WorldWideScience

Sample records for storage power plants

  1. Pumped Storage Hydro Power Plant Cierny Vah

    Regula, E.

    1998-01-01

    In this leaflet the pump-storage power plant Cierny Vah is presented. A Cierny Vah pumped storage power plant (PSP) has been designed and built for providing the reliable and quality electric energy supply and for covering load changes of an electrification system. (ES). It is mainly the pumped storage hydro power plants plants which in our conditions are the sources operatively covering the sudden changes of the ES load from the ecological, economic but mainly from the operational point of view. The electric energy generation volume is not the primary standpoint but especially their control functions in the ES. During the building of the Cierny Vah PSP the peak operation with the daily accumulation, participation in frequency control and output in ES and the compensation function in ES were to be its main tasks. After putting it into operation by especially after its becoming independent of the Slovak ES in 1994 the static functions (energy generation from pumping, balance output reserves, daily control, ...) gave way to dynamic functions which gained greater importance. After interconnection of the ES with the UCPTE West European Association in which there are besides other things, the strict criteria for observing balance outputs, the main functions of PSPs are as follows: (1) Dynamic services for ES; (2) Dispatching reserve for the fall out of the greatest ES block; (3) Observing the foreign cooperation balance agreed; (4) Compensation of peaks and also of sudden daily load diagram reductions. Technical parameters of the upper and lower reservoir are described. The hydro power plant is a body lower reservoir. In it there are six vertical pumping aggregates in the three machine layout: the motor-generator - the turbine - the pump. Between the turbine and the pump there is a hydraulically controlled claw clutch engaging at rest and disengaging also during the aggregate operation. During pumping air is involved inside the turbine. The Francis turbines have a

  2. Pumped storage hydroelectric power plant Cierny Vah

    2006-01-01

    This leaflet describes the Enterprise Cierny Vah Pumped storage hydropower plants of the joint stock company Slovenske elektrarne, a.s. (Cierny Vah PSHP). Cierny Vah PSHP has been designed and built for providing the reliable and quality electric energy supply and for covering load changes of an electrification system (ES). It is mainly the pumped storage hydro power plants which in our conditions are the sources operatively covering the sudden changes of the ES load from the ecological, economic but mainly from the operational point of view. The electric energy generation volume is not the primary standpoint but especially their control functions in the ES. During the building of the Cierny Vah PSP the peak operation with the daily accumulation, participation in frequency control and output in ES and the compensation function in ES were to be its main tasks. After putting it into operation but especially after its becoming independent of the Slovak ES in 1994 the static functions (energy generation from pumping, balance output reserves, daily control,...) gave way to dynamic functions which gained greater importance (sudden load changes control of ES, immediate meeting of the daily load diagram, frequency control and outputs given in ES, etc.) After interconnection of our ES with the UCPTE West European association in which there are besides other things, the strict criteria for observing balance of outputs, the main functions of PSPs are as follows: 1. Dynamic services for ES 2. Dispatching reserve for the fall out of the greatest ES block 3. Observing the foreign cooperation balance agreed 4. Compensation of peaks and also of sudden daily load diagram reductions. All the work is divided into four parts from the building point of view: The upper reservoir is an artificial one without the natural water inflow, built by excavation and slope on an Unknown elevation more than 1.150 m above sea level. A leading slope with a gradient 1:2 and a bottom of the reservoir

  3. Utilization and storage problems in wind power plants

    Molly, J P

    1977-01-01

    The energy yield of a power plant consisting of wind energy converter and storer is considerably influenced by the choice of specific characteristic values of both components. Boundary conditions of the optimization process are site, consumer behavior and a minimum demand of supply safety. If the costs of the power plant components are known, then one may determine the cheapest wind power plant taking account of the boundary conditions. The preconditions and way of calculation for optimum rotary number, the best specific rotor disk power and the necessary storage capacity for a certain supply safety are given.

  4. Fuel handling and storage systems in nuclear power plants

    1984-01-01

    The scope of this Guide includes the design of handling and storage facilities for fuel assemblies from the receipt of fuel into the nuclear power plant until the fuel departs from that plant. The unirradiated fuel considered in this Guide is assumed not to exhibit any significant level of radiation so that it can be handled without shielding or cooling. This Guide also gives limited consideration to the handling and storage of certain core components. While the general design and safety principles are discussed in Section 2 of this Guide, more specific design requirements for the handling and storage of fuel are given in detailed sections which follow the general design and safety principles. Further useful information is to be found in the IAEA Technical Reports Series No. 189 ''Storage, Handling and Movement of Fuel and Related Components at Nuclear Power Plants'' and No. 198 ''Guide to the Safe Handling of Radioactive Wastes at Nuclear Power Plants''. However, the scope of the Guide does not include consideration of the following: (1) The various reactor physics questions associated with fuel and absorber loading and unloading into the core; (2) The design aspects of preparation of the reactor for fuel loading (such as the removal of the pressure vessel head for a light water reactor) and restoration after loading; (3) The design of shipping casks; (4) Fuel storage of a long-term nature exceeding the design lifetime of the nuclear power plant; (5) Unirradiated fuel containing plutonium

  5. Pumped storage power plants in Denmark. Pumpekraftvaerker i Danmark

    1988-12-15

    In 1988 there are about 250 pumped storage power plants throughout the world, yet it is difficult to obtain data about them. They are usually situated in mountainous areas so that great differences in height can be obtained between the upper and lower water storage facilities. These plants consist of the power system (turbines, pumps, generators, motors, etc.) natural or artificial water storage facilities, and water routes, (in and outgoing constructions, pressure pipes, etc.). In Denmark, reversible pumping turbines are preferred, and here specific Danish products are examined (62.5MW and a 125 MW). Possible designs for water storage basins are analyzed in detail, also with regard to their comparative economic advantages. It has been considered reasonable to site this kind of power plant in Danish coastal regions, this would be the first case where the sea has been used for the lower water storage basin. Possible sites in Jutland and on the island of Als have been investigated. In a basin for a 250 MW pumped storage power plant with optimal production throughout 8 hours, a siting 60 m above sea level could cover power production for an area of about 100 hectars. Material for a dam surrounding the lower water storage system could be produced when digging out the basin. The dam should be about 20m higher than the surrounding terrain and the volume would be about 3,2 mio. m/sup 3/. The filled basin would contain 14.0 mio. m/sup 3/ water. The velocity and volume of outgoing water masses would be very considerable and would exact safety precautions to protect ships and bathers. A tentative cost benefit analysis is presented which indicates that the possible establishment of this type of power plant in Denmark could be of considerable interest. (AB). 15 refs.

  6. Power system stabilising features from wind power plants augmented with energy storage

    Tarnowski, Germán C.; Kjær, Philip C; Lærke, Rasmus

    2014-01-01

    This paper describes a wind power plant augmented with energy storage, configured to provide ancillary services (primary reserve, inertial response, power oscillation damping) for enhancement of power system stability. Energy storage can complement wind power plants thus reducing the need for any...... overload or curtailment to allow active power modulation. A 12MW + 1.6MW augmented plant is used for demonstration of representative performance of the particular ancillary service control algorithms...

  7. Bidding Strategy of Virtual Power Plant with Energy Storage Power Station and Photovoltaic and Wind Power

    Zhongfu Tan

    2018-01-01

    Full Text Available For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.

  8. Pumped Storage Power plants, Challenges and opportunities - Some conclusions

    Viollet, Pierre-Louis; Roult, Didier; Mathex, Bruno; Ouaabi, Aziz; Louis, Frederic; Petitjean, Alain; Capuozzo, Vincent; Mazzouji, Farid; Prestat, Bruno; Nekrassov, Andrei; Caignaert, Guy; Vidil, Roland; Guilbaud, Claude; Metais, Olivier

    2011-11-01

    This document briefly synthesizes a conference which addressed the development of pumped storage power plants in the world, and social, economic, technical and scientific challenges related to this development which is closely related to the development of intermittent renewable energies (wind and solar energy). Current developments in different countries (Germany, Portugal, Switzerland, Norway, France and China) are evoked

  9. Dry spent fuel storage facility at Kozloduy Nuclear Power Plant

    Goehring, R.; Stoev, M.; Davis, N.; Thomas, E.

    2004-01-01

    The Dry Spent Fuel Storage Facility (DSF) is financed by the Kozloduy International Decommissioning Support Fund (KIDSF) which is managed by European Bank for Reconstruction and Development (EBRD). On behalf of the Employer, the Kozloduy Nuclear Power Plant, a Project Management Unit (KPMU) under lead of British Nuclear Group is managing the contract with a Joint Venture Consortium under lead of RWE NUKEM mbH. The scope of the contract includes design, manufacturing and construction, testing and commissioning of the new storage facility for 2800 VVER-440 spent fuel assemblies at the KNPP site (turn-key contract). The storage technology will be cask storage of CONSTOR type, a steel-concrete-steel container. The licensing process complies with the national Bulgarian regulations and international rules. (authors)

  10. Method for analysing the adequacy of electric power systems with wind power plants and energy storages

    Perzhabinsky Sergey

    2017-01-01

    Full Text Available Currently, renewable energy sources and energy storage devices are actively introduced into electric power systems. We developed method to analyze the adequacy of these electric power systems. The method takes into account the uncertainty of electricity generation by wind power plants and the processes of energy storage. The method is based on the Monte Carlo method and allowed to use of long-term meteorological data in open access. The performed experimental research of electrical power system is constructed on the basis of the real technical and meteorological data. The method allows to estimate of effectiveness of introducing generators based on renewable energy sources and energy storages in electric power systems.

  11. Dynamic analysis of a pumped-storage hydropower plant with random power load

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia

    2018-02-01

    This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.

  12. Combined solar photovoltaic and hydroelectric pumped storage power plant

    Gzraryan, R.V.

    2009-01-01

    Combined model of solar photovoltaic and pumped storage stations aimed at power supply for 40 rural houses are considered. The electric circuits of station and their acting regularities are developed and submitted. The both generation curve of photovoltaic station and load curve of electrical customer are considered. The power of hydraulic unit, pumping unit and photovoltaic station are calculated

  13. Optimisation of Storage for Concentrated Solar Power Plants

    Luigi Cirocco

    2014-12-01

    Full Text Available The proliferation of non-scheduled generation from renewable electrical energy sources such concentrated solar power (CSP presents a need for enabling scheduled generation by incorporating energy storage; either via directly coupled Thermal Energy Storage (TES or Electrical Storage Systems (ESS distributed within the electrical network or grid. The challenges for 100% renewable energy generation are: to minimise capitalisation cost and to maximise energy dispatch capacity. The aims of this review article are twofold: to review storage technologies and to survey the most appropriate optimisation techniques to determine optimal operation and size of storage of a system to operate in the Australian National Energy Market (NEM. Storage technologies are reviewed to establish indicative characterisations of energy density, conversion efficiency, charge/discharge rates and costings. A partitioning of optimisation techniques based on methods most appropriate for various time scales is performed: from “whole of year”, seasonal, monthly, weekly and daily averaging to those best suited matching the NEM bid timing of five minute dispatch bidding, averaged on the half hour as the trading settlement spot price. Finally, a selection of the most promising research directions and methods to determine the optimal operation and sizing of storage for renewables in the grid is presented.

  14. Power Oscillation Damping Controller for Wind Power Plant Utilizing Wind Turbine Inertia as Energy Storage

    Knüppel, Thyge; Nielsen, Jørgen Nygård; Jensen, Kim Høj

    2011-01-01

    For a wind power plant (WPP) the upper limit for active power output is bounded by the instantaneous wind conditions and therefore a WPP must curtail its power output when system services with active power are delivered. Here, a power oscillation damping controller (POD) for WPPs is presented...... that utilizes the stored kinetic energy in the wind turbine (WT) mechanical system as energy storage from which damping power can be exchanged. This eliminates the need for curtailed active power production. Results are presented using modal analysis and induced torque coefficients (ITC) to depict the torques...... induced on the synchronous generators from the POD. These are supplemented with nonlinear time domain simulations with and without an auxiliary POD for the WPP. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....

  15. Cost-effective design of ringwall storage hybrid power plants: A real options analysis

    Weibel, Sebastian; Madlener, Reinhard

    2015-01-01

    Highlights: • Economic viability, optimal size, and siting of a hybrid ringwall hydro power plant. • Real options analysis for optimal investment timing and stochastic storage volumes. • Stochastic PV and solar power production affects optimal size of the storage device. • Monte Carlo simulation is used for wind/solar power, el. price, and investment cost. • Numerical computations for two different hybrid ringwall storage plant scenarios. - Abstract: We study the economic viability and optimal sizing and siting of a hybrid plant that combines a ringwall hydro storage system with wind and solar power plants (ringwall storage hybrid power plant, RSHPP). A real options model is introduced to analyze the economics of an onshore RSHPP, and in particular of the varying storage volume in light of the stochastic character of wind and solar power, as well as the optimal investment timing under uncertainty. In fact, many uncertainties arise in such a project. Energy production is determined by the stochastic character of wind and solar power, and affects the optimal size of the storage device. Monte Carlo simulation is performed to analyze the following sources of uncertainty: (i) wind intensity and solar irradiation; (ii) future electricity price; and (iii) investment costs. The results yield the optimal size of the storage device; the energy market on which the operator should sell the electricity generated; numerical examples for two different RSHPP scenarios; and a real options model for analyzing the opportunity to defer the project investment and thus to exploit the value of waiting

  16. 78 FR 15753 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    2013-03-12

    ...-Acid Storage Batteries for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft...-Acid Storage Batteries for Nuclear Power Plants.'' The draft guide describes methods that the NRC staff..., testing, and replacement of vented lead-acid storage batteries in nuclear power plants. DATES: Submit...

  17. Intervention in independent spent fuel storage facility license application proceedings for storage on the power plant site

    Jordan, J.

    1992-01-01

    This presentation summarizes the intervention in the Nuclear Regulatory Commission (NRC) licensing process for currently operating Independent Spent fuel Storage Installation (ISFSI) projects at Carolina Power and Light's Company's H.B. Robinson, Duke Power Company's Oconee, and Virginia Power Company's Surry. In addition, intervention at dry storage facilities that are currently under development are also described. The utilities and reactors include Baltimore Gas and Electric Company's Calvert Cliffs, Public Service Company of Colorado's Fort St. Vrain plant, Northern States Power Company's Prairie Island, Wisconsin Electric Power Company's Point Beach, and Consumers Power Company's Palisades

  18. Vestas Power Plant Solutions Integrating Wind, Solar PV and Energy Storage

    Petersen, Lennart; Hesselbæk, Bo; Martinez, Antonio

    2018-01-01

    This paper addresses a value proposition and feasible system topologies for hybrid power plant solutions integrating wind, solar PV and energy storage and moreover provides insights into Vestas hybrid power plant projects. Seen from the perspective of a wind power plant developer, these hybrid...... solutions provide a number of benefits that could potentially reduce the Levelized Cost of Energy and enable entrance to new markets for wind power and facilitate the transition to a more sustainable energy mix. First, various system topologies are described in order to distinguish the generic concepts...... for the electrical infrastructure of hybrid power plants. Subsequently, the benefits of combining wind and solar PV power as well as the advantages of combining variable renewable energy sources with energy storage are elaborated. Finally, the world’s first utility-scale hybrid power plant combining wind, solar PV...

  19. Load following generation in nuclear power plants by latent thermal energy storage

    Abe, Yoshiyuki; Takahashi, Yoshio; Kamimoto, Masayuki; Sakamoto, Ryuji; Kanari, Katsuhiko; Ozawa, Takeo

    1985-01-01

    The recent increase in nuclear power plants and the growing difference between peak and off-peak demands imperatively need load following generation in nuclear power plants to meet the time-variant demands. One possible way to resolve the problem is, obviously, a prompt reaction conrol in the reactors. Alternatively, energy storage gives another sophisticated path to make load following generation in more effective manner. Latent thermal energy storage enjoys high storage density and allows thermal extraction at nearly constant temperature, i.e. phase change temperature. The present report is an attempt to evaluate the feasibility of load following electric power generation in nuclear plants (actually Pressurized Water Reactors) by latent thermal energy storage. In this concept, the excess thermal energy in the off-peak period is stored in molten salt latent thermal energy storage unit, and additional power output is generated in auxiliary generator in the peak demand duration using the stored thermal energy. The present evaluation gives encouraging results and shows the primary subject to be taken up at first is the compatibility of candidate storage materials with inexpensive structural metal materials. Chapter 1 denotes the background of the present report, and Chapter 2 reviews the previous studies on the peak load coverage by thermal energy storage. To figure out the concept of the storage systems, present power plant systems and possible constitution of storage systems are briefly shown in Chapter 3. The details of the evaluation of the candidate storage media, and the compilation of the materials' properties are presented in Chapter 4. In Chapter 5, the concept of the storage systems is depicted, and the economical feasibility of the systems is evaluated. The concluding remarks are summarized in Chapter 6. (author)

  20. Combined compressed air storage-low BTU coal gasification power plant

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  1. 78 FR 58574 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    2013-09-24

    ...-Acid Storage Batteries for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION... for Nuclear Power Plants.'' The guide describes methods that the NRC staff considers acceptable for... replacement of vented lead-acid storage batteries in nuclear power plants. ADDRESSES: Please refer to Docket...

  2. Operation and sizing of energy storage for wind power plants in a market system

    Korpaas, M.; Holen, A.T.

    2003-01-01

    This paper presents a method for the scheduling and operation of energy storage for wind power plants in electricity markets. A dynamic programming algorithm is employed to determine the optimal energy exchange with the market for a specified scheduling period, taking into account transmission constraints. During operation, the energy storage is used to smooth variations in wind power production in order to follow the scheduling plan. The method is suitable for any type of energy storage and is also useful for other intermittent energy resources than wind. An application of the method to a case study is also presented, where the impact of energy storage sizing and wind forecasting accuracy on system operation and economics are emphasized. Simulation results show that energy storage makes it possible for owners of wind power plants to take advantage of variations in the spot price, by thus increasing the value of wind power in electricity markets. With present price estimates, energy storage devices such as reversible fuel cells are likely to be a more expensive alternative than grid expansions for the siting of wind farms in weak networks. However, for areas where grid expansions lead to unwanted interference with the local environment, energy storage should be considered as a reasonable way to increase the penetration of wind power. (author)

  3. A novel technology for control of variable speed pumped storage power plant

    Seyed Mohammad Hassan Hosseini; Mohammad Reza Semsar

    2016-01-01

    Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control (DTFC) of a variable speed pumped storage power plant (VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP’s control strategies is studied. At the first, a wind turbine with the capacity 2.2 kW and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts (including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter (2LVSC) and three-level voltage source converter (3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion (THD) and ripple of rotor torque and flux.

  4. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  5. Transport, acceptance, storage and handling of the itens of nuclear power plants

    1989-01-01

    The norm aiming to establish the requirements applied to workers or organizations which participate of the activities of transport, acceptance, storage and handling of important itens for safety of nuclear power plants, is presented. The established requirements treat of protection and control necessary to assure that the quality of important itens for safety be it preserved from the end of fabrication until their incorporation to nuclear power plant. (M.C.K.) [pt

  6. Retrofitting a Geothermal Plant with Solar and Storage to Increase Power Generation

    Zhu, Guangdong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McTigue, Joshua Dominic P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turchi, Craig S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Castro, Jose [Coso Operating Co.; Mungas, Greg [Hyperlight Energy; Kramer, Nick [Hyperlight Energy; King, John [Hyperlight Energy

    2017-10-04

    Solar hybridization using concentrating solar power (CSP) can be an effective approach to augment the power generation and power cycle efficiency of a geothermal power plant with a declining resource. Thermal storage can further increase the dispatchability of a geothermal/solar hybrid system, which is particularly valued for a national grid with high renewable penetration. In this paper, a hybrid plant design with thermal storage is proposed based on the requirements of the Coso geothermal field in China Lake, California. The objective is to increase the power production by 4 MWe. In this system, a portion of the injection brine is recirculated through a heat exchanger with the solar heat transfer fluid, before being mixed with the production well brine. In the solar heating loop the brine should be heated to at least 155 degrees C to increase the net power. The solar field and storage were sized based on solar data for China Lake. Thermal storage is used to store excess power at the high-solar-irradiation hours and generate additional power during the evenings. The solar field size, the type and capacity of thermal storage and the operating temperatures are critical factors in determining the most economic hybrid system. Further investigations are required to optimize the hybrid system and evaluate its economic feasibility.

  7. Feasibility study for the partial conversion of a hydropower plant into a pumped-storage power plant: a case study of hydroelectric power plant La Barca (Asturias, Spain

    E. Antuña Yudego

    2017-01-01

    Full Text Available Renewable energy sources have reported an unprecedented increase of global installed renewable power capacity. Against the advantages provided by this renewable power generation technology it should be taken into account an important issue: these intermittent energy sources supply a fluctuating output which is difficult to manage. Pumped-storage hydro power plants reappear in these circumstances as an efficient form of energy storage which allows to use reserves when necessary, enabling power generation output to cover continuously this energy demand. The present paper shows a simplified feasibility study of the partial conversion of hydropower plant La Barca, in Asturias, into a reversible storage through the development of an algorithm to simulate its operation according to electricity market prices. For this purpose, the operation in the deviation management market is considered and the technical modifications required for the conversion are shown. The estimation of costs and incomes present a feasible scenario.

  8. Normal and compact spent fuel storage in light water reactor power plants

    Kuenel, R.R.

    1978-01-01

    The compact storage of light water reactor spent fuel is a safe, cheap and reliable contribution towards overcoming the momentarily existing shortage in spent fuel reprocessing. The technical concept is described and physical behaviour discussed. The introduction of compact storage racks in nuclear power plants increases the capacity from 100 to about 240 %. The increase in decay heat is not more than about 14%, the increase in activity inventory and hazard potential does not exceed 20%. In most cases the existing power plant equipment fulfils the new requirements. (author)

  9. Dustfall design of open coal yard in the power plant-a case study on the closed reconstruction project of coal storage yard in shengli power plant

    Wang, Kunpeng; Ji, Weidong; Zhang, Feifei; Yu, Wei; Zheng, Runqing

    2018-02-01

    This thesis, based on the closed reconstruction project of the coal storage yard of Shengli Power Plant which is affiliated to Sinopec Shengli Petroleum Administration, first makes an analysis on the significance of current dustfall reconstruction of open coal yard, then summarizes the methods widely adopted in the dustfall of large-scale open coal storage yard of current thermal power plant as well as their advantages and disadvantages, and finally focuses on this project, aiming at providing some reference and assistance to the future closed reconstruction project of open coal storage yard in thermal power plant.

  10. Hydro-engineering structure and Liptovska Mara Pumped Storage Power Plant

    Regula, E.

    2005-01-01

    In this paper thirty years history of the Hydro-engineering structure and Liptovska Mara Pumped Storage Power Plant (PSPP) is presented. In 1975 year the Liptovska Mara PSPP was commissioned. There are 2 Kaplan turbines and 2 Derezias reversible turbines with a total installed power 198 MW. The average annual output is 134.5 GWh. As a part of this hydro-engineering structure is Besenova Small-scale power plants with 2 turbines and with installed power 4.64 MW. The average annual output consists 18.3 GWh. There up to end of 2004 year 3,620.172 MWh of electricity was produced. Environmental effects are discussed

  11. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    Jacek D. Wojcik

    2017-02-01

    Full Text Available The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage (TES integration into the power plant process cycle is considered as a possible solution for this issue. In this article, a technical feasibility study of TES integration into a 375-MW subcritical oil-fired conventional power plant is presented. Retrofitting is considered in order to avoid major changes in the power plant process cycle. The concept is tested based on the complete power plant model implemented in the ProTRAX software environment. Steam and water parameters are assessed for different TES integration scenarios as a function of the plant load level. The best candidate points for heat extraction in the TES charging and discharging processes are evaluated. The results demonstrate that the integration of TES with power plant cycle is feasible and provide a provisional guidance for the design of the TES system that will result in the minimal influence on the power plant cycle.

  12. Water use at pulverized coal power plants with postcombustion carbon capture and storage.

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L

    2011-03-15

    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  13. Spent fuel storage rack for atomic power plant

    Kodama, Tatemitsu.

    1981-01-01

    Purpose: To flexibly cope with the changes in the size and shape of spent fuel storage containers by placing a number of independently-constructed rack cells in a rack frame in such a manner that the guide support members of the storage rack, mounted on each rack cell may be replaced. Constitution: Independently-constructed rack cells are inserted from above into a rack frame rigidly installed on the bottom of a water pool. Each cell is produced by welding, has a handling head mounted at the top, and guide support members made of three replaceable guide tubes are mounted with bolts. If the size and the shape of the containers are altered, this configuration can easily cope with the new container shape by merely having the guide tubes replaced, without adversely affecting other cells and without necessitating draining of the water in the pool. (Yoshino, Y.)

  14. Dry cooling with night cool storage to enhance solar power plants performance in extreme conditions areas

    Muñoz, J.; Martínez-Val, J.M.; Abbas, R.; Abánades, A.

    2012-01-01

    Highlights: ► Solar thermo-electric power plants with thermal storage for condenser cooling. ► Technology to mitigate the negative effect on Rankine cycles of the day-time high temperatures in deserts. ► Electricity production augmentation in demand-peak hours by the use of day-night temperature difference. -- Abstract: Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency.

  15. Methodology for the economic optimisation of energy storage systems for frequency support in wind power plants

    Johnston, Lewis; Díaz-González, Francisco; Gomis-Bellmunt, Oriol; Corchero-García, Cristina; Cruz-Zambrano, Miguel

    2015-01-01

    Highlights: • Optimisation of energy storage system with wind power plant for frequency response. • Energy storage option considered could be economically viable. • For a 50 MW wind farm, an energy storage system of 5.3 MW and 3 MW h was found. - Abstract: This paper proposes a methodology for the economic optimisation of the sizing of Energy Storage Systems (ESSs) whilst enhancing the participation of Wind Power Plants (WPP) in network primary frequency control support. The methodology was designed flexibly, so it can be applied to different energy markets and to include different ESS technologies. The methodology includes the formulation and solving of a Linear Programming (LP) problem. The methodology was applied to the particular case of a 50 MW WPP, equipped with a Vanadium Redox Flow battery (VRB) in the UK energy market. Analysis is performed considering real data on the UK regular energy market and the UK frequency response market. Data for wind power generation and energy storage costs are estimated from literature. Results suggest that, under certain assumptions, ESSs can be profitable for the operator of a WPP that is providing frequency response. The ESS provides power reserves such that the WPP can generate close to the maximum energy available. The solution of the optimisation problem establishes that an ESS with a power rating of 5.3 MW and energy capacity of about 3 MW h would be enough to provide such service whilst maximising the incomes for the WPP operator considering the regular and frequency regulation UK markets

  16. Storage, handling and internal transport of radioactive materials (fuel elements excepted) in nuclear power plants

    1983-06-01

    The rule applies to storage and handling as well as to transport within the plant and to the exchange of - solid radioactive wastes, - liquid radioactive wastes, except for those covered by the rule KTA 3603, - radioactive components and parts which are planned to be mounted and dismounted until shutdown of the plant, - radioactive-contaminated tools and appliances, - radioactive preparations. The rule is to be applied within the fenced-in sites of stationary nuclear power plants with LWR or HTR including their transport load halls, as fas as these are situated so as to be approachable from the nuclear power station by local transport systems. (orig./HP) [de

  17. Power-to-heat in adiabatic compressed air energy storage power plants for cost reduction and increased flexibility

    Dreißigacker, Volker

    2018-04-01

    The development of new technologies for large-scale electricity storage is a key element in future flexible electricity transmission systems. Electricity storage in adiabatic compressed air energy storage (A-CAES) power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. For further improvements in cost efficiencies and flexibility, system modifications are necessary. Therefore, a novel concept regarding the integration of an electrical heating component is investigated. This modification allows increased power plant flexibilities and decreasing component sizes due to the generated high temperature heat with simultaneously decreasing total round trip efficiencies. For an exemplarily A-CAES case simulation studies regarding the electrical heating power and thermal energy storage sizes were conducted to identify the potentials in cost reduction of the central power plant components and the loss in round trip efficiency.

  18. Compact spent fuel storage at the Atucha I nuclear power plant

    Antonaccio, Carlos; Conde, Alberto; Flores, Alexis; Masciotra, Humberto; Sala, Guillermo; Zanni, Pablo

    2000-01-01

    The object of this report is to verify the possibility to increase the available storage of irradiated fuel assemblies, placed in the spent fuel pools of the Atucha I nuclear power plant. There is intends the realization of structural modifications in the storage bracket-suspension beam (single and double) for the upper and lower level of the four spent fuel pools. With these modifications that increase the storage capacity 25%, would arrive until the year 2014, it dates dear for the limit of the commercial operation of nuclear power plant. The increase of the capacity in function of the permissible stress for the supports of the bracket-suspension beam. They should be carried out 5000 re-accommodations of irradiated fuel assemblies. The task would demand approximately 3 years. (author)

  19. Storage of intermittent energies. From self-consumption to huge photovoltaic power plants

    Perrin, Marion; Martin, Nicolas

    2013-01-01

    Power grids are evolving rapidly due to an increased use of decentralized power units, mostly based on intermittent renewable energy resources and due also to new ways of consuming energy (e.g. electrical vehicles). In the same time, the performance increase of new technologies such as telecommunications and storage systems could provide solutions for optimizing the electrical system. In this context, we are more and more talking about the 'smart-grids concept' because in parallel to the power interconnection, we also create communication networks which allow knowing in real time the status of the power grid, and so that the power flows can be controlled in an optimal way. In this article, we investigate challenges and opportunities for managing intermittent energy sources by using energy storage systems, from the consumer level to the grid operator. First we describe how the feed-in tariff could evolve in order to improve grid integration of large solar plants. We showed that behind the constraints due to the coupling of the power plants with a storage system, we could imagine lots of opportunities to diversify the business model. Then we evaluate the medium size PV with storage installation at the community level. For this purpose, we describe the local problems induced by the PV integration before proposing new ways to manage these systems. Finally, the self-consumption business model is investigated in terms of performance for the consumer and for the grid operator. (authors)

  20. The optimization of spent fuel assembly storage racks in nuclear power plants

    Wang Yan

    2005-01-01

    This paper gives an evaluation of the spent fuel assembly storage racks in the nuclear power plants at home and abroad, focusing on the characteristics of the high density storage racks and the aseismatic design. It mainly discusses structures and characteristics of the spent fuel assembly storage racks in the Qinshan nuclear power phase II project. Concluding the crucial technical difficulties of the high density spent fuel assembly storage racks: the neutron-absorbing materials, the structural aseismatic design technology and the security analysis technology, this paper firstly generalizes several important neutron-absorbing materials, then introduces the evolution of the aseismatic design of the spent fuel assembly storage racks . In the last part, it describes the advanced aseismatic analysis technology in the Qinshan nuclear power phase II project. Through calculation and analysis for such storage racks, the author concludes several main factors that could have an influence on the aseismatic performance and thus gives the key points and methods for designing the optimal racks and provides some references for the design of advanced spent fuel assembly storage racks in the future. (authors)

  1. Lithium ion battery energy storage system for augmented wind power plants

    Swierczynski, Maciej Jozef

    with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... to their characteristics such as high power, high efficiency, low self-discharge, and long lifetime. The family of the Li-ion batteries is wide and the selection of the most appropriate Liion chemistries for VPPs is one of the topics of this thesis, where different chemistries are compared and the most suitable ones...... if the batteries are able to meet several performance requirements, which are application dependent. Furthermore, for the VPP, the degradation or failure of the interconnected BESS can lead to costly downtime. Thus, an accurate estimation of the battery cells lifetime becomes mandatory. However, lifetime...

  2. Advanced techniques for storage and disposal of spent fuel from commercial nuclear power plants

    Weh, R.; Sowa, W.

    1999-01-01

    Electricity generation using fossil fuel at comparatively low costs forces nuclear energy to explore all economic potentials. The cost advantage of direct disposal of spent nuclear fuel compared to reprocessing gives reason enough to follow that path more and more. The present paper describes components and facilities for long-term storage as well as packaging strategies, developed and implemented under the responsibility of the German utilities operating nuclear power plants. A proposal is made to complement or even to replace the POLLUX cask concept by a system using BSK 3 fuel rod containers together with LB 21 storage casks. (author)

  3. Evaluation of different operating strategies to integrate storage in a linear Fresnel ORC power plant

    Zoschke, Theda; Seubert, Bernhard; Fluri, Thomas

    2017-06-01

    An existing linear Fresnel power plant with ORC process located in Ben Guerir, Morocco, is retrofitted with a thermal energy storage system and additional collector loops. Two different plant configurations are investigated in this paper. In the first configuration two separate solar fields are built and only the minor one can charge the storage. In the second configuration, there is only one large solar field which offers more flexibility. Two different control strategies are assessed by comparing simulation results. It shows that the simulations of the systems with two solar fields results in higher energy yields throughout the year, but the power production of the system with one solar field is much more flexible and demand oriented. Also it offers great potential for improvement when it comes to weather forecasting.

  4. Cost and performance of fossil fuel power plants with CO2 capture and storage

    Rubin, Edward S.; Chen, Chao; Rao, Anand B.

    2007-01-01

    CO 2 capture and storage (CCS) is receiving considerable attention as a potential greenhouse gas (GHG) mitigation option for fossil fuel power plants. Cost and performance estimates for CCS are critical factors in energy and policy analysis. CCS cost studies necessarily employ a host of technical and economic assumptions that can dramatically affect results. Thus, particular studies often are of limited value to analysts, researchers, and industry personnel seeking results for alternative cases. In this paper, we use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and current costs of fossil fuel power plants with CCS on a systematic basis. This plant-level analysis explores a broader range of key assumptions than found in recent studies we reviewed for three major plant types: pulverized coal (PC) plants, natural gas combined cycle (NGCC) plants, and integrated gasification combined cycle (IGCC) systems using coal. In particular, we examine the effects of recent increases in capital costs and natural gas prices, as well as effects of differential plant utilization rates, IGCC financing and operating assumptions, variations in plant size, and differences in fuel quality, including bituminous, sub-bituminous and lignite coals. Our results show higher power plant and CCS costs than prior studies as a consequence of recent escalations in capital and operating costs. The broader range of cases also reveals differences not previously reported in the relative costs of PC, NGCC and IGCC plants with and without CCS. While CCS can significantly reduce power plant emissions of CO 2 (typically by 85-90%), the impacts of CCS energy requirements on plant-level resource requirements and multi-media environmental emissions also are found to be significant, with increases of approximately 15-30% for current CCS systems. To characterize such impacts, an alternative definition of the 'energy penalty' is proposed in lieu of the

  5. Energy Management of an Off-Grid Hybrid Power Plant with Multiple Energy Storage Systems

    Laura Tribioli

    2016-08-01

    Full Text Available In this paper, an off-grid hybrid power plant with multiple storage systems for an artificial island is designed and two possible strategies for the management of the stored energy are proposed. Renewable power sources (wind/solar technologies are used as primary power suppliers. A lead-acid battery pack (BAT and a reversible polymer electrolyte fuel cell are employed to fulfill the power demand and to absorb extra power. The reversible fuel cell allows reducing costs and occupied space and the fuel cell can be fed by the pure hydrogen produced by means of its reversible operation as an electrolyzer. A diesel engine is employed as backup system. While HOMER Pro® has been employed for a full-factorial-based optimization of the sizes of the renewable sources and the BAT, Matlab/Simulink® has been later used for simulating the plant operation and compare two possible power management control strategies. For the reversible fuel cell sizing, a sensitivity analysis has been carried out varying stack and hydrogen tank sizes. The final choice for plant configuration and power management control strategy has been made on the basis of a comparative analysis of the results, aimed at minimizing fossil fuel consumption and CO2 emissions, battery aging rate and at maximizing the power plant overall efficiency. The obtained results demonstrate the possibility of realizing a renewable power plant, able to match the needs of electrical power in a remote area, by achieving a good integration of different energy sources and facing the intermittent nature of renewable power sources, with very low use of fossil fuels.

  6. Ideal Operation of a Photovoltaic Power Plant Equipped with an Energy Storage System on Electricity Market

    Markku Järvelä

    2017-07-01

    Full Text Available There is no natural inertia in a photovoltaic (PV generator and changes in irradiation can be seen immediately at the output power. Moving cloud shadows are the dominant reason for fast PV power fluctuations taking place typically within a minute between 20 to 100% of the clear sky value roughly 100 times a day, on average. Therefore, operating a utility scale grid connected PV power plant is challenging. Currently, in many regions, renewable energy sources such as solar and wind receive feed-in tariffs that ensure a certain price for the energy. On the other hand, electricity markets operate on a supply-demand principle and a typical imbalance settlement period is one hour. This paper presents the energy, power and corresponding requirements for an energy storage system in a solar PV power plant to feed the power to the grid meeting the electricity spot markets practices. An ideal PV energy production forecast is assumed to be available to define reference powers of the system for the studied imbalance settlement periods. The analysis is done for three different PV system sizes using the existing irradiance measurements of the Tampere University of Technology solar PV power station research plant.

  7. Particulars in design of the electrical part of the Kiev Pumped-Storage Electric Power Plant

    Brimerberg, V P

    1976-01-01

    The Kiev Pumped-Storage Electric Power Plant is the first such installation in the Soviet Union. The power capacity of the plant is 225 MW. There are six vertical hydraulic generators: three are connected to vertical pump-turbines and operate as motor-generators; the other three are connected to vertical radial-axial hydraulic turbines and operate as generators only. Each generator is a type SVO 733/130-36 with power of 45.6 MVA. The active power load is 83.5 MW, reactive--75.1, and total--112.5 MVA. The installation can be used for 500 h/yr at maximum power, producing 110 million kWh. During the high-water period, the plant is used daily for about 100 days, covering the peak of the load schedule of the southern power system. During the low-water period the plant is used as needed. During the slack hours at night the system operates in the pump mode for about 1400 h/yr, using 160 million kWh. During the remainder of the day the generators work as synchronous compensators with a total load on each of 36,500 kvar. Electrical circuits and a cross section of the generator are given. An explanation is also given of the grounding precautions taken to ensure an equipotential field at all points of the installation where personnel may be located.

  8. Anti-seismic analysis for air storage tank used in the nuclear power plant

    Hua Jun; Ren Xin; Feng Ping

    2011-01-01

    This text calculates and analyses the structure of the air storage tank used for the SBO diesel generator set of Taishan nuclear power plant through finite element method, and simply introduces the mechanical modeling, loading condition and seismic response spectrum analyzing method for the structure, then get the natural frequency, vibration mode and response under seismic load of the structure through calculation. Evaluate the stress under the combined load such as gravity, internal stress, earthquake of the structure according to RCCM. The result shows that the structure intensity of the air storage tank meets the requirements of the specification. The calculating result gives the accordance for the seismic design of the air storage tank. (authors)

  9. Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage

    Hanak, Dawid Piotr; Manovic, Vasilije

    2017-01-01

    Around 43% of the cumulative CO2 emissions from the power sector between 2012 and 2050 could be mitigated through implementation of carbon capture and storage, and utilisation of renewable energy sources. Energy storage technologies can increase the efficiency of energy utilisation and thus should be widely deployed along with low-emission technologies. This study evaluates the techno-economic performance of cryogenic O2 storage implemented in an oxy-combustion coal-fired power plant as a mea...

  10. Final Report-- A Novel Storage Method for Concentrating Solar Power Plants Allowing Storage at High Temperature

    Morris, Jeffrey F.

    2014-09-29

    The main objective of the proposed work was the development and testing of a storage method that has the potential to fundamentally change the solar thermal industry. The development of a mathematical model that describes the phenomena involved in the heat storage and recovery was also a main objective of this work. Therefore, the goal was to prepare a design package allowing reliable scale-up and optimization of design.

  11. Tri-generation based hybrid power plant scheduling for renewable resources rich area with energy storage

    Pazheri, F.R.

    2015-01-01

    Highlights: • Involves scheduling of the tri-generation based hybrid power plant. • Utilization of renewable energy through energy storage is discussed. • Benefits of the proposed model are illustrated. • Energy efficient and environmental friendly dispatch is analyzed. • Modeled scheduling problem is applicable to any fuel enriched area. - Abstract: Solving power system scheduling is crucial to ensure smooth operations of the electric power industry. Effective utilization of available conventional and renewable energy sources (RES) by tri-generation and with the aid of energy storage facilities (ESF) can ensure clean and energy efficient power generation. Such power generation can play an important role in countries, like Saudi Arabia, where abundant fossil fuels (FF) and renewable energy sources (RES) are available. Hence, effective modeling of such hybrid power systems scheduling is essential in such countries based on the available fuel resources. The intent of this paper is to present a simple model for tri-generation based hybrid power system scheduling for energy resources rich area in presence of ESF, to ensure optimum fuel utilization and minimum pollutant emissions while meeting the power demand. This research points an effective operation strategy which ensure a clean and energy efficient power scheduling by exploiting available energy resources effectively. Hence, it has an important role in current and future power generation. In order to illustrate the benefits of the presented approach a clean and energy efficient hybrid power supply scheme for King Saud University (KSU), Saudi Arabia, is proposed and analyzed here. Results show that the proposed approach is very suitable for KSU since adequate solar power is available during its peak demand periods

  12. Information on the feasibility study for the reracking in the fuel storage pools of the Juragua Nuclear Power Plant

    Rodriguez, J.M.; Rodriguez, I.; Lopez, D.; Guerra, R.; Rodriguez, M.; Garcia, F.

    1995-01-01

    During 1993, in the Juragua Nuclear Power Plants as engineering evaluation programme was initiated in the storage area of irradiated nuclear fuel, where work in order to determine the feasibility of capacity increase for storage of irradiated nuclear fuel at the fuel storage pools using poisoned compact close racks instead of the originally designed racks. The feasibility study is a fundamental activity of this programme for the 1994-1995 period. According to this study the prospects of assimilation of compact storage conditions in the fuel storage pools in unit number one and prolonged fuel storage pool are investigated

  13. Thermocline thermal storage systems for concentrated solar power plants: One-dimensional numerical model and comparative analysis

    Modi, Anish; Pérez-Segarra, Carlos David

    2014-01-01

    Concentrated solar power plants have attracted increasing interest from researchers and governments all over the world in recent years. An important part of these plants is the storage system which improves dispatchability and makes the plant more reliable. In this paper, a one-dimensional transi...

  14. Survey of Thermal Storage for Parabolic Trough Power Plants; Period of Performance: September 13, 1999 - June 12, 2000

    Pilkington Solar International GmbH

    2000-09-29

    The purpose of this report is to identify and selectively review previous work done on the evaluation and use of thermal energy storage systems applied to parabolic trough power plants. Appropriate storage concepts and technical options are first discussed, followed by a review of previous work.

  15. Bacterial communities in an ultrapure water containing storage tank of a power plant.

    Bohus, Veronika; Kéki, Zsuzsa; Márialigeti, Károly; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Tóth, Erika M

    2011-12-01

    Ultrapure waters (UPWs) containing low levels of organic and inorganic compounds provide extreme environment. On contrary to that microbes occur in such waters and form biofilms on surfaces, thus may induce corrosion processes in many industrial applications. In our study, refined saltless water (UPW) produced for the boiler of a Hungarian power plant was examined before and after storage (sampling the inlet [TKE] and outlet [TKU] waters of a storage tank) with cultivation and culture independent methods. Our results showed increased CFU and direct cell counts after the storage. Cultivation results showed the dominance of aerobic, chemoorganotrophic α-Proteobacteria in both samples. In case of TKU sample, a more complex bacterial community structure could be detected. The applied molecular method (T-RFLP) indicated the presence of a complex microbial community structure with changes in the taxon composition: while in the inlet water sample (TKE) α-Proteobacteria (Sphingomonas sp., Novosphingobium hassiacum) dominated, in the outlet water sample (TKU) the bacterial community shifted towards the dominance of α-Proteobacteria (Rhodoferax sp., Polynucleobacter sp., Sterolibacter sp.), CFB (Bacteroidetes, formerly Cytophaga-Flavobacterium-Bacteroides group) and Firmicutes. This shift to the direction of fermentative communities suggests that storage could help the development of communities with an increased tendency toward corrosion.

  16. Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy

    Taljan, Gregor; Fowler, Michael; Canizares, Claudio; Verbic, Gregor

    2008-01-01

    A novel methodology for the economic evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a hydrogen economy and competitive electricity markets. The simulation of the operation of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities. (author)

  17. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua

    2018-01-01

    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  18. Feasibility study of a Green Power Plant. Final report. [Offshore pumped hydro storage

    NONE

    2013-03-15

    This project is a technical evaluation and a feasibility study of a concept called the Green Power Plant (GPP), developed by Seahorn Energy Aps. The Green Power Plant is an offshore pumped hydro storage facility constructed from prefabricated elements and with integrated renewable energy production. Pumped hydro storage is a known technology with a proven roundtrip energy storage efficiency of 80%. The focus of the GPP project is on simplifying and industrializing the construction of the reservoir wall, thereby achieving a cost efficient solution. The reservoir structure is dependent on the site on which the reservoir is established, thus Kriegers Flak in the Baltic Sea has been chosen as basis for the technical evaluation. As soil conditions vary, the technical evaluations have been based on a general soil profile. A water depth of 25m has been chosen as basis for the evaluation. A reservoir with a diameter of 2 km has been evaluated as baseline scenario. Feasibility of the GPP was evaluated based on the cost and income estimates. For the baseline scenario an internal rate of return of 6.6% was found for a period of 35 years. A sensitivity analysis reveals internal rates of return over 35 years varying from 4.9% to 10.9%. Especially larger reservoir diameters increase profitability of the GPP. The results from this project will be utilized in raising funds for further development of the GPP concept. Seahorn Energy Aps aims at optimizing the wind turbine integration, the steel pile wall structure and the pump-turbine integration in a future project towards construction of a demonstration facility. (LN)

  19. Optimal bidding in Turkey day ahead electricity market for wind energy and pumped storage hydro power plant

    Ceyhun Yıldız

    2016-10-01

    Full Text Available In electrical grid; when the demand power increases energy prices increase, when the demand decreases energy prices decrease. For this reason; to increase the total daily income, it is required to shift generations to the hours that high demand power values occurred. Wind Power Plants (WPP have unstable and uncontrollable generation characteristic. For this reason, energy storage systems are needed to shift the generations of WPPs in time scale. In this study, four wind power plants (WPP which are tied to the Turkish interconnected grid and a pumped hydro storage power plant (PSPP that meets the energy storage requirement of these power plants are investigated in Turkey day ahead energy market. An optimization algorithm is developed using linear programming technique to maximize the day ahead market bids of these plants which are going to generate power together. When incomes and generations of the plants that are operated with optimization strategy is analyzed, it is seen that annual income increased by 2.737% compared with WPPs ‘s alone operation and generations are substantially shifted to the high demand power occurred hours.

  20. Compressed air storage with humidification (CASH) coal gasification power plant investigation

    Nakhamkin, M.; Patel, M.

    1991-08-01

    A study was performed to investigate and develop a hybrid coal gasification concept which utilizes an air saturator (AS) with an integrated coal gasification/compressed air energy storage (CGS/CAES) plant. This potentially attractive concept is designated as AS/CGS/CAES. In this concept, the coal gasification system provides fuel for the combustors of the CAES reheat turbomachinery train. Motive air from underground storage is humidified by saturators and thereby provides increased power production without additional air consumption. The heat for generating the hot water utilized in the saturators is extracted from waste heat within the overall plant. Multiple alternatives were considered and parametrically analyzed in the study in order to select the most thermodynamically and economically attractive concepts. The major alternatives were differentiated by the type of gasifier, type of CAES turbomachinery, mode of operation, and utilization of waste heat. The results of the study indicate that the use of the air saturation in AS/CGS/CAES plants might reduce capital costs of coal gasification based power used in intermediate load generation by $300 to $400 per kilowatt. Furthermore, heat rates might also be reduced by almost 1.5 cents per kilowatt hour, a major reduction. The major cause of the reduction in electricity costs is a 50% reduction in the required gasification capacity per net kW. In addition to being a load management tool, AS/CGS/CAES concepts provide a method to operate the CGS and turbomachinery in a continuous mode, improving the operation and potentially the life expectancy of both components. 3 refs., 18 figs., 4 tabs

  1. A new self-scheduling strategy for integrated operation of wind and pumped-storage power plants in power markets

    Varkani, Ali Karimi; Daraeepour, Ali; Monsef, Hassan

    2011-01-01

    Highlights: → A strategy for integrated operation of wind and pumped-storage plants is proposed. → Participation of both plants in energy and ancillary service markets is modeled. → The uncertainty of wind production is modeled by a novel probabilistic function. → The proposed strategy is tested on a real case in the Spanish electricity market. -- Abstract: Competitive structure of power markets causes various challenges for wind resources to participate in these markets. Indeed, production uncertainty is the main cause of their low income. Thus, they are usually supported by system operators, which is in contrast with the competitive paradigm of power markets. In this paper, a new strategy for increasing the profits of wind resources is proposed. In the suggested strategy, a Generation Company (GenCo), who owns both wind and pumped-storage plants, self-schedules the integrated operation of them regarding the uncertainty of wind power generation. For presenting an integrated self-schedule and obtaining a real added value of the strategy, participation of the GenCo in energy and ancillary service markets is modeled. The self-scheduling strategy is based on stochastic programming techniques. Outputs of the problem include generation offers in day-ahead energy market and ancillary service markets, including spinning and regulation reserve markets. A Neural Network (NN) based technique is used for modeling the uncertainty of wind power production. The proposed strategy is tested on a real wind farm in mainland, Spain. Moreover, added value of the strategy is presented in different conditions of the market.

  2. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage

    Odeh, Naser A.; Cockerill, Timothy T.

    2008-01-01

    The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO 2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO 2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO 2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO 2 capture is employed, the increase in other air pollutants such as NO x and NH 3 leads to higher eutrophication and acidification potentials

  3. Dosimetry Characterization of the Neutron Fields of the Intermediate Temporary Storage of the Trillo Nuclear Power Plant

    Campo Blanco, X.

    2015-01-01

    The Neutron Standards Laboratory of CIEMAT, in collaboration with the Trillo Nuclear Power Plant, has conducted a detailed dosimetric and spectrometric characterization of the neutron fields at the Intermediate Temporary Storage of the Trillo Nuclear Power Plant, as well as the neutron fields of ENSA-DPT spent fuel casks. For neutron measurements, neutron monitors and a Bonner spheres spectrometry system have been used. In addition, a Monte Carlo model of the installation and the cask has been developed and validated.

  4. Corrosion resistance of tank material for flock storage in the Fukushima Daiichi Nuclear Power Plant

    Sano, Yuichi; Anbai, Hiromu; Takeuchi, Masayuki; Ogino, Hideki; Koizumi, Kenji

    2014-01-01

    The installation of the storage tank made of SS400 is under planning in the Fukushima Daiichi nuclear power plant for the flock which was generated in the coagulation process for radioactive contaminated water. The flock contains the seawater and has a possibility to make a crevice and local corrosion on the surface of the tank. Air agitation will be applied in the storage tank to prevent the accumulation of the flock and hydrogen generated by radiolysis, which will increase the diffusion of oxygen and the corrosion of SS400. In addition, the effect of radiation from the flock on the corrosion should be considered. In this study, we investigated the corrosion behavior of SS400 in the flock under the aeration-agitation condition with γ-ray irradiation. Based on the flock storage condition announced by Tokyo Electric Power Company (TEPCO), immersion tests were performed with SS400 coupons under several conditions and corrosion rates were estimated by the weight loss of the coupons. After the immersion tests, the surfaces of the coupons were observed by microscopy for evaluating the local corrosion. To evaluate corrosion mechanism in detail, electrochemical tests were also carried out. In all of these tests, the non-radioactive flock as a surrogate and artificial seawater were used. Corrosion rates of SS400 increased significantly with aeration flow rates in the seawater with/without the flock, but this tendency was weaker in the seawater with the flock, especially under the condition where coupons were buried in the flock. The electrochemical tests indicated the suppression of the cathodic reaction, i.e. dissolved oxygen reduction, in the seawater with the flock. The effect of γ-ray irradiation on the corrosion rates was not remarkable under the assumed dose rate. Microscopic analysis of the immersed coupons showed no severe corrosion including local corrosion occurred. The corrosion rate could be decreased effectively by suppressing the dissolved oxygen reduction

  5. Radiological impact of the storage of solid wastes from coal-fored power plants

    Hugon, J.; Caries, J.C.; Patellis, A.; Roussel, S.

    1983-01-01

    Solid wastes from the coal-fired power plant of GARDANNE are stared in piles, outside near the unit. The coal contains a high proportion of sulfur, so the storage pile is a very reducing middle. The radium coming from the ore, which is mostly retained in the bottom ashes, could then be solubilized again, by physicochemical processes, leached by the rain and reach the nearest population through the food-chain pathways. Leaching-tests where made with three sampling series. The measurement datas show that only 15% of the 226 Ra can be solved and that the Ra 226 observed concentrations in vegetal samples come mostly from transportation of dust by the wind [fr

  6. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  7. RWE clean coal programme - IGCC power plant with CO{sub 2} capture & storage

    Wolf, K.-J.; Ewers, J.; Renzenbrink, W. [RWE Power AG, Essen (Germany)

    2007-07-01

    In early 2006, RWE Power announced it was building a 450 MW gross commercial IGCC power plant with carbon capture. This paper sums up the key results of the project development phase concerning the IGCC power plant and shows the basis for the feasibility phase of the project. 10 figs.

  8. Optimal Operation and Value Evaluation of Pumped Storage Power Plants Considering Spot Market Trading and Uncertainty of Bilateral Demand

    Takahashi, Kenta; Hara, Ryoichi; Kita, Hiroyuki; Hasegawa, Jun

    In recent years, as the deregulation in electric power industry has advanced in many countries, a spot market trading of electricity has been done. Generation companies are allowed to purchase the electricity through the electric power market and supply electric power for their bilateral customers. Under this circumstance, it is important for the generation companies to procure the required electricity with cheaper cost to increase their profit. The market price is volatile since it is determined by bidding between buyer and seller. The pumped storage power plant, one of the storage facilities is promising against such volatile market price since it can produce a profit by purchasing electricity with lower-price and selling it with higher-price. This paper discusses the optimal operation of the pumped storage power plants considering bidding strategy to an uncertain spot market. The volatilities in market price and demand are represented by the Vasicek model in our estimation. This paper also discusses the allocation of operational reserve to the pumped storage power plant.

  9. Conceptual design of an interim dry storage system for the Atucha nuclear power plant spent fuels

    Nassini, Horacio E.P.; Fuenzalida Troyano, C.S.; Bevilacqua, Arturo M.; Bergallo, Juan E.

    2005-01-01

    The Atucha I nuclear power station, after completing the rearrangement and consolidation of the spent fuels in the two existing interim wet storage pools, will have enough room for the storage of spent fuel from the operation of the reactor till December 2014. If the operation is extended beyond 2014, or if the reactor is decommissioned, it will be necessary to empty both pools and to transfer the spent fuels to a dry storage facility. This paper shows the progress achieved in the conceptual design of a dry storage system for Atucha I spent fuels, which also has to be adequate, without modifications, for the storage of fuels from the second unity of the nuclear power station, Atucha II, that is now under construction. (author) [es

  10. Safety implications associated with in-plant pressurized gas storage and distribution systems in nuclear power plants

    Guymon, R.H.; Casto, W.R.; Compere, E.L.

    1985-05-01

    Storage and handling of compressed gases at nuclear power plants were studied to identify any potential safety hazards. Gases investigated were air, acetylene, carbon dioxide, chlorine, Halon, hydrogen, nitrogen, oxygen, propane, and sulfur hexaflouride. Physical properties of the gases were reviewed as were applicable industrial codes and standards. Incidents involving pressurized gases in general industry and in the nuclear industry were studied. In this report general hazards such as missiles from ruptures, rocketing of cylinders, pipe whipping, asphyxiation, and toxicity are discussed. Even though some serious injuries and deaths over the years have occurred in industries handling and using pressurized gases, the industrial codes, standards, practices, and procedures are very comprehensive. The most important safety consideration in handling gases is the serious enforcement of these well-known and established methods. Recommendations are made concerning compressed gas cylinder missiles, hydrogen line ruptures or leaks, and identification of lines and equipment

  11. Definition, analysis and experimental investigation of operation modes in hydrogen-renewable-based power plants incorporating hybrid energy storage

    Valverde, L.; Pino, F.J.; Guerra, J.; Rosa, F.

    2016-01-01

    Highlights: • A conceptual analysis of operation modes in energy storage plants is presented. • Key Performance Indicators to select operation modes are provided. • The approach has been applied to a laboratory hybrid power plant. • The methodology provides guidance for the operation of hybrid power plants. - Abstract: This paper is concerned with Operating Modes in hybrid renewable energy-based power plants with hydrogen as the intermediate energy storage medium. Six operation modes are defined according to plant topology and the possibility of operating electrolyzer and fuel cell at steady-power or partial load. A methodology for the evaluation of plant performance is presented throughout this paper. The approach includes a set of simulations over a fully validated model, which are run in order to compare the proposed operation modes in various weather conditions. Conclusions are drawn from the simulation stage using a set of Key Performance Indicators defined in this paper. This analysis yields the conclusion that certain modes are more appropriate from technical and practical standpoints when they are implemented in a real plant. From the results of the simulation assessment, selected operating modes are applied to an experimental hydrogen-based pilot plant to illustrate and validate the performance of the proposed operation modes. Experimental results confirmed the simulation study, pointing out the advantages and disadvantages of each operation mode in terms of performance and equipment durability.

  12. Interim spent-fuel storage options at commercial nuclear power plants

    Thakkar, A.R.; Hylko, J.M.

    1991-01-01

    Although spent fuel can be stored safely in waterfilled pools at reactor sites, some utilities may not possess sufficient space for life-of-plant storage capability. In-pool storage capability may be increased by reracking assemblies, rod consolidation, double tiering spent-fuel racks, and by shipping spent fuel to other utility-owned facilities. Long-term on-site storage capability for spent fuel may be provided by installing (dry-type) metal casks, storage and transportation casks, concrete casks, horizontal concrete modules, modular concrete vaults, or by constructing additional (pool-type) storage installations. Experience to date has provided valuable information regarding dry-type or pool-type installations, cask handling and staffing requirements, security features, decommissioning activities, and radiological issues

  13. Hydroelectric Power Plants Dobsina

    Majercak, V.; Srenkelova, Z.; Kristak, J.G.

    1997-01-01

    In this brochure the Hydroelectric Power Plants Dobsina, (VED), subsidiary of the utility Slovenske Elektrarne, a.s. (Slovak Electric, plc. Bratislava) are presented. VED is mainly aimed at generating peak-load electrical energy and maintenance of operational equipment. Reaching its goals, company is first of all focused on reliability of production, economy and effectiveness, keeping principles of work safety and industry safety standards and also ecology. VED operates eight hydroelectric power plants, from which PVE Ruzin I and PVE Dobsina I are pump storage ones and they are controlled directly by the Slovak Energy Dispatch Centre located in Zilina thought the system LS 3200. Those power plants participate in secondary regulation of electrical network of Slovakia. They are used to compensate balance in reference to foreign electrical networks and they are put into operation independently from VED. Activity of the branch is focused mainly on support of fulfilment of such an important aim as electric network regulation. Beginnings of the subsidiary Hydroelectric Power Plants Dobsina are related to the year of 1948. After commissioning of the pump storage Hydroelectric Power Plants Dobsina in 1953, the plant started to carry out its mission. Since that time the subsidiary has been enlarged by other seven power plants, through which it is fulfilling its missions nowadays. The characteristics of these hydroelectric power plants (The pump-storage power plant Dobsina, Small hydroelectric power plant Dobsina II, Small hydroelectric power plant Rakovec, Small hydroelectric power plant Svedlar, Hydroelectric power plant Domasa, The pump-storage power plant Ruzin, and Small hydroelectric power plant Krompachy) are described in detail. Employees welfare and public relations are presented

  14. Economic Optimization of a Concentrating Solar Power Plant with Molten-salt Thermocline Storage

    Flueckiger, S. M.; Iverson, B. D.; Garimella, S V

    2014-01-01

    System-level simulation of a molten-salt thermocline tank is undertaken in response to year-long historical weather data and corresponding plant control. Such a simulation is enabled by combining a finite-volume model of the tank that includes a sufficiently faithful representation at low computation cost with a system-level power tower plant model. Annual plant performance of a 100 MWe molten-salt power tower plant is optimized as a function of the thermocline tank size and the plant solar m...

  15. A contribution to water hammer analysis in pumped-storage power plants; Ein Beitrag zur Druckstossberechnung von Pumpspeicheranlagen

    Hoeller, Stefan; Jaberg, Helmut [TU Graz (Austria). Inst. fuer Hydraulische Stroemungsmaschinen

    2013-03-01

    The operation of pumped-storage power plants induces a highly transient fluid flow in the penstock of high head water power plants. In the planning phase a reliable prediction of the transient plant behaviour in unsteady load cases such as e.g. machine start or switching load cases is necessary. Numerical simulation methods provide a tool to calculate the occurring pressure pulsations or mass oscillations as well as for the optimization of the transient behaviour. Commercial software-packages for water hammer simulations usually do not provide numerical models for a realistic calculation of complex components like surge tanks, turbines or emergency closing valves in a high head water power plant. But especially these components need to be modelled correctly in order to get a significant and reliable solution. This article shows the practice ofthe development of a custom-designed numerical model on the example of a pump turbine. (orig.)

  16. The use of historical data storage and retrieval systems at nuclear power plants

    Langen, P.A.

    1984-01-01

    In order to assist the nuclear plant operator in the assessment of useful historical plant information, C-E has developed the Historical Data Storage and Retrieval (HDSR) system, which will record, store, recall, and display historical information as it is needed by plant personnel. The system has been designed to respond to the user's needs under a variety of situations. The user is offered the choice of viewing historical data on color video displays as groups or on computer printouts as logs. The graphical representation is based upon a sectoring concept that provides a zoom-in enlargement of sections of the HDSR graphs

  17. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  18. Strategies for Financing Large-scale Carbon Capture and Storage Power Plants in China

    Liang, X.; Liu, H.; Reiner, D.

    2014-01-01

    Building on previous stakeholder consultations from 2006 to 2010, we conduct a financial analysis for a generic CCS power plant in China. In comparison with conventional thermal generation technologies, a coal-fired power plant with CCS requires either a 70% higher on-grid electricity tariff or carbon price support of approximately US$50/tonne CO2 in the absence of any other incentive mechanisms or financing strategies. Given the difficulties of relying on any one single measure to finance a ...

  19. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    Mathur, Anoop [Terrafore Inc.

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  20. Ideal Operation of a Photovoltaic Power Plant Equipped with an Energy Storage System on Electricity Market

    Markku Järvelä; Seppo Valkealahti

    2017-01-01

    There is no natural inertia in a photovoltaic (PV) generator and changes in irradiation can be seen immediately at the output power. Moving cloud shadows are the dominant reason for fast PV power fluctuations taking place typically within a minute between 20 to 100% of the clear sky value roughly 100 times a day, on average. Therefore, operating a utility scale grid connected PV power plant is challenging. Currently, in many regions, renewable energy sources such as solar and wind receive fee...

  1. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Lei Qi

    2017-01-01

    Full Text Available We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750–1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5–6 times smaller than those of state-of-the-art molten salt systems.

  2. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Lei, Qi; Bader, Roman; Kreider, Peter; Lovegrove, Keith; Lipiński, Wojciech

    2017-11-01

    We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750-1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5-6 times smaller than those of state-of-the-art molten salt systems.

  3. New materials for thermal energy storage in concentrated solar power plants

    Guerreiro, Luis; Collares-Pereira, Manuel

    2016-05-01

    Solar Thermal Electricity (STE) is an important alternative to PV electricity production, not only because it is getting more cost competitive with the continuous growth in installed capacity, engineering and associated innovations, but also, because of its unique dispatch ability advantage as a result of the already well established 2-tank energy storage using molten salts (MS). In recent years, research has been performed, on direct MS systems, to which features like modularity and combinations with other (solid) thermal storage materials are considered with the goal of achieving lower investment cost. Several alternative materials and systems have been studied. In this research, storage materials were identified with thermo-physical data being presented for different rocks (e.g. quartzite), super concrete, and other appropriate solid materials. Among the new materials being proposed like rocks from old quarries, an interesting option is the incorporation of solid waste material from old mines belonging to the Iberian Pyritic Belt. These are currently handled as byproducts of past mine activity, and can potentially constitute an environmental hazard due to their chemical (metal) content. This paper presents these materials, as part of a broad study to improve the current concept of solar energy storage for STE plants, and additionally presents a potentially valuable solution for environmental protection related to re-use of mining waste.

  4. Licensing of a substantial modification of a nuclear power plant (compact storage)

    Anon.

    1982-01-01

    1. On the right of the nuclear power plant owners who had been invited to attend and who partly lost in the first instance to appeal (application according to paragraph 5 of sect. 80 of the rules of administrative courts). 2. On the security and economy of power supplies constituting public and private interests which may be brought forward in the appeal by the parties invited to attend. 3. External effects caused by a plane crash, residual risk. (orig.) [de

  5. Analysis to the criticality the storage and containers to the Juragua Nuclear Power Plant Fuel

    Guerra Valdes, R.

    1998-01-01

    Presently analysis the criticality the warehouses and containers the nuclear fuels in Juragua nuclear power plant the property multiplicity determined in these system and it is verified that for the geometry and operation conditions defined in the design as well as in accidents situations, the arrangement the fuel stays subcritical with an appropriate margin

  6. Perfecting on floating roof tanks, especially to storage tanks in a nuclear power plant

    Marquet, A.

    1987-01-01

    In this invention, the liquid reservoir has a floating roof with a tight connection to its wall by a flexible membrane, forming a space for counterbalancing liquid, and a pressure relief valve for the liquid within the reservoir opening above the counterbalancing liquid. Application for tanks used in nuclear power plant [fr

  7. On-site storage of spent nuclear fuel assemblies in German nuclear power plants

    Banck, J.

    1999-01-01

    The selection of back-end strategies for spent fuel assemblies is influenced by a number of different factors depending on the given situation in any specific country. In Germany, the back-end strategy implemented in the past was almost exclusively reprocessing. This strategy was required by the German Atomic Energy Act. Since 1994, when the Atomic Energy Act was amended, the option of direct final disposal has been granted the equivalent status by law to that afforded to reprocessing (and reuse of valuable materials). As a result, German utilities may now choose between these two alternatives. Another important condition for optimizing the back-end policy is the fact that fuel cycle costs in Germany are directly dependent on spent fuel volumes (in contrast to the US, for example, such costs are related to the amount of power generated). Another boundary condition for German utilities with respect to spent fuel management is posed by the problems with militant opponents of nuclear energy during transportation of spent fuel to interim storage sites. These facts have given rise to a reconsideration of the fuel cycle back-end, which has resulted in a change in strategy by most German utilities in favour of the following: Preference for long-term storage and maximized use of on-site storage capacity; Reduction in the amount of spent fuel by increasing burnup as much as possible. These decisions have also been driven by the deregulation of energy markets in Europe, where utilities are now permitted to sell electric power to consumers beyond their original supply network and must therefore offer electric power on a very cost competitive basis. (author)

  8. The potential role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future

    U.S. Environmental Protection Agency — This dataset represents the data underlying the figures presented in the manuscript "The potential role of natural gas power plants with carbon capture and storage...

  9. Numerical Modeling of the Effect of Thawing of Soil in the Area of Placing Tanks for Storage Fuel of Thermal Power Plants and Boiler

    Polovnikov V.Yu.

    2016-01-01

    Full Text Available This paper describes the numerical modeling of heat transfer in the area placing of the tank for storage fuel of thermal power plant and boiler with considering the influence of thawing of the soil. We have established that the thawing of the soil in the area of placing of the tank for storage fuel of thermal power plant and boiler have little effect on the change of heat loss.

  10. Thermal Mode of Tanks for Storage Fuel of Thermal Power Plants and Boiler with the Influence of Engineering Facilities in the Area of their Placement

    Polovnikov, V. Yu.; Makhsutbek, F. T.; Ozhikenova, Zh. F.

    2016-02-01

    This paper describes the numerical modeling of heat transfer in the area placing of the tank for storage fuel of thermal power plant and boiler with the influence of engineering construction. We have established that the presence of engineering structures in the area of placing of the tank for storage fuel of thermal power plant and boiler have little effect on the change of heat loss.

  11. A Three-Part Electricity Price Mechanism for Photovoltaic-Battery Energy Storage Power Plants Considering the Power Quality and Ancillary Service

    Yajing Gao

    2017-08-01

    Full Text Available To solve the problem of solar abandoning, which is accompanied by the rapid development of photovoltaic (PV power generation, a demonstration of a photovoltaic-battery energy storage system (PV-BESS power plant has been constructed in Qinghai province in China. However, it is difficult for the PV-BESS power plant to survive and develop with the current electricity price mechanism and subsidy policy. In this paper, a three-part electricity price mechanism is proposed based on a deep analysis of the construction and operation costs and economic income. The on-grid electricity price is divided into three parts: the capacity price, graded electricity price, and ancillary service price. First, to ensure that the investment of the PV-BESS power plant would achieve the industry benchmark income, the capacity price and benchmark electricity price are calculated using the discounted cash flow method. Then, the graded electricity price is calculated according to the grade of the quality of grid-connected power. Finally, the ancillary service price is calculated based on the graded electricity price and ancillary service compensation. The case studies verify the validity of the three-part electricity price mechanism. The verification shows that the three-part electricity price mechanism can help PV-BESS power plants to obtain good economic returns, which can promote the development of PV-BESS power plants.

  12. Pumping station design for a pumped-storage wind-hydro power plant

    Anagnostopoulos, John S.; Papantonis, Dimitris E.

    2007-01-01

    This work presents a numerical study of the optimum sizing and design of a pumping station unit in a hybrid wind-hydro plant. The standard design that consists of a number of identical pumps operating in parallel is examined in comparison with two other configurations, using one variable-speed pump or an additional set of smaller jockey pumps. The aim is to reduce the amount of the wind generated energy that cannot be transformed to hydraulic energy due to power operation limits of the pumps and the resulting step-wise operation of the pumping station. The plant operation for a period of one year is simulated by a comprehensive evaluation algorithm, which also performs a detailed economic analysis of the plant using dynamic evaluation methods. A preliminary study of the entire plant sizing is carried out at first using an optimization tool based on evolutionary algorithms. The performance of the three examined pumping station units is then computed and analyzed in a comparative study. The results reveal that the use of a variable-speed pump constitutes the most effective and profitable solution, and its superiority is more pronounced for less dispersed wind power potential

  13. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    Gawlik, Keith

    2013-06-25

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  14. Soft energy/seawater pumped-storage power plant in Okinawa; Sofuto energy/Okinawa kaisui yosui hatsuden

    Tsutsui, S. [Univ. of Ryukyus, Okinawa (Japan). Faculty of Engineering

    1995-11-15

    A demonstration seawater pumped-storage power plant which is the first one in the world is under construction in the northern area of Okinawa. The pumped-storage power generation is an electricity recycling system in which the surplus electricity during the night is utilized to pump up water to an upper reservoir to discharge water for power generation during the daytime when demand for electricity increases. It is scheduled that main civil engineering structures are constructed during the year of 1995 to be subjected to trial operation in the following year. Countermeasures to be taken for natural environmental protection during the plant construction are introduced. Countermeasures are devised for environment assessment, muddy water treatment, and prevention of seawater at the upper reservoir. Salinity in the atmosphere is to be measured during the construction work and the demonstration test to evaluate the effects of scattering of salt from the upper reservoir into the atmosphere on the vegetation in the peripheral area and the salt-resistance of vegetation. Sufficient consideration is given to the protection of the existing vegetation and coral, and to the protection of small living creatures. Participants in the construction work are requested to report, for the purpose of taking proper steps, sites, peripheral conditions, and others when precious animals are found. 9 figs., 1 tab.

  15. A Wind Power Plant with Thermal Energy Storage for Improving the Utilization of Wind Energy

    Chang Liu

    2017-12-01

    Full Text Available The development of the wind energy industry is seriously restricted by grid connection issues and wind energy generation rejections introduced by the intermittent nature of wind energy sources. As a solution of these problems, a wind power system integrating with a thermal energy storage (TES system for district heating (DH is designed to make best use of the wind power in the present work. The operation and control of the system are described in detail. A one-dimensional system model of the system is developed based on a generic model library using the object-oriented language Modelica for system modeling. Validations of the main components of the TES module are conducted against experimental results and indicate that the models can be used to simulate the operation of the system. The daily performance of the integrated system is analyzed based on a seven-day operation. And the influences of system configurations on the performance of the integrated system are analyzed. The numerical results show that the integrated system can effectively improve the utilization of total wind energy under great wind power rejection.

  16. Interim storage of spent fuel elements in the Paks Nuclear Power Plant, Hungary

    Szabo, B.

    1998-01-01

    The interim storage of spent fuel cassettes of the Paks NPP provides storage for 50 years at the Paks NPP site. The modular dry storage technology is presented. The technological design and the licensing of the facility has been made by the GEC Alsthom ESL firm. This storage facility can accommodate 450 fuel cassettes until their final disposal. (R.P.)

  17. Environmental safety aspects of the new solid radioactive waste management and storage facility at the Ignalina Nuclear Power Plant

    Ragaisis, Valdas; Poskas, Povilas; Simonis, Vytautas; Adomaitis, Jonas Erdvilas [Lithuanian Energy Institute, Kaunas (Lithuania). Nuclear Engineering Lab.

    2011-11-15

    New solid radioactive waste management and interim storage facilities will be constructed for the Ignalina Nuclear Power Plant to support ongoing decommissioning activities, including removal and treatment of operational waste from the existing storage buildings. The paper presents approach and methods that have been used to assess radiological impacts to the general public potentially arising under normal operation and accident conditions and to demonstrate compliance with regulations in force. The assessment of impacts from normal operation includes evaluation of exposure arising from release of airborne radioactive material and from facilities and packages containing radioactive material. In addition, radiological impacts from other nearby operating and planned nuclear facilities are taken into consideration. The assessment of impacts under accident conditions includes evaluation of exposure arising from the selected design and beyond design basis accidents. (orig.)

  18. Research and development of CO2 Capture and Storage Technologies in Fossil Fuel Power Plants

    Lukáš Pilař

    2012-01-01

    Full Text Available This paper presents the results of a research project on the suitability of post-combustion CCS technology in the Czech Republic. It describes the ammonia CO2 separation method and its advantages and disadvantages. The paper evaluates its impact on the recent technology of a 250 MWe lignite coal fired power plant. The main result is a decrease in electric efficiency by 11 percentage points, a decrease in net electricity production by 62 MWe, and an increase in the amount of waste water. In addition, more consumables are needed.

  19. Ice storage facilities are worthwhile for the operation of power plants. Load management with jet pumps; Eisspeicher zahlen sich fuer Kraftwerksbetrieb aus. Lastmanagement mit Strahlpumpen

    Gerhold, Richard

    2012-12-15

    The significantly better alternative to hot water tanks in thermal power plants are ice storage tanks and steam jet refrigeration plants. These facilities form ice, supply district heating and produce heat from the environment. Furthermore, these facilities produce additional peak load electricity nearly daily, so that several large power plants become dispensable. How this is possible in a simple and low-cost manner, is described in the contribution under consideration.

  20. Multi-fuel multi-product operation of IGCC power plants with carbon capture and storage (CCS)

    Cormos, Ana-Maria; Dinca, Cristian; Cormos, Calin-Cristian

    2015-01-01

    This paper investigates multi-fuel multi-product operation of IGCC plants with carbon capture and storage (CCS). The investigated plant designs co-process coal with different sorts of biomass (e.g. sawdust) and solid wastes, through gasification, leading to different decarbonised energy vectors (power, hydrogen, heat, substitute natural gas etc.) simultaneous with carbon capture. Co-gasification of coal with different renewable energy sources coupled with carbon capture will pave the way towards zero emissions power plants. The energy conversions investigated in the paper were simulated using commercial process flow modelling package (ChemCAD) in order to produce mass and energy balances necessary for the proposed evaluation. As illustrative cases, hydrogen and power co-generation and Fischer–Tropsch fuel synthesis (both with carbon capture), were presented. The case studies investigated in the paper produce a flexible ratio between power and hydrogen (in the range of 400–600 MW net electricity and 0–200 MW th hydrogen considering the lower heating value) with at least 90% carbon capture rate. Special emphasis were given to fuel selection criteria for optimisation of gasification performances (fuel blending), to the selection criteria for gasification reactor in a multi-fuel multi-product operation scenario, modelling and simulation of whole process, to thermal and power integration of processes, flexibility analysis of the energy conversion processes, in-depth techno-economic and environmental assessment etc. - Highlights: • Assessment of IGCC-based energy vectors poly-generation systems with CCS. • Optimisation of gasification performances and CO 2 emissions by fuel blending. • Multi-fuel multi-product operation of gasification plants

  1. Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants

    Denholm, Paul L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, Joshua D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-08-17

    The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.

  2. Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants: Report Summary

    Denholm, Paul L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eichman, Joshua D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-28

    The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.

  3. Solar thermal power plants

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  4. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.; Freeman, Charles J.

    2011-11-30

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energy generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity

  5. Power plants 2010. Lectures

    2010-01-01

    The proceedings include the following lectures: Facing the challenges - new structures for electricity production. Renewable energies in Europe - chances and challenges. Nuclear outlook in the UK. Sustainable energy for Europe. Requirements of the market and the grid operator at the electricity production companies. Perspectives for the future energy production. Pumped storage plants - status and perspectives. Nuclear power/renewable energies -partners or opponents? New fossil fired power stations in Europe - status and perspectives. Nuclear energy: outlook for new build and lifetime extension in Europe. Biomass in the future European energy market - experiences for dong energy. Meeting the EU 20:20 renewable energy targets: the offshore challenges. DESERTEC: sustainable electricity for Europe, Middle East and North Africa. New power plants in Europe - a challenge for project and quality management. Consideration of safely in new build activities of power plants. Challenges to an integrated development in Maasvlakte, Netherlands. Power enhancement in EnBW power plants. Operational experiences of CCS pilot plants worldwide. Two years of operational experiences with Vattenfall's oxyfuel pilot plant. Pre-conditions for CCS. Storage technologies for a volatile generation. Overview: new generation of gas turbines.

  6. Options for the ultimate storage of low and medium level radioactive wastes produced at Laguna Verde nuclear power plant

    Emeterio, Miguel

    1991-01-01

    The devoted time and still to be expend in prepare, execute and teach permanent and safe solutions to the problem of the evaluation of radioactive wastes reflects the political, economic and environmental importance with respect to public health and safety invested in this task, as well as, its technological challenges. In the case of Laguna Verde nuclear power plant, its low and medium level radioactive wastes are stored in the beginning in a temporal store with a capacity of 2000 m 3 sufficient to four years of normal operation; according to what it is necessary to select one of different ways of waste storage. Different technologies has been evaluated and the preliminary conclusion is that for Mexico the more feasible way to store radioactive wastes is in tumulus (Author)

  7. Deriving Optimal End of Day Storage for Pumped-Storage Power Plants in the Joint Energy and Reserve Day-Ahead Scheduling

    Manuel Chazarra

    2017-06-01

    Full Text Available This paper presents a new methodology to maximise the income and derive the optimal end of day storage of closed-loop and daily-cycle pumped-storage hydropower plants. The plants participate in the day-ahead energy market as a price-taker and in the secondary regulation reserve market as a price-maker, in the context of the Iberian electricity system. The real-time use of the committed reserves is considered in the model formulation. The operation of the plants with the proposed methodology is compared to the ones that use an end of day storage of an empty reservoir or half of the storage capacity. Results show that the proposed methodology increases the maximum theoretical income in all the plants analysed both if they only participate in the day-ahead energy market and if they also participate in the secondary regulation service. It is also shown that the increase in the maximum theoretical income strongly depends on the size of the plant. In addition, it is proven that the end of day storages change notably in the new reserve-driven strategies of pumped-storage hydropower plants and that the proposed methodology is even more recommended if the secondary regulation service is considered.

  8. Mega akku in the Alps. Pumped-storage power plant Limberg II in Kaprun; Mega-Akku in den Alpen. Pumpspeicherwerk Limberg II in Kaprun

    Steyrer, Peter [POEYRY Energy GmbH, Salzburg (Austria). Konstruktiver Wasserbau

    2011-05-15

    Since the 1920ies, the Kaprun valley and the area around the Grossglockner are a subject for project planning of hydropower plants. The power plant group Glockner-Kaprun with upper and main stage was completed in 1955. Since 1970, various options for expansion were examined by a pumped storage plant. The result of these investigations is the project Limberg II, which is realized since 2007 and completed this year.

  9. Investigations on forecast-based operating strategies for solar thermal power plants with integrated storage capacity; Untersuchungen zu vorhersagebasierten Betriebsstrategien fuer solarthermische Kraftwerke mit integrierter Speicherkapazitaet

    Wittmann, Michael Karl

    2012-07-01

    This publication describes a method for scheduling the operation of a power plant storage. The purpose of operation scheduling is to determine the economically optimum yield achievable in the course of daily power plant operation. The optimum operation schedule for the storage is determined based on Dynamic Programming Algorithms. Besides its focus on operation scheduling the publication investigates the effects of imperfect weather and price forecasts on electricity production and thus on the operator's economic results. It assesses the current Spanish legislation as well as other incentive scenarios in terms of their impact on operators' feed-in behaviour.

  10. Treatment and storage of radioactive waste at a nuclear power plant

    1996-01-01

    The guide gives the general principles that shall be followed when planning and implementing the treatment, storing, transfer, activity monitoring and record keeping of radioactive wastes. The guide does not include provisions for spent fuel or for treatment and discharges of liquids or gases containing radioactive substances. Neither does the guide include any detailed design criteria for treatment facilities or storages. (4 refs.)

  11. Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies

    Tola, Vittorio; Pettinau, Alberto

    2014-01-01

    Highlights: • Techno-economic performance of coal-fired power plants (without and with CCS). • Without CCS system, USC is more efficient and cost-competitive than IGCC. • CCS energy penalties are more relevant for USC than IGCC. • Higher SNOX system costs are partially compensated by better USC performance. • CCS technologies cannot be profitable without adequate policies and incentives. - Abstract: Worldwide energy production requirements could not be fully satisfied by nuclear and renewables sources. Therefore a sustainable use of fossil fuels (coal in particular) will be required for several decades. In this scenario, carbon capture and storage (CCS) represents a key solution to control the global warming reducing carbon dioxide emissions. The integration between CCS technologies and power generation plants currently needs a demonstration at commercial scale to reduce both technological risks and high capital and operating cost. This paper compares, from the technical and economic points of view, the performance of three coal-fired power generation technologies: (i) ultra-supercritical (USC) plant equipped with a conventional flue gas treatment (CGT) process, (ii) USC plant equipped with SNOX technology for a combined removal of sulphur and nitrogen oxides and (iii) integrated gasification combined cycle (IGCC) plant based on a slurry-feed entrained-flow gasifier. Each technology was analysed in its configurations without and with CO 2 capture, referring to a commercial-scale of 1000 MW th . Technical assessment was carried out by using simulation models implemented through Aspen Plus and Gate-Cycle tools, whereas economic assessment was performed through a properly developed simulation model. USC equipped with CGT systems shows an overall efficiency (43.7%) comparable to IGCC (43.9%), whereas introduction of SNOX technology increases USC efficiency up to 44.8%. Being the CCS energy penalties significantly higher for USC (about 10.5% points vs. about 8

  12. Highest manageable level of radioactivity in the waste storage facilities of power plants

    Elkert, J.; Lennartsson, R.

    1991-01-01

    This project presents and discusses an investigation of the highest level of radioactivity possible to handle in the waste storage facilities. The amount of radioactivity, about 0.1% of the fuel inventory, is the same in both of the cases but the amount of water is very different. The hypothetical accident was supposed to be damage of the reactor fuel caused by loss of coolant. (K.A.E.)

  13. Criticality and shielding calculations of an interim dry storage system for the spent fuel from Atucha I Nuclear Power Plant

    Silva, M

    2006-01-01

    The Atucha I Nuclear Power Plant (CNA-I) has enough room to store its spent fuel (SF) in damp in its two pool houses until the middle of 2015.Before that date there is the need to have an interim dry storage system for spent fuel that would make possible to empty at least one of the pools, whether to keep the plant operating if its useful life is extended, or to be able to empty the reactor core in case of decommissioning.Nucleolectrica Argentina S.A. (NA-SA) and the Comision Nacional de Energia Atomica (CNEA), due to their joint responsibility in the management of the SF, have proposed interim dry storage systems.These systems have to be evaluated in order to choose one of them by the end of 2006.In this work the Monte Carlo code MCNP was used to make the criticality and shielding calculations corresponding to the model proposed by CNEA.This model suggests the store of sealed containers with 36 or 37 SF in concrete modules.Each one of the containers is filled in the pool houses and transported to the module in a transference cask with lead walls.The results of the criticality calculations indicates that the solutions of SF proposed have widely fulfilled the requirements of subcriticality, even in supposed extreme accidental situations.Regarding the transference cask, the SF dose rate estimations allow us to make a feedback for the design aiming to the geometry and shielding improvements.Regarding the store modules, thicknesses ranges of concrete walls are suggested in order to fulfill the dose requirements stated by the Autoridad Regulatoria Nuclear Argentina [es

  14. Oil drilling rig diesel power-plant fuel efficiency improvement potentials through rule-based generator scheduling and utilization of battery energy storage system

    Pavković, Danijel; Sedić, Almir; Guzović, Zvonimir

    2016-01-01

    Highlights: • Isolated oil drilling rig microgrid power flows are analyzed over 30 days. • Rule-based diesel generator scheduling is proposed to reduce fuel consumption. • A battery energy storage is parameterized and used for peak load leveling. • The effectiveness of proposed hybrid microgrid is verified by simulations. • Return-of-investment might be expected within 20% of battery system lifetime. - Abstract: This paper presents the development of a rule-based energy management control strategy suitable for isolated diesel power-plants equipped with a battery energy storage system for peak load shaving. The proposed control strategy includes the generator scheduling strategy and peak load leveling scheme based on current microgrid active and reactive power requirements. In order to investigate the potentials for fuel expenditure reduction, 30 days-worth of microgrid power flow data has been collected on an isolated land-based oil drilling rig powered by a diesel generator power-plant, characterized by highly-variable active and reactive load profiles due to intermittent engagements and disengagements of high-power electric machinery such as top-drive, draw-works and mud-pump motors. The analysis has indicated that by avoiding the low-power operation of individual generators and by providing the peak power requirements (peak shaving) from a dedicated energy storage system, the power-plant fuel efficiency may be notably improved. An averaged power flow simulation model has been built, comprising the proposed rule-based power flow control strategy and the averaged model of a suitably sized battery energy storage system equipped with grid-tied power converter and state-of-charge control system. The effectiveness of the proposed rule-based strategy has been evaluated by means of computer simulation analysis based on drilling rig microgrid active and reactive power data recorded during the 30 day period. The analysis has indicated that fuel consumption of

  15. Leaching of Major and Minor Elements during the Transport and Storage of Coal Ash Obtained in Power Plant

    Rada Krgović

    2014-01-01

    Full Text Available In power plant, coal ash obtained by combustion is mixed with river water and transported to the dump. Sequential extraction was used in order to assess pollution caused by leaching of elements during ash transport through the pipeline and in the storage (cassettes. A total of 80 samples of filter ash as well as the ash from active (currently filled and passive (previously filled cassettes were studied. Samples were extracted with distilled water, ammonium acetate, ammonium oxalate/oxalic acid, acidic solution of hydrogen-peroxide, and a hydrochloric acid. Concentrations of the several elements (Al, As, Cd, Co, Cu, Cr, Fe, Ba, Ca, Mg, Ni, Pb, and Zn in all extracts were determined by inductively coupled plasma atomic emission spectrometry. Pattern recognition method was carried out in order to provide better understanding of the nature of distribution of elements according to their origins. Results indicate possible leaching of As, Ca, Cd, Cu, Zn, and Pb. Among these elements As, Cd, and Pb are toxicologically the most important but they were not present in the first two phases with the exception of As. The leaching could be destructive and cause negative effects on plants, water pollution, and damage to some life forms.

  16. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.

    Zhai, Haibo; Ou, Yang; Rubin, Edward S

    2015-07-07

    This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.

  17. Pumped Storage Power plants, Challenges and opportunities - Some conclusions; Stockage d'energie par pompage, defis et opportunites - Quelques conclusions

    Viollet, Pierre-Louis; Roult, Didier; Mathex, Bruno; Ouaabi, Aziz; Louis, Frederic; Petitjean, Alain; Capuozzo, Vincent; Mazzouji, Farid; Prestat, Bruno; Nekrassov, Andrei; Caignaert, Guy; Vidil, Roland; Guilbaud, Claude; Metais, Olivier

    2011-11-15

    This document briefly synthesizes a conference which addressed the development of pumped storage power plants in the world, and social, economic, technical and scientific challenges related to this development which is closely related to the development of intermittent renewable energies (wind and solar energy). Current developments in different countries (Germany, Portugal, Switzerland, Norway, France and China) are evoked

  18. The atmospheric corrosion: an important technical-economic and nuclear safety factor during storage in the construction of nuclear power plants

    Rodriguez, R.; Rodriguez, J.; Diaz, J.; Gomez, J.; Galeano, N.

    1993-01-01

    The purpose of this work is to show the results of the research performed to determine the atmospheric corrosion in the region of Juragua nuclear power plant and to offer some practical recommendations to increase the efficiency during the storage of materials, considering technical-economic and nuclear safety aspects

  19. The collection, storage and use of equipment performance data for the safety and reliability assessment of nuclear power plants

    Fothergill, C.D.H.

    1975-01-01

    It has been characteristic of the Nuclear Industry that it should grow up in an atmosphere where reliability and operational safety considerations have been of vital importance. Consequently all aspects of Nuclear Power Reactor design, construction and operation (in the U.K.A.E.A.) are subjected to rigorous reliability assessments, beginning with the automatic protective devices and the safety shut-down systems. This has resulted in the setting up of large and small private data stores to support this upsurgence of Safety and Reliability assessment work. Unfortunately, much of the information being stored and published falls short of the minimum requirements of Safety Assessors and Reliability Analysts who need to make use of it. That there is still an urgent need for more work to be done in the Reliability Data field is universally acknowledged. The characteristics which make up good quality reliability data must be defined and achievable minimum standards must be set for its identification, collection, storage and retrieval. To this end the United Kingdom Atomic Energy Authority have set up the Systems Reliability Service Data Bank. This includes a computerized storage facility comprised of two principal data stores: (i) Reliability Data Store, (ii) Event Data Store. The figures available in the Reliability Data Store range from those relating to the lifetimes of minute components to those obtained from the assessment of whole plants and complete assemblies. These data have been accumulated from many reliable sources both inside and outside the Nuclear Industry, including the transfer of 'live' data generated from the results of reliability surveillance exercises associated with Event Data collection. Computer techniques developed specifically for the Reliability Data Store enable further 'processing' of these data to be carried out. The Event Data Store consists of three discrete computerized data stores, each one providing the necessary storage, retrieval and

  20. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  1. Capturing low-carbon power system dynamics : Interactions between intermittent renewables and power plants with CO2 capture and storage

    Brouwer, Anne-Sjoerd

    2015-01-01

    Low-carbon power systems are needed by the year 2050 to meet climate change mitigation targets. This dissertation investigates the operational and economic feasibility of such future low-carbon power systems by simulating the Dutch and European power systems. Particular attention is paid to the

  2. Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt

    Boukelia, T.E.; Mecibah, M.S.; Kumar, B.N.; Reddy, K.S.

    2015-01-01

    Thermodynamic, economic and environmental analyses of concentrating solar power plants assist in identifying an effective and viable configuration. In this paper, a 4E (energy-exergy-environmental-economic) comparative study of 8 different configurations of parabolic trough solar thermal power plants with two different working fluids (Therminol VP-1 -oil and molten solar salt), with and without integrated thermal energy storage or/and backup fuel system is presented. The results of the comparative study indicate relevant differences among the 8 configurations. The molten solar salt configuration with integrated thermal energy storage and fossil fuel backup system exhibits the highest overall energy efficiency (18.48%) compared to other configurations. Whereas, the highest overall exergy efficiency (21.77%), capacity factor (38.20%) and annual energy generation (114 GWh) are found for the oil based configuration with integrated thermal energy storage and fossil fuel backup system. The results indicate that the configurations based on molten salt are better in terms of environmental and economical parameters. The configurations with integrated thermal energy storage and fossil fuel backup system are found to be techno-economical, but on the other hand are less environment friendly. A detailed comparison of these plants after optimization must be performed before drawing a final conclusion about the best configuration to be adopted in parabolic trough solar thermal power plant. - Highlights: • 4E comparative study of 8 configurations of PTSTPP with two different fluids. • Comparison of the configurations with and without integrated TES (thermal energy storage) and FBS (fuel backup system). • The overall energy efficiency of the salt plant with TES and FBS is the highest. • The overall exergy efficiency of the oil plant with TES and FBS is the highest. • The salt plants are the best configurations in terms of environ–eco parameters

  3. Storage, handling and movement of fuel and related components at nuclear power plants

    1979-01-01

    The report describes in general terms the various operations involved in the handling of fresh fuel, irradiated fuel, and core components such as control rods, neutron sources, burnable poisons and removable instruments. It outlines the principal safety problems in these operations and provides the broad safety criteria which must be observed in the design, operation and maintenance of equipment and facilities for handling, transferring, and storing nuclear fuel and core components at nuclear power reactor sites

  4. Smart power management algorithm in microgrid consisting of photovoltaic, diesel, and battery storage plants considering variations in sunlight, temperature, and load

    Koohi-Kamali, Sam; Rahim, N.A.; Mokhlis, H.

    2014-01-01

    Highlights: • A novel power management algorithm is developed. • An effective power smoothing index is derived. • Application of battery storage in smoothing the power fluctuations is investigated. • An applicable battery sizing and designing algorithm is proposed. • An efficient battery current control algorithm is designed. - Abstract: Integration of utility scaled solar electricity generator into power networks can negatively affect the performance of next generation smartgrid. Rapidly changing output power of this kind is unpredictable and thus one solution is to mitigate it by short-term to mid-term electrical storage systems like battery. The main objective of this paper is to propose a power management system (PMS) which is capable of suppressing these adverse impacts on the main supply. A smart microgrid (MG) including diesel, battery storage, and solar plants has been suggested for this purpose. MG is able to supply its local load based on operator decision and decline the power oscillations caused by solar system together with variable loads. A guideline algorithm is also proposed which helps to precisely design the battery plant. A novel application of time domain signal processing approach to filter oscillating output power of the solar plant is presented as well. In this case, a power smoothing index (PSI) is formulated, which considers both load and generation, and used to dispatch the battery plant. A droop reference estimator to schedule generation is also introduced where diesel plant can share the local load with grid. A current control algorithm is designed as well which adjusts for PSI to ensure battery current magnitude is allowable. MG along with its communication platform and PMS are simulated using PSCAD software. PMS is tested under different scenarios using real load profiles and environmental data in Malaysia to verify the operational abilities of proposed MG. The results indicate that PMS can effectively control the MG

  5. Design of an ammonia closed-loop storage system in a CSP power plant with a power tower cavity receiver

    Abdiwe, Ramadan; Haider, Markus

    2017-06-01

    In this study the thermochemical system using ammonia as energy storage carrier is investigated and a transient mathematical model using MATLAB software was developed to predict the behavior of the ammonia closed-loop storage system including but not limited to the ammonia solar reactor and the ammonia synthesis reactor. The MATLAB model contains transient mass and energy balances as well as chemical equilibrium model for each relevant system component. For the importance of the dissociation and formation processes in the system, a Computational Fluid Dynamics (CFD) simulation on the ammonia solar and synthesis reactors has been performed. The CFD commercial package FLUENT is used for the simulation study and all the important mechanisms for packed bed reactors are taken into account, such as momentum, heat and mass transfer, and chemical reactions. The FLUENT simulation reveals the profiles inside both reactors and compared them with the profiles from the MATLAB code.

  6. Criticality Calculations of Fresh LEU and MOX Assemblies for Transport and Storage at the Balakovo Nuclear Power Plant

    Goluoglu, S.

    2001-01-11

    Transportation of low-enriched uranium (LEU) and mixed-oxide (MOX) assemblies to and within the VVER-1000-type Balakovo Nuclear Power Plant is investigated. Effective multiplication factors for fresh fuel assemblies on the railroad platform, fresh fuel assemblies in the fuel transportation vehicle, and fresh fuel assemblies in the spent fuel storage pool are calculated. If there is no absorber between the units, the configurations with all MOX assemblies result in higher effective multiplication factors than the configurations with all LEU assemblies when the system is dry. When the system is flooded, the configurations with all LEU assemblies result in higher effective multiplication factors. For normal operating conditions, effective multiplication factors for all configurations are below the presumed upper subcritical limit of 0.95. For an accident condition of a fully loaded fuel transportation vehicle that is flooded with low-density water (possibly from a fire suppression system), the presumed upper subcritical limit is exceeded by configurations containing LEU assemblies.

  7. Final Deliverable W6, D6.4: Coal power plants with carbon capture and storage – A sustainability assessment

    Ramirez, C.A.; Schakel, W.B.; Wood, R.; Grytli, T.

    2013-01-01

    Carbon Capture and Storage (CCS) is increasingly gaining attention as a strategy for the abatement of greenhouse gas (GHG) emissions. CCS includes the capture of CO2 emissions from electricity generation plants and/or industrial processes, its transport (by pipeline or ships) and sequestration in

  8. Nuclear power plants

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  9. Kansas Power Plants

    Kansas Data Access and Support Center — The Kansas Power Plants database depicts, as point features, the locations of the various types of power plant locations in Kansas. The locations of the power plants...

  10. Techno-Economic Assessment of Heat Transfer Fluid Buffering for Thermal Energy Storage in the Solar Field of Parabolic Trough Solar Thermal Power Plants

    Jorge M. Llamas

    2017-08-01

    Full Text Available Currently, operating parabolic trough (PT solar thermal power plants, either solar-only or with thermal storage block, use the solar field as a heat transfer fluid (HTF thermal storage system to provide extra thermal capacity when it is needed. This is done by circulating heat transfer fluid into the solar field piping in order to create a heat fluid buffer. In the same way, by oversizing the solar field, it can work as an alternative thermal energy storage (TES system to the traditionally applied methods. This paper presents a solar field TES model for a standard solar field from a 50-MWe solar power plant. An oversized solar model is analyzed to increase the capacity storage system (HTF buffering. A mathematical model has been developed and different simulations have been carried out over a cycle of one year with six different solar multiples considered to represent the different oversized solar field configurations. Annual electricity generation and levelized cost of energy (LCOE are calculated to find the solar multiple (SM which makes the highest solar field thermal storage capacity possible within the minimum LCOE.

  11. Optimal operation of a pumped-storage hydro plant that compensates the imbalances of a wind power producer

    Duque, Álvaro Jaramillo; Castronuovo, Edgardo D.; Sánchez, Ismael; Usaola, Julio

    2011-01-01

    The participation of wind energy in electricity markets requires providing a forecast for future energy production of a wind generator, whose value will be its scheduled energy. Deviations from this schedule because of prediction errors could imply the payment of imbalance costs. In order to decrease these costs, a joint operation between a wind farm and a hydro-pump plant is proposed; the hydro-pump plant changes its production to compensate wind power prediction errors. In order to optimize...

  12. Power plants 2009. Lectures

    2009-01-01

    Within the Annual Conference 2009 of the VGB PowerTech e.V. (Essen, Federal Republic of Germany) from 23rd to 25th May, 2009, in Lyon (France) the following lectures were held: (1) Electricity demand, consequences of the financial and economic crisis - Current overview 2020 for the EU-27 (Hans ten Berge); (2) Status and perspectives of the electricity generation mix in France (Bernard Dupraz); (3) European electricity grid - status and perspective (Dominique Maillard); (4) Technologies and acceptance in the European energy market (Gordon MacKerran); (5) EPR construction in Finland, China, France, (Claude Jaouen); (6) EPR Flamanville 3: A project on the path towards nuclear revival (Jacques Alary); (7) Worldwide nuclear Revival and acceptance (Luc Geraets); (8) An overview on the status of final disposal of radioactive wastes worldwide (Piet Zuidema); (9) Who needs pumped storage plants? PSP are partner to grid stability and renewable energies (Hans-Christoph Funke); (10) Sustainable use of water resources to generate electricity safely and efficiently (Patrick Tourasse); (11) The growth strategy of RWE Innogy - Role of RES in RWE strategy (Fritz Vahrenholt); (12) Solar technologies towards grid parity - key factors and timeframe (G. Gigliucci); (13) Overview on CCS technologies and results of Vattenfalls oxyfuel pilot plant (Philippe Paelinck); (14) Development perspectives of lignite-based IGCC-plants with CCS (Dietmar Keller); (15) Post combustion capture plants - concept and plant integration (Wolfgang Schreier); (16) CCS fossil power generation in a carbon constraint world (Daniel Hofmann); (17) CEZ group strategy in Central and South Eastern Europe (Jan Zizka); (18) Strategy and projects of DONG Energy (Jens Erik Pedersen); (19) E.ON coal-based power generation of the future - The highly efficient power plant and downstream separation of carbon dioxide (Gerhard Seibel); (20) Final sage of first supercritical 460 MW e l. CFB Boiler construction - firs

  13. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  14. Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated using a Condensate Storage Tank

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y.; Kim, M.; Choi, I.

    2010-06-30

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are

  15. Selection and Performance-Degradation Modeling of LiMO2/Li4Ti5O12 and LiFePO4/C Battery Cells as Suitable Energy Storage Systems for Grid Integration With Wind Power Plants

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2014-01-01

    Advances in the development of energy storage technologies are making them attractive for grid integration together with wind power plants. Thus, the new system, the virtual power plant, is able to emulate the characteristics of today’s conventional power plants. However, at present, energy stora......-degradation models were developed for the two most suitable Li–ion chemistries for the primary frequency regulation service: LiMO2 /Li4Ti5O12 and LiFePO4/C....

  16. Could a geological storage of the CO2 emissions from Romanian power plants become a joint implementation project?

    Matei, Magdalena; Ene, Simona; Necula, Catalina; Matei, Lucian; Marinescu, Mihai

    2006-01-01

    Full text: Emissions trading is a solution that is most compatible with deregulated electricity markets. The Directive 2003/87/CE referring to CO 2 emission trading within Europe entered into force and till 31 March 2004 all the countries had to present to the Commission their national plan to comply with Directive's rules. Recent predictions of the Intergovernmental Panel on Climate Change indicate that global warming will accelerate within this century. CO 2 emitted by the burning of fossil fuels is thought to be a main driving factor of climate change. With the potential to produce power without releasing CO 2 into the atmosphere, CO 2 capturing may become an important part of the post- Kyoto strategies of many countries. Underground storage of CO 2 seems to be one of the most attractive alternative. Potential targets for CO 2 injection are: - depleted oil reservoirs, possibly in combination with enhanced oil recovery - former gas fields, possibly with additional gas production - deep aquifers containing saline, non-drinkable water - deep and unminable coal seams (exchange of absorbed methane by CO 2 with simultaneous gas production) - geothermal wells, after heat extraction from the aquifers - residual volumes of former deep coal and salt mines. An environmental political decision about the option of CO 2 underground storage has to consider forecasts about developments of global climate, societies, and economics. Due to the forthcoming emission trading there is a growing interest in underground storage options for CO 2 in Europe now. Flexible mechanisms agreed by Kyoto Protocol, namely the Project-based Joint Implementation (Art. 6) and the Emission Trading (Art. 17) could help Romania to attract investment with a long term impact on emissions reduction. The brief identification of major CO 2 emissions sources and of possible CO 2 geological storage capacities (coal mines, aquifers, geothermal wells, oil and gas fields) shows that it is very probable to

  17. Expertise on the Goesgen-Daeniken nuclear power plant on the granting of a licence for the construction and operation of a water storage pool for fuel assemblies at the site of the power plant

    2003-04-01

    On June 26, 2002, the Goesgen-Daeniken AG nuclear power plant (KKG) delivered a request to the Swiss Federal Council for the granting of a licence for the construction and operation of a water storage pool for the on-site storage of the power plant's fuel assemblies. The present report contains the results of the examination of the request by the Federal Agency for the Safety of Nuclear Installations (HSK), to check that the projected storage pool satisfies the legal requirements from the point of view of nuclear safety and protection against radioactivity. A water storage pool already exists in the reactor building of KKG. It was conceived for a fuel cycle based on the reprocessing of the spent fuel assemblies. Its capacity is not sufficient when the spent fuel assemblies are no longer reprocessed but have to be transferred and stored in the Central Intermediate Storage Facility (ZWILAG) in Wuerenlingen because their heat production is too high. The capacity of the actual water pool allows a maximum cooling time of 5-6 years, while 7-10 years are required before transfer to ZWILAG. The projected new water storage pool has to be aircraft crash and earthquake proof, in the same way that the reactor building itself has to be. It can store a maximum of 1008 fuel assemblies. The water in the pool as well as the pool walls shield the radiation from of the fuel assemblies almost completely. Each fuel assembly is put into a square steel channel. The channel walls are lined with 6.11 mg/cm 2 of the neutron absorbing nuclide B-10, which guaranties the subcriticality of the water pool even if the storage pool would be entirely filled with non-irradiated fuel assemblies with the maximal allowed enrichment or the maximal allowed content of Plutonium in case of MOX fuel assemblies, which is a very conservative assumption. The heat released by decay in the spent fuel assemblies is transferred to the pool water. Storage pool cooling is carried out by natural circulation through

  18. Photovoltaic power systems energy storage

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  19. 17506 - Order of 20 july 1989 on the storage period for fuel elements for spanish nuclear power plants

    1989-07-01

    The Order was made in furtherance of Decree No. 813/1988 amending a Decree of 1985 on the reorganisation of activities in the nuclear fuel cycle. It establishes new requirements regarding fuel elements for PWRs and BWRs, namely by providing that their operators should stock enough fuel elements for one load at least two months prior to the planned loading. Other plants should have the number of fuel elements necessary for their continuous operation for four months at 80 per cent of their nominal power [fr

  20. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage

  1. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey.

    Ağralı, Semra; Üçtuğ, Fehmi Görkem; Türkmen, Burçin Atılgan

    2018-06-01

    We consider fossil-fired power plants that operate in an environment where a cap and trade system is in operation. These plants need to choose between carbon capture and storage (CCS), carbon capture and utilization (CCU), or carbon trading in order to obey emissions limits enforced by the government. We develop a mixed-integer programming model that decides on the capacities of carbon capture units, if it is optimal to install them, the transportation network that needs to be built for transporting the carbon captured, and the locations of storage sites, if they are decided to be built. Main restrictions on the system are the minimum and maximum capacities of the different parts of the pipeline network, the amount of carbon that can be sold to companies for utilization, and the capacities on the storage sites. Under these restrictions, the model aims to minimize the net present value of the sum of the costs associated with installation and operation of the carbon capture unit and the transportation of carbon, the storage cost in case of CCS, the cost (or revenue) that results from the emissions trading system, and finally the negative revenue of selling the carbon to other entities for utilization. We implement the model on General Algebraic Modeling System (GAMS) by using data associated with two coal-fired power plants located in different regions of Turkey. We choose enhanced oil recovery (EOR) as the process in which carbon would be utilized. The results show that CCU is preferable to CCS as long as there is sufficient demand in the EOR market. The distance between the location of emission and location of utilization/storage, and the capacity limits on the pipes are an important factor in deciding between carbon capture and carbon trading. At carbon prices over $15/ton, carbon capture becomes preferable to carbon trading. These results show that as far as Turkey is concerned, CCU should be prioritized as a means of reducing nation-wide carbon emissions in an

  2. Improving wind power quality with energy storage

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination...... of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times, but allows for a certain fraction of average power in a given timeframe to be available with high...... probability. The amount of storage capacity necessary for significant wind power quality improvement in a given period is found to be 20 to 40% of the energy produced in that period. The necessary power is found to be 80 to 100% of the average power of the period....

  3. Small hydroelectric power plants

    Helgesen, Boerre

    2002-01-01

    Small hydroelectric power plants are power plants of 1 - 10 MW. For a supplier, this is an unnatural limit. A more natural limit involves compact engine design and simplified control system. The article discusses most of the engine and electrotechnical aspects in the development, construction and operation of such a plant

  4. Storage of plutonium and nuclear power plant actinide waste in the form of critical-mass-free ceramics containing neutron poisons

    Nadykto, B.A. [RFNC-VNIIEF, Nizhni Novgorod Region (Russian Federation)

    2001-07-01

    The nuclear weapons production has resulted in accumulation of a large quantity of plutonium and uranium highly enriched with uranium-235 isotope (many tons). The work under ISTC Project 332B-97 treated the issues of safe plutonium storage through making critical-mass-free plutonium oxide compositions with neutron poisons. This completely excludes immediate utilization (without chemical reprocessing) of retained plutonium in nuclear devices. It is therewith possible to locate plutonium most compactly in the storage facility, which would allow reduction in required storage areas and costs. The issues of the surplus weapon-grade plutonium management and utilization have been comprehensively studied in the recent decade. The issues are treated in multiple scientific publications, conferences, and seminars. At the same time, issues of nuclear power engineering actinide waste storage are studied no less extensively. The general issues are material radioactivity and energy release and nuclear accident hazards due to critical mass generation. Plutonium accumulated in nuclear power plant spent fuel is more accessible than weapon-grade plutonium and can become of higher and higher interest with time as its activity reduces, including as material for nuclear devices. The urgency of plutonium management is presently related not only to accumulation of surplus weapon-grade plutonium, but also to the fact that it is high time to decide what has to be done regarding reactor plutonium. Presently, the possibility of actinide separation from NPP spent nuclear fuel and compact underground burial separately from other (mainly fragment) activity is being considered. Actinide and neutron poison base critical-mass-free ceramic materials (similar to plutonium ceramics) may be useful for this burial method. (author)

  5. Storage of plutonium and nuclear power plant actinide waste in the form of critical-mass-free ceramics containing neutron poisons

    Nadykto, B.A.

    2001-01-01

    The nuclear weapons production has resulted in accumulation of a large quantity of plutonium and uranium highly enriched with uranium-235 isotope (many tons). The work under ISTC Project 332B-97 treated the issues of safe plutonium storage through making critical-mass-free plutonium oxide compositions with neutron poisons. This completely excludes immediate utilization (without chemical reprocessing) of retained plutonium in nuclear devices. It is therewith possible to locate plutonium most compactly in the storage facility, which would allow reduction in required storage areas and costs. The issues of the surplus weapon-grade plutonium management and utilization have been comprehensively studied in the recent decade. The issues are treated in multiple scientific publications, conferences, and seminars. At the same time, issues of nuclear power engineering actinide waste storage are studied no less extensively. The general issues are material radioactivity and energy release and nuclear accident hazards due to critical mass generation. Plutonium accumulated in nuclear power plant spent fuel is more accessible than weapon-grade plutonium and can become of higher and higher interest with time as its activity reduces, including as material for nuclear devices. The urgency of plutonium management is presently related not only to accumulation of surplus weapon-grade plutonium, but also to the fact that it is high time to decide what has to be done regarding reactor plutonium. Presently, the possibility of actinide separation from NPP spent nuclear fuel and compact underground burial separately from other (mainly fragment) activity is being considered. Actinide and neutron poison base critical-mass-free ceramic materials (similar to plutonium ceramics) may be useful for this burial method. (author)

  6. A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response

    Ju, Liwei; Tan, Zhongfu; Yuan, Jinyun; Tan, Qingkun; Li, Huanhuan; Dong, Fugui

    2016-01-01

    Highlights: • Our research focuses on Virtual Power Plant (VPP). • Virtual Power Plant consists of WPP, PV, CGT, ESSs and DRPs. • Robust optimization theory is introduced to analyze uncertainties. • A bi-level stochastic scheduling optimization model is proposed for VPP. • Models are built to measure the impacts of ESSs and DERPs on VPP operation. - Abstract: To reduce the uncertain influence of wind power and solar photovoltaic power on virtual power plant (VPP) operation, robust optimization theory (ROT) is introduced to build a stochastic scheduling model for VPP considering the uncertainty, price-based demand response (PBDR) and incentive-based demand response (IBDR). First, the VPP components are described including the wind power plant (WPP), photovoltaic generators (PV), convention gas turbine (CGT), energy storage systems (ESSs) and demand resource providers (DRPs). Then, a scenario generation and reduction frame is proposed for analyzing and simulating output stochastics based on the interval method and the Kantorovich distance. Second, a bi-level robust scheduling model is proposed with a double robust coefficient for WPP and PV. In the upper layer model, the maximum VPP operation income is taken as the optimization objective for building the scheduling model with the day-ahead prediction output of WPP and PV. In the lower layer model, the day-ahead scheduling scheme is revised with the actual output of the WPP and PV under the objectives of the minimum system net load and the minimum system operation cost. Finally, the independent micro-grid in a coastal island in eastern China is used for the simulation analysis. The results illustrate that the model can overcome the influence of uncertainty on VPP operations and reduce the system power shortage cost by connecting the day-ahead scheduling with the real-time scheduling. ROT could provide a flexible decision tool for decision makers, effectively addressing system uncertainties. ESSs could

  7. Less power plants

    TASR

    2003-01-01

    In the Slovak Republic the number of company power plants decreased as against 2001 by two sources. In present time only 35 companies have their own power plants. The companies Slovnaft, Kappa Sturovo, Slovensky hodvab Senica, Matador Puchov, Maytex Liptovsky MikuIas, Kovohuty Krompachy, Chemko Strazske and some Slovak sugar factories belong to the largest company power plants in force of distributing companies. Installed output of present 35 company sources is 531 MW. The largest of separate power plants as Paroplynovy cyklus Bratislava (218 MW) and VD Zilina (72 MW) belong to independent sources. Total installed output of Slovak sources was 8306 MW in the end of last year

  8. Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report

    1994-05-01

    This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used

  9. Proposal of the visual inspection of the integrity of the storage cells of spent fuel from the nuclear power plant of Laguna Verde

    Gonzalez M, J. L.; Rivero G, T.; Merino C, F. J.; Santander C, L. E.

    2015-09-01

    As part of the evaluation of the structural integrity of the components of nuclear plants, particularly those applying for life extension is necessary to carry out inspections and nondestructive testing to determine the state meet. In many cases these activities are carried out in areas with high levels of radiation and contamination difficult to access, so that are required to use equipment or robotic systems operated remotely. Among others, the frames and cells of the storage pools for spent fuel are structures subject to a program of tests and inspections, and become relevant because the nuclear power plant of Laguna Verde (NPP-LV) is processing the license to extend the operational life of its reactors. Of non-destructive testing can be used to verify the physical condition of the frames and storage cells, is the remote visual inspection which is a test that allows determine the physical integrity of the components by one or more video cameras designed to applications in underwater environments with radiation, and are used to identify and locate adverse conditions such as ampoules, protuberances, pitting, cracks, stains or buckling, which could affect the three main functions for which the store components are designed: to maintain the physical integrity of spent fuels, store them properly guaranteeing their free insertion and removal, and ensure that the store as a whole meets the criticality criteria that k eff is less than 0.95 throughout the life of the plant. This paper describes a proposal to carry out the visual inspection of the storage cells of spent fuel from the NPP-LV using a probe including one or more video cameras along with your recorder, and its corresponding control program. It is noted that due to the obtained results, the nuclear power plant personnel can make decisions regarding remedial actions or applying complementary methods to verify that the cells and frames have not lost their physical integrity, or in particular that the cover

  10. Understanding Biomass Ignition in Power Plant Mills

    Schwarzer, Lars; Jensen, Peter Arendt; Glarborg, Peter

    2017-01-01

    Converting existing coal fired power plants to biomass is a readily implemented strategy to increase the share of renewable energy. However, changing from one fuel to another is not straightforward: Experience shows that wood pellets ignite more readily than coal in power plant mills or storages...

  11. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant

    Rodenas, J.; Abarca, A.; Gallardo, S.

    2011-01-01

    BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool.

  12. Power plant chemical technology

    NONE

    1996-12-01

    17 contributions covering topies of fossil fuel combustion, flue gas cleaning, power plant materials, corrosion, water/steam cycle chemistry, monitoring and control were presented at the annual meeting devoted to Power Plant Chemical Technology 1996 at Kolding (Denmark) 4-6 September 1996. (EG)

  13. Nuclear Power Plants. Revised.

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  14. NUCLEAR POWER PLANT

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  15. The Kuroshio power plant

    Chen, Falin

    2013-01-01

    By outlining a new design or the Kuroshio power plant, new approaches to turbine design, anchorage system planning, deep sea marine engineering and power plant operations and maintenance are explored and suggested. The impact on the local environment, particularly in the face of natural disasters, is also considered to provide a well rounded introduction to plan and build a 30MW pilot power plant. Following a literature review, the six chapters of this book propose a conceptual design by focusing on the plant's core technologies and establish the separate analysis logics for turbine design and

  16. Nuclear power plants

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  17. Italian steam power plants

    von Rautenkranz, J

    1939-01-01

    A brief history of geothermal power production in Italy is presented. Boric acid has been produced on an industrial scale since 1818. The first electrical power was generated in 1904, and by 1939 the output of geothermal power plants had reached 500 GWh, with major expansion of facilities planned.

  18. Nuclear power plant siting

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  19. The Role of Natural Gas Power Plants with Carbon Capture and Storage in a Low-Carbon Future

    Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...

  20. Ultimate storage of spent fuel elements from the AVR experimental nuclear power plant in the Asse Salt Mine

    Wolf, J.

    1975-02-15

    The present paper is intended to serve as the basis for the licensing procedures both in respect of the transport and storage techniques and also for the ultimate storage itself. In regard to the technique it will be shown on the basis of design drawings and calculations that the handling, transport and storage of the fuel elements can be safely carried out in accordance with the regulations in force. In regard to the ultimate storage itself, since no highly radioactive wastes with a long-lived actinide content have yet been stored, it will be necessary to show that an unacceptable contamination of the biosphere will be avoided even in the long term under all anticipated conditions. It will further be necessary to show by calculations and suitable tests, in view of the radioactive gas and fissile material content, that no danger due to gas release from the fuel elements will arise during the operating life of the mine and that a nuclear criticality risk can be excluded for all time.

  1. Central receiver solar thermal power system, Phase 1. CDRL Item 2. Pilot plant preliminary design report. Volume V. Thermal storage subsystem. [Sensible heat storage using Caloria HT43 and mixture of gravel and sand

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The proposed 100-MWe Commercial Plant Thermal Storage System (TSS) employs sensible heat storage using dual liquid and solid media for the heat storage in each of four tanks, with the thermocline principle applied to provide high-temperature, extractable energy independent of the total energy stored. The 10-MW Pilot Plant employs a similar system except uses only a single tank. The high-temperature organic fluid Caloria HT43 and a rock mixture of river gravel and No. 6 silica sand were selected for heat storage in both systems. The system design, installation, performance testing, safety characteristics, and specifications are described in detail. (WHK)

  2. Nuclear power plant construction

    Lima Moreira, Y.M. de.

    1979-01-01

    The legal aspects of nuclear power plant construction in Brazil, derived from governamental political guidelines, are presented. Their evolution, as a consequence of tecnology development is related. (A.L.S.L.) [pt

  3. Nuclear power plant decommissioning

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  4. Advanced stellarator power plants

    Miller, R.L.

    1994-01-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies

  5. International power plant business

    Grohe, R.

    1986-03-03

    At the Brown Boveri press seminar 'Energy' in Baden-Baden Rainer Grohe, member of the Brown Boveri board, Mannheim, gave a survey of the activities on the international power plant market in recent years. He showed the vacuities which must be taken into account in this sector today. The drastic escalation of demands on power plant suppliers has lead not to a reduction of protagonists but to an increase. (orig.).

  6. Offshore atomic power plants

    Anon.

    1975-01-01

    Various merits of offshore atomic power plants are illustrated, and their systems are assessed. The planning of the offshore atomic power plants in USA is reviewed, and the construction costs of the offshore plant in Japan were estimated. Air pollution problem may be solved by the offshore atomic power plants remarkably. Deep water at low temperature may be advantageously used as cooling water for condensers. Marine resources may be bred by building artificial habitats and by providing spring-up equipments. In the case of floating plants, the plant design can be standardized so that the construction costs may be reduced. The offshore plants can be classified into three systems, namely artificial island system, floating system and sea bottom-based system. The island system may be realized with the present level of civil engineering, but requires the development of technology for the resistance of base against earthquake and its calculation means. The floating system may be constructed with conventional power plant engineering and shipbuilding engineering, but the aseismatic stability of breakwater may be a problem to be solved. Deep water floating system and deep water submerging system are conceivable, but its realization may be difficult. The sea bottom-based system with large caissons can be realized by the present civil engineering, but the construction of the caissons, stability against earthquake and resistance to waves may be problems to be solved. The technical prediction and assessment of new plant sites for nuclear power plants have been reported by Science and Technology Agency in 1974. The construction costs of an offshore plant has been estimated by the Ministry of International Trade and Industry to be yen71,026/kW as of 1985. (Iwakiri, K.)

  7. Flexible operation of thermal plants with integrated energy storage technologies

    Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil

    2017-08-01

    The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.

  8. Power plant at sea

    Roggen, M.

    2000-01-01

    Drilling platforms are rather inefficient when it comes to their own power supply. In view of ecotax and their environmental image, the offshore industry particularly the Norwegians is highly committed to changing this situation. An efficient power plant, specially designed for the offshore industry, might just prove to be the answer to their prayers

  9. Nuclear power plants maintenance

    Anon.

    1988-01-01

    Nuclear power plants maintenance now appears as an important factor contributing to the competitivity of nuclea energy. The articles published in this issue describe the way maintenance has been organized in France and how it led to an actual industrial activity developing and providing products and services. An information note about Georges Besse uranium enrichment plant (Eurodif) recalls that maintenance has become a main data not only for power plants but for all nuclear industry installations. (The second part of this dossier will be published in the next issue: vol. 1 January-February 1989) [fr

  10. Nuclear power plant outages

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  11. Nuclear Power Plants (Rev.)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  12. LNG plant combined with power plant

    Aoki, I; Kikkawa, Y [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-06-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs.

  13. LNG plant combined with power plant

    Aoki, I.; Kikkawa, Y.

    1997-01-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs

  14. Synthetic methane for power storage

    Botta, G.; Barankin, Michael; Walspurger, S.

    2013-01-01

    With increased share of energy generated from variable renewable sources, storage becomes a critical issue to ensure constantly balanced supply/demand. Methane is a promising vector for energy storage and transport.

  15. Fragility analysis methodology for degraded structures and passive components in nuclear power plantsIllustrated using a condensate storage tank

    Nie, Jinsuo; Braverman, Joseph; Hofmayer, Charles; Choun, Young Sun; Kim, Min Kyu; Choi, In Kil

    2010-06-01

    This report describes the seismic fragility capacity for a condensate storage tank with various degradation scenarios. The conservative deterministic failure margin method has been utilized for the undegraded case and has been modified to accommodate the degraded cases. A total of five seismic fragility analysis cases have been described: (1) undegraded case, (2) degraded stainless tank shell, (3) degraded anchor bolts, (4) anchorage concrete cracking, and (5) a perfect correlation of the three degradation scenarios. Insights from these fragility analyses are also presented. An overview of the methods for seismic fragility analysis and generic approaches to incorporate time-dependent degradation models into a fragility analysis is presented. Fundamental concepts of seismic fragility analysis are summarized to facilitate discussions in later sections. The seismic fragility analysis of the undegraded CST, which is assumed to have all of its components in design condition, is described. The subject CST was located in an operating Korean NPP. The baseline fragility capacity of the CST is calculated and the basic procedure of seismic fragility analysis is established. This report presents the results and insights of the seismic fragility analysis of the CST under various postulated degradation scenarios

  16. Energy storage systems: power grid and energy market use cases

    Komarnicki Przemysław

    2016-09-01

    Full Text Available Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.

  17. Probabilistic multiobjective operation management of MicroGrids with hydrogen storage and polymer exchange fuel cell power plants

    Niknam, T.; Golestaneh, F. [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of)

    2012-10-15

    This paper models and solves the operation management problem of MicroGrids (MGs) including cost and emissions minimization under uncertain environment. The proposed model emphasizes on fuel cells (FCs) as a prime mover of combined heat and power (CHP) systems. An electro-chemical model of the proton exchange membrane fuel cell (PEMFC) is used and linked to the daily operating cost and emissions of the MGs. A reformer is considered to produce hydrogen for PEMFCs. Moreover, in high thermal load intervals, in order to make the MG more efficient, a part of produced hydrogen is stored in a hydrogen tank. The stored hydrogen can be reused by PEMFCs to generate electricity or be sold to other hydrogen consumers. A probabilistic optimization algorithm is devised which consists of 2m + 1 point estimate method to handle the uncertainty in input random variables (IRVs) and a multi-objective Self-adaptive Bee Swarm Optimization (SBSO) algorithm to minimize the cost and emissions simultaneously. Several techniques are proposed in the SBSO algorithm to make it a powerful black-box optimization tool. The efficiency of the proposed approach is verified on a typical grid-connected MG with several distributed energy sources. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Current production costs in various power plant systems

    Weible, H.

    1977-01-01

    The costs of producing electric power were evaluated for flowing water power plants, storage and pumped storage power plants, bituminous coal power plants, heating oil power plants (fired with heavy heating oil), natural gas-fired power plants, gas turbines, pressurized water reactors, and boiling water reactors. The calculational methods used for evaluating costs and the input data for methods used for the KOSKON and KOSKERN computer programs are described. It is emphasized that the calculations are examples to indicate the possible effects of the cost program and are only as valid as the input data. (JSR)

  19. Wind power plant

    Caneghem, A.E. von

    1975-07-24

    The invention applies to a wind power plant in which the wind is used to drive windmills. The plant consists basically of a vertical tube with a lateral wind entrance opening with windmill on its lower end. On its upper end, the tube carries a nozzle-like top which increases the wind entering the tube by pressure decrease. The wind is thus made suitable for higher outputs. The invention is illustrated by constructional examples.

  20. Benchmarking Nuclear Power Plants

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  1. Wind power plant

    Kling, A

    1977-01-13

    The wind power plant described has at least one rotor which is coupled to an electricity generator. The systems are fixed to a suspended body so that it is possible to set up the wind power plant at greater height where one can expect stronger and more uniform winds. The anchoring on the ground or on a floating body is done by mooring cables which can simultaneously have the function of an electric cable. The whole system can be steered by fins. The rotor system itself consists of at least one pair of contrarotating, momentum balanced rotors.

  2. Ardennes nuclear power plant

    1974-12-01

    The SENA nuclear power plant continued to operate, as before, at authorized rated power, namely 905MWth during the first half year and 950MWth during the second half year. Net energy production:2028GWh; hours phased to the line: 7534H; availability factor: 84%; utilization factor: 84%; total shutdowns:19; number of scrams:10; cost per KWh: 4,35 French centimes. Overall, the plant is performing very satisfactory. Over the last three years net production has been 5900GWh, corresponding to in average utilization factor of 83%

  3. Nuclear power plant

    Orlov, V.V.; Rineisky, A.A.

    1975-01-01

    The invention is aimed at designing a nuclear power plant with a heat transfer system which permits an accelerated fuel regeneration maintaining relatively high initial steam values and efficiency of the steam power circuit. In case of a plant with three circuits the secondary cooling circuit includes a steam generator with preheater, evaporator, steam superheater and intermediate steam superheater. At the heat supply side the latter is connected with its inlet to the outlet of the evaporator and with its outlet to the low-temperature side of the secondary circuit

  4. TAPCHAN Wave Power Plants

    1983-10-01

    The Tapered Channel Wave Power Plant (TAPCHAN) is based on a new method for wave energy conversion. The principle of operation can be explained by dividing the system into the following four sub-systems: Firstly, a collector which is designed to concentrate the water energy and optimize collection efficiency for a range of frequencies and directions. Secondly, the energy converter, in which the energy of the collected waves is transformed into potential energy in an on-shore water reservoir. This is the unique part of the power plant. It consists of a gradually narrowing channel with wall heights equal to the filling level of the reservoir (typical heights 3-7 m). The waves enter the wide end of the channel and as they propagate down the narrowing channel, the wave height is amplified until the wavecrests spill over the walls. Thirdly, a reservoir which provides a stable water supply for the turbines. Finally, the hydroelectric power plant, where well established techniques are used for the generation of electric power. The water turbine driving the electric generator is of a low head type, such as a Kaplan or a tubular turbine. It must be designed for salt water operation and should have good regulation capabilities. Power plants based on the principle described, are now offered on a commercial basis.

  5. Energy storage in future power systems

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional conventi......Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...

  6. Geothermal Power Generation Plant

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  7. Nuclear power plant analyzer

    Stritar, A.

    1986-01-01

    The development of Nuclear Power Plant Analyzers in USA is described. There are two different types of Analyzers under development in USA, the forst in Idaho and Los Alamos national Lab, the second in brookhaven National lab. That one is described in detail. The computer hardware and the mathematical models of the reactor vessel thermalhydraulics are described. (author)

  8. Nuclear power plant

    Wieser, R.

    1979-01-01

    The reactor pressure vessel consists of two parts. A cylindrical lower part with a hemispherical steel roof is placed at some distance within an equally shaped pressure vessel of concrete. Both vessels are standing on a common bottom plate. The interspace is kept at subpressure. It serves to contain ring galleries, elevator shafts, and power plant components. (GL) [de

  9. Nuclear Power Plant Technician

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  10. Steam power plant

    Campbell, J.W.E.

    1981-01-01

    This invention relates to power plant forced flow boilers operating with water letdown. The letdown water is arranged to deliver heat to partly expanded steam passing through a steam reheater connected between two stages of the prime mover. (U.K.)

  11. The end of cheap electric power from nuclear power plants. 2. ed.

    Franke, J.; Viefhues, D.

    1984-04-01

    The economic efficiency of a nuclear power plant is compared with that of a coal-fired power plant of the same size. A technical and economic computer model was developed which took account of the power plant and all its units as well as the fuel cycle (including intermediate storage and reprocessing). It was found that future nuclear power plants will be inferior to coal-fired power plants in all economic respects. Further, there was no load range in which the cost of electric power generation was more favourable in nuclear power plants than in coal-fired power plants. (orig./HSCH) [de

  12. Beloyarsk Nuclear Power Plant

    1997-01-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities

  13. Nuclear power plant safety

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  14. Economics of hybrid photovoltaic power plants

    Breyer, Christian

    2012-08-16

    plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.

  15. Economics of hybrid photovoltaic power plants

    Breyer, Christian

    2012-08-16

    coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.

  16. Treatment of some power plant waters

    Konecny, C.; Vanura, P.; Franta, P.; Marhol, M.; Tejnecky, M.; Fidler, J.

    1987-01-01

    Major results are summed up obtained in 1986 in the development of techniques for the treatment of coolant in the fuel transport and storage tank, of reserve coolant in the primary circuit and of waste water from the special nuclear power plant laundries, containing new washing agent Alfa-DES. A service test of the filter filled with Czechoslovak-made cation exchanger Ostion KSN in the boric acid concentrate filter station showed that the filter can be used in some technological circuits of nuclear power plants. New decontamination agents are also listed introduced in production in Czechoslovakia for meeting the needs of nuclear power plants. (author). 6 refs

  17. Thermal energy storage for CSP (Concentrating Solar Power

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  18. Thermal energy storage for CSP (Concentrating Solar Power)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  19. Distributed energy systems with wind power and energy storage

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  20. Latina nuclear power plant

    1976-03-01

    In the period under review, the Latina power plant produced 1009,07 million kWh with a utilization factor of 72% and an availability factor of 80,51%. The disparity between the utilization and availability factors was mainly due to the shutdown of the plant owing to trade union strife. The reasons for non-availability (19,49%) were almost all related to the functioning of the conventional part and the general servicing of the plant (18 September-28 October). During the shutdown for maintenance, an inspection of the steel members and parts of the core stabilizing structure was made in order to check for the familiar oxidation phenomena caused by CO 2 ; the results of the inspection were all satisfactory. Operation of the plant during 1974 was marked by numerous power cutbacks as a result of outages of the steam-raising units (leaks from the manifolds) and main turbines (inspection and repairs to the LP rotors). Since it was first brought into commercial operation, the plant has produced 13,4 thousand million kWh

  1. Wind power plant

    Weiss, G

    1975-11-20

    A wind power plant is proposed suitable for electicity generation or water pumping. This plant is to be self-adjusting to various wind velocities and to be kept in operation even during violent storms. For this purpose the mast, carrying the wind rotor and pivotable around a horizontal axis is tiltable and equipped with a wind blind. Further claims contain various configurations of the tilting base resp. the cut in of an elastic link, the attachment and design of the wind blind as well as the constructive arrangement of one or more dynamos.

  2. Power plant process computer

    Koch, R.

    1982-01-01

    The concept of instrumentation and control in nuclear power plants incorporates the use of process computers for tasks which are on-line in respect to real-time requirements but not closed-loop in respect to closed-loop control. The general scope of tasks is: - alarm annunciation on CRT's - data logging - data recording for post trip reviews and plant behaviour analysis - nuclear data computation - graphic displays. Process computers are used additionally for dedicated tasks such as the aeroball measuring system, the turbine stress evaluator. Further applications are personal dose supervision and access monitoring. (orig.)

  3. Fossil power plant automation

    Divakaruni, S.M.; Touchton, G.

    1991-01-01

    This paper elaborates on issues facing the utilities industry and seeks to address how new computer-based control and automation technologies resulting from recent microprocessor evolution, can improve fossil plant operations and maintenance. This in turn can assist utilities to emerge stronger from the challenges ahead. Many presentations at the first ISA/EPRI co-sponsored conference are targeted towards improving the use of computer and control systems in the fossil and nuclear power plants and we believe this to be the right forum to share our ideas

  4. Advanced power plant materials, design and technology

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  5. Safety in nuclear power plants

    Koeberlein, K.

    1987-01-01

    In nuclear power plants large amounts of radioactive fission products ensue from the fission of uranium. In order to protect the environment, the radioactive material is confined in multiple 'activity barriers' (crystal matrix of the fuel, fuel cladding, coolant boundary, safety containment, reactor building). These barriers are protected by applying a defense-in-depth concept (high quality requirements, protection systems which recognize and terminate operational incidents, safety systems to cope with accidents). In spite of a favorable safety record of German nuclear power plants it is obvious - and became most evident by the Chernobyl accident - that absolute safety is not achievable. At Chernobyl, however, design disadvantages of that reactor type (like positive reactivity feedback of coolant voiding, missing safety containment) played an important role in accident initiation and progression. Such features of the Russian 'graphite-moderated pressure tube boiling water reactor' are different from those of light water reactors operating in western countries. The essential steps of the waste management of the nuclear fuel cycle ('Entsorgung') are the interim storage, the shipment, and the reprocessing of the spent fuel and the final repository of radioactive waste. Reprocessing means the separation of fossil material (uranium, plutonium) from radioactive waste. Legal requirements for radiological protection of the environment, which are identical for nuclear power plants and reprocessing plant, are complied with by means of comprehensive filter systems. Safety problems of a reprocessing plant are eased considerably by the fact that system pressures, process temperatures and energy densities are low. In order to confine the radioactive waste from the biosphere for a very long period of time, it is to be discarded after appropriate treatment into the deep geological underground of salt domes. (orig./HP) [de

  6. Virtual power plant auctions

    Ausubel, Lawrence M.; Cramton, Peter

    2010-01-01

    Since their advent in 2001, virtual power plant (VPP) auctions have been implemented widely. In this paper, we describe the simultaneous ascending-clock auction format that has been used for virtually all VPP auctions to date, elaborating on other design choices that most VPP auctions have had in common as well as discussing a few aspects that have varied significantly among VPP auctions. We then evaluate the various objectives of regulators in requiring VPP auctions, concluding that the auctions have been effective devices for facilitating new entry into electricity markets and for developing wholesale power markets. (author)

  7. Virtual power plant auctions

    Ausubel, Lawrence M.; Cramton, Peter [Department of Economics, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    Since their advent in 2001, virtual power plant (VPP) auctions have been implemented widely. In this paper, we describe the simultaneous ascending-clock auction format that has been used for virtually all VPP auctions to date, elaborating on other design choices that most VPP auctions have had in common as well as discussing a few aspects that have varied significantly among VPP auctions. We then evaluate the various objectives of regulators in requiring VPP auctions, concluding that the auctions have been effective devices for facilitating new entry into electricity markets and for developing wholesale power markets. (author)

  8. Nuclear power plant

    Aisaka, Tatsuyoshi; Kamahara, Hisato; Yanagisawa, Ko.

    1982-01-01

    Purpose: To prevent corrosion stress cracks in structural materials in a BWR type nuclear power plant by decreasing the oxygen concentration in the reactor coolants. Constitution: A hydrogen injector is connected between the condensator and a condensate clean up system of a nuclear power plant. The injector is incorporated with hydrogenated compounds formed from metal hydrides, for example, of alloys such as lanthanum-nickel alloy, iron titanium alloy, vanadium, palladium, magnesium-copper alloy, magnesium-nickel alloy and the like. Even if the pressure of hydrogen obtained from a hydrogen bomb or by way of water electrolysis is changed, the hydrogen can always be injected into a reactor coolant at a pressure equal to the equilibrium dissociation pressure for metal hydride by introducing the hydrogen into the hydrogen injector. (Seki, T.)

  9. Energy storage for power systems

    Ter-Gazarian, Andrei

    2011-01-01

    The supply of energy from primary sources is not constant and rarely matches the pattern of demand from consumers. Electricity is also difficult to store in significant quantities. Therefore, secondary storage of energy is essential to increase generation capacity efficiency and to allow more substantial use of renewable energy sources that only provide energy intermittently. Lack of effective storage has often been cited as a major hurdle to substantial introduction of renewable energy sources into the electricity supply network.This 2nd edition, without changing the existing structure of the

  10. Nuclear power plant

    Schabert, H.P.; Laurer, E.

    1976-01-01

    The invention concerns a quick-acting valve on the main-steam pipe of a nuclear power plant. The engineering design of the valve is to be improved. To the main valve disc, a piston-operated auxiliary valve disc is to be assigned closing a section of the area of the main valve disc. This way it is avoided that the drive of the main valve disc has to carry out different movements. 15 sub-claims. (UWI) [de

  11. Fusion power plant economics

    Miller, R.L.

    1996-01-01

    The rationale, methodology, and updated comparative results of cost projections for magnetic-fusion-energy central-station electric power plants are considered. Changing market and regulatory conditions, particularly in the U.S., prompt fundamental reconsideration of what constitutes a competitive future energy-source technology and has implications for the direction and emphasis of appropriate near-term research and development programs, for fusion and other advanced generation systems. 36 refs., 2 figs., 2 tabs

  12. Power plant emissions reduction

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  13. Technology on the storage of laser power

    Urakawa, Junji

    2001-01-01

    I report the technology on the storage of laser power using Fabry-Perot Optical Cavity. This technology is applicable for the generation of high brightness X-ray with the combination of compact electron linac or small storage ring in which about 100 MeV electron beam with normalized emittance of 10 -5 m is controlled. The distance of two concave mirrors with high reflectivity is controlled within sub-nm is essential to keep the resonance condition for the storage of laser power. I also report the possibility on several kind of applications and the status of this technology. (author)

  14. Atomic power plant

    Kawakami, Hiroto.

    1975-01-01

    Object: To permit decay heat to be reliably removed after reactor shut-down at such instance as occurrence of loss of power by means of an emergency water supply pump. Structure: An atomic power plant having a closed cycle constructed by connecting a vapor generator, a vapor valve, a turbine having a generator, a condenser, and a water supply pump in the mentioned order, and provided with an emergency water supply pump operated when there is a loss of power to the water supply pump, a degasifier pressure holding means for holding the pressure of the degasifier by introducing part of the vapor produced from said vapor generator, and a valve for discharge to atmosphere provided on the downstream side of said vapor generator. (Kamimura, M.)

  15. Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power Generation: A Case Study for Denmark

    Braun, Philipp; Swierczynski, Maciej Jozef; Diosi, Robert

    2011-01-01

    market in western Denmark. The optimum ESs are selected based on the highest net present value (NPV) out of many different combinations of ESs in terms of power rating and technologies. Due to its many possible combinations a simulation model has been built which uses historical market data and also...

  16. On nuclear power plant uprating

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  17. Garigliano nuclear power plant

    1976-03-01

    During the period under review, the Garigliano power station produced 1,028,77 million kWh with a utilization factor of 73,41% and an availability factor of 85,64%. The disparity between the utilization and availability factors was mainly due to a shutdown of about one and half months owing to lack of staff at the plant. The reasons for nonavailability (14.36%) break down as follows: nuclear reasons 11,49%; conventional reasons 2,81%; other reasons 0,06%. During the period under review, no fuel replacements took place. The plant functioned throughout with a single reactor reticulation pump and resulting maximum available capacity of 150 MWe gross. After the month of August, the plant was operated at levels slightly below the maximum available capacity in order to lengthen the fuel cycle. The total number of outages during the period under review was 11. Since the plant was brought into commercial operation, it has produced 9.226 million kWh

  18. Mobile power plant units

    Radtke, R

    1979-10-05

    Diesel engines of the MaK line 282 AK/332 with a cylinder power up to 160 kW are used, either as 6-cylinder or 8-cylinder in-line engine or as 12-cylinder V engine. Fuel consumption is between 207 and 212 g/kW. The engine is mounted on a frame, together with a generator. The fuel reserve in the tank will last for 8 hours. The lubricating system, the cooling water and starting air system, the switchboard system, and the frame are described. The switchboard plant is mounted either on a skid undercarriage or on the undercarriage. The plant can be operated independently or parallel to the network. The unit can be remote-controlled via push buttons or control knobs. A picture is presented of a mobile diesel aggregate which is in service in Libya.

  19. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  20. Comparative studies between nuclear power plants and hydroelectric power plants

    Menegassi, J.

    1984-01-01

    This paper shows the quantitative evolution of the power plants in the main countries of the world. The Brazilian situation is analysed, with emphasys in the technical and economical aspects related to power production by hidroelectric or nuclear power plants. The conclusion is that the electricity produced by hidro power plants becomes not economics when is intended to be produced at large distances from the demand centers. (Author) [pt

  1. Nuclear power plant disasters

    Trott, K.R.

    1979-01-01

    The possibility of a nuclear power plant disaster is small but not excluded: in its event, assistance to the affected population mainly depends on local practitioners. Already existing diseases have to be diagnosed and treated; moreover, these physicians are responsible for the early detection of those individuals exposed to radiation doses high enough to induce acute illness. Here we present the pathogenesis, clinical development and possible diagnostic and therapeutical problems related to acute radiation-induced diseases. The differentiation of persons according to therapy need and prognosis is done on the sole base of the clinical evidence and the peripheral blood count. (orig.) [de

  2. Demonstration tokamak power plant

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  3. Siting nuclear power plants

    Yellin, J.; Joskow, P.L.

    1980-01-01

    The first edition of this journal is devoted to the policies and problems of siting nuclear power plants and the question of how far commercial reactors should be placed from urban areas. The article is divided into four major siting issues: policies, risk evaluation, accident consequences, and economic and physical constraints. One concern is how to treat currently operating reactors and those under construction that were established under less-stringent criteria if siting is to be used as a way to limit the consequences of accidents. Mehanical cost-benefit analyses are not as appropriate as the systematic use of empirical observations in assessing the values involved. Stricter siting rules are justified because (1) opposition because of safety is growing: (2) remote siting will make the industry more stable; (3) the conflict is eliminated between regulatory policies and the probability basis for nuclear insurance; and (4) joint ownership of utilities and power-pooling are increasing. 227 references, 7 tables

  4. Problems of nuclear power plant safety evaluation

    Suchomel, J.

    1977-01-01

    Nuclear power plant safety is discussed with regard to external effects on the containment and to the human factor. As for external effects, attention is focused on shock waves which may be due to explosions or accidents in flammable material transport and storage, to missiles, and to earthquake effects. The criteria for evaluating nuclear power plant safety in different countries are shown. Factors are discussed affecting the reliability of man with regard to his behaviour in a loss-of-coolant accident in the power plant. Different types of PWR containments and their functions are analyzed, mainly in case of accident. Views are discussed on the role of destructive accidents in the overall evaluation of fast reactor safety. Experiences are summed up gained with the operation of WWER reactors with respect to the environmental impact of the nuclear power plants. (Z.M.)

  5. Pulsed nuclear power plant

    David, C.V.

    1986-01-01

    This patent describes a nuclear power plant. This power plant consists of: 1.) a cavity; 2.) a detonatable nuclear device in a central region of the cavity; 3.) a working fluid inside of the cavity; 4.) a method to denote a nuclear device inside of the cavity; 5.) a mechanical projection from an interior wall of the cavity for recoiling to absorb a shock wave produced by the detonation of the nuclear device and thereby protecting the cavity from damage. A plurality of segments defines a shell within the cavity and a plurality of shock absorbers, each connecting a corresponding segment to a corresponding location on the wall of the cavity. Each of these shock absorbers regulate the recoil action of the segments; and 6.) means for permitting controlled extraction of a quantity of hot gases from the cavity produced by the vaporization of the working fluid upon detonation of the nuclear device. A method of generating power is also described. This method consists of: 1.) introducing a quantity of water in an underground cavity; 2.) heating the water in the cavity to form saturated steam; 3.) detonating a nuclear device at a central location inside the cavity; 4.) recoiling plate-like elements inside the cavity away from the central location in a mechanically regulated and controlled manner to absorb a shock wave produced by the nuclear device detonation and thereby protect the underground cavity against damage; 5.) extracting a quantity of superheated steam produced by the detonation of the nuclear device; and 6.) Converting the energy in the extracted superheated steam into electrical power

  6. Wind power plant system services

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  7. Industrial safety in power plants

    1987-01-01

    The proceedings of the VGB conference 'Industrial safety in power plants' held in the Gruga-Halle, Essen on January 21 and 22, 1987, contain the papers reporting on: Management responsibility for and legal consequences of industrial safety; VBG 2.0 Industrial Accident Prevention Regulation and the power plant operator; Operational experience gained with wet-type flue gas desulphurization systems; Flue gas desulphurization systems: Industrial-safety-related requirements to be met in planning and operation; the effects of the Hazardous Substances Ordinance on power plant operation; Occupational health aspects of heat-exposed jobs in power plants; Regulations of the Industrial Accident Insurance Associations concerning heat-exposed jobs and industrial medical practice; The new VBG 30 Accident Prevention Regulation 'Nuclear power plants'; Industrial safety in nuclear power plants; safe working on and within containers and confined spaces; Application of respiratory protection equipment in power plants. (HAG) [de

  8. Nuclear Power Plant 1996

    1997-01-01

    Again this year, our magazine presents the details of the conference on Spanish nuclear power plant operation held in February and that was devoted to 1996 operating results. The Protocol for Establishment of a New Electrical Sector Regulation that was signed last December will undoubtedly represent a new challenge for the nuclear industry. By clearing stating that current standards of quality and safety should be maintained or even increased if possible, the Protocol will force the Sector to improve its productivity, which is already high as demonstrated by the results of the last few years described during this conference and by recent sectorial economic studies. Generation of a nuclear kWh that can compete with other types of power plants is the new challenge for the Sector's professionals, who do not fear the new liberalization policies and approaching competition. Lower inflation and the resulting lower interest rates, apart from being representative indices of our economy's marked improvement, will be very helpful in facing this challenge. (Author)

  9. Nuclear power plants

    Ushijima, Susumu.

    1984-01-01

    Purpose: To enable to prevent the degradation in the quality of condensated water in a case where sea water leakage should occur in a steam condenser of a BWR type nuclear power plant. Constitution: Increase in the ion concentration in condensated water is detected by an ion concentration detector and the leaking factor of sea water is calculated in a leaking factor calculator. If the sea water leaking factor exceeds a predetermined value, a leak generation signal is sent from a judging device to a reactor power control device to reduce the reactor power. At ehe same tiem, the leak generation signal is also sent to a steam condenser selection and isolation device to interrupt the sea water pump of a specified steam condenser based on the signal from the ion concentration detector, as well as close the inlet and outlet valves while open vent and drain valves to thereby forcively discharge the sea water in the cooling water pipes. This can keep the condensate desalting device from ion breaking and prevent the degradation in the quality of the reactor water. (Horiuchi, T.)

  10. Hybrid combined cycle power plant

    Veszely, K.

    2002-01-01

    In case of re-powering the existing pressurised water nuclear power plants by the proposed HCCPP solution, we can increase the electricity output and efficiency significantly. If we convert a traditional nuclear power plant unit to a HCCPP solution, we can achieve a 3.2-5.5 times increase in electricity output and the achievable gross efficiency falls between 46.8-52% and above, depending on the applied solution. These figures emphasise that we should rethink our power plant technologies and we have to explore a great variety of HCCPP solutions. This may give a new direction in the development of nuclear reactors and power plants as well.(author)

  11. Accident prevention in power plants

    Steyrer, H.

    Large thermal power plants are insured to a great extent at the Industrial Injuries Insurance Institute of Instrument and Electric Engineering. Approximately 4800 employees are registered. The accident frequency according to an evaluation over 12 months lies around 79.8 per year and 1000 employees in fossil-fired power plants, around 34.1 per year and 1000 employees in nuclear power plants, as in nuclear power plants coal handling and ash removal are excluded. Injuries due to radiation were not registered. The crucial points of accidents are mechanical injuries received on solid, sharp-edged and pointed objects (fossil-fired power plants 28.6%, nuclear power plants 41.5%), stumbling, twisting or slipping (fossil-fired power plants 21.8%, nuclear power plants 19.5%) and injuries due to moving machine parts (only nuclear power plants 12.2%). However, accidents due to burns or scalds obtain with 4.2% and less a lower portion than expected. The accident statistics can explain this fact in a way that the typical power plant accident does not exist. (orig./GL) [de

  12. Final Generic Environmental Impact Statement. Handling and storage of spent light water power reactor fuel. Volume 2. Appendices

    1979-08-01

    This volume contains the following appendices: LWR fuel cycle, handling and storage of spent fuel, termination case considerations (use of coal-fired power plants to replace nuclear plants), increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data, characteristics of nuclear fuel, away-from-reactor storage concept, spent fuel storage requirements for higher projected nuclear generating capacity, and physical protection requirements and hypothetical sabotage events in a spent fuel storage facility

  13. Wuergassen nuclear power plant

    Anon.

    1989-01-01

    The decision of the Federal Court of Administration concerns an application for immediate decommissioning of a nuclear power plant (Wuergassen reactor): The repeal of the permit granted. The decision dismisses the appeal for non-admission lodged by the plaintiffs against the ruling of the Higher Court of Administration (OVG) of North-Rhine Westphalia of December 19th 1988 (File no. 21 AK 8/88). As to the matter in dispute, the Federal Court of Administration confirms the opinion of the Higher Court of Administration. As to the headnotes, reference can be made to that decision. Federal Court of Administration, decision of April 5th 1989 - 7 B 47.89. Lower instance: OVG NW, Az.: 21 AK 8/88. (orig./RST) [de

  14. Nuclear power plant

    Uruma, Hiroshi

    1998-01-01

    In the first embodiment of the present invention, elements less activated by neutrons are used as reactor core structural materials placed under high neutron irradiation. In the second embodiment of the present invention, materials less activated by neutrons when corrosive materials intrude to a reactor core are used as structural materials constituting portions where corrosion products are generated. In the third embodiment, chemical species comprising elements less activated by neutrons are used as chemical species to be added to reactor water with an aim of controlling water quality. A nuclear power plant causing less radioactivity can be provided by using structural materials comprising a group of specific elements hardly forming radioactivity by activation of neutrons or by controlling isotope ratios. (N.H.)

  15. Nuclear power plant

    Schabert, H.P.

    1976-01-01

    A nuclear power plant is described which includes a steam generator supplied via an input inlet with feedwater heated by reactor coolant to generate steam, the steam being conducted to a steam engine having a high pressure stage to which the steam is supplied, and which exhausts the steam through a reheater to a low pressure stage. The reheater is a heat exchanger requiring a supply of hot fluid. To avoid the extra load that would be placed on the steam generator by using a portion of its steam output as such heating fluid, a portion of the water in the steam generator is removed and passed through the reheater, this water having received at least adequate heating in the steam generator to make the reheater effective, but not at the time of its removal being in a boiling condition

  16. Power plant technology 2014. Strategies, systems engineering and operation; Kraftwerkstechnik 2014. Strategien, Anlagentechnik und Betrieb

    Beckmann, Michael; Hurtado, Antonio

    2014-07-01

    The book on power plant technology 2014 (strategies, systems engineering and operation) covers the following issues: Climate, politics and economy; wind power; fossil-fuel power plants, flexible power plants - plant operation, flexible power plants- materials, materials for energy technology, fuel feed and incineration, modeling of the water-vapor-circuit, corrosion, deposits and cleaning, vapor turbines, GUD power plants, fluidized bed combustion, energetic biomass use, combined heat and power generation and decentralized units, storage facilities, emissions - mitigation and measuring techniques.

  17. Accelerator magnet power supply using storage generator

    Karady, G.; Thiessen, H.A.

    1987-01-01

    Recently, a study investigated the feasibility of a large, 60 GeV accelerator. This paper presents the conceptual design of the magnet power supply (PS() and energy storage system. The main ring magnets are supplied by six, high-voltage and two, low-voltage power supplies. These power supplies drive a trapezoidal shaped current wave through the magnets. The peak current is 10 kA and the repetition frequency is 3.3 Hz. During the acceleration period the current is increased from 1040 A to 10,000 A within 50 msec which requires a loop voltage of 120 kV and a peak power of 1250 MW. During the reset period, the PS operates as an inverter with a peak power of -1250 MW. The large energy fluctuation necessitates the use of a storage generator. Because of the relatively high operation frequency, this generator operates in a transient mode which significantly increases the rotor current and losses. The storage generator is directly driven by a variable speed drive, which draws a practically constant power of 17 MW from the ac supply network and eliminates the pulse loading. For the reduction of dc ripple, the power supplies operate in a 24 pulse mode

  18. Power Plant Replacement Study

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  19. Power plant removal costs

    Ferguson, J.S.

    1998-01-01

    The financial, regulatory and political significance of the estimated high removal costs of nuclear power plants has generated considerable interest in recent years, and the political significance has resulted in the Nuclear Regulatory Commission (NRC) eliminating the use of conventional depreciation accounting for the decontamination portion of the removal (decommissioning). While nuclear plant licensees are not precluded from utilizing conventional depreciation accounting for the demolition of non-radioactive structures and site restoration, state and federal utility regulators have not been favorably inclined to requests for this distinction. The realization that steam-generating units will be more expensive to remove, relative to their original cost, predates the realization that nuclear units will be expensive. However, the nuclear issues have overshadowed this realization, but are unlikely to continue to do so. Numerous utilities have prepared cost estimates for steam generating units, and this presentation discusses the implications of a number of such estimates that are a matter of public record. The estimates cover nearly 400 gas, oil, coal and lignite generating units. The earliest estimate was made in 1978, and for analysis purposes the author has segregated them between gas and oil units, and coal and lignite units

  20. Power Plant Replacement Study

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  1. Perspectives of nuclear power plants

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  2. Overview of the Energy Storage Systems for the Wind Power Integration Enhancement

    Swierczynski, Maciej Jozef; Teodorescu, Remus; Rasmussen, Claus Nygaard

    2010-01-01

    intermittency, partly unpredictability and variability, wind power can put the operation of power system into risk. This can lead to problems with grid stability, reliability and the energy quality. One of the possible solutions can be an addition of energy storage into wind power plant. This paper deals...... with state of the art of the Energy Storage (ES) technologies and their possibility of accommodation for wind turbines. Overview of ES technologies is done in respect to its suitability for Wind Power Plant (WPP). Services that energy storage can offer both to WPP and power system are discussed. Moreover...

  3. Generic environmental impact statement on handling and storage of spent light water power reactor fuel. Appendices

    1978-03-01

    Detailed appendices are included with the following titles: light water reactor fuel cycle, present practice, model 1000MW(e) coal-fired power plant, increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data (1976-2000), characteristics of nuclear fuel, and ''away-from-reactor'' storage concept

  4. Wind-power plant

    Kling, A

    1976-08-26

    The invention is concerned with a wind-power plant whose rotor axis is pivoted in the supporting structure and swingable around an axis of tilt, forming an angle with the rotor axis and the vertical axis, and allowing precession of the rotor. On changes of wind direction an electric positioning device is moving the rotor axis into the new direction in such a way that no precession forces are exerted on the supporting structure and this one may very easily be held. Instead of one rotor, also a type with two coaxial, co-planar countercurrent rotors may be used. Each of the two countercurrent rotors is carrying a number of magnetic poles, distributed all over the circumference, acting together with the magnetic poles of the other rotor. At least the poles of one rotor have electric line windings being connected by leads with a collector so that the two rotors form the two parts of a power generator being each rotatable with respect to the other ('stator' and 'rotor').

  5. Power generation by nuclear power plants

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  6. Short Term Energy Storage for Grid Support in Wind Power Applications

    Stroe, Daniel Ioan; Stan, Ana-Irina; Diosi, Robert

    2012-01-01

    The penetration of wind power into the power system has been increasing in the recent years. Therefore, a lot of concerns related to the reliable operation of the power system have been addressed. An attractive solution to minimize the limitations faced by the wind power grid integration, and thus...... to increase the power system stability and the energy quality, is to integrate energy storage devices into wind power plants. This paper gives an overview of the state-of-the-art short-term energy storage devices and presents several applications which can be provided by the energy storage device - wind power...

  7. Perry Nuclear Plant's Plans for on-site storage

    Ratchen, J.T.

    1993-01-01

    Because of current radwaste disposal legislation and the eventual denial of access to the Barnwell, Richland, and Beatty burial sites, it was imperative for the Perry nuclear power plant to develop alternative means for handling its generated radioactive waste. The previous radwaste facilities at Perry were developed for processing, packaging, short-term storage, and shipment for burial. In order to meet the changing needs, new facilities have been constructed to handle the processing, packaging, and 5-yr interim storage of both dry active waste (DAW) and dewatered or solidified resin, filter media, etc

  8. Optimization of maintenance scheduling with genetic algorithms regarding the storage behavior during the availability prognosis of power plants; Optimierung der Instandhaltungsplanung mit genetischen Algorithmen unter Beruecksichtigung des Speicherverhaltens bei der Verfuegbarkeitsprognose von Kraftwerksanlagen

    Warnecke, Martin

    2008-12-19

    In the age of the liberalized energy market the power plant raisers and operators have to consider several factors when choosing the fuel type and dimensioning their power plants, e.g. emissions, erection cost and last but not least operating cost. Simulations assuming different scenarios are required. The rivaling aspects of erection cost, partially dependant availability, maintenance philosophy and operating cost are motivating the optimization of maintenance scheduling and the availability prognosis which are the topic of this thesis. The focus of this thesis is on the scheduling of the time based maintenance strategy. This strategy defines the time spans between the repeating inspections of each component. This is based on the experience of operators and manufacturers. The mathematic problem itself is especially challenging because of strong interdependencies between the single components due to synergy effects. Each component has its own theoretically optimal lifetime and maintenance period. Yet as part of a compound it might be more cost efficient in the long run to maintain some components together shifting some of them forward or backward. The thereby caused interdependencies constitute a non-linear, mixed-whole-numbered calculation of the cost approximation. For the optimization of this maintenance scheduling a new approach was developed. It was realized that the problem couldn't be solved satisfyingly with classic optimization algorithms. Afterwards a solution based on ''genetic algorithms'' was developed. In the meantime the methods for the availability prognosis of complex power plant facilities were enhanced. Especially a new component with storage behavior (with optional losses) was added to the prognosis tool. This storage model integrates the behavior of a storage into the computing time reduced Monte-Carlo-Method. (orig.)

  9. Brighter for small power plants

    Haaland, Leif

    2003-01-01

    The article presents a small tunnel drilling machine aimed at using for the construction of small hydroelectric power plants and mentions briefly some advantages economically and environmentally of both the machine and the power production solution

  10. Are atomic power plants saver than nuclear power plants

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  11. Employing modern power plant simulators in nuclear power plants

    Niedorf, V.; Storm, J.

    2005-01-01

    At the present state of the art, modern power plant simulators are characterized by new qualitative features, thus enabling operators to use them far beyond the traditional field of training. In its first part, this contribution presents an overview of the requirements to be met by simulators for multivalent uses. In part two, a survey of the uses and perspectives of simulation technology in power plants is presented on the basis of experience accumulated by Rheinmetall Defence Electronics (RDE).Modern simulators are shown to have applications by far exceeding traditional training areas. Modular client - sever systems on standard computers allow inexpensive uses to be designed at several levels, thus minimizing maintenance cost. Complex development and running time environments, like the SEMS developed by RDE, have made power plant simulators the workhorses of power plant engineers in all power plant areas. (orig.)

  12. The year 2000 power plant

    Roman, H.T.

    1989-01-01

    Every utility seeks extended service life from its existing power plants before building new ones. It is not easy to justify a new power plant. The licensing and cost of new plants have become uncertain. In response to these conditions, electric utilities are undertaking plant life-extension studies and, in some cases, reconditioning/upgrading old power plants to significantly increase useful service life. Other technologies like robotics and artificial intelligence/expert systems are also being developed to reduce operating and maintenance (O and M) expenses, to remove workers from potentially hazardous environments, and to reduce plant downtime. Together, these steps represent an interim solution, perhaps providing some relief for the next few decades. However, there are serious physical and economic limits to retrofitting new technology into existing power plants. Some old plants will simply be beyond their useful life and require retirement. In nuclear plants, for instance, retrofit may raise important and time-consuming licensing/safety issues. Based on their robotics and artificial intelligence experience, the authors of this article speculate bout the design of the year 2000 power plant - a power plant they feel will naturally incorporate liberal amounts of robotic and artificial intelligence technologies

  13. Images of nuclear power plants

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  14. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage

    Nithyanandam, K.; Pitchumani, R.

    2014-01-01

    Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO 2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MW e capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWh t and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant. - Highlights: • Presents technoeconomic analysis of thermal energy storage integrated concentrating solar power plants. • Presents a comparison of different storage options. • Presents optimum design of thermal energy storage system for steam Rankine and supercritical carbon dioxide cycles. • Presents designs for maximizing exergetic efficiency while minimizing storage cost and levelized cost of energy

  15. A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage

    Apps, J.A.

    2006-02-23

    Conventional coal-burning power plants are major contributors of excess CO2 to the atmospheric inventory. Because such plants are stationary, they are particularly amenable to CO2 capture and disposal by deep injection into confined geologic formations. However, the energy penalty for CO2 separation and compression is steep, and could lead to a 30-40 percent reduction in useable power output. Integrated gas combined cycle (IGCC) plants are thermodynamically more efficient, i.e.,produce less CO2 for a given power output, and are more suitable for CO2 capture. Therefore, if CO2 capture and deep subsurface disposal were to be considered seriously, the preferred approach would be to build replacement IGCC plants with integrated CO2 capture, rather than retrofit existing conventional plants. Coal contains minor quantities of sulfur and nitrogen compounds, which are of concern, as their release into the atmosphere leads to the formation of urban ozone and acid rain, the destruction of stratospheric ozone, and global warming. Coal also contains many trace elements that are potentially hazardous to human health and the environment. During CO2 separation and capture, these constituents could inadvertently contaminate the separated CO2 and be co-injected. The concentrations and speciation of the co-injected contaminants would differ markedly, depending on whether CO2 is captured during the operation of a conventional or an IGCC plant, and the specific nature of the plant design and CO2 separation technology. However, regardless of plant design or separation procedures, most of the hazardous constituents effectively partition into the solid waste residue. This would lead to an approximately two order of magnitude reduction in contaminant concentration compared with that present in the coal. Potential exceptions are Hg in conventional plants, and Hg and possibly Cd, Mo and Pb in IGCC plants. CO2 capture and injection disposal could afford an opportunity to deliberately capture

  16. Nuclear power plant

    Urata, Hidehiro; Oya, Takashi

    1996-11-05

    The present invention provides a highly safe light water-cooled type nuclear power plant capable of reducing radiation dose by suppressing deposition of activated corrosion products by a simple constitution. Namely, equipments and pipelines for fluid such as pumps at least in one of fluid systems such as a condensate cleanup system are constituted by a material containing metal species such as Zn having an effect of suppressing deposition of radioactivity. Alternatively, the surface of these equipments and pipelines for fluids on which water passes is formed by a coating layer comprising a material containing a metal having a radiation deposition suppressing effect. As a result, radioactivity deposited on the equipments and pipelines for fluids is reduced. In addition, since the method described above may be applied only at least to a portion of the members constituting at least one of the systems for fluids, it is economical. Accordingly, radiation dose upon inspection of equipments and pipelines for fluids can be reduced simply and reliably. (I.S.)

  17. Nuclear power plant

    Urata, Hidehiro; Oya, Takashi.

    1996-01-01

    The present invention provides a highly safe light water-cooled type nuclear power plant capable of reducing radiation dose by suppressing deposition of activated corrosion products by a simple constitution. Namely, equipments and pipelines for fluid such as pumps at least in one of fluid systems such as a condensate cleanup system are constituted by a material containing metal species such as Zn having an effect of suppressing deposition of radioactivity. Alternatively, the surface of these equipments and pipelines for fluids on which water passes is formed by a coating layer comprising a material containing a metal having a radiation deposition suppressing effect. As a result, radioactivity deposited on the equipments and pipelines for fluids is reduced. In addition, since the method described above may be applied only at least to a portion of the members constituting at least one of the systems for fluids, it is economical. Accordingly, radiation dose upon inspection of equipments and pipelines for fluids can be reduced simply and reliably. (I.S.)

  18. Pipelines in power plants

    Oude-Hengel, H.H.

    1978-01-01

    Since the end of the Sixties, steam-transporting pipelines are given great attention, as pipeline components often fail, partially even long before their designed operation time is over. Thus, experts must increasingly deal with questions of pipelines and their components. Design and calculation, production and operation of pipelines are included in the discussion. Within the frame of this discussion, planners, producers, operators, and technical surveillance personnel must be able to offer a homogenous 'plan for assuring the quality of pipelines' in fossil and nuclear power plants. This book tries to make a contribution to this topic. 'Quality assuring' means efforts made for meeting the demands of quality (reliability). The book does not intend to complete with well-known manuals, as for as a complete covering of the topic is concerned. A substantial part of its sections serves to show how quality assurance of pipelines can be at least partially obtained by surveillance measures beginning with the planning, covering the production, and finally accompanying the operation. There is hardly need to mention that the sort of planning, production, and operation has an important influence on the quality. This is why another part of the sections contain process aspects from the view of the planners, producers, and operators. (orig.) [de

  19. Nuclear power plants

    Kiyokawa, Teruyuki; Soman, Yoshindo.

    1985-01-01

    Purpose: To constitute a heat exchanger as one unit by integrating primary and secondary coolant circuits with secondary coolant circuit and steam circuit into a single primary circuit and steam circuit. Constitution: A nuclear power plant comprises a nuclear reactor vessel, primary coolant pipeways and a leakage detection system, in which a dual-pipe type heat exchanger is connected to the primary circuit pipeway. The heat conduction tube of the heat exchanger has a dual pipe structure, in which the inside of the inner tube is connected to the primary circuit pipeway, the outside of the outer tube is connected to steam circuit pipeway and a fluid channel is disposed between the inner and outer tubes and the fluid channel is connected to the inside of an expansion tank for intermediate heat medium. The leak detection system is disposed to the intermediate heat medium expansion tank. Sodium as the intermediate heat medium is introduced from the intermediate portion (between the inner and outer tubes) by way of inermediate heat medium pipeways to the intermediate heat medium expansion tank and, further, to the intermediate portion for recycling. (Kawakami, Y.)

  20. Underground nuclear power plant

    Takahashi, Hideo.

    1997-01-01

    In an underground-type nuclear power plant, groups of containing cavities comprising a plurality of containing cavities connected in series laterally by way of partition walls are disposed in parallel underground. Controlled communication tunnels for communicating the containing cavities belonging to a control region to each other, and non-controlled communication tunnels for communicating containing cavities belonging to a non-controlled area to each other are disposed underground. A controlled corridor tunnel and a non-controlled corridor tunnel extended so as to surround the containing cavity groups are disposed underground, and the containing cavities belonging to the controlled area are connected to the controlled corridor tunnel respectively, and the containing cavities belonging to the non-controlled area are connected to the non-controlled corridor tunnel respectively. The excavating amount of earth and sand upon construction can be reduced by disposing the containing cavity groups comprising a plurality of containing cavities connected in series laterally. The time and the cost for the construction can be reduced, and various excellent effects can be provided. (N.H.)

  1. Reliability of nuclear power plants and equipment

    1985-01-01

    The standard sets the general principles, a list of reliability indexes and demands on their selection. Reliability indexes of nuclear power plants include the simple indexes of fail-safe operation, life and maintainability, and of storage capability. All terms and notions are explained and methods of evaluating the indexes briefly listed - statistical, and calculation experimental. The dates when the standard comes in force in the individual CMEA countries are given. (M.D.)

  2. Power plants and safety 1982

    1982-01-01

    The papers of this volume deal with the whole range of safety issues from planning and construction to the operation of power plants, and discuss also issues like availability and safety of power plants, protective clothes and their incommodating effect, alternatives for rendering hot-water generators safe and the safety philosophy in steam turbine engineering. (HAG) [de

  3. Thermodynamic optimization of power plants

    Haseli, Y.

    2011-01-01

    Thermodynamic Optimization of Power Plants aims to establish and illustrate comparative multi-criteria optimization of various models and configurations of power plants. It intends to show what optimization objectives one may define on the basis of the thermodynamic laws, and how they can be applied

  4. Owners of nuclear power plants

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS)

  5. Nuclear power plant diagnostic system

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  6. Temporary storage in dry of the spent nuclear fuel in the Nuclear Power Plant of Laguna Verde; Almacenamiento temporal en seco del combustible nuclear gastado en la Central Nuclear Laguna Verde

    Hernandez M, N.; Vargas A, A., E-mail: natividad.hernandez@cfe.gob.mx [Comision Federal de Electricidad, Gerencia de Centrales Nucleoelectricas, Carretera Veracruz-Medellin Km. 7.5, 94270 Dos Bocas, Veracruz (Mexico)

    2013-10-15

    To guarantee the continuity in the operation of the two nuclear reactors of the nuclear power plant of Laguna Verde (NPP-L V) is an activity of high priority of the Comision Federal de Electricidad (CFE) in Mexico. At the present time, the CFE is working in the storage project in dry of the spent fuel with the purpose of to liberate space of the pools and to have the enlarged capacity of storage of the spent fuel that is discharged of the reactors. This work presents the storage option in dry of the spent fuel, considering that the original capacity of the spent fuel pools of the NPP-L V was of 1242 spaces each one and that in 1991, through a modification of the original design, the storage capacity was increased to 3177 spaces by pool. At present, the cells occupied by unit are of 2165 (68%) for the Unit-I and 1839 (58%) for the Unit-2, however, in 2017 and 2022 the capacity to discharge the complete core will be limited by what is required of a retirement option of spent fuel assemblies to liberate spaces. (author)

  7. VGB Congress 'Power Plants 2006'

    Anon.

    2006-01-01

    The VGB Congress 'Power Plants' took place in Dresden, 27 th to 29 th September 2006 under the auspices of the Federal Minister for Economics and Technology, Michael Glos. The motto of this year's Congress was 'Future becomes Reality - Investments in New Power Plants'. More than 1,200 participants from Germany and abroad attended the plenary and technical lectures on the topics 'Market and Competition' as well as 'Technology, Operation and Environment' for information and discussion. Special papers were dealing with further issues like 'Generation Market in Europe', 'Clean Power Technology Platform', French policy for new power plants as well as potentials and technology of renewables. (orig.)

  8. Nuclear power plant V-1

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  9. Emergency power systems at nuclear power plants

    1982-01-01

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  10. AND THERMAL POWER PLANTS

    Alduhov Oleg Aleksandrovich

    2012-10-01

    Full Text Available Investigation of the atmospheric dispersion as part of the process of selection of sites to accommodate nuclear and thermal power plants is performed to identify concentration fields of emissions and to assess the anthropogenic impact produced on the landscape components and human beings. Scattering properties of the atmospheric boundary layer are mainly determined by the turbulence intensity and the wind field. In its turn, the turbulence intensity is associated with the thermal stratification of the boundary layer. Therefore, research of the atmospheric dispersion is reduced to the study of temperature and wind patterns of the boundary layer. Statistical processing and analysis of the upper-air data involves the input of the data collected by upper-air stations. Until recently, the upper-air data covering the standard period between 1961 and 1970 were applied for these purposes, although these data cannot assure sufficient reliability of assessments in terms of the properties of the atmospheric dispersion. However, recent scientific and technological developments make it possible to substantially increase the data coverage by adding the upper-air data collected within the period between 1964 and 2010. The article has a brief overview of BL_PROGS, a specialized software package designated for the processing of the above data. The software package analyzes the principal properties of the atmospheric dispersion. The use of the proposed software package requires preliminary development of a database that has the information collected by an upper-air station. The software package is noteworthy for the absence of any substantial limitations imposed onto the amount of the input data that may go up in proportion to the amount of the upper-air data collected by upper-air stations.

  11. Offering model for a virtual power plant based on stochastic programming

    PandŽić, Hrvoje; Morales González, Juan Miguel; Conejo, Antonio J.

    2013-01-01

    A virtual power plant aggregates various local production/consumption units that act in the market as a single entity. This paper considers a virtual power plant consisting of an intermittent source, a storage facility, and a dispatchable power plant. The virtual power plant sells and purchases e...

  12. Nuclear power plant

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Asano, Takashi

    1997-12-22

    A steam dryer/gas water separator storage pool of a BWR type reactor is connected to a sucking pipeline of a fuel pool cleaning pump and a sucking pipeline of a cleaning pump of a suppression pool (S/P) respectively by way of a drainage pipeline and a draining pipeline. Pool water from the storage pool passed through the drainage pipeline is pressurized by a fuel pool cleaning pump, and then cleaned by a filtration desalting device, and drained to S/P. At the same time, the pool water from the storage pool passed through the draining pipeline, and pressurized by the S/P cleaning system pump and cleaned by the filtration desalting device in the same manner, and then drained to the S/P. When the water in the storage pool is reduced and the sucking pressure of the fuel pool cleaning pump is lowered to cause possibility that the integral operation of the pump is difficult, the remained water is drained only by the S/P cleaning system pump. (I.N.)

  13. Nuclear power reactors and hydrogen storage systems

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  14. Radiochemistry in nuclear power plants

    Schwarz, W.

    2007-01-01

    Radiochemistry is employed in nuclear power plants not as an end in itself but, among other things, as a main prerequisite of optimum radiation protection. Radiochemical monitoring of various loops provides important information about sources of radioactivity, activity distribution in the plant and its changes. In the light of these analytical findings, plant crews are able to take measures having a positive effect on radiation levels in the plant. The example of a BWR plant is used to show, among other things, how radiochemical analyses helped to reduce radiation levels in a plant and, as a consequence, to decrease clearly radiation exposure of the personnel despite higher workloads. (orig.)

  15. Effective inventory management for nuclear power plants

    MacFarlane, I.S.

    1985-01-01

    Effective inventory management plays a major role at nuclear power plants toward achieving a high level of availability in a cost-effective manner. It enables maintenance personnel to obtain the correct parts easily, when needed, and in satisfactory condition to perform as intended. In addition, appropriate controls and documentation ensure parts are being used in the correct equipment application. The following elements of inventory management will help achieve plant availability goals: (1) appropriate inventory levels, (2) preapproved procurement requirements, (3) storage maintenance, (4) documentation of parts, and (5) control of computer data base

  16. Virtual power plant mid-term dispatch optimization

    Pandžić, Hrvoje; Kuzle, Igor; Capuder, Tomislav

    2013-01-01

    Highlights: ► Mid-term virtual power plant dispatching. ► Linear modeling. ► Mixed-integer linear programming applied to mid-term dispatch scheduling. ► Operation profit maximization combining bilateral contracts and the day-ahead market. -- Abstract: Wind power plants incur practically zero marginal costs during their operation. However, variable and uncertain nature of wind results in significant problems when trying to satisfy the contracted quantities of delivered electricity. For this reason, wind power plants and other non-dispatchable power sources are combined with dispatchable power sources forming a virtual power plant. This paper considers a weekly self-scheduling of a virtual power plant composed of intermittent renewable sources, storage system and a conventional power plant. On the one hand, the virtual power plant needs to fulfill its long-term bilateral contracts, while, on the other hand, it acts in the market trying to maximize its overall profit. The optimal dispatch problem is formulated as a mixed-integer linear programming model which maximizes the weekly virtual power plant profit subject to the long-term bilateral contracts and technical constraints. The self-scheduling procedure is based on stochastic programming. The uncertainty of the wind power and solar power generation is settled by using pumped hydro storage in order to provide flexible operation, as well as by having a conventional power plant as a backup. The efficiency of the proposed model is rendered through a realistic case study and analysis of the results is provided. Additionally, the impact of different storage capacities and turbine/pump capacities of pumped storage are analyzed.

  17. Next Generation Geothermal Power Plants

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  18. Automation technology in power plants

    Essen, E.R.

    1995-01-01

    In this article a summery of the current architecture of modern process control systems in power plants and future trends have been explained. The further development of process control systems for power plants is influenced both by the developments in component and software technologies as well as the increased requirements of the power plants. The convenient and low cost configuration facilities of new process control systems have now reached a significance which makes it easy for customers to decide to purchase. (A.B.)

  19. Man and nuclear power plants

    Anon.

    1978-01-01

    According to the Inst. fuer Unfallforschung/TUeV Rheinland, Koeln, the interpretation of empirical data gained from the operation of nuclear power plants at home and abroad during the period 1967-1975 has shown that about 38% of all reactor accidents were caused by human failures. These occured either during the design and construction, the commissioning, the reconditioning or the operation of the plants. This very fact stresses human responsibility for the safety of nuclear power plants, in spite of those plants being automated to a high degree and devices. (orig.) [de

  20. Owners of nuclear power plants

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  1. Owners of nuclear power plants

    Wood, R.S.

    1979-12-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of December 1, 1979. The list includes all plants licensed to operate, under construction, docketed for NRC safety and envionmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally cancelled. In many cases, ownership may be in the process of changing as a result of antitrust license conditions and hearings, altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified

  2. Alternative off-site power supply improves nuclear power plant safety

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  3. Competitive breeder power plants

    Winkleblack, R.K.

    1984-01-01

    To utilize the fissile material that is accumulating in the utilities' spent fuel pools, breeder plants must be less expensive than current LWR costs (or utilities will not buy nuclear plants in the near future) and also be highly reliable. The fundamental differences between LWRs and LMFBRs are discussed and recommendations are made for making the most of these differences to design a superior breeder plant that can sell in the future, opening the way to U.S. utilities becoming self-sufficient for fuel supply for centuries

  4. Determination of Optimum Performance Strategy of Energy Storage in Power System

    Mohammad Hosein Ranjbari

    2016-06-01

    Full Text Available Determination of optimal capacity for today energy storages has been specially noticed. The delay in increasing storage production capacity is one of the applications for energy storage supplies in which utilization from energy storage supplies along with improvement in the power status at peak hours of consumption may postpone the demand for installation of a new power plant module. In this essay, the optimal capacity of energy storage is determined in order to reduce exploitation costs by second-order non linear programming. This method expresses this problem with a target quadratic function based on the produced power of units and capacity of energy storage supply. The requirements have been modeled as linear equality and inequality equations. The related constraints for produced power and incremental and decremental power ratio in generators have been considered as well.

  5. Space nuclear reactor power plants

    Buden, D.; Ranken, W.A.; Koenig, D.R.

    1980-01-01

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on space nuclear power plant components has been initiated by the Department of Energy. The missions that are foreseen, the current power plant concept, the technology program plan, and early key results are described

  6. Nuclear power plant operator licensing

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  7. Nuclear Power Plant Simulation Game.

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  8. A real option-based simulation model to evaluate investments in pump storage plants

    Muche, Thomas

    2009-01-01

    Investments in pump storage plants are expected to grow especially due to their ability to store an excess of supply from wind power plants. In order to evaluate these investments correctly the peculiarities of pump storage plants and the characteristics of liberalized power markets have to be considered. The main characteristics of power markets are the strong power price volatility and the occurrence of prices spikes. In this article a valuation model is developed capturing these aspects using power price simulation, optimization of unit commitment and capital market theory. This valuation model is able to value a future price-based unit commitment planning that corresponds to future scope of actions also called real options. The resulting real option value for the pump storage plant is compared with the traditional net present value approach. Because this approach is not able to evaluate scope of actions correctly it results in strongly smaller investment values and forces wrong investment decisions.

  9. Elecnuc. Nuclear power plants worldwide

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  10. Robotics for nuclear power plants

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-01-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics. (author)

  11. Robotics for nuclear power plants

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-10-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics.

  12. Decommissioning of nuclear power plants

    Vollradt, J.

    1977-01-01

    A survey of the main questions of decommissioning of nuclear power plants will be given in the sight of German utilities (VDEW-Working group 'Stillegung'). The main topics are: 1) Definitions of decommissioning, entombment, removal and combinations of such alternatives; 2) Radioactive inventory (build up and decay); 3) Experience up to now; 4) Possibilities to dismantle are given by possibility to repair nuclear power plants; 5) Estimated costs, waste, occupational radiation dose; 6) German concept of decommissioning. (orig./HK) [de

  13. PV power plants

    NONE

    2012-07-01

    Within the international seminar of the Ostbayerisches Technologie-Transfer-Institut e.V. (OTTI) at 11th June, 2012 in Munich (Federal Republic of Germany), the following lectures were held: (1) Technical due diligence (Dietmar Obst); (2) Certification / rating system for large PV plants (Robert Pfatischer); (3) O and M requirements (Lars Rulf); (4) IR photography for large scale systems (Bernhard Weinreich); (5) New market models for PV systems - direct marketing and sales of PV electricity (Martin Schneider); (6) Needs and benefits for plant certification for grid connection and operation (Christoph Luetke-Lengerich); (7) Lare volume module testing / Screening in the field and workshop (Semir Merzoug); (8) Dismantling costs of large scale PV plants (Siegfried Schimpf).

  14. Inertial fusion commercial power plants

    Logan, B.G.

    1994-01-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an example of an IFE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity

  15. The Lifetime of the LiFePO4/C Battery Energy Storage System When Used For Smoothing of the Wind Power Plant Variations

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    Fulfilling ambitious goals of the full transition from the centralized, fossil fuel-based conventional generation units into distributed and eco-friendly renewables can be difficult to achieve without energy storage systems due to technical and economical challenges. Energy storage system additio...

  16. Emergency power systems at nuclear power plants

    1991-01-01

    This Safety Guide was prepared as part of the Nuclear Safety Standards programme for establishing Codes and Safety Guides relating to nuclear power plants (NPPs). The first edition of the present Safety Guide was developed in the early 1980s. The text has now been brought up-to-date, refined in several details and amended to include non-electrical diverse and independent power sources. This Guide applies to NPP for which the total power supply comprises a normal power supply and an emergency power supply (EPS), which may be electrical or a combination of electrical and non-electrical. The Guide provides general guidance for all types of EPS and specific guidance on the design safety requirements and the features of the electrical and non-electrical portions of the EPS. 9 figs, 2 tabs

  17. Organization patterns of PWR power plants

    Leicman, J.

    1980-01-01

    Organization patterns are shown for the St. Lucia 1, North Anna, Sequoyah, and Beaver Valley nuclear power plants, for a typical PWR power plant in the USA, for the Biblis/RWE-KWU nuclear power plants and for a four-unit nuclear power plant operated by Electricite de France as well as for the Loviisa power plant. Organization patterns are also shown for relatively independent and non-independent nuclear power plants according to IAEA recommendations. (J.P.)

  18. 76 FR 40403 - R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...

    2011-07-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-244; Docket No. 72-67] R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent Fuel Storage Installation; Notice of... Facility Operating License No. DPR-18, for the R.E. Ginna Nuclear Power Plant (Ginna), currently held by R...

  19. Low-power wind plants

    Kovalenko, V.I.; Shevchenko, Yu.V.; Shikhajlov, N.A.; Kokhanevich, V.P.; Tanan, G.L.

    1993-01-01

    Design peculiarities, as well as the prospects of development and introduction of the low-power (from 0.5 up to 4 kW) wind power plants (WPP) are considered. The variants of WPP with vertical and horizontal rotation axis are described. The data characterizing cost and structure of expenditures on WPP manufacture and operation are given

  20. Energy sources and power plants

    Schulz, Detlef; Schulz, Karen

    2013-01-01

    Energy is obtained from various energy sources (coal, petroleum, natural gas, nuclear fuels, wind energy, solar energy, hydro power, biomass, geothermal energy). These differ in each case with respect to their availability, methods of their production and the required power plant technologies. As technologies of the future fuel cells and nuclear fusion are traded. [de

  1. 西北地区发展抽水蓄能电站的意义与面临的主要问题%Signif icance and Issues of Pumped Storage Power Plants to be Developed in West China

    冯黎; 王社亮

    2014-01-01

    西北地区是中国规划的千万千瓦级风电及光电基地之一,促进西北地区风能与太阳能开发利用对实现中国能源发展战略具有重要的意义。而配置抽水蓄能电站是增强电网接纳风电光电能力的重要措施。文章介绍了西北地区风能、太阳能资源发展规划,分析了风电与光电并网存在的主要问题及抽水蓄能电站对促进风电与光电消纳的重要作用,并针对目前西北地区抽水蓄能电站发展过程中存在的主要问题,提出了促进措施和建议。%West China is one of the wind-solar energy bases with the installed capacity of exceeding tens of thousands of megawatt planned in China.It is significant for the energy development strategy of China to promote the development and utilization of the wind-solar energy in west China.But, the introduction of the pumped storage power plant into the grid is the important measures to enhance the grid capaci-ty of accepting the wind-solar power.In the paper, the development plan for the wind-solar energy in west China is introduced;major is-sues on the wind-solar power into the grid as well as the significance of the pumped storagepower plant for the promotion of the accept-ance and consumption of the wind-solar power are analyzed.Furthermore, the promoting measures and suggestions are raised aiming at the major issues in the development of the pumped storage power plant in west China.

  2. Nuclear power plant

    Kubota, Ryuji; Yamanari, Shozo.

    1982-01-01

    Purpose: To prevent contamination of reactor water by suppression pool water upon isolation of a BWR type reactor. Constitution: In a cooling system upon reactor separation and a high pressure core spray system of a BWR type reactor, a controller comprises an AND circuit which outputs a valve switching signal upon input of a low level signal for condensate storage tank water and a high level signal for a suppression pool water level. This can prevent the injection of suppression pool water into the reactor in the event other than loss of coolant accident. The valve is switched only when the suppression pool water level signal takes a high level and loss of coolant accident signal is present, and the water of the suppression water is pumped into the reactor. In the case, other than the loss of coolant accident, the valve is not switched even when a high level signal for the suppression pool water level is detected. (Horiuchi, T.)

  3. Space power plants

    Khudyakov, S. A.

    1985-05-01

    Power generators in space are examined. A semiconducting photoelectric converter (FEP) which converts the energy of solar radiation directly into electrical energy is discussed. The operating principle of an FEP is based on the interaction of solar light with a crystal semiconductor, in the process of which the photons produce free electrons, carriers of an electrical charge, in the crystal. Areas with a strong electrical field created specially under the effect of the p-n junction trap the freed electrons and divide them in such a fashion that a current and corresponding electrical power appear in the load circuit. The absorption of light in metals and pure semiconductors is outlined.

  4. Applications of lasers in nuclear power plants

    Raj, Rupam; Sanyal, D.N.; Sil, Jaydeb

    2013-01-01

    Applications of lasers in nuclear power plants: Bellow lip cutting and high pressure feeder coupling stud (HPFC) cutting during en-masse coolant channel replacement (EMCCR) campaign at Narora Atomic Power Station Reactor 1 in May 2006; cutting of pressure tubes from Madras Atomic Power Station 1 (MAPS-1) for easy storage in April 2005; In-situ cutting of selected coolant channel S-7 at Kakrapar Atomic Power Station (KAPS-2) (cutting of 12 mm thick end fitting and 4 mm thick liner tube of stainless steel from inside) in January 2005; Development of a miniature cutting mechanism for steam generator tubes (14 mm i.d.) from inside, In-situ bellow repair for secondary shutdown system; LASER welding may be deployed for End shield of MAPS-1 leak repair

  5. Power plant simulation

    Hacking, D [Marconi Simulation (United Kingdom)

    1992-09-01

    Over many years in the field of simulation Marconi has developed and adopted a number of procedures and methodologies for the management, design and development of an extensive range of training equipment. This equipment encompasses desktop computer-based training systems, generic training devices. The procurement of a training simulator is clearly dictated by the perceived training requirement or problem. Also, it should preferably involve or follow a detailed training needs analysis. Although the cost benefits of training are often difficult to quantify, a simulator is frequently easier to justify if plant familiarisation and training can be provided in advance of on-the-job experience. This is particularly true if the target operators have little hands-on experience of similar plant either in terms of processes or the operator interface. (author).

  6. Organizing nuclear power plant operation

    Adams, H.W.; Rekittke, K.

    1987-01-01

    With the preliminary culmination in the convoy plants of the high standard of engineered safeguards in German nuclear power plants developed over the past twenty years, the interest of operators has now increasingly turned to problems which had not been in the focus of attention before. One of these problems is the organization of nuclear power plant operation. In order to enlarge the basis of knowledge, which is documented also in the rules published by the Kerntechnischer Ausschuss (Nuclear Technology Committee), the German Federal Minister of the Interior has commissioned a study of the organizational structures of nuclear power plants. The findings of that study are covered in the article. Two representative nuclear power plants in the Federal Republic of Germany were selected for the study, one of them a single-unit plant run by an independent operating company in the form of a private company under German law (GmbH), the other a dual-unit plant operated as a dependent unit of a utility. The two enterprises have different structures of organization. (orig.) [de

  7. TVA's nuclear power plant experience

    Willis, W.F.

    1979-01-01

    This paper reviews TVA's nuclear power plant design and construction experience in terms of schedule and capital costs. The completed plant in commercial operation at Browns Ferry and six additional plants currently under construction represent the nation's largest single commitment to nuclear power and an ultimate investment of $12 billion by 1986. The presentation is made in three separate phases. Phase one will recapitulate the status of the nuclear power industry in 1966 and set forth the assumptions used for estimating capital costs and projecting project schedules for the first TVA units. Phase two describes what happened to the program in the hectic early 1979's in terms of expansion of scope (particularly for safety features), the dramatic increase in regulatory requirements, vendor problems, stretchout of project schedules, and unprecedented inflation. Phase three addresses the assumptions used today in estimating schedules and plant costs for the next ten-year period

  8. Prospects for power plant technology

    Schilling, H.D.

    1993-01-01

    Careful conservation of resources in the enlarged context of the rational utilization of energy, the environment and capital will determine future power plant technology. The mainstays will be the further development of power plant concepts based on fossil (predominantly coal) and nuclear fuels; world-wide, also regenerative and CO 2 -free hydro-electric power will play a role. Rapid conversion of the available potential requires clear, long-term stable and reliable political framework conditions for the release of the necessary entrepreneurial forces. (orig.) [de

  9. Partner of nuclear power plants

    Gribi, M.; Lauer, F.; Pauli, W.; Ruzek, W.

    1992-01-01

    Sulzer, the Swiss technology group, is a supplier of components and systems for nuclear power plants. Important parts of Swiss nuclear power stations, such as containments, reactor pressure vessels, primary pipings, are made in Winterthur. Sulzer Thermtec AG and some divisions of Sulzer Innotec focus their activities on servicing and backfitting nuclear power plants. The European market enjoys priority. New types of valves or systems are developed as economic solutions meeting more stringent criteria imposed by public authorities or arising from operating conditions. (orig.) [de

  10. Nuclear power plant V-2

    1998-01-01

    The nuclear power plant Bohunice V -2 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - December 1976; first controlled reactor power - 7 August 1984, 2 August 1985; connection to the grid - 20 August 1984, 9 August 1985; commercial operation - 14 February 1985, 18 December 1985. This leaflet contains: NPP V-2 construction; Major technological equipment [WWER 440 V230 type reactor; Nuclear Power plant operation safety (Safety barriers; Safety systems [Active safety systems, Passive safety systems]); Centralized heat supply system; Scheme of Bohunice V-2 NPP and technical data

  11. Dispatchable Solar Power Plant Project

    Price, Henry [Solar Dynamics LLC, Broomfield, CO (United States)

    2018-01-31

    As penetration of intermittent renewable power increases, grid operators must manage greater variability in the supply and demand on the grid. One result is that utilities are planning to build many new natural gas peaking power plants that provide added flexibility needed for grid management. This report discusses the development of a dispatchable solar power (DSP) plant that can be used in place of natural gas peakers. Specifically, a new molten-salt tower (MST) plant has been developed that is designed to allow much more flexible operation than typically considered in concentrating solar power plants. As a result, this plant can provide most of the capacity and ancillary benefits of a conventional natural gas peaker plant but without the carbon emissions. The DSP system presented was designed to meet the specific needs of the Arizona Public Service (APS) utility 2017 peaking capacity request for proposals (RFP). The goal of the effort was to design a MST peaker plant that had the operational capabilities required to meet the peaking requirements of the utility and be cost competitive with the natural gas alternative. The effort also addresses many perceived barriers facing the commercial deployment of MST technology in the US today. These include MST project development issues such as permitting, avian impacts, visual impacts of tower CSP projects, project schedule, and water consumption. The DSP plant design is based on considerable analyses using sophisticated solar system design tools and in-depth preliminary engineering design. The resulting DSP plant design uses a 250 MW steam power cycle, with solar field designed to fit on a square mile plot of land that has a design point thermal rating of 400 MWt. The DSP plant has an annual capacity factor of about 16% tailored to deliver greater than 90% capacity during the critical Arizona summer afternoon peak. The table below compares the All-In energy cost and capacity payment of conventional combustion turbines

  12. Operational flexibility and economics of power plants in future low-carbon power systems

    Brouwer, Anne Sjoerd; van den Broek, Machteld; Seebregts, Ad; Faaij, André

    2015-01-01

    Future power systems will require large shares of low-carbon generators such as renewables and power plants with Carbon Capture and Storage (CCS) to keep global warming below 2. °C. Intermittent renewables increase the system-wide demand for flexibility and affect the operation of thermal power

  13. A criticality analysis of the GBC-32 dry storage cask with Hanbit nuclear power plant unit 3 fuel assemblies from the viewpoint of burnup credit

    Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-06-15

    Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

  14. Simulation technology for power plants

    Kuwabara, Kazuo; Yanai, Katsuya.

    1988-01-01

    In the simulation of nuclear power stations, there are the simulation for the training of plant operation, the plant simulation for analyzing the operation of an electric power system, the simulation for controlling a core, the simulation for the safety analysis of reactors, the simulation for the design analysis of plants and so on as the typical ones. The outline and the technical features of these simulations are described. With the increase of capacity and complexity of thermal power plants, recently the automation of operation has advanced rapidly. The chance of starting up and stopping plants by operators themselves is few, and the chance of actually experiencing troubles also is few as the reliability of plants improved. In order to maintain the ability of coping with plant abnormality, an operation supporting system is strongly demanded. Operation training simulators and used widely now, and there are the simulators for analysis, those of replica type, those of versatile compact type and so on. The system configuration, modeling techniques, training function and others of the replica type are explained. In hydroelectric plants, the behavior of water in penstocks, the characteristics of water turbines, the speed control system for water turbines and the characteristics of generators become the main subjects of simulation. These are described. (Kako, I.)

  15. ALARA at nuclear power plants

    Baum, J.W.

    1991-01-01

    Implementation of the ALARA principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed through a variety of dose reduction techniques. Initiatives by the ICRP, NCRP, NRC, INPO, EPRI, and BNL ALARA Center have all contributed to a heightened interest and emphasis on dose reduction. The NCRP has formed Scientific Committee 46-9 which is developing a report on ALARA at Nuclear Power Plants. It is planned that this report will include material on historical aspects, management, valuation of dose reduction ($/person-Sv), quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report

  16. Solar Powered Heat Storage for Injera Baking

    Tesfay, Asfafaw H; Kahsay, Mulu Bayray; Nydal, Ole Jørgen

    2014-01-01

    Ethiopia with a population of about 85 million meets 96% of its energy needs with bio-mass, charcoal, wood, animal dung and plant residues. More than 50% of this energy goes entirely on baking Injera. Injera the national food of the country demands 180-220 °C to be well cooked. In this article; Injera baking with solar energy on off-focus system, status of electric powered stove and the potential for solar powered stoves is discussed. The research and development of solar thermal for househol...

  17. Evaluation of separation distance from the temporary storage facility for decontamination waste to ensure public radiological safety after Fukushima nuclear power plant accident

    Kim, Min Jung; Go, A Ra; Kim, Kwang Pyo [Kyung Hee University, Yongin (Korea, Republic of)

    2016-09-15

    The object of this study was to evaluate the separation distance from a temporary storage facility satisfying the dose criteria. The calculation of ambient dose rates took into account cover soil thickness, facility size, and facility type by using MCNPX code. Shielding effects of cover soil were 68.9%, 96.9% and 99.7% at 10 cm, 30 cm and 50 cm respectively. The on-ground type of storage facility had the highest ambient dose rate, followed by the semi-ground type and the underground type. The ambient dose rate did not vary with facility size (except 5 × 5 × 2 m size) due to the self-shielding of decontamination waste in temporary storage. The separation distances without cover soil for a 50 × 50 × 2 m size facility were evaluated as 14 m (minimum radioactivity concentration), 33 m (most probably radioactivity concentration), and 57 m (maximum radioactivity concentration) for on-ground storage type, 9 m, 24 m, and 45 m for semi-underground storage type, and 6 m, 16 m, and 31 m for underground storage type.

  18. STARFIRE: a commercial tokamak fusion power plant study

    1980-09-01

    This volume contains chapters on each of the following topics: (1) radioactivity, (2) heat transport and energy conversion, (3) tritium systems, (4) electrical storage and power supplies, (5) support structure, (6) cryogenics, (7) instrumentation and control, (8) maintenance and operation, (9) balance of plant design, (10) safety and environmental analysis, (11) economic analysis, and (12) plant construction.

  19. STARFIRE: a commercial tokamak fusion power plant study

    1980-09-01

    This volume contains chapters on each of the following topics: (1) radioactivity, (2) heat transport and energy conversion, (3) tritium systems, (4) electrical storage and power supplies, (5) support structure, (6) cryogenics, (7) instrumentation and control, (8) maintenance and operation, (9) balance of plant design, (10) safety and environmental analysis, (11) economic analysis, and (12) plant construction

  20. Ocean power plants

    Mazurkiedicz, B.; Sliwa, B.

    1982-01-01

    Plans are examined for OTES of close and open cycles. Examples of design of TO are presented. Main design elements of the OTES are indicated and their arrangement. The OTES can be realized even now with comparatively small capital investments. Searches are made for solutions which would make it possible to construct the OTES and not in tropical regions, i.e., with very small temperature differences. The studies indicated that with a difference of temperatures 4.5/sup 0/C and temperature of the thermal water 5.5/sup 0/C, it is possible to build OTES with power 100 MW. With difference in temperature 5/sup 0/C, the power will reach 130 MW.

  1. Submarine nuclear power plant

    Enohara, Masami; Araragi, Fujio.

    1980-01-01

    Purpose: To provide a ballast tank, and nuclear power facilities within the containment shell of a pressure resistance structure and a maintenance operator's entrance and a transmission cable cut-off device at the outer part of the containment shell, whereby after the construction, the shell is towed, and installed by self-submerging, and it can be refloated for repairs by its own strength. Constitution: Within a containment shell having a ballast tank and a pressure resisting structure, there are provided nuclear power facilities including a nuclear power generating chamber, a maintenance operator's living room and the like. Furthermore, a maintenance operator's entrance and exit device and a transmission cable cut-off device are provided within the shell, whereby when it is towed to a predetermined a area after the construction, it submerges by its own strength and when any repair inspection is necessary, it can float up by its own strength, and can be towed to a repair dock or the like. (Yoshihara, H.)

  2. Understanding Biomass Ignition in Power Plant Mills

    Schwarzer, Lars; Jensen, Peter Arendt; Glarborg, Peter

    2017-01-01

    . This is not very well explained by apply-ing conventional thermal ignition theory. An experimental study at lab scale, using pinewood as an example fuel, was conducted to examine self-heating and self-ignition. Supplemental experiments were performed with bituminous coal. Instead of characterizing ignition......Converting existing coal fired power plants to biomass is a readily implemented strategy to increase the share of renewable energy. However, changing from one fuel to another is not straightforward: Experience shows that wood pellets ignite more readily than coal in power plant mills or storages...... temperature in terms of sample volume, mass-scaling seems more physically correct for the self-ignition of solids. Findings also suggest that the transition between self-heating and self-ignition is controlled both by the availability of reactive material and temperature. Comparison of experiments at 20...

  3. Chemistry in power plants 2011

    2011-01-01

    Within the VGB Powertech conference from 25th to 27th October, 2011, in Munich (Federal Republic of Germany), the following lectures and poster contributions were presented: (1) The revised VGB standard for water-steam-cycle Chemistry; (2) Switchover from neutral operation to oxygen treatment at the power station Stuttgart-Muenster of EnBW Kraftwerke AG; (3) Steam contamination with degradation products of organic matters present in the feedwater of the Lanxess-Rubber cogeneration plant; (4) Laboratory scale on-line noble metal deposition experiments simulating BWR plant conditions; (5) Building a new demin installation for the power plant EPZ in Borssele; (6) Replacement of the cooling tower installations in the nuclear power plant Goesgen-Daenien AG; (7) Aging of IEX resins in demin plants - Cost optimisation by adaptation of regenerants; (8) The largest DOW trademark EDI System at a combined cycled plant in Europe; (9) Upgrading river Main water to boiler feed water - Experiences with ultrafiltration; (10) Experiences with treatment of the water-steam-cycle in the RDF power plant Nehlsen Stavenhagen with film-forming amines; (11) Comparative modelling of the bubbles thermal collapse and cavitations for estimation of bubbles collapse influence; (12) Overcoming the steam quality - issues from an HRSG for the production of process steam; (13) Legionella - new requirements for power plant operation; (14) How the right chemistry in the FGD helps to improve the removal in the waste water treatment plant; (15) High efficiency filtration in dry/semi-dry FGD plants; (16) Expanding the variety of renewable fuels in the biomass power plant Timelkam using the chemical input control; (17) Corrosion, operating experiences and process improvements to increase the availability and operating time of the biomass power plant Timelkam; (18) The influence of temperature on the measurement of the conductivity of highly diluted solutions; (19) A multiparameter instrumentation approach

  4. Financing Solar Thermal Power Plants

    Kistner, Rainer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Price, Henry W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1999-04-14

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier’s perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  5. Financing Solar Thermal Power Plants

    Price, Henry W.; Kistner, Rainer

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  6. Financing solar thermal power plants

    Kistner, R.; Price, H.

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been built following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply states, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects form the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  7. Thermal Power Plant Performance Analysis

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  8. Nuclear power plant diagnostics

    Hollo, E.; Siklossy, P.

    1982-01-01

    The cooling circuit vibration diagnostic system of the Block 1 of the Paks nuclear power station is described. The automatic online vibration monitoring system consisting presently of 42 acceleration sensors and 9 pressure fluctuation sensors, which could be extended, performs both global and local inspection of the primary cooling circuit and its components. The offline data processing system evaluates the data for failure mode analysis. The software under development will be appropriate for partial preliminary identification of failure reasons during their initial phases. The installation experiences and the preliminary results during the hot operational testing of Block 1 are presented. (Sz.J.)

  9. Influence of wind power, plug-in electric vehicles, and heat storages on power system investments

    Kiviluoma, Juha; Meibom, Peter

    2010-01-01

    Due to rising fuel costs, the substantial price for CO 2 emissions and decreasing wind power costs, wind power might become the least expensive source of power for an increasing number of power systems. This poses the questions of how wind power might change optimal investments in other forms of power production and what kind of means could be used to increase power system flexibility in order to incorporate the variable power production from wind power in a cost-effective manner. We have analysed possible effects using an investment model that combines heat and power production and simulates electric vehicles. The model runs in an hourly time scale in order to accommodate the impact of variable power production from wind power. Electric vehicles store electricity for later use and can thus serve to increase the flexibility of the power system. Flexibility can also be upgraded by using heat storages with heat from heat pumps, electric heat boilers and combined heat and power (CHP) plants. Results show that there is great potential for additional power system flexibility in the production and use of heat. (author)

  10. Nuclear power plants

    Usui, Eizo.

    1981-01-01

    Purpose: To prevent boiling of saturated water in the drain tank of a humidity separator by charging cooling water in the drain tank upon power decrease of a turbine. Constitution: Saturated water is separated from high pressure turbine exhausts in a humidity separator and stored in a drain tank. The saturated water in the drain tank is controlled to a constant level and the excess water is sent to a condensator and a feedwater heater. A cooling water feed pipe is branched as a cooling water feed pipe from the exhaust side of a reactor feedwater pump and connected by way of a closing valve to a spray nozzle provided in the drain tank. While the closing valve is usually closed to keep the water level constant in the drain tank, the closing valve is opened upon sudden decrease in the turbine power to charge the condensates by way of the cooling water feed pipe to the drain tank. Thus, the saturated water is mixed with the dondensates and the temperature is lowered to prevent boiling of the saturated water. (Kawakami, Y.)

  11. Configuration management of plant modifications for nuclear power plants

    Ritsch, W.J.

    1987-01-01

    Due to the increasing complexity of nuclear power plant operation, regulatory pressure, and the large numbers of people required to operate and support the stations, the control of plant modifications at these plants needs to be expanded and improved. The aerospace and defense industries, as well as the owners or operators of large energy projects have established configuration management programs (CMPs) to control plant design changes. These programs are composed of well-defined functions for identifying, evaluating, recording, tracking, issuing, and documenting the established baseline conditions, as well as required changes to these baseline conditions. The purpose of this paper is to describe a recommended CMP for plant modifications consisting of a computerized data base installed on the utility's computer to provide a central storage of plant design and operations data necessary to control the following activities as they are affected by plant design changes: training; record management; operations; maintenance; health physics; planning/scheduling; procurement/inventory control; outage management (including modifications); and emergency response

  12. A proposal of nuclear fusion power plant equipped with SMES

    Natsukawa, Tatsuya; Makamura, Hirokazu; Molinas, Marta; Nomura, Shinichi; Tsuji-Iio, Shunji; Shimada, Ryuichi

    2000-01-01

    When we intend to operate the nuclear fusion power plant (NFPP) under the economically efficient conditions as an independent power plant, it is desirable that the generated electric power should be sent to network according to the power demand. With such strategy being expanded, some energy storage system is available. In this paper, NFPP equipped with the superconducting magnetic energy storage system (SMES) as electric power storage device is proposed. The advantages of NFPP equipped with SMES are discussed and a case study of 500 MW NFPP equipped with 6 GWh SMES is done with estimating its operational value. For SMES coil, the concept of Force Balanced Coil (FBC) is applied and 6 GWh class FBC is briefly designed

  13. Ocean power plants

    Dembicki, E.

    1982-01-01

    In the fall of 1980 on the shores of the Hawaiian Islands, a floating laboratory of the United States was successfully introduced for testing a heat exchanger and pipes for collecting cold water of the OTES with power of 1 MW. The first American OTES N=10-40 MW should start operation in 1985. By the year 2000, ..sigma..N of the U.S. OTES should reach 10 GW. The Japanese OTES N=10-25 MW should start up in 1989. The experimental OTES N=100 KW has been in operation since October 1981 on the Nauru Island. An OTES of 2 MW is under construction. The concern Empain-Schneider is involved in planning the OTES of closed cycle in France, and the concern CGE is planning the OTES of open cycle.

  14. Maintenance of nuclear power plants

    Lashgari, Farbod.

    1995-01-01

    This paper is about maintenance of nuclear power plants. In part one, the outage management of nuclear power plants has described. Meaning of the outage and objectives of outage management is given in introduction. The necessity of a long-term outage strategy is shown in chapter one. The main parts of an outage are as follows: Planning; Preparation; Execution, Each of them and also post-outage review have been explained in the followed chapters. Part two deals with technical details of main primary components of nuclear power plant type WWER. After an introduction about WWER reactors, in each chapter first the general and detailed description of main primary components has given and then their maintenance schedules and procedures. Chapter about reactor and steam generator is related to both types of WWER-440 and WWER-1000, but chapter about reactor coolant pump has specified to WWER-1000 to be more in details.(author)

  15. Toxic releases from power plants

    Rubin, E.S.

    1999-01-01

    Beginning in 1998, electric power plants burning coal or oil must estimate and report their annual releases of toxic chemicals listed in the Toxics Release Inventory (TRI) published by the US Environmental Protection Agency (EPA). This paper identifies the toxic chemicals of greatest significance for the electric utility sector and develops quantitative estimates of the toxic releases reportable to the TRI for a representative coal-fired power plant. Key factors affecting the magnitude and types of toxic releases for individual power plants also are discussed. A national projection suggests that the magnitude of electric utility industry releases will surpass those of the manufacturing industries which current report to the TRI. Risk communication activities at the community level will be essential to interpret and provide context for the new TRI results

  16. Thermal power plants and environment

    1997-01-01

    Recent versions of the air quality models which are reviewed and approved from the Environmental Protection Agency (EPA) are analysed in favour of their application in simple and complex terrain, different meteorological conditions and modifications in the sources of pollutant emissions. Improvement of the standard methods for analysis of the risks affecting the environment from different energy sources has been carried out. The application of the newly introduced model enabled (lead to performing) risk analysis of the coal power plants compared to other types of energy sources. Detailed investigation of the risk assessment and perception from coal power plants, has been performed and applied to the Macedonian coal power plants. Introducing the concept of 'psychological pollution', a modification of the standard models and programs for risk assessment from various energy sources has been suggested (proposed). The model has been applied to REK Bitola, where statistically relevant differences in relation to the control groups have been obtained. (Original)

  17. Reliability Characteristics of Power Plants

    Zbynek Martinek

    2017-01-01

    Full Text Available This paper describes the phenomenon of reliability of power plants. It gives an explanation of the terms connected with this topic as their proper understanding is important for understanding the relations and equations which model the possible real situations. The reliability phenomenon is analysed using both the exponential distribution and the Weibull distribution. The results of our analysis are specific equations giving information about the characteristics of the power plants, the mean time of operations and the probability of failure-free operation. Equations solved for the Weibull distribution respect the failures as well as the actual operating hours. Thanks to our results, we are able to create a model of dynamic reliability for prediction of future states. It can be useful for improving the current situation of the unit as well as for creating the optimal plan of maintenance and thus have an impact on the overall economics of the operation of these power plants.

  18. Robotics for nuclear power plants

    Nakayama, Ryoichi; Kimura, Motohiko; Abe, Akira

    1993-01-01

    A continuing need exists for automatic or remote-controlled machines or robots which can perform inspection and maintenance tasks in nuclear power plants. Toshiba has developed several types of monofunctional and multi- functional robots for such purposes over the past 20 years, some of which have already been used in actual plants. This paper describes new multifunctional robots for inspection and maintenance. An inspection robot has been applied in an actual plant for two years for performance testing. Maintenance robots for grinding tasks have also been developed, which can be easily teleoperated by the operator using automatic control. These new robots are expected to be applied to actual inspection and maintenance work in nuclear power plants. (author)

  19. Nuclear power plant with a safety enclosure

    Keller, W.; Krueger, J.; Ropers, J.; Schabert, H.P.

    1976-01-01

    A nuclear power plant has a safety enclosure for a nuclear reactor. A fuel element storage basin is also located in this safety enclosure and a fuel element lock extends through the enclosure, with a cross-sectional size proportioned for the endwise passage of fuel elements, the lock including internal and external valves so that a fuel element may be locked endwise safely through the lock. The lock, including its valves, being of small size, does not materially affect the pressure resistance of the safety enclosure, and it is more easily operated than a lock large enough to pass people and fuel element transport vessels

  20. Electricity storage. A solution for wind power integration? Study on the economic and institutional aspects of the implementation of electricity storage for the integration of wind power

    Hendriks, R.H.

    2004-06-01

    In today's society a power outage can lead to major financial damage. It is therefore of high importance that the electricity system is reliable and that customers can rely on high security of supply. To prevent power outages, the electricity system has to be in balance continuously: supply and load have to be equal. Currently the majority of the electricity generation is done by conventional power plants of which the operation schedule is fully controllable. This means that these plants can be operated in such a way that electricity demand, which varies during the day, can be met continuously. The integration of a large share of wind power in the electricity supply system however, can lead to problems with respect to the balancing of the electricity system. This is caused by the fact that wind power has an intermittent character. Its production fluctuates and is uncertain: it therefore cannot be used to follow the varying load. Electricity storage could contribute to the integration of wind power in the electricity supply system. Storage systems can decouple the timing of generation and consumption of electricity and can therefore compensate for the fluctuations in wind power production. This investigation aims at identifying what problems the integration of a large share of wind power will cause and how electricity storage can resolve these problems. Subsequently, the implementation costs of storage systems for the identified applications will be investigated. Finally, the current regulatory environment will be discussed to evaluate whether it is geared to the implementation of electricity storage. Therefore, the following research question is formulated: Under which technological and institutional preconditions will it be advantageous to implement electricity storage systems, in combination with wind farms, in the next 20 years? To answer the research question the following subquestions have been formulated: (1) What are the implications of the market design on

  1. Nuclear power plant

    Inami, Ichiro; Kobayashi, Minoru.

    1995-01-01

    In a condensate cleanup system and a reactor water cleanup system of a BWR-type reactor, in which primary coolants flow, there is disposed a filtering and desalting device using hollow thread membrane filter and ion exchange resin for a condensate cleanup system, and using a high temperature filter made of a metal, a metal oxide or ceramics as a filtering material and a precoat filter made of a powdery ion exchange resin as a filtering material for a reactor water cleanup system. This can completely remove cruds generated in the condensate system. Since the reactor water cleanup system comprises the powdery resin precoat-type filtering and desalting device and the high temperature filter using ceramics, ionic impurities such as radioactive materials can be removed. Accordingly, cruds are not carried into the inside of the reactor, and since the radioactive concentration in the reactor water is reduced, radiation exposure upon periodical inspection can be minimized almost to zero, to attain a clean plant. (T.M.)

  2. Impact of Storage Technologies upon Power System Losses

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  3. VGB congress 'Power Plants 2009'

    Anon.

    2009-01-01

    The VGB Congress 'Power Plants 2009' took place in Lyon/France from 23rd to 25th September 2009 and was themed 'Addressing Climate Change - Winning Public Acceptance through Advanced Technologies'. Nearly 1,300 participants attended the plenary and technical lectures and had the opportunity to discus the current topics of electricity and heat generation. The study carried out by VGB according to which EU-27 requires about 475.000 MW of new power plant capacity was also presented. Specific papers were addressing further topics. The Congress was rounded off by a side-programme and technical visits. (orig.)

  4. Exploring the role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future

    Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) can be a promising technology to reduce CO2 emissions in the electric sector. However, the high cost and energy penalties of current carbon capture devices, as well as methane leakage from natural ga...

  5. The Potential Role of Natural Gas Power Plants with Carbon Capture and Storage as a Bridge to a Low-Carbon Future

    Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...

  6. Reliability-oriented energy storage sizing in wind power systems

    Qin, Zian; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    Energy storage can be used to suppress the power fluctuations in wind power systems, and thereby reduce the thermal excursion and improve the reliability. Since the cost of the energy storage in large power application is high, it is crucial to have a better understanding of the relationship...... between the size of the energy storage and the reliability benefit it can generate. Therefore, a reliability-oriented energy storage sizing approach is proposed for the wind power systems, where the power, energy, cost and the control strategy of the energy storage are all taken into account....... With the proposed approach, the computational effort is reduced and the impact of the energy storage system on the reliability of the wind power converter can be quantified....

  7. Loviisa nuclear power plant analyzer

    Porkholm, K.; Nurmilaukas, P.; Tiihonen, O.; Haenninen, M.; Puska, E.

    1992-12-01

    The APROS Simulation Environment has been developed since 1986 by Imatran Voima Oy (IVO) and the Technical Research Centre of Finland (VTT). It provides tools, solution algorithms and process components for use in different simulation systems for design, analysis and training purposes. One of its main nuclear applications is the Loviisa Nuclear Power Plant Analyzer (LPA). The Loviisa Plant Analyzer includes all the important plant components both in the primary and in the secondary circuits. In addition, all the main control systems, the protection system and the high voltage electrical systems are included. (orig.)

  8. Operation of nuclear power plants

    Severa, P.

    1988-04-01

    The textbook for training nuclear power plant personnel is centred on the most important aspects of operating modes of WWER-440 reactors. Attention is devoted to the steady state operation of the unit, shutdown, overhaul with refuelling, physical and power start-up. Also given are the regulations of shift operation and the duties of individual categories of personnel during the shift and during the change of shifts. (Z.M.). 3 figs., 1 tab

  9. Building of nuclear power plant

    Saito, Takashi.

    1997-01-01

    A first nuclear plant and a second nuclear power plant are disposed in adjacent with each other in a building for a nuclear reactor. A reactor container is disposed in each of the plants, and each reactor container is surrounded by a second containing facility. A repairing chamber capable of communicating with the secondary containing facilities for both of the secondary containing facilities is disposed being in contact with the second containing facility of each plant for repairing control rod driving mechanisms or reactor incorporated-type recycling pumps. Namely, the repairing chamber is in adjacent with the reactor containers of both plants, and situated between both of the plants as a repairing chamber to be used in common for both plants. Air tight inlet/exit doors are formed to the inlets/exits of both plants of the repairing chamber. Space for the repairing chamber can be reduced to about one half compared with a case where the repairing chamber is formed independently on each plant. (I.N.)

  10. Battery Energy Storage Technology for power systems-An overview

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  11. Pulsed power generators using an inductive energy storage system

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  12. Bidding strategy for pumped-storage plant in pool-based electricity market

    Kanakasabapathy, P.; Shanti Swarup, K.

    2010-01-01

    This paper develops optimal bidding strategies for a pumped-storage plant in a pool-based electricity market. In the competitive regime, when compared to simple hydroelectric generator, profit of the pumped-storage plant is maximized by operating it as a generator when market clearing price is high and as a pump when the price is low. Based on forecasted hourly market clearing price, a multistage looping algorithm to maximize the profit of a pumped-storage plant is developed, considering both the spinning and non-spinning reserve bids and meeting the technical operating constraints of the plant. The proposed model is adaptive for the nonlinear three-dimensional relationship between the power produced, the energy stored, and the head of the associated reservoir. Different operating cycles for a realistic pumped-storage plant are considered and simulation results are reported and compared. (author)

  13. Disposal of radioactive wastes from Czechoslovak nuclear power plants

    Neumann, L.

    In gaseous radioactive waste disposal, aerosol particles are filtered and gaseous wastes are discharged in the environment. The filters and filter materials used are stored on solid radioactive waste storage sites in the individual power plants. Liquid radioactive wastes are concentrated and the concentrates are stored. Distillates and low-level radioactive waste water are discharged into the hydrosphere. Solid radioactive wastes are stored without treatment in power plant bunkers. Bituminization and cementation of liquid radioactive wastes are discussed. (H.S.)

  14. Off-shore nuclear power plant

    Nakanishi, T.

    1980-01-01

    In order to avoid losses of energy and seawater pollution an off-shore nuclear power plant is coupled with a power plant which utilizes the temperature difference between seawater and hot reactor cooling water. According to the invention the power plant has a working media loop which is separated from the nuclear power plant. The apparative equipment and the operational characteristics of the power plant are the subject of the patent. (UWI) [de

  15. Customized electric power storage device for inclusion in a microgrid

    Goldsmith, Steven Y.; Wilson, David; Robinett, III, Rush D.

    2017-08-01

    An electric power storage device included in a microgrid is described herein. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for the microgrid. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the microgrid and specified load parameters in the microgrid.

  16. Docommissioning of nuclear power plants

    Essmann, J.

    1981-01-01

    The German utilities operating nuclear power plants have long concerned themselves with aspects of decommissioning and for this purpose an engineering company was given a contract to study the entire spectrum of decommissioning. The results of this study have been available in autumn 1980 and it is possible to discuss all the aspects of decommissioning on a new basis. Following these results no change in the design concept of LWR nuclear power plants in operation or under construction is necessary because the techniques, necessary for decommissioning, are fully available today. The technical feasibility of decommissioning for power plants of Biblis A and KRB type has been shown in detail. The calculations of the quantity of waste produced during removal of a nuclear power plant could be confirmed and it could be determined with high procedure. The radiation dose to the decommissioning personnel is in the range of the radiation protection regulations and is in the same range as the radiation dose to the personnel within a yearly inservice inspection. (AF)

  17. Fire protection in power plants

    Penot, J.

    1986-01-01

    Graphex-CK 23 is a unique sodium fire extinction product. Minimum amounts of powder are required for very fast action. The sodium can be put to use again, when the fire has been extinguished. It can be applied in other industrial branches and with other metals, e.g. sodium/potassium circuits or lithium coolant in power plants. [de

  18. Noise from wind power plants

    Ljunggren, S.

    2001-12-01

    First, the generation of noise at wind power plants and the character of the sound is described. The propagation of the sound and its dependence on the structure of the ground and on wind and temperature is treated next. Models for calculation of the noise emission are reviewed and examples of applications are given. Different means for reducing the disturbances are described

  19. Underwater nuclear power plant structure

    Severs, S.; Toll, H.V.

    1982-01-01

    A structure for an underwater nuclear power generating plant comprising a triangular platform formed of tubular leg and truss members upon which are attached one or more large spherical pressure vessels and one or more small cylindrical auxiliary pressure vessels. (author)

  20. World nuclear power plant capacity

    1991-01-01

    This report provides the background information for statistics and analysis developed by NUKEM in its monthly Market Report on the Nuclear Fuel Cycle. The assessments in this Special Report are based on the continuous review of individual nuclear power plant projects. This Special Report begins with tables summarizing a variety of nuclear power generating capacity statistics for 1990. It continues with a brief review of the year's major events regarding each country's nuclear power program. The standard NUKEM Market Report tables on nuclear plant capacity are given on pages 24 and 25. Owing to space limitations, the first year shown is 1988. Please refer to previous Special Reports for data covering earlier years. Detailed tables for each country list all existing plants as well as those expected by NUKEM to be in commercial operation by the end of 2005. An Appendix containing a list of abbreviations can be found starting on page 56. Only nuclear power plants intended for civilian use are included in this Special Report. Reactor lifetimes are assumed to be 35 years for all light water reactors and 30 years for all other reactor types, unless other data or definite decommissioning dates have been published by the operators. (orig./UA) [de

  1. Nuclear power plant emergency preparedness

    2005-01-01

    The guide sets forth detailed requirements on how the licensee of a nuclear power plant shall plan, implement and maintain emergency response arrangements. The guide is also applied to nuclear material and nuclear waste transport in situations referred to in guide YVL 6.5. Requirements on physical protection are presented in a separate guide of Finnish Radiation and Nuclear Safety Authority (STUK)

  2. Westinghouse ICF power plant study

    Sucov, E.W.

    1980-10-01

    In this study, two different electric power plants for the production of about 1000 MWe which were based on a CO 2 laser driver and on a heavy ion driver have been developed and analyzed. The purposes of this study were: (1) to examine in a self consistent way the technological and institutional problems that need to be confronted and solved in order to produce commercially competitive electricity in the 2020 time frame from an inertial fusion reactor, and (2) to compare, on a common basis, the consequences of using two different drivers to initiate the DT fuel pellet explosions. Analytic descriptions of size/performance/cost relationships for each of the subsystems comprising the power plant have been combined into an overall computer code which models the entire plant. This overall model has been used to conduct trade studies which examine the consequences of varying critical design values around the reference point

  3. Power conditioning devices in nuclear power plants

    Shida, Toichi.

    1979-01-01

    Purpose: To automatically prevent the liquid level from lowering in a reactor even if a feedwater adjusting valve is locked in a bwr type nuclear power plant. Constitution: Where a feedwater adjusting valve should be locked, and if the mismatching degree between the main steam flow rate and the feedwater flow rate exceeds a predetermined value and the mismatched state continues for a certain period, the value set to a main control for setting the recycling flow rate is changed corresponding to the mismatching degree to compensate the same thereby preventing the liquid level from lowering in the reactor. (Ikeda, J.)

  4. 77 FR 34093 - License Renewal for Calvert Cliffs Nuclear Power Plant, LLC's

    2012-06-08

    ... Nuclear Power Plant, LLC's AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... Spent Fuel Storage Installation (ISFSI) at the Calvert Cliffs Nuclear Power Plant site near Lusby... Cliffs Nuclear Power Plant, LLC (CCNPP) submitted an application to the NRC to renew NRC License SNM-2505...

  5. Project management for the Virginia power spent fuel storage project

    Smith, M.

    1992-01-01

    Like Duke Power, Virginia Power has been involved in spent fuel storage expansion studies for a long time - possibly a little longer than Duke Power. Virginia Power's initial studies date back to the late 70s and into the early 80s. Large variety of storage techniques are reviewed including reracking and transshipment. Virginia Power also considered construction a new spent fuel pool. This was one of the options that was considered early on since Virginia Power started this process before any dry storage techniques had been proven. Consolidation of spent fuel is something that was also studied. Finally, construction of dry storage facility was determined to be the technology of choice. They looked a large variety of dry storage technologies and eventually selected dry storage in metal casks at Surry. There are many of reasons why a utility may choose one technology over another. In Virginia Power's situation, additional storage was needed at Surry much earlier than at other utilities. Virginia Power was confronted with selecting a storage technique and having to be a leader in that it was the first U.S. utility to implement a dry storage system

  6. Power Ramp Limitation capabilities of Large PV Power Plants with Active Power Reserves

    Bogdan, Craciun; Kerekes, Tamas; Sera, Dezso

    2017-01-01

    Power Ramp Limitation (PRL) is likely to become a requirement for large scale photovoltaic power plants (LPVPPs) in order to allow the increase of PV penetration levels. Especially in islands with reduced inertia capability, this problem is more stringent: high power ramp can be caused by either...... fast irradiance changes or other participant generators for example wind power, or loads. In order to compensate for the power mismatch, LPVPPs must use Active Power Reserve (APR), by either curtailment or auxiliary storage. The paper proposes a PRL control structure for dynamic APR sizing...... and deployment. The selected test case is the power system of Puerto Rico (PREPA), modeled using the modified IEEE 12 bus benchmark system, with different levels of PV penetration. It is shown that LPVPP with PRL can effectively reduce the ramping rate of the participating generators. Considering that the large...

  7. Decommissioning project of commercial nuclear power plant

    Karigome, S.

    2008-01-01

    Decommissioning project of commercial nuclear power plant in Japan was outlined. It is expected that the land, after the decommissioning of commercial nuclear power plants, will serve as sites for new plants. Steps will be taken to reduce the amount of wastes generated and to recycle/reuse them. Wastes with a radioactivity concentration below the 'clearance level' need not be dealt with as radioactive material, and may be handled in the same way as conventional wastes. The Tokai-1 power station, a 166 MWe carbon dioxide cooled reactor which closed down in 1998, is being decommissioned and the first ten years as 'safe storage' to allow radioactivity to decay. Non-reactor grade components such as turbines were already removed, heat exchanger dismantling started and the reactor will be dismantled, the buildings demolished and the site left ready for reuse. All radioactive wastes will be classified as low-level wastes in three categories and will be buried under the ground. The total cost will be 88.5 billion yen -34.7 billion for dismantling and 53.8 billion for waste treatment including the graphite moderator. (T. Tanaka)

  8. Nuclear power plant life management

    Rorive, P.; Berthe, J.; Lafaille, J.P.; Eussen, G.

    1998-01-01

    Several definitions can be given to the design life of a nuclear power plant just as they can be attributed to the design life of an industrial installation: the book-keeping life which is the duration of the provision for depreciation of the plant, the licensed life which corresponds to the duration for which the plant license has been granted and beyond which a new license should be granted by the safety authorities, the design life which corresponds to the duration specified for ageing and fatigue calculations in the design of some selected components during the plant design phase, the technical life which is the duration of effective technical operation and finally the economic life corresponding to the duration of profitable operation of the plant compared with other means of electricity production. Plant life management refers to the measures taken to cope with the combination of licensed, design, technical and economical life. They can include repairs and replacements of components which have arrived to the end of their life due to known degradation processes such as fatigue, embrittlement, corrosion, wear, erosion, thermal ageing. In all cases however, it is of great importance to plan the intervention so as to minimise the economic impact. Predictive maintenance is used together with in-service inspection programs to fulfil this goal. The paper will go over the methodologies adopted in Belgium in all aspects of electrical, mechanical and civil equipment for managing plant life. (author)

  9. Expanded spent fuel storage project at Yankee Atomic Electric Plant

    Chin, S.L.

    1980-01-01

    A detailed discussion on the project at the Yankee Rowe power reactor for expanding the capacity of the at-reactor storage pool by building double-tier storage racks. Various alternatives for providing additional capacity were examined by the operators. Away-from-reactor alternatives included shipment to existing privately owned facilities, a regional independent storage facility, and transshipments to other New England nuclear power plant pools. At-reactor alternatives evaluated included a new pool modification of the existing structure and finally, modification of the spent fuel pit. The establishment of a federal policy precluding transshipment of spent fuel prohibited the use of off-site alternatives. The addition of another pool was too expensive. The possibility of modifying an existing on-site structure required a new safety evaluation by the regulatory group with significant cost and time delays. Therefore, the final alternative - utilizing the existing spent fuel pool with some modification - was chosen due to cost, licensing possibility, no transport requirements, and the fact that the factors involved were mainly under the control of the operator. Modification of the pool was accomplished in phases. In the first phase, a dam was installed in the center of the pool (after the spent fuel was moved to one end). In the second phase, the empty end of the pool was drained and lined with stainless steel and the double-tier rack supports were added. In the third phase, the pool was refilled and the dam was removed. Then the spent fuel was moved into the completed end. In the fourth phase, the dam was replaced and the empty part of the pool was drained. The liner and double-tier rack supports were installed, the pool was refilled, and the dam was removed.The project demonstrated that the modification of existing spent fuel fuel pools for handling double-tier fuel racks is a viable solution for increasing the storage capacity at the reactor

  10. Solar Power Augmented Electrolysis Module for Energy Storage

    National Aeronautics and Space Administration — Integrating solar photovoltaic power with regenerative fuel cell systems for energy storage can often be very complex and costly. It usually requires complex power...

  11. Operation and maintenance of nuclear power plants

    Ackermann, G.

    1987-01-01

    This textbook gives a systematic introduction into the operational and maintenance activities in nuclear power plants with pressurized water reactors. Subjects: (1) Setup and operational behaviour of power reactors, (2) setup of nuclear power plants, (3) radiation protection and nuclear safety, (4) nuclear fuel, (5) constructional layout of nuclear power plants, (6) management, and (7) maintenance. 158 figs., 56 tabs

  12. Plant diagnostics in power stations

    Sturm, A.; Doering, D.

    1985-01-01

    The method of noise diagnostics is dealt with as a part of plant diagnostics in nuclear power stations. The following special applications are presented: (1) The modular noise diagnostics system is used for monitoring primary coolant circuits and detecting abnormal processes due to mechanical vibrations, loose parts or leaks. (2) The diagnostics of machines and plants with antifriction bearings is based on bearing vibration measurements. (3) The measurement of the friction moment by means of acoustic emission analysis is used for evaluating the operational state of slide bearings

  13. Maintenance of Nuclear Power Plants

    Quintana, J. M.; Sanchez, J. T.

    2002-01-01

    With this article about the Maintenance in nuclear power plants we will try to give to see the importance of this kind of installations but the problems found by the clients and contractors to face it, and some possible solutions to improve it. It is necessary to understand this problem like something inner to the installation and must be considerate like a benefit for the same. Of course, there must be adequate Sevices Companies in direct relation with the installation that take the responsibility of assuming and understanding the correct fulfillment of the fixed milestones to get the optimal working of the whole plant systems. (Author)

  14. Posibilities of electric power storage from renewable sources

    Petr Bača

    2010-07-01

    Full Text Available This paper presents an overview of all currently commercially available options of energy storage in the power distributionnetwork. The paper puts forward arguments for energy storage in the distribution network as well as requirements that must be metby the relevant energy storage systems. The paper describes 7 technologies allowing the solution of energy storage problems, includingtheir basic principles and summarizing benefits and drawbacks of individual solutions.

  15. Optimal Power Flow in Microgrids with Energy Storage

    Levron, Yoash; Guerrero, Josep M.; Beck, Yuval

    2013-01-01

    Energy storage may improve power management in microgrids that include renewable energy sources. The storage devices match energy generation to consumption, facilitating a smooth and robust energy balance within the microgrid. This paper addresses the optimal control of the microgrid’s energy...... storage devices. Stored energy is controlled to balance power generation of renewable sources to optimize overall power consumption at the microgrid point of common coupling. Recent works emphasize constraints imposed by the storage device itself, such as limited capacity and internal losses. However...

  16. Decommissioning of nuclear power plants

    Friske, A.; Thiele, D.

    1988-01-01

    The IAEA classification of decommissioning stages is outlined. The international development hitherto observed in decommissioning of nuclear reactors and nuclear power stations is presented. The dismantling, cutting and decontamination methods used in the decommissioning process are mentioned. The radioactive wastes from decommissioning are characterized, the state of the art of their treatment and disposal is given. The radiation burdens and the decommissioning cost in a decommissioning process are estimated. Finally, some evaluation of the trends in the decommissioning process of nuclear power plants is given. 54 refs. (author)

  17. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  18. Day-Ahead Scheduling of a Photovoltaic Plant by the Energy Management of a Storage System

    Marinelli, Mattia; Sossan, Fabrizio; Isleifsson, Fridrik Rafn

    2013-01-01

    The paper discusses and describes a system for energy management of a 10 kW PV plant coupled with a 15 kW - 190 kWh storage system. The overall idea is, by knowing the meteorological forecast for the next 24h, to dispatch the PV system and to be able to grant the scheduled hourly energy profile...... by a proper management of the storage. Due to forecast inaccuracies, the energy manager controls the storage in order to ensure that the plan for hourly energy production is respected, minimizing the storage itself usage. The experimental study is carried out in SYSLAB, a distributed power system test...

  19. The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints

    Van Den Broek, Machteld; Berghout, Niels; Rubin, Edward S.

    2015-01-01

    The costs of intermittent renewable energy systems (IRES) and power storage technologies are compared on a level playing field to those of natural gas combined cycle power plants with CO2 capture and storage (NGCC-CCS). To account for technological progress over time, an "experience

  20. Design of power control system using SMES and SVC for fusion power plant

    Niiyama, K; Yagai, T; Tsuda, M; Hamajima, T

    2008-01-01

    A SMES (Superconducting Magnetic Energy Storage System) system with converter composed of self-commutated valve devices such as GTO and IGBT is available to control active and reactive power simultaneously. A SVC (Static Var Compensators) or STATCOM (Static Synchronous Compensator) is widely employed to reduce reactive power in power plants and substations. Owing to progress of power electronics technology using GTO and IGBT devices, power converters in the SMES system and the SVC can easily control power flow in few milliseconds. Moreover, since the valve devices for the SMES are equivalent to those for the SVC, the device cost must be reduced. In this paper the basic control system combined with the SMES and SVC is designed for large pulsed loads of a nuclear fusion power plant. This combined system largely expands the reactive power control region as well as the active one. The simulation results show that the combined system is effective and prospective for the nuclear fusion power plant

  1. Nuclear power plants and environment

    Agudo, E.G.; Penteado Filho, A.C.

    1980-01-01

    The question of nuclear power plants is analysed in details. The fundamental principles of reactors are described as well as the problems of safety involved with the reactor operation and the quantity and type of radioactive released to the environment. It shows that the amount of radioactive is very long. The reactor accidents has occurred, as three mile island, are also analysed. (M.I.A.)

  2. Availability of thermal power plants

    Nitsch, D.; Schmitz, H.

    1981-01-01

    Availability data based on unique uniform, and clearly defined concepts and methods of acquisition have been compiled by the VGB since 1970. The data are published in anual reports. These reports contain availability data of fossil-fuelled units, combined gas/steam units, nuclear power plants, and gas turbine plants in Germany and abroad, listed by unit size fuel type, time of operation, and application. For the purpose of comparison, the data for the years since 1970 are presented as well as data averaged for the whole period under report. The main results for the year 1980 are presented now that the greater part of the plants has been evaluated. The complete evaluation will be published towards the end of 1981. (orig.) [de

  3. Elecnuc. Nuclear power plants in the world

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  4. Water Storage Instead of Energy Storage for Desalination Powered by Renewable Energy—King Island Case Study

    Aya Tafech

    2016-10-01

    Full Text Available In this paper, we scrutinized the energy storage options used in mitigation of the intermittent nature of renewable energy resources for desalination process. In off-grid islands and remote areas, renewable energy is often combined with appropriate energy storage technologies (ESTs to provide a consistent and reliable electric power source. We demonstrated that in developing a renewable energy scheme for desalination purposes, product (water storage is a more reliable and techno-economic solution. For a King Island (Southeast Australia case-study, electric power production from renewable energy sources was sized under transient conditions to meet the dynamic demand of freshwater throughout the year. Among four proposed scenarios, we found the most economic option by sizing a 13 MW solar photovoltaic (PV field to instantly run a proportional RO desalination plant and generate immediate freshwater in diurnal times without the need for energy storage. The excess generated water was stored in 4 × 50 ML (mega liter storage tanks to meet the load in those solar deficit times. It was also demonstrated that integrating well-sized solar PV with wind power production shows more consistent energy/water profiles that harmonize the transient nature of energy sources with the water consumption dynamics, but that would have trivial economic penalties caused by larger desalination and water storage capacities.

  5. An Evaluation of Energy Storage Options for Nuclear Power

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dufek, Eric J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advanced nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and

  6. An Evaluation of Energy Storage Options for Nuclear Power

    Coleman, Justin L.; Bragg-Sitton, Shannon M.; Dufek, Eric J.

    2017-01-01

    Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advanced nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and

  7. Nuclear power plants - Quality assurance

    1980-01-01

    This International Standard defines principles for the establishment and implementation of quality assurance programmes during all phases of design, procurement, fabrication, construction, commissioning, operation, maintenance and decommissioning of structures, systems and components of nuclear power plants. These principles apply to activities affecting the quality of items, such as designing, purchasing, fabricating, handling, shipping, storing, cleaning, erecting, installing, testing, commissioning, operating, inspecting, maintaining, repairing, refuelling and modifying and eventually decommissioning. The manner in which the principles described in this document will be implemented in different organizations involved in a specific nuclear power project will depend on regulatory and contractual requirements, the form of management applied to a nuclear power project, and the nature and scope of the work to be performed by different organizations

  8. Fusion power plant simulations: a progress report

    Cook, J.M.; Pattern, J.S.; Amend, W.E.

    1976-01-01

    The objective of the fusion systems analysis at ANL is to develop simulations to compare alternative conceptual designs of magnetically confined fusion power plants. The power plant computer simulation progress is described. Some system studies are also discussed

  9. Cooling towers for thermal power plants

    Chaboseau, J.

    1987-01-01

    After a brief recall on cooling towers testing and construction, this paper presents four examples of very large French nuclear power plant cooling towers, and one of an Australian thermal power plant [fr

  10. Cooling water recipients for nuclear power plants

    Dahl, F.-E.; Saetre, H.J.

    1971-10-01

    The hydrographical and hydrological conditions at 17 prospective nuclear power plant sites in the Oslofjord district are evaluated with respect to their suitability as recipients for thermal discharges from nuclear power plants. No comparative evaluations are made. (JIW)

  11. Nuclear Power Plant (NPP) safety in Brazil

    Lederman, L.

    1980-01-01

    The multidisciplinary aspects of the activities involved in the nuclear power plant (NPP) licensing, are presented. The activities of CNEN's technical staff in the licensing of Angra-1 and Angra-2 power plants are shown. (E.G.) [pt

  12. Elecnuc. Nuclear power plants in the world

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  13. Gundremmingen (KRB) nuclear power plant

    1974-03-01

    Plant reliability and availability during 1973 was very good despite an unscheduled shutdown in October. A temporal availability of 79.42% and an operating availability of 79.07% yielded a usable current production of 1 634 000 000 000 kWh. In May, during the five-week inspection and refueling period, several machines and items of equipment were overhauled in addition to the major generator strip-down, and checks were also carried out on the safety and protection systems throughout the plant. Particular attention was paid to the fire-protection system so that, for example, a fire-protection valve was installed in the turbine oil circuit. The heating system was made independent of oil supplies and considerable economies were achieved by converting it from oil-firing to secondary steam operation. During October copper deposits from a feedwater pre-heater were discovered in the reactor core. The plant had to be shut down for five weeks in order to clean the reactor out with various items of cleaning equipment. After the plant had been started up again, it proved necessary to take the pre-heater releasing copper out of service. This was possible without any noteworthy loss of power. For further operation, it will be necessary to fit the pre-heater with high-grade steel tubes. Throughout the remainder of the year, the power plant operated under full load without any particular malfunction occurring. At the beginning of the year increasing amount of activity in the reactor water pointed to fuel element damage. It was possible to operate the plant at a constant, low level of water activity during the second half of the year after refuelling and the removal of the faulty elements. Faultless plant operation can likewise be expected for 1974. Owing to the officially required pressure test on the reactor pressure vessel, the inspection time will probably extend over six weeks. It is expected that plant availability during 1974 will exceed the 1973 figure

  14. Nuclear power plants in populated areas

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de

  15. Management of radioactive wastes from nuclear power plants

    1985-01-01

    This Code of Practice defines the minimum requirements for the design and operation of structures, systems and components important for the management of radioactive wastes from thermal neutron nuclear power plants. The topics covered include design and operation of gaseous, liquid and solid waste systems, waste transport, storage and disposal, decommissioning wastes and wastes from unplanned events

  16. Atucha I nuclear power plant transients analysis

    Castano, J.; Schivo, M.

    1987-01-01

    A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)

  17. Marine biomass power plant using methane fermentation

    Matsui, T.; Saito, H.; Amano, T.; Sugawara, H.; Seki, T.; Abe, T. [Technology Research Inst., Tokyo Gas Co. Ltd., Tokyo (Japan)

    2004-07-01

    This study presented an effective way to produce biogas from the large quantities of seaweed waste in Japan. A large-scale marine biomass pilot plant was built to produce biogas from marine biomass. Methane fermentation was the process used to produce biogas from Laminaria sp. The maximum treating capacity of the pilot plant is 1 ton of seaweed per day. The pilot plant includes a pretreatment facility, fermentation, biogas storage and power generation. The maximum methane yield from the biomass plant is 22 cubic ton-seaweed. The purified biogas has generated 10 kW of electricity and 23 kW of heat. The biogas was also mixed with natural gas for use in a gas engine generator. The engine operation remained stable despite changes in quantity and composition of the collected biogas caused by changes with the source of biomass and sea conditions. The thermal efficiency of the gas engine running on mixed biogas and natural gas was more than 10 per cent higher than an engine running on biogas fuel alone. 4 refs., 2 tabs., 3 figs.

  18. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS. ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Rutherford, W.W.; Geuther, W.J.; Strankman, M.R.; Conrad, E.A.; Rhoadarmer, D.D.; Black, D.M.; Pottmeyer, J.A.

    2009-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  19. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  20. Transportation and storage of foreign spent power reactor fuel

    1979-01-01

    This report describes the generic actions to be taken by the Department of Energy, in cooperation with other US government agencies, foreign governments, and international organizations, in support of the implementation of Administration policies with respect to the following international spent fuel management activities: bilateral cooperation related to expansion of foreign national storage capacities; multilateral and international cooperation related to development of multinational and international spent fuel storage regimes; fee-based transfer of foreign spent power reactor fuel to the US for storage; and emergency transfer of foreign spent power reactor fuel to the US for storage

  1. Intelligent power plant simulator for educational purposes

    Seifi, A.; Seifi, H.; Ansari, M. R.; Parsa Moghaddam, M.

    2001-01-01

    An Intelligent Tutoring System can be effectively employed for a power plant simulator so that the need for instructor in minimized. In this paper using the above concept as well as object oriented programming and SIMULINK Toolbox of MATLAB, an intelligent tutoring power plant simulator is proposed. Its successful application on a typical 11 MW power plant is demonstrated

  2. Reliability analysis techniques in power plant design

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  3. Simulators for nuclear power plants

    Ancarani, A.; Zanobetti, D.

    1983-01-01

    The different types of simulator for nuclear power plants depend on the kind of programme and the degree of representation to be achieved, which in turn determines the functions to duplicate. Different degrees correspond to different simulators and hence to different choices in the functions. Training of nuclear power plant operators takes advantage of the contribution of simulators of various degrees of complexity and fidelity. Reduced scope simulators are best for understanding basic phenomena; replica simulators are best used for formal qualification and requalification of personnel, while modular mini simulators of single parts of a plant are best for replay and assessment of malfunctions. Another category consists of simulators for the development of assistance during operation, with the inclusion of disturbance and alarm analysis. The only existing standard on simulators is, at present, the one adopted in the United States. This is too stringent and is never complied with by present simulators. A description of possible advantages of a European standard is therefore offered: it rests on methods of measurement of basic simulator characteristics such as fidelity in values and time. (author)

  4. The economics of energy storage in 14 deregulated power markets

    Figueiredo, F.C.; Flynn, P.C.; Cabral, E.A.

    2006-01-01

    In regulated power markets, electricity is stored to better utilize existing generation and to defer costly investment in generation. The justification is a reduction in the overall regulated price of power compared to the alternative investment in new primary generation. However, any storage of electrical power also involves a capital investment and incurs the cost of inefficiency. In deregulated energy markets, the sale of electricity or ancillary services from pumped storage can be evaluated based on each individual project. The economic basis for power storage is that power is purchased during periods of low price and resold during periods of high price. This study used historical power price data from 14 deregulated markets around the world to evaluate the economic incentive to use pumped storage for electrical energy. Each market was shown to have a unique average diurnal power price profile that results in a unique price spread for pumped storage. The diurnal price pattern and efficiency of storage was used to assess the net income potential from energy sales from pumped storage for each market. The markets were ranked in terms of the incentive to invest in pumped energy storage as well as on available revenue, and on potential return on investment. An optimal operating profile was illustrated in detail based on historical price patterns for one of the markets. The net income potential was then combined with the capital and operating cost of pumped storage. The adequacy of return on investment for pumped storage was analyzed by two different methods. The differences between markets stem from different diurnal power price patterns that reflect the generation mix, market design and participant behaviours. 17 refs., 7 tabs., 7 figs., 1 appendix

  5. Occupational dose control in Nuclear Power Plants

    Viktorsson, C.; Lochard, J.; Benedittini, M.; Baum, J.; Khan, T.A.

    1990-01-01

    Reduction in occupational exposure at nuclear power plants is desirable not only in the interest of the health and safety of plant personnel, but also because it enhances the safety and reliability of the plants. This report summarises the current trends of doses to workers at nuclear power plants and the achievements and developments regarding methods for their reduction

  6. Nuclear power plant operating experience, 1976

    1977-11-01

    This report is the third in a series of reports issued annually that summarize the operating experience of U.S. nuclear power plants in commercial operation. Power generation statistics, plant outages, reportable occurrences, fuel element performance, occupational radiation exposure and radioactive effluents for each plant are presented. Summary highlights of these areas are discussed. The report includes 1976 data from 55 plants--23 boiling water reactor plants and 32 pressurized water reactor plants

  7. Power control of the Angra-2 Nuclear Power Plant

    Souza Mendes, J.E. de

    1986-01-01

    The systems for the power control of the Nuclear Power Plant Angra 2 have a high degree of automation so that few operator actions are required during power operation. The power control strategy and the operation principles of the control systems, here presented, make possible a great flexibility of the Plant operation. (Author) [pt

  8. HVDC transmission from nuclear power plant

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  9. Spent fuel storage for ISER plant

    Nakajima, Takasuke; Kimura, Yuzi

    1987-01-01

    ISER is an intrinsically safe reactor basing its safety only on physical laws, and uses a steel reactor vessel in order to be economical. For such a new type reactor, it is essentially important to be accepted by the society by showing that the reactor is more profitable than conventional reactors to the public in both technical and economic viewpoint. It is also important that the reactor raises no serious problem in the total fuel cycle. Reprocessing seems one of the major worldwide fuel cycle issues. Spent fuel storage is also one of the key technologies for fuel cycle back end. Various systems for ISER spent fuel storages are examined in the present report. Spent fuel specifications of ISER are similar to those of LWR and therefore, most of LWR spent fuel technologies are basically applicable to ISER spent fuel. Design requirements and examples of storage facilities are also discussed. Dry storage seems to be preferable for the relatively long cooling time spent fuel like ISER's one from economical viewpoint. Vault storage will possibly be the most advantageous for large storage capacity. Another point for discussion is the location and international collaboration for spent fuel storages: ISER expected to be a worldwide energy source and therefore, international spent fuel management seems to be fairly attractive way for an energy recipient country. (Nogami, K.)

  10. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    2011-04-13

    ... DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA. ACTION: Notice of Availability of a Draft... financial assistance to Oglethorpe Power Corporation (Oglethorpe) for the construction of a 100 megawatt (MW...

  11. Power control device of an atomic power plant

    Ootsuka, Shiro; Ito, Takero.

    1980-01-01

    Purpose: To improve the power controllability of an atomic power plant by improving the controllability, response and stability of the recirculation flow rate. Constitution: The power control device comprises a power detector of the reactor, which detects and operates the reactor power from the thermal power, neutron flux or the process quantity controlling the same, and a deviation detector which seeks deviation between the power signal of the power detector and the power set value of the reactor or power station. By use of the power control device constituted in this manner, the core flow rate is regulated by the power signal of the deviation detector thereby to control the power. (Aizawa, K.)

  12. Problems of power plant capital demands

    Slechta, V.; Bohal, L.

    1986-01-01

    The problems are discussed of requirements for investment for power plants in Czechoslovakia. Since the construction was finished of coal-burning 110 MW power plants with six power units, specific capital cost has steadily been growing. The growth amounts to 6 to 8% per year while the principle has been observed that specific capital cost decreases with increased unit power. Attention is paid to the cost of the subcontractors of the building and technological parts of a power plant and to the development of productivity of labour. A comparison is tabulated of cost for coal-burning power plants with 100 MW and 200 MW units and for nuclear power plants with WWER-440 reactors. Steps are suggested leading to a reduction of the capital cost of nuclear power plants. It is stated that should not these steps be taken, the envisaged development of nuclear power would be unbearable for the Czechoslovak national economy. (Z.M.). 8 tabs., 3 refs

  13. Pipework in power plant construction

    Schwarzbach, K.

    1984-01-01

    With the development of conventional power plant construction to large unit sizes and because of the stringent safety requirements in nuclear poer stations, pipework installation has developed into a difficult operation closely inter-related with safety engineering. It is an important factor as far as completion dates and costs are concerned during the timely implementation of a subsequent construction phase which is characterized by high capital intensiveness. In order to keep both under control, prior planning and execution supported by electronic data processing are essential. (orig.) [de

  14. Design of nuclear power plants

    Lobo, C.G.

    1987-01-01

    The criteria of design and safety, applied internationally to systems and components of PWR type reactors, are described. The main criteria of the design analysed are: thermohydraulic optimization; optimized arrangement of buildings and components; low costs of energy generation; high level of standardization; application of specific safety criteria for nuclear power plants. The safety criteria aim to: assure the safe reactor shutdown; remove the residual heat and; avoid the release of radioactive elements for environment. Some exemples of safety criteria are given for Angra-2 and Angra-3 reactors. (M.C.K.) [pt

  15. Hydraulic optimization of 'S' characteristics of the pump-turbine for Xianju pumped storage plant

    Liu, W C; Zheng, J S; Cheng, J; Shi, Q H

    2012-01-01

    The pump-turbine with a rated power capacity of 375MW each at Xianju pumped storage plant is the most powerful one under construction in China. In order to avoid the instability near no-load conditions, the hydraulic design of the pump-turbine has been optimized to improving the 'S' characteristic in the development of the model pump-turbine. This paper presents the cause of 'S' characteristic of a pump-turbine by CFD simulation of the internal flow. Based on the CFD analysis, the hydraulic design optimization of the pump-turbine was carried out to eliminate the 'S' characteristics of the machine at Xianju pumped storage plant and a big step for removing the 'S' characteristic of a pump-turbine has been obtained. The model test results demonstrate that the pump-turbine designed for Xianju pumped storage plant can smoothly operate near no-load conditions without an addition of misaligned guide vanes.

  16. 4. Nuclear power plant component failures

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  17. Nuclear power plant V-2

    1999-01-01

    In this leaflet the short history of commissioning of Bohunice V-2 NPP is reviewed (beginning of construction December 1976; First controlled reactor power, Reactor Unit 1 (RU1): 7 August 1984, Reactor Unit 2 (RU2): 2 August 1985; Connection to the grid: RU1 20 August 1984, RU2 9 August 1985; Commercial operation: RU1 14 February 1985, RU2 18 December 1985. The scheme of the nuclear reactor WWER 440/V213 is depicted. The major technological equipment are described. Principles of nuclear power plant operation safety (safety barriers, active and passive safety systems, centralized heat supply system, as well as technical data of the Bohunice V-2 NPP are presented

  18. Nuclear power plant V-1

    1999-01-01

    In this leaflet the short history of commissioning of Bohunice V-1 NPP is reviewed (beginning of construction 24 April 1972; First controlled reactor power, Reactor Unit 1 (RU1): 27 November 1978, Reactor Unit 2 (RU2): 15 March 1980; Connection to the grid: RU1 17 December 1978, RU2 26 March 1980; Commercial operation: RU1 1 April 1980, RU2 7 January 1981. The scheme of the nuclear reactor WWER 440/V230 is depicted. The major technological equipment (primary circuit, nuclear reactor, steam generators, reactor coolant pumps, primary circuit auxiliary systems, secondary circuit, turbine generators, NPP electrical equipment, and power plant control) are described. Technical data of the Bohunice V-1 NPP are presented

  19. Radiation monitor system for nuclear power plants

    Wu Bingzhe; Guo Shusheng

    1990-12-01

    The system has 8 kinds of radiation monitors and 2 stage microcomputers designed for processing the data from each monitor, storaging the information, printing out and displaying on the colour CRT. The function of the system includes high-value alarm, warm alarm and failure alarm, so called t hree-level alarms . Two functions of the alarms are the threshold alarm and the tendency alarm, so that this system is an intelligency system. This system has high reliability and very wide range when LOCA accident takes place. It is aseismic and immune to industrial interference. The system can meet IEC-761-1 standard and is of nuclear safety 3rd class. Also the following monitors were designed: 133 Xe monitor, 131 I monitor, low-level liquid monitor and high radiation γ area monitor. The system can meet the requirements of nuclear power plants

  20. Radwastes management in Qinshan Nuclear power plants

    Zhou Huan; Ling Kechi; Wang Qingrong; Luo Jingfan

    1987-01-01

    The source terms input used as the basic data for designing the radwaste treatment systems of Qinshan Nuclear Power Plant [300 MW(e)] is presented. The classification of radioactive liquid wastes, off-gases and solid wastes, and their treatment techniques, as well as on-site storage facilities for solid wastes are described. For liquid waste, the method of filtration-evaporation-ion exchange will be used as the main treatment technique. For off-gas, Holdup-decay treatment will be used. For evaporator concentrates, indrumsolidification method with normal domestic portland cement will be used. The assessment of impact of effluents to environment at normal operation of the NPP is also made. The results show that it will be safe for inhabitants nearby during normal operation and it can meet the requirements of national standard ''Regulation of Radiation Protection''

  1. Potential study for pump storage plants in Baden-Wuerttemberg; Potenzialstudie fuer Pumpspeicherkraftwerke in Baden-Wuerttemberg

    Berger, Claudia [EnBW Kraftwerke AG, Stuttgart (Germany); Sauer, Nikolaus [EnBW Holding AG, Karlsruhe (Germany); Achatz, Robert [HPI Hydroprojekt Ingenieurgesellschaft mbH, Muenchen (Germany)

    2013-06-01

    Power of renewable energies is increasingly produced by fluctuated energy sources like wind or solar. To replace the current electricity of mostly nuclear power and coal fired plants, there is a need of storage possibilities in times of low demand. In times of high demand the electricity could be delivered directly by turbines. Today only one technology cope with this economically and commercially: pump storage plants. They operate like big batteries in the grid and can protect grid stability. (orig.)

  2. Integration of Photovoltaic Plants and Supercapacitors in Tramway Power Systems

    Flavio Ciccarelli

    2018-02-01

    Full Text Available The growing interest in the use of energy storage systems to improve the performance of tramways has prompted the development of control techniques and optimal storage devices, displacement, and sizing to obtain the maximum profit and reduce the total installation cost. Recently, the rapid diffusion of renewable energy generation from photovoltaic panels has also created a large interest in coupling renewable energy and storage units. This study analyzed the integration of a photovoltaic power plant, supercapacitor energy storage system, and railway power system. Random optimization was used to verify the feasibility of this integration in a real tramway electric system operating in the city of Naples, and the benefits and total cost of this integration were evaluated.

  3. The atlas of large photovoltaic power plants

    Ducuing, S.; Guillier, A.; Guichard, M.A.

    2015-01-01

    This document reports all the photovoltaic power plants whose installed power is over 1 MWc and that are operating in France or in project. 446 power plants have been reviewed and their cumulated power reaches 2822 MWc. For each plant the following information is listed: the name of the municipality, the operator, the power capacity, the manufacturer of the photovoltaic panels and the type of technology used, the type of installation (on the ground, on the roof, on the facade, as sun protection,...), the yearly power output (kWh), and the date of commissioning. This review shows that 86% of these plants are ground-based. (A.C.)

  4. Managing nuclear waste from power plants

    Keeney, R.L.; Winterfeldt, D. von

    1994-01-01

    National strategies to manage nuclear waste from commercial nuclear power plants are analyzed and compared. The current strategy is to try to operate a repository at Yucca Mountain, Nevada, to dispose storage at a centralized facility or next to nuclear power plants. If either of these is pursued now, the analysis assumes that a repository will be built in 2100 for waste not subsequently put to use. The analysis treats various uncertainties: whether a repository at Yucca Mountain would be licensed, possible theft and misuse of the waste, innovations in repository design and waste management, the potential availability of a cancer cure by 2100, and possible future uses of nuclear waste. The objectives used to compare alternatives include concerns for health and safety, environmental and socioeconomic impacts, and direct economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs to electricity ratepayers, federal government responsibility to manage nuclear waste, and implications of theft and misuse of nuclear waste. The analysis shows that currently building an underground repository at Yucca Mountain is inferior to other available strategies by the equivalent of $10,000 million to $50,000 million. This strongly suggests that this policy should be reconsidered. A more detailed analysis using the framework presented would help to define a new national policy to manage nuclear waste. 36 refs., 3 figs., 17 tabs

  5. Water quality maintaining device of power plant

    Kobayashi, Minoru; Inami, Ichiro.

    1994-01-01

    The device of the present invention reduces the amount of leaching materials of ion exchange resins from a water processing system of a BWR tyep plant, improves the water quality of reactor water to maintain the water at high purity. That is, steams used for power generation are condensated in a condensate system. A condensate filter and a condensate desalter for cleaning the condensates are disposed. A resin storage hopper is disposed for supplying the ion exchange resins to the water processing system. A device for supplying a nitrogen gas or an inert gas is disposed in the hopper. With such a constitution, the ion exchange resins in the water processing system are maintained in a nitrogen gas or inert gas atmosphere or at a low dissolved oxygen level in an operation stage in the power plant. Accordingly, degradation of the ion exchange resins in the water processing system is suppressed and the amount of the leaching material from the resins is reduced. As a result, the amount of the resins leached into the reactor is reduced, so that the reactor water quality can be maintained at high purity. (I.S.)

  6. Safe decommissioning of mobile nuclear power plant

    Paliukhovich, V.M.

    2002-01-01

    The paper addresses some issues for ensuring radiation safety during the process of decommissioning the 630 kW 'Pamir-630D' mobile nuclear power plant (MNPP). That nuclear power plant consisted of a gas cooled reactor (weight of 76.5t), gas turbine-driven set (76t), two control units (2'20t), and an auxiliary unit (20t). The reactor and turbine-driven set were supposed to be put on transport platforms and carried by tractors. The control and auxiliary units were set on track beds. The 'Pamir-630D' was constructed and tested in an appropriate building. The set-up time was no greater than six hours after all units of the MNPP had reached the site. The 'Pamir-630D' was ready to be moved to another site in 30 hours after the shut down. Service lifetime of 'Pamir-630D' was 10 years: 7 years of storage and 3 years of operation. Operational lifetime was no less than 10000 hours (non-stop operational period was no longer than 2000 hours). Dose rate at the boundary of the restrictive area was no more than 6.5 mR/h at the time of reactor operation and no greater than 300 mR/h on the side surface and 1000 mR/h on the end surface of the biological shielding of the reactor, 24 hours after shut down. (author)

  7. Sabotage at Nuclear Power Plants

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  8. Sabotage at Nuclear Power Plants

    Purvis, James W.

    1999-01-01

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented

  9. Maintenance of nuclear power plants

    Migaud, D.; Hutin, J.P.; Jouette, I.; Eymond, P.; Devie, P.; Cudelou, C.; Magnier, S.; Frydman, M.

    2016-01-01

    This document gathers different articles concerning the maintenance of the French nuclear power plants. The first article analyses the impact of the recent law on the energetic transition that sets the share of nuclear power at 50% of the electricity produced by 2025. A consequence may be the decommissioning of 17 to 20 reactors by 2025 and the huge maintenance program called 'Grand Carenage' whose aim is to extend operating life over 40 years will have to be re-considered in order to avoid useless expenses. The second article shows that in 2015 the French nuclear reactor fleet got very good results in terms of availability and safety. There were 49 scheduled outages and among them some ended ahead of time. The third article describes the specificities of the maintenance of a nuclear power plant, for instance the redundancy of some systems implies that maintenance has to deal with systems that have never functioned but must be ready to operate at any moment. Another specificity is the complexity of a nuclear power plant that implies an essential phase of preparation for maintenance operations. Because of safety requirements any maintenance operation has to be controlled, checked and may provide feedback. The fourth article presents the 'Grand Carenage' maintenance program that involves the following operations: the replacement of steam generators, the re-tubing of condensers, the replacement of the filtering drums used for cooling water, the testing of the reactor building, the hydraulic test of the primary circuit and the inspection of the reactor vessel. The fifth article focuses on the organization of the work-site for maintenance operations and the example of the Belleville-sur-Loire is described in the sixth article. Important maintenance operations like 'Grand Carenage' requires a strong collaboration with a network of specialized enterprises and as no reactor (except Flamanville EPR) is being built in France, maintenance

  10. [Storage of plant protection products in farms: minimum safety requirements].

    Dutto, Moreno; Alfonzo, Santo; Rubbiani, Maristella

    2012-01-01

    Failure to comply with requirements for proper storage and use of pesticides in farms can be extremely hazardous and the risk of accidents involving farm workers, other persons and even animals is high. There are still wide differences in the interpretation of the concept of "securing or making safe", by workers in this sector. One of the critical points detected, particularly in the fruit sector, is the establishment of an adequate storage site for plant protection products. The definition of "safe storage of pesticides" is still unclear despite the recent enactment of Legislative Decree 81/2008 regulating health and work safety in Italy. In addition, there are no national guidelines setting clear minimum criteria for storage of plant protection products in farms. The authors, on the basis of their professional experience and through analysis of recent legislation, establish certain minimum safety standards for storage of pesticides in farms.

  11. Application of energy storage devices in power systems

    user

    paper concentrates on performance benefits of adding energy storage to power ..... Because of geographical, environmental, and cost constraints, construction of pumped .... transport, in Information Day on Non-Nuclear Energy RTD, Brussels.

  12. Energy analysis and projecting of power plants

    Jirlow, K.

    1975-01-01

    Energy analysis aims at a better explanation of energy flow and energy exchange at different production processes. In this report the energy budget is analysed for separate nuclear power plants and for expanding systems of power plants. A mathematical model is developed for linear and exponential expanding of nuclear power. The profitableness for nuclear power plants in Sweden is considered to be good. (K.K.)

  13. A virtual power plant model for time-driven power flow calculations

    Gerardo Guerra

    2017-11-01

    Full Text Available This paper presents the implementation of a custom-made virtual power plant model in OpenDSS. The goal is to develop a model adequate for time-driven power flow calculations in distribution systems. The virtual power plant is modeled as the aggregation of renewable generation and energy storage connected to the distribution system through an inverter. The implemented operation mode allows the virtual power plant to act as a single dispatchable generation unit. The case studies presented in the paper demonstrate that the model behaves according to the specified control algorithm and show how it can be incorporated into the solution scheme of a general parallel genetic algorithm in order to obtain the optimal day-ahead dispatch. Simulation results exhibit a clear benefit from the deployment of a virtual power plant when compared to distributed generation based only on renewable intermittent generation.

  14. Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle

    Manfrida, Giampaolo; Secchi, Riccardo; Stańczyk, Kamil

    2016-01-01

    Highlights: • A mathematical model of a Latent Heat Storage system was developed. • Energy and exergy analysis of the storage system were carried out. • A solar powered ORC unit coupled with the Latent Heat Storage was studied. • The dynamic performance of the overall plant was simulated with TRNSYS. - Abstract: Solar energy is one of the most promising renewable energy sources, but is intermittent by its nature. The study of efficient thermal heat storage technologies is of fundamental importance for the development of solar power systems. This work focuses on a robust mathematical model of a Latent Heat Storage (LHS) system constituted by a storage tank containing Phase Change Material spheres. The model, developed in EES environment, provides the time-dependent temperature profiles for the PCM and the heat transfer fluid flowing in the storage tank, and the energy and exergy stored as well. A case study on the application of the LHS technology is also presented. The operation of a solar power plant associated with a latent heat thermal storage and an ORC unit is simulated under dynamic (time-varying) solar radiation conditions with the software TRNSYS. The performance of the proposed plant is simulated over a one week period, and the results show that the system is able to provide power in 78.5% of the time, with weekly averaged efficiencies of 13.4% for the ORC unit, and of 3.9% for the whole plant (from solar radiation to net power delivered by the ORC expander).

  15. Intermediate-sized photovoltaic plants to supply power villages: Future developments

    Previ, A.

    1990-01-01

    The activity promoted by the European Communities, aimed at demonstrating the feasibility of supplying both active and passive power distribution networks by means of photovoltaic plants (PV) has been highly successful. The PV plants at Aghia Roumeli, Pellworm, Rondulinu, and Vulcano are stand-alone plants that can supply small isolated communities. The plant at Kytnos supplies power to the grid with the help of electrochemical storage; the plants at Pellworm, and Vulcano can also supply power to the grid, the first with e.c. storage and the second without such storage. This paper gives an overview of the activity promoted by the Communities EEC-DGXII research group aimed at demonstrating the feasibility of supplying both active and passive power distribution networks by means of PV plants. Possible improvements of the power conditioning sub-system are presented

  16. ELMIA Energy and Future 88. Conference E5. Nuclear power phaseout and storage of nuclear waste

    1988-01-01

    The conference comprised lectures on the following subjects: - How to maintain availability, quality and safety during the phaseout period to the year 2010. - Demolition of nuclear power plants. - Storage of nuclear waste. - Estimate of risks in a long perspective. - Financing of the phaseout. Separate abstracts were prepared for four sections of this report. (O.S.)

  17. Plant life management optimized utilization of existing nuclear power plants

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  18. Transformation of highly toxic chemicals factory for Fuqing nuclear power plant

    Wang Hongkai; Gao Yuan; Li Hua

    2014-01-01

    For the iodine adsorption tests of current M310 nuclear power plant, dimethyl sulfate is one of highly toxic chemical of national strict standard management, and the nation make strict control over toxic chemicals procurement, transportation, storage, management requirements. Since the appropriate toxic chemicals storage place was not considered in the design of M310 nuclear power plant, Fuqing nuclear power sites for storage of dimethyl sulfate implement technical transformation to meet and regulate the storage requirements for highly toxic chemical. This will lay the foundation for carrying out smoothly the relevant tests of nuclear power plant, and provide the reference for the use and construction of toxic chemicals reactor in the same type nuclear power plant. (authors)

  19. Role of land-based prototype plants in propulsion nuclear power plants engineering

    Voronin, V.E.; Prokhorov, Yu.A.

    1993-01-01

    Prototype plants provide a powerful tool for accomplishing tasks of development and construction of newly designed new power plants (NPPs). Leaving aside momentary political or economical considerations, one should admit that the use of prototype plants in testing of new NPPs is quite a necessity. To make the most of prototype plant, its commissioning should precede lead plant construction by 2-3 years. To make good use of prototype plants, a set of basic requirements should be fulfilled: greatest possible identity beteen the facility under test and a new series NPP; provision of high performance data acquisitoin, processing and storage firmware and a modelling system using update computer technique; and developed science infrastructure, engineering support and adequate maintenance. Prototype plants should comply with safety requirements to meet environmental protection standards

  20. HTGR gas turbine power plant preliminary design

    Koutz, S.L.; Krase, J.M.; Meyer, L.

    1973-01-01

    The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references

  1. Nuclear power plant operation 2016. Pt. 1

    Anon.

    2017-05-15

    A report is given on the operating results achieved in 2016, events important to plant safety, special and relevant repair, and retrofit measures from nuclear power plants in Germany. Reports about nuclear power plants in Belgium, Finland, the Netherlands, Switzerland, and Spain will be published in a further issue.

  2. Environmental survey around EDF nuclear power plants

    Foulquier, L.

    1992-01-01

    Description of various types of environmental test carried out under the responsibility of the Operator of nuclear power plants in France, with taking Fessenheim nuclear power plant as an example: permanent monitoring of radioactivity, periodic radioecological assessments, main results of measurements taken, showing that there are no detectable effects of the plant on the environment, policy of openness by publication of these results

  3. Nuclear power plants and the environment

    Barabas, K [Ceskoslovenska Komise pro Atomovou Energii, Prague

    1978-05-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO/sub 2/, NO/sub 2/, ash and soot emissions with /sup 133/Xe and /sup 85/Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts.

  4. Nuclear power plants and the environment

    Barabas, K.

    1978-01-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO 2 , NO 2 , ash and soot emmisions with 133 Xe and 85 Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts. (O.K.)

  5. Thermal power plant design and operation

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  6. Energy Storage Requirements for PV Power Ramp Rate Control in Northern Europe

    Julius Schnabel

    2016-01-01

    Full Text Available Photovoltaic (PV generators suffer from fluctuating output power due to the highly fluctuating primary energy source. With significant PV penetration, these fluctuations can lead to power system instability and power quality problems. The use of energy storage systems as fluctuation compensators has been proposed as means to mitigate these problems. In this paper, the behavior of PV power fluctuations in Northern European climatic conditions and requirements for sizing the energy storage systems to compensate them have been investigated and compared to similar studies done in Southern European climate. These investigations have been performed through simulations that utilize measurements from the Tampere University of Technology solar PV power station research plant in Finland. An enhanced energy storage charging control strategy has been developed and tested. Energy storage capacity, power, and cycling requirements have been derived for different PV generator sizes and power ramp rate requirements. The developed control strategy leads to lesser performance requirements for the energy storage systems compared to the methods presented earlier. Further, some differences on the operation of PV generators in Northern and Southern European climates have been detected.

  7. S-CO2 for efficient power generation with energy storage

    Cerio Vera, Marta

    2016-01-01

    Supercritical CO2 (s-CO2) power cycle has gained interest for concentrating solar power (CSP) application in the last decade to overcome the current low efficiency and high costs of the plants. This cycle is a potential option to replace the steam Rankine cycle due to its higher efficiency, more compact turbomachinery and possibility of including heat storage and direct heating. The purpose of this project is to determine the suitability of integrating s-CO2 power cycle into CSP plants with e...

  8. Financing of nuclear power plant using resources of power generation

    Slechta, V.; Milackova, H.

    1987-01-01

    It is proved that during the lifetime of a power plant, financial resources are produced from depreciation and from the profit for the delivered electrical power in an amount allowing to meet the cost of construction, interests of credits, the corporation taxes, and the means usable by the utility for simple reproduction of the power plant, additional investment, or for the ultimate decommissioning of the nuclear power plant. The considerations are simplified to 1 MW of installed capacity of a WWER-440 nuclear power plant. The breakdown is shown of the profit and the depreciation over the power plant lifetime, the resources of regular payments of credit instalments for the construction and the method of its calculation, and the income for the state budget and for the utility during the plant liofetime. (J.B.). 5 tabs., 5 refs

  9. Nuclear power plants in Germany

    Hennings, U.; Stuermer, W.

    1993-01-01

    Under the influence of the polarization between belief in progress, on the one hand, and the moral rigorism of our society, on the other hand, the risks of modern large technical systems have helped the highest level of technical safety to be attained in Germany. It has been reached especially by opting for maximum quality, maximum utility and reliability, complete documentation, continuous in-service checks during operation and, last but not least, by including man and human fallibility. Our concern should be that this strategy pursued in the Western industrialized countries becomes the rule, at least in its main characteristics, also in the Eastern countries. The hazards associated with reactors in Eastern countries affect us all, and it is especially the safety of those reactors which is causing concern. The experience accumulated with the 417 nuclear power plants now in operation, especially the incidents and accidents, shows that hazard potential management is admissible only with a highly developed safety strategy. (orig.) [de

  10. Nuclear power plant annunciator systems

    Rankin, W.L.

    1983-08-01

    Analyses of nuclear power plant annunciator systems have uncovered a variety of problems. Many of these problems stem from the fact that the underlying philosophy of annunciator systems have never been elucidated so as to impact the initial annunciator system design. This research determined that the basic philosophy of an annunciator system should be to minimize the potential for system and process deviations to develop into significant hazards. In order to do this the annunciator system should alert the operators to the fact that a system or process deviation exists, inform the operators as to the priority and nature of the deviation, guide the operators' initial responses to the deviation, and confirm whether operators responses corrected the deviation. Annunciator design features were analyzed to determine to what degree they helped the system meet the functional criteria, the priority for implementing specific design features, and the cost and ease of implementing specific design features

  11. BWR type nuclear power plant

    Matsumoto, Kosuke.

    1991-01-01

    In a BWR type nuclear power plant in which reactor water in a reactor pressure vessel can be drained to a waste processing system by way of reactor recycling pipeways and remaining heat removal system pipeways, a pressurized air supply device is disposed for supplying air for pressurizing reactor water to the inside of the reactor pressure vessel by way of an upper head. With such a constitution, since the pressurized air sent from the pressurized air supply device above the reactor pressure vessel for the reactor water discharging pressure upon draining, the water draining pressure is increased compared with a conventional case and, accordingly, the amount of drained water is not reduced even in the latter half of draining. Accordingly, the draining efficiency can be improved and only a relatively short period of time is required till the completion of the draining, which can improve safety and save labors. (T.M.)

  12. Nuclear power plant component protection

    Michel, E.; Ruf, R.; Dorner, H.

    1976-01-01

    Described is a nuclear power plant installation which includes a concrete biological shield forming a pit in which a reactor pressure vessel is positioned. A steam generator on the outside of the shield is connected with the pressure vessel via coolant pipe lines which extend through the shield, the coolant circulation being provided by a coolant pump which is also on the outside of the shield. To protect these components on the outside of the shield and which are of mainly or substantially cylindrical shape, semicylindrical concrete segments are interfitted around them to form complete outer cylinders which are retained against outward separation radially from the components, by rings of high tensile steel which may be interspaced so closely that they provide, in effect, an outer steel cylinder. The invention is particularly applicable to pressurized-water coolant reactor installations

  13. Benefits of production extension and shifting with thermal storage for a 1MW CSP-ORC plant in Morocco

    Bennouna, El Ghali; Mimet, Abdelaziz; Frej, Hicham

    2016-05-01

    The importance of thermal storage for commercial CSP (concentrated Solar Power) plants has now become obvious, this regardless of the solar technology used and the power cycle. The availability of a storage system to a plant operator brings a lot of possibilities for production management, cash flow optimization and grid stabilizing. In particular, and depending on plant location and local grid strategy, thermal storage can contribute, when wisely used, to control production and adapt it to the demand and / or power unbalances and varying prices. Storage systems design, sizing and configuration are proper to each power plant, hence systems that are now widely installed within large commercial solar plants are not necessarily suited for small scale decentralized production, and will not have the same effects. In this paper the benefits of thermal storage are studied for a 1MWe CSP plant with an ORC (Organic Rankine Cycle), this plant has many specific features which call for a detail analysis about the appropriate storage design and optimum operating strategies for decentralized solutions.

  14. Romanian achievement in hydro-power plants

    Cardu, M.; Bara, T.

    1998-01-01

    This paper briefly deals with the achievements relating to Hydro-electric Power Plants within the process of development of the National Power System in Romania. Also presented is the Romanian industry contribution to hydro-electrical power plant equipment manufacturing. (author)

  15. QA programs in nuclear power plants

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  16. HVDC transmission from isorated nuclear power plant

    Takenaka, Kiyoshi; Takasaki, Masahiro; Ichikawa, Tatemi; Hayashi, Toshiyuki

    1985-01-01

    HVDC transmission directly from nuclear power plant is considered as one of the patterns of long distance and large capacity transmission system. This reports considers two route HVDC transmission from PWR type nuclear power plant, and analyzes dynamic response characteristics due to bus fault, main protection failure and etc. using the AC-DC Power System Simulator. (author)

  17. EPRI nuclear power plant decommissioning technology program

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  18. Slovak Electric, plc, Bohunice Nuclear Power Plant

    1999-01-01

    A brief account of activities carried out by the Bohunice Nuclear Power Plant in 1998 is presented. These activities are reported under the headings: (1) Operation and electric power generation; (2) Nuclear and radiation safety; (3) Maintenance and scheduled refuelling out-gages; (4) Investment and WWER units upgrading; (5) Power Plants Personnel; (6) Public relations

  19. Safety problems in decommissioning nuclear power plants

    Auler, I.; Bardtenschlager, R.; Gasch, A.; Majohr, N.

    1975-12-01

    The safety problems at decommissioning are illustrated by the example of a LWR with 1300 MW electric power after 40 years of specified normal operation. For such a facility the radioactivity in the form of activation and contamination one year after being finally taken out of service is in the order of magnitude of 10 7 Ci, not counting the fuel assemblies. The dose rates occurring during work on the reactor vessel at nozzle level may amount to some 10 4 rem/h. After a rough estimation the accumulated dose for the decommissioning personnel during total dismantling will be about 1200 rem. During performance of the decommissioning activities the problems are mainly caused by direct radiation of the active components and systems and by the release of radioactive particles, aerosols and liquids if these components are crushed. The extent of later dismantling problems may be reduced by selecting appropriate materials as well as considering the requirements for dismantling in design and arrangement of the components already in the design stage of new facilities. Apart from plant design also the concept for the disposal of the radioactive waste from decommissioning will provide important boundary conditions. E.g. the maximum size of the pieces to be stored in the ultimate storage place will very much influence the dose expenditure for handling these parts. For complete dismantling of nuclear power plants an ultimate store must be available where large amounts of bulky decommissioning waste, containing relatively low activity, can be stored. The problems and also the cost for decommissioning may be considerably reduced by delaying complete disposal of the radioactive material >= 40 years and during this period, keeping the radioactivity enclosed within the plant in the form of a safe containment. (orig./HP) [de

  20. Stainless steels in power plant and plant construction. Papers

    1994-01-01

    The conference report comprises 14 papers on the corrosion characteristics of stainless steels in power plant and plant engineering. 9 papers are available as separate records in the ENERGY database. (MM) [de

  1. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  2. A landscape simulation system for power plants

    Yoshinaga, Toshiaki; Yoshida, Miki; Usami, Yoshiaki.

    1997-01-01

    As scenes of power plants give many influences to environments, the plants that harmonized with the environments are demanded. We developed a landscape simulation system for the plants by using computer graphics technologies. This system has functions to generate realistic images about plant buildings and environments. Since the system contains information of ridge lines in addition to usual terrain data, the terrain shapes are expressed more precisely. Because the system enables users to visualize plant construction plans, the advance evaluations of plant scenes become possible. We regard this system as useful for environmental assessment of power plants. (author)

  3. Commissioning of the nuclear power plant

    Furtado, P.M.; Rolf, F.

    1984-01-01

    Nuclear Power Plant Angra 2, located at Itaorna Beach-Angra dos Reis is the first plant of the Brazilian-German Agreement to be commissioned. The Nuclear Power Plant is a pressurized water reactor rated at 3765 Mw thermal/1325 Mw electrical. For commissioning purpose the plant is divided into 110 systems. Plant commissioning objective is to demonstrate the safe and correct operation of each plan component, system and of the whole plant in agreement with design conditions, licensing requirements and contractual obligations. This work gives a description of plant commissioning objectives, activities their time sequence, and documentation. (Author) [pt

  4. Estimation of energy storage capacity in power system in japan under future demand and supply factors

    Kurihara, Ikuo; Tanaka, Toshikatsu

    1996-01-01

    The desirable capacity of future energy storage facility in power system in Japan is discussed in this paper, putting emphasis on future new electric demand/supply factors such as CO 2 emission problems and social structure change. The two fundamental demand scenarios are considered; one is base case scenario which extrapolates the trend until now and the other is social structure change scenario. The desirable capacity of the energy storage facility is obtained from the result of optimum generation mix which minimizes the yearly expenses of the target year (2030 and 2050). The result shows that the optimum capacity of energy storage facility is about 10 to 15%. The social structure change and demand side energy storage have great influences on the optimum capacity of supply side storage. The former increases storage capacity. The latter reduces it and also contributes to the reduction of generation cost. Suppression of CO 2 emission basically affects to reduce the storage capacity. The load following operation of nuclear plant also reduces the optimum storage capacity in the case it produces surplus energy at night. Though there exist many factors which increase or decrease the capacity of energy storage facility, as a whole, it is concluded that the development of new energy storage technology is necessary for future. (author)

  5. Simulators predict power plant operation

    Peltier, R.

    2002-07-01

    Mix the complexity of a new construction or major retrofit project with today's 'do more with less', a pinch of 'personnel inexperience,' and a dash of 'unintended consequences', and you have got a recipe for insomnia. Advanced simulation tools, however, can help you wring out your design train your operators before the first wire is terminated and just may be get a good night's rest. The article describes several examples of uses of simulation tools. Esscor recently completed a simulation project for a major US utility exploring the potential for furnace/duct implosion that could result from adding higher volumetric flow induced-draft fans and selective catalytic reduction to a 650-MW coal-fired plant. CAF Electronics Inc. provided a full-scope simulator for Alstom's KA24-1 combined-cycle power plant in Paris, France. Computational fluid dynamics (CFD) tools are being used by the Gas Technology Institute to simulate the performance of the next generation of pulverized coal combustors. 5 figs.

  6. Elecnuc. Nuclear power plants in the world

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  7. Dynamic Frequency Response of Wind Power Plants

    Altin, Müfit

    according to their grid codes. In these scenarios particularly with high wind power penetration cases, conventional power plants (CPPs) such as old thermal power plants are planned to be replaced with wind power plants (WPPs). Consequently, the power system stability will be affected and the control...... to maintain sustainable and reliable operation of the power system for these targets, transmission system operators (TSOs) have revised the grid code requirements. Also, the TSOs are planning the future development of the power system with various wind penetration scenarios to integrate more wind power...... capability of WPPs would be investigated. The objective of this project is to analyze and identify the power system requirements for the synchronizing power support and inertial response control of WPPs in high wind power penetration scenarios. The dynamic frequency response of WPPs is realized...

  8. TOSHIBA CAE system for nuclear power plant

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  9. Fusion power plant availability study

    Ladra, D.; Sanguinetti, G.P.; Stube, E.

    2001-01-01

    The consideration of fusion as an alternative energy source will need to demonstrate that Fusion Power Plant (FPP) design, operating and maintenance characteristics meet the electrical market requirements forecast for the second half of this century. Until now, fusion has been developed in the framework of research and development programmes following natural technological trends. To bring a greater sense of realism to commercial viability and to guarantee that technology-driven fusion development responds to the demands of the market, a conceptual study of future commercial FPPs has been performed with a Power Plant Availability (PPA) study aimed at identifying the aspects affecting the availability and generating costs of FPPs. EFET, who has also been involved in the study, can visualise it from two different points of view; that of the industry (ANSALDO, IBERTEF, SIEMENS, NNC) and that of the utilities (BELGATOM, FRAMATOME, FORTUM). The work carried out covered the following points: socio-economic forecasting; safety and licensing; operation and maintenance; waste and decommissioning; availability and reliability. The following are the most relevant findings, conclusions and recommendations for all these aspects: Demonstrate definitively that the physical principles of nuclear fusion have been validated by means of experiments; Establish a European Industrial Group to support the demonstration phases; Create the financial and contracting framework required to construct these installations. Secure the necessary budgets for the European Union's 5th and 6th Research Programmes. Look for supplementary long term financing sources; The existing Regulatory Bodies should combine to form a single Working Group with responsibility for fusion reactor safety and licensing activities, working on the harmonisation of the regulatory processes, developing FPP safety criteria and guidelines and reviewing industry standards; To be competitive, FPPs should have high availability

  10. Coordinated control of wind power and energy storage

    Zhao, Haoran

    the coordinated control of wind power and ESS. Due to the different technical characteristics, such as power and energy density, ESS can play different roles either in generation-side, grid-side or demand side. This thesis focuses on the following two scenarios:• Scenario 1: As a part of wind farm, the ESS plays......Nowadays, wind power has become one of the fastest growing sources of electricity in the world. Due to the inherent variability and uncertainty, wind power integration into the grid brings challenges for power systems, particularly when the wind power penetration level is high. The challenges exist...... in many aspects, such as reliability, power quality and stability. With the rapid development of energy storage technology, the application of Energy Storage System (ESS) is considered as an effective solution to handle the aforementioned challenges. The main objective of this study is to investigate...

  11. Performance evaluation of cogeneration power plants

    Bacone, M.

    2001-01-01

    The free market has changed the criteria for measuring the cogeneration plant performances. Further at the technical-economic parameters, are considered other connected at the profits of the power plant [it

  12. Development of nuclear power plant Risk Monitor

    Yang Xiaoming; Sun Jinlong; Ma Chao; Wang Lin; Gu Xiaohui; Bao Zhenli; Qu Yong; Zheng Hao

    2014-01-01

    Risk Monitor is a tool to monitor the real-time risk of a nuclear power plant for risk management and comprehensive decision-making, which has been widely used all over the world. The nuclear power plant Risk Monitor applies the real-time risk model with low-complicacy that could reflect the plant's actual configuration, automatically reads the plant's configuration information from the engineering system through the developed interface, and efficiently analyzes the plant's risk Dy the intelligent parallel-computing method in order to provide the risk basement for the safety management of nuclear power plant. This paper generally introduces the background, architecture, functions and key technical features of a nuclear power plant Risk Monitor, and validates the risk result, which could well reflect the plant's risk information and has a significant practical value. (authors)

  13. Safe operation of power plants. Pt. 1

    Freymeyer, P.

    1977-01-01

    Electrotechniques were given a dominating role in the construction of nuclear power plants. The operation of power plants - particularly nuclear power plants - is impossible without the use of electrotechnical and control means. Despite of all reserve in the development and despite of the conservative attitude it is necessary to use the newest results of development and to incite the development ot new electronic systems for the solution of these tasks. (orig.) [de

  14. Tasks of a power engineer in future thermal power plants

    Freymeyer, P.; Scherschmidt, F.

    1982-01-01

    Today already the power plants provide plenty of tasks and problems to the electrical engineer in the fields of power and conductive engineering. A completely new orientation of power engineering leads to larger, more complex system and even to systems unknown so far. In conductive engineering entirely new solutions have come in view. There are a lot of interesting topics for the electrical engineer in the rearrangement and advance into virgin territory of thermal power plants. (orig.) [de

  15. Hot Thermal Storage in a Variable Power, Renewable Energy System

    2014-06-01

    where cost effective, increase the utilization of distributed electric power generation through wind, solar, geothermal , and biomass renewable...characteristics and may not necessarily be available in all cases. Types of direct heat energy systems include solar thermal, waste heat, and geothermal ...of super capacitor energy storage system in microgrid,” in International Conference on Sustainable Power Generation and Supply, Janjing, China

  16. Nuclear Power Plants in the World

    2003-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2002 was made up on bases of answers on questionnaires from 65 electric power companies and other nuclear organizations in 28 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  17. Nuclear power plants in the world

    2008-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2007/2008 was made up on bases of answers on questionnaires from electric power companies and other nuclear organizations around the world by JAIF. This report is comprised of 18 items, and contains generating capacity of the plants; effect of the Niigata-ken chuetsu-oki earthquake; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities, and so forth. (J.P.N.)

  18. Nuclear Power Plants in the World

    2004-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2003 was made up on bases of answers on questionnaires from 81 electric power companies and other nuclear organizations in 33 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  19. Project quality assurance plant: Sodium storage facility, project F-031

    Shultz, J.W.; Shank, D.R.

    1994-11-01

    The Sodium Storage Facility Project Quality Assurance Plan delineates the quality assurance requirements for construction of a new facility, modifications to the sodium storage tanks, and tie-ins to the FFTF Plant. This plan provides direction for the types of verifications necessary to satisfy the functional requirements within the project scope and applicable regulatory requirements determined in the Project Functional Design Criteria (FDC), WHC-SD-FF-FDC-009

  20. Qualification of nuclear power plant operations personnel

    1984-01-01

    With the ultimate aim of reducing the possibility of human error in nuclear power plant operations, the Guidebook discusses the organizational aspects, the staffing requirements, the educational systems and qualifications, the competence requirements, the ways to establish, preserve and verify competence, the specific aspects of personnel management and training for nuclear power plant operations, and finally the particular situations and difficulties to be overcome by utilities starting their first nuclear power plant. An important aspect presented in the Guidebook is the experience in training and qualification of nuclear power plant personnel in various countries: Argentina, Belgium, Canada, Czechoslovakia, France, Federal Republic of Germany, Spain, Sweden, United Kingdom and United States of America

  1. The operation of nuclear power plants

    Brosche, D.

    1992-01-01

    The duties to be performed in managing the operation of a nuclear power plant are highly diverse, as will be explained in this contribution by the examples of the Grafenrheinfeld Nuclear Power Station. The excellent safety record and the high availabilities of German nuclear power plants demonstrate that their operators have adopted the right approaches. Systematic evaluation of the operating experience accumulated inhouse and in other plants is of great significance in removing weak spots and improving operation. The manifold and complex activities in the structure of organization and of activities in a nuclear power plant require a high degree of division of labor. (orig.) [de

  2. The plant efficiency of fusion power stations

    Darvas, J.; Foerster, S.

    1976-01-01

    Due to the circulating energy, lower efficiencies are to be expected with fusion power plants than with nuclear fission power plants. According to the systems analysis, the mirror machine is not very promising as a power plant. The plant efficiency of the laser fusion strongly depends on the laser efficiency about which one can only make speculative statements at present. The Tokamak requires a relatively low circulating energy and is certainly able to compete regarding efficiency as long as the consumption time can be kept large (> 100 sec) and the dead time between the power pulses small ( [de

  3. Investigation toward laser driven IFE power plant

    Nakai, S.; Kozaki, Y.; Izawa, Y.

    2001-01-01

    Inertial fusion energy (IFE) is becoming feasible due to the increasing understanding of implosion physics. Reactor technology issues have begun to be developed. Based on the conceptual design of Laser Driven IFE Power Plant, the technical and physical issues have been examined. R and D on key issues that affect the feasibility of power plant have been proceeded taking into account the collaboration in the field of laser driver, fuel pellet, reaction chamber and system design. It is concluded that the technical feasibility of IFE power plant seems to be reasonably high. Coordination and collaboration scheme of reactor technology experts in Japan on Laser Driven IFE Power Plant is being proceeded. (author)

  4. Cooling towers of nuclear power plants

    Mikyska, L.

    1986-01-01

    The specifications are given of cooling towers of foreign nuclear power plants and a comparison is made with specifications of cooling towers with natural draught in Czechoslovak nuclear power plants. Shortcomings are pointed out in the design of cooling towers of Czechoslovak nuclear power plants which have been derived from conventional power plant design. The main differences are in the adjustment of the towers for winter operation and in the designed spray intensity. The comparison of selected parameters is expressed graphically. (J.B.)

  5. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    2011-12-15

    ... Service Oglethorpe Power Corporation; Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA... related to possible financial assistance to Oglethorpe Power Corporation's (Oglethorpe) for the... online at the following Web site: http://www.rurdev.usda.gov/UWP-OglethorpePower.html and at the: Warren...

  6. Market power and storage in electricity markets

    Skaar, Jostein

    2004-05-01

    Market power in liberalised electricity markets dominated by hydropower is analyzed in four chapters. The existing literature on competition in hydropower markets is briefly presented and examined. Chapter 1 discusses the effects of market power in the context of acquisitions in a situation where transmission capacity is constrained. Chapter 2 and 3 elaborate on the issue of competition and market power when water inflow is uncertain, and finally Chapter 4 focuses on the supply function equilibrium model in the context of a hydropower market

  7. Strategy Design of Hybrid Energy Storage System for Smoothing Wind Power Fluctuations

    Jingyu Liu

    2016-11-01

    Full Text Available With the increasing contribution of wind power plants, the reliability and security of modern power systems have become a huge challenge due to the uncertainty and intermittency of wind energy sources. In this paper, a hybrid energy storage system (HESS consisting of battery and supercapacitor is built to smooth the power fluctuations of wind power. A power allocation strategy is proposed to give full play to the respective advantages of the two energy storage components. In the proposed strategy, the low-frequency and high-frequency components of wind power fluctuations are absorbed by battery groups and supercapacitor groups, respectively. By inhibiting the low-frequency components of supercapacitor current, the times of charging-discharging of battery groups can be significantly reduced. A DC/AC converter is applied to achieve the power exchange between the HESS and the grid. Adjustment rules for regulating state-of-charge (SOC of energy storage elements are designed to avoid overcharge and deep discharge considering the safety and the high efficiency of the energy storage elements. Experimental results on the test platform verify the effectiveness of the proposed power allocation strategy in DC/AC converter and battery SOC adjustment rules for regulating SOC levels.

  8. Summary of nuclear power plant construction

    Tamura, Saburo

    1973-01-01

    Various conditions for the construction of nuclear power plants in Japan without natural resources were investigated. Expansion of the sites of plants, change of reactor vessels, standardization of nuclear power plants, possiblity of the reduction of construction period, approaching of nuclear power plants to consuming cities, and group construction were studied. Evaluation points were safety and economy. Previous sites of nuclear power plants were mostly on plane ground or cut and enlarge sites. Proposals for underground or offshore plants have been made. The underground plants were made at several places in Europe, and the ocean plant is now approved in U.S.A. as a plant on a man-made island. Vessels for containing nuclear reactors are the last barriers to the leakage of radioactive substance. At the initial period, the vessels were made of steel, which were surrounded by shielding material. Those were dry well type containers. Then, vessel type changed to pressure-suppression type wet containers. Now, it tends to concrete (PC or RC) type containers. There is the policy on the standardization of nuclear power plants by U.S.A.E.C. in recent remarkable activity. The merit and effect of the standardization were studied, and are presented in this paper. Cost of the construction of nuclear power plants is expensive, and interest of money is large. Then, the reduction of construction period is an important problem. The situations of plants approaching to consuming cities in various countries were studied. Idea of group construction is described. (Kato, T.)

  9. Control of power plants and power systems. Proceedings

    Canales-Ruiz, R.

    1996-01-01

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for the three papers relating to nuclear power plants. (UK)

  10. Production costs: U.S. hydroelectric power plants, 4th Edition

    Anon.

    1993-01-01

    The book provides 1991 operation and maintenance expenses for over 800 conventional and pumped-storage hydroelectric power plants. Report shows operator and plant name, plant year-in-service, installed capacity, 1991 net generation, O ampersand M expenses, total production costs and current plant capitalization. Fifty eight percent of the utility-owned hydroelectric plants in the US are covered by this report. Data diskette provides additional capital and production cost accounts and number of employees for each plant

  11. Methodology for Scaling Fusion Power Plant Availability

    Waganer, Lester M.

    2011-01-01

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, 'Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the 'teething' problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated 'mature' subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  12. Power plant engineering for overseas market

    Chun, K.S.

    1994-12-31

    Korea`s experience in power plant engineering for the overseas market is reviewed. The following topics are discussed: the Asian electric power market, ordering characteristics, country situations, and overseas market requirements.

  13. Optimal offering strategy for a concentrating solar power plant

    Dominguez, R.; Baringo, L.; Conejo, A.J.

    2012-01-01

    Highlights: ► Concentrating solar power (CSP) plants are becoming economically viable. ► CSP production is positively correlated with the demand. ► CSP plants can be made dispatchable by using molten salt storage facilities. ► Integrating CSP plants in a market constitutes a relevant challenge. -- Abstract: This paper provides a methodology to build offering curves for a concentrating solar power plant. This methodology takes into account the uncertainty in the thermal production from the solar field and the volatility of market prices. The solar plant owner is a price-taker producer that participates in a pool-based electricity market with the aim of maximizing its expected profit. To enhance the value of the concentrating solar power plant, a molten salt heat storage is considered, which allows producing electricity during periods without availability of the solar resource. To derive offering curves, a mixed-integer linear programming model is proposed, which is robust from the point of view of the uncertainty associated with the thermal production of the solar field and stochastic from the point of view of the uncertain market prices.

  14. Kuroshio power plant development plan

    Chen, Falin

    2010-01-01

    As a country lacking energy reserves, Taiwan imports 99.2% of its energy, with only a small portion of indigenous energy, such as hydro, wind, and solar. In 2008, each Taiwanese spent 85,000 NTD dollars (1 USD ∝ 32 NTD) to purchase oil, coal, gas, and nuclear fuel from foreign countries, accounting for a total payment of 1.8 trillion NTD, more than the annual budget of the Taiwan government of 1.7 trillion NTD. In the same year, Taiwan emitted about 1% of the world's greenhouse gas (GHG), or 12 tons per person-year, ranking 18th globally. These situations in terms of energy security and carbon emission are very severe. To resolve these severe situations, harnessing the power of the Kuroshio in eastern Taiwan offers a great opportunity. The Kuroshio is a branch of the North Pacific Ocean current. Due to the westward-enhanced effect, this ocean current is strong and stable as it passes through eastern Taiwan. The flow rate is about 30 sverdrup (Sv) or 1000 times that of the Yangtze River, the average speed is 1 m/s, the flow direction is fixed to the north, and the flow path is close to the east coast of Taiwan. By precisely locating high-quality sites and implementing sequential works with careful planning, one can possibly generate exploitable power more than 30 GW. With 30 GW of clean energy, Taiwan could effectively enhance energy security, reduce GHG emission, and lower energy-purchasing cost. This paper proposes a feasibility study to explore the power of the Kuroshio. The content consists of four parts: (1) assessment of Kuroshio power reserves, (2) development of turbine generators, (3) development of turbine-anchor system, and (4) deep-sea marine engineering of turbine clusters. By integrating these technologies above, we propose a project to construct a 30 MW pilot plant. In this project, we also discuss the financial analysis and propose new regulations, environmental impact analysis, risk assessment, and other relevant issues. (author)

  15. Nuclear power plant cable materials :

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on

  16. Control of renewable distributed power plants

    Bullich Massagué, Eduard

    2015-01-01

    The main objective of this master thesis is to design a power plant controller for a photo- voltaic (PV) power plant. In a first stage, the current situation of the status of the electrical grid is analysed. The electrical network structure is moving from a conventional system (with centralized power generation, unidirectional power ows, easy control) to a smart grid system consisting on distributed generation, renewable energies, smart and complex control architecture and ...

  17. Heat supply from nuclear power plants

    Stach, V [Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia)

    1978-05-01

    The current state of world power production and consumption is assessed. Prognoses made for the years 1980 to 2000 show that nuclear energy should replace the major part of fossil fuels not only in the production of power but also in the production of heat. In this respect high-temperature reactors are highly prospective. The question is discussed of the technical and economic parameters of dual-purpose heat and power plants. It is, however, necessary to solve problems arising from the safe siting of nuclear heat and power plants and their environmental impacts. The economic benefits of combined power and heat production by such nuclear plants is evident.

  18. Physical and financial virtual power plants

    Willems, Bert

    2005-01-01

    Regulators in Belgium and the Netherlands use different mechanisms to mitigate generation market power. In Belgium, antitrust authorities oblige the incumbent to sell financial Virtual Power Plants, while in the Netherlands regulators have been discussing the use of physical Virtual Power Plants. This paper uses a numerical game theoretic model to simulate the behavior of the generation firms and to compare the effects of both systems on the market power of the generators. It shows that financial Virtual Power Plants are better for society. (Author)

  19. A new power supply for superconductive magnetic energy storage system

    Karady, G.G.; Han, B.M.

    1992-01-01

    In this paper a new power supply for a superconductive magnetic energy storage system, which permits a fast independent regulation of the active and reactive power, is presented. The power supply is built with several units connected in parallel. Each unit consists of a 24-pulse bridge converter, thyristor-switched tap-changing transformer, and thyristor-switched capacitor bank. Its system operation is analyzed by computer simulation and a feasible system realization is shown. A superconductive magnetic energy storage system with the proposed power supply has the capability of leveling the load variation, damping the low-frequency oscillation, and improving the transient stability in the power system. This power supply can be built with commercially available components using well-proven technologies

  20. FEL radiation power available in electron storage rings

    Miyahara, Yoshikazu

    1994-01-01

    FEL radiation power available in electron storage rings was studied in the small signal regime in considering the increase of the energy spread of the electron beam caused by the FEL interaction and the decrease of the FEL gain with the increase of the energy spread in addition to the radiation damping and the quantum excitation. All these effects were considered separately, and combined with FEL power equations. The radiation power available was expressed explicitly with the parameters of the storage ring, the wiggler and the mirrors. The transient process of FEL lasing is simulated with the power equations. A rough estimation is made of the radiation power available by the FEL at different beam energies, and optimization of FEL parameters for a higher radiation power is discussed. ((orig.))