method for determining low nanomolar dissolved CH{sub 4} was developed. • The methane detection utilizes cavity ring-down spectroscopy (CRDS). • Use of CRDS requires less time, materials and labor than typical of GC analysis. • Relative standard deviations of ∼4% were achieved at low nM CH{sub 4}. • Applications to seawater and river water are presented. - Abstract: Methane (CH{sub 4}) is the third most abundant greenhouse gas (GHG) but is vastly understudied in comparison to carbon dioxide. Sources and sinks to the atmosphere vary considerably in estimation, including sources such as fresh and marine water systems. A new method to determine dissolved methane concentrations in discrete water samples has been evaluated. By analyzing an equilibrated headspace using laser cavity ring-down spectroscopy (CRDS), low nanomolar dissolved methane concentrations can be determined with high reproducibility (i.e., 0.13 nM detection limit and typical 4% RSD). While CRDS instruments cost roughly twice that of gas chromatographs (GC) usually used for methane determination, the process presented herein is substantially simpler, faster, and requires fewer materials than GC methods. Typically, 70-mL water samples are equilibrated with an equivalent amount of zero air in plastic syringes. The equilibrated headspace is transferred to a clean, dry syringe and then drawn into a Picarro G2301 CRDS analyzer via the instrument’s pump. We demonstrate that this instrument holds a linear calibration into the sub-ppmv methane concentration range and holds a stable calibration for at least two years. Application of the method to shipboard dissolved methane determination in the northern Gulf of Mexico as well as river water is shown. Concentrations spanning nearly six orders of magnitude have been determined with this method.

  17. Cavity Ring Down and Thermal Lens Techniques Applied to Vibrational Spectroscopy of Gases and Liquids

    Science.gov (United States)

    Nyaupane, Parashu Ram

    Infrared (IR) and near-infrared (NIR) region gas temperature sensors have been used in the past because of its non-intrusive character and fast time response. In this dissertation cavity ring down (CRD) absorption of oxygen around the region 760 nm has been used to measure the temperature of flowing air in an open optical cavity. This sensor could be a convenient method for measuring the temperature at the input (cold air) and output (hot air) after cooling the blades of a gas turbine. The results could contribute to improvements in turbine blade cooling designs. Additionally, it could be helpful for high temperature measurement in harsh conditions like flames, boilers, and industrial pyrolysis ovens as well as remote sensing. We are interested in experiments that simulate the liquid methane and ethane lakes on Titan which is around the temperature of 94 K. Our specific goal is to quantify the solubility of unsaturated hydrocarbons in liquid ethane and methane. However, it is rather complicated to do so because of the low temperatures, low solubility and solvent effects. So, it is wise to do the experiments at higher temperature and test the suitability of the techniques. In these projects, we were trying to explore if our existing laboratory techniques were sensitive enough to obtain the solubility of unsaturated hydrocarbons in liquid ethane. First, we studied the thermal lens spectroscopy (TLS) of the (Deltav = 6) C-H overtone of benzene and naphthalene in hexane and CCl4 at room temperature.

  18. A cavity ring-down spectroscopy sensor for real-time Hall thruster erosion measurements

    International Nuclear Information System (INIS)

    Lee, B. C.; Huang, W.; Tao, L.; Yamamoto, N.; Yalin, A. P.; Gallimore, A. D.

    2014-01-01

    A continuous-wave cavity ring-down spectroscopy sensor for real-time measurements of sputtered boron from Hall thrusters has been developed. The sensor uses a continuous-wave frequency-quadrupled diode laser at 250 nm to probe ground state atomic boron sputtered from the boron nitride insulating channel. Validation results from a controlled setup using an ion beam and target showed good agreement with a simple finite-element model. Application of the sensor for measurements of two Hall thrusters, the H6 and SPT-70, is described. The H6 was tested at power levels ranging from 1.5 to 10 kW. Peak boron densities of 10 ± 2 × 10 14 m −3 were measured in the thruster plume, and the estimated eroded channel volume agreed within a factor of 2 of profilometry. The SPT-70 was tested at 600 and 660 W, yielding peak boron densities of 7.2 ± 1.1 × 10 14 m −3 , and the estimated erosion rate agreed within ∼20% of profilometry. Technical challenges associated with operating a high-finesse cavity in the presence of energetic plasma are also discussed

  19. The phase slip factor of the electrostatic cryogenic storage ring CSR

    Science.gov (United States)

    Grieser, Manfred; von Hahn, Robert; Vogel, Stephen; Wolf, Andreas

    2017-07-01

    To determine the momentum spread of an ion beam from the measured revolution frequency distribution, the knowledge of the phase slip factor of the storage ring is necessary. The slip factor was measured for various working points of the cryogenic storage ring CSR at MPI for Nuclear Physics, Heidelberg and was compared with simulations. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to that of magnetic storage rings.

  20. An asymmetric integrated extended cavity 20GHz mode-locked quantum well ring laser fabricated in the JePPIX technology platform

    NARCIS (Netherlands)

    Tahvili, M.S.; Barbarin, Y.; Ambrosius, H.P.M.M.; Smit, M.K.; Bente, E.A.J.M.; Leijtens, X.J.M.; Vries, de T.; Smalbrugge, E.; Bolk, J.

    2011-01-01

    In this paper, we present mode-locked operation of a monolithic 20GHz integrated extended cavity ring laser. The 4mm-long laser ring cavity incorporates a 750µm-long optical amplifier section (SOA), a separate 40µm long saturable absorber (SA) section, passive waveguide sections (shallow and deep

  1. Theoretical study of hydrogen storage in a truncated triangular pyramid molecule consisting of pyridine and benzene rings bridged by vinylene groups

    Science.gov (United States)

    Ishikawa, Shigeru; Nemoto, Tetsushi; Yamabe, Tokio

    2018-06-01

    Hydrogen storage in a truncated triangular pyramid molecule C33H21N3, which consists of three pyridine rings and one benzene ring bridged by six vinylene groups, is studied by quantum chemical methods. The molecule is derived by substituting three benzene rings in a truncated tetrahedron hydrocarbon C36H24 with pyridine rings. The optimized molecular structure under C 3v symmetry shows no imaginary vibrational modes at the B3LYP/cc-pVTZ level of theory. The hydrogen storage process is investigated based on the MP2/cc-pVTZ method. Like the structure before substitution, the C33H21N3 molecule has a cavity that stores a hydrogen molecule with a binding energy of - 140 meV. The Langmuir isotherm shows that this cavity can store hydrogen at higher temperatures and lower pressures than usual physisorption materials. The C33H21N3 molecule has a kinetic advantage over the C36H24 molecule because the former molecule has a lower barrier (+ 560 meV) for the hydrogen molecule entering the cavity compared with the latter molecule (+ 730 meV) owing to the lack of hydrogen atoms narrowing the opening.

  2. An external-cavity quantum cascade laser operating near 5.2 µm combined with cavity ring-down spectroscopy for multi-component chemical sensing

    Science.gov (United States)

    Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik

    2018-04-01

    We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.

  3. Electron cloud instabilities in the Proton Storage Ring and Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    M. Blaskiewicz

    2003-01-01

    Full Text Available Electron cloud instabilities in the Los Alamos Proton Storage Ring and those foreseen for the Oak Ridge Spallation Neutron Source are examined theoretically, numerically, and experimentally.

  4. Theory and analysis of nonlinear dynamics and stability in storage rings: A working group summary

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Audy, P.; Courant, E.D.

    1988-07-01

    A summary and commentary of the available theoretical and analytical tools and recent advances in the nonlinear dynamics, stability and aperture issues in storage rings are presented. 11 refs., 4 figs

  5. A progress report on the g-2 storage ring magnet system

    International Nuclear Information System (INIS)

    Bunce, G.; Cullen, J.; Danby, G.

    1995-01-01

    The 3.1 GeV muon storage ring for the g-2 experiment at Brookhaven National Laboratory hat three large solenoid magnets that form a continuous 1.451 tesla storage ring dipole with an average beam bond radius of 7.1 metors. In addition to the three storage ring solenoids, there is an inflector dipole with nested dipole coils that create very little stray magnetic field. A superconducting shield on the infractor gets rid of most of the remaining stray flux. This paper reports on the progress made on the storage ring solenoid magnet system and the inflector as of June 1995. The results of cryogenic system tests are briefly reported

  6. Coherent instabilities of proton beams in accelerators and storage rings - experimental results, diagnosis and cures

    International Nuclear Information System (INIS)

    Schnell, W.

    1977-01-01

    The author discusses diagnosis and cure of proton beam instabilities in accelerators and storage rings. Coasting beams and bunched beams are treated separately and both transverse and longitudinal instabilities are considered. (B.D.)

  7. A dedicated storage ring for Far-IR coherent synchrotron radiation at the ALS

    International Nuclear Information System (INIS)

    Barry, W.C.; Baptist, K.M.; Benjegerdes, R.J.; Biocca, A.K.; Byrd, J.M.; Byrne, W.E.; Cambie, D.; Chin, M.J.; Harkins, J.P.; Kwiatkowski, S.; Li, D.; Marks, S.; Martin, M.C.; McKinney, W.R.; Munson, D.V.; Nishimura, H.; Paterson, J.A.; Plate, D.W.; Rex, K.R.; Robin, D.S.; Rossi, S.L.; Sannibale, F.; Scarvie, T.; Schlueter, R.D.; Steier, C.A.; Stover, G.D.; Thur, W.G.; Jung, J.Y.; Zbasnik, J.P.

    2002-01-01

    We present the concepts for a storage ring dedicated to and optimized for the production of stable coherent synchrotron radiation (CSR) over the far-infrared wavelength range from about 200 microns to 1 mm

  8. The European UV/VUV storage ring FEL at ELETTRA: first operation and future prospects

    CERN Document Server

    Walker, R P; Couprie, Marie Emmanuelle; Dattoli, Giuseppe; Eriksson, M; Garzella, D; Giannessi, L; Marsi, M; Poole, M W; Renault, E; Roux, R; Trovò, M; Werin, S; Wille, K

    2001-01-01

    A European project to develop the first storage ring free-electron laser on a third-generation synchrotron radiation facility is presented, including a description of the main features, initial performance at 350 and 220 nm and future prospects.

  9. New storage ring at DESY's. HERA's realm in the shades. Pt. 2

    International Nuclear Information System (INIS)

    Habermann, A.

    1987-01-01

    The venture into the smallest dimensions of the microcosm requires gigantic machines. The HERA storage ring, due for completion in 1989, shall help the scientists at DESY in their venture into new realms of high-energy physics. (orig.) [de

  10. High and ultra-high vacuum pumping techniques: applications in accelerators and storage rings

    International Nuclear Information System (INIS)

    Schaefer, G.

    1988-01-01

    A survey is given on gas transfer pumps, especially Turbomolecular pumps, and entrapment pumps (cryopumps and getter pumps) mainly with regard to their application in evacuating particle accelerators and storage rings. (A.C.A.S.) [pt

  11. Water, gravity and trees: Relationship of tree-ring widths and total water storage dynamics

    Science.gov (United States)

    Creutzfeldt, B.; Heinrich, I.; Merz, B.; Blume, T.; Güntner, A.

    2012-04-01

    Water stored in the subsurface as groundwater or soil moisture is the main fresh water source not only for drinking water and food production but also for the natural vegetation. In a changing environment water availability becomes a critical issue in many different regions. Long-term observations of the past are needed to improve the understanding of the hydrological system and the prediction of future developments. Tree ring data have repeatedly proved to be valuable sources for reconstructing long-term climate dynamics, e.g. temperature, precipitation and different hydrological variables. In water-limited environments, tree growth is primarily influenced by total water stored in the subsurface and hence, tree-ring records usually contain information about subsurface water storage. The challenge is to retrieve the information on total water storage from tree rings, because a training dataset of water stored in the sub-surface is required for calibration against the tree-ring series. However, measuring water stored in the subsurface is notoriously difficult. We here present high-precision temporal gravimeter measurements which allow for the depth-integrated quantification of total water storage dynamics at the field scale. In this study, we evaluate the relationship of total water storage change and tree ring growth also in the context of the complex interactions of other meteorological forcing factors. A tree-ring chronology was derived from a Norway spruce stand in the Bavarian Forest, Germany. Total water storage dynamics were measured directly by the superconducting gravimeter of the Geodetic Observatory Wettzell for a 9-years period. Time series were extended to 63-years period by a hydrological model using gravity data as the only calibration constrain. Finally, water storage changes were reconstructed based on the relationship between the hydrological model and the tree-ring chronology. Measurement results indicate that tree-ring growth is primarily

  12. Logic operations and data storage using vortex magnetization states in mesoscopic permalloy rings, and optical readout

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, S R; Gibson, U J, E-mail: u.gibson@dartmouth.ed [Thayer School of Engineering, Dartmouth College, Hanover, NH 03755-8000 (United States)

    2010-01-01

    Optical coatings applied to one-half of thin film magnetic rings allow real-time readout of the chirality of the vortex state of micro- and nanomagnetic structures by breaking the symmetry of the optical signal. We use this technique to demonstrate data storage, operation of a NOT gate that uses exchange interactions between slightly overlapping rings, and to investigate the use of chains of rings as connecting wires for linking gates.

  13. Performance of quadrupole and sextupole magnets for the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    Kim, S.H.; Doose, C.L.; Kim, K.; Thompson, K.M.; Turner, L.R.

    1993-01-01

    From the magnetic measurement data of several production quadrupole and sextupole magnets for the storage ring of the Advanced Photon Source, the excitation efficiencies and systematic and random multipole coefficients of the magnets are summarized. The designs of the magnets, which are constrained due to the geometry of the vacuum chamber have rotation symmetries of 180 degrees and 120 degrees. The production data meet the allowed tolerances of a few parts in 10 -4 for the storage ring

  14. An analysis of the long-term stability of the particle dynamics in hadron storage rings

    International Nuclear Information System (INIS)

    Bruening, O.S.

    1994-05-01

    This thesis extends the stability analysis of the particle motion in a storage ring and estimates the diffusion rates well inside the dynamic aperture. The calculation of the drift and diffusion coefficients focuses on an application to the proton storage ring in HERA, where the proton beam lifetime drops considerably after the proton and electron beams are brought to collision. The analysis shows that the combined effect of slow and fast modulation frequencies leads to an increased emittance growth in the storage ring. HERA the slow frequency components are caused by ground motion in the HERA tunnel and the fast frequency components by ripples in the power supplies. The thesis provides upper limits for the modultion depths of a fast tune modulation which result in tolerable growth rates for the proton emittance. The analytically calculated drift coefficients agree numerical simulations for the particle dynamics. A comparison of the calculated drift coefficients with those measured in the HERA proton storage ring shows that the analyzed mechanism can lead to growth rates of the same order of magnitude as the ones measured during the luminosity operation in the HERA storage ring. Analytical estimates for the proton growth rates predict a high sensitivity to the particle diffusion on the frequency components of the fast fast tune modulation. This prediction was confirmed by a subsequent modulation experiment in the proton storage ring of HERA, where an external tune modulation with fast frequency components led to a drastic increase in the growth rates

  15. Storage ring free electron laser, pulse propagation effects and microwave type instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G.; Mezi, L.; Renieri, A. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy); Migliorati, M. [Rome Univ. La Sapienza, Rome (Italy). Dipt. di Energetica

    2000-07-01

    It has been developed a dynamical model accounting for the storage Ring Free Electron Laser evolution including pulse propagation effects and e-beam instabilities of microwave type. It has been analyzed the general conditions under which the on set of the laser may switch off the instability and focus everybody attention on the interplay between cavity mismatch, laser pulsed behavior and e-beam instability dynamics. Particular attention is also devoted to the laser operation in near threshold conditions, namely at an intracavity level just enough to counteract the instability, that show in this region new and interesting effects arises. [Italian] Si sviluppa un modello dinamico per la descrizione dell'evoluzione di un laser ad elettroni liberi in anello di accumulazione con l'inclusione di effetti di propagazione d'impulso e di instabilita' a microonda. Si analizzano le condizioni per le quali l'instaurarsi dell'operazione laser puo' spegnere l'instabilita' e si focalizza l'attenzione sulla connessione fra desincronismo della cavita', comportamento pulsato del laser e comportamento instabile del fascio di elettroni: si analizza in particolare l'operazione laser quando il guadagno e' prossimo alle perdite della cavita' e si osservano effetti particolarmente interessanti.

  16. HISTRAP: Proposal for a Heavy Ion Storage Ring for Atomic Physics

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This paper presents an overview of the physics capabilities of HISTRAP together with a brief description of the facility and a sampling of the beams which will be available for experimentation, and surveys some of the lines of investigation in the physics of multicharged ions, molecular ion spectroscopy, condensed beams, and nuclear physics that will become possible with the advent of HISTRAP. Details of the accelerator design are discussed, including computer studies of beam tracking in the HISTRAP lattice, a discussion of the HHIRF tandem and ECR/RFQ injectors, and a description of the electron beam cooling system. In the past three years, HISTRAP has received substantial support from Oak Ridge National Laboratory management and staff. The project has used discretionary funds to develop hardware prototypes and carry out design studies. Construction has been completed on a vacuum test stand which models 1/16 of the storage ring and has attained a pressure of 4 x 10/sup -12/ Torr; a prototype rf cavity capable of accelerating beams up to 90 MeV/nucleon and decelerating to 20 keV/nucleon; and a prototype dipole magnet, one of the eight required for the HISTRAP lattice. This paper also contains a summary of the work on electron cooling carried out by one of our staff members at CERN. Building structures and services are described. Details of cost and schedule are also discussed. 77 refs.

  17. HISTRAP: Proposal for a Heavy Ion Storage Ring for Atomic Physics

    International Nuclear Information System (INIS)

    1988-11-01

    This paper presents an overview of the physics capabilities of HISTRAP together with a brief description of the facility and a sampling of the beams which will be available for experimentation, and surveys some of the lines of investigation in the physics of multicharged ions, molecular ion spectroscopy, condensed beams, and nuclear physics that will become possible with the advent of HISTRAP. Details of the accelerator design are discussed, including computer studies of beam tracking in the HISTRAP lattice, a discussion of the HHIRF tandem and ECR/RFQ injectors, and a description of the electron beam cooling system. In the past three years, HISTRAP has received substantial support from Oak Ridge National Laboratory management and staff. The project has used discretionary funds to develop hardware prototypes and carry out design studies. Construction has been completed on a vacuum test stand which models 1/16 of the storage ring and has attained a pressure of 4 x 10 -12 Torr; a prototype rf cavity capable of accelerating beams up to 90 MeV/nucleon and decelerating to 20 keV/nucleon; and a prototype dipole magnet, one of the eight required for the HISTRAP lattice. This paper also contains a summary of the work on electron cooling carried out by one of our staff members at CERN. Building structures and services are described. Details of cost and schedule are also discussed. 77 refs

  18. Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Jacquet, P.; Pailloux, A.; Doizi, D.; Aoust, G.; Jeannot, J.-P.

    2013-06-01

    Safety and availability are key issues of the generation IV reactors. Hence, the three radionuclide confinement barriers, including fuel cladding, must stay tight during the reactor operation. During the primary gaseous failure, fission products xenon and krypton are released. Their fast and sensitive detection guarantees the first confinement barrier tightness. In the frame of the French ASTRID project, an optical spectroscopy technique - Cavity Ring Down Spectroscopy (CRDS) - is investigated for the gaseous fission products measurement. A dedicated CRDS set-up is needed to detect the rare gases with a commercial laser. Indeed, the CRDS is coupled to a glow discharge plasma, which generates a population of metastable atoms. The xenon plasma conditions are optimized to 110 Pa and 1.3 W (3 mA). The production efficiency of metastable Xe is then 0.8 %, stable within 0.5% during hours. The metastable number density is proportional to the xenon over argon molar fraction. The spectroscopic parameters of the strong 823.16 nm xenon transition are calculated and/or measured in order to optimize the fit of the experimental spectra and make a quantitative measurement of the metastable xenon. The CRDS is coupled to the discharge cell. The laser intensity inside the cavity is limited by the optical saturation process, resulting from the strong optical pumping of the metastable state. The resulting weak CRDS signal requires a fast and very sensitive photodetector. A 600 ppt xenon molar fraction was measured by CRDS. With the present set-up, the detection limits are estimated from the baseline noise to approximately 20 ppt for each even isotope, 60 ppt for the 131 Xe and 55 ppt for the 129 Xe. This sensitivity matches the specifications required for gaseous leak measurement; approximately 100 ppt for 133 Xe (4 GBq/m 3 ) and 10 ppb for stable isotopes. The odd isotopes are selectively measured, whereas the even isotopes overlap, a spectroscopic feature that applies for stable or

  19. Cabling design of booster and storage ring construction progress of TPS

    International Nuclear Information System (INIS)

    Wong, Y.-S.; Liu, K.-B.; Liu, C.-Y.; Wang, B.-S.

    2017-01-01

    The 2012 Taiwan Photon Source (TPS) cable construction project started after 10 months to complete the cable laying and installation of power supply. The circumference of the booster ring (BR) is 496.8 m, whereas that of the storage ring (SR) is 518.4 m. Beam current is set to 500 mA at 3.3 GeV. The paper on grounding systems discusses the design of the ground wire (< 0.2 Ω) with low impedance, power supply of the accelerator and cabling tray. The flow and size of the ground current are carefully evaluated to avoid grounded current from flowing everywhere, which causes interference problems. In the design of the TPS, special shielding will be established to isolate the effects of electromagnetic interference on the magnet and ground current. Booster ring dipoles are connected by a series of 54-magnet bending dipole; the cable size of its stranded wire measures 250 mm"2, with a total length of 5000 m. Booster ring and storage ring quadrupoles have 150 magnets; the cable size of their stranded wire is 250 mm"2, with a total length of 17000 m. Storage ring dipole consists of 48 magnets; the cable size of its stranded wire is 325 mm"2, with a total length of 6000 m. This study discusses the power supply cabling design of the storage ring and booster ring construction progress of TPS. The sections of this paper are divided into discussions of the construction of the control and instrument area, cabling layout of booster ring and storage ring, as well as the installation and commission machine. This study also discusses the use of a high-impedance meter to determine the effect of cabling insulation and TPS power supply machine on energy transfer to ensure the use of safe and correct magnet.

  20. Single photon emission and quantum ring-cavity coupling in InAs/GaAs quantum rings

    International Nuclear Information System (INIS)

    Gallardo, E; Nowak, A K; Sanvitto, D; Meulen, H P van der; Calleja, J M; MartInez, L J; Prieto, I; Alija, A R; Granados, D; Taboada, A G; GarcIa, J M; Postigo, P A; Sarkar, D

    2010-01-01

    Different InAs/GaAs quantum rings embedded in a photonic crystal microcavity are studied by quantum correlation measurements. Single photon emission, with g (2) (0) values around 0.3, is demonstrated for a quantum ring not coupled to the microcavity. Characteristic rise-times are found to be longer for excitons than for biexcitons, resulting in the time asymmetry of the exciton-biexciton cross-correlation. No antibunching is observed in another quantum ring weakly coupled to the microcavity.

  1. CESAR, 2 MeV electron storage ring; construction period; general view.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1962-01-01

    A general view of the 2-MeV electron storage-ring model during the last stages of assembly. The injection line for the electrons enters at the bottom of the picture (under the ladder) and meets the ring at the back, to the right. Near there, Joseph Karouanton (S.G.T.E, Paris) (inside the ring), and Marcel Bernasconi (AR Division) are seen testing for leaks in the vacuum system. In white coats are Mervin Barnes (left) and Boony Bruggerman (AR Division), considering the reading shown by one of the vacuum gauges.

  2. Measurement of spin motions in a storage ring outside the stable polarization direction

    International Nuclear Information System (INIS)

    Akchurin, N.; Badano, L.; Bravar, A.; Istituto Nazionale di Fisica Nucleare, Legnaro

    1993-06-01

    Polarized, stored beams are becoming a more and more important tool in nuclear and high energy physics. In order to measure the beam polarization in a storage ring the polarization vector of the stored beams has to aim, revolution for revolution, over a period of seconds to minutes, into the same, so-called ''stable'' direction. In this paper measurements at the Indiana University cooler ring (IUCF) are described in which for the first time in a storage ring oscillations of the polarization vector around this stable direction have been measured. The existence and the dynamics of such oscillations are, for instance, important for a new proposed technique for polarizing stored hadron beams

  3. Single-pass BPM system of the Photon Factory storage ring.

    Science.gov (United States)

    Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y

    1998-05-01

    At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.

  4. A review of methods for experimentally determining linear optics in storage rings

    International Nuclear Information System (INIS)

    Safranek, J.

    1995-01-01

    In order to maximize the brightness and provide sufficient dynamic aperture in synchrotron radiation storage rings, one must understand and control the linear optics. Control of the horizontal beta function and dispersion is important for minimizing the horizontal beam size. Control of the skew gradient distribution is important for minimizing the vertical size. In this paper, various methods for experimentally determining the optics in a storage ring will be reviewed. Recent work at the National Synchrotron Light Source X-Ray Ring will be presented as well as work done at laboratories worldwide

  5. SC-cavity operation via WG-transformer

    International Nuclear Information System (INIS)

    Dwersteg, B.

    1990-01-01

    Varying beam currents in storage rings like PETRA and HERA strongly change the match condition of the generator-cavity system. To maintain optimum energy transfer variable input coupling is needed. A variable waveguide transformer was developed which covers transformation ratios of 0.2 to 5. Additionally this device allows to change the cavity phase independently. The parameters of a system consisting of generator, transformer and superconducting cavity under operation in a storage ring will be discussed. (author)

  6. Survey and alignment of photon factory storage ring at KEK

    International Nuclear Information System (INIS)

    Araki, A.; Honjo, I.; Katoh, M.; Kamiya, Y.; Kihara, M.

    1987-01-01

    The heights of the magnets for both the ring and the beam transport line (BT-line) have been periodically measured at the Photon Factory. The accumulated data showed that the ring was considerably declined due to the construction of the large experimental hall and the tunnel of the TRISTAN project, and that the BT-line also sank several centimeters at some locations. These displacements of the magnets produce a significantly large closed orbit distortion and the vertical dispersion

  7. Pulsed modulator power supply for the g-2 muon storage ring injection kicker

    NARCIS (Netherlands)

    Mi, J.; Lee, Y. Y.; Morse, W. M.; Pai, C. I.; Pappas, G. C.; Sanders, R.; Semertzidis, Y. K.; Warburton, D.; Zapasek, R.; Jungmann, K.; Roberts, L.

    1999-01-01

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage

  8. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    NARCIS (Netherlands)

    van Buuren, L.D.; Szczerba, D.; van den Brand, J.F.J.; Bulten, H.J.; Klous, S.; Mul, F.A.; Poolman, H.R.; Simani, M.C.

    2001-01-01

    The performance of a hydrogen/deuterium polarized gas target in a storage ring is presented. The target setup consisted of an atomic beam source, a cryogenic storage cell and a Breit-Rabi polarimeter. High frequency transition units were constructed to produce vector polarized hydrogen and

  9. Performance of a Polarized Deuterium Internal Target in a Medium-Energy Electron Storage Ring.

    NARCIS (Netherlands)

    Zhou, Z.L.; Ferro Luzzi, M.M.E.; van den Brand, J.F.J.; Bulten, H.J.; Alarcon, R.; van Bommel, R.; Botto, T.; Bouwhuis, M.; Buchholz, M.; Choi, S.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Gaulard, C.; de Jager, C.W.; Lang, J.; de Lange, D.J.; Miller, M.A.; Passchier, E.; Passchier, I.; Poolman, H.R.; Six, E.; Steijger, J.J.M.; Unal, O.; de Vries, H.

    1996-01-01

    A polarized deuterium target internal to a medium-energy electron storage ring is described in the context of spindependent (e, e′d) and (e ,e′p) experiments. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used

  10. A low-volume cavity ring-down spectrometer for sample-limited applications

    Science.gov (United States)

    Stowasser, C.; Farinas, A. D.; Ware, J.; Wistisen, D. W.; Rella, C.; Wahl, E.; Crosson, E.; Blunier, T.

    2014-08-01

    In atmospheric and environmental sciences, optical spectrometers are used for the measurements of greenhouse gas mole fractions and the isotopic composition of water vapor or greenhouse gases. The large sample cell volumes (tens of milliliters to several liters) in commercially available spectrometers constrain the usefulness of such instruments for applications that are limited in sample size and/or need to track fast variations in the sample stream. In an effort to make spectrometers more suitable for sample-limited applications, we developed a low-volume analyzer capable of measuring mole fractions of methane and carbon monoxide based on a commercial cavity ring-down spectrometer. The instrument has a small sample cell (9.6 ml) and can selectively be operated at a sample cell pressure of 140, 45, or 20 Torr (effective internal volume of 1.8, 0.57, and 0.25 ml). We present the new sample cell design and the flow path configuration, which are optimized for small sample sizes. To quantify the spectrometer's usefulness for sample-limited applications, we determine the renewal rate of sample molecules within the low-volume spectrometer. Furthermore, we show that the performance of the low-volume spectrometer matches the performance of the standard commercial analyzers by investigating linearity, precision, and instrumental drift.

  11. Quantification of Atmospheric Formaldehyde by Near-Infrared Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Rella, C.; Hoffnagle, J.; Fleck, D.; Kim-Hak, D.

    2017-12-01

    Formaldehyde is an important species in atmospheric chemistry, especially in urban environments, where it is a decay product of methane and volatile hydrocarbons. It is also a toxic, carcinogenic compound that can contaminate ambient air from incomplete combustion, or outgassing of commercial products such as adhesives used to fabricate plywood or to affix indoor carpeting. Formaldehyde has a clearly resolved ro-vibrational absorption spectrum that is well-suited to optical analysis of formaldehyde concentration. We describe an instrument based on cavity ring-down spectroscopy for the quantitative analysis of formaldehyde concentration in ambient air. The instrument has a precision (1-sigma) of about 1 ppb at a measurement rate of 1 second, and provides measurements of less than 100 ppt with averaging. The instrument provides stable measurements (drift < 1 ppb) over long periods of time (days). The instrument has been ruggedized for mobile applications, and with a fast response time of a couple of seconds, it is suitable for ground-based vehicle deployments for fenceline monitoring of formaldehyde emissions. In addition, we report on ambient atmospheric measurements at a 10m urban tower, which demonstrate the suitability of the instrument for applications in atmospheric chemistry.

  12. Evaluation of a cavity ring-down spectrometer for in situ observations of 13CO2

    Directory of Open Access Journals (Sweden)

    D. E. J. Worthy

    2013-02-01

    Full Text Available With the emergence of wide-spread application of new optical techniques to monitor δ13C in atmospheric CO2 there is a growing need to ensure well-calibrated measurements. We characterized one commonly available instrument, a cavity ring-down spectrometer (CRDS system used for continuous in situ monitoring of atmospheric 13CO2. We found no dependency of δ13C on the CO2 concentration in the range of 303–437 ppm. We designed a calibration scheme according to the diagnosed instrumental drifts and established a quality assurance protocol. We find that the repeatability (1-σ of measurements is 0.25‰ for 10 min and 0.15‰ for 20 min integrated averages, respectively. Due to a spectral overlap, our instrument displays a cross-sensitivity to CH4 of 0.42 ± 0.024‰ ppm−1. Our ongoing target measurements yield standard deviations of δ13C from 0.22‰ to 0.28‰ for 10 min averages. We furthermore estimate the reproducibility of our system for ambient air samples from weekly measurements of a long-term target gas to be 0.18‰. We find only a minuscule offset of 0.002 ± 0.025‰ between the CRDS and Environment Canada's isotope ratio mass spectrometer (IRMS results for four target gases used over the course of one year.

  13. 403 nm cavity ring-down measurements of brown carbon aerosol

    Science.gov (United States)

    Kwon, D.; Grassian, V. H.; Kleiber, P.; Young, M. A.

    2017-12-01

    Atmospheric aerosol influences Earth's climate by absorbing and scattering incoming solar radiation and outgoing terrestrial radiation. One class of secondary organic aerosol (SOA), called brown carbon (BrC), has attracted attention for its wavelength dependent light absorbing properties with absorption coefficients that generally increase from the visible (Vis) to ultraviolet (UV) regions. Here we report results from our investigation of the optical properties of BrC aerosol products from the aqueous phase reaction of ammonium sulfate (AS) with methylglyoxal (MG) using cavity ring-down spectroscopy (CRDS) at 403 nm wavelength. We have measured the optical constants of BrC SOA from the AS/MG reaction as a function of reaction time. Under dry flow conditions, we observed no apparent variation in the BrC refractive index with aging over the course of 22 days. The retrieved BrC optical constants are similar to those of AS with n = 1.52 for the real component. Despite significant UV absorption observed from the bulk BrC solution, the imaginary index value at 403 nm is below our minimum detection limit which puts an upper bound of k as 0.03. These observations are in agreement with results from our recent studies of the light scattering properties of this BrC aerosol.

  14. A new approach to sum frequency generation of single-frequency blue light in a coupled ring cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2014-01-01

    We present a generic approach for the generation of tunable single-frequency light and demonstrate generation of more than 300 mW tunable light around 460 nm. One tapered diode laser is operated in a coupled ring cavity containing the nonlinear crystal and another tapered diode laser is sent thro...... through the nonlinear crystal in a single pass. A high conversion efficiency of more than 25 % of the single-pass laser is enabled by the high circulating power in the coupled cavity. The system is entirely self-stabilized with no need for electronic locking....

  15. Required cavity HOM deQing calculated from probability estimates of coupled bunch instabilities in the APS ring

    International Nuclear Information System (INIS)

    Emery, L.

    1993-01-01

    A method of determining the deQing requirement of individual cavity higher-order modes (HOM) for a multi-cavity RF system is presented and applied to the APS ring. Since HOM resonator frequency values are to some degree uncertain, the HOM frequencies should be regarded as random variables in predicting the stability of the coupled bunch beam modes. A Monte Carlo simulation provides a histogram of the growth rates from which one obtains an estimate of the probability of instability. The damping of each HOM type is determined such that the damping effort is economized, i.e. no single HOM dominates the specified growth rate histogram

  16. TSR: A storage and cooling ring for HIE-ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Blaum, K. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Davinson, T. [School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Flanagan, K.; Freeman, S.J. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Grieser, M. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Lazarus, I.H. [S.T.F.C. Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Litvinov, Yu.A. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Lotay, G. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Page, R.D. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Raabe, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven (Belgium); Siesling, E.; Wenander, F. [CERN, 1211 Geneva 23 (Switzerland); Woods, P.J. [School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2016-06-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  17. TSR: A Storage Ring for HIE-ISOLDE

    CERN Document Server

    Butler, P A; Blaum, K; Grieser, M; Davinson, T; Woods, P J; Flanagan, K; Freeman, S J; Lazarus, I H; Litvinov, Yu A; Raabe, R; Siesling, E; Wenander, F

    2016-01-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  18. Afterglow Studies of H3+(v=0) Recombination using Time Resolved cw.Diode Laser Cavity Ring-Down Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Macko, P.; Bánó, G.; Hlavenka, P.; Plašil, R.; Poterya, V.; Pysanenko, A.; Votava, Ondřej; Johnsen, R.; Glosík, J.

    2004-01-01

    Roč. 233, 1/3 (2004), s. 299-304 ISSN 1387-3806 R&D Projects: GA ČR GA205/02/0610; GA ČR GA202/02/0948 Institutional research plan: CEZ:AV0Z4040901 Keywords : recombination * H-3(+) ions * cavity ring-down Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.235, year: 2004

  19. A new formula for the lifetime of a round beam caused by the Touschek effect in an electron storage ring

    International Nuclear Information System (INIS)

    Miyahara, Yoshikazu

    1985-01-01

    The beam lifetime caused by the Touschek effect in an electron storage ring is calculated for a round beam, extending the existing theory for a ribbon beam. The result agrees with the observed lifetime in the SOR-RING. (author)

  20. Resonant depolarization in electron storage rings equipped with ''siberia snakes''

    International Nuclear Information System (INIS)

    Buon, J.

    1984-11-01

    Resonant depolarization induced by field errors and quantum emissions in an electron ring equipped with two ''siberian snakes'' is investigated with a first order perturbation calculation. It is shown that this depolarization is not reduced by the snakes when the operating energy is set out of the depolarization resonances [fr

  1. Design parameters for a small storage ring optimized as an x-ray lithography source

    International Nuclear Information System (INIS)

    Grobman, W.D.

    1983-01-01

    This paper examines the design parameters for a ''compact storage ring'' which is matched well to x-ray lithographic requirements, but is as small as possible. This calculation uses a model of a lithographic system which obtains its input parameters from a technology of mask, resist and beam line based on the IBM program at the Brookhaven National Laboratory vacuum ultraviolet electron storage ring. Based on this lithographic system, we model exposure throughput as a function of storage ring parameters to understand which storage ring designs provide adequate but not excessive soft x-ray flux in the lithographically important region. Our scan of storage ring sources will cover a wide range of energies and magnetic fields, to permit consideration of superconducting as well as more standard strong- or weak-focusing designs. Furthermore, we will show that the results of the calculations presented here can be scaled in a simple way to cover a wide range of x-ray lithography system assumptions

  2. Status of rf development work on a ferrite tuned amplifier cavity for the TRIUMF KAON factory booster ring

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enegren, T.

    1987-01-01

    Of the five synchrotron rings in the proposed TRIUMF KAON factory, the Booster ring to accelerate the proton beam from 440 MeV to 3 GeV has the most demanding rf requirements, primarily because of the relatively large frequency swing of 46.1 MHz to 61.1 MHz at a high repetition rate of 50 Hz. In the current reference design, the Booster lattice has twelve 3.9 m drift spaces with 2.5 m in each drift space available for installation of rf cavities to provide a required effective acceleration voltage of up to 600 kV per turn i.e. 50 kV per cavity. Design and development studies of a suitable cavity-amplifier system are in progress. For the initial reference design a system based on the one used in the Fermilab booster synchrotron has been chosen. That is, a double-gap drift-tube cavity with parallel-biased ferrite tuners and excited with a directly coupled Eimac Y567B tetrode. To meet the tuning and voltage requirements within the various mechanical and other constraints such as tube-to-gap voltage ratio, ferrite power density and available space, the reference design had to be further modified and a cold model of the cavity and tuners was constructed from copper-covered cardboard cylinders. From the results of the cold model measurements a new reference design was established and design work has begun on a full power prototype of the cavity-amplifier system

  3. Quantification of hydrogen sulfide by near-infrared cavity ring-down spectroscopy

    Science.gov (United States)

    Rella, C.; Hoffnagle, J.; Wahl, E. H.; Kim-Hak, D.

    2017-12-01

    Hydrogen Sulfide is an important atmospheric sulfur species. Primary natural terrestrial sources of atmospheric H2S are volcanos and wetlands; primary anthropogenic sources are landfills; wastewater treatment facilities; sewer systems; natural gas extraction, production, and distribution; and paper manufacturing. The human nose is very sensitive to H2S and other sulfur species, leading to a significant negative impact of industrial processes in which H2S is emitted into the atmosphere. However, there is a relative lack of instrumentation capable of detecting and quantifying H2S at ppb levels and below. We describe an instrument based on cavity ring-down spectroscopy for the quantitative analysis of hydrogen sulfide concentration in ambient air. In addition to H2S, the instrument measures water vapor and methane. The instrument has a precision (1-sigma) of about 1 ppb at a measurement rate of 1 second, and provides measurements of less than 100 ppt with averaging. The instrument provides stable measurements (drift < 1 ppb) over long periods of time (days), and has a response time of just a couple of seconds. We report on ambient atmospheric measurements at a 10m urban tower, which demonstrate the suitability of the instrument for applications in urban sulfur emissions. This instrument is also suitable for soil flux measurements in a recirculating chamber, with predicted detection limit of about 0.6 μg H2S / m2 / hr and 0.45 μg CH4 / m2 / hr in a 10-minute chamber closure time.

  4. Flask sample measurements for CO2, CH4 and CO using cavity ring-down spectrometry

    Science.gov (United States)

    Wang, J.-L.; Jacobson, G.; Rella, C. W.; Chang, C.-Y.; Liu, I.; Liu, W.-T.; Chew, C.; Ou-Yang, C.-F.; Liao, W.-C.; Chang, C.-C.

    2013-08-01

    In recent years, cavity ring-down spectrometry (CRDS) has been demonstrated to be a highly sensitive, stable and fast analytical technique for real-time in situ measurements of greenhouse gases. In this study, we propose the technique (which we call flask-CRDS) of analyzing whole air flask samples for CO2, CH4 and CO using a custom gas manifold designed to connect to a CRDS analyzer. Extremely stable measurements of these gases can be achieved over a large pressure range in the flask, from 175 to 760 Torr. The wide pressure range is conducive to flask sample measurement in three ways: (1) flask samples can be collected in low-pressure environments (e.g. high-altitude locations); (2) flask samples can be first analyzed for other trace gases with the remaining low-pressure sample for CRDS analysis of CO2, CH4 and CO; and (3) flask samples can be archived and re-analyzed for validation. The repeatability of this method (1σ of 0.07 ppm for CO2, 0.4 ppb for CH4, and 0.5 ppb for CO) was assessed by analyzing five canisters filled with the same air sample to a pressure of 200 Torr. An inter-comparison of the flask-CRDS data with in-situ CRDS measurements at a high-altitude mountain baseline station revealed excellent agreement, with differences of 0.10 ± 0.09 ppm (1σ) for CO2 and 0.9 ± 1.0 ppb for CH4. This study demonstrated that the flask-CRDS method was not only simple to build and operate but could also perform highly accurate and precise measurements of atmospheric CO2, CH4 and CO in flask samples.

  5. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    Science.gov (United States)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  6. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    Directory of Open Access Journals (Sweden)

    A. Wolski

    2011-07-01

    Full Text Available We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  7. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    Science.gov (United States)

    Wolski, A.; Rubin, D.; Sagan, D.; Shanks, J.

    2011-07-01

    We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs) using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  8. Lifetime improvement and beam stabilization by longitudinal phase modulation at the DELTA electron storage ring; Lebensdauerverbesserung und Strahlstabilisierung durch longitudinale Phasenmodulation am Elektronenspreicherring DELTA

    Energy Technology Data Exchange (ETDEWEB)

    Fuersch, Jonathan

    2014-10-16

    In DELTA especially at high beam currents often the occurence of an instability of a longitudinal oscillation mode is observed. In the framework of the present thesis first with different procedure the cause of the longitudinal oscillation mode, which is especially strongly excited at high beam currents, is searched for. Thereby connections between the occurrence of this mode and parameters from the region of the storage-ring high-frequency system is observed. It is shown by comparison of different procedures, simulation calculations, and experimental pre-examinations, that especially by a phase modulation of the storage-ring high frequency an essential improvement of especially the longitudinal beam stability and the beam lifetime can be reached. For the durable and reliable improvement of these beam properties in the framework of the present thesis a system for the longitudinal phase modulation of the after-acceleration voltage in the cavity resonator of the DELTA storage ring is concipated, developed, constructed, taken in operation, and tested. Finally the results aimed hereby are presented and discussed.

  9. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.

    Science.gov (United States)

    Durgun, E; Grossman, Jeffrey C

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  10. Storage ring to investigate cold unidimensional atomic collisions

    International Nuclear Information System (INIS)

    Marcassa, L. G.; Caires, A. R. L.; Nascimento, V. A.; Dulieu, O.; Weiner, J.; Bagnato, V. S.

    2005-01-01

    In this paper we employ a circulating ring of trapped atoms, that we have named the atomotron, to study cold collisions. The atomotron is obtained from a conventional magneto-optical trap when the two pairs of normally retroreflecting Gaussian laser beams in the x-y plane are slightly offset. Circulating stable atomic orbits then form a racetrack geometry in this plane. The circulating atom flux behaves similarly to an atomic beam with an average tangential velocity much greater than the transverse components, and is therefore suitable for one-dimensional atomic collision studies. Using the atomotron, we have investigated the polarization dependence of ultracold photoassociation collisions between Rb atoms circulating in the racetrack. The ability to investigate collisions in ultracold circulating atomic rings reveals alignment and orientation properties that are averaged away in ordinary three-dimensional magneto-optical trap collision processes

  11. The physics interests of a 10 TeV proton synchrotron, 400 x 400 GeV2 proton storage rings, and electron-proton storage rings

    International Nuclear Information System (INIS)

    Camilleri, L.

    1976-01-01

    This report consists of a collection of documents produced by two Study Groups, one on a multi-TeV Proton Synchrotron and the other on 400 x 400 GeV 2 Proton Storage Rings. In both studies the reactions of interest in the weak, electromagnetic and strong interactions are discussed. The technical feasibility of the relevant experiments is investigated by attempting. in each case, the design of an experimental set-up. Event rates are estimated using currently p revailing theoretical models and by extrapolation of results at present accelerators. In addition to the work of the two Study Groups, a section on the physics interests and technical problems of ep Storage Rings is included. (author)

  12. The beam loss monitoring system for HLS storage ring

    CERN Document Server

    Li Yu Xiong; Li Wei; Li Jue Xin; Liu Zu Ping; Shao Bei Bei

    2001-01-01

    A beam loss monitoring system has been established at HLS. This paper gives its principle and scientific grounds. Study on the ring's TBA structure and utilization of Monte-Carlo calculation to the shower electrons is important in its design. The system composition and performance are also introduced. The detector BLMs, data acquisition devices and host PC are linked via CAN bus. This system is helpful to analyze beam loss distribution and regulate the machine operation parameters.

  13. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES

    International Nuclear Information System (INIS)

    PARSA, Z.

    2001-01-01

    Intense muon sources for the purpose of providing intense high energy neutrino beams (ν factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both ± μ. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider

  14. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.

    Energy Technology Data Exchange (ETDEWEB)

    PARSA,Z.

    2001-06-18

    Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

  15. Electron cloud development in the Proton Storage Ring and in the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pivi, M.T.F.; Furman, M.A.

    2002-01-01

    We have applied our simulation code ''POSINST'' to evaluate the contribution to the growth rate of the electron-cloud instability in proton storage rings. Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source(SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A key ingredient in our model is a detailed description of the secondary emitted-electron energy spectrum. A refined model for the secondary emission process including the so-called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code

  16. Dielectronic recombination experiments at the storage rings: From the present CSR to the future HIAF

    Science.gov (United States)

    Huang, Z. K.; Wen, W. Q.; Xu, X.; Wang, H. B.; Dou, L. J.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Li, J.; Ma, X. M.; Mao, L. J.; Yang, J. C.; Yuan, Y. J.; Xu, W. Q.; Xie, L. Y.; Xu, T. H.; Yao, K.; Dong, C. Z.; Zhu, L. F.; Ma, X.

    2017-10-01

    Dielectronic recombination (DR) experiments of highly charged ions at the storage rings have been developed as a precision spectroscopic tool to investigate the atomic structure as well as nuclear properties of stable and unstable nuclei. The DR experiment on lithium-like argon ions was successfully performed at main Cooler Storage Ring (CSRm) at Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex. The DR experiments on heavy highly charged ions and even radioactive ions are currently under preparation at the experimental Cooler Storage Ring (CSRe) at HIRFL. The current status of DR experiments at the CSRm and the preparation of the DR experiments at the CSRe are presented. In addition, an overview of DR experiments by employing an electron cooler and a separated ultra-cold electron target at the upcoming High Intensity heavy ion Accelerator Facility (HIAF) will be given.

  17. Circuit description of unipolar DC-to-DC converters for APS storage ring quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    McGhee, D.G.

    1993-01-01

    This paper describes the control, interlock, and power circuits for 680 unipolar switch mode DC-to-DC converters used to regulate the Advanced Photon Sources (APS's) storage ring quadrupole and sextupole magnet currents. Quadrupole current stability is ± 6x10 -5 and the sextupole current stability is ±3x10 -4 . The stability is obtained with pulse width modulation, operating at a switching frequency of 20kHz with full current switching. The converters are housed in 200 cabinets located on top of the storage ring tunnel. Raw DC power is distributed from 80 AC-to-DC power supplies, four at each of 20 locations around the storage ring. Voltages, currents, and temperatures are computer monitored and logged for the converters and magnets. All converters and magnets are water cooled with the flow and pressure monitored at the inlet and outlet of groups. Water is interlocked with the raw power supplies and not the individual converters

  18. A Study of Storage Ring Requirements for an Explosive Detection System Using NRA Method

    CERN Document Server

    Wang, Tai-Sen

    2005-01-01

    The technical feasibility of an explosives detection system based on the nuclear resonance absorption (NRA) of gamma rays in nitrogen-rich materials was demonstrated at Los Alamos National Laboratory (LANL) in 1993 by using an RFQ proton accelerator and a tomographic imaging prototype.* The study is being continued recently to examine deployment of such an active interrogation system in realistic scenarios. The approach is to use a cyclotron and electron-cooling-equipped storage rings(s) to provide the high quality and high current proton beam needed in a practical application. In this work, we investigate the storage ring requirements for a variant of the airport luggage inspection system considered in the earlier LANL experiments. Estimations are carried out based on the required inspection throughput, the gamma ray yield, the proton beam emittance growth due to scattering with the photon-production target, beam current limit in the storage ring, and the electron cooling rate. Studies using scaling and reas...

  19. Impedance calculations for 2-D and 3-D structures and the impedance budget of 7-GeV APS [Advanced Photon Source] storage ring

    International Nuclear Information System (INIS)

    Chou, W.; Jin, Y.

    1989-01-01

    For the storage ring of the 7-GeV Advanced Photon Source (APS), we numerically calculate the longitudinal and the transverse coupling impedances of various kinds of two- and three-dimensional structures. It is shown that the RF cavities are the main contributors to the longitudinal impedance, whereas the transitions between the chamber and the insertion device section dominate the transverse one. Several different numerical approaches are adopted. It is argued that the broadband resonator model may not be appropriate to model the longitudinal impedance. Several interesting phenomena of general interest, including a composition rule and the negative transverse impedance, are discussed. Based on our numerical results and other results available, the impedance budget of the storage ring is established. 9 refs., 8 figs., 1 tab

  20. Dielectronic recombination experiments with tungsten ions at the test storage ring and development of a single-particle detector at the cryogenic storage ring

    International Nuclear Information System (INIS)

    Spruck, Kaija

    2015-05-01

    This work is about electron-ion collision experiments at the ion storage rings of the Max Planck Institute for Nuclear Physics in Heidelberg. Absolute recombination rate coefficients of highly-charged tungsten ions featuring an open 4-f-shell structure have been measured at the heavy-ion storage ring TSR. The resulting plasma rate coefficients have been used to probe the significance of newly developed theoretical approaches. Plasma rate coefficients of highly-charged tungsten ions are in particular interesting for the development of plasma models for nuclear fusion reactors, since tungsten is a foreseeable impurity in the fusion plasma. In the relevant temperature range, the experimental results exceed the theoretical data used so far by up to a factor of 10, showing the need for more reliable theoretical calculations. Furthermore, based on the design of the detectors which have been used in the experiments at TSR, a movable single-particle detector for electron-ion recombination studies at the cryogenic storage ring CSR has been developed and installed within the scope of this work. The device has been designed specifically to meet the requirements of the CSR regarding low ion energies and cryogenic ambient temperature conditions. In a series of experiments, the detector was carefully characterised and successfully tested for its compatibility with these requirements. The detector was part of the infrastructure used for the room-temperature commissioning of CSR (2014) and is currently operated as a single-particle counter during the first cryogenic operation of CSR in 2015.

  1. Dielectronic recombination experiments with tungsten ions at the test storage ring and development of a single-particle detector at the cryogenic storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija

    2015-05-15

    This work is about electron-ion collision experiments at the ion storage rings of the Max Planck Institute for Nuclear Physics in Heidelberg. Absolute recombination rate coefficients of highly-charged tungsten ions featuring an open 4-f-shell structure have been measured at the heavy-ion storage ring TSR. The resulting plasma rate coefficients have been used to probe the significance of newly developed theoretical approaches. Plasma rate coefficients of highly-charged tungsten ions are in particular interesting for the development of plasma models for nuclear fusion reactors, since tungsten is a foreseeable impurity in the fusion plasma. In the relevant temperature range, the experimental results exceed the theoretical data used so far by up to a factor of 10, showing the need for more reliable theoretical calculations. Furthermore, based on the design of the detectors which have been used in the experiments at TSR, a movable single-particle detector for electron-ion recombination studies at the cryogenic storage ring CSR has been developed and installed within the scope of this work. The device has been designed specifically to meet the requirements of the CSR regarding low ion energies and cryogenic ambient temperature conditions. In a series of experiments, the detector was carefully characterised and successfully tested for its compatibility with these requirements. The detector was part of the infrastructure used for the room-temperature commissioning of CSR (2014) and is currently operated as a single-particle counter during the first cryogenic operation of CSR in 2015.

  2. A Study of Storage Ring Requirements for an Explosive Detection System Using NRA Method.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T. F. (Tai-Sen F.); Kwan, T. J. T. (Thomas J. T.)

    2005-01-01

    The technical feasibility of an explosives detection system based on the nuclear resonance absorption (NRA) of gamma rays in nitrogen-rich materials was demonstrated at Los Alamos National Laboratory (LANL) in 1993 by using an RFQ proton accelerator and a tomographic imaging prototype. The study is being continued recently to examine deployment of such an active interrogation system in realistic scenarios. The approach is to use an accelerator and electron-cooling-equipped storage rings(s) to provide the high quality and high current proton beam needed in a practical application. In this work, we investigate the requirements on the storage ring(s) with external gamma-ray-production target for a variant of the airport luggage inspection system considered in the earlier LANL experiments. Estimations are carried out based on the required inspection throughput, the gamma ray yield, the proton beam emittance growth due to scatters with the photon-production target, beam current limit in the storage ring, and the electron-cooling rate. Studies using scaling and reasonable parameter values indicate that it is possible to use no more than a few storage rings per inspection station in a practical NRA luggage inspection complex having more than ten inspection stations.

  3. Development Of A Hydrogen And Deuterium Polarized Gas Target For Application In Storage Rings

    International Nuclear Information System (INIS)

    Haeberli, Willy

    2009-01-01

    The exploration of spin degrees of freedom in nuclear and high-energy interactions requires the use of spin-polarized projectiles and/or spin-polarized targets. During the last two decades, the use of external beams from cyclotrons has to a large extent been supplanted by use of circulating beams stored in storage rings. In these experiments, the circulating particles pass millions of times through targets internal to the ring. Thus the targets need to be very thin to avoid beam loss by scattering out of the acceptance aperture of the ring.

  4. Design and development of a bipolar power supply for APS storage ring correctors

    International Nuclear Information System (INIS)

    Kang, Y.G.

    1993-01-01

    The Advanced Photon Source (APS) requires a number of correction magnets. Basically, two different types of bipolar power supplies (BPS) will be used for all the correction magnets. One requires dc correction only, and the other requires dc and ac correction. For the storage ring horizontal/vertical (H/V) correctors, the BPS should be able to supply dc and ac current. This paper describes the design aspects and considerations for a bipolar power supply for the APS storage ring H/V correctors

  5. Statistical analyses of the magnet data for the advanced photon source storage ring magnets

    International Nuclear Information System (INIS)

    Kim, S.H.; Carnegie, D.W.; Doose, C.; Hogrefe, R.; Kim, K.; Merl, R.

    1995-01-01

    The statistics of the measured magnetic data of 80 dipole, 400 quadrupole, and 280 sextupole magnets of conventional resistive designs for the APS storage ring is summarized. In order to accommodate the vacuum chamber, the curved dipole has a C-type cross section and the quadrupole and sextupole cross sections have 180 degrees and 120 degrees symmetries, respectively. The data statistics include the integrated main fields, multipole coefficients, magnetic and mechanical axes, and roll angles of the main fields. The average and rms values of the measured magnet data meet the storage ring requirements

  6. Undulator physics and coherent harmonic generation at the MAX-lab electron storage ring

    International Nuclear Information System (INIS)

    Werin, Sverker.

    1991-01-01

    This work presents the undulator and harmonic generation project at the electron storage ring MAX-lab at University of Lund. The theory of undulator radiation, laser coherent harmonic generation, optical klystron amplifiers and FELs is treated in one uniform way, with complete solutions of the necessary equations. The permanent magnet undulator is described in some detail, along with the installation of the undulator in the storage ring. Details regarding the emitted radiation, the electron beam path in the undulator and other results are analysed. Finally harmonic generation using a Nd:YAG laser and the creation of coherent photons at the third harmonic (355 nm) is described. (author)

  7. A test of planar spark counters at the PEP storage ring

    International Nuclear Information System (INIS)

    Atwood, W.B.; Bowden, G.B.; Bonneaud, G.R.; Klem, D.E.; Ogawa, A.; Pestov, Yu.N.; Pitthan, R.; Sugahara, R.

    1983-01-01

    A test of planar spar counters (PSCs) at the PEP electron-positron storage ring showed the following. PSCs can be used under harsh experimental conditions without long term degradation of resolution. On-line time-of-flight resolutions were below 200 ps, coordinate resolutions better than 4 mm, both limited to these values by the resistivity of the semiconducting glass and the electronics used. The best single counter time resolution under realistic conditions at the storage ring was 76 ps. Pulse height was a good indicator of the number of particles striking a counter. Subsequent measurements using cosmis rays gave a single counter time resolution of 50 ps. (orig.)

  8. Design for ANL 7 GeV storage ring vacuum system

    International Nuclear Information System (INIS)

    Wehrle, R.B.; Nielsen, R.W.

    1988-01-01

    The 7-GeV Advanced Photon Source (APS) design includes a storage ring having a 1060-m circumference with the capability of accommodating 34 insertion devices (ID) and their associated photon beam lines. An additional 35 photon lines can be provided from bending magnets. The vacuum system for the storage ring is designed to maintain a beam-on operating pressure of 1n Torr or less to achieve a positron beam lifetime of approximately 20 hours. The vacuum system and it's current developmental status are described

  9. {sup 96}Ru(p,{gamma}){sup 97}Rh measurement at the GSI storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Q; Aumann, T; Boretzky, K; Bosch, F; Braeuning, H; Brandau, C; Ershova, O; Geissel, H; Heil, M; Kelic, A; Kozhuharov, C; Langer, C; Bleis, T Le; Litvinov, Y A [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt, 64291 (Germany); Bishop, S; Dillmann, I [Technische Universitaet Muenchen, 85748 Garching (Germany); Blaum, K [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Davinson, T [University of Edinburgh, Edinburgh (United Kingdom); Gyuerky, G [Institute of Nuclear Research of the Hungarian Academy of Sciences (Hungary); Kaeppeler, F, E-mail: r.reifarth@gsi.d [Forschungszentrum Karlsruhe, Institut fuer Kernphysik, Karlsruhe (Germany)

    2010-01-01

    A pioneering experiment was recently performed at the Experimental Storage Ring (ESR) at GSI. Fully stripped ions of {sup 96}Ru were injected into the storage ring and slowed down to a few MeV per nucleon. The {sup 97}Rh ions from the {sup 96}Ru(p,{gamma}) reaction at a newly developed hydrogen jet target were detected with Double Sided Silicon Strip Detectors (DSSSD) mounted inside a pocket. The experiment and the status of the analysis at a beam energy of 11 MeV per nucleon will be presented.

  10. PF-KO system for single bunch mode operation of a storage ring

    International Nuclear Information System (INIS)

    Ohgaki, H.; Sugiyama, S.; Mikado, T.; Chiwaki, M.; Yamada, K.; Suzuki, R.; Sei, N.; Noguchi, T.; Yamazaki, T.

    1994-01-01

    A new RF-KO (RF knockout) system for the single bunch mode operation of a storage ring has been developed. The knockout signal is modulated by the sum signal of the RF acceleration frequency of the storage ring and a bunch selection signal. We do not need any special device or a timing unit with this method. We obtain a high purity of bunch structure in a short knock out time. The single bunch impurity of 0.2% has been achieved. (author)

  11. UV-VUV FEL program at DUKE storage ring with OK-4 optical klystron

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Madey, J.M.J.; Vinokurov, N.A.

    1993-01-01

    A 1 GeV electron storage ring dedicated for UV-VUV FEL operation is under construction at the Duke University Free Electron Laser Laboratory. The UV-VUV-FEL project, based on the collaboration of the Duke FEL Laboratory and Budker Institute for Nuclear Physics is described. The main parameters of the DFELL storage ring, of the OK-4 optical klystron, and the experimental set-up are presented. The parameters of UV-VUV FEL are given and the possible future upgrades to this system are discussed

  12. New chromaticity compensation approach and dynamic aperture increase in the SSRF storage ring

    International Nuclear Information System (INIS)

    Tian Shunqiang; Hou Jie; Chen Guangling; Chinese Academy of Sciences, Beijing; Liu Guimin

    2008-01-01

    Strong chromatic sextupoles used to compensate natural chromaticities in the third generation light source storage ring usually reduce dynamic aperture drastically. Many optimization methods can be used to find solutions that provide large dynamic apertures. This paper discusses a new optimization approach of sextupole strengths with step-by-step procedure, which is applied in the SSRF storage ring, and a better solution is obtained. Investigating driving terms generated by the sextupoles in every step can analyze their convergences and guide the weight setting among different terms in object function of the single resonance approach based on the perturbation theory. (authors)

  13. Los Alamos Proton Storage Ring (PSR) injection deflector system

    International Nuclear Information System (INIS)

    Jason, A.j.; Higgins, E.F.; Koelle, A.R.

    1983-01-01

    We describe a pulsed magnetic deflector system planned for the injection system of the PSR. Two sets of magnets, appropriately placed in the optical systems of both the ring and the injection transport line, provide control of the rate at which particles are injected into a given portion of transverse phase space and limit the interaction of stored beam with the injection stripping foil. High-current modulators that produce relatively complex waveforms are required for this purpose. Solid-state drivers using direct feedback to produce the necessary waveforms are discussed as replacements for the more conventional high-voltage tube technology

  14. Spin tracking for a deuteron EDM storage ring

    Science.gov (United States)

    Skawran, A.; Lehrach, A.

    2017-07-01

    The aim of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the Electric Dipole Moment (EDM) of charged particles like protons or deuterons. There are two possible concepts under consideration for the realization of EDM measurement with deuterons; the Frozen Spin (FS) and Quasi-Frozen Spin (QFS) method. Both approaches are discussed and compared in this paper. Detailed spin- and beam dynamics simulations are performed to investigate the effect of various misalignments of ring elements and systematic effects. Furthermore, the utilization of counter rotating beams is studied and checked for its validity.

  15. Particle tracking in a small electron storage ring

    International Nuclear Information System (INIS)

    Tsumaki, K.

    1987-01-01

    A particle tracking method for a ring system in which a sextupole magnetic field is distributed along the beam axis has been developed. This method uses Jacobi's elliptic functions inside the bending magnet and the canonical integration method in the fringes. The calculation time for the new method is the same or faster than that of the canonical integration method, and it is ten times faster than the Runge-Kutta-Gill and thin lens approximation. A special characteristic of our method is that the calculation time is always constant, even if the magnet length is increased

  16. Spin tracking for a deuteron EDM storage ring

    International Nuclear Information System (INIS)

    Skawran, A; Lehrach, A

    2017-01-01

    The aim of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the Electric Dipole Moment (EDM) of charged particles like protons or deuterons. There are two possible concepts under consideration for the realization of EDM measurement with deuterons; the Frozen Spin (FS) and Quasi-Frozen Spin (QFS) method. Both approaches are discussed and compared in this paper. Detailed spin- and beam dynamics simulations are performed to investigate the effect of various misalignments of ring elements and systematic effects. Furthermore, the utilization of counter rotating beams is studied and checked for its validity. (paper)

  17. Near Infrared Cavity Ring-Down Spectroscopy for Isotopic Analyses of CH4 on Future Martian Surface Missions

    Science.gov (United States)

    Chen, Y.; Mahaffy P.; Holmes, V.; Burris, J.; Morey, P.; Lehmann, K.K.; Lollar, B. Sherwood; Lacrampe-Couloume, G.; Onstott, T.C.

    2014-01-01

    A compact Near Infrared Continuous Wave Cavity Ring-Down Spectrometer (near-IR-cw-CRDS) was developed as a candidate for future planetary surface missions. The optical cavity was made of titanium with rugged quartz windows to protect the delicate super cavity from the harsh environmental changes that it would experience during space flight and a Martian surface mission. This design assured the long-term stability of the system. The system applied three distributed feedback laser diodes (DFB-LD), two of which were tuned to the absorption line peaks of (sup 12)CH4 and (sup 13)CH4 at 6046.954 inverse centimeters and 6049.121 inverse centimeters, respectively. The third laser was tuned to a spectral-lines-free region for measuring the baseline cavity loss. The multiple laser design compensated for typical baseline drift of a CRDS system and, thus, improved the overall precision. A semiconductor optical amplifier (SOA) was used instead of an Acousto-Optic Module (AOM) to initiate the cavity ring-down events. It maintained high acquisition rates such as AOM, but consumed less power. High data acquisition rates combined with improved long-term stability yielded precise isotopic measurements in this near-IR region even though the strongest CH4 absorption line in this region is 140 times weaker than that of the strongest mid-IR absorption band. The current system has a detection limit of 1.4 times 10( sup –12) inverse centimeters for (sup 13)CH4. This limit corresponds to approximately 7 parts per trillion volume of CH4 at 100 Torrs. With no further improvements the detection limit of our current near IR-cw-CRDS at an ambient Martian pressure of approximately 6 Torrs (8 millibars) would be 0.25 parts per billion volume for one 3.3 minute long analysis.

  18. Statistical precision in charged particle EDM search in storage rings

    Science.gov (United States)

    Aksentev, A. E.; Senichev, Y. V.

    2017-12-01

    Currently, the “Jülich Electric Dipole moment Investigations” (JEDI) collaboration, together with present EDM experiments at the COSY ring, is developing the conceptual design of a ring specifically for the search for the deuteron electric dipole moment (dEDM). One of the main problems in the EDM study is the spin precession in the vertical plane caused by the non-ideal positioning of accelerator elements through the magnetic dipole moment (MDM). The idea of how to separate the EDM from MDM is based on measuring the spin tune in different processes and comparing the results. The high precision of the spin tune measurement is achieved by collecting huge amounts of data. The JEDI collaboration aims at detecting the EDM at a level better than 10-29 e · cm, for which one requires a precision in the frequency estimate ˜ 10-9 rad/sec. An estimate’s statistical precision is conditional on the following factors: the total measurement time, determining the independent variable spread; measurement error; temporal modulation and spacing of sample points. In this paper we analyze the interplay between these factors, and estimate the best achievable precision under given conditions.

  19. Development of a hydrogen and deuterium polarized gas target for application in storage rings

    International Nuclear Information System (INIS)

    Haeberli, W.

    1991-01-01

    The present report contains the progress report for the second year of the 3-year budget period, and proposes work for the third year. Progress has been made on the two major components of the project, the tests of storage cells for polarized atoms under various operating conditions, and the construction of a new atomic beam source which conforms to the high vacuum requirements of storage rings

  20. Experience with a high-brightness storage ring: the NSLS 750 MeV vuv ring

    International Nuclear Information System (INIS)

    Galayda, J.

    1984-01-01

    The NSLS vuv ring is the first implementation of the proposals of R. Chasman and G.K. Green for a synchrotron radiation source with enhanced brightness: its lattice is a series of achromatic bends with two zero-gradient dipoles each, giving small damped emittance; and these bends are connected by straight sections with zero dispersion to accommodate wigglers and undulators without degrading the radiation damping properties of the ring. The virtues of the Chasman-Green lattice, its small betatron and synchrotron emittances, may be understood with some generality; e.g. the electron γm 0 c 2 energy and the number of achromatic bends M sets a lower limit on the betatron emittance of e/sub x/ > 7.7 x 10 -13 γ 2 /M meter-radians. There is strong interest in extrapolation of this type of lattice to 6 GeV and to 32 achromatic bends. The subject of this report is the progress toward achieving performance in the vuv ring limited by the radiation damping parameters optimized in its design. 14 refs., 4 figs., 1 tab

  1. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    Science.gov (United States)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  2. The application of cavity ring-down spectroscopy to atmospheric and physical chemistry

    Science.gov (United States)

    Hargrove, James Mcchesney

    Cavity ring-down spectroscopy (CRDS) is a sensitive form of absorption spectroscopy. Thousands of reflections between two multilayer dielectric mirrors give CRDS an extremely long path-length. The rate of decay of the signal is measured instead of the magnitude of attenuation, so laser intensity fluctuations do not affect the measurement. At 405.23 nm, NO2 had a detection limit of 150 ppt/10 s (3sigma). Particles were removed by a 0.45 mum filter. Water vapor had a 2.8 ppb NO 2 equivalent interference for 1% water vapor in air, with a simple quadratic dependence on water monomer concentration that might have been due to water dimer. Removing NO2 with an annular denuder coated with guiacol and sodium hydroxide, or reacting the NO2 and NO2 with ozone, allows for an interference measurement. An NOy measurement can be obtained after thermal decomposition of higher oxides and ozone. The interference was easier to accommodate than the quenching found in chemiluminescence. The water dimer hypothesis was supported by temperature studies resulting in thermodynamics consistent with theory. The oscillator strength at 409 nm was roughly three orders of magnitude stronger than the best available calculations, leading to a serious unanswered question of the possible source of the additional enhancement. Measurements at 532 nm found a similar response, and others have measured a response at 440 nm, suggesting the 6th, 7th and 8th overtones of water dimer occur at ˜532 nm, ˜440 nm and 409 nm with a similar magnitude that is possibly larger than the 3rd and 4th overtones that have not been detectable. The excellent NO2 detection sensitivity enabled the measurement of NO2 emitted by ambient particles from thermal decomposition. Gas phase interferences were removed with radial aerosol denuders. PANs, ANs, and ammonium nitrate were measured sequentially at 150°C, 215°C and 250°C by the emitted NO2. This technique was applied to ambient air during the Study of Organic Aerosols in

  3. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    Science.gov (United States)

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-03

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes

  4. Toward real-time measurement of atmospheric mercury concentrations using cavity ring-down spectroscopy

    Directory of Open Access Journals (Sweden)

    X. Faïn

    2010-03-01

    Full Text Available Cavity ring-down spectroscopy (CRDS is a direct absorption technique that utilizes path lengths up to multiple kilometers in a compact absorption cell and has a significantly higher sensitivity than conventional absorption spectroscopy. This tool opens new prospects for study of gaseous elemental mercury (Hg0 because of its high temporal resolution and reduced sample volume requirements (<0.5 l of sample air. We developed a new sensor based on CRDS for measurement of (Hg0 mass concentration. Sensor characteristics include sub-ng m−3 detection limit and high temporal resolution using a frequency-doubled, tuneable dye laser emitting pulses at ~253.65 nm with a pulse repetition frequency of 50 Hz. The dye laser incorporates a unique piezo element attached to its tuning grating allowing it to tune the laser on and off the Hg0 absorption line on a pulse-to-pulse basis to facilitate differential absorption measurements. Hg0 absorption measurements with this CRDS laboratory prototype are highly linearly related to Hg0 concentrations determined by a Tekran 2537B analyzer over an Hg0 concentration range from 0.2 ng m−3 to 573 ng m−3, implying excellent linearity of both instruments. The current CRDS instrument has a sensitivity of 0.10 ng Hg0 m−3 at 10-s time resolution. Ambient-air tests showed that background Hg0 levels can be detected at low temporal resolution (i.e., 1 s, but also highlight a need for high-frequency (i.e., pulse-to-pulse differential on/off-line tuning of the laser wavelength to account for instabilities of the CRDS system and variable background absorption interferences. Future applications may include ambient Hg0 flux measurements with eddy covariance techniques, which require measurements of Hg0 concentrations with sub-ng m−3 sensitivity and sub-second time

  5. Advances in electron cooling in heavy-ion storage rings

    International Nuclear Information System (INIS)

    Danared, H.

    1994-01-01

    The efficiency of electron cooling can be improved by reducing the temperature of the electrons. If the magnetic field at the location of the electron gun is stronger than in the region where the electrons interact with the ions, and the field gradient is adiabatic with respect to the cyclotron motion of the electrons, the resulting expansion of the electron beam reduces its transverse temperature by a factor equal to the ratio between the two fields. A ten times expanded electron beam was introduced in the CRYRING electron cooler in the summer of 1993, and similar arrangements have since then been made at the TSR ring in Heidelberg and at ASTRID in Aarhus. The reduction of the transverse electron temperature has increased cooling rates with large factors, and improves the energy resolution and increases count rates when the cooler is used as an electron target for ion-electron recombination experiments

  6. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  7. Thousand TeV in the center of mass: introduction to high-energy storage rings

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1982-09-01

    The lecture discusses, in a pedagogic way, a hypothetical 500 TeV proton storage ring accelerator. It gives machine parameters, discusses linear optics and betatron motions, surveys questions of errors, tolerances and nonlinear resonances, and discusses some of the demands on the detection apparatus, especially the apparent inevitability of multiple interactions per bunch crossing

  8. Status of the experimental studies of the electron cloud at the Los Alamos proton storage ring

    International Nuclear Information System (INIS)

    Macek, R.J.; Browman, A.A.; Borden, M.J.; Fitzgerald, D.H.; McCrady, R.C.; Spickermann, T.J.; Zaugg, T.J.

    2003-01-01

    The electron cloud (EC) at the Los Alamos Proton Storage Ring (PSR) has been studied extensively for the past several years with an overall aim to identify and measure its important characteristics, the factors that influence these characteristics, and to relate these to the two-stream (e-p) transverse instability long observed at PSR. Some new results since PAC2001 are presented.

  9. An observation of the earth tides in the SPring-8 storage ring

    International Nuclear Information System (INIS)

    Date, S.; Kumagai, N.

    1998-01-01

    The SPring-8 storage ring is under the operation dedicated to synchrotron light users since October, 1997. The stability of the electron beam orbit during a long term of the operation is one of the main subjects to be achieved. Data on the beam orbit taken for this purpose show very clear signature of an effect of the earth tide. (author)

  10. Performance of a high resolution monochromator for the vacuum ultraviolet radiation from the DORIS storage ring

    International Nuclear Information System (INIS)

    Saile, V.; Skibowski, M.; Steinmann, W.; Guertler, P.; Koch, E.E.; Kozevnikov, A.

    1976-03-01

    The unique properties of the DORIS storage ring at DESY as a synchrotron radiation source are exploited for high resolution spectroscopy in the vacuum ultraviolet. We describe a new experimental set up with a 3 meter normal incidence monochromator for wavelengths between 3,000 A to 300 A (4 [de

  11. Towards the Fourier limit on the super-ACO Storage Ring FEL

    International Nuclear Information System (INIS)

    Couprie, M.E.; De Ninno, G.; Moneron, G.; Nutarelli, D.; Hirsch, M.; Garzella, D.; Renault, E.; Roux, R.; Thomas, C.

    2001-01-01

    Systematic studies on the Free Electron Laser (FEL) line and micropulse have been performed on the Super-ACO storage ring FEL with a monochromator and a double-sweep streak camera under various conditions of operation (detuning, 'CW' and Q-switched mode). From these data, it appears that the FEL is usually operated very close to the Fourier limit

  12. Towards the Fourier limit on the super-ACO Storage Ring FEL

    CERN Document Server

    Couprie, Marie Emmanuelle; Garzella, D; Hirsch, M; Moneron, G; Nutarelli, D; Renault, E; Roux, R; Thomas, C

    2001-01-01

    Systematic studies on the Free Electron Laser (FEL) line and micropulse have been performed on the Super-ACO storage ring FEL with a monochromator and a double-sweep streak camera under various conditions of operation (detuning, 'CW' and Q-switched mode). From these data, it appears that the FEL is usually operated very close to the Fourier limit.

  13. Progress in measurement and understanding of beam polarization in electron positron storage rings

    International Nuclear Information System (INIS)

    Barber, D.P.; Bremer, H.D.; Kewisch, J.; Lewin, H.C.; Limberg, T.; Mais, H.; Ripken, G.; Rossmanith, R.; Schmidt, R.

    1983-07-01

    A report is presented on the status of attempts to obtain and measure spin polarization in electron-positron storage rings. Experimental results are presented and their relationship to predictions of calculations discussed. Examples of methods for decoupling orbital and spin motion and thus improving polarization are discussed. (orig.)

  14. On the single bunch longitudinal collective effects in electron storage rings

    CERN Document Server

    Gao, J

    2002-01-01

    After giving an analytical expression for the single bunch short range wake potential of a storage ring, we have discussed separately the roles of linear and nonlinear terms of the Taylor expansion of the wake potential on the bunch longitudinal motion. The equations describing bunch lengthening and increase in energy spread are established. Applications to different operating machines are made.

  15. Free electron laser and microwave instability interplay in a storage ring

    Directory of Open Access Journals (Sweden)

    G. L. Orlandi

    2004-06-01

    Full Text Available Collective effects, such as the microwave instability, influence the longitudinal dynamics of an electron beam in a storage ring. In a storage ring free electron laser (FEL they can compete with the induced beam heating and thus be treated as a further concomitant perturbing source of the beam dynamics. Bunch length and energy spread measurements, carried out at the Super-ACO storage ring, can be correctly interpreted according to a broad-band impedance model. Quantitative estimations of the relative role that is played by the microwave instability and the laser heating in shaping the beam longitudinal dynamics have been obtained by the analysis of the equilibrium laser power. It has been performed in terms of either a theoretical limit, implemented with the measured beam longitudinal characteristics, or the numerical results obtained by a macroparticle tracking code, which includes the laser pulse propagation. Such an analysis, carried out for different operating points of the Super-ACO storage ring FEL, indicates that the laser heating counteracts the microwave instability.

  16. Electrostatic storage ring with focusing provided by the space charge of an electron plasma

    International Nuclear Information System (INIS)

    Pacheco, J. L.; Ordonez, C. A.; Weathers, D. L.

    2013-01-01

    Electrostatic storage rings are used for a variety of atomic physics studies. An advantage of electrostatic storage rings is that heavy ions can be confined. An electrostatic storage ring that employs the space charge of an electron plasma for focusing is described. An additional advantage of the present concept is that slow ions, or even a stationary ion plasma, can be confined. The concept employs an artificially structured boundary, which is defined at present as one that produces a spatially periodic static field such that the spatial period and range of the field are much smaller than the dimensions of a plasma or charged-particle beam that is confined by the field. An artificially structured boundary is used to confine a non-neutral electron plasma along the storage ring. The electron plasma would be effectively unmagnetized, except near an outer boundary where the confining electromagnetic field would reside. The electron plasma produces a radially inward electric field, which focuses the ion beam. Self-consistently computed radial beam profiles are reported.

  17. Chemical Eradication of the Ring Rot Bacterium Clavibacter michiganensis subsp. sepedonicus on Potato Storage Crates

    NARCIS (Netherlands)

    Stevens, L.H.; Lamers, J.G.; Zouwen, van der P.S.; Mendes, O.; Berg, van den W.; Tjou-Tam-Sin, N.N.A.; Jilesen, C.J.T.J.; Spoorenberg, P.M.; Wolf, van der J.M.

    2017-01-01

    Four commercially available disinfection products were tested for their efficacy against Clavibacter michiganensis subsp. sepedonicus (Cms), causative agent of bacterial ring rot, on wooden potato storage crates. Each of these products represented a different class of biocide, i.e. organic acids

  18. Renewal of beam position monitor electronics of the SPring-8 storage ring

    International Nuclear Information System (INIS)

    Sasaki, Shigeki; Fujita, Takahiro

    2007-01-01

    Signal processing electronics for the beam position monitors (BPM) of the SPring-8 Storage Ring were renewed during the summer shutdown period of 2006. The configurations of the electronics of before and after the alteration are described. The evaluation of the performance of the electronics is shown with the data taken by using the actual beams. (author)

  19. Superconducting rf cavities for accelerator application

    International Nuclear Information System (INIS)

    Proch, D.

    1988-01-01

    The subject of this paper is a review of superconducting cavities for accelerator application (β = 1). The layout of a typical accelerating unit is described and important parameters are discussed. Recent cavity measurements and storage ring beam tests are reported and the present state of the art is summarized

  20. Present status of beam position stabilization at photon factory storage ring

    International Nuclear Information System (INIS)

    Nakamura, Norio

    1990-01-01

    Stabilization of photon beam position became a major issue in the operation of the storage rings dedicated as synchrotron radiation source. At the Photon Factory storage ring (PF ring), the orbit movement appeared remarkably when the low-emittance operation started. This orbit movement became a serious problem to synchrotron radiation users because the photon beam to drift with a large amplitude. The horizontal and vertical orbit feedback systems were constructed and developed in order to suppress the orbit movement globally. As a result, the horizontal and vertical orbit movements were reduced by a factor of five and ten, respectively. In addition, another type of feedback system using a local bump was constructed. In the test operation, this system could remove the fast photon beam motion as well as the slow photon beam drift for a beamline. (author)

  1. General overview and a review of storage rings, research facilities, and insertion devices

    International Nuclear Information System (INIS)

    Winick, H.

    1989-01-01

    Synchrotron radiation, the electromagnetic radiation given off by electrons in circular motion, is revolutionizing many branches of science and technology by offering beams of vacuum ultraviolet light and x rays of immense flux and brightness. In the past decade there has been an explosion of interest in these applications leading to increased exploitation of existing rings and activity to construct new research facilities based on advanced storage rings and insertion device sources. Applications include basic and applied research in biology, chemistry, medicine, and physics plus many areas of technology. In this article they present a general overview of the field of synchrotron radiation research, its history, the present status and future prospects of storage rings and research facilities, and the development of wiggler and undulator insertion devices as sources of synchrotron radiation. 66 references, 20 figures, 1 table

  2. Measurement of spin motions in a storage ring outside the stable polarization direction

    International Nuclear Information System (INIS)

    Akchurin, N.; McPherson, J.; Olchowski, F.; Onel, Y.; Badano, L.; Conte, M.; Bravar, A.; Penzo, A.; Hall, J.; Kreiser, H.

    1993-01-01

    Polarized, stored beams are becoming a more and more important tool in nuclear and high energy physics. In order to measure the beam polarization in a storage ring the polarization vector of the stored beam has to aim, revolution for revolution, over a period of seconds to minutes, into the same, so-called open-quote stableclose quotes, direction. In this paper measurements at the Indiana University Cooler Ring (IUCF) are described in which for the first time in a storage ring oscillations of the polarization vector around this stable direction have been measured. The existence and the dynamics of such oscillations are, for instance, important for a new proposed technique for polarizing stored hadron beams

  3. Design of a quasi-isochronous storage ring for THz light source

    International Nuclear Information System (INIS)

    Zhu Jiapeng; Xu Hongliang; Feng Guangyao; Lan Jieqin

    2012-01-01

    A quasi-isochronous storage ring is designed by manipulating lattice parameters to introduce a negative dispersion function to the dispersion section. This quasi-isochronous storage ring is designed for a THz synchrotron radiation source. The simulation of the optics function and beam emittance shows its feasibility, and the tracing result of particles indicates that the designed ring has a good particle dynamic aperture. In addition, a three-dimensional model of the vacuum chamber used for photon radiation in the quasi-isochronous mode is also designed. The eigenmodes of the chamber are simulated, and characteristic parameters such as quality factor, power loss and characteristic impedance are also calculated. The result shows that the vacuum chamber has little effect on the circulating beam. (authors)

  4. RF cavities for the positron accumulator ring (PAR) of the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Kang, Y.W.; Nassiri, A.; Bridges, J.F.; Smith, T.L.; Song, J.J.

    1995-01-01

    The cavities for the dual frequency system of the APS PAR are described. The system uses two frequencies: a 9.78MHz fundamental system for the particle accumulation and a 117.3MHz twelfth harmonic system for the bunch compression. The cavities have been built, installed, tested, and used for storing the beam in the PAR for about a year. The fundamental cavity is a reentrant coaxial type with a capacitive loading plunger and has 1.6m length. The harmonic cavity is a symmetrical reentrant coaxial type and is 0.8m long. Ferrite tuners are used for frequency tuning. During the accumulation period, the ferrite tuner of the harmonic cavity works as a damper to disable the cavity. During an injection cycle the 9.78MHz system accumulates 24 positron bunches in a bucket and the 117.3MHz system compresses the bunch into a shorter bunch. Measurements were made on the rf properties of the cavities

  5. Fibers as solid, internal targets for storage rings

    International Nuclear Information System (INIS)

    Przewoski, B.v.

    1994-01-01

    It has been demonstrated that fibers or micro ribbons provide the possibility to expose solid targets to a stored ion beam. Compared to gas targets or micro particle targets fiber targets require a relatively small technical effort, since differential pumping systems are not necessary to maintain the ring vacuum. Since stationary fibers are often too thick to allow for long enough lifetimes of the stored beam to be useful for experiments, a methods has been developed to move the fiber periodically through the beam. That way, the time averaged target thickness is small compared to the thickness the same fiber would have, if it were stationary in the path of the beam. In addition, the time averaged thickness can be adjusted if the amplitude of the fiber motion is increased or decreased to obtain a thinner or thicker target respectively. Measurements that compare the lifetime of the stored beam in the presence of a fiber target with the lifetime of a stored beam in the presence of a gas target show that a fiber target of a certain time averaged target thickness is equivalent to a homogeneous target of the same thickness. The data are in good agreement with Monte Carlo calculations

  6. Results and analysis of free-electron-laser oscillation in a high-energy storage ring

    International Nuclear Information System (INIS)

    Couprie, M.E.; Velghe, M.; Prazeres, R.; Jaroszynski, D.; Billardon, M.

    1991-01-01

    A storage-ring free-electron laser at Orsay has been operating since 1989 in the visible wavelength range. In contrast with previous experiments, it operates with positrons and at higher energies (600--800 MeV), with the storage ring Super-ACO (ACO denotes Anneau de Collisions d'Orsay). The optical gain, the laser power, the transverse profile, and the macrotemporal structure of the laser are analyzed. In particular, we show that the gain matrix possesses many off-diagonal elements, which results in lasing on a combination of noncylindrical Gaussian modes. The eigenmode of the laser oscillation is a combination of one or two main Gaussian modes and several higher-order modes, which results in most of the power being extracted in these modes

  7. The Abort Kicker System for the PEP-II Storage Rings at SLAC

    International Nuclear Information System (INIS)

    Delamare, Jeffrey E

    2003-01-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 (micro)S (the beam transit time around the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the design of the system interlocks, diagnostics, and modulator with the modifications necessary to accommodate an ion clearing gap of 185nS

  8. The Abort Kicker System for the PEP-II Storage Rings at SLAC.

    CERN Document Server

    Delamare, J E

    2003-01-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 (micro)S (the beam transit time around the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the des...

  9. Cavity Ring-Down Absorption of O2 in Air as a Temperature Sensor for an Open and a Cryogenic Optical Cavity.

    Science.gov (United States)

    Nyaupane, Parashu R; Perez-Delgado, Yasnahir; Camejo, David; Wright, Lesley M; Manzanares, Carlos E

    2017-05-01

    The A-band of oxygen has been measured at low resolution at temperatures between 90 K and 373 K using the phase shift cavity ring down (PS-CRD) technique. For temperatures between 90 K and 295 K, the PS-CRD technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 295 K. For temperatures above 295 K, a hollow glass cylindrical tube without windows has been inserted inside an optical cavity to measure the temperature of air flowing through the tube. The cavity consists of two highly reflective mirrors which are mounted parallel to each other and separated by a distance of 93 cm. In this experiment, air is passed through a heated tube. The temperature of the air flowing through the tube is determined by measuring the intensity of the oxygen absorption as a function of the wavenumber. The A-band of oxygen is measured between 298 K and 373 K, with several air flow rates. To obtain the temperature, the energy of the lower rotational state for seven selected rotational transitions is linearly fitted to a logarithmic function that contains the relative intensity of the rotational transition, the initial and final rotational quantum numbers, and the energy of the transition. Accuracy of the temperature measurement is determined by comparing the calculated temperature from the spectra with the temperature obtained from a calibrated thermocouple inserted at the center of the tube. This flowing air temperature sensor will be used to measure the temperatures of cooling air at the input (cold air) and output (hot air) after cooling the blades of a laboratory gas turbine. The results could contribute to improvements in turbine blade cooling design.

  10. On bunch lengthening using the fourth harmonic cavity in the NSLS VUV ring

    International Nuclear Information System (INIS)

    Wachtel, J.M.

    1988-02-01

    It has been suggested that the phase of the beam excited voltage in the harmonic cavity can be controlled by detuning its resonant frequency from the beam current harmonic. Unfortunately the detuning needed to flatten the acceleration waveform also corresponds to the region of Robinson instability for the harmonic cavity. Therefore, lengthening the bunch may be followed by large amplitude synchrotron oscillation of the bunch center of mass. Bunch lengthening is discussed in this note from several points of view. There follows a simple review of single electron oscillations in a quartic potential. Then equations are developed for the coupled oscillations of a cavity and a rigid bunch as a fully nonlinear, time dependent initial value problem. Next, a computer program that solves these equations for one, two or more cavities, with and without externally driven fields, is described and some simulations of the harmonic cavity interaction are shown. Finally, the fully nonlinear equations are linearized to derive a dispersion relation for the case of beam excitation in the harmonic cavity. 6 refs., 5 figs

  11. Evaluation of microwave cavity gas sensor for in-vessel monitoring of dry cask storage systems

    Science.gov (United States)

    Bakhtiari, S.; Gonnot, T.; Elmer, T.; Chien, H.-T.; Engel, D.; Koehl, E.; Heifetz, A.

    2018-04-01

    Results are reported of research activities conducted at Argonne to assess the viability of microwave resonant cavities for extended in-vessel monitoring of dry cask storage system (DCSS) environment. One of the gases of concern to long-term storage in canisters is water vapor, which appears due to evaporation of residual moisture from incompletely dried fuel assembly. Excess moisture could contribute to corrosion and deterioration of components inside the canister, which would in turn compromise maintenance and safe transportation of such systems. Selection of the sensor type in this work was based on a number of factors, including good sensitivity, fast response time, small form factor and ruggedness of the probing element. A critical design constraint was the capability to mount and operate the sensor using the existing canister penetrations-use of existing ports for thermocouple lances. Microwave resonant cavities operating at select resonant frequency matched to the rotational absorption line of the molecule of interest offer the possibility of highly sensitive detection. In this study, two prototype K-band microwave cylindrical cavities operating at TE01n resonant modes around the 22 GHz water absorption line were developed and tested. The sensors employ a single port for excitation and detection and a novel dual-loop inductive coupling for optimized excitation of the resonant modes. Measurement of the loaded and unloaded cavity quality factor was obtained from the S11 parameter. The acquisition and real-time analysis of data was implemented using software based tools developed for this purpose. The results indicate that the microwave humidity sensors developed in this work could be adapted to in-vessel monitoring applications that require few parts-per-million level of sensitivity. The microwave sensing method for detection of water vapor can potentially be extended to detection of radioactive fission gases leaking into the interior of the canister through

  12. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    Directory of Open Access Journals (Sweden)

    E. J. Steig

    2014-08-01

    Full Text Available High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O, a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS. We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  13. An experimental study on the long-term stability of particle motion in hadron storage rings

    International Nuclear Information System (INIS)

    Fischer, W.

    1995-12-01

    Nonlinear magnetic fields in conjunction with tune modulation may lead to chaotic particle motion and thereby limit the dynamic aperture in hadron storage rings. This is on particular interest for high energy storage rings with superconducting magnets at injection energy where magnetic field errors and the beam size have their maximum values. At the CERN SPS a dynamic aperture experiment was performed with the aim of finding the relevant effects for the stability of single particle motion in hadron storage rings. Experimental results are compared to long-term particle tracking to test to which extent computer programs can predict the dynamic aperture under well known conditions. In addition, detailed investigations of the loss mechanisms were pursued to improve the phenomenological understanding of the intricate details of particle motion in phase space. In a complementary experiment at the HERA proton ring at injection energy the dynamic aperture was measured under normal operating conditions. The computer simulations for these measurements included a very detailed model of the nonlinear fields which were measured for each individual magnet. Simulation results for the LHC are shown that estimate the effect of tune ripple of different strength on the dynamic aperture for different sets of random nonlinear field errors. (orig.)

  14. Experimental modelling of the dipole magnet for the electron storage ring DELSY

    CERN Document Server

    Meshkov, I N; Syresin, E M

    2003-01-01

    In the Joint Institute for Nuclear Research (Dubna) the project of Dubna Electron Synchrotron (DELSY) with an electron energy of 1.2 GeV is developed. The electron storage ring in the DELSY project is planned to be created on the basis of magnetic elements, which were used earlier in the storage ring AmPS (NIKHEF, Amsterdam). The optics of the ring is necessary to be changed, its perimeter to be reduced approximately in one and a half time, the energy of electrons to be increased. The paper is devoted to the development of a modified dipole magnet of the storage ring. The preliminary estimation of geometry of the magnet pole is carried out by means of computer modelling using two- and three- dimensional codes of the magnetic field calculation SUPERFISH and RADIA. The experimental stand for the measurements of the dipole magnetic field is described. As the result of calculational and experimental modelling for the dipole magnet, the geometry of its poles was estimated, providing in the horizontal aperture +- 3...

  15. Colliding or co-rotating ion beams in storage rings for EDM search

    International Nuclear Information System (INIS)

    Koop, I A

    2015-01-01

    A new approach to search for and measure the electric dipole moment (EDM) of the proton, deuteron and some other light nuclei is presented. The idea of the method is to store two ion beams, circulating with different velocities, in a storage ring with crossed electric and magnetic guiding fields. One beam is polarized and its EDM is measured using the so-called ‘frozen spin’ method. The second beam, which is unpolarized, is used as a co-magnetometer, sensitive to the radial component of the ring’s magnetic field. The particle’s magnetic dipole moment (MDM) couples to the radial magnetic field and mimics the EDM signal. Measuring the relative vertical orbit separation of the two beams, caused by the presence of the radial magnetic field, one can control the unwanted MDM spin precession. Examples of the parameters for EDM storage rings for protons and other species of ions are presented. The use of crossed electric and magnetic fields helps to reduce the size of the ring by a factor of 10–20. We show that the bending radius of such an EDM storage ring could be about 2–3 m. Finally, a new method of increasing the spin coherence time, the so-called ‘spin wheel’, is proposed and its applicability to the EDM search is discussed. (paper)

  16. Mechanical design of SXLS [Superconducting X-ray Lithography Source] radio-frequency cavity

    International Nuclear Information System (INIS)

    Mortazavi, P.; Sharma, S.; Keane, J.; Thomas, M.

    1989-01-01

    This paper presents the mechanical design of a Radio-Frequency (RF) cavity to be used on a compact storage ring for Superconducting X-ray Lithography Source (SXLS). Various design features of this cavity are discussed, including basic geometrical configuration, structural design, initial and operational tuning, vacuum multipactoring, power window, and damping of higher order modes. A second application of this cavity design for beam life extension in an existing storage ring is also described. 2 refs., 6 figs

  17. Mechanical design of SXLS (Superconducting X-ray Lithography Source) radio-frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, P.; Sharma, S.; Keane, J.; Thomas, M.

    1989-01-01

    This paper presents the mechanical design of a Radio-Frequency (RF) cavity to be used on a compact storage ring for Superconducting X-ray Lithography Source (SXLS). Various design features of this cavity are discussed, including basic geometrical configuration, structural design, initial and operational tuning, vacuum multipactoring, power window, and damping of higher order modes. A second application of this cavity design for beam life extension in an existing storage ring is also described. 2 refs., 6 figs.

  18. Positron--electron storage ring project: Stanford Linear Accelerator Center, Stanford, California. Final environmental statement

    International Nuclear Information System (INIS)

    1976-08-01

    A final environmental statement is given which was prepared in compliance with the National Environmental Policy Act to support the Energy Research and Development Administration project to design and construct the positron-electron colliding beam storage ring (PEP) facilities at the Stanford Linear Accelerator Center (SLAC). The PEP storage ring will be constructed underground adjacent to the existing two-mile long SLAC particle accelerator to utilize its beam. The ring will be about 700 meters in diameter, buried at depths of 20 to 100 feet, and located at the eastern extremity of the SLAC site. Positron and electron beams will collide in the storage ring to provide higher energies and hence higher particle velocities than have been heretofore achieved. Some of the energy from the collisions is transformed back into matter and produces a variety of particles of immense interest to physicists. The environmental impacts during the estimated two and one-half years construction period will consist of movement of an estimated 320,000 cubic yards of earth and the creation of some rubble, refuse, and dust and noise which will be kept to a practical minimum through planned construction procedures. The terrain will be restored to very nearly its original conditions. Normal operation of the storage ring facility will not produce significant adverse environmental effects different from operation of the existing facilities and the addition of one water cooling tower. No overall increase in SLAC staff is anticipated for operation of the facility. Alternatives to the proposed project that were considered include: termination, postponement, other locations and construction of a conventional high energy accelerator

  19. High precision measurements of 16O12C17O using a new type of cavity ring down spectrometer

    Science.gov (United States)

    Daëron, M.; Stoltmann, T.; Kassi, S.; Burkhart, J.; Kerstel, E.

    2016-12-01

    Laser absorption techniques for the measurement of isotopologue abundances in gases have been dripping into the geoscientific community over the past decade. In the field of carbon dioxide such instruments have mostly been restricted to measurements of the most abundant stable isotopologues. Distinct advantages of CRDS techniques are non-destructiveness and the ability to resolve isobaric isotopologues. The determination of low-abundance isotopologues is predominantly limited by the linewidth of the probing laser, laser jitter, laser drift and system stability. Here we present first measurements of 16O12C17O abundances using a new type of ultra-precise cavity ring down spectrometer. By the use of Optical Feedback Frequency Stabilization, we achieved a laser line width in the sub-kHz regime with a frequency drift of less than 20 Hz/s. A tight coupling with an ultra-stable ring down cavity combined with a frequency tuning mechanism which enables us to arbitrarily position spectral points (Burkart et al., 2013) allowed us to demonstrate a single-scan (2 minutes) precision of 40 ppm on the determination of the 16O12C17O abundance. These promising results imply that routine, direct, high-precision measurements of 17O-anomalies in CO2 using this non-destructive method are in reach. References:Burkart J, Romanini D, Kassi S; Optical feedback stabilized laser tuned by single-sideband modulation; Optical Letters 12:2062-2063 (2013)

  20. Calibration of the Nonlinear Accelerator Model at the Diamond Storage Ring

    CERN Document Server

    Bartolini, Riccardo; Rowland, James; Martin, Ian; Schmidt, Frank

    2010-01-01

    The correct implementation of the nonlinear ring model is crucial to achieve the top performance of a synchrotron light source. Several dynamics quantities can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these methods are based on the analysis of turn-by-turn data of excited betatron oscillations. We present the experimental results of the campaign of measurements carried out at the Diamond. A combination of Frequency Map Analysis (FMA) and detuning with momentum measurements has allowed a precise calibration of the nonlinear model capable of reproducing the nonlinear beam dynamics in the storage ring

  1. PEGASYS---A proposed internal target facility for the PEP storage ring

    International Nuclear Information System (INIS)

    Van Biber, K.

    1988-07-01

    A proposal for an integral gas-jet target and forward spectrometer for the PEP storage ring is described. The beam structure, allowable, luminosity (L = 10 33 cm/sup /minus/2/s/sup /minus/1/ for H 2 , D 2 ) and energy (E/sub e/ ≤ 15 GeV) make the ring ideal for multiparticle coincidence studies in the scaling regime, and where perturbative QCD may be an apt description of some exclusive and semi-inclusive reactions. 14 refs., 7 figs

  2. A study for lattice comparison for PLS 2 GeV storage ring

    International Nuclear Information System (INIS)

    Yoon, M.

    1991-01-01

    TBA and DBA lattices are compared for 1.5-2.5 GeV synchrotron light source, with particular attention to the PLS 2 GeV electron storage ring currently being developed in Pohang, Korea. For the comparison study, the optimum electron energy was chosen to be 2 GeV and the circumference of the ring is less than 280.56 m, the natural beam emittance no greater than 13 nm. Results from various linear and nonlinear optics comparison studies are presented

  3. A superconducting test cavity for DORIS

    International Nuclear Information System (INIS)

    Bauer, W.; Brandelik, A.; Lekmann, W.; Szecsi, L.

    1978-03-01

    A summary of experimental goals, technical requirements and possible solutions for the construction of a superconducting accelerating cavity to be tested at DORIS is given. The aim of the experiment is to prove the applicability of superconducting cavities in storage rings and to study the problems typical for this application. The paper collects design considerations about cavity geometry and fabrication, input coupling, output coupling for higher modes, tuner, cryostat and controls. (orig.) [de

  4. ASTOR, concept of a combined acceleration and storage ring for the production of intense pulsed or continuous beams of neutrinos, pions, muons, kaons and neutrons

    International Nuclear Information System (INIS)

    Joho, W.

    1983-01-01

    A new concept for a high intensity accelerator for 2 GeV protons using the continuous 590 MeV beam from the present ring cyclotron has been worked out at SIN. To suppress the cosmic background in neutrino experiments a pulsed beam with high peak current and low duty cycle is required. Using the so called phase expansion effect 1,2 one can combine the acceleration and storage effect in a single isochronous cyclotron ASTOR. With the help of several RF cavities, positioned at different radii, it is possible to operate ASTOR either in a pulsed mode at 1500 Hz or in a continuous mode. The anticipated beam powers are .8 MW and 4 MW respectively. The ASTOR concept is also applicable in a possible kaon factory design, acting as an interface between the SIN ring cyclotron and a 50 Hz synchrotron for 15 to 20 GeV protons

  5. Radiation measurements during cavities conditioning on APS RF test stand

    International Nuclear Information System (INIS)

    Grudzien, D.M.; Kustom, R.L.; Moe, H.J.; Song, J.J.

    1993-01-01

    In order to determine the shielding structure around the Advanced Photon Source (APS) synchrotron and storage ring RF stations, the X-ray radiation has been measured in the near field and far field regions of the RF cavities during the normal conditioning process. Two cavity types, a prototype 352-MHz single-cell cavity and a 352-MHz five-cell cavity, are used on the APS and are conditioned in the RF test stand. Vacuum measurements are also taken on a prototype 352-MHz single-cell cavity and a 352-MHz five-cell cavity. The data will be compared with data on the five-cell cavities from CERN

  6. elegantRingAnalysis An Interface for High-Throughput Analysis of Storage Ring Lattices Using elegant

    CERN Document Server

    Borland, Michael

    2005-01-01

    The code {\\tt elegant} is widely used for simulation of linacs for drivers for free-electron lasers. Less well known is that elegant is also a very capable code for simulation of storage rings. In this paper, we show a newly-developed graphical user interface that allows the user to easily take advantage of these capabilities. The interface is designed for use on a Linux cluster, providing very high throughput. It can also be used on a single computer. Among the features it gives access to are basic calculations (Twiss parameters, radiation integrals), phase-space tracking, nonlinear dispersion, dynamic aperture (on- and off-momentum), frequency map analysis, and collective effects (IBS, bunch-lengthening). Using a cluster, it is easy to get highly detailed dynamic aperture and frequency map results in a surprisingly short time.

  7. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  8. STUDY OF THE STABILITY OF PARTICLE MOTION IN STORAGE RINGS. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jack J. Shi

    2012-09-07

    During this period, our research was concentrated on the study of beam-beam effects in large storage-ring colliders and coherent synchrotron radiation (CSR) effect in light sources. Our group was involved in and made significant contribution to several international accelerator projects such as the US-LHC project for the design of the LHC interaction regions, the luminosity upgrade of Tevatron and HERA, the design of eRHIC, and the U.S. LHC Accelerator Research Program (LARP) for the future LHC luminosity upgrade.

  9. Magnet power supply system for the ALS storage ring and booster

    International Nuclear Information System (INIS)

    Jackson, L.T.; Luchini, K.; Lutz, I.

    1993-05-01

    The Magnet Power Supply System is described by specification, design, hardware, and operating experience. A unique system for the one Hz, 1.5 GeV Booster, where the wideband QF and QD power supplies track the dipole current to within 0.1% at injection will be detailed. AC distribution system considerations related to inverting the stored energy of the booster magnet back into power grid will be discussed. The rational for linear correctors and individual quad supplies (225 total units) will be placed within the context of the storage-ring requirements

  10. Transverse coupling impedance of the storage ring at the European Synchrotron Radiation Facility

    Directory of Open Access Journals (Sweden)

    T. F. Günzel

    2006-11-01

    Full Text Available The vertical and horizontal impedance budgets of the European Synchrotron Radiation Facility (ESRF storage ring are calculated by element-by-element wake potential calculation. Resistive wall wakes are calculated analytically; the short range geometrical wakes are calculated by a 3D electromagnetic field solver. The effect of the quadrupolar wakes due to the flatness of most ESRF vacuum chambers is included in the model. It can well explain the sensitivity of the horizontal single bunch threshold on vacuum chamber changes, in particular, in low-gap sections of the ESRF storage ring. The values of the current thresholds on the transverse planes could be predicted correctly by the model within a factor of 2.

  11. Electron cloud dynamics in the Cornell Electron Storage Ring Test Accelerator wiggler

    Directory of Open Access Journals (Sweden)

    C. M. Celata

    2011-04-01

    Full Text Available The interference of stray electrons (also called “electron clouds” with accelerator beams is important in modern intense-beam accelerators, especially those with beams of positive charge. In magnetic wigglers, used, for instance, for transverse emittance damping, the intense synchrotron radiation produced by the beam can generate an electron cloud of relatively high density. In this paper the complicated dynamics of electron clouds in wigglers is examined using the example of a wiggler in the Cornell Electron Storage Ring Test Accelerator experiment at the Cornell Electron Storage Ring. Three-dimensional particle-in-cell simulations with the WARP-POSINST computer code show different density and dynamics for the electron cloud at locations near the maxima of the vertical wiggler field when compared to locations near the minima. Dynamics in these regions, the electron cloud distribution vs longitudinal position, and the beam coherent tune shift caused by the wiggler electron cloud will be discussed.

  12. X-ray spectroscopy of highly-charged ions in a storage ring. Invited lecture

    International Nuclear Information System (INIS)

    Beyer, H.F.

    1994-11-01

    The purpose of the present lectures is to carry through the methods and procedures necessary for a meaningful spectroscopy of the heaviest few-electron ions in relation to present theories. Results achieved so far in accelerator-based X-ray experiments are highlighted with emphasis on recent developments on heavy-ion storage rings. Starting with a brief account of the basics of one-electron ions, the motivation for doing X-ray spectroscopy of the simplest atomic systems with a high nuclear charge is given. In section 2 X-ray instrumentation and techniques are discussed including the precautions necessary when dealing with fast-beam sources. Peculiarities of heavy-ion storage rings are investigated in section 3 with regard to their use for spectroscopy. In section 4 are discussed results obtained so far on the measurement of the Lamb shift in very heavy ions. Section 5 gives some perspectives for the near future. (orig.)

  13. Modeling Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    Science.gov (United States)

    Stephenson, Edward; Imig, Astrid

    2009-10-01

    The Storage Ring EDM Collaboration has obtained a set of measurements detailing the sensitivity of a storage ring polarimeter for deuterons to small geometrical and rate changes. Various schemes, such as the calculation of the cross ratio [1], can cancel effects due to detector acceptance differences and luminosity differences for states of opposite polarization. Such schemes fail at second-order in the errors, becoming sensitive to geometrical changes, polarization magnitude differences between opposite polarization states, and changes to the detector response with changing data rates. An expansion of the polarimeter response in a Taylor series based on small errors about the polarimeter operating point can parametrize such effects, primarily in terms of the logarithmic derivatives of the cross section and analyzing power. A comparison will be made to measurements obtained with the EDDA detector at COSY-J"ulich. [4pt] [1] G.G. Ohlsen and P.W. Keaton, Jr., NIM 109, 41 (1973).

  14. Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Doose, C.; Dejus, R.; Jaski, M.; Jansma, W.; Collins, J.; Donnelly, A.; Liu, J.; Cease, H.; Decker, G.; Jain, A.; DiMarco, J.

    2017-06-01

    Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces to gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.

  15. Calculation of gas Bremsstrahlung power from straight sections of storage ring at SSRF

    International Nuclear Information System (INIS)

    Hua Zhengdong; Xu Xunjiang; Fang Keming; Xu Jiaqiang

    2008-01-01

    The Shanghai Synchrotron Radiation Facility (SSRF) is a third-generation synchrotron radiation light source with 3.5 GeV in energy, which is composed of the linear accelerator, the booster and the storage ring. The storage ring provides 16 standard straight sections of 6.5 m and 4 long straight sections of 12 meters. Gas Bremsstrahlung (GB) produced by the interaction of the stored beam with the residual gas molecules in straight section, which is so intense and has a very small angular that the GB spectra, the GB power and the GB power distribution should be known. The characters of GB are studied by means of Fluka Monte Carlo code. Our result shows agreement with those obtained by the experiential formulae. (authors)

  16. Achievement of ultralow emittance coupling in the Australian Synchrotron storage ring

    Directory of Open Access Journals (Sweden)

    R. Dowd

    2011-01-01

    Full Text Available Investigations into producing an electron beam with ultralow vertical emittance have been conducted using the Australian Synchrotron 3 GeV storage ring. A method of tuning the emittance coupling (ϵ_{y}/ϵ_{x} has been developed using a machine model calibrated through the linear optics from closed orbits method. Direct measurements of the beam emittance have not been possible due to diagnostic limitations, however two independent indirect measurements both indicate a vertical emittance of 1.2–1.3 pm rad (ϵ_{y}/ϵ_{x}=0.01%. Other indirect measurements support the validity of these results. This result is the smallest vertical emittance currently achieved in a storage ring.

  17. Effect of an internal target on the beam behaviour in a storage ring

    International Nuclear Information System (INIS)

    Diehl, N.

    1988-04-01

    For the study of the effects of an internal target on the beam behaviour in a storage ring a Monte Carlo simulation program was developed. Special importance was attached to the ranges of validity of the used models. The dominating effects are the Coulomb scattering of the projectiles on the target nuclei, which lead to an angular dispersion, and the collisions of the projectiles on the electrons of the target atoms which cause an energy loss. The target effects are regarded in the simulation program. The simulation calculations for the storage ring COSY give cause for the hope that experiments with internal targets because of high luminosity represent an interesting alternative in spite of thin targets. (orig./HSI) [de

  18. Operation with the low momentum compaction factor on an electron storage ring

    International Nuclear Information System (INIS)

    Hama, H.; Yamazaki, J.; Nakamura, E.; Isoyama, G.

    1994-01-01

    We have studied quasi-isochronous operation with the low momentum compaction factor to reduce the bunch length of the electron beam on the UVSOR storage ring. The momentum compaction factor α was reduced by changing the dispersion function in the bending magnets. Though effect of the second order α becomes dominant in the very low α region, we could compensate it by reducing strength of the focusing sextupole magnets. The momentum compaction factor was reduced to less than one hundredth with respect to the ordinary value. Using a streak camera, we measured the very short bunch, and confirmed the storage ring was operated nearly isochronously. The beam current dependence of the bunch length was also measured. The bunch lengthening was interpreted by potential-well distortion theory with a constant value of the effective longitudinal coupling impedance over the wide range of α. (author)

  19. Applications of differential algebra to single-particle dynamics in storage rings

    International Nuclear Information System (INIS)

    Yan, Y.

    1991-09-01

    Recent developments in the use of differential algebra to study single-particle beam dynamics in charged-particle storage rings are the subject of this paper. Chapter 2 gives a brief review of storage rings. The concepts of betatron motion and synchrotron motion, and their associated resonances, are introduced. Also introduced are the concepts of imperfections, such as off-momentum, misalignment, and random and systematic errors, and their associated corrections. The chapter concludes with a discussion of numerical simulation principles and the concept of one-turn periodic maps. In Chapter 3, the discussion becomes more focused with the introduction of differential algebras. The most critical test for differential algebraic mapping techniques -- their application to long-term stability studies -- is discussed in Chapter 4. Chapter 5 presents a discussion of differential algebraic treatment of dispersed betatron motion. The paper concludes in Chapter 6 with a discussion of parameterization of high-order maps

  20. Synchrotron radiation A general overview and a review of storage rings, research facilities, and insertion devices

    International Nuclear Information System (INIS)

    Winick, H.

    1989-01-01

    Synchrotron radiation, the electromagnetic radiation given off by electrons in circular motion, is revolutionizing many branches of science and technology by offering beams of vacuum ultraviolet light and x rays of immense flux and brightness. In the past decade there has been an explosion of interest in these applications leading activity to construct new research facilities based on advanced storage rings and insertion device sources. Applications include basic and applied research in biology, chemistry, medicine, and physics plus many areas of technology. In this article we present a general overview of the field of synchrotron radiation research, its history, the present status and future prospects of storage rings and research facilities, and the development of wiggler and undulator insertion devices as sources of synchrotron radiation