WorldWideScience

Sample records for storage life

  1. Long-term storage life of light source modules by temperature cycling accelerated life test

    International Nuclear Information System (INIS)

    Sun Ningning; Tan Manqing; Li Ping; Jiao Jian; Guo Xiaofeng; Guo Wentao

    2014-01-01

    Light source modules are the most crucial and fragile devices that affect the life and reliability of the interferometric fiber optic gyroscope (IFOG). While the light emitting chips were stable in most cases, the module packaging proved to be less satisfactory. In long-term storage or the working environment, the ambient temperature changes constantly and thus the packaging and coupling performance of light source modules are more likely to degrade slowly due to different materials with different coefficients of thermal expansion in the bonding interface. A constant temperature accelerated life test cannot evaluate the impact of temperature variation on the performance of a module package, so the temperature cycling accelerated life test was studied. The main failure mechanism affecting light source modules is package failure due to solder fatigue failure including a fiber coupling shift, loss of cooling efficiency and thermal resistor degradation, so the Norris-Landzberg model was used to model solder fatigue life and determine the activation energy related to solder fatigue failure mechanism. By analyzing the test data, activation energy was determined and then the mean life of light source modules in different storage environments with a continuously changing temperature was simulated, which has provided direct reference data for the storage life prediction of IFOG. (semiconductor devices)

  2. Environmental performance of electricity storage systems for grid applications, a life cycle approach

    International Nuclear Information System (INIS)

    Oliveira, L.; Messagie, M.; Mertens, J.; Laget, H.; Coosemans, T.; Van Mierlo, J.

    2015-01-01

    Highlights: • Large energy storage systems: environmental performance under different scenarios. • ReCiPe midpoint and endpoint impact assessment results are analyzed. • Energy storage systems can replace peak power generation units. • Energy storage systems and renewable energy have the best environmental scores. • Environmental performance of storage systems is application dependent. - Abstract: In this paper, the environmental performance of electricity storage technologies for grid applications is assessed. Using a life cycle assessment methodology we analyze the impacts of the construction, disposal/end of life, and usage of each of the systems. Pumped hydro and compressed air storage are studied as mechanical storage, and advanced lead acid, sodium sulfur, lithium-ion and nickel–sodium-chloride batteries are addressed as electrochemical storage systems. Hydrogen production from electrolysis and subsequent usage in a proton exchange membrane fuel cell are also analyzed. The selected electricity storage systems mimic real world installations in terms of capacity, power rating, life time, technology and application. The functional unit is one kW h of energy delivered back to the grid, from the storage system. The environmental impacts assessed are climate change, human toxicity, particulate matter formation, and fossil resource depletion. Different electricity mixes are used in order to exemplify scenarios where the selected technologies meet specific applications. Results indicate that the performance of the storage systems is tied to the electricity feedstocks used during use stage. Renewable energy sources have lower impacts throughout the use stage of the storage technologies. Using the Belgium electricity mix of 2011 as benchmark, the sodium sulfur battery is shown to be the best performer for all the impacts analyzed. Pumped hydro storage follows in second place. Regarding infrastructure and end of life, results indicate that battery systems

  3. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  4. At-reactor storage of spent fuel for life-of-plant

    International Nuclear Information System (INIS)

    Fuierer, A.A.

    1990-01-01

    The management of commercial spent fuel is a fairly broad topic beginning with the discharge from a reactor, its storage on-site, its transport from the reactor site to a U.S. Department of Energy (DOE) facility, and its ultimate disposal in a geologic repository. This paper discusses spent-fuel management in the at-reactor phase. There are two basic methods for at-reactor storage of spent fuel. The first is wet storage in a pool, and the second is dry storage external to the plant in some form of cask or vault. Spent-fuel consolidation will impact the utility and the DOE waste system. Some of these impacts have a positive effect and some have a negative effect, and each will vary somewhat for each utility. Spent-fuel consolidation and life-of-plant storage will be an increased burden to utilities but will likely result in significant cost savings to the overall waste management system and by proper integration can result in significant institutional benefits

  5. Effects of sunflower wax coating on physicochemical changes of mangifera indica L. in storage life

    International Nuclear Information System (INIS)

    Soomro, R.K.; Sherazi, S.T.H.

    2013-01-01

    Mango (Mangifera indica L.) fruit has a relatively short storage life due to perishable nature. In order to increases the storage life of langra mangoes, fruits were coated with sunflower wax. Mangoes were stored at room and refrigerated temperature. Sunflower wax coating protects the mangoes in greater proportion to change their color, weight loss, moisture loss, pH and total soluble solids content. The sensorial panel also favors the grander role of sunflower wax coating. Application of sunflower wax coatings had no effect on vitamin C content of mangoes variety and could increases mango storage time around 30 days under regular storage conditions. Sunflower wax coating also inhibited the growth of micro-organisms. The data reveal that by applying a sunflower wax coating effectively prolongs the quality which attributes and extends the shelf life of mango. (author)

  6. Effect of Biopreservatives on Storage Life of Papaya (Carica papaya L.

    Directory of Open Access Journals (Sweden)

    Fatema H. Brishti

    2013-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE In this experiment the effect on post-harvest preservation of papaya (Carica papaya L. fruit coated with either Aloe gel (AG; 100% or papaya leaf extract with Aloe gel (PLEAG; 1:1 was studied. To evaluate the role of coating on ripening behavior and quality of papaya the uncoated and coated fruits were stored and ripened at room temperature (25 °C-29 °C and 82-84% relative humidity. Physico-chemical properties were analyzed at 4 day intervals during the storage period. The incidence of disease attack was also visually observed. The overall results showed the superiority of AG and PLEAG coating in lengthening the shelf-life of papaya fruit compared to controls which showed significant decay from 6th day onward and complete decay within 12 days of storage. The AG and PLEAG coated fruits maintained their shelf life for 12 days and decayed at 16th day. The coated fruits also maintained their color, flavor and firmness up to 12 days of storage. An increase in ascorbic acid content (120.2 mg/100 g was also found in coated fruits in contrast to the control (59 mg/100 g. Only 27% disease incidence was observed in AG and 13% in PLEAG coated fruits as compared to control (100% during the storage period. The results of this study show that both AG and PLEAG coatings have excellent potential to be used on fresh produce to maintain quality and extend shelf-life.

  7. High energy density, long life energy storage capacitor dielectric system

    International Nuclear Information System (INIS)

    Nichols, D.H.; Wilson, S.R.

    1977-01-01

    The evolution of energy storage dielectric systems shows a dramatic improvement in life and joule density, culminating in a 50% to 300% life improvement of polypropylene film-paper-phthalate ester over paper-castor oil depending on service. The physical and electrical drawbacks of castor oil are not present in the new system, allowing the capacitor designer to utilize the superior insulation resistance, dielectric strength, and corona resistance to full advantage. The result is longer life for equal joule density or greater joule density for equal life. Field service proof of the film-Geconol system superiority is based on 5 megajoule in operation and 16 megajoule on order

  8. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin

    2015-01-01

    vehicles, during their main first life application, for providing residential demand response service. The paper considers the decayed characteristics of these batteries and optimizes the rating of such a second life battery energy storage system (SLBESS) for maximizing the economic benefits of the user......The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric......'s energy consumption during a period of one year. Furthermore, simulations were performed considering real data of PV generation, consumption, prices taken from the Spanish market and costs of battery and photovoltaic systems....

  9. Assessment of Shelf-Life Ability of Apples cv. ‘Auksis’ after Long-term Storage Under Different Conditions

    OpenAIRE

    Juhņeviča-Radenkova Karina; Radenkovs Vitalijs

    2016-01-01

    The objective of the current research was to ascertain the shelf-life ability of apple ‘Auksis’ after 6 months of cold storage under different conditions. The effect of storage conditions such as: cold storage under normal atmosphere (NA), 1-methylcyclopropene (1-MCP) + cold storage, and ultra-low oxygen (ULO)-controlled atmosphere (CA) [2.0% CO2 and 1.0% O2 (ULO1) and 2.5% CO2 and 1.5% O2 (ULO2)] on the quality of apples during shelf-life was evaluated. Apple fruits immediately after cold st...

  10. A Study on the Storage Reliability of LSINS Based on Step-stress Accelerated Life Test

    Directory of Open Access Journals (Sweden)

    Teng Fei

    2015-01-01

    Full Text Available Based on the step-stress accelerated life test and the laser strap-down inertial navigation system, this paper studies the accelerated life model and the test method, provides the likelihood function, the likelihood equation and the two-order derivative when the stress level is k, evaluates the effectiveness of the method with the simulation test model established by MATLAB, applies the research findings in the storage reliability study of the XX laser strap-down inertial navigation system, and puts forward an effective evaluation method of the storage life of the inertial navigation system.

  11. A case study of remaining storage life prediction using stochastic filtering with the influence of condition monitoring

    International Nuclear Information System (INIS)

    Wang, Zhaoqiang; Hu, Changhua; Wang, Wenbin; Zhou, Zhijie; Si, Xiaosheng

    2014-01-01

    Some systems may spend most of their time in storage, but once needed, must be fully functional. Slow degradation occurs when the system is in storage, so to ensure the functionality of these systems, condition monitoring is usually conducted periodically to check the condition of the system. However, taking the condition monitoring data may require putting the system under real testing situation which may accelerate the degradation, and therefore, shorten the storage life of the system. This paper presents a case study of condition-based remaining storage life prediction for gyros in the inertial navigation system on the basis of the condition monitoring data and the influence of the condition monitoring data taking process. A stochastic-filtering-based degradation model is developed to incorporate both into the prediction of the remaining storage life distribution. This makes the predicted remaining storage life depend on not only the condition monitoring data but also the testing process of taking the condition monitoring data, which the existing prognostic techniques and algorithms did not consider. The presented model is fitted to the real condition monitoring data of gyros testing using the maximum likelihood estimation method for parameter estimation. Comparisons are made with the model without considering the process of taking the condition monitoring data, and the results clearly demonstrate the superiority of the newly proposed model

  12. Application of Cloud Storage on BIM Life-Cycle Management

    Directory of Open Access Journals (Sweden)

    Lieyun Ding

    2014-08-01

    Full Text Available Because of its high information intensity, strong consistency and convenient visualization features, building information modelling (BIM has received widespread attention in the fields of construction and project management. However, due to large amounts of information, high integration, the need for resource sharing between various departments, the long time-span of the BIM application, challenges relating to data interoperability, security and cost all slow down the adoption of BIM. This paper constructs a BIM cloud storage concept system using cloud storage, an advanced computer technology, to solve the problem of mass data processing, information security, and cost problems in the existing application of BIM to full life-cycle management. This system takes full advantage of the cloud storage technique. Achievements are reached in four areas of BIM information management, involving security and licensing management, file management, work process management and collaborative management. The system expands the time and space scales, improves the level of participation, and reduces the cost of BIM. The construction of the BIM cloud storage system is one of the most important directions of the development of BIM, which benefits the promotion and further development of BIM to better serve construction and engineering project management.

  13. Combined effect of temperature and controlled atmosphere on storage and shelf-life of 'Rocha' pear treated with 1-methylcyclopropene.

    Science.gov (United States)

    Gago, Custódia M L; Miguel, Maria G; Cavaco, Ana M; Almeida, Domingos P F; Antunes, Maria D C

    2015-03-01

    The combination of temperature and atmosphere composition for storage of Pyrus communis L. 'Rocha' treated with 1-methylcyclopropene was investigated. Fruits treated with 312 nl l(-1) 1-methylcyclopropene were stored at 0 ℃ and 2.5 ℃ in air and controlled atmosphere (CA) (3.04 kPa O2+ 0.91 kPa CO2). Fruits were removed from storage after 14, 26 and 35 weeks, transferred to shelf-life at approximately 22 ℃ and assessed for ripening and quality, symptoms of superficial scald and internal browning and the accumulation of biochemical compounds related to scald after 0, 1 and 2 weeks. Superficial scald occurred only in fruits stored for 35 weeks in air at 2.5 ℃. Levels of conjugated trienols and α-farnesene increased during the first 26 weeks in storage, remaining constant thereafter. During shelf-life, conjugated trienols were higher in fruits stored in air at 2.5 ℃. Internal browning developed in shelf-life after 26 weeks at 2.5 ℃. Pears in air at 2.5 ℃ were not able to stand a 2-week shelf-life after 35 weeks of storage, while fruits stored at 0 ℃ under CA ripened slowly after the same storage period. The retention of firmness during shelf-life of 1-methylcyclopropene-treated 'Rocha' pear can be overcome by elevating the storage temperature from 0 ℃ to 2.5 ℃, but CA is a required complement to avoid excessive softening after long-term storage. The ratio carotenoid/chlorophyll increased during storage and shelf-life, as plastids senesced. CA reduced the rate of chlorophyll loss during the first 14 weeks in storage, but its effect was reduced afterwards. 'Rocha' pear treated with 1-methylcyclopropene had a similar post-harvest behaviour during long-term storage at 0 ℃ in air or at 2.5 ℃ under CA. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Assessment of Shelf-Life Ability of Apples cv. ‘Auksis’ after Long-term Storage Under Different Conditions

    Directory of Open Access Journals (Sweden)

    Juhņeviča-Radenkova Karina

    2016-12-01

    Full Text Available The objective of the current research was to ascertain the shelf-life ability of apple ‘Auksis’ after 6 months of cold storage under different conditions. The effect of storage conditions such as: cold storage under normal atmosphere (NA, 1-methylcyclopropene (1-MCP + cold storage, and ultra-low oxygen (ULO-controlled atmosphere (CA [2.0% CO2 and 1.0% O2 (ULO1 and 2.5% CO2 and 1.5% O2 (ULO2] on the quality of apples during shelf-life was evaluated. Apple fruits immediately after cold storage and after 25 days of maintaining at market condition had been evaluated. The physical (firmness, weight losses, chemical (total soluble solids and acid contents, and sensory (aroma, taste, acidity, sweetness, juiciness, and color characteristics of apples had been evaluated after 5, 10, 15, 20, and 25 days to ascertain maximal shelf-life. Results from sensory evaluation indicated that apples treated with 1-MCP and stored at NA were characterized with distinctive aroma, whereas apples stored under CA were poor in sweetness and had remarkable acidity and juiciness. Apples that were stored in cold had pronounced aroma and color but without taste. Based on the evaluation by panelist, maximum shelf-life of apples that were kept under cold storage and ULO1 was 15 days, whereas that of apples that had been treated with 1-MCP and stored at NA and those stored in ULO2 was 25 days.

  15. Monitoring Shelf Life of Pasteurized Whole Milk Under Refrigerated Storage Conditions: Predictive Models for Quality Loss.

    Science.gov (United States)

    Ziyaina, Mohamed; Govindan, Byju N; Rasco, Barbara; Coffey, Todd; Sablani, Shyam S

    2018-02-01

    The shelf life of pasteurized milk is generally determined through microbiological analysis. The objective of this study was to correlate microbial quality parameters then to design predictive models for shelf life of pasteurized milk. We analyzed pasteurized milk (3.9% fat) for aerobic plate counts (APCs), psychrotrophic bacteria counts (PBCs), and Bacillus spp. counts at 5, 7, 10, 13, 15, and 19 (±1 °C) to the end of storage time. We also monitored titratable acidity, pH, and, lipase, and protease activity and correlated this with APC, which is the principal index defining shelf life. Results indicate that the shelf life of pasteurized milk was 24, 36, and 72 h at 19, 15, and 13 °C respectively, as determined by APC and acidity indicators. However, milk stored at lower temperatures of 5, 7, and 10 °C had longer shelf life of 30, 24, and 12 d, respectively. A sharp increase in titratable acidity, while decrease pH were observed when APCs reached 5.0 log 10 CFU/mL at all storage temperatures. Lipase and protease activities increased with storage temperature. At 5 and 7 °C, however, protease activity was very low. Therefore, we eliminated this parameter from our quality parameters as a potential spoilage indicator. Findings of this research are useful for monitoring the quality of commercial pasteurized milk, particularly in locations where environmental conditions make longer storage difficult. The study also provides valuable information for development of colorimetric shelf life indicators. © 2018 Institute of Food Technologists®.

  16. QUALIY PARAMETERS AND SHELF LIFE OF GAME MEAT DURING FROZEN STORAGE

    Directory of Open Access Journals (Sweden)

    M. Spaziani

    2011-01-01

    Full Text Available This study examined the effect of the duration of frozen storage at –20°C on the game meat quality parameters, namely the pH, colour, thawing and cooking losses. The oxidative stability of game meat was evaluated by the production of thiobarbituric acid reactive substances (TBARS. Frozen storage duration did not extensively influence either the quality properties, or the oxidative stability of game meat. Therefore, it was hypothesized that the higher amount of a- tocopherol in the muscles of game compared to pellet-fed animals could be mainly responsible for the lower lipid oxidation and longer shelf life.

  17. Lengthening of the storage life of cooled chicken through radurization

    International Nuclear Information System (INIS)

    Bok, H.E.; Holzapfel, W.H.

    1984-01-01

    Radurization is a particularly suitable method to lengthen the shelf life of chicken carcasses. A study was undertaken to determine the influence of four different dose rates and three storage temperatures, namely 3, 4, 5 and 7 kGy and 2, 4 and 8 degrees Celsius respectively. A total bacteria population of 10 6 per gramme was used as cut-off point for shelf life. Accordingly the untreated samples had a shelf life of 3 days at 4 degrees Celsius in comparison with 13 and 29 days for 3 and 5 kGy respectively. This study showed that low gamma radiation doses is not only an economical preservation method for chicken carcasses, but also destroys typical food pathogens such as Salmonella spp. The method also produces an organoleptic acceptable product

  18. Determining Appropriate Harvesting Date and Storage Life of Kinnow Mandarine Fruits in Jiroft County

    Directory of Open Access Journals (Sweden)

    Seied Mehdi Miri

    2018-02-01

    Full Text Available Introduction. Citrus is one of the most commercially important horticultural crops grown in tropical and sub-tropical regions of the world. They are classified as non-climacteric fruits. Harvesting date and storage can influence citrus fruit quality and shelf life. In Iran, some members of citrus family including sweet orange and mandarin are produced as an export crop, so research on fruit quality and storage life is needed. There is no available scientific literature regarding the effect of harvesting date and storage duration on retaining the postharvest physicochemical properties of Kinnow mandarin under cold storage. The main objective of the present study was to evaluate the effect of harvesting date and storing time on shelf life and quality of Kinnow mandarin fruits under Jiroft weather conditions. Materials and Methods. Investigations were carried out on mandarin (Citrus reticulata cv. Kinnow grafted on sour orange rootstock in an orchard located in Jiroft and Kahnooj Agricultural Research Center, Jiroft, Iran. Fruits were harvested on 6th December, 21th December, 5th January, 20th January and 4th February. After cold storage for 30-90 days at 4-6 °C, the fruit was analyzed for quantitative and qualitative characteristics including weight of fruit, peel, meat, pulp and juice, fruit weight loss, pH, total soluble solids (TSS, titratable acidity (TA and TSS/TA. Experiment was arranged in a split plot based on randomized complete block design (RCBD. Data analysis and similarity coefficient (Pearson's method were performed using SPSS.16 software, and means comparison was performed by using Duncan's multiple range test at 1 and 5% probability levels. Results and Discussion. The results showed that the interaction effect of harvesting date and storage period on the weight of the fruit, meat, pulp and juice and TSS, TA and TSS/TA was significant at 1% probability level. Weight of harvested fruits from 6th December to 5th January was constant

  19. Feasibility of extending storage life of sheep-milk cheese using ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Krcal, Z; Prekoppova, J; Slottova, A [Vyskumny Ustav Mliekarensky, Zilina (Czechoslovakia)

    1978-12-01

    3 types of winter full-fat sheep cheese were /sup 60/Co gamma irradiated with doses of 75, 100, 200, and 500 krads, this 48 hours after production. Within a week-long storage the organoleptic properties of the cheeses were repeatedly evaluated. The irradiation was found to significantly reduce all microorganism groups. Doses above 100 krads were found to be unsuitable; cheese taste deteriorated and was defined as ''scorched, strange, impure''. Although during storage these defects disappear, the individual main components of proteins and lipids decompose due to enzyme activity, which results in a rapid deterioration of the product. The dose of 75 krads did not cause any taste defects and storage life was extended by four days as against the stated guarantee period.

  20. Feasibility of extending storage life of sheep-milk cheese using ionizing radiation

    International Nuclear Information System (INIS)

    Krcal, Z.; Prekoppova, J.; Slottova, A.

    1978-01-01

    3 types of winter full-fat sheep cheese were 60 Co gamma irradiated with doses of 75, 100, 200, and 500 krads, this 48 hours after production. Within a week-long storage the organoleptic properties of the cheeses were repeatedly evaluated. The irradiation was found to significantly reduce all microorganism groups. Doses above 100 krads were found to be unsuitable; cheese taste deteriorated and was defined as ''scorched, strange, impure''. Although during storage these defects disappear, the individual main components of proteins and lipids decompose due to enzyme activity, which results in a rapid deterioration of the product. The dose of 75 krads did not cause any taste defects and storage life was extended by four days as against the stated guarantee period. (B.S.)

  1. Quality indicators and shelf life of red octopus (Octopus maya) in chilling storage

    OpenAIRE

    GULLIAN-KLANIAN,Mariel; SÁNCHEZ-SOLÍS,María José; TERRATS-PRECIAT,Montserrat; DELGADILLO-DÍAZ,Mariana; ARANDA,Javier

    2016-01-01

    Abstract There are no precedents concerning the quality of Octopus maya during chilled storage. This study evaluated the shelf life of the red octopus in chilling storage (4oC) and the correlation of the sensory quality index with microbiological counting and the biochemical indicators (hypoxanthine, histamine and volatile amines). A total of 112 whole raw octopi (average weight of 896 g) were randomly selected from seven batches and exposed to 4°C for 18, 24, 48, 72, 84, 96, and 100 h. The h...

  2. Effects of storage media on the green life span and culinary qualities ...

    African Journals Online (AJOL)

    Sawdust (SD) and ricehusk (RH)) used singly or mixed in varying proportions and enclosed in polyethylene were used to study the storage life of mature green plantain fruits. There were two control treatments comprising fruits sealed in polyethylene without plant residue and fruits kept on laboratory shelf. Fruits were sealed ...

  3. Shelf-life extension of Pacific white shrimp using algae extracts during refrigerated storage.

    Science.gov (United States)

    Li, Yingchang; Yang, Zhongyan; Li, Jianrong

    2017-01-01

    Shrimp is a low-fat, high-protein aquatic product, and is susceptible to spoilage during storage. To establish an effective method for the quality control of Pacific white shrimp, the effects of polyphenols (PP) and polysaccharides (PS) from Porphyra yezoensis on the quality of Pacific white shrimp were assessed during refrigerated storage. Pacific white shrimp samples were treated with 5 g L -1 polyphenols, and 8 g L -1 polysaccharides, then stored at 4 ± 1 °C for 8 days. All samples were subjected to measurement of total viable count (TVC), pH, total volatile basic nitrogen (TVB-N), K-value, thiobarbituric acid (TBA), polyphenol oxidase (PPO) activity, and were also assessed by sensory evaluation. The results showed that PP, PS, and the mixture of polyphenols and polysaccharides (PP+PS) could inhibit the increase of total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA) and K-value, and reduce total viable count (TVC) compared with the control group. PP could also inhibit polyphenol oxidase (PPO) activity. Sensory evaluation proved the efficacy of PP and PS by maintaining the overall quality of Pacific white shrimp during refrigerated storage. Moreover, PP+PS could extend the shelf-life of shrimp by 3-4 days compared with the control group. PP+PS could more effectively maintain quality and extend shelf-life during refrigerated storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Studies on Prolonging Storage life and Maintaining Fruit Quality Parameters of Zaghloul Dates

    International Nuclear Information System (INIS)

    ElSalhy, F.T.

    2011-01-01

    This study was carried out to investigate the effect of gamma irradiation ( 1, 2 and 3 kGy) and some natural plant extracts i.e. aloe, ambrosia, cinnamon, chamomile, clove or nigella on prolonging the storage life and some parameters of Zaghloul dates quality under cold storage (5 ±2 C, 90-95 % RH). The weight loss %, decay %, T.S.S. %, total sugars and non-reducing sugars % of Zaghloul dates were increased in most cases with prolonging the storage time. Meanwhile, titratable acidity %, reducing sugars % and tannins content were decreased during storage period (56 days). However, the lowest values of weight loss % and decay % were recorded by aloe extract treatment while the highest values of T.S.S., total sugars, non-reducing sugars, titratable acidity %, reducing sugars % and tannins content were scored by gamma irradiation at 3 kGy. It could be concluded that using irradiation at 3 kGy, aloe, cinnamon or clove can keep the dates (Zaghloul variety) fresh even after 56 days at cold storage with good quality and safety levels of microbes

  5. Study of sorption behavior, shelf life and colour kinetics of vacuum puffed honey powder at accelerated storage conditions.

    Science.gov (United States)

    Devi, K Deepika; Paul, Sanjib Kr; Sahu, Jatindra K

    2016-05-01

    In the study, the storage life of vacuum puffed honey powder at accelerated storage environment (90 % relative humidity and 36 °C) was computed by determining the sticky-point moisture content as the critical parameter of the honey powder. The value of monolayer moisture content in the GAB model was calculated to be 0.081 kg water/kg dry solids by fitting water activity and moisture sorption data. Shelf life of the honey powder was predicted to be 222 days when the powder was packaged in aluminum foil-laminated polyethylene pouches with permeability value of 5.427X10(-8) kg/m(2)//day/Pa. Actual shelf life of honey powder was experimentally determined as 189 days and analysis of mean relative percent derivation modulus (Rd) and root mean square (RMS) established the accuracy and acceptability of the technique for the prediction of shelf life of honey powder. Overall colour deviation pattern followed first order reaction kinetics with rate constant (k1) as 0.037 day(-1). This study revealed overall colour difference of 18.1 till the end of shelf life with drastic change during initial storage period.

  6. Ozone treatment of shell eggs to preserve functional quality and enhance shelf life during storage.

    Science.gov (United States)

    Yüceer, Muhammed; Aday, Mehmet Seçkin; Caner, Cengiz

    2016-06-01

    Eggs have long been recognised as a source of high-quality proteins. Many methods exist to extend shelf life of food and one of them is ozone treatment, which is an emerging technology for disinfecting surfaces in the food industry. This study aimed to extend the shelf life of fresh eggs using gaseous ozone treatments at concentrations of 2, 4 and 6 ppm with exposure times of 2 and 5 min during storage for 6 weeks at 24 °C. The effect of the treatments on interior quality and functional properties of eggs is also reported. Ozone concentration and exposure time significantly affected the Haugh unit (HU), yolk index, albumen pH, relative whipping capacity (RWC), and albumen viscosity of eggs during the storage. Control eggs had the highest albumen pH and lowest albumen viscosity. Attributes such as albumen pH and RWC of eggs exposed to ozone treatments were better than the control samples. The measurement results showed that ozone concentration at 6 ppm and exposure time of 5 min can be applied to fresh eggs and extend shelf life up to 6 weeks at 24 °C storage period. Ozone treatments helped to maintain egg quality for a longer time. Ozone concentrations at 2 and 4 ppm showed promising results in maintaining internal quality and functional properties of fresh eggs during storage. Ozone at high concentration (6 ppm) caused a detrimental effect on eggshell quality. As a result, this study demonstrated that ozone treatments of 2, and especially 4 and 6 ppm concentration maintained eggshell quality during the storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Safe extension of red blood cell storage life at 4{degree}C

    Energy Technology Data Exchange (ETDEWEB)

    Bitensky, M.; Yoshida, Tatsuro

    1996-04-01

    The project sought to develop methods to extend the storage life of red blood cells. Extended storage would allow donor to self or autologous transfusion, expand and stabilize the blood supply, reduce the cost of medical care and eliminate the risk of transfusion related infections, including a spectrum of hepatitides (A, B and C) and HIV. The putative cause of red blood cell spoilage at 4 C has been identified as oxidative membrane damage resulting from deoxyhemoglobin and its denaturation products including hemichrome, hemin and Fe{sup 3+}. Trials with carbon monoxide, which is a stabilizer of hemoglobin, have produced striking improvement of red blood cell diagnostics for cells stored at 4 C. Carbonmonoxy hemoglobin is readily converted to oxyhemoglobin by light in the presence of oxygen. These findings have generated a working model and an approach to identify the best protocols for optimal red cell storage and hemoglobin regeneration.

  8. Hydrogen sulfide extends the postharvest life and enhances antioxidant activity of kiwifruit during storage.

    Science.gov (United States)

    Zhu, Liqin; Wang, Wei; Shi, Jingying; Zhang, Wei; Shen, Yonggen; Du, Huaying; Wu, Shaofu

    2014-10-01

    Exogenous hydrogen sulfide (H₂S) treatment can prolong the postharvest life of cut flowers and strawberries. Little work has been done to explore the effects of H₂S on respiratory climacteric fruits such as kiwifruits during storage. Therefore the aim of the present study was to evaluate the effects of H₂S treatment at concentrations of 15–1000 µmol L⁻¹ on the postharvest life of kiwifruit during 25 °C storage and the role of H₂S in regulating the antioxidant defensive system of kiwifruit. Treatments with 45 and 90 µmol L⁻¹ H₂S significantly inhibited the increase in soluble sugar content and the decrease in vitamin C (Vit C), chlorophyll content and firmness, inhibited ethylene production and both superoxide production rate (O(·2)⁻) and hydrogen peroxide content. Kiwifruits with 45 and 90 µmol L⁻¹ H₂S exhibited significantly higher activities of superoxide dismutase, catalase and peroxidase. Treatment with 180 µmol L⁻¹ H₂S promoted the ripening of kiwifruits. Treatments with 45 and 90 µmol L⁻¹ H₂S could delay the maturation and senescence of kiwifruits and maintain higher titratable acid (TA) and Vit C during eating-ripe storage by inhibiting ethylene production, improving protective enzyme activities and decreasing the accumulation of reactive oxygen species to protect the cell membrane during storage. © 2014 Society of Chemical Industry.

  9. Quality indicators and shelf life of red octopus (Octopus maya in chilling storage

    Directory of Open Access Journals (Sweden)

    Mariel GULLIAN-KLANIAN

    2016-01-01

    Full Text Available Abstract There are no precedents concerning the quality of Octopus maya during chilled storage. This study evaluated the shelf life of the red octopus in chilling storage (4oC and the correlation of the sensory quality index with microbiological counting and the biochemical indicators (hypoxanthine, histamine and volatile amines. A total of 112 whole raw octopi (average weight of 896 g were randomly selected from seven batches and exposed to 4°C for 18, 24, 48, 72, 84, 96, and 100 h. The histamine concentration (91.7%, followed by the counts of psychrotrophic bacteria (5.5% and hypoxanthine (2.2%, were the predictors from the redundancy analysis that better explained the changes taking place during the chilling hours. After 72 h of chilling, the microbial count was determined to be log 4.7 CFU/g, and the octopus samples were classified as B quality (minor sensory quality defects based on the sensory quality scale. Although the samples were not classified as unacceptable at 100 h of refrigeration by the sensory index, the level of histamine reached the defect action level (5 mg/100 g as ruled by the International Food Safety Authorities. The shelf life of the red octopus in chilling storage was predicted to be 119 h.

  10. Effects of Edible Chitosan Coating on Quality and Increasing Storage Life of Cucumber cv.

    Directory of Open Access Journals (Sweden)

    M. Ghasemi Tavallaiy

    2015-06-01

    Full Text Available Chitosan, is non-toxic, biodegradable and biocompatible material, which can be used as edible coatings to maintain quality and enhance postharvest life of fruits and vegetables. In this study, the effect of chitosan at 0, 0.5, 1 and 2% concentrations on storage life of cucumber cv. "Zomorod" was investigated. After treatment and keeping in an incubator at 12 °C and 90% relative humidity, the fruits were assessed in 5-days intervals to determine parameters such as firmness, weight loss, vitamin C, titratable acidity, soluble solids and chlorophyll content. Experiment was performed as a split-plot design in time in a completely randomized design with three replications. The results of the experiment showed that chitosan coating, had a significant effect on all traits except titrable acidity. The lowest weight loss and the highest firmness were recorded with 1% chitosan treatment which significantly differed from the control. It is appeared that chitosan coatings could be used to increase the storage life of cucumber fruit and to maintain its quality for a longer period.

  11. Second life battery energy storage system for enhancing renewable energy grid integration

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Saez-de-Ibarra, A.; Martinez-Laserna, E.

    2015-01-01

    of a second life battery energy storage system (SLBESS) and secondly, to obtain the power exchange and battery state of charge profiles during the operation. These will constitute the cycling patterns for testing batteries and studying the ageing effect of this specific application. Real data from the Spanish...... electricity market for a whole year are used for validating the results....

  12. Suitability of Dukat strawberries for studying effects on shelf life of irradiation combined with cold storage

    International Nuclear Information System (INIS)

    Zegota, H.

    1988-01-01

    A new Dukat variety of strawberries was used to study the effect of irradiation combined with cold storage on their shelf life and chemical composition. Strawberries, with or without stems, were irradiated with a dose of 2.5 or 3.0 kGy within 6-10 or 20-24 h after harvesting. Results of the sensory evaluation showed that the minimum storage time for the fruits could be extended by a minimum of 9 days. If the time between harvest and irradiation was shorter, better results for storage experiments were obtained. Fruits with stems were more suitable for cold storage after irradiation than those without stems. Irradiation of strawberries did not change the titratable acidity and content of the reducing sugars. Colour intensity and ascorbic acid levels decreased in proportion to the absorbed dose and storage time. (orig.)

  13. Shelf-life extension of packed mushroom (Agaricus sp.) by a combination of gamma radiation and low temperature storage

    International Nuclear Information System (INIS)

    Gautam, S.; Sharma, Arun; Thomas, Paul

    1997-01-01

    Gamma irradiation to a dose of 2 kGy coupled with storage at 10 degC was found to provide 2-3 fold enhancement in the shelf-life of button mushrooms with reduced energy requirement for storage. The study shows possible commercial application of this technology. (author). 6 refs., 3 figs

  14. Life Prediction of Spent Fuel Storage Canister Material

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Ronald

    2018-04-16

    The original purpose of this project was to develop a probabilistic model for SCC-induced failure of spent fuel storage canisters, exposed to a salt-air environment in the temperature range 30-70°C for periods up to and exceeding 100 years. The nature of this degradation process, which involves multiple degradation mechanisms, combined with variable and uncertain environmental conditions dictates a probabilistic approach to life prediction. A final report for the original portion of the project was submitted earlier. However, residual stress measurements for as-welded and repair welds could not be performed within the original time of the project. As a result of this, a no-cost extension was granted in order to complete these tests. In this report, we report on the results of residual stress measurements.

  15. Extension of raw watermelon juice shelf-life up to 58days by hyperbaric storage.

    Science.gov (United States)

    Lemos, Álvaro T; Ribeiro, Ana C; Fidalgo, Liliana G; Delgadillo, Ivonne; Saraiva, Jorge A

    2017-09-15

    Hyperbaric storage (HS) of raw watermelon juice, at 50, 62.5 and 75MPa, at temperatures of 10, 15 and ≈25°C (room temperature, RT), was studied to evaluate shelf-life comparatively to refrigeration (RF, 4°C). Generally, RF caused an increase of microbial loads to values ≥6.0logCFU/mL after 7days of storage. Contrarily, HS at 62.5/75MPa (15°C) showed a reduction of initial loads, by at least 2.5logCFU/mL, up to 58days, while pH and colour values did not changed under these HS conditions. Additionally, the combination of a lower temperature with HS has beneficial effects to control microbial development, particularly for the lower pressure studied (50MPa/10°C). In conclusion, HS increased watermelon juice shelf-life for at least 58days, indicating a great potential for future RF replacement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The influence of ionizing radiation on the ripening and storage life of some tropical fruits

    International Nuclear Information System (INIS)

    Kovacs, J.; Tengumnuay, Ch.

    1972-01-01

    The tests extended to the weight loss, changes in the vitamin C content and in the organoleptic properties of fruit irradiated up to 200 krad as well as to the determination of the ripening and rotting indices. Radiation doses had no effect on the vitamin C content. Investigation of papaya. A certain change was observed in the organoleptic properties of the irradiated fruit. For an improved storage life with preserved quality a storage temperature of 18 0 C and irradiation with 50 and 75 krad radiation dose were found to be the most favourable. Investigation of mango. In course of the storage temperature experiments the irradiated and control fruits were stored at 15 0 C, 18 0 and 22 0 C and it was found that a temperature of 18 0 C and a radiation dose of 40 krad will lead to the most favourable organoleptic and storage properties. Investigation of rambutan. Higher radiation doses, e.g. 100 krad, are more favourable from the aspect of extended storage life of rambutan than lower doses. After 8 days storage the weight loss of samples which had been irradiated with 100 krad was 15% less than that of the controls. Radiation doses had no effect on the reducing sugar content of the rambutan samples. A slight decrease in titratable acidity was found in the stored irradiated rambutan samples. The rotting index of the control sample of the Pink rambutan variety was 40% after 10 days and 100% after 16 days, while after 18 days the rotting index of samples irradiated with 50 krad was only 50% and of those irradiated with 60 krad not more than 30%. Longan investigation. The most favourable change in texture was observed on samples irradiated with high doses and then stored. No significant difference was found between the reducing sugar contents and acidity values as function of the storage period. During 15 days storage at 18 0 C the rotting indices reached, in case of low radiation doses, 100%, while samples irradiated with 150 and 200 krad, respectively, and stored for 30

  17. Modified atmosphere packaging extending the storage life of 'douradão' peach

    Directory of Open Access Journals (Sweden)

    Ligia Regina Radomille de Santana

    2010-12-01

    Full Text Available 'Douradão' peach is a perishable product and when cold stored is subject to chilling injury. The objective of the experiment was to evaluate the effect of modified atmosphere packaging (MAP and cold storage on quality and storage life of these peaches. Fruits were packed in polypropylene (PP trays and placed inside low density polyethylene (LDPE bags (30, 50, 60, 75 μm thickness with active modified atmosphere (10 kPa CO2 + 1.5kPa O2, balance N2. The control was made with peaches held in nonwrapped PP trays. Fruits were kept at 1 ± 1 °C and 90 ± 5% relative humidity (RH for 28 days and CO2 and O2 within packages was monitored every two days. After 14, 21 and 28 days, samples were withdrawn from MAP and kept in air at 25 ± 1 °C and 90 ± 5% RH for ripening. On the day of removal from the cold storage and after 4 days, peaches were evaluated for weight loss, decay incidence, flesh firmness, woolliness incidence, soluble solids content (SSC, titratable acidity (TA and juice content. The results showed that MAP had influence on reducing weight loss and prevented postharvest decay. MAP of 1-2 kPa O2 and 3-6 kPa CO2 at 1 °C (from 50 and 60 μm LDPE films were effective for keeping good quality of 'Douradão' peaches during 28 days of storage, the ripe fruits showed reduced incidence of woolliness, adequate juiciness and flesh firmness. Packages of 30 and 75 μm LDPE films were ineffective for reducing woolliness during cold storage. MAP fruits showed lower SSC and no relevant effect on TA. Control fruits did not present marketable conditions after 14 days of cold storage.

  18. Quality changes of long-life foods during three-month storage at different temperatures

    Directory of Open Access Journals (Sweden)

    Zuzana Bubelová

    2017-01-01

    Full Text Available The aim of this study was to describe quality changes of eight long-life foods (instant potato purée with milk, instant goulash soup, canned white-type cheese, pre-baked baguette, szeged goulash meal-ready-to-eat, canned chicken meat, pork pate and canned tuna fish during three-month storage at 4 different temperatures (-18 °C, 5 °C, 23 °C and 40 °C. These temperatures were chosen to simulate various climatic conditions in which these foods could be used to ensure the boarding during crisis situations and military operations to provide high level of sustainability. Foods were assessed in terms of microbiological (total number of aerobic and/or facultative anaerobic mesophilic microorganisms, number of aerobic and anaerobic spore-forming microorganisms, number of enterobacteria, number of yeasts and/or moulds, chemical (pH-values, dry matter, fat, crude protein, ammonia and thiobarbituric acid reactive substances contents, texture profile (hardness and sensory (appearance, consistency, firmness, flavour and off-flavour analyses. Microbiological analyses showed expected results with the exception of szeged goulash, pork pate and tuna fish, which, although being sterilised products, contained some counts of bacteria. The decrease of pH-values and increase of dry matter, ammonia and thiobarbituric acid reactive substances contents were observed during the storage of all foods due to prolonged storage time and/or elevated storage temperature. Furthermore, according to texture profile analysis, hardness of cheese and baguette rose as a result of both storage temperature and time. Finally, the highest storage temperature (40 °C resulted in a deterioration of sensory quality (especially flavour of most foods; the exceptions were pate and tuna fish which retained good sensory quality throughout 3-month storage at all temperatures.

  19. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage

    KAUST Repository

    Pasta, Mauro; Wessells, Colin D.; Huggins, Robert A.; Cui, Yi

    2012-01-01

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles. © 2012 Macmillan Publishers Limited. All rights reserved.

  20. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage

    KAUST Repository

    Pasta, Mauro

    2012-10-23

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles. © 2012 Macmillan Publishers Limited. All rights reserved.

  1. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corp.

    2017-08-25

    Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  2. General safety guidelines for looking for a low mass activity-long life waste storage site

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of this document is to define general guidelines which must be followed during the stages of search for a site and stages of design of a storage facility for low activity-long life radioactive wastes, in order to ensure its safety after closure. After having specified the considered wastes, geological shapes, and situations, this document defines the fundamental objective and the associated criteria (protection against chemical risk, radioprotection). It presents the design aspects related to safety (safety principles and functions, waste packages, public works engineering, geological environment, storage concepts). The last part deals with the safety demonstration after site closure which includes the control of some components, the assessment of disturbances in the storage facility or due to its presence, the taking of uncertainty and sensitivity studies into account, the influence of natural events

  3. Viscoelastic response of HTPB based solid fuel to horizontal and vertical storage slumping conditions and it's affect on service life

    International Nuclear Information System (INIS)

    Nawaz, Q.; Nizam, F.

    2011-01-01

    Frequent use of solid fuels as thrust generating energy source in modern day space vehicle systems has created a need to assess their serviceability for long term storage under various conditions. Solid fuel grain, the most important part of any solid fuel system, responds visco elastically to any loading condition. For the assessment of the service life of any solid fuel system, the solid fuel grain has to be structurally evaluated in applied storage conditions. Structural integrity of the grain is exceptionally significant to guarantee the successful operation of the solid fuel system. In this work, numerical simulations have been performed to assess the mechanical stresses and strains induced in an HTPB based solid fuel grain during service life employing ABAQUS standard FEA software using 4-node bilinear quadrilateral elements. For finite element analysis (FEA), typical 2-D and p/nth axisymmetric section of 5-point (n) star grain geometry is considered. Mechanical loads include the horizontal or vertical 1-g (solid fuel weight) storage condition. The simulation results are compared with the analytical results for the same grain geometry. Analytically measured slump deflections in grain segment at various storage times have been found in good relation with the FEA based simulation results. This proves the validity of the procedure adopted and is helpful in assessment of the service life of solid fuel systems. (author)

  4. Microbial profiles of commercial, vacuum-packaged, fresh pork of normal or short storage life.

    Science.gov (United States)

    Holley, Richard A; Peirson, Michael D; Lam, Jocelyn; Tan, Kit Bee

    2004-12-01

    The microbial ecology of fresh vacuum-packed pork cuts during storage at -1.5 degrees C for up to 45 days was examined to characterize rates of microbial growth and pH changes in commercially prepared products of normal storage quality. Pork loins in commercial distribution with odour defects were also studied to determine a possible cause of the defects and avoid future problems. In addition, microbial profiles of pork cuts from two plants were compared, after storage for 25 days at -1.5 degrees C, to identify possible reasons for differences in the storage life of product from the plants. The effects of a change in sanitation procedures on the microbial populations of products stored for 25 days were also studied. With normal product, microbial growth in different packages progressed at different rates, reflecting differences in initial levels of bacterial contamination. All samples in the study reached 8 weeks without apparent organoleptic change and samples carried 5.8+/-1.2 log bacteria cm(-2) (mean+/-S.D.). The flora of loins with the odour defect were predominately lactic acid bacteria (LAB) and carnobacteria, but they contained large fractions of Enterobacteriaceae spoiled products, but species of Enterobacteriaceae and lactic acid bacteria could have contributed to spoilage. Comparison of microbial groups present in 16 other cuts, half from each of two commercial plants, which were stored for 25 days at -1.5 degrees C, showed that larger fractions of Enterobacteriaceae were present in samples from the plant having difficulty achieving the desired storage life. Additional bacterial samples from 12 cuts supplied by the latter plant obtained after adoption of an acid sanitizer step in the plant cleaning regimen, and also stored for 25 days at -1.5 degrees C, yielded few Enterobacteriaceae, Aeromonas or Shewanella. Use of an acid sanitizer in plant cleaning may be a means of controlling alkali-tolerant bacteria such as Aeromonas or Shewanella which can

  5. Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life

    International Nuclear Information System (INIS)

    Howard, Rob; Van den Akker, Bret

    2014-01-01

    Dry cask storage systems are deployed at nuclear power plants for used nuclear fuel (UNF) storage when spent fuel pools reach their storage capacity and/or the plants are decommissioned. An important waste and materials disposition consideration arising from the increasing use of these systems is the management of the dry cask storage systems' materials after the UNF proceeds to disposition. Thermal analyses of repository design concepts currently under consideration internationally indicate that waste package sizes for the geologic media under consideration may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded into the dry storage canisters currently in use. In the United States, there are already over 1650 of these dry storage canisters deployed and approximately 200 canisters per year are being loaded at the current fleet of commercial nuclear power plants. There is about 10 cubic meters of material from each dry storage canister system that will need to be dispositioned. The concrete horizontal storage modules or vertical storage overpacks will need to be reused, re-purposed, recycled, or disposed of in some manner. The empty metal storage canister/cask would also have to be cleaned, and decontaminated for possible reuse or recycling or disposed of, likely as low-level radioactive waste. These material disposition options can have impacts of the overall used fuel management system costs. This paper will identify and explore some of the technical and interface considerations associated with managing the dry cask storage system materials. (authors)

  6. Studies and research concerning BNFP: life of project operating expenses for away-from-reactor (AFR) spent fuel storage facility. Final report

    International Nuclear Information System (INIS)

    Shallo, F.A.

    1979-09-01

    Life of Project operating expenses for a licensed Away-From-Reactor (AFR) Spent Fuel Storage Facility are developed in this report. A comprehensive business management structure is established and the functions and responsibilities for the facility organization are described. Contractual provisions for spent fuel storage services are evaluated

  7. Development of a software interface for optical disk archival storage for a new life sciences flight experiments computer

    Science.gov (United States)

    Bartram, Peter N.

    1989-01-01

    The current Life Sciences Laboratory Equipment (LSLE) microcomputer for life sciences experiment data acquisition is now obsolete. Among the weaknesses of the current microcomputer are small memory size, relatively slow analog data sampling rates, and the lack of a bulk data storage device. While life science investigators normally prefer data to be transmitted to Earth as it is taken, this is not always possible. No down-link exists for experiments performed in the Shuttle middeck region. One important aspect of a replacement microcomputer is provision for in-flight storage of experimental data. The Write Once, Read Many (WORM) optical disk was studied because of its high storage density, data integrity, and the availability of a space-qualified unit. In keeping with the goals for a replacement microcomputer based upon commercially available components and standard interfaces, the system studied includes a Small Computer System Interface (SCSI) for interfacing the WORM drive. The system itself is designed around the STD bus, using readily available boards. Configurations examined were: (1) master processor board and slave processor board with the SCSI interface; (2) master processor with SCSI interface; (3) master processor with SCSI and Direct Memory Access (DMA); (4) master processor controlling a separate STD bus SCSI board; and (5) master processor controlling a separate STD bus SCSI board with DMA.

  8. Shelf Life Extension of Tomato Paste Through Organoleptically Acceptable Concentration of Betel Leaf Essential Oil Under Accelerated Storage Environment.

    Science.gov (United States)

    Basak, Suradeep

    2018-05-01

    This study was attempted with two objectives: (1) to find an acceptable concentration of betel leaf essential oil (BLEO) based on sensory evaluation that can be employed in tomato paste; (2) to evaluate the effect of the acceptable concentration of BLEO in the paste during accelerated storage under 89 ± 1.2% RH at 39 ± 1 °C. Linguistic data obtained from sensory evaluation of tomato paste treated with 4 different concentrations of BLEO were analyzed using fuzzy logic approach. The organoleptically acceptable concentration was determined to be 0.25 mg/g of BLEO in tomato paste. The effect of the selected concentration of BLEO on different physicochemical and microbial attributes of tomato paste during accelerated storage was studied. Untreated tomato paste was found to have 12% less total antioxidant capacity than treated paste at the end of storage. Based on a * /b * value in CIELAB color space, the BLEO treated paste efficiently extended the shelf life by 14 days with respect to untreated paste samples under accelerated storage conditions. BLEO comes with a tag contributing to green consumerism, and its application as food preservative is no less than a value addition to the product. Essential oil is considered to have promising potential as an alternative food preservative, and its use is practically possible if they could overcome the sensory barrier, while retaining the preservative potency. The importance of identifying the sensory attributes for commercial success of essential oil treated food product was considered in this study. It contributes to the potency of organoleptically acceptable concentration of BLEO in shelf life extension of tomato paste under accelerated storage conditions. At industrial level, the estimated shelf life of treated tomato paste can be increased by incorporating more hurdles alongside BLEO. © 2018 Institute of Food Technologists®.

  9. Synthesis long life storage studies surface storage of vitrified wastes

    International Nuclear Information System (INIS)

    Beziat, A.; Breton, E.; Ranc, G.; Gaillard, J.P.; Lagrave, H.; Hollender, F.; Jourdain, F.; Piault, E.; Garnier, J.; Lamare, V.; Duret, B.; Helie, M.; Ferry, C.; Mijuin, D.; Gagnier, E.

    2004-01-01

    This document is realized in the framework of the axis 3 of the law of 1991 on the radioactive wastes management. It justifies the choices concerning long time surface storage installation of vitrified wastes, called high activity wastes. The long time of the installation would reach 300 years at the maximum. These wastes represent 1 % at the maximum, of radioactive wastes in France but 95 % of the whole radioactivity. Three main objectives were followed: provide a permanent containment of radionuclides; give the possibility of wastes containers retrieval at all the time; minimize the maintenance and the control. The results allow to conclude that the long time surface storage of high activity wastes is feasible. (A.L.B.)

  10. Pesticidal seed coats based on azadirachtin-A: release kinetics, storage life and performance.

    Science.gov (United States)

    Nisar, Keyath; Kumar, Jitendra; Arun Kumar, M B; Walia, Suresh; Shakil, Najam A; Parsad, Rajender; Parmar, Balraj S

    2009-02-01

    Infestation of seeds by pests during storage leads to deterioration in quality. Seed coating is an effective option to overcome the menace. Unlike synthetic fungicidal seed coats, little is known of those based on botanicals. This study aims at developing azadirachtin-A-based pesticidal seed coats to maintain seed quality during storage. Polymer- and clay-based coats containing azadirachtin-A were prepared and evaluated for quality maintenance of soybean seed during storage. Gum acacia, gum tragacanth, rosin, ethyl cellulose, hydroxyethyl cellulose, polyethyl methacrylate, methyl cellulose, polyethylene glycol, polyvinyl chloride, polyvinyl acetate, polyvinyl pyrrolidone and Agrimer VA 6 polymers and the clay bentonite were used as carriers. The time for 50% release (t(1/2)) of azadirachtin-A into water from the seeds coated with the different coats ranged from 8.02 to 21.36 h. The half-life (T(1/2)) of azadirachtin-A in the coats on seed ranged from 4.37 to 11.22 months, as compared with 3.45 months in azadirachtin-A WP, showing an increase by a factor of nearly 1.3-3.3 over the latter. The coats apparently acted as a barrier to moisture to reduce azadirachtin-A degradation and prevented proliferation of storage fungi. Polyethyl methacrylate, polyvinyl acetate and polyvinyl pyrrolidone were significantly superior to the other polymers. Azadirachtin-A showed a significant positive correlation with seed germination and vigour, and negative correlation with moisture content. Effective polymeric carriers for seed coats based on azadirachtin-A are reported. These checked seed deterioration during storage by acting as a barrier to moisture and reduced the degradation of azadirachtin-A.

  11. Individual shrink wrapping extends the storage life and maintains the quality of pomegranates (cvs. 'Mridula' and 'Bhagwa') at ambient and low temperature.

    Science.gov (United States)

    Sudhakar Rao, D V

    2018-01-01

    The present investigation was carried out to study the response of two commercial pomegranate cultivars to individual shrink wrapping in extending the storage life and quality maintenance. Pomegranate fruits ('Mridula' and 'Bhagwa') were individually shrink wrapped using three semi-permeable films (Cryovac ® BDF-2001, D-955 and normal LDPE) and stored at ambient (25-32 °C and 49-67% RH) and low temperature (8 °C and 75-80% RH). Shrink wrapping greatly reduced weight loss in both cultivars irrespective of the film used and storage temperature. Weight loss in shrink wrapped (D-955 film) 'Mridula' and 'Bhagwa' after 1 month storage at ambient temperature was respectively 1.40 and 1.05%, when compared to 22.92 and 22.53% in non-wrapped fruits. After 3 months at 8 °C, shrink wrapped 'Mridula' and 'Bhagwa' fruits lost only 0.43 and 0.68% weight respectively, compared to 17.23 and 21.67% in non-wrapped ones. Shrink wrapping significantly reduced the respiration rate at ambient temperature and the response varied with variety and film used. Shrink wrapped fruits of both cultivars retained the original peel colour (Hunter h∘ and C* values) to a maximum extent during 3 months storage at 8 °C and shelf-life period at ambient temperature. Irrespective of variety and film, shrink wrapping maintained the peel thickness and peel moisture content, significantly much higher than non-wrapped fruits at both temperatures. Compared to 'Mridula' cultivar, 'Bhagwa' responded well to shrink wrapping during prolonged storage at both temperatures with better maintenance of quality in terms of appearance, colour, juice content, TSS, acidity, sugars and sensory attributes. At ambient temperature, shrink wrapping with D-955 or LDPE film extended the storage life of 'Mridula' and 'Bhagwa' for 3 weeks and 1 month respectively, whereas at 8 °C both could be stored for 3 months with 3 days of shelf life.

  12. Influence of gamma irradiation and low temperature storage on the quality and shelf life of squid (Doryteuthis sibogae

    Directory of Open Access Journals (Sweden)

    Manjanaik, B.

    2017-08-01

    Full Text Available Irradiation is considered as an efficient method for the reduction of microorganisms in food. It has been used to improve the safety and shelf life of food products. The present investigation is aimed at studying the influence of gamma irradiation (3 and 5 kGy and subsequent storage at refrigeration temperature (4oC on the chemical, microbial qualities and extended shelf life of squid (Doryteuthis sibogae. The total volatile base nitrogen (TVB-N and trimethyl amine nitrogen values (TMA-N of the irradiated squid samples significantly decreased in comparison with the control (non-irradiated stored at 4oC. The thiobarbituric acid values for the irradiated squid was significantly lower than of the non-irradiated samples stored at 4oC (p<0.05. The pH value of the squid was affected significantly by both, irradiation dose and storage temperature (p<0.05. The total microbial load for the non-irradiated squid samples was higher than those of irradiated samples at 4oC temperature. The results revealed that the combination of irradiation and refrigerated storage resulted in a significant reduction of microbial growth and stabilized the biochemical characteristics of squid.

  13. Microbial Life in an Underground Gas Storage Reservoir

    Science.gov (United States)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  14. High pressure treatment changes spoilage characteristics and shelf life of Pacific oysters ( Crassostrea gigas) during refrigerated storage

    Science.gov (United States)

    Cao, Rong; Zhao, Ling; Liu, Qi

    2017-04-01

    The effects of high pressure (HP) treatment on spoilage characteristic and shelf life extension of Pacific oysters ( Crassostrea gigas) during refrigerated storage were studied. Results showed that HP treatment of 275 MPa for 3 min or 300 MPa for 2 min could achieve 100% full release of oyster adductor muscle, pressures higher than 350 MPa caused excessive release as the shells of oysters were broken, thus use of higher pressures should be cautious in oyster processing industry because of its adverse impact on the appearance of shells. HP treatment (300 MPa, 2 min) was proper for the shucking of Pacific oyster ( Crassostrea gigas) in China. This treatment caused no organoleptic disadvantage. Moreover, HP treatment resulted in obvious differences in biochemical spoilage indicators (pH, TVB-N and TBARS) changes and volatile compounds profile determined by electronic nose during storage. HP treatment (300 MPa, 2 min) also led to a reduction of aerobic bacterial count (APC) by 1.27 log cycles. Furthermore, the APC values of oysters treated by HP were always lower than those of the control samples during storage. Based on the organoleptic, biochemical and microbiological indicators, shelf life of 6-8 d for control and 12 d for HP-treated oysters could be expected. HP treatment showed great potential in oyster processing and preservation.

  15. Some wind-energy storage options

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, F R; Ljungstroem, O [ed.

    1976-01-01

    Systems capable of storing energy generated from the wind can be categorized in terms of electrochemical energy storage systems, thermal energy storage systems, kinetic energy systems, and potential energy systems. Recent surveys of energy storage systems have evaluated some of these available storage technologies in terms of the minimum economic sizes for utility applications, estimated capital costs of these units, expected life, dispersed storage capabilities, and estimated turn-around efficiencies of the units. These are summarized for various types of energy storage options.

  16. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage

    International Nuclear Information System (INIS)

    Odeh, Naser A.; Cockerill, Timothy T.

    2008-01-01

    The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO 2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO 2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO 2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO 2 capture is employed, the increase in other air pollutants such as NO x and NH 3 leads to higher eutrophication and acidification potentials

  17. Commercial storage and marketing trials of irradiated Onions

    International Nuclear Information System (INIS)

    Nouchpramool, K.; Charoen, S.; Prachasitthisak, Y.

    1997-06-01

    Pilot scale storage tests were carried out in co-operation with commercial onions traders in the years 1986 and 1987 to evaluate the efficacy of irradiation for sprout inhibition of onions under actual commercial stored in commercial cold storage at 1-10 degrees C and 70-90% relative humidity. The results show that irradiation reduce sprouting in onions by 11 and 40 per cent and weight loss by 3 and 5 per cent after 5 and 6 months of storage, respectively. Storage losses are minimum when radiation is applied within two weeks of harvest. A maximum storage life of six months as against five months for controls is attained. Post cold storage life at ambient temperature for irradiated onions after withdrawal from cold storage is one week longer than that of non-irradiated controls. The radio inhibition process is technically feasible and economically justified as a profit can be made during the extended storage period. Marketing trials of irradiated onions conducted during and after termination of storage revealed no adverse comments from consumers and retailers/wholesalers. Wholesalers.retailers and consumers preferred irradiated onions because of their better physical quality and longer marketable life

  18. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting

    DEFF Research Database (Denmark)

    Brandao, Miguel; Levasseur, Annie; Kirschbaum, Miko U. F.

    2013-01-01

    . However, there is still no overall consensus on the most appropriate ways of considering and quantifying it. Method: This paper reviews and discusses six available methods for accounting for the potential climate impacts of carbon sequestration and temporary storage or release of biogenic carbon in LCA...... footprinting (CF) are increasingly popular tools for the environmental assessment of products, that take into account their entire life cycle. There have been significant efforts to develop robust methods to account for the benefits, if any, of sequestration and temporary storage and release of biogenic carbon...

  19. Enhancing post harvest storage life of peach fruits using calcium chloride

    International Nuclear Information System (INIS)

    Sohail, M.; Afridi, S.R.; Khan, R.U.

    2013-01-01

    Summary: The present study was conducted to enhance the post harvest storage life of peach fruits using calcium chloride treatments. CaCl/sub 2/ solution at 1 % (T1 ), 2 % (T2 ) and 3 % (T3) were prepared and the fruits were dipped for five minutes, while (To) was left with out calcium chloride treatment as control. The fruits were packed in corrugated soft board cartons and stored at ambient temperature (35 degree C + 2) for a total period of 15 days. The physicochemical analysis such as weight loss, fruit firmness, total soluble solids (TSS), decay index, titratable acidity, ascorbic acid content and overall sensory acceptability were determined at an interval of three days up to the successful completion of the study. A significant decrease was observed in fruit firmness (1.8-0.3 kg), % acidity (0.950- 0.538), ascorbic acid content (7.06-4.67 mg/100g) and overall sensory acceptability (8.4-2.3), while a significant increase was observed in TSS (8.2-11.9 degree brix), decay index (0-72.64 %) and % weight loss (0-11.3) during storage. Results showed that one and two percent calcium chloride treated fruits have little improvement while fruits treated with 3 % calcium chloride were found to be most acceptable as per physico-chemical analyses and over all sensory acceptability result. (author)

  20. Influence of gamma irradiation, cold storage and pulsing on post harvest life and respiration rate of 'golden gate' cut roses

    International Nuclear Information System (INIS)

    Palanikumar, S.; Vinod Kumar; Bhattacharjee, S.K.; Pal, Madan

    2003-01-01

    Gamma irradiation at 0.025 kGy increased the respiration rate of 'Golden Gate' cut roses. The irradiation followed by cold storage (at 4 deg C) brought down the respiration rate after storage duration of 3 days. The respiration rate was found maximum in the sucrose (3% ) pulsed flowers immediately after pulsing. However, the rate of respiration is decreased in all the treatments. The irradiated flowers recorded lowest amount of respiration at senescence and the vase life was maximum in these flowers. (author)

  1. Effect of chitosan on shelf life of restructured fish products from pangasius (pangasianodon hypophthalmus) surimi during chilled storage.

    Science.gov (United States)

    Jeyakumari A; George Ninan; Joshy C G; Parvathy U; Zynudheen A A; Lalitha K V

    2016-04-01

    In the present study, restructured products were prepared from pangasius surimi and their qualities were analysed under chilled storage. Pangasius surimi had 75.82 % moisture, 16.91 % protein, 2.76 % fat and 0.95 % ash. Restructured products were prepared in three different formulations by incorporating corn starch (10 %) and chitosan (0.75 %). Formulation containing only corn starch (10 %) was served as control. In all the formulations, mono unsaturated fatty acids were higher (45.14 %). The total volatile base nitrogen (TVB-N) showed an increasing trend and it was found to be higher in control (4.8 mg/100 g) on 10(th) day than the chitosan incorporated sample (3.5-4.2 mg/100 g) on 17(th) day during chill storage. Similarly, peroxide value (PV) was found to higher (8.85 milliequivalent of O2/kg) in control than the chitosan incorporated sample (4.5-6.8 milliequivalent of O2/kg) on 10(th) day. All the three formulations had an acceptable level of thiobarbituric acid (TBA) value that ranged between 0.023-0.098 mg of malanoldehyde/kg during chilled storage. Based on the sensory and microbiological analysis, products prepared without chitosan had a shelf life of 10 day whereas, products incorporated with chitosan had an extended shelf life of 17 day.

  2. Ethics and the storage of long-life radioactive wastes

    International Nuclear Information System (INIS)

    Strohl, P.

    1999-01-01

    This article deals with the ethical aspects of nuclear waste storage. The different solutions: transmutation, sub-surface storage and deep geological storage are reviewed from this point of view. Reversibility means for future generations the possibility to recover stored waste packages, this recovery could be motivated by various reasons based on: scientific progress, the valorization of some nuclides, the recovery of energy in spent fuels or the underestimation of a risk in the safety analysis. Reversibility could also be a political argument to convince population repelled by the solution of a definitive choice. It appears that our technological choices do not have to assure both reversibility and definitive storage, this possibility would give to future generations the possibility to do something or to do nothing, it is beyond our moral obligations. (A.C.)

  3. Analysis of shelf-life extension of Asiatic red spot emperor (Lethrinus lentjan) using low dose of gamma rays and evaluation of biomolecular alterations during cold storage

    International Nuclear Information System (INIS)

    Sunith Shine, S.R.; Godwin Wesley, S.; Satheesh, S.; Moses Ezhil Raj, A.

    2012-01-01

    Food irradiation, in combination with good refrigeration and handling practices, provides means to increase fish product shelf-life. Irradiation is effective in reducing microorganisms is known as a good method for inactivating pathogens in food materials. The present work focuses on the effect of the gamma radiation in aspect of finding microbiological, biochemical and sensory attribute over a period of 0 to 60 days of the storage. Variations in pH, FFA, TVBN, TMAN and TBA were observed throughout the storage period, present observation provide a possibility of irradiation treatment up to 6 kGy as a prerequisite for shelf life extension and by the SDS analysis most intense proteins were retained at the end of the cold storage

  4. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  5. Effect of incorporation of natural chemicals in water ice-glazing on freshness and shelf-life of Pacific saury (Cololabis saira) during -18 °C frozen storage.

    Science.gov (United States)

    Luo, Haibo; Wang, Weihua; Chen, Wei; Tang, Haiqing; Jiang, Li; Yu, Zhifang

    2017-12-14

    Microbial spoilage and lipid oxidation are two major factors causing freshness deterioration of Pacific saury (Cololabis saira) during frozen storage. To provide a remedy, the effects of several natural chemicals incorporated alone or in combination in traditional water ice-glazing on the freshness and shelf-life of Pacific saury during frozen storage at -18 °C were investigated. Pacific sauries were subjected to individual quick freezing followed immediately by dipping into cold tap water (control) or solutions containing nisin, chitosan, phytic acid (single-factor experiment) or their combinations ((L 9 (3 4 ) orthogonal experiment) for 10 s at 1 °C and then packaged in polypropylene bags before frozen storage at -18 °C. The storage duration tested was up to 12 months. All ice-glazing treatments with individual chemicals could significantly (P shelf-life of Pacific saury could be extended up to 12 months at -18 °C. The study indicated that the combination treatment with natural chemicals could be commercially utilized to maintain the freshness and prolong the shelf-life of Pacific saury. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Optimization of Vacuum Impregnation with Calcium Lactate of Minimally Processed Melon and Shelf-Life Study in Real Storage Conditions.

    Science.gov (United States)

    Tappi, Silvia; Tylewicz, Urszula; Romani, Santina; Siroli, Lorenzo; Patrignani, Francesca; Dalla Rosa, Marco; Rocculi, Pietro

    2016-10-05

    Vacuum impregnation (VI) is a processing operation that permits the impregnation of fruit and vegetable porous tissues with a fast and more homogeneous penetration of active compounds compared to the classical diffusion processes. The objective of this research was to investigate the impact on VI treatment with the addition of calcium lactate on qualitative parameters of minimally processed melon during storage. For this aim, this work was divided in 2 parts. Initially, the optimization of process parameters was carried out in order to choose the optimal VI conditions for improving texture characteristics of minimally processed melon that were then used to impregnate melons for a shelf-life study in real storage conditions. On the basis of a 2 3 factorial design, the effect of Calcium lactate (CaLac) concentration between 0% and 5% and of minimum pressure (P) between 20 and 60 MPa were evaluated on color and texture. Processing parameters corresponding to 5% CaLac concentration and 60 MPa of minimum pressure were chosen for the storage study, during which the modifications of main qualitative parameters were evaluated. Despite of the high variability of the raw material, results showed that VI allowed a better maintenance of texture during storage. Nevertheless, other quality traits were negatively affected by the application of vacuum. Impregnated products showed a darker and more translucent appearance on the account of the alteration of the structural properties. Moreover microbial shelf-life was reduced to 4 d compared to the 7 obtained for control and dipped samples. © 2016 Institute of Food Technologists®.

  7. Deep reversible storage. Design options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    2010-09-01

    This report aims at presenting a synthesis of currently studied solutions for the different components of the project of deep geological radioactive waste storage centre. For each of these elements, the report indicates the main operational objectives to be taken into account in relationship with safety functions or with reversibility. It identifies the currently proposed design options, presents the technical solutions (with sometime several possibilities), indicates industrial references (in the nuclear sector, in underground works) and comments results of technological tests performed by the ANDRA. After a description of functionalities and of the overall organisation of storage components, the different following elements and aspects are addressed: surface installations, underground architecture, parcel transfer between the surface and storage cells, storage container for medium-activity long-life (MAVL) waste, storage cell for medium-activity long-life waste, handling of MAVL parcels in storage cells, storage container for high-activity (HA) waste, storage cell for HA waste, handling of HA parcels in storage cells, and works for site closing

  8. Postharvest Application of Spermidine Polyamine on the Storage Quality and Vase Life of Mango (Mangifera indica L. in Dipped Conditions

    Directory of Open Access Journals (Sweden)

    Marjan Sadat Hosseini

    2018-03-01

    Full Text Available Introduction: Mango (Mangifera indica is a tropical fruit native to India whose global production in 2014 reached nearly 45 million tones. Mango is a commercially important fruit and improvement in its storage is of special importance. Mango is a Climacteric fruit whose ripening is done by exogenous or endogenous ethylene. In plants, Polyamines such as spermine, spermidine, and putrescine contradict ethylene because of a common precursor (s-adenosyl methionine (SAM. During ripening, different qualitative and nutritional changes occur in the fruit, e. g. changes in color, tissue softening, accumulation of sugars and organic acids, and great changes in taste, flavor, aroma and plant biochemical materials. Fruit ripening is a complicated process, complementary to fruit development, and a start to its senescence. In general, senescence of a fruit is related to loss of membrane lipids, destabilization of membrane matrix, and lipid peroxidation. Recently, naturally active biological products are applied in a large amount for increasing the storage life and quality of the fruits and delaying their senescence.This study was carried out to investigate the effect of different concentrations of spermidine on the quality and vase life of a local mango variety of Minab. Materials and Methods: Healthy fruits, uniform in size, shape, color, and degree of maturity were selected from a mango orchard in Minab and their original physical and chemical characteristics on the first day were measured after washing with water and drying. Statistical analysis of data was done by a general linear model (GLM with SAS (version 9.1 and mean comparisons were performed using Duncan's multiple range test. Treatment solution in the rate of 0, 0.5, 1, and 2 mM spermidine (SIGMA was made and its pH was set to 5 using NaOH. One liter of distilled water was used in the control treatment. The treated samples were immersed in solutions of different concentrations of spermidine just

  9. Life cycle assessment of solar aided coal-fired power system with and without heat storage

    International Nuclear Information System (INIS)

    Zhai, Rongrong; Li, Chao; Chen, Ying; Yang, Yongping; Patchigolla, Kumar; Oakey, John E.

    2016-01-01

    Highlights: • The comprehensive performances of three kinds of different systems were compared through LCA. • The comprehensive results of all systems were evaluated by grey relation theory. • The effects of life span, coal price, and solar collector field cost, among other factors, on the results were explored. - Abstract: Pollutant emissions from coal-fired power system have been receiving increasing attention over the past few years. Integration of solar thermal energy can greatly reduce pollutant emissions from these power stations. The performances of coal-fired power system (S1), solar aided coal-fired power system with thermal storage (S2), and solar aided coal-fired power system without thermal storage (S3) with three capacities of each kind of system (i.e., nine subsystems) were analyzed over the entire life span. The pollutant emissions and primary energy consumptions (PECs) of S1, S2, and S3 were estimated using life cycle assessment (LCA). The evaluation value of global warming potential (GWP), acidification potential (AP), respiratory effects potential (REP) and PEC were obtained based on the LCA results. Furthermore, the system investments were estimated, and grey relation theory was used to evaluate the performance of the three types of systems comprehensively. Finally, in order to find the effect of some main factors on the solar aided coal-fired power system (SACFPS), uncertainty analysis has been carried out. The LCA results show that the pollutant emissions and PEC mainly take place in the fuel processing and operation stages for all three system types, and S2 performs the best among the three systems based on the grey relation analysis results. And the uncertainty analysis shows that with longer life span, the power system have better performance; with higher coal price, the power system will have worse performance; with lower solar collector field cost, the solar aided coal-fired power system will be more profitable than the base

  10. Energy Storage Publications | Transportation Research | NREL

    Science.gov (United States)

    , California. 23 pp.; NREL Report No. PR-5400-60290. Optimal Sizing of Energy Storage and Photovoltaic Power (11) 2017 pp. 1095-1118. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System Prediction Model for Grid-Connected Li-ion Battery Energy Storage System - Preprint Paper Source: Smith

  11. Long vs. short-term energy storage:sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA); Hassenzahl, William V. (,Advanced Energy Analysis, Piedmont, CA)

    2007-07-01

    This report extends earlier work to characterize long-duration and short-duration energy storage technologies, primarily on the basis of life-cycle cost, and to investigate sensitivities to various input assumptions. Another technology--asymmetric lead-carbon capacitors--has also been added. Energy storage technologies are examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. Sensitivity analyses include cost of electricity and natural gas, and system life, which impacts replacement costs and capital carrying charges. Results are presented in terms of annual cost, $/kW-yr. A major variable affecting system cost is hours of storage available for discharge.

  12. Effect of Nano Packaging on Storage Life and Quality Attributes of Elberta Peach

    Directory of Open Access Journals (Sweden)

    Mohammadreza Asghari

    2017-12-01

    Full Text Available Introduction: Asaclimactericfruit, peach has a highrespiration rateandvery lowshelf life. Nowadays theuse ofappropriatepostharvesttechnologiesto increase fruit postharvest lifeis necessary.Use of nanotechnologyis considered asan effective method to increase fruit postharvest life. Nanotechnology isused extensivelyinallstages of production, processing, storage, packagingand transport ofagriculturalproducts.The objective of this study was to investigate the effect of silver and silica nanocomposites, nanosilver and polypropylene containers on shelf-life and preservation of peach qualitative characteristics (Prunuspersicacv. Elberta such as titrable acidity, soluble solids, ascorbic acid, total antioxidant and total phenolics content in cold storage after the harvest. Materials and Methods: To determine the effect of nanopackaging onshelf life andqualitativecharacteristics ofElberta peaches,the experiment was conducted in a factorial based on a completely randomized design with two treatmentsand four replications.The first factor consisted of nanopackagingnanosilver, silver and silica nanocompositesandpolypropylenepackaging, and the second factor was coldstorage periods of15, 30 and 45 daysattemperaturesfrom 0 to0/5 °C and a relative humidityof 85to 95%.In general, the experiment consisted of 36 experimental units, and each includinga container with four Elberta peach fruits.Data were analyzed by using SAS software, and Microsoft Office Excel 2010 software was used to plot the graphs.Duncan's multiple range test was used to compare the means of treatments. Results and Discussion: At the end of the maintenance period, the highest firmness of peach texture was related to nanosilver containers. The main cause of fruit softening is the destruction of cell wall components, especially pectin, which is caused by certain enzymes such as polygalactronase. Whenstorage timeincreased, polypropylene containers showed a higher weight loss compared to

  13. Evaluation of the long-shelf life honey milk As a storage media for preservation of avulsed teeth

    Directory of Open Access Journals (Sweden)

    Ali Nozari

    2013-09-01

    Full Text Available Introduction: Tooth avulsion is defined as the complete displacement of the tooth from its alveolar socket which causes damage to the periodontal ligament structure, cementum, alveolar bone, gingiva, and dental pulp. The purpose of this study was to determine the ability of long-shelf life honey milk to serve as a temporary storage medium for the maintenance of periodontal ligament (PDL cell viability on avulsed teeth. Methods: PDL cells were obtained from premolars extracted for orthodontic purposes which were clinically healthy and had healthy gingiva (i.e. not inflamed.Then, 8×10³ cells were seeded in each well of 96-well plate. and Afterwards treated with long-shelf life milk and honey milk, Hank’s Balanced Salt Solution (HBSS and fresh milk. Different incubation periods were 1, 3, 6, and 9 hours. Dulbecco’s Modified Eagle Medium (DMEM and dry medium were considered as positive and negative control media, respectively. Cell viability was determined by using the MTT (Thiazolyl Blue Tetrazolium Bromide assay. Data were statistically analyzed with one-way anova, two-way anova and post hoc Scheffe tests. A level of p≤0.05 was accepted as statistically significant Results: The results indicate that all media performed significantly better in maintaining PDL cell viability than the negative control at all time periods. (p≤0.001 After 9 hours, Percentage of viable PDL cells in long-shelf life honey milk, long-shelf life milk and HBSS were 82±0.82, 75±8.13 and 87±2.78 respectively. Furthermore cells' viability in both long-shelf life honey milk and HBSS was significantly better than fresh milk medium (p=0.003. Moreover, the results of One-way ANOVA showed long-shelf life honey milk were more effective in preserving the PDL cell viability as well as HBSS after 9 hours. Conclusions: According to the study results, long-shelf life honey milk considered as appropriate storage media which are comparable to HBSS. These media are not only able

  14. Effect of storage temperature and osmotic pre-treatment with alternative solutes on the shelf-life of gilthead seabream (Sparus aurata fillets

    Directory of Open Access Journals (Sweden)

    Theofania N. Tsironi

    2017-01-01

    Osmotic pre-treatment led to significant shelf-life extension of fillets, in terms of microbial growth, chemical changes and organoleptic deterioration. The pre-treatment with the alternative solutes led to depression of the freezing point (−1.8, −2.6, −3.2 and −3.5 °C for the untreated samples and the osmotically pre-treated with HDM, HDM + treh and HDM + gluc, respectively. TVB-N values were higher in untreated samples, followed by osmotically treated fillets, mainly at higher storage temperatures (i.e. 10 and 15 °C. Based on the mathematical models for sensory evaluation scoring, the shelf-life was 12, 19, 22 and 22 days at 0 °C for untreated and osmotically pre-treated with HDM, HDM + treh and HDM + gluc fish slices, respectively, while the respective values at −3 °C were 21, 35, 38 and 38 days. The alternative solutes had no significant effect on the quality and shelf-life of pre-treated fish fillet during storage at refrigerated conditions.

  15. Synthesis of long live storage studies surface storage of MA-VL wastes

    International Nuclear Information System (INIS)

    Hollender, F.; Jourdain, F.; Piault, E.; Blanchet, Y.; Avakian, G.; Goger, F.; Caillaud, J.; Devictor, N.; Bary, B.; Moitier, C.; Breton, E.; Ranc, G.; Gaillard, J.P.; Lagrave, H.

    2004-01-01

    This document is realized in the framework of the axis 3 of the law of 1991 on the radioactive wastes management. It presents a long time surface storage installation of medium activity long life wastes. The long time of the installation would reach 300 years at the maximum. The feasibility is demonstrated and the design choices are presented and justified. The specific points of the long time storage installation, which are different from a classical industrial storage installation, are also discussed. (A.L.B.)

  16. Pyridostimine Bromide 30mg Stability in Extended Storage Conditions

    Science.gov (United States)

    2017-12-03

    States Pharmacopeia (USP) >. The real-life storage conditions will be determined using the International Commission for Harmonization’s (ICH) Quality ...Packaging and Storage Requirements. 4 ~ Real-life storage conditions are defined based on the International Council for Harmonisation’s (ICH) Quality ...information, including suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate {0704-0188). Respondents should be

  17. Potential of carboxymethyl cellulose coating and low dose gamma irradiation to maintain storage quality, inhibit fungal growth and extend shelf-life of cherry fruit.

    Science.gov (United States)

    Hussain, P R; Rather, S A; Suradkar, P; Parveen, S; Mir, M A; Shafi, F

    2016-07-01

    Carboxymethyl cellulose (CMC) coatings alone and in combination with gamma irradiation was tested for maintaining the storage quality, inhibiting fungal incidence and extending shelf-life of cherry fruit. Two commercial cherry varieties viz. Misri and Double after harvest at commercial maturity were coated with CMC at levels 0.5-1.0 % w/v and gamma irradiated at 1.2 kGy. The treated fruit including control was stored under ambient (temperature 25 ± 2 °C, RH 70 %) and refrigerated (temperature 3 ± 1 °C, RH 80 %) conditions for evaluation of various physico-chemical parameters. Fruits were evaluated after every 3 and 7 days under ambient and refrigerated conditions. CMC coating alone at levels 0.5 and 0.75 % w/v was not found effective with respect to mold growth inhibition under either of the two conditions. Individual treatment of CMC coating at 1.0 % w/v and 1.2 kGy irradiation proved helpful in delaying the onset of mold growth up to 5 and 8 days of ambient storage. During post-refrigerated storage at 25 ± 2 °C, RH 70 %, irradiation alone at 1.2 kGy gave further 4 days extension in shelf-life of cherry varieties following 28 days of refrigeration. All combinatory treatments of CMC coating and irradiation proved beneficial in maintaining the storage quality as well as delaying the decaying of cherry fruit during post-refrigerated storage at 25 ± 2 °C, RH 70 % but, combination of CMC at 1.0 % w/v and 1.2 kGy irradiation was found significantly ( p  ≤ 0.05) superior to all other treatments in maintaining the storage quality and delaying the decaying of cherry fruit. The above combinatory treatment besides maintaining storage quality resulted in extension of 6 days in shelf life of cherry varieties during post-refrigerated storage at 25 ± 2 °C, RH 80 % following 28 days of refrigeration. Above Combination treatment gave a maximum of 2.3 and 1.5 log reduction in yeast and mold count of cherry fruits after 9 and 28

  18. Prevalence of storage lower urinary tract symptoms in male patients attending Spanish urology office. Urinary urgency as predictor of quality of life.

    Science.gov (United States)

    Cambronero Santos, J; Errando Smet, C

    2016-12-01

    The study sought to determine the symptomatic profile of men with lower urinary tract symptoms (LUTS) who visited a urology clinic in Spain and its impact on their health-related quality of life (HRQL). A national, epidemiological cross-sectional study was conducted and included 291 urology clinics. The prevalence of storage LUTS was investigated in 25,482 men. The study collected sociodemographic and clinical data from a subgroup of 1015 patients with storage LUTS who filled out the International Prostate Symptom Score (IPSS), Overactive Bladder Questionnaire Short Form (OABq-SF) and Patient Perception of Bladder Condition (PPBC) questionnaires. The impact of urinary urgency on HRQL was analysed. The prevalence of storage LUTS was 41%, increasing with age: 14.1%, 41.5% and 60.8% for patients aged 18-49, 50-64 and ≥65 years, respectively. Of the 1015 selected patients, only 2.6% had storage symptoms exclusively. Symptom severity (IPSS) increased with age. Nocturia, frequency and urgency were the most common symptoms and had the most impact on HRQL (IPSS and OABq-SF). The number of urgency episodes was inversely correlated with the HRQL (r=-.773; P<.0001). In the multivariate analysis, only the IPSS and OABq-SF bother scores were significant predictors of HRQL (P<.001). Storage LUTS are highly prevalent among patients attending urology clinics in Spain. The severity of the urgency (number of urgency episodes) predicted a poorer quality of life for the patient. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Helium effects on tritium storage materials

    International Nuclear Information System (INIS)

    Moysan, I.; Contreras, S.; Demoment, J.

    2008-01-01

    For ten years French Tritium laboratories have been using metal hydride storage beds with LaNi 4 Mn for process gas (HDT mixture) absorption, desorption and for both short and long term storage. This material has been chosen because of its low equilibrium pressure and of its ability to retain decay helium 3 in its lattice. Aging effects on the thermodynamic behavior of LaNi 4 Mn have been investigated. Aging, due to formation of helium 3 in the lattice, decreases the desorption isotherm plateau pressure and shifts the α phase to the higher stoichiometries. Life time of the two kinds of tritium (and isotopes) storage vessels managed in the laboratory depends on these aging changes. The Tritium Long Term Storage (namely STLT) and the hydride storage vessel (namely FSH 400) are based on LaNi 4 Mn even though they are not used for the same applications. STLT contains LaNi 4 Mn in an aluminum vessel and is designed for long term pure tritium storage. The FSH 400 is composed of LaNi 4 Mn included within a stainless steel container. This design is aimed at storing low tritium content mixtures (less than 3% of tritium) and for supplying processes with HDT gas. Life time of the STLT can reach 12 years. Life time of the FSH 400 varies from 1.2 years to more than 25 years depending on the application. (authors)

  20. Helium effects on tritium storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Moysan, I.; Contreras, S.; Demoment, J. [CEA Valduc, Service HDT, 21 - Is-sur-Tille (France)

    2008-07-15

    For ten years French Tritium laboratories have been using metal hydride storage beds with LaNi{sub 4}Mn for process gas (HDT mixture) absorption, desorption and for both short and long term storage. This material has been chosen because of its low equilibrium pressure and of its ability to retain decay helium 3 in its lattice. Aging effects on the thermodynamic behavior of LaNi{sub 4}Mn have been investigated. Aging, due to formation of helium 3 in the lattice, decreases the desorption isotherm plateau pressure and shifts the {alpha} phase to the higher stoichiometries. Life time of the two kinds of tritium (and isotopes) storage vessels managed in the laboratory depends on these aging changes. The Tritium Long Term Storage (namely STLT) and the hydride storage vessel (namely FSH 400) are based on LaNi{sub 4}Mn even though they are not used for the same applications. STLT contains LaNi{sub 4}Mn in an aluminum vessel and is designed for long term pure tritium storage. The FSH 400 is composed of LaNi{sub 4}Mn included within a stainless steel container. This design is aimed at storing low tritium content mixtures (less than 3% of tritium) and for supplying processes with HDT gas. Life time of the STLT can reach 12 years. Life time of the FSH 400 varies from 1.2 years to more than 25 years depending on the application. (authors)

  1. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    Science.gov (United States)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  2. Storage temperature: A factor of shelf life of dairy products

    Directory of Open Access Journals (Sweden)

    Memiši Nurgin R.

    2014-01-01

    Full Text Available An experiment was designed to monitor the durability of certain dairy products stored at proper temperatures (8°C and elevated temperatures (14°C within their shelf life. Samples of fermented milk products were tested during 25 days, samples of cheese spread products over 80 days, while soft white cheese samples were analyzed during a storage period of 100 days. In the defined study periods, depending on the type of product, pH and aw value of the product, as well as sensory analysis (odor, taste, color and consistency, along with microbiological safety, were investigated. The investigations were performed in accordance with national legislation. The results indicate that the products stored at 14°C showed significant acidity (lower pH value, changed sensory properties, and had an increased number of aerobic bacteria. [Projekat Ministarstva nauke Republike Srbije, br. III 46009: Improvement and development of hygienic and technological procedures in production of foodstuffs of animal origin with the aim of producing high-quality and safe products competitive on the global market

  3. Retention of storage quality and post-refrigeration shelf-life extension of plum (Prunus domestica L.) cv. Santa Rosa using combination of carboxymethyl cellulose (CMC) coating and gamma irradiation

    International Nuclear Information System (INIS)

    Hussain, Peerzada R.; Suradkar, Prashant P.; Wani, Ali M.; Dar, Mohd A.

    2015-01-01

    Carboxymethyl cellulose (CMC) coatings alone and in combination with gamma irradiation was tested for maintaining the storage quality and extending shelf-life of plum. Matured green plums were CMC coated at levels 0.5–1.0% w/v and gamma irradiated at 1.5 kGy. The treated fruit including control was stored under ambient (temperature 25±2 °C, RH 70%) and refrigerated (temperature 3±1 °C, RH 80%) conditions. In fruits treated with individual treatments of 1.0% w/v CMC; 1.5 kGy irradiation and combination of 1.0% w/v CMC and 1.5 kGy irradiation, no decay was recorded up to 11, 17 and 21 days of ambient storage. Irradiation alone at 1.5 kGy gave 8 days extension in shelf-life of plum compared to 5 days by 1.0% w/v CMC coating following 45 days of refrigeration. All combinatory treatments of CMC coating and irradiation proved beneficial in maintaining the storage quality as well as delaying the decaying of plum during post-refrigerated storage at 25±2 °C, RH 70% but, combination of CMC at 1.0% w/v and 1.5 kGy irradiation was found significantly (p≤0.05) superior to all other treatments in maintaining the storage quality and delaying the decaying of plum. CMC coating of plums at 1.0% w/v followed by irradiation at 1.5 kGy resulted in chlorophyll retention of 19.4% after 16 days compared to 10% in control after 8 days of ambient storage. Under refrigerated conditions, same treatment gave retention of 67.6% in chlorophyll compared to 10.6% in control after 35 days of storage. The above combinatory treatment resulted in extension of 11 days in shelf-life of plum during post-refrigerated storage at 25±2 °C, RH 70% following 45 days of refrigeration. Based on microbial analysis, irradiation alone at 1.5 kGy and in combination with 1.0% w/v CMC resulted in 2.0 and 1.8 log reduction in yeast and mold count of plum fruit after 20 and 35 days of ambient and refrigerated storage, thereby ensuring consumer safety. - Highlights: • Irradiation and CMC alone at 1.5 k

  4. Techno-economic and life-cycle modeling and analysis of various energy storage technologies coupled with a solar photovoltaic array

    Science.gov (United States)

    Peterson, Brian Andrew

    Renewable energies, such as wind and solar, are a growing piece of global energy consumption. The chief motivation to develop renewable energy is two-fold: reducing carbon dioxide emissions and reducing dependence on diminishing fossil fuel supplies. Energy storage is critical to the growth of renewable energy because it allows for renewably-generated electricity to be consumed at times when renewable sources are unavailable, and it also enhances power quality (maintaining voltage and frequency) on an electric grid which becomes increasingly unstable as more renewable energy is added. There are numerous means of storing energy with different advantages, but none has emerged as the clear solution of choice for renewable energy storage. This thesis attempts to explore the current and developing state of energy storage and how it can be efficiently implemented with crystalline silicon solar photovotlaics, which has a minimum expected lifetime of 25 years assumed in this thesis. A method of uniformly comparing vastly different energy storage technologies using empirical data was proposed. Energy storage technologies were compared based on both economic valuation over the system life and cradle-to-gate pollution rates for systems with electrochemical batteries. For stationary, non-space-constrained settings, lead-acid batteries proved to be the most economical. Carbon-enhanced lead-acid batteries were competitive, showing promise as an energy storage technology. Lithium-ion batteries showed the lowest pollution rate of electrochemical batteries examined, but both lithium-ion and lead-acid batteries produce comparable carbon dioxide to coal-derived electricity.

  5. Use of Structural Equation Modeling to Demonstrate the Differential Impact of Storage and Voiding Lower Urinary Tract Symptoms on Symptom Bother and Quality of Life during Treatment for Lower Urinary Tract Symptoms Associated with Benign Prostatic Hyperplasia.

    Science.gov (United States)

    McVary, Kevin T; Peterson, Andrew; Donatucci, Craig F; Baygani, Simin; Henneges, Carsten; Clouth, Johannes; Wong, David; Oelke, Matthias

    2016-09-01

    Lower urinary tract symptoms associated with benign prostatic hyperplasia typically respond well to medical therapy. While changes in total I-PSS (International Prostate Symptom Score) are generally accepted as measurement for treatment response, I-PSS storage and voiding subscores may not accurately reflect the influence of symptom improvement on patient bother and quality of life. Structural equation modeling was done to evaluate physiological interrelationships measured by I-PSS storage vs voiding subscore questions and measure the magnitude of effects on bother using BII (Benign Prostatic Hyperplasia Impact Index) and quality of life on I-PSS quality of life questions. Pooled data from 4 randomized, controlled trials of tadalafil and placebo in 1,462 men with lower urinary tract symptoms/benign prostatic hyperplasia were used to investigate the relationship of storage vs voiding lower urinary tract symptoms on BII and quality of life. The final structural equation model demonstrated a sufficient fit to model interdependence of storage, voiding, bother and quality of life (probability for test of close fit <0.0001). Storage aspects had a twofold greater effect on voiding vs voiding aspects on storage (0.61 vs 0.28, each p <0.0001). The direct effect of storage on bother was twofold greater than voiding on bother (0.64 vs 0.29, each p <0.0001). Bother directly impacted quality of life by the largest magnitude of (-0.83), largely driven by storage lower urinary tract symptoms (p <0.0001). Total I-PSS is a reliable instrument to assess the therapeutic response in lower urinary tract symptoms/benign prostatic hyperplasia cases. However, an improvement in storage lower urinary tract symptoms is mainly responsible for improved bother and quality of life during treatment. Care should be taken when evaluating the accuracy of I-PSS subscores as indicators of the response to medical therapy. Copyright © 2016 American Urological Association Education and Research, Inc

  6. Effect of chitosan coating and bamboo FSC (fruit storage chamber) to expand banana shelf life

    Science.gov (United States)

    Pratiwi, Aksarani'Sa; Dwivany, Fenny M.; Larasati, Dwinita; Islamia, Hana Cahya; Martien, Ronny

    2015-09-01

    Chitosan has been widely used as fruit preserver and proven to extend the shelf life of many fruits, such as banana. However, banana producers and many industries in Indonesia still facing storage problems which may lead to mechanical damage of the fruits and ripening acceleration. Therefore, we have designed food storage chamber (FSC) based on bamboo material. Bamboo was selected because of material abundance in Indonesia, economically effective, and not causing an autocatalytic reaction to the ethylene gas produced by the banana. In this research, Cavendish banana that has reached the maturity level of mature green were coated with 1% chitosan and placed inside the FSC. As control treatments, uncoated banana was also placed inside the FSC as well as uncoated banana that were placed at open space. All of the treatments were placed at 25°C temperature and observed for 9 days. Water produced by respiration was reduced by the addition of charcoal inside a fabric pouch. The result showed that treatment using FSC and chitosan can delay ripening process.

  7. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit.

    Science.gov (United States)

    Kaewklin, Patinya; Siripatrawan, Ubonrat; Suwanagul, Anawat; Lee, Youn Suk

    2018-06-01

    The feasibility of active packaging from chitosan (CS) and chitosan containing nanosized titanium dioxide (CT) to maintain quality and extend storage life of climacteric fruit was investigated. The CT nanocomposite film and CS film were fabricated using a solution casting method and used as active packaging to delay ripening process of cherry tomatoes. Changes in firmness, weight loss, a*/b* color, lycopene content, total soluble solid, ascorbic acid, and concentration of ethylene and carbon dioxide of the tomatoes packaged in CT film, CS film, and control (without CT or CS films) were monitored during storage at 20°C. Classification of fruit quality as a function of different packaging treatments was visualized using linear discriminant analysis. Tomatoes packaged in the CT film evolved lower quality changes than those in the CS film and control. The results suggested that the CT film exhibited ethylene photodegradation activity when exposed to UV light and consequently delayed the ripening process and changes in the quality of the tomatoes. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Oxidative deterioration of pork during superchilling storage.

    Science.gov (United States)

    Pomponio, Luigi; Ruiz-Carrascal, Jorge

    2017-12-01

    In superchilling (SC), meat is kept at temperatures around 1 °C below its initial freezing point, leading to a significant increase in shelf life. This study aimed to address the oxidative changes taking place in pork loins during prolonged storage at SC temperature. Loins were stored either at chilling (CH) conditions (2-4 °C) for 4 weeks or at SC temperature (around -1 °C) for 12 weeks. Storage at SC temperature diminished the rate of lipid and protein oxidation and discoloration in pork loins, so that final levels of most oxidation products and instrumental color values after 12 weeks of SC storage were similar to those after 4 weeks at CH conditions. However, hexanal content peaked by the end of SC storage, pointing to a potential accumulation of compounds from lipid oxidation during SC storage. SC storage of pork slows down the rate of lipid and protein oxidation. However, accumulation of volatile compounds from lipid oxidation could be a limiting factor for shelf life. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Energy storage systems: a strategic road-book

    International Nuclear Information System (INIS)

    2011-01-01

    Dealing with the development and deployment of thermal and electric energy storage systems, this report first identifies four main challenges: to take environmental challenges into account during all the storage system life (design, production, use, end of life), to integrate the issue of economic valorization of the device into its design phase, to promote the development of standards, to make an institutional and legal framework emerge. It defines the geographical scope and the time horizon for the development of these systems. It evokes research and development programs in the United States, Japan, China, Germany and the European Union. These programs concern: mobile electric storage systems, electric storage systems in support of energy networks and renewable energies, heat storage systems. The authors outline that business models are now favourable to the deployment of storage systems. They discuss some key technological and economical parameters. They propose some prospective visions by 2050 with different possible orientations for this sector. They also identify and discuss the possible technological and socio-economical obstacles, research priorities, and stress the importance of implementing experimental platforms and research demonstrators

  10. Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: Unusual electrochemical behaviors and ascending capacities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaodan, E-mail: xiaodan_li@yeah.net [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Wu, Gaoxiang, E-mail: wgxjimmy@126.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Chen, Jiewei, E-mail: kzscjw@126.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Chongqing Materials Research Institute, Chongqing 400707 (China); Li, Wei, E-mail: wei.li@inl.int [International Iberian Nanotechnology Laboratory (INL), Braga 4715-330 (Portugal); Wang, Tianyue, E-mail: 1355796015@qq.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Jiang, Bing, E-mail: BingJiang@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); He, Yue, E-mail: 947667748@qq.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Mai, Liqiang, E-mail: mlq518@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2017-01-15

    Highlights: • Low-crystallinity molybdenum sulfide coated on carbon nanotubes were synthesized. • This anode material has unusual electrochemical behaviors compared to typical MoS{sub 2}. • It exhibits noticable ascending trends in capacity and superior rate performance. • The ascending performance can effectively extend the circulation life of batteries. - Abstract: Low-crystallinity molybdenum sulfide (LCMS, Mo:S = 1:2.75) nanosheets synthesized by a facile and low temperature solvothermal method is now reported. The as-prepared LCMS anode material is composited of MoS{sub 2} layers mixed with amorphous MoS{sub 3}, which leads to an unusual electrochemical process for lithium storage compared to typical MoS{sub 2} anode. The existence of MoS{sub 3} and Mo (VI) provide strong adsorption and binding sites for polar polysulphides, which compels abundant sulfur to turn into new-formed MoS{sub 3} rather than diffuse into electrolyte. To fully utilize this novel electrochemical process, LCMS is decorated on carbon nanotubes, obtaining well-dispersed CNTs@LCMS. As electrode material for lithium storage, CNTs@LCMS exhibits a noticable ascending trend in capacity from 820 mA h g{sup −1} to 1350 mA h g{sup −1} at 100 mA g{sup −1} during 130 cycles. The persistent ascending capacity is ascribed to the increasing lithium storage caused by new-formed MoS{sub 3}, combined with the reduced volume change benifiting from well-dispersed CNTs@LCMS. Furthermore, the ascending performance is proved to be able to effectively extend the circulation life (up to 200%) for lithium-ion batteries by mathematical modeling and calculation. Accordingly, the CNTs@LCMS composite is a promising anode material for long-life lithium-ion batteries.

  11. Development of Specific Rules for the Application of Life Cycle Assessment to Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Michela Gallo

    2013-03-01

    Full Text Available Carbon Capture and Storage (CCS is a very innovative and promising solution for greenhouse gases (GHG reduction, i.e., capturing carbon dioxide (CO2 at its source and storing it indefinitely to avoid its release to the atmosphere. This paper investigates a set of key issues in the development of specific rules for the application of Life Cycle Assessment (LCA to CCS. The following LCA-based information are addressed in this work: definition of service type, definition of functional unit, definition of system boundaries, choice of allocation rules, choice of selected Life Cycle Inventory (LCI results or other selected parameters for description of environmental performance. From a communication perspective, the specific rules defined in this study have been developed coherently with the requirements of a type III environment label scheme, the International EPD® System, according to the ISO 14025 standard.

  12. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  13. Effect of pectin edible coating enriched with essential oils of citrus on strawberry quality during refrigerated storage and shelf life

    Directory of Open Access Journals (Sweden)

    Soma Abdi

    2017-06-01

    Full Text Available Postharvest life of strawberry fruit is very short due to humidity and high metabolic activity. In order to extend the shelf life and quality of strawberry (cv. parous, effects of pectin coating enriched with different concentrations of lemon and orange peel essential oil were assessed at 20˚C for 6 days or 5˚C to 12 days. The experiment conducted based on a complete randomized design (CDR in 3 replications with 6 treatments including control (distilled water, pectin (1%, pectin enriched with orange peel essential oil (0.5 and 1% and pectin containing lemon peel essential oil (0.5 and 1%. Fruit quality was evaluated by marketing, weight loss, anthocyanin content, ascorbic acid content, total protein and chlorophyll of calyx every 3 days. Based on results coating fruits with citrus essential oil carried by pectin delayed the change in weight loss, total protein, anthocyanin content, maintained ascorbic acid content of fruits and also reduced chlorophyll destruction of calyx. The results showed that pectin coating containing lemon essential oil had a significant effect on the maintaining the visual quality of the fruit during the storage, delayed the weight loss and showed better results compared to the other coatings and to the control fruit. In addition, the maximum content of ascorbic acid and anthocyanin were obtained for strawberries coated with pectin containing lemon essential oil 1% after 12 days storage of fruits at 5˚C. All coatings significantly reduced weight loss of fresh strawberries during storage at 5˚C and 20˚C compared to the uncoated fruits. Results indicated that adding high concentrations (1% of orange peel essential oil into pectin coatings did not improve quality of fruits. In addition, it was found that adding orange peel essential oil to pectin coating accelerate decay of fruits. Based on results, pectin coating containing 1% lemon essential oil considered an appropriate treatment to improve shelf life and storage

  14. [Life quality parameters in prenosologic evaluation of health state in residents of protective measures area near objects of storage and destruction of chemical weapons].

    Science.gov (United States)

    Filippov, V L; Nechaeva, E N

    2014-01-01

    The article presents results of life quality assessment and subjective evaluation data on health state, used for prenosologic evaluation of health state in residents of protective measures area near objects of storage and destruction of chemical weapons. Considering specific features of residence near potentially dangerous objects, the authors conducted qualitative evaluation of satisfaction with various life facets, with taking into account the objects specificity, established correlation between life quality and self-evaluation of health with factors influencing public health state.

  15. EFFECT OF IRRADIATION AND PACKAGING MATERIALS TYPES ON SHELF-LIFE AND QUALITY ATTRIBUTES OF MINCED MEAT DURING COLD STORAGE

    International Nuclear Information System (INIS)

    OSHEBA, A.S.; NAGY, KH.S.; ANWAR, M.M.

    2008-01-01

    Minced meat is considered one of the most meat products that exposed to contamination which led to many changes in its quality and reduced its shelf-life.Therefore, this investigation was carried out to extend the shelf-life of minced meat for consumption and maintaining its quality during cold storage by using irradiation with various doses (3, 6 and 9 kGy) and different packing materials. The results indicated that irradiation,especially at 3 and 6 kGy, had no effect on chemical composition and some physical properties of minced meat. On the other hand, pH values of all irradiated samples were slightly decreased with decreasing irradiation doses.Irradiation at the highest dose used, i.e. 9 kGy, slightly increased total volatile nitrogen (TVN) of minced meat. Thiobarbituric acid (TBA) value of irradiated samples was tended to increase with increasing irradiation dose from 3 to 9 kGy either directly after irradiation or during storage.Regardless of irradiation effect on TVN and TBA values at zero time, there were no marked differences in TVN and TBA values of irradiated minced meat according to differentiate packaging materials (PE, PA/PE and PET/Al/PE). During cold storage, the TVN and TBA values of all minced meat samples either non-irradiated or irradiated were progressively increased as the time of cold storage increased. The higher increasing rate in TVN and TBA of irradiated samples was recorded for samples packaged in PE (one layer) followed by PA/PE (two layers) and finally PET/Al/PE (three layers) at the same irradiation dose. Irradiation of minced meat with 3 kGy reduced the counts of total bacteria, coliform bacteria, Staphylococcus aureus and yeasts and molds counts as well as eliminating Salmonella spp. Irradiation doses of 6 and 9 kGy completely eliminated coliform bacteria, Staphylococcus aureus and yeasts and molds. Also, type of packaging materials which used had no effect on counts of all studied microorganisms. Irradiation of minced meat with

  16. Improved thermal storage material for portable life support systems

    Science.gov (United States)

    Kellner, J. D.

    1975-01-01

    The availability of thermal storage materials that have heat absorption capabilities substantially greater than water-ice in the same temperature range would permit significant improvements in performance of projected portable thermal storage cooling systems. A method for providing increased heat absorption by the combined use of the heat of solution of certain salts and the heat of fusion of water-ice was investigated. This work has indicated that a 30 percent solution of potassium bifluoride (KHF2) in water can absorb approximately 52 percent more heat than an equal weight of water-ice, and approximately 79 percent more heat than an equal volume of water-ice. The thermal storage material can be regenerated easily by freezing, however, a lower temperature must be used, 261 K as compared to 273 K for water-ice. This work was conducted by the United Aircraft Research Laboratories as part of a program at Hamilton Standard Division of United Aircraft Corporation under contract to NASA Ames Research Center.

  17. Shelf life of donkey milk subjected to different treatment and storage conditions.

    Science.gov (United States)

    Giacometti, Federica; Bardasi, Lia; Merialdi, Giuseppe; Morbarigazzi, Michele; Federici, Simone; Piva, Silvia; Serraino, Andrea

    2016-06-01

    The aim of this study was to investigate the effects of different treatment conditions on microbiological indicators of donkey milk hygiene and their evolution during shelf life at 4 and 12°C from 3 to 30d, simulating a farm-scale pasteurization and packing system. Four treatment conditions were tested: no treatment (raw milk), pasteurization (65°C × 30 min), high-pressure processing (HPP), and pasteurization plus HPP. The microbiological quality of the raw donkey milk investigated was not optimal; our results highlight the importance of raw milk management with the need for animal hygiene management and good dairy farming practices on donkey farms to improve handling procedures. The raw milk treated with HPP alone showed visible alterations with flocks, making the milk unfit for sale. The microbiological risk posed by consumption of raw donkey milk was significantly reduced by heat treatment but farm-scale packing systems cannot guarantee an extended shelf life. In contrast, the pasteurization plus HPP treatment was the most effective method to maintain microbiological milk quality. Microflora growth had little effect on pH in donkey milk: pH values were significantly different only between raw milk and pasteurized and pasteurized plus HPP milk stored at 12°C for 3d. Alkaline phosphatase activity and furosine could be used as indicators of proper pasteurization and thermal processing in donkey milk. Moreover, the presence and growth of Bacillus cereus in the case of thermal abuse hamper the wide-scale marketing of donkey milk due to the potential consequences for sensitive consumers and therefore further tests with time/temperature/high-pressure protocols associated with B. cereus are needed. Finally, our study shows that an HPP treatment of pasteurized milk after packing extends the shelf life of donkey milk and assures its microbial criteria up to 30d if properly stored at 4°C until opening; therefore, combined heat treatment and storage strategies are

  18. Monitored Retrievable Storage conceptual system study: metal storage casks

    International Nuclear Information System (INIS)

    Unterzuber, R.; Cross, T.E.; Krasicki, B.R.

    1983-08-01

    A description of the metal cask storage facility concept is presented with the operations required to handle the spent fuel or high-level wastes and transuranic wastes. A generic Receiving and Handling Facility, provided by PNL, has been used for this study. Modifications to the storage delivery side of the handling facility, necessary to couple the Receiving and Handling Facility with the storage facility, are described. The equipment and support facilities needed for the storage facility are also described. Two separate storage facilities are presented herein: one for all spent fuel storage, and one for storage of high-level waste (HLW) and transuranic waste (TRU). Each facility is described for the capacities and rates defined by PNL in the Concept Technical Performance Criteria and Base Assumptions (see Table 1.3-1). Estimates of costs and time-distributions of expenditures have been developed to construct, operate, and decommission the conceptual MRS facilities in mid-1983 dollars, for the base cases given using the cost categories and percentages provided by PNL. Cost estimates and time-distributions of expenditures have also been developed to expand the facility throughput rate from 1800 MTU to 3000 MTU, and to expand the facility storage capacity from 15,000 MTU to 72,00 MTU. The life cycle cost of the facility for the bounding cases of all spent fuel and all HLW and TRU, using the time-distributions of costs developed above and assuming a two percent per year discount rate, are also presented. 3 references, 16 figures, 18 tables

  19. Storage fee analysis for a retrievable surface storage facility

    International Nuclear Information System (INIS)

    Field, B.B.; Rosnick, C.K.

    1973-12-01

    Conceptual design studies are in progress for a Water Basin Concept (WBC) and an alternative Sealed Storage Cask Concept (SSCC) of a Retrievable Surface Storage Facility (RSSF) intended as a Federal government facility for storing high-level radioactive wastes until a permanent disposal method is established. The RSSF will be a man-made facility with a design life of at least 100 y, and will have capacity to store all of the high-level waste from the reprocessing of nuclear power plant spent fuels generated by the industry through the year 2000. This report is a basic version of ARH-2746, ''Retrievable Surface Storage Facility, Water Basin Concept, User Charge Analysis.'' It is concerned with the issue of establishing a fee to cover the cost of storing nuclear wastes both in the RSSF and at the subsequent disposal facility. (U.S.)

  20. Influence of packaging and storage conditions on quality parameters and shelf life of solar-dried banana

    Directory of Open Access Journals (Sweden)

    Nina Phothapaeree

    2017-04-01

    Full Text Available Effects of packaging materials (metalized or polylactic acid, PLA, based pouches, storage temperatures (30-50°C and time (up to 6 months on quality of solar-dried banana were investigated. At 30°C in both packaging materials, change in moisture content, water activity (a w and hardness were minimal while darkening of the surface color progressed. No microbial spoilage was found. Hedonic scores of color, flavor, taste, texture and overall acceptance of the 6th month aged samples were lowest (p≤0.05. Based on the sensory test, product packed in both packaging materials had shelf life of 5 months at 30°C. Higher storage temperature greatly induced time-dependent decrease in moisture content and a w with an increase in hardness, especially for the samples in PLA-based pouches. Fractional conversion model was used to predicted time-dependent change in total color difference (ΔE (R2 ≥ 0.84. Temperature dependence of the rate constant followed Arrhenius-type relationship (R2 ≥ 0.99.

  1. The search for a storage site for low-level and long-life wastes. A national project and a development opportunity for your town. A dossier for local communities

    International Nuclear Information System (INIS)

    2008-01-01

    After a review of the program schedule, this document presents the project of a storage site for low-level and long life radioactive wastes as an opportunity for a district: it outlines the benefits of such a realisation for the dynamics of the local activity, specifies the main economical and financial characteristics associated with such a facility, and evokes the elements which are taken into account for the selection of the site. It describes the storage centre as a place of industrial activity, a monitored and controlled facility, an installation opened to the public. It describes the different stages of the life cycle of this future storage centre: pre-selection, on-site investigations, additional studies and administrative process for the selected site, building and starting, operation, shutting down, surveillance. The document indicates the legal frame related to this activity, specifies what are the different concerned wastes, and their present warehousing locations. It gives some details on the different safety principles for such a storage: environment and health protection, geological layer, public works engineering solutions, waste packages

  2. Management and storage of radioactive waste

    International Nuclear Information System (INIS)

    Faussat, A.

    1995-01-01

    Management of radioactive waste is a matter of public concern. Such management, however, is today handled industrially in France, and when these techniques are well applied, its is possible to create storage centres. Waste having a short half-life is now stored in the Centre de l'Aube, which replaces the one begun in 1969 in the Department de la Manche. For waste with a long half-life, following the law passed in 1991, ANDRA is pursuing its programme of site prospecting to establish two underground laboratories for studying geological storage. (author). 2 figs., 1 tab

  3. Efficacy of antimicrobial pullulan-based coating to improve internal quality and shelf-life of chicken eggs during storage.

    Science.gov (United States)

    Morsy, Mohamed K; Sharoba, Ashraf M; Khalaf, Hassan H; El-Tanahy, Hassan H; Cutter, Catherine N

    2015-05-01

    There has been a growing interest in the use of natural materials as a delivery mechanism for antimicrobials and coatings in foods. The aim of the present study was to evaluate the effectiveness of pullulan coatings to improve internal quality and shelf-life of fresh eggs during 10 wk of storage at 25 and 4 °C. Three treatments of eggs were evaluated as follows; non-coated (control; C), coated with pullulan (P), and coated with pullulan containing nisin (N). The effects of the pullulan coatings on microbiological qualities, physical properties, and freshness parameters were investigated and compared with non-coated eggs. For non-coated eggs, as storage time increased, yolk index, albumen index, and Haugh unit value decreased and weight loss increased. However, pullulan coatings (P or N) minimized weight loss (eggs (with a final B grade) 3 wk longer than non-coated eggs at 25 °C. At 4 °C, both P- and N-coated eggs went from AA to A grade after 9 wk and maintained the grade for 10 wk (4 wk longer than that of non-coated eggs). This study is the first to demonstrate that pullulan coatings can preserve the internal quality, prolong the shelf-life, and minimize weight loss of fresh eggs. © 2015 Institute of Food Technologists®

  4. Storage temperature affects fruit quality attributes of Ber ( Ziziphus ...

    African Journals Online (AJOL)

    Fruit utilization is affected by quality attributes and shelf life. The quality of Jujube or Ber (Ziziphus mauritiana Lamk.) fruits after harvest depends on storage conditions used. In this study, different storage temperatures and durations were evaluated to determine the appropriate storage conditions of fresh fruits of Z.

  5. Contemporary energy storage sources. Energy saving

    International Nuclear Information System (INIS)

    Manev, Veselin

    2011-01-01

    The development of renewable energy system for electricity production is impede because of needs to be stabilized with nearly equivalent installed power of energy storage devices. The development of more electrical energy storage facilities will be extremely important for electricity generation in the future. Using hydro pumping, combined with a long life and fast charge/discharge rate, highly efficient contemporary power energy storage as Altairnano lithium ion battery, currently is seems to be the best solution for fast penetration rate of wind and solar energy systems

  6. Spent fuel storage requirements 1993--2040

    International Nuclear Information System (INIS)

    1994-09-01

    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges

  7. Influence of Storage on Briquettes Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Brožek M.

    2014-09-01

    Full Text Available The effects of the storage place, placing manner, and storage time on mechanical properties of briquettes made from birch chips were laboratorily tested. A unique methodology developed by the present author enabling a relatively easy assessment of mechanical properties of the briquettes is described. The briquettes properties were evaluated by their density and rupture force determination. From the test results it follows that if the briquettes are stored in a well closed plastic bag, neither the place nor the storage time influence significantly their life time. When stored in a net plastic bag, the briquettes get seriously damaged, namely depending on their storage place and storage time.

  8. Underground storage. Study of radwaste storage in deep geological formations: environmental protection

    International Nuclear Information System (INIS)

    Hoorelbeke, J.M.

    1993-01-01

    The purpose of the Agence nationale pour la gestion des dechets radioactifs (Andra) is to monitor the management methods and storage of radioactive waste produced in France. The agency has this undertaken a vast study program for the evaluation of the management conditions of long-life radwaste, which cannot be stored indefinitely in shallow-ground repositories. Underground laboratories are investigating the feasibility of a possible solution which is to store radwaste in a deep geological layer. However, there will be no decision on this type of storage before the year 2006. 7 figs

  9. Silo Storage Preconceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  10. Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island

    International Nuclear Information System (INIS)

    Ma, Tao; Yang, Hongxing; Lu, Lin

    2014-01-01

    Highlights: • Batteries and pumped hydro storage schemes are examined. • Sizing procedure for each option is investigated in detail. • The two schemes are compared in terms of life cycle cost and technical viability. • Sensitivity analyses are conducted on five key input parameters. - Abstract: This study examined and compared two energy storage technologies, i.e. batteries and pumped hydro storage (PHS), for the renewable energy powered microgrid power supply system on a remote island in Hong Kong. The problems of energy storage for off-grid renewable energy were analyzed. The sizing methods and economic models were developed, and finally applied in the real project (case study). The results provide the most suitable energy storage scheme for local decision-makers. The two storage schemes were further divided into 4 options. Accordingly, the life-cycle costs (LCC), levelized costs for the renewable energy storage system (LCRES) and the LCC ratios between all options were calculated and compared. It was found that the employment of conventional battery (Option 2) had a higher LCC value than the advanced deep cycle battery (Option 1), indicating that using deep cycle batteries is more suitable for a standalone renewable power supply system. The pumped storage combined with battery bank option (Option 3) had only 55% LCC of that of Option 1, making this combined option more cost-competitive than the sole battery option. The economic benefit of pumped storage is even more significant in the case of purely pumped storage with a hydraulic controller (Option 4), with the lowest LCC among all options at 29–48% of Option 1. Sensitivity analysis demonstrates that PHS is even more cost competitive by controlling some adjustments such as increasing energy storage capacity and days of autonomy. Therefore, the renewable energy system coupled with pumped storage presents technically feasible opportunities and practical potential for continuous power supply in remote

  11. Joint optimisation of arbitrage profits and battery life degradation for grid storage application of battery electric vehicles

    Science.gov (United States)

    Kies, Alexander

    2018-02-01

    To meet European decarbonisation targets by 2050, the electrification of the transport sector is mandatory. Most electric vehicles rely on lithium-ion batteries, because they have a higher energy/power density and longer life span compared to other practical batteries such as zinc-carbon batteries. Electric vehicles can thus provide energy storage to support the system integration of generation from highly variable renewable sources, such as wind and photovoltaics (PV). However, charging/discharging causes batteries to degradate progressively with reduced capacity. In this study, we investigate the impact of the joint optimisation of arbitrage revenue and battery degradation of electric vehicle batteries in a simplified setting, where historical prices allow for market participation of battery electric vehicle owners. It is shown that the joint optimisation of both leads to stronger gains then the sum of both optimisation strategies and that including battery degradation into the model avoids state of charges close to the maximum at times. It can be concluded that degradation is an important aspect to consider in power system models, which incorporate any kind of lithium-ion battery storage.

  12. Quality of pitaya fruit (Hylocereus undatus as influenced by storage temperature and packaging

    Directory of Open Access Journals (Sweden)

    Sérgio Tonetto de Freitas

    2013-08-01

    Full Text Available Pitaya (Hylocereus undatus is an exotic non-climacteric fruit that reaches its best eating quality when harvested ripe, decreasing thereafter during storage. Our objectives were to determine the best combination of storage temperature and use of perforated plastic bags to maintain the postharvest quality of the fruit. Fruits were stored at 5, 7, or 10 ºC with and without a perforated plastic bag for 20 days, followed by five days at 20 ºC without the bag for shelf-life determination. Storage at 5 ºC, followed by 7 ºC maintained better visual appearance of the pitaya fruit after 20 days, by reducing decay incidence and severity, and maintaining greener bracts compared with fruit stored at 10 ºC. Pitaya fruit stored at 5 ºC without a perforated plastic bag showed no decay after storage and shelf-life. In general, higher temperatures and the use of a perforated plastic bag increased decay incidence, as well as decay severity after storage and shelf-life conditions. At all temperatures, fruit stored in a perforated plastic bag had lower weight loss during storage. After shelf-life, weight loss was highest in fruit stored at higher temperatures. Storage of fruits at 5 ºC resulted in minor chilling injury symptoms in the outer flesh tissue, close to the peel. Storage at 5 ºC without a perforated plastic bag was the best condition to maintain the postharvest quality of the pitaya fruit.

  13. Effects of chitosan on the shelf life of marinated sardine (Sardina pilchardus fillets during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Aygül Küçükgülmez

    2012-07-01

    Full Text Available This study was carried out to evaluate the effect of chitosan on chemical, colour, sensory and microbial changes of marinated sardine (Sardina pilchardus fillets. Marination solution consisted of 10% sodium chloride + 1% chitosan (dissolved in 3% acetic acid for the chitosan group, and 10% sodium chloride + 3% acetic acid solution for the control group. After the marination process, sardine fillets were packed and stored at 4ºC for 60 days. Thiobarbituric acid (TBA values were found to be lower in the chitosan group than the control group (PL*, a*, or b* values of marinated sardine fillets. According to sensory analysis, shelf life of the chitosan group was found to be ten days longer than that of the control group. Total bacteria count of two marinated groups was found to be less than 1 log CFU/g. This study concluded that sardine marination with the addition of chitosan can delay undesirable chemical changes, retard lipid oxidation, improve sensory attributes and extend the shelf life of the product during refrigerated storage.

  14. Duration of red blood cell storage and inflammatory marker generation

    Science.gov (United States)

    Sut, Caroline; Tariket, Sofiane; Chou, Ming Li; Garraud, Olivier; Laradi, Sandrine; Hamzeh-Cognasse, Hind; Seghatchian, Jerard; Burnouf, Thierry; Cognasse, Fabrice

    2017-01-01

    Red blood cell (RBC) transfusion is a life-saving treatment for several pathologies. RBCs for transfusion are stored refrigerated in a preservative solution, which extends their shelf-life for up to 42 days. During storage, the RBCs endure abundant physicochemical changes, named RBC storage lesions, which affect the overall quality standard, the functional integrity and in vivo survival of the transfused RBCs. Some of the changes occurring in the early stages of the storage period (for approximately two weeks) are reversible but become irreversible later on as the storage is extended. In this review, we aim to decipher the duration of RBC storage and inflammatory marker generation. This phenomenon is included as one of the causes of transfusion-related immunomodulation (TRIM), an emerging concept developed to potentially elucidate numerous clinical observations that suggest that RBC transfusion is associated with increased inflammatory events or effects with clinical consequence. PMID:28263172

  15. Expansion of storage capacity of interim spent fuel storage (MSVP) Bohunice

    International Nuclear Information System (INIS)

    Pilat, P.; Fridrich, V.

    2005-01-01

    This article describes modifications of Interim spent fuel storage, performed with aim of storage capacity expansion, seismic stability enhancement, and overall increase of service life as well as assuring of MSVP safe operation. Uniqueness of adopted technical solutions is based upon the fact that mentioned innovations and modifications were performed without any changes, neither in ground plan nor architecture of MSVP structure. It also important to mention that all modifications were performed during continual operation of MSVP without any breaks of limits or operational regulations. Reconstruction and innovation of existing construction and technological systems of MSVP has assured required quality standard comparable with actual trends. (authors)

  16. Extending the Refrigerated Storage of Red Blood Cells

    National Research Council Canada - National Science Library

    Bitensky, Mark

    2004-01-01

    Oxygen removal increases shelf-life and quality of refrigerated blood. The shelf life of our blood has been prolonged to a minimum of 12 weeks with survival equal to or greater than that of conventional 6 week storage...

  17. Probabilistic Model for Listeria monocytogenes Growth during Distribution, Retail Storage, and Domestic Storage of Pasteurized Milk ▿

    Science.gov (United States)

    Koutsoumanis, Konstantinos; Pavlis, Athanasios; Nychas, George-John E.; Xanthiakos, Konstantinos

    2010-01-01

    A survey on the time-temperature conditions of pasteurized milk in Greece during transportation to retail, retail storage, and domestic storage and handling was performed. The data derived from the survey were described with appropriate probability distributions and introduced into a growth model of Listeria monocytogenes in pasteurized milk which was appropriately modified for taking into account strain variability. Based on the above components, a probabilistic model was applied to evaluate the growth of L. monocytogenes during the chill chain of pasteurized milk using a Monte Carlo simulation. The model predicted that, in 44.8% of the milk cartons released in the market, the pathogen will grow until the time of consumption. For these products the estimated mean total growth of L. monocytogenes during transportation, retail storage, and domestic storage was 0.93 log CFU, with 95th and 99th percentiles of 2.68 and 4.01 log CFU, respectively. Although based on EU regulation 2073/2005 pasteurized milk produced in Greece belongs to the category of products that do not allow the growth of L. monocytogenes due to a shelf life (defined by law) of 5 days, the above results show that this shelf life limit cannot prevent L. monocytogenes from growing under the current chill chain conditions. The predicted percentage of milk cartons—initially contaminated with 1 cell/1-liter carton—in which the pathogen exceeds the safety criterion of 100 cells/ml at the time of consumption was 0.14%. The probabilistic model was used for an importance analysis of the chill chain factors, using rank order correlation, while selected intervention and shelf life increase scenarios were evaluated. The results showed that simple interventions, such as excluding the door shelf from the domestic storage of pasteurized milk, can effectively reduce the growth of the pathogen. The door shelf was found to be the warmest position in domestic refrigerators, and it was most frequently used by the

  18. Effect of gamma-irradiation and refrigerated storage on mold growth and keeping quality of strawberry (Fragaria sp) cv 'Confitura'

    International Nuclear Information System (INIS)

    Hussain, P.R.; Meena, R.S.; Dar, M.A.; Wani, A.M.; Mir, M.A.; Shafi, F.

    2007-01-01

    Gamma-irradiation of fresh matured strawberries at 0.5-2.0 kGy and storage under ambient and refrigerated conditions was tested for delaying the mold appearance and extension of storage life. Radiation dose of 2.0 kGy was effective in extending the storage life of fresh strawberries by 2 days under ambient conditions. Samples irradiated at 1.5 and 2.0 kGy followed by refrigerated storage delayed the mold growth significantly (p≤0.05) and extended the storage life by 8 days. (author)

  19. High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Atin; Maiti, Sandipan [CSIR-Central Glass & Ceramic Research Institute, Fuel Cell & Battery Division (India); Sreemany, Monjoy [CSIR-Central Glass & Ceramic Research Institute, Advanced Mechanical and Materials Characterization Division (India); Mahanty, Sourindra, E-mail: mahanty@cgcri.res.in [CSIR-Central Glass & Ceramic Research Institute, Fuel Cell & Battery Division (India)

    2016-04-15

    Developing efficient electrode material is essential to keep pace with the demand for high energy density together with high power density and long cycle life in next generation energy storage devices. Herein, we report the electrochemical properties of hydrothermally synthesized CoO nanofibers of diameter 30–80 nm assembled in a nest-like morphology which showed a very high reversible lithium storage capacity of 2000 mA h g{sup −1} after 600 cycles at 0.1 mA cm{sup −2} as lithium-ion battery anode. Systematic investigation by ex situ transmission electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and impedance spectroscopy at different cycling stages indicated that the extraordinary performance could be related to an enhancement in the Co{sup 2+}↔Co{sup x+} (2 < x ≤ 3) redox process in addition to the commonly believed structural and morphological evolution during cycling favoring generation of large number of accessible active sites for lithium insertion. Further, when examined as a supercapacitor electrode in 1.0 M KOH, a capacitance of 1167 F g{sup −1} is achieved from these 1D CoO nanofibers after 10,000 charge discharge cycles at a high current density of 5 A g{sup −1} demonstrating good application potential.Graphical AbstractNest-like CoO nanofibers showed a reversible lithium storage capacity of 2000 mA h g{sup −1} after 600 cycles as LIB anode and a capacitance of 1167 F g{sup −1} after 10,000 cycles as electrochemical supercapacitor.

  20. Storage, transmission and distribution of hydrogen

    Science.gov (United States)

    Kelley, J. H.; Hagler, R., Jr.

    1979-01-01

    Current practices and future requirements for the storage, transmission and distribution of hydrogen are reviewed in order to identify inadequacies to be corrected before hydrogen can achieve its full potential as a substitute for fossil fuels. Consideration is given to the storage of hydrogen in underground solution-mined salt caverns, portable high-pressure containers and dewars, pressure vessels and aquifers and as metal hydrides, hydrogen transmission in evacuated double-walled insulated containers and by pipeline, and distribution by truck and internal distribution networks. Areas for the improvement of these techniques are indicated, and these technological deficiencies, including materials development, low-cost storage and transmission methods, low-cost, long-life metal hydrides and novel methods for hydrogen storage, are presented as challenges for research and development.

  1. A Numerical and Graphical Review of Energy Storage Technologies

    Directory of Open Access Journals (Sweden)

    Siraj Sabihuddin

    2014-12-01

    Full Text Available More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.

  2. Extending the shelf-life of cocoyam leaves(xanthosoma sagitifolium) through blanching, irradiation and low temperature storage

    International Nuclear Information System (INIS)

    Afrifa, J.T.

    2013-07-01

    Cocoyam leaf (Xanthosoma sagiitifolium) (,Kontommire') is arguably one of the most readily available and cheap indigenous leafy vegetable that is commonly consumed in Ghana. It is noted to be a good source of minerals, vitamins and soluble fibre when consumed in its fresh (not raw though) state. However, this vegetable is highly perishable. Dehydration methods and jute sack storage are usually used for its preservation. However, these lead to discolouration, loss of some nutrients, and exposure to microbial contamination thus reducing the general acceptability by consumers. In view of this, a study was conducted to process and preserve the leaves in their fresh state. Preservation methods investigated were: refrigeration, steam blanching, gamma irradiation and a combination of these methods. The effect of the various preservation methods on some physicochemical properties (moisture content and dry matter by gravimetric method, vitamin C (ascorbic acid) was determined by iodometric titration method, crude protein was determined by Kjeldahl method, colour change using a Minolta CR310 colorimeter, pH using the Mettler Toledo pH meter (model:T3KfTLH); phytochemical properties (total phenolic using the Folin ciocalteau method and total flavonoids using aluminium chloride colorimetric method); microbial quality (total viable count, total coliforms, yeast and moulds count using serial dilution); consumer acceptance using a 9-point hedonic scale to assess the colour, texture and odour. The best packaging material for effective storage was also investigated. Fresh, fully opened leaves of cocoyam which were two (2) weeks old were collected from the Biotechnology and Nuclear Agriculture Research Institute (BNARI) farm and used for the study. They were decontaminated by washing in fifty (50) % of brine solution and shredded and apportioned for the various treatments, packaged into zip-lock polyethylene bags and hermetically sealed bags. The shelf-life study lasted for

  3. SEARCH FOR A RELIABLE STORAGE ARCHITECTURE FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BINELLO,S.; KATZ, R.A.; MORRIS, J.T.

    2007-10-15

    Software used to operate the Relativistic Heavy Ion Collider (RHIC) resides on one operational RAID storage system. This storage system is also used to store data that reflects the status and recent history of accelerator operations. Failure of this system interrupts the operation of the accelerator as backup systems are brought online. In order to increase the reliability of this critical control system component, the storage system architecture has been upgraded to use Storage Area Network (SAN) technology and to introduce redundant components and redundant storage paths. This paper describes the evolution of the storage system, the contributions to reliability that each additional feature has provided, further improvements that are being considered, and real-life experience with the current system.

  4. SEARCH FOR A RELIABLE STORAGE ARCHITECTURE FOR RHIC

    International Nuclear Information System (INIS)

    BINELLO, S.; KATZ, R.A.; MORRIS, J.T.

    2007-01-01

    Software used to operate the Relativistic Heavy Ion Collider (RHIC) resides on one operational RAID storage system. This storage system is also used to store data that reflects the status and recent history of accelerator operations. Failure of this system interrupts the operation of the accelerator as backup systems are brought online. In order to increase the reliability of this critical control system component, the storage system architecture has been upgraded to use Storage Area Network (SAN) technology and to introduce redundant components and redundant storage paths. This paper describes the evolution of the storage system, the contributions to reliability that each additional feature has provided, further improvements that are being considered, and real-life experience with the current system

  5. Effects of Gamma Irradiation on Shelf-Life and Sensory Scores of Squid Sundae under Accelerated Storage Conditions

    International Nuclear Information System (INIS)

    Kim, H.J.; Kim, K.B.W.R.; Kim, D.H.; Sunwoo, C.; Jung, S.A.; Jeong, D.H.; Jung, H.Y.; Ahn, D.H.; Kim, J.H.; Lee, J.W.; Do, S.R.; Byun, M.W.

    2012-01-01

    This study was conducted to examine the effects of gamma irradiation on the shelf-life and sensory scores of squid Sundae under accelerated storage conditions. Squid Sundae was stored at 37°C for 35 days following gamma irradiation at doses of 0, 10, and 20 kGy. For total viable cell counts, control and gamma-irradiated (GI) (10 kGy) squid Sundae were already spoiled in 4 days, whereas GI (20 kGy) squid Sundae showed complete suppression of bacterial growth during storage. There were no significant changes in pH values compared to the control. The VBN and TBARS (thiobarbituric acid reactive substance) values of GI (20 kGy) squid Sundae were significantly lower than those of the control. In addition, the induction period of GI (20 kGy) squid Sundae as measured by a Rancimat showed a higher level compared to that of the control. In the sensory evaluation, there were no significant changes between the control and GI samples. These results suggest that a dose of 20 kGy is the optimum and effective dose for preservation of squid Sundae. (author)

  6. Improvement Shelf-Life Extension of Apple by Pre storage Thermal Treatment, CaCl2 and Gamma Irradiation

    International Nuclear Information System (INIS)

    Salem, E.A.; Moussa, Z.

    2014-01-01

    This study was conducted to evaluate the efficiency of physical and chemical methods to extend the shelf life of apple fruits by control the blue mold disease causing by Penicillium expansum. Apple fruits are subjected to different temperatures between 38, and 50 degree C for 24 hr. and stored at 0 degree C for 4 months. Increasing in temperature caused decreasing in firmness and blue mold incidence percentage (%) caused by P. expansum. At 50 degree C the treated apple fruits gave sharp softness and inhibition of blue mold incidence (%) caused by P. expansum exposing for 4 days and cold storage at 0 degree C for 4 months and 5 days at 20 degree C. Dipping apple fruits in CaCl 2 at 2% and 4% decreased blue mold incidence (%) caused by P. expansum and increased apple fruits firmness at 2 and 4 months storage periods. Also, CaCl 2 treatments gave insignificant change in total soluble solid (TSS%) and in titratable acidity (TA%) of apple fruits. Gamma irradiation doses above 1 kGy significantly decreased firmness of apple fruits with the decrement being higher at higher doses.

  7. Estimation of shelf life of wikau maombo brownies cake using Accelerated Shelf Life Testing (ASLT) method with Arrhenius model

    Science.gov (United States)

    Wahyuni, S.; Holilah; Asranudin; Noviyanti

    2018-02-01

    The shelf life of brownies cake made from wikau maombo flour was predicted by ASLT method through the Arrhenius model. The aim of this study was to estimate the shelf life of brownies cake made from wikau maombo flour. The storage temperature of brownies cake was carried out at 20°C, 30°C and 45°C. The results showed that TBA (Thio Barbaturic Acid) number of brownies cake decreased as the storage temperature increase. Brownies stored at 20°C and 30°C were overgrown with mold on the storage time of six days. Brownies product (WT0 and WT1) had shelf life at 40°C approximately six and fourteen days, respectively. Brownies made from wikau maombo and wheat flour (WT1) was the best product with had the longest of shelf life about fourteen days.

  8. Very-long-term storage of fission products

    International Nuclear Information System (INIS)

    Sousselier, Y.; Pradel, J.; Cousin, O.

    The large majority of the fission products, with 99.9 percent of the radioactivity content, do not pose actual problems in storage in a geological formation for which we can guarantee total confinement. Safety of storage in a geological formation for the radionuclides of long half-life is based in particular on the absorption capacity of the geological formations and the example of the Oklo fossil reactor and the retention of Pu which is produced is a striking example. But the problems are not the same, and the properties that we look for in the terrain are not the same. We could thus be led to storage in different geological formations for the fission products and the long-half-life emitters. Their separation is interesting from this point of view, but the date at which the separation is made will not be necessarily that of reprocessing. But there is a question of one or the other, and these storages will offer a very high level of insurance and will present only the potential hazards that are very comparable with those presented by natural conditions

  9. The "g-2" Muon Storage Ring

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The "g-2" muon storage ring, shortly before completion in June 1974. Bursts of pions (from a target, hit by a proton beam from the 26 GeV PS) are injected and polarized muons from their decay are captured on a stable orbit. When the muons decay too, their precession in the magnetic field of the storage ring causes a modulation of the decay-electron counting rate, from which the muon's anomalous magnetic moment can be determined. In 1977, the "g-2" magnets were modified to build ICE (Initial Cooling Experiment), a proton and antiproton storage ring for testing stochastic and electron cooling. Later on, the magnets had a 3rd life, when the ion storage ring CELSIUS was built from them in Uppsala. For later use as ICE, see 7711282, 7802099, 7809081,7908242.

  10. Spent fuel storage requirements, 1991--2040

    International Nuclear Information System (INIS)

    1991-12-01

    Historical inventories of spent fuel are combined with US Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements over the next 50 years, through the year 2040. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. Historical data through December 1990 are derived from the 1991 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges

  11. Storage potential of ‘SCS426 Venice’ apples under different storage technologies

    Directory of Open Access Journals (Sweden)

    Mariuccia Schlichting de Martin

    2018-04-01

    Full Text Available Abstract This study aimed to evaluate the storage potential of SCS426 Venice apples under different storage technologies. Fruits were harvested in an experimental orchard located in Fraiburgo, SC and stored for up to eight and ten months in 2013 and 2014, respectively. Apples were treated or not with methylcyclopropene (1-MCP and stored under air atmosphere (AA, 0.5±0.5 °C/RH 85±5% or controlled atmosphere (CA; 1.5 kPa of O2 and 1.5 kPa of CO2 at 0.7±0.5 °C/RH of 93±3%. Fruits were evaluated every two months of storage, after one and seven days of shelf life (23 ± 0.3 °C/RH 93±3%. The storage period of ‘SCS426 Venice’ apples under AA without 1-MCP application should not extend beyond six months. Under this storage condition, fruits had higher incidence of decay, ethylene production and respiratory rates, higher skin degreening, lower flesh firmness, titratable acidity and soluble solids content than fruits stored under CA or AA with 1-MCP. ‘SCS426 Venice’ apples develop flesh browning and superficial scald after long-term storage. ‘SCS426 Venice’ apples under AA treated with 1-MCP or under CA (regardless of 1-MCP application can be stored for more than eight months, keeping flesh firmness above 14 lb and low incidence of physiological disorders even after ten months of storage.

  12. Comparison of cask and drywell storage concepts for a monitored retrievable storage/interim storage system

    International Nuclear Information System (INIS)

    Rasmussen, D.E.

    1982-12-01

    The Department of Energy, through its Richland Operations Office is evaluating the feasibility, timing, and cost of providing a federal capability for storing the spent fuel, high-level wastes, and transuranic wastes that DOE may be obligated by law to manage until permanent waste disposal facilities are available. Three concepts utilizing a monitored retrievable storage/interim storage (MRS/IS) facility have been developed and analyzed. The first concept, co-location with a reprocessing plant, has been developed by staff of Allied General Nuclear Services. the second concept, a stand-alone facility, has been developed by staff of the General Atomic Company. The third concept, co-location with a deep geologic repository, has been developed by the Pacific Northwest Laboratory with the assistance of the Westinghouse Hanford Company and Kaiser Engineers. The objectives of this study are: to develop preconceptual designs for MRS/IS facilities: to examine various issues such as transportation of wastes, licensing of the facilities, and environmental concerns associated with operation of such facilities; and to estimate the life-cycle costs of the facilities when operated in response to a set of scenarios that define the quantities and types of waste requiring storage in specific time periods, generally spanning the years 1989 to 2037. Three scenarios are examined to develop estimates of life-cycle costs for the MRS/IS facilities. In the first scenario, the reprocessing plant is placed in service in 1989 and HLW canisters are stored until a repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at intervals as needed to meet the demand. In the second scenario, the reprocessing plants are delayed in starting operations by 10 years, but the repositories open on schedule. In the third scenario, the repositories are delayed 10 years, but the reprocessing plants open on schedule

  13. Comparison of cask and drywell storage concepts for a monitored retrievable storage/interim storage system

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, D.E.

    1982-12-01

    The Department of Energy, through its Richland Operations Office is evaluating the feasibility, timing, and cost of providing a federal capability for storing the spent fuel, high-level wastes, and transuranic wastes that DOE may be obligated by law to manage until permanent waste disposal facilities are available. Three concepts utilizing a monitored retrievable storage/interim storage (MRS/IS) facility have been developed and analyzed. The first concept, co-location with a reprocessing plant, has been developed by staff of Allied General Nuclear Services. the second concept, a stand-alone facility, has been developed by staff of the General Atomic Company. The third concept, co-location with a deep geologic repository, has been developed by the Pacific Northwest Laboratory with the assistance of the Westinghouse Hanford Company and Kaiser Engineers. The objectives of this study are: to develop preconceptual designs for MRS/IS facilities: to examine various issues such as transportation of wastes, licensing of the facilities, and environmental concerns associated with operation of such facilities; and to estimate the life-cycle costs of the facilities when operated in response to a set of scenarios that define the quantities and types of waste requiring storage in specific time periods, generally spanning the years 1989 to 2037. Three scenarios are examined to develop estimates of life-cycle costs for the MRS/IS facilities. In the first scenario, the reprocessing plant is placed in service in 1989 and HLW canisters are stored until a repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at intervals as needed to meet the demand. In the second scenario, the reprocessing plants are delayed in starting operations by 10 years, but the repositories open on schedule. In the third scenario, the repositories are delayed 10 years, but the reprocessing plants open on schedule.

  14. A comparative study of different storage methods on the shelf-life of ...

    African Journals Online (AJOL)

    A study was conducted to determine the storage method that will best preserve the quality and quantity of smoke-cured Clarias sp. using boxes made of cardboard and wood, as well as, airtight metal containers. The boxes made of cardboard material was found to be the best medium of storage as all infesting dermestid ...

  15. Effect of irradiation in extending the storage life of boiled Chub mackerel (Rastrelliger spp.)

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P; Prompubesara, C; Songprasertchai, S; Kraisorn, K

    1972-12-31

    Effect of irradiation at doses of 0.1, 0.2, or 0.3 Mrad in extending the storage life of boiled Chub mackerel held at room temperature was described. Total aerobic count, trimethylamine nitrogen, and total volatile basic nitrogen contents were used and objective indices of quality in comparison with sensory evaluation of the product. Boiled fish irradiated at 0.1, 0.2, or 0.3 Mrad were found to be in good quality for 10, 15, and 17 days respectively, compared with 3 days for the unirradiated control. Trimethylamine nitrogen and total volatile basic nitrogen contents were found to be useful indices of quality, which showed fair correlation with sensory evaluation of the irradiated product. Total aerobic count showed little value as a quality index. Bacillus, Staphylococcus, and Micrococcus predominated in both unirradiated and irradiated boiled fish. The product was found to be free of faocal coliform. Safety of the irradiated boiled fish concerning botulism was discussed.

  16. The effect of combination treatment of gamma irradiation with refrigeration or with hot water treatment on the storage life and organoleptic properties of carabao mangoes and lacatan bananas

    International Nuclear Information System (INIS)

    Barruel, D.S.

    1976-03-01

    This study aims to determine the best combination of irradiation-hot water and irradiation-low temperature storage as treatments to help achieve longer shelf-life extension of fruits with export value such as bananas and mangoes. Results have shown the combined irradiation and hot water treatment as a better treatment for mangoes over that of combined irradiation (50kr) and low temperature storage (15 0 C) or of single treatments with irradiation, refrigeration or hot water. A much lower dose of 30 krad was found to give the longest extension in shelf-life in mangoes subjected to irradiation and hot (55 0 C) water treatment. No significant differences in the organoleptic properties were found in the samples given the combination treatment when compared to samples given no treatment at all. The extension in shelf-life may be attributed to the synergistic effect of the treatments, which could have affected the senescence of the fruit and likewise controlled the growth of rot-causing microorganisms. Similar work was also done on bananas but the results are still preliminary

  17. ICPP calcined solids storage facility closure study. Volume II: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates

    International Nuclear Information System (INIS)

    1998-02-01

    This document contains Volume II of the Closure Study for the Idaho Chemical Processing Plant Calcined Solids Storage Facility. This volume contains draft information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the four options described in Volume I: (1) Risk-Based Clean Closure; NRC Class C fill, (2) Risk-Based Clean Closure; Clean fill, (3) Closure to landfill Standards; NRC Class C fill, and (4) Closure to Landfill Standards; Clean fill

  18. ICPP calcined solids storage facility closure study. Volume II: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This document contains Volume II of the Closure Study for the Idaho Chemical Processing Plant Calcined Solids Storage Facility. This volume contains draft information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the four options described in Volume I: (1) Risk-Based Clean Closure; NRC Class C fill, (2) Risk-Based Clean Closure; Clean fill, (3) Closure to landfill Standards; NRC Class C fill, and (4) Closure to Landfill Standards; Clean fill.

  19. An optimized cask technology for conditioning, transportation and long term interim storage of 'End of Life' nuclear waste

    International Nuclear Information System (INIS)

    Lefort-Mary, Florence; Clement, Gilles; Lamouroux, Christine; Dumont, Bruno

    2016-01-01

    When preparing for the decommissioning of a nuclear facility, during its 'end of life' management and while performing the actual dismantling operations, one has to consider a large diversity of nuclear waste in term of types, volumes and activities. Customers are frequently faced with the obligation to undertake multiple and costly waste management operations including handling, reconditioning or re-transferring from one package to another, for example when moving from on-site storage to transportation. To address this issue, a new - highly flexible - cask system named TN R MW is being developed. This cask has a total weight of 10 T and is compliant with the 2012 IAEA regulations. It is developed on a flexible concept basis, adaptable to the various nuclear needs, including: from IP2 to B(U) / B(U)F; on-site/ international transportation; long term interim storage. Licensing and manufacturing of number of items of this TN R MW family is underway. (authors)

  20. An automatic device for charging a storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Pasyukov, A A

    1984-01-01

    The purpose of the invention is to increase the service life of storage batteries (AB) through ensuring automatic protection of the device from overloads with short circuits (KZ) and from incorrect switching polarity of the storage batteries. The device contains a transformer, a rectifier, a smoothing capacitor, a trigger capacitor, a charge current control transistor, a controllable transistor, a shielding transistor, two resistors, a diode, a resistor and a voltage divider, another resistor, a reference voltage stabilitron, a resistor and another diode and the storage battery.

  1. Combined Statistical Analyses for Long-Term Stability Data with Multiple Storage Conditions : A Simulation Study

    NARCIS (Netherlands)

    Almalik, Osama; Nijhuis, Michiel B.; van den Heuvel, Edwin R.

    2014-01-01

    Shelf-life estimation usually requires that at least three registration batches are tested for stability at multiple storage conditions. The shelf-life estimates are often obtained by linear regression analysis per storage condition, an approach implicitly suggested by ICH guideline Q1E. A linear

  2. Spent fuel storage requirements, 1990--2040

    International Nuclear Information System (INIS)

    Walling, R.; Bierschbach, M.

    1990-11-01

    Historical inventories of spent fuel are combined with US Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements over the next 51 years, through the year 2040. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. Historical data through December 1989 are derived from the 1990 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 15 refs., 3 figs., 11 tabs

  3. High density energy storage capacitor

    International Nuclear Information System (INIS)

    Whitham, K.; Howland, M.M.; Hutzler, J.R.

    1979-01-01

    The Nova laser system will use 130 MJ of capacitive energy storage and have a peak power capability of 250,000 MW. This capacitor bank is a significant portion of the laser cost and requires a large portion of the physical facilities. In order to reduce the cost and volume required by the bank, the Laser Fusion Program funded contracts with three energy storage capacitor producers: Aerovox, G.E., and Maxwell Laboratories, to develop higher energy density, lower cost energy storage capacitors. This paper describes the designs which resulted from the Aerovox development contract, and specifically addresses the design and initial life testing of a 12.5 kJ, 22 kV capacitor with a density of 4.2 J/in 3 and a projected cost in the range of 5 cents per joule

  4. Containment and storage of uranium hexafluoride at US Department of Energy uranium enrichment plants

    International Nuclear Information System (INIS)

    Barlow, C.R.; Alderson, J.H.; Blue, S.C.; Boelens, R.A.; Conkel, M.E.; Dorning, R.E.; Ecklund, C.D.; Halicks, W.G.; Henson, H.M.; Newman, V.S.; Philpot, H.E.; Taylor, M.S.; Vournazos, J.P.; Pryor, W.A.; Ziehlke, K.T.

    1992-07-01

    Isotopically depleted UF 6 (uranium hexafluoride) accumulates at a rate five to ten times greater than the enriched product and is stored in steel vessels at the enrichment plant sites. There are approximately 55,000 large cylinders now in storage at Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee. Most of them contain a nominal 14 tons of depleted UF 6 . Some of these cylinders have been in the unprotected outdoor storage environment for periods approaching 40 years. Storage experience, supplemented by limited corrosion data, suggests a service life of about 70 years under optimum conditions for the 48-in. diameter, 5/16-in.-wall pressure vessels (100 psi working pressure), using a conservative industry-established 1/4-in.-wall thickness as the service limit. In the past few years, however, factors other than atmospheric corrosion have become apparent that adversely affect the serviceability of small numbers of the storage containers and that indicate the need for a managed program to ensure maintenance ofcontainment integrity for all the cylinders in storage. The program includes periodic visual inspections of cylinders and storage yards with documentation for comparison with other inspections, a group of corrosion test programs to permit cylinder life forecasts, and identification of (and scheduling for remedial action) situations in which defects, due to handling damage or accelerated corrosion, can seriously shorten the storage life or compromise the containment integrity of individual cylinders. The program also includes rupture testing to assess the effects of certain classes of damage on overall cylinder strength, aswell as ongoing reviews of specifications, procedures, practices, and inspection results to effect improvements in handling safety, containment integrity, and storage life

  5. Monitored Retrievable Storage conceptual system study: cask-in-trench

    International Nuclear Information System (INIS)

    1983-11-01

    This report provides a description of the Cask-in-Trench Storage Concept which meets a specified set of requirements; an estimate of the costs of construction, operation and decommissioning of the concept; the costs required to expand the facility throughput and storage capability; and the life cycle costs of the facility. 22 figures, 34 tables

  6. Technical and Economic Assessment of Storage Technologies for Power-Supply Grids

    Directory of Open Access Journals (Sweden)

    H. Meiwes

    2009-01-01

    Full Text Available Fluctuating power generation from renewable energies such as wind and photovoltaic are a technical challenge for grid stability. Storage systems are an option to stabilise the grid and to maximise the utilisation factors of renewable power generators. This paper analyses the state of the art of storage technologies, including a detailed life cycle cost comparison. Beside this, benefits of using storage systems in electric vehicles are analysed and quantified. A comprehensive overview of storage technologies as well as possible applications and business cases for storage systems is presented. 

  7. Shelf life study on Nuclear Malaysia biofertilizer products

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Ahmad Nazrul Abd Wahid; Khairuddin Abdul Rahim

    2009-01-01

    Phosphate solubilising bacteria and plant growth promoting rhizobacteria are biofertilizer microorganisms known to increase crop yields. It is important to prepare suitable sterile carriers or substrates for these microorganisms into biofertilizer products with long shelf life. Optimum storage conditions, especially storage temperature is needed to improve shelf life of the products. Isolates of two phosphate solubilising bacteria (AP1 and AP3) and one plant growth promoting rhizobacteria (AP2) have been developed into biofertilizer products in Malaysian Nuclear Agency (NuclearMalaysia). These isolates were inoculated into a compost-based carrier, sterilised by gamma irradiation at 50 kGy, from MINTec-SINAGAMA, Nuclear Malaysia. Biofertilizer products kept at low temperatures (9 ± 2 degree C) showed better shelf life (storage for six months) as compared to those stored at room temperatures (28 ± 2 degree C). Further observation of the shelf life is still in progress. (Author)

  8. Monitored Retrievable Storage conceptual system study: open cycle vault

    International Nuclear Information System (INIS)

    Smith, R.I.

    1983-11-01

    This report provides a modified description of the Open Cycle Vault Storage Concept which meets a specified set of requirements; an estimate of the costs of construction, operation, and decommissioning of the concepts; the costs required to expand the facility throughput and storage capability; and the life-cycle costs of the facility. 11 references, 23 figures, 35 tables

  9. Energy Storage Facilities | Transportation Research | NREL

    Science.gov (United States)

    , electric, and fuel cell battery and ultracapacitor pack testing. Their voltages range from 0-100 volts component developers and automobile manufacturers improve battery and energy storage system designs by enhancing performance and extending battery life. Sophisticated experimentation, modeling, and analysis

  10. Flywheel energy storage; Schwungmassenspeicher

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H.J. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany)

    1996-12-31

    Energy storages may be chemical systems such as batteries, thermal systems such as hot-water tanks, electromagnetic systems such as capacitors and coils, or mechanical systems such as pumped storage power systems or flywheel energy storages. In flywheel energy storages the energy is stored in the centrifugal mass in the form of kinetic energy. This energy can be converted to electricity via a motor/generator unit and made available to the consumer. The introduction of magnetic bearings has greatly enhanced the potential of flywheel energy storages. As there is no contact between the moving parts of magnetic bearings, this technology provides a means of circumventing the engineering and operational problems involved in the we of conventional bearings (ball, roller, plain, and gas bearings). The advantages of modern flywheel energy storages over conventional accumulators are an at least thousandfold longer service life, low losses during long-time storage, greater power output in the case of short-time storage, and commendable environmental benignity. (orig./HW) [Deutsch] Als Enegiespeicher kommen chemische Systeme, z.B. Batterien, thermische Systeme, z.B. Warmwassertanks, elektromagnetische Systeme, z.B. Kondensatoren und Spulen, sowie mechanische Systeme, z.B. Pumpspeicherwerke und Schwungmassenspeicher in Frage. In einem Schwungmassenspeicher wird Energie in Form von kinetischer Energie in der Schwungmasse gespeichert. Ueber eine Moter/Generator Einheit wird diese Energie in elektrischen Strom umgewandelt und dem Verbraucher zugefuehrt. Mit der Einfuehrung von magnetischen Lagern konnte die Leistungsfaehigkeit von Schwungmassenspeichern erheblich gesteigert werden. Da in einem Magnetlager keine Beruehrung zwischen sich bewegenden Teilen besteht, wird ein Grossteil der mit dem Einsatz konventioneller Lager (Kugel- und Rollenlager, Gleitlager und Gaslager) verbundenen ingenieurtechnischen und betriebstechnischen Probleme vermieden. Die Vorteile von modernen

  11. Potential of oregano essential oil and MAP to extend the shelf life of fresh swordfish: a comparative study with ice storage.

    Science.gov (United States)

    Giatrakou, V; Kykkidou, S; Papavergou, A; Kontominas, M G; Savvaidis, I N

    2008-05-01

    The present study evaluated the effect of modified atmosphere packaging (MAP, 5% O(2)/50% CO(2)/45% N(2); treatment M), the addition of oregano oil (0.1%, v/w; treatment AO) as a natural preservative, as well as their combination (treatment MO) on the quality and shelf life extension of fresh Mediterranean swordfish fillets during a refrigerated storage (4 degrees C) period of 18 d. Simultaneously, swordfish fillets were stored under aerobic conditions (control treatment A, 4 degrees C) and on ice (usual commercial method of preservation, treatment I, 0 degrees C). Among the 5 treatments examined in the present study, the most effective one to inhibit the microbial and sensory spoilage proved to be the MO treatment, achieving a shelf life extension of 8 to 9 d. The dominant bacteria in the microflora of swordfish, irrespective of treatment, were the Pseudomonads and the H(2)S-producing bacteria, while both lactic acid bacteria (LAB) and the Enterobacteriaceae produced the lowest populations in swordfish samples kept on ice. Among the chemical indices examined, thiobarbituric acid (TBA) values showed no specific trend of lipid oxidation for swordfish, irrespective of treatment. Final trimethylamine nitrogen (TMA-N) and total volatile basic nitrogen (TVB-N) values for treatments, A, AO, M, and MO ranged between 1.33 and 14.29 mg N/100 g and 14.11 to 55.52 mg N/100 g, respectively, whereas for I samples they remained almost unchanged during storage. Sensory analysis (taste attribute) correlated well with microbiological analysis, indicating a shelf life of approximately 5 to 6 d for control, 10 to 11 d for AO, 12 d for I, 13 d for M, and 14 d for MO samples.

  12. Spent fuel storage requirements 1989--2020

    International Nuclear Information System (INIS)

    1989-10-01

    Historical inventories of spent fuel are combined with Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the US to provide estimates of spent fuel storage requirements over the next 32 years, through the year 2020. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Historical data through December 1988 are derived from the 1989 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 14 refs., 3 figs., 28 tabs

  13. Combined effects of thermosonication and slightly acidic electrolyzed water on the microbial quality and shelf life extension of fresh-cut kale during refrigeration storage.

    Science.gov (United States)

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-10-01

    This study evaluated the efficacy of thermosonication combined with slightly acidic electrolyzed water (SAcEW) on the shelf life extension of fresh-cut kale during storage at 4 and 7 °C. Each kale (10 ± 0.2 g) was inoculated to contain approximately 6 log CFU/g of Listeria monocytogenes. Each inoculated or uninoculated samples was dip treated at 40 °C for 3 min with deionized water, thermosonication (400 W/L), SAcEW (5 mg/L), sodium chlorite (SC; 100 mg/L), sodium hypochlorite (SH; 100 mg/L), and thermosonication combined with SAcEW, SC, and SH (TS + SAcEW, TS + SC, and TS + SH, respectively). Growths of L. monocytogenes and spoilage microorganisms and changes in sensory (overall visual quality, browning, and off-odour) were evaluated. The results show that lag time and specific growth rate of each microorganism were not significantly (P > 0.05) affected by treatment and storage temperature. Exceeding the unacceptable counts of spoilage microorganisms did not always result in adverse effects on sensory attributes. This study suggests that TS + SAcEW was the most effective method to prolong the shelf life of kale with an extension of around 4 and 6 days at 4 and 7 °C, respectively, and seems to be a promising method for the shelf life extension of fresh produce. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Remaining Useful Life Estimation of Li-ion Battery for Energy Storage System Using Markov Chain Monte Carlo Method

    International Nuclear Information System (INIS)

    Kim, Dongjin; Kim, Seok Goo; Choi, Jooho; Lee, Jaewook; Song, Hwa Seob; Park, Sang Hui

    2016-01-01

    Remaining useful life (RUL) estimation of the Li-ion battery has gained great interest because it is necessary for quality assurance, operation planning, and determination of the exchange period. This paper presents the RUL estimation of an Li-ion battery for an energy storage system using exponential function for the degradation model and Markov Chain Monte Carlo (MCMC) approach for parameter estimation. The MCMC approach is dependent upon information such as model initial parameters and input setting parameters which highly affect the estimation result. To overcome this difficulty, this paper offers a guideline for model initial parameters based on the regression result, and MCMC input parameters derived by comparisons with a thorough search of theoretical results

  15. Remaining Useful Life Estimation of Li-ion Battery for Energy Storage System Using Markov Chain Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjin; Kim, Seok Goo; Choi, Jooho; Lee, Jaewook [Korea Aerospace Univ., Koyang (Korea, Republic of); Song, Hwa Seob; Park, Sang Hui [Hyosung Corporation, Seoul (Korea, Republic of)

    2016-10-15

    Remaining useful life (RUL) estimation of the Li-ion battery has gained great interest because it is necessary for quality assurance, operation planning, and determination of the exchange period. This paper presents the RUL estimation of an Li-ion battery for an energy storage system using exponential function for the degradation model and Markov Chain Monte Carlo (MCMC) approach for parameter estimation. The MCMC approach is dependent upon information such as model initial parameters and input setting parameters which highly affect the estimation result. To overcome this difficulty, this paper offers a guideline for model initial parameters based on the regression result, and MCMC input parameters derived by comparisons with a thorough search of theoretical results.

  16. The effects of washing with Tamarind (Tamarindus indica L. water solution on shelf life of silver carp (Hypophthalmichthys molitrix fillet during refrigerator storage

    Directory of Open Access Journals (Sweden)

    Eshagh Zakipour Rahimabadi

    2016-01-01

    Full Text Available This study evaluated the antibacterial and antioxidant effects of tamarind water solution on shelf life of silver carp (Hypophthalmicthys molitrix fillet during refrigerator storage. Treatments of this study were unwashed samples (control, and samples washed with 1% and 2% tamarind water solution. Microbial, physicochemical and sensory analysis including total viable count (TVC, peroxide value (PV, thiobarbituric acid (TBA, total volatile base (TVB-N and pH were measured during 15 day storage at refrigerator (with 3 days intervals. Proximate analysis of samples also measured at day 0. TVC content was 0.93, 0.50 and 0.10 log CFU/g for control and treatments 1% and 2%, respectively and reached to 6.24, 5.82 and 5.21 log CFU/g at the end of storage period. At the end of storage period, the PV, TBA and TVB-N content were 8.4, 4.3, and 3.0 meq O2/Kg for control, 2.75, 1.35, and 0.50 mg/100g for 1% treatment, and 33.17, 23.90, and 22.10 mg N/100g for 2% treatment, respectively. This results showed the positive effect of tamarind to inhibit and delay fish fillet spoilage. According to sensory evaluation, the density of 1% tamarind was selected as the best density.

  17. The storage center of short life low and intermediate level radioactive wastes; Le centre de stockage des dechets de faible et moyenne activite a vie courte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Situated at 50 km of Troyes, the Aube Center was opened in 1992 in order to take over from the Manche Center, for the surface storage of low life low and intermediate level radioactive wastes. It offers an answer to manage safely theses wastes at an industrial scale during 50 years. (A.L.B.)

  18. Sperm storage induces an immunity cost in ants

    DEFF Research Database (Denmark)

    Baer, Boris; Armitage, Sophie A O; Boomsma, Jacobus J

    2006-01-01

    Ant queens are among the most long-lived insects known. They mate early in adult life and maintain millions of viable sperm in their sperm storage organ until they die many years later. Because they never re-mate, the reproductive success of queens is ultimately sperm-limited, but it is not known...... what selective forces determine the upper limit to sperm storage. Here we show that sperm storage carries a significant cost of reduced immunity during colony founding. Newly mated queens of the leaf-cutting ant Atta colombica upregulate their immune response shortly after completing their nest burrow...

  19. Life Support with Failures and Variable Supply

    Science.gov (United States)

    Jones, Harry

    2010-01-01

    The life support system for long duration missions will recycle oxygen and water to reduce the material resupply mass from Earth. The impact of life support failures was investigated by dynamic simulation of a lunar outpost habitat life support model. The model was modified to simulate resupply delays, power failures, recycling system failures, and storage failures. Many failures impact the lunar outpost water supply directly or indirectly, depending on the water balance and water storage. Failure effects on the water supply are reduced if Extra Vehicular Activity (EVA) water use is low and the water supply is ample. Additional oxygen can be supplied by scavenging unused propellant or by production from regolith, but the amounts obtained can vary significantly. The requirements for oxygen and water can also vary significantly, especially for EVA. Providing storage buffers can improve efficiency and reliability, and minimize the chance of supply failing to meet demand. Life support failures and supply variations can be survivable if effective solutions are provided by the system design

  20. Studies on battery storage requirement of PV fed wind-driven induction generators

    International Nuclear Information System (INIS)

    Rajan Singaravel, M.M.; Arul Daniel, S.

    2013-01-01

    Highlights: ► Sizing of battery storage for PV fed wind-driven IG system is taken up. ► Battery storage is also used to supply reactive power for wind-driven IG. ► Computation of LPSP by incorporating uncertainties of irradiation and wind speed. ► Sizing of hybrid power system components to ensure zero LPSP. ► Calculated storage size satisfied the constraints and improves battery life. - Abstract: Hybrid stand-alone renewable energy systems based on wind–solar resources are considered to be economically better and reliable than stand-alone systems with a single source. An isolated hybrid wind–solar system has been considered in this work, where the storage (battery bank) is necessary to supply the required reactive power for a wind-driven induction generator (IG) during the absence of power from a photovoltaic (PV) array. In such a scheme, to ensure zero Loss of Power Supply Probability (LPSP) and to improve battery bank life, a sizing procedure has been proposed with the incorporation of uncertainties in wind-speed and solar-irradiation level at the site of erection of the plant. Based on the proposed procedure, the size of hybrid power system components and storage capacity are determined. Storage capacity has been calculated for two different requirements. The first requirement of storage capacity is common to any hybrid scheme, which is; to supply both real and reactive power in the absence of wind and solar sources. The second requirement is to supply reactive power alone for the IG during the absence of photovoltaic power, which is unique to the hybrid scheme considered in this work. Storage capacity calculations for different conditions using the proposed approach, satisfies the constraints of maintaining zero LPSP and also improved cycle life of the battery bank

  1. Extending the storage life of garlic by gamma-irradiation

    International Nuclear Information System (INIS)

    Curzio, O.A.; Croci, C.A.; Quaranta, H.O.

    1983-01-01

    The effect of gamma irradiation (0.03kGy) on garlic bulbs from local cultivars was studied. The treatment proved to be effective in reducing weight loss and spoilage percentage of the bulbs. After 10 months of storage the weight loss was found to be reduced by 37% in irradiated garlic. Irradiation reduced sprouting of the fresh bulbs but did not affect the rotting process. (author)

  2. Preserve the memory of storage centers

    International Nuclear Information System (INIS)

    2008-01-01

    Many centuries are sufficient for the short life low and intermediate level radioactive wastes to reach a radioactivity level offering no danger for the human health. This document presents the management of the storage Center memory and the different applied technologies. (A.L.B.)

  3. Multidimensional materials and device architectures for future hybrid energy storage

    Science.gov (United States)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  4. The effect of radiation on the storage of fish

    International Nuclear Information System (INIS)

    Ghadi, S.V.; Madhavan, V.N.; Kumta, U.S.; Lewis, N.F.

    1976-01-01

    Fresh fish spoils rapidly at +- 0 0 to + 2 0 C, and produces considerable quantities of ammonia. It is known that ammonia production is reduced if fish is heated before processing. Radiation experiments were carried out to see whether the storage stability of fresh fish could be improved without cooking it. Radiation with 100 to 500 Krad or steam cooking for 3 to 5 minutes did not improve storage stability. Only combined treatment with steam and low doses (100 Krad) of gamma rays lengthened refrigerated storage life. (orig.) [de

  5. Interim spent-fuel storage options at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Thakkar, A.R.; Hylko, J.M.

    1991-01-01

    Although spent fuel can be stored safely in waterfilled pools at reactor sites, some utilities may not possess sufficient space for life-of-plant storage capability. In-pool storage capability may be increased by reracking assemblies, rod consolidation, double tiering spent-fuel racks, and by shipping spent fuel to other utility-owned facilities. Long-term on-site storage capability for spent fuel may be provided by installing (dry-type) metal casks, storage and transportation casks, concrete casks, horizontal concrete modules, modular concrete vaults, or by constructing additional (pool-type) storage installations. Experience to date has provided valuable information regarding dry-type or pool-type installations, cask handling and staffing requirements, security features, decommissioning activities, and radiological issues

  6. The inhibitory effect of the various seed coating substances against rice seed borne fungi and their shelf-life during storage.

    Science.gov (United States)

    Thobunluepop, Pitipong

    2009-08-15

    Presently, chemical seed treatments are in discussion due to their directly or indirectly impacts on human health or other living organisms. They may also negatively affect the ecosystem and the food chain. In rice seeds, chemicals may cause phytotoxic effects including seed degradation. Eugenol is the main component of clove (Eugenia caryophillis) oil, which was proved to act simultaneously as bactericide, virocide and especially fungicide. The in vitro study was aimed to compare the inhibitory effect of the following seed treatment substances against seed borne fungi and their shelf-life during 12 months of storage; conventional captan (CA), chitosan-lignosulphonate polymer (CL), eugenol incorporated into chitosan-lignosulphonate polymer (E+CL) and control (CO). The obtained results of fungi inhibition were classified in three groups, which showed at first that CA treatment led to a better, i.e., longer, inhibitory effect on Alternaria padwickii, Rhizoctonia solani, Curvularia sp., Aspergillus flavus and Aspergillus niger than E+CL. Secondly, E+CL coating polymer showed the longest inhibitory effect against Bipolaris oryzae and Nigrospora oryzae compared to CA and CL coating polymer. Finally, both CA and E+CL coating polymer had non-significant difference inhibitory effect on Fusarium moniliforme. The variant of CL coating polymer for seed coating was only during the first 6 months of storage able to inhibit all species of the observed seed borne fungi, whereas CA and E+CL coating polymer were capable to inhibit most of the fungi until 9 months of storage.

  7. New technology and possible advances in energy storage

    International Nuclear Information System (INIS)

    Baker, John

    2008-01-01

    Energy storage technologies may be electrical or thermal. Electrical energy stores have an electrical input and output to connect them to the system of which they form part, while thermal stores have a thermal input and output. The principal electrical energy storage technologies described are electrochemical systems (batteries and flow cells), kinetic energy storage (flywheels) and potential energy storage, in the form of pumped hydro and compressed air. Complementary thermal storage technologies include those based on the sensible and latent heat capacity of materials, which include bulk and smaller-capacity hot and cold water storage systems, ice storage, phase change materials and specific bespoke thermal storage media. For the majority of the storage technologies considered here, the potential for fundamental step changes in performance is limited. For electrochemical systems, basic chemistry suggests that lithium-based technologies represent the pinnacle of cell development. This means that the greatest potential for technological advances probably lies in the incremental development of existing technologies, facilitated by advances in materials science, engineering, processing and fabrication. These considerations are applicable to both electrical and thermal storage. Such incremental developments in the core storage technologies are likely to be complemented and supported by advances in systems integration and engineering. Future energy storage technologies may be expected to offer improved energy and power densities, although, in practice, gains in reliability, longevity, cycle life expectancy and cost may be more significant than increases in energy/powerdensity per se

  8. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  9. Uranium retrieval support, storage, and marketing

    International Nuclear Information System (INIS)

    Jackson, J.D.; Marshall, E.M.

    2001-01-01

    The United States Department of Energy is implementing a stewardship approach to management of uranium assets. This life-cycle approach to managing uranium addresses current needs in the context of a long-term strategy. In June 1998, the United States Department of Energy established the Uranium Management Group. The mission of the UMG is to safely collect and store commercially viable uranium from various DOE facilities at a central location. The Oak Ridge Operations Office, in Oak Ridge, Tennessee, was given the task to establish a facility for the storage of these uranium materials. Materials collected are non-waste uranium and packaged to allow transport and long-term storage. Coordination of uranium management under the Uranium Management Group offers significant opportunities for sayings through improved planning and efficiency and creates an environmentally sound approach for the storage and reuse of excess uranium. (author)

  10. Uranium retrieval support, storage, and marketing

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.; Marshall, E.M. [U.S. Department of Energy, Oak Ridge, Tennessee (United States)

    2001-07-01

    The United States Department of Energy is implementing a stewardship approach to management of uranium assets. This life-cycle approach to managing uranium addresses current needs in the context of a long-term strategy. In June 1998, the United States Department of Energy established the Uranium Management Group. The mission of the UMG is to safely collect and store commercially viable uranium from various DOE facilities at a central location. The Oak Ridge Operations Office, in Oak Ridge, Tennessee, was given the task to establish a facility for the storage of these uranium materials. Materials collected are non-waste uranium and packaged to allow transport and long-term storage. Coordination of uranium management under the Uranium Management Group offers significant opportunities for sayings through improved planning and efficiency and creates an environmentally sound approach for the storage and reuse of excess uranium. (author)

  11. Acceptance criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Iyer, N.C.; Louthan, M.R. Jr.

    1994-01-01

    Direct repository disposal of foreign and domestic research reactor fuels owned by the United States Department of Energy is an alternative to reprocessing (together with vitrification of the high level waste and storage in an engineered barrier) for ultimate disposition. Neither the storage systems nor the requirements and specifications for acceptable forms for direct repository disposal have been developed; therefore, an interim storage strategy is needed to safely store these fuels. Dry storage (within identified limits) of the fuels received from wet-basin storage would avoid excessive degradation to assure post-storage handleability, a full range of ultimate disposal options, criticality safety, and provide for maintaining confinement by the fuel/clad system. Dry storage requirements and technologies for US commercial fuels, specifically zircaloy-clad fuels under inert cover gas, are well established. Dry storage requirements and technologies for a system with a design life of 40 years for dry storage of aluminum-clad foreign and domestic research reactor fuels are being developed by various groups within programs sponsored by the DOE

  12. FRAPCON analysis of cladding performance during dry storage operations

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, David J.; Geelhood, Kenneth J.

    2018-03-01

    There is an increasing need in the U.S. and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations (ISFSI) or interim storage sites. The NRC limits cladding temperature to 400°C while maintaining cladding hoop stress below 90 MPa in an effort to avoid radial hydride reorientation. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400 °C. Results were representative of the majority of U.S. LWR fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

  13. Pregnancies in glycogen storage disease type Ia

    NARCIS (Netherlands)

    Martens, Danielle H. J.; Rake, Jan Peter; Schwarz, Martin; Ullrich, Kurt; Weinstein, David A.; Merkel, Martin; Sauer, Pieter J. J.; Smit, G. Peter A.

    OBJECTIVE: Reports on pregnancies in women with glycogen storage disease type Ia (GSD-Ia) are scarce. Because of improved life expectancy, pregnancy is becoming an important issue. We describe 15 pregnancies by focusing on dietary treatment, biochemical parameters, and GSD-Ia complications. STUDY

  14. Synthesis document on the storage and packages concepts: phenomenological and operational reference corrosion HAVL

    International Nuclear Information System (INIS)

    Helie, M.; Bataillon, Ch.; Desgranges, C.; Perrin, S.

    2004-12-01

    In the today concept, the long life high activity nuclear wastes (HAVL) would be storage in metallic containers. In the framework of the COCON program, simulations and knowledge of the corrosion problems bond to the wastes containers management are realized, in order to predict the long time behavior of packages storage and disposal. This reference document takes stock on the knowledge and the scientific simulation of corrosion phenomena which are decisive for the long life behavior of the external metallic wall of high activity nuclear wastes packages for the storage and the disposal and aims to provide bases of an operational modelization of these phenomena. (A.L.B.)

  15. Effect of functional chitosan coating and gamma irradiation on the shelf-life of chicken meat during refrigerated storage

    Science.gov (United States)

    Hassanzadeh, Parviz; Tajik, Hossein; Rohani, Seyed Mehdi Razavi; Moradi, Mehran; Hashemi, Mohammad; Aliakbarlu, Javad

    2017-12-01

    The present study was conducted to evaluate the combined effect of low-dose gamma irradiation (2.5 kGy) and chitosan edible coating (2%) containing grape seed extract (GSE) (0.1%) on the microbial, chemical and sensorial quality of chicken breast meat during 21 days of storage at 4 °C. The samples were periodically analyzed for microbiological (aerobic mesophilic and psychrotrophic counts), chemical (TBA, pH, aw) and sensorial (odor, appearance, and overall acceptability) characteristics. Results indicated that irradiation and the active coating had significant (P ≤ 0.05) effects on reduction of bacterial growth with at least a 14-day extension of shelf life. Results represented the protective effect of chitosan coating containing GSE against induced lipid oxidation by irradiation. All chitosan-coated samples showed lower TBA and pH values than other treatments during storage, and no significant (P > 0.05) difference was observed due to irradiation in TBA values. Results also indicated that the application of chitosan coating significantly improved the sensorial quality of the samples, and none of the evaluated sensorial attributes was significantly affected by irradiation. Based on the results obtained in this study, the application of low-dose gamma irradiation and chitosan coating containing GSE was effective in preserving the quality of fresh chicken meats and is recommended in meat products.

  16. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    Science.gov (United States)

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  17. Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables.

    Science.gov (United States)

    Ali, Asgar; Yeoh, Wei Keat; Forney, Charles; Siddiqui, Mohammed Wasim

    2017-10-26

    Minimally processed fresh produce is one of the fastest growing segments of the food industry due to consumer demand for fresh, healthy, and convenient foods. However, mechanical operations of cutting and peeling induce the liberation of cellular contents at the site of wounding that can promote the growth of pathogenic and spoilage microorganisms. In addition, rates of tissue senescence can be enhanced resulting in reduced storage life of fresh-cut fruits and vegetables. Chlorine has been widely adopted in the disinfection and washing procedures of fresh-cut produce due to its low cost and efficacy against a broad spectrum of microorganisms. Continuous replenishment of chlorine in high organic wash water can promote the formation of carcinogenic compounds such as trihalomethanes, which threaten human and environmental health. Alternative green and innovative chemical and physical postharvest treatments such as ozone, electrolyzed water, hydrogen peroxide, ultraviolet radiation, high pressure processing, and ultrasound can achieve similar reduction of microorganisms as chlorine without the production of harmful compounds or compromising the quality of fresh-cut produce.

  18. Hydrogen storage alloy for a battery; Denchiyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    Saito, N.; Takahashi, M.; Sasai, T. [Japan Metals and Chemicals Co. Ltd., Tsukuba (Japan)

    1997-11-18

    Cobalt contained in a hydrogen storage alloy has an effect to improve a cycle life, but it gives a problem of inferior discharge characteristics. Moreover, cobalt is a rather expensive constituent and therefore, it is desirable to suppress its use as far as possible. This invention aims to present a hydrogen storage alloy with a long service life and high discharge characteristics for a negative electrode of a hydrogen battery without containing a large amount of cobalt. The hydrogen storage alloy of this invention has a composition of a general formula: RNi(a)Co(b)Al(c)Mn(d)Fe(e), where R is a mixture of rare earth elements and La content in this alloy is 25 to 70wt%, 3.7{<=}a{<=}4.0, 0.1{<=}b{<=}0.4, 0.20{<=}c{<=}0.4, 0.30{<=}d{<=}0.45, 0.2{<=}e{<=}0.4, 0.5{<=}b+e{<=}0.7 and 5.0{<=}a+b+c+d+e{<=}5.1. 1 tab.

  19. Shelf-life enhancement of fresh ginger rhizomes at ambient temperatures by combination of gamma-irradiation, biocontrol and closed polyethylene bag storage

    International Nuclear Information System (INIS)

    Mukherjee, P.K.; Thomas, P.; Raghu, K.

    1995-01-01

    The feasibility of a combination process involving gamma-irradiation, packing in closed polyethylene bags and biological control of fungi causing storage rot was evaluated as a means of extending the shelf-life of fresh ginger rhizomes at ambient temperatures (25–30°C). Storage in closed polyethylene bags reduced weight loss but increased sprouting and rooting, which could be prevented by gamma irradiation to 60 Gy. Rotting caused by Sclerotium rolfsii was, however, a major cause of spoilage during extended storage. Four isolates of Trichoderma sp. isolated from sclerotia of S. rolfsii infecting ginger rhizomes, one of Gliocfadium uirens, and four isolates of fluorescent Pseudomonas were tested, out of which, one isolate of Trichoderma was found to be highly effective in suppressing the growth of S. rolfsii. The efficacy of the antagonist was demonstrated under simulated market conditions using artificially inoculated rhizomes. The recommended procedure consists of dipping washed, air dried rhizomes in Trichoderma suspension (10 8 spores ml -1 ), air-drying, packing in 250 gauge LDPE bags followed by irradiation to 60 Gy. Rhizomes thus treated remained in good marketable condition for up to 2 months at ambient temperature without sprouting or significant loss of quality and less than 5% weight loss. An in vitro bioassay system was developed to demonstrate the efficacy of the antagonist to protect the cut surface of sliced rhizomes inoculated with the pathogen. The method could be used for rapid screening of antagonists

  20. Accelerated Shelf Life Testing of Jackfruit Extract Powder

    Directory of Open Access Journals (Sweden)

    Enny Hawani Loebis

    2013-06-01

    Full Text Available Jackfruit is a potential tropical fruit as raw material for food industry. Jackfruit could be processed by co-crystallization technique to extend its shelf life and increase its value. This research was conducted to study and to determine the shelf life of jackfruit powder extract. Shelf life test is conducted using variety of treatments such as: anti-caking types and temperature storage. The results showed that the shelf life of the jackfruit extract powder using anti-caking of magnesium oxide (MO, magnesium carbonate (MC, dan magnesium silicate (MS, which is store in the temperature of 27°C, were: 8.06, 5.42, and 5.5 months respectively. The variation of anti-caking type was significantly affect the product shelf life.  The effect of storage temperature on the product shelf life is more significant for the product using anti-caking MO compared with product using anti-caking MC and MS.

  1. Long-time data storage: relevant time scales

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    2011-01-01

    Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is

  2. Impact of edible chitosan-cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature.

    Science.gov (United States)

    de Aquino, Alana Bezerra; Blank, Arie Fitzgerald; Santana, Luciana Cristina Lins de Aquino

    2015-03-15

    The effect of edible chitosan-cassava starch (CH-CS) coatings containing a mixture of Lippia gracilis Schauer genotypes (EOM) on the shelf life of guavas during storage at room temperature for 10 days was studied. Sixteen formulations were prepared with a range of chitosan and essential oil mixtures concentrations, and the in vitro antimicrobial activity was tested. Formulations containing 2.0% cassava starch, 2.0% chitosan and 1.0%, 2.0% or 3.0% EOM were most effective in inhibiting the growth of the majority of bacteria. The edible CH-CS coating and CH-CS with 1.0% (CH-CS-EOM1) or 3.0% EOM (CH-CS-EOM3) were added to guavas and the shelf life was evaluated. On the tenth day of storage, total aerobic mesophilic bacteria and mould and yeast counts were statistically lower (p<0.05) in the CH-CS-EOM1- or CH-CS-EOM3-coated fruits than CH-CS-coated fruits. In addition, fruits coated with CH-CS or CH-CS-EOM showed no significant changes of total soluble solids content, while CH-CS-EOM-coated fruits showed lower titratable acidity than CH-CS-coated fruits at the end of storage. CH-CS-EOM3-coated guavas showed lower a(∗) and b(∗) values and higher L(∗) and hue values than those with other coatings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Summary Report for Capsule Dry Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    JOSEPHSON, W S

    2003-09-04

    There are 1.936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project (CDSP) is conducted under the assumption the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event vitrification of the capsule contents is pursued. A cut away drawing of a typical cesium chloride (CsCI) capsule and the capsule property and geometry information are provided in Figure 1.1. Strontium fluoride (SrF{sub 2}) capsules are similar in design to CsCl capsules. Further details of capsule design, current state, and reference information are given later in this report and its references. Capsule production and life history is covered in WMP-16938, Capsule Characterization Report for Capsule Dry Storage Project, and is briefly summarized in Section 5.2 of this report.

  4. Effects of Wax Coating on the Moisture Loss of Cucumbers at Different Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Jian Li

    2018-01-01

    Full Text Available The effects of wax coating on moisture loss of cucumbers (Cucumis sativus L., cv. Jinglv were investigated at different temperatures. Cucumbers were treated with 10% (volume : volume wax and then stored at 15, 20, 25, or 30°C and 55% relative humidity. The changes in the mass of samples were recorded every 6 h. Results showed that wax coating along with low temperature was very effective in preventing moisture loss of cucumbers during simulated distribution. After 48 h storage, moisture loss in wax treated cucumbers at 15°C was 45% lower than the control at 30°C. Furthermore, a kinetic model was developed to study the influence of temperature on moisture loss based on the Arrhenius law. The model successfully described changes in cucumber moisture loss at different temperatures during storage. The shelf life of cucumber was also predicted using the kinetic model. A synergistic effect was found between wax coating and storage temperature on cucumber shelf life. Wax coating combined with low storage temperature was an effective method to extend the shelf life of cucumber fruit.

  5. A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.

    Energy Technology Data Exchange (ETDEWEB)

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

    2011-09-01

    The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino

  6. ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bert Bock; Richard Rhudy; Howard Herzog; Michael Klett; John Davison; Danial G. De La Torre Ugarte; Dale Simbeck

    2003-02-01

    This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

  7. Oxidative deterioration of pork during superchilling storage

    DEFF Research Database (Denmark)

    Pomponio, Luigi; Ruiz Carrascal, Jorge

    2017-01-01

    BACKGROUND: In superchilling (SC), meat is kept at temperatures around 1 °C below its initial freezing point, leading to a significant increase in shelf life. This study aimed to address the oxidative changes taking place in pork loins during prolonged storage at SC temperature. Loins were stored...

  8. Evaluation of goat milk as storage media to preserve viability of human periodontal ligament cells in vitro.

    Science.gov (United States)

    Ulusoy, Ayça Tuba; Kalyoncuoglu, Elif; Kaya, Senay; Cehreli, Zafer Cavit

    2016-08-01

    The purpose of this study was to evaluate the effectiveness of goat milk as a storage media for maintenance of periodontal ligament (PDL) cell viability of avulsed teeth and compare it with commonly used and/or investigated storage media. PDL cells were obtained from the root surface of healthy premolars and were cultured in Eagle's maintenance medium (EMM). Cell cultures were treated with the following storage media: tap water (negative control); EMM (positive control); Hank's balanced salt solution; ultra high temperature (UHT) long-shelf-life lactose-free cow milk; UHT long-shelf-life whole cow milk; UHT long-shelf-life skimmed cow milk; UHT long-shelf-life soy milk; UHT long-shelf-life goat milk, UHT long-shelf-life follow on milk with probiotic, 20% propolis, and egg white. Culture plates were incubated with experimental media at 20°C for 1, 3, 6, 12, and 24 h. PDL cell viability was assessed by tetrazolium salt-based colorimetric (MTT) assay at each test period. One-way anova was used to evaluate the effects of storage solutions at each time point, followed by post hoc Duncan's multiple comparison test (P = 0.05). A dendrogram was constructed to show the arrangement of hierarchical clustering. Goat milk displayed the highest capacity to maintain cell viability at all test intervals (P milk with the probiotic showed the lowest time-dependent PDL cell viability among all test media (P milks, HBSS performed significantly less effectively in maintaining PDL cell viability during the entire test period (P milk can be recommended as a suitable storage medium for avulsed teeth. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. FRAPCON analysis of cladding performance during dry storage operations

    Directory of Open Access Journals (Sweden)

    David J. Richmond

    2018-03-01

    Full Text Available There is an increasing need in the United States and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations or interim storage sites. Under normal conditions, the Nuclear Regulatory Commission limits cladding temperature to 400°C for high-burnup (>45 GWd/mtU fuel, with higher temperatures allowed for low-burnup fuel. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400°C. Results were representative of the majority of US light water reactor fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage. Keywords: Dry Storage, FRAPCON, Fuel Performance, Radial Hydride Reorientation, Vacuum Drying

  10. Buffer thermal energy storage for an air Brayton solar engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  11. Consensus guidelines for management of glycogen storage disease type 1b - European Study on Glycogen Storage Disease Type 1

    NARCIS (Netherlands)

    Visser, G; Rake, JP; Labrune, P; Leonard, JV; Moses, S; Ullrich, K; Wendel, U; Smit, GPA

    2002-01-01

    Life expectancy in glycogen storage disease type 1 (GSD-1) has improved considerably. Its relative rarity implies that no metabolic centre has experience of large series of patients and therefore experience with long-term management and follow-up at each centre is limited. There is wide variation in

  12. Guidelines for management of glycogen storage disease type I - European study on glycogen storage disease type I (ESGSD I)

    NARCIS (Netherlands)

    Rake, JP; Visser, G; Labrune, P; Leonard, JV; Ullrich, K; Smit, GPA

    2002-01-01

    Life-expectancy in glycogen storage disease type I (GSD I) has improved considerably. Its relative rarity implies that no metabolic centre has experience of large series of patients and experience with long-term management and follow-up at each centre is limited. There is wide variation in methods

  13. Effect of vacuum-packaging and low dose gamma irradiation on the microbial, bio-chemical quality and shelf life of peeled shrimp (Litopenaeus vannamei) during ice storage

    International Nuclear Information System (INIS)

    Bojayanaik, Manjanaik; Naroth, Kavya; Prasad, Surjith; Shetty, Veena; Hiriyur, Somashekarappa; Patil, Rajashekar

    2015-01-01

    The present investigation was carried out to see the combined effect of vacuum packaging and low dose gamma irradiation (3kGy) on the shelf life of peeled and undeveined shrimp (Litopeanus vannamie) during ice storage. The fresh farm raised shrimps were peeled and un deveined, packed in high density polyethylene bags (aerobic and vacuum packaging) and were divided into four groups viz. control (C), Irradiated (I), Vacuum packed (V) and vacuum-packed with irradiation (VI). The two groups (I and VI) were irradiated at 3 kGy (Dose rate at the rate 6.043 kGy/hr) and aseptically stored in ice in an insulated polystyrene box. All the samples were periodically analysed for microbial (Total bacterial load, total Coliform, Faecal Coliforms, Staphylococcus, Salmonella, Vibrios and E. coli) and bio chemical (TVB-N, TMA, TBARS and pH) quality. The results revealed that the combination of low dose gamma irradiation and vacuum packaging had a significant effect on microbial load (p>0.05). The TVB-N, TMA-N, TBARS and pH were significantly lower in vacuum packed with irradiation when compare to non-irradiated and aerobically packed shrimp (p> 0.05), and shelf life of peeled shrimp extended up to 21 days in ice storage. (author)

  14. Sensory shelf life of mantecoso cheese using accelerated testing

    OpenAIRE

    Sánchez-González, Jesús A.; Pérez, Joel A.

    2016-01-01

    The aim of this research was to estimate sensory shelf life of "huacariz" and "cefop" mantecoso cheese, vacuum packaging: "cefop" and packaging to the atmospheric pressure: "huacariz"; brands marketed in Cajamarca, using accelerated shelf life testing. For this purpose, "huacariz" cheese was stored at 20, 28, 35 y 40 °C, while it was set at 20, 28, 35 °C storage for "cefop" cheese, performing acceptability sensory tests according to time storage with both 41 consumers constants. The results f...

  15. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production

    International Nuclear Information System (INIS)

    Emery, Isaac R.; Mosier, Nathan S.

    2012-01-01

    Life cycle inventory models of greenhouse gas emissions from biofuel production have become tightly integrated into government mandates and other policies to encourage biofuel production. Current models do not include life cycle impacts of biomass storage or reflect current literature on emissions from soil and biomass decomposition. In this study, the GREET model framework was used to determine net greenhouse gas emissions during ethanol production from corn and switchgrass via three biomass storage systems: wet ensiling of whole corn, and indoor and outdoor dry bale storage of corn stover and switchgrass. Dry matter losses during storage were estimated from the literature and used to modify GREET inventory analysis. Results showed that biomass stability is a key parameter affecting fuel production per farmed hectare and life cycle greenhouse gas emissions. Corn silage may generate 5358 L/ha of ethanol at 26.5 g CO 2 eq/MJ, relative to 5654 L/ha at 52.3 g CO 2 eq/MJ from combined corn stover and conventional grain corn ethanol production, or 3919 L/ha at 21.3 g CO 2 eq/MJ from switchgrass. Dry matter losses can increase net emissions by 3–25% (ensiling), 5–53% (bales outdoors), or 1–12% (bales indoors), decreasing the net GHG reduction of ethanol over gasoline by up to 10.9%. Greater understanding of biomass storage losses and greenhouse gas fluxes during storage is necessary to accurately assess biomass storage options to ensure that the design of biomass supply logistics systems meet GHG reduction mandates for biofuel production. -- Highlights: ► Analyzed the impact of biomass loss during storage. ► Probable dry matter losses strongly depend on storage method and infrastructure. ► Assessed impact of storage losses on LCA for cellulosic ethanol production. ► Storage losses increase GHG emissions by 1–53% depending upon storage conditions.

  16. Is Menkes Syndrome a Copper Storage Disorder

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else; Horn, N.

    1978-01-01

    is not a simple deficiency syndrome. There is strong evidence that the fetus is affected and that the abnormal Cu distribution is a manifestation of this. Some data demonstrating that significant extra-hepatic storage of Cu is also present in affected males during postnatal life is reported. Cu was determined...

  17. Energy Storage Project

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  18. The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life

    International Nuclear Information System (INIS)

    Wolfram, J. H.; Mizia, R. E.; Jex, R.; Nelson, L.; Garcia, K. M.

    1996-01-01

    A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination

  19. The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life

    Energy Technology Data Exchange (ETDEWEB)

    J. H. Wolfram; R. E. Mizia; R. Jex; L. Nelson; K. M. Garcia

    1996-10-01

    A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination.

  20. A Review of Flywheel Energy Storage System Technologies and Their Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2017-03-01

    Full Text Available Energy storage systems (ESS provide a means for improving the efficiency of electrical systems when there are imbalances between supply and demand. Additionally, they are a key element for improving the stability and quality of electrical networks. They add flexibility into the electrical system by mitigating the supply intermittency, recently made worse by an increased penetration of renewable generation. One energy storage technology now arousing great interest is the flywheel energy storage systems (FESS, since this technology can offer many advantages as an energy storage solution over the alternatives. Flywheels have attributes of a high cycle life, long operational life, high round-trip efficiency, high power density, low environmental impact, and can store megajoule (MJ levels of energy with no upper limit when configured in banks. This paper presents a critical review of FESS in regards to its main components and applications, an approach not captured in earlier reviews. Additionally, earlier reviews do not include the most recent literature in this fast-moving field. A description of the flywheel structure and its main components is provided, and different types of electric machines, power electronics converter topologies, and bearing systems for use in flywheel storage systems are discussed. The main applications of FESS are explained and commercially available flywheel prototypes for each application are described. The paper concludes with recommendations for future research.

  1. Refractory Hyperlactatemia with Organ Insufficiency in Lipid Storage Myopathy.

    Science.gov (United States)

    Xu, Yuanda; Zhou, Li; Liang, Weibo; He, Weiqun; Liu, Xiaoqing; Liang, Xiuling; Zhong, Nanshan; Li, Yimin

    2015-08-01

    Lipid storage myopathy is a metabolic disorder characterized by abnormal lipid accumulation in muscle fibers and progressive muscle weakness. Here, we report the case of a 17-year-old woman with progressive muscle weakness, refractory hyperlactatemia, and multiple organ insufficiency. Severe pneumonia was the initial diagnosis. After anti-infective treatment, fluid resuscitation, and mechanical ventilation, the patient's symptoms improved but hyperlactatemia and muscle weakness persisted. She was empirically treated with carnitine. Biochemical tests, electromyography, and muscle biopsy confirmed lipid storage myopathy. After 7 weeks of treatment, the patient resumed normal daily life. An empirical treatment with carnitine may be beneficial for patients before an accurate diagnosis of lipid storage myopathy is made.

  2. Storage quality-of-service in cloud-based scientific environments: a standardization approach

    Science.gov (United States)

    Millar, Paul; Fuhrmann, Patrick; Hardt, Marcus; Ertl, Benjamin; Brzezniak, Maciej

    2017-10-01

    When preparing the Data Management Plan for larger scientific endeavors, PIs have to balance between the most appropriate qualities of storage space along the line of the planned data life-cycle, its price and the available funding. Storage properties can be the media type, implicitly determining access latency and durability of stored data, the number and locality of replicas, as well as available access protocols or authentication mechanisms. Negotiations between the scientific community and the responsible infrastructures generally happen upfront, where the amount of storage space, media types, like: disk, tape and SSD and the foreseeable data life-cycles are negotiated. With the introduction of cloud management platforms, both in computing and storage, resources can be brokered to achieve the best price per unit of a given quality. However, in order to allow the platform orchestrator to programmatically negotiate the most appropriate resources, a standard vocabulary for different properties of resources and a commonly agreed protocol to communicate those, has to be available. In order to agree on a basic vocabulary for storage space properties, the storage infrastructure group in INDIGO-DataCloud together with INDIGO-associated and external scientific groups, created a working group under the umbrella of the Research Data Alliance (RDA). As communication protocol, to query and negotiate storage qualities, the Cloud Data Management Interface (CDMI) has been selected. Necessary extensions to CDMI are defined in regular meetings between INDIGO and the Storage Network Industry Association (SNIA). Furthermore, INDIGO is contributing to the SNIA CDMI reference implementation as the basis for interfacing the various storage systems in INDIGO to the agreed protocol and to provide an official Open-Source skeleton for systems not being maintained by INDIGO partners.

  3. Effect of processing and storage methods on the shelf life and ...

    African Journals Online (AJOL)

    These samples were packed in different packaging materials; polythene, aluminium foil, plastic container, and carton and stored at low (refrigeration) and ambient temperatures. For the period of 90 days of storage, the sample that was processed in the laboratory did not show any pest infestation, while the already smoked ...

  4. Trade-offs between reproductive allocation and storage in species of Oenothera L. (Onagraceae) native to Argentina

    Science.gov (United States)

    Vilela, Alejandra; Cariaga, Rodrigo; González-Paleo, Luciana; Ravetta, Damián

    2008-01-01

    A trade-off between reproduction and survival arises because current reproduction diminishes levels of a limiting resource such that less can be placed in storage organs for the survival of an organism during the unfavorable season. Oenothera is a particularly suited genus for studying those kind of trade-offs because it contains species with different life-history strategies (annual, biennial and perennial). Since allocation to leaves is a major factor associated with changes in life-history, here we tested the hypothesis that Oenothera leaf attributes would affect plant reproductive effort and therefore, root reserves. We selected two groups of taxa differing in their leaf area ratio (low- and high-LAR) and we compared their pattern of resource allocation to growth, reproduction and storage. Path analysis confirmed our hypothesis that LAR is the most important variable in explaining variation in allocation to reproduction or storage. The group with high allocation to leaves assigned resources preferentially to storage while the other group allocated more resources to reproduction, as predicted. A trade-off between reproduction and storage was only confirmed for the high-LAR group. The low-LAR group showed the life-history tactic of annual plants, while the high-LAR group exhibited a strategy generally associated with perenniality.

  5. Efficacy of various protein-based coating on enhancing the shelf life of fresh eggs during storage.

    Science.gov (United States)

    Caner, Cengiz; Yüceer, Muhammed

    2015-07-01

    The effectiveness of various coatings (whey protein isolate [WPI], whey protein concentrate [WPC], zein, and shellac) on functional properties, interior quality, and eggshell breaking strength of fresh eggs were evaluated during storage at 24 °: C for 6 weeks. Coatings and storage time had significant effects on Haugh unit, yolk index, albumen pH, dry matter (DMA), relative whipping capacity (RWC), and albumen viscosity. Uncoated eggs had higher albumen pH (9.56) and weight loss, and lower albumen viscosity (5.73), Haugh unit (HU), and yolk index (YI) during storage. Among the coated eggs, the shellac and zein coated eggs had the highest value of albumen viscosity (27.26 to 26.90), HU (74.10 to 73.61), and YI (44.84 to 44.63) after storage. Shellac (1.44%) was more effective in preventing weight loss than WPC (4.59%), WPI (4.60%), and zein (2.13%) coatings. Uncoated eggs had the higest value (6.71%) of weight lost. All coatings increased shell strength (5.18 to 5.73 for top and 3.58 to 4.71 for bottom) significantly (P eggs (4.70 for top and 3.15 for bottom). The functional properties such as albumen DMA (14.50 to 16.66 and 18.97 for uncoated) and albumen RWC (841 to 891 and 475 for uncoated) of fresh eggs can be preserved during storage when they are coated. The shellac and zein coatings were more effective for maintaining the internal quality of fresh eggs during storage. Fourier transform near infrared (FT-NIR) in the 800 to 2500 nm reflection spectra were used to quantify the contents of the fresh eggs at the end of storage. Eggs coated with shellac or zein displayed a higher absorbance at 970 and 1,197 nm respectively (OH vibration of water) compared with those coated with WPI or WPC and the uncoated group at the end of storage. The coatings improved functional properties and also shell strength and could be a viable alternative technology for maintaining the internal quality of eggs during long-term storage. This study highlights the promising use of

  6. Irradiation of potatoes for long-term storage

    International Nuclear Information System (INIS)

    Srapenjanz, R.

    1976-01-01

    In the USSR gamma irradiation of potatoes is used for extending the storage life. The properties of potatoes are not changed, and the irradiation procedure is lower in cost than chemical treatments for sprout inhibition. Finally, a brief outline is given of investigations on sprout inhibition of potatoes in other socialist countries

  7. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  8. 41 CFR 101-27.204 - Types of shelf-life items.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Types of shelf-life items...-Management of Shelf-Life Materials § 101-27.204 Types of shelf-life items. Shelf-life items are classified as nonextendable (Type I) and extendable (Type II). Type I items have a definite storage life after which the item...

  9. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  10. Special file on the storage of energies

    International Nuclear Information System (INIS)

    Signoret, Stephane; Kim, Caroline; Bohlinger, Philippe; Petitot, Pauline; Mary, Olivier; Guilhem, Jean

    2017-01-01

    After brief presentations of current research and industrial activities, a first article comments the new impetus of storage technologies and projects due to regulatory and legal evolutions associated with the French law on energy transition. Self-consumption and flexibility systems in distribution networks are practical factors of this evolution. Benefits provided by energy storage are notably outlined. The next articles present several examples: a decentralised heat storage in Brest, a flywheel plant by Levisys. An article then discusses the technological and commercial aspects of the battle in this sector for the French majors (EDF, Engie, Total). An article comments the emergence and development of a range of solutions for energy storage in case of self-consumption. The next article briefly presents the Elsa project (financed by the EU) which gives a second life to electric vehicle batteries by developing an energy storage and control solution for professionals. A system developed by French researchers is briefly presented: it aims at producing electricity, at storing it, and at using it to supply isolated autonomous systems. The idea developed in a published study is then discussed: to use electric vehicle batteries to store the intermittent energy produced by renewable sources. The last article comments the integration by Enedis of intelligent devices into the grid

  11. Quality changes of pasteurised mango juice during storage. Part I: Selecting shelf-life markers by integration of a targeted and untargeted multivariate approach.

    Science.gov (United States)

    Wibowo, Scheling; Grauwet, Tara; Gedefa, Getnet Belete; Hendrickx, Marc; Van Loey, Ann

    2015-12-01

    For the first time, a multivariate approach combining targeted and untargeted data was used to obtain insight into quality changes in pasteurised mango juice (cv. 'Totapuri') as a function of storage (42°C for 8weeks). Mango juice samples were formulated with addition of different potential precursors for different quality-related chemical reactions: ascorbic acid, citric acid and sugars. Control (diluted mango puree with water), ascorbic acid-enriched (AA 250 and AA 500 ), citric acid-enriched (CA, CA+AA 250 and CA+AA 500 ) and sugar-enriched (S) samples were characterised for a range of targeted quality parameters as well as for a volatile fingerprint (untargeted). Selection of shelf-life markers or quality parameters significantly changing during shelf-life was performed over all formulations as well as per mango juice formulation. Our study showed that a common trend over all formulations was observed for colour values (VID>│0.90│), while specific shelf-life markers were selected for each formulation. In acidified mango juice samples (CA, CA+AA 250 , CA+AA 500 ), more terpene oxides were selected compared to other formulations. In ascorbic acid-enriched samples (AA 250 , AA 500 , CA+AA 250 , CA+AA 500 ), furfural and ascorbic acid were significantly changing during shelf-life. It seems that the reaction pathways for compounds being formed or degraded upon shelf-life are clearly affected by the acidity level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Exercise intolerance in Glycogen Storage Disease Type III

    DEFF Research Database (Denmark)

    Preisler, Nicolai; Pradel, Agnès; Husu, Edith

    2013-01-01

    Myopathic symptoms in Glycogen Storage Disease Type IIIa (GSD IIIa) are generally ascribed to the muscle wasting that these patients suffer in adult life, but an inability to debranch glycogen likely also has an impact on muscle energy metabolism. We hypothesized that patients with GSD IIIa can...

  13. Combined effect of thermal sterilization and ionizing radiation on storage life of preserved foods

    International Nuclear Information System (INIS)

    Hozova, B.; Sorman, L.; Fazekasova, H.

    1986-01-01

    The effect was studied of the binary combination of preservation methods, i.e., of a reduced intensity of thermosterilization and diverse doses of ionizing radiation, on the content of microorganisms in single-component tinned products (tinned beef and gravy, tinned pickled cauliflower) and in tins containing two components (beef with cauliflower) over a period of 115 days of storage at a laboratory temperature of 20 degC ± 2 degC. The experimental results showed that the chosen combined process of preservation guaranteed sufficient storage stability to the products over several months of storage. An ionizing radiation dose of 5 kGy was sufficient for both types of model samples, this both from microbiological, nutritional aspects (some group B vitamins, vitamin C, -SH groups, etc.) and with regard to organoleptic properties (outlook, color, odor, flavor, consistence, juiciness). The problems will further be studied. (author) 2 tabs., 4 figs., 14 refs

  14. Storage conditions affect oxidative stability and nutritional composition of freeze-dried Nannochloropsis salina

    DEFF Research Database (Denmark)

    Safafar, Hamed; Langvad, Sten; Møller, Peter

    2017-01-01

    composition of microalgae biomass. In order to investigate the worsening of the nutritional quality of freeze dried biomass, a multifactorial storage experiment was conducted on a high EPA (eicosapentaenoic acid) Nannochloropsis salina biomass. The storage time (0–56 days), storage temperature (5, 20,and 40...... °C and packaging conditions (under vacuum and ambient pressure)used as main factors. During the 56 days of storage, both time and temperature strongly influenced the oxidation reactions which result in deterioration of bioactive compounds such as carotenoids, tocopherols, and EPA. Lipid deterioration......, or cosmetics requires the knowledge of the optimum storage conditions to prevent the value-added compounds from deterioration. Results of this study improve our understanding of the chemical deterioration under different storage conditions and can help the producers/customers to extend the shelf life...

  15. Ionizing radiation treatment to improve postharvest life and maintain quality of fresh guava fruit

    International Nuclear Information System (INIS)

    Singh, S.P.; Pal, R.K.

    2009-01-01

    We investigated the potential of ionizing radiation for improving physiological responses, quality, and storage time of fresh guava fruit. Ionizing radiation treatment suppressed the respiration and ethylene production rates and thus retarded the process of fruit ripening during storage. Irradiation treatment also retarded the physical and biochemical changes associated with ripening such as firmness, titratable acidity, soluble solids content, and vitamin C during storage, but for doses higher than 0.25 kGy the vitamin C content decreased. The positive effects of ionizing radiation treatment on delayed fruit ripening and other quality attributes diminished during 22 days of storage at 10 deg. C. Thus, a combination of ionizing radiation with low-temperature storage (10 deg. C) did not have much synergistic effect on storage life and quality of guava fruit. In conclusion, ionizing radiation treatment of guava fruit with 0.25 kGy dose increased the postharvest life by 3-4 days, maintained fruit quality, and reduced the decay incidence. The optimal dose (0.25 kGy) for postharvest life extension of guava fruit may be exploited to provide phytosanitary security against many insect pests including fruit flies

  16. Means of storage and automated monitoring of versions of text technical documentation

    Science.gov (United States)

    Leonovets, S. A.; Shukalov, A. V.; Zharinov, I. O.

    2018-03-01

    The paper presents automation of the process of preparation, storage and monitoring of version control of a text designer, and program documentation by means of the specialized software is considered. Automation of preparation of documentation is based on processing of the engineering data which are contained in the specifications and technical documentation or in the specification. Data handling assumes existence of strictly structured electronic documents prepared in widespread formats according to templates on the basis of industry standards and generation by an automated method of the program or designer text document. Further life cycle of the document and engineering data entering it are controlled. At each stage of life cycle, archive data storage is carried out. Studies of high-speed performance of use of different widespread document formats in case of automated monitoring and storage are given. The new developed software and the work benches available to the developer of the instrumental equipment are described.

  17. REopt Lite Web Tool Evaluates Photovoltaics and Battery Storage

    Energy Technology Data Exchange (ETDEWEB)

    2018-03-08

    Building on the success of the REopt renewable energy integration and optimization platform, NREL has developed a free, publicly available web version of REopt called REopt Lite. REopt Lite evaluates the economics of grid-connected photovoltaics (PV) and battery storage at a site. It allows building owners to identify the system sizes and battery dispatch strategy that minimize their life cycle cost of energy. This web tool also estimates the amount of time a PV and storage system can sustain the site's critical load during a grid outage.

  18. Predictive modelling for shelf life determination of nutricereal based fermented baby food.

    Science.gov (United States)

    Rasane, Prasad; Jha, Alok; Sharma, Nitya

    2015-08-01

    A shelf life model based on storage temperatures was developed for a nutricereal based fermented baby food formulation. The formulated baby food samples were packaged and stored at 10, 25, 37 and 45 °C for a test storage period of 180 days. A shelf life study was conducted using consumer and semi-trained panels, along with chemical analysis (moisture and acidity). The chemical parameters (moisture and titratable acidity) were found inadequate in determining the shelf life of the formulated product. Weibull hazard analysis was used to determine the shelf life of the product based on sensory evaluation. Considering 25 and 50 % rejection probability, the shelf life of the baby food formulation was predicted to be 98 and 322 days, 84 and 271 days, 71 and 221 days and 58 and 171 days for the samples stored at 10, 25, 37 and 45 °C, respectively. A shelf life equation was proposed using the rejection times obtained from the consumer study. Finally, the formulated baby food samples were subjected to microbial analysis for the predicted shelf life period and were found microbiologically safe for consumption during the storage period of 360 days.

  19. Study on the influence of storage life expectancy of the Valve Regulated Lead-Acid - VRLA battery; Estudo sobre a influencia da estocagem na expectativa de vida util da bateria chumbo-acida regulada por valvula - VRLA

    Energy Technology Data Exchange (ETDEWEB)

    Soares, A. Pinhel [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil)], Email: pinhel@furnas.com.br; Rosolem, Maria de F.N.C.; Santos, G.R. dos; Frare, P.T.; Arioli, V.T.; Beck, R.F. [Telecomunicacoes do CPqD, Campinas, SP (Brazil)], Emails: mfatima@cpqd.com.br, glauco@cpqd.com.br, pfrare@cpqd.com.br, varioli@cpqd.com.br, raul@cpqd.com; Soares, L.A., Email: luiz.las@gmail.com

    2009-07-01

    When valve regulated lead-acid (VRLA) batteries are acquired and are not placed in operation immediately and remain stored in open circuit, they can loose autonomy and life. In these cases the current practice recommends, that the batteries receive quarterly recharges, which is often unfeasible. Given this scenario, Furnas by the CPqD, decided to verify the real impact of stockpiling in the expectancy of VRLAs battery life to establish the veracity of practice adopted or establish new procedures. The influences of time, the temperature of the local storage and application of charges are evaluated. It was also studied the application of techniques for measuring the internal resistance battery (conductance and impedance) for degradation monitoring and identification of the need for application of charges. As final products, it was developed novel diagnostic techniques that allow more accurate monitoring of the storage process.

  20. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  1. The impact of enterocin AS-48 on the shelf-life and safety of sardines (Sardina pilchardus) under different storage conditions.

    Science.gov (United States)

    Ananou, S; Zentar, H; Martínez-Bueno, M; Gálvez, A; Maqueda, M; Valdivia, E

    2014-12-01

    The purpose of this study was to determine the effect of enterocin AS-48, packaged under normal atmosphere (NA), vacuum (VP) or modified atmosphere (MAP) on the shelf life and safety of fresh sardines (Sardina pilchardus) stored at 5 °C. We studied the effect of these hurdles, alone or combined, on the relevant autochthonous bacterial populations. Total volatile basic nitrogen (TVB-N) content was used as indicative of freshness. Levels of biogenic amines cadaverine, putrescine, tyramine, and histamine were also determined. The application of AS-48 did not reduce the mesophilic, psychrotrophic, or Gram negative bacteria viable cell counts under any of the storage conditions tested. AS-48 did cause significant reductions in viable staphylococci counts, especially under VP. In sardines under NA treated with AS-48, the populations of histamine- and tyramine-forming total and lactic acid bacteria (LAB) showed no significant reductions. MAP or VP with AS-48 allowed reductions (significant at some storage times) in histamine- and tyramine-forming LAB. The TVB-N content was also reduced under normal atmosphere and, especially, in sardines stored under MAP. The most interesting results are those concerning the decrease (by several fold) in the levels of the biogenic amines cadaverine, putrescine, tyramine, and histamine determined after treatment with AS-48. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Shelf-life dating of shelf-stable strawberry juice based on survival analysis of consumer acceptance information.

    Science.gov (United States)

    Buvé, Carolien; Van Bedts, Tine; Haenen, Annelien; Kebede, Biniam; Braekers, Roel; Hendrickx, Marc; Van Loey, Ann; Grauwet, Tara

    2018-07-01

    Accurate shelf-life dating of food products is crucial for consumers and industries. Therefore, in this study we applied a science-based approach for shelf-life assessment, including accelerated shelf-life testing (ASLT), acceptability testing and the screening of analytical attributes for fast shelf-life predictions. Shelf-stable strawberry juice was selected as a case study. Ambient storage (20 °C) had no effect on the aroma-based acceptance of strawberry juice. The colour-based acceptability decreased during storage under ambient and accelerated (28-42 °C) conditions. The application of survival analysis showed that the colour-based shelf-life was reached in the early stages of storage (≤11 weeks) and that the shelf-life was shortened at higher temperatures. None of the selected attributes (a * and ΔE * value, anthocyanin and ascorbic acid content) is an ideal analytical marker for shelf-life predictions in the investigated temperature range (20-42 °C). Nevertheless, an overall analytical cut-off value over the whole temperature range can be selected. Colour changes of strawberry juice during storage are shelf-life limiting. Combining ASLT with acceptability testing allowed to gain faster insight into the change in colour-based acceptability and to perform shelf-life predictions relying on scientific data. An analytical marker is a convenient tool for shelf-life predictions in the context of ASLT. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Interim Storage of Plutonium in Existing Facilities

    International Nuclear Information System (INIS)

    Woodsmall, T.D.

    1999-01-01

    reactor building. The storage life is projected to be ten years to allow the preparation of APSF. DOE has stipulated that there be no credible release during storage, since there are no design features in place to mitigate a release of plutonium (i.e. HEPA filters, facility containment boundaries, etc.). This mandate has presented most of the significant challenges to the safety analysis team. The shipping packages are designed to withstand certain accidents and conditions, but in order to take credit for these the storage environment must be strictly controlled. Damages to the packages from exposure to fire, dropping, crushing and other impact accidents have been analyzed, and appropriate preventative design features have been incorporated. Other efforts include the extension of the shipping life (roughly two years) to a suitable storage life of ten years. These issues include the effects of internal pressure increases, seal degradation and the presence of impurities. A process known as the Container Qualification Program has been conducted to address these issues. The KAMS project will be ready to receive the first shipment from Rocky Flats in January 2000. No credible design basis scenarios resulting in the release of plutonium exist. This work has been useful in the effort to provide a safer disposition of plutonium, but also the lessons learned and techniques established by the team will help with the analysis of future facility modifications.'

  4. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  5. Multifunctional composites for energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  6. Alternatives to reduce corrosion of carbon steel storage drums

    International Nuclear Information System (INIS)

    Zirker, L.R.; Beitel, G.A.

    1995-11-01

    The major tasks of this research were (a) pollution prevention opportunity assessments on the overpacking operations for failed or corroded drums, (b) research on existing container corrosion data, (c) investigation of the storage environment of the new Resource Conservation and Recovery Act Type II storage modules, (d) identification of waste streams that demonstrate deleterious corrosion affects on drum storage life, and (e) corrosion test cell program development. Twenty-one waste streams from five US Department of Energy (DOE) sites within the DOE Complex were identified to demonstrate a deleterious effect to steel storage drums. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure: 0.5 to 2 years. The results of this research support the position that pollution prevention evaluations at the front end of a project or process will reduce pollution on the back end

  7. Assessment of Hanford burial grounds and interim TRU storage

    International Nuclear Information System (INIS)

    Geiger, J.F.; Brown, D.J.; Isaacson, R.E.

    1977-08-01

    A review and assessment is made of the Hanford low level solid radioactive waste management sites and facilities. Site factors considered favorable for waste storage and disposal are (1) limited precipitation, (2) a high deficiency of moisture in the underlying sediments (3) great depth to water table, all of which minimize radionuclide migration by water transport, and (4) high sorbtive capacity of the sediments. Facilities are in place for 20 year retrievable storage of transuranic (TRU) wastes and for disposal of nontransuranic radioactive wastes. Auxiliary facilities and services (utilities, roads, fire protection, shops, etc.) are considered adequate. Support staffs such as engineering, radiation monitoring, personnel services, etc., are available and are shared with other operational programs. The site and associated facilities are considered well suited for solid radioactive waste storage operations. However, recommendations are made for study programs to improve containment, waste package storage life, land use economy, retrievability and security of TRU wastes

  8. Enhancement of refrigerated storage of Elasmobranchs by gamma irradiation

    International Nuclear Information System (INIS)

    Ghadi, S.V.; Lewis, N.F.

    1976-01-01

    Elasmobranch fish varieties including shark, ray and skate fish, are very susceptible to microbial spoilage because of high levels of urea in their muscle, giving rise to rapid formation of copious quantities of ammonia. Steaming of fish filleta prior to processing has been found to reduce the urea content thereby leading to better odour and flavour retention of the product. However, steaming of Elasmobranch fish fillets results in only a marginal increase in refrigerated storage. Gamma irradiation doses in the range 100-500 krad did not appreciably extend the refrigerated storage Elasmobranchs. However, steaming for five minutes followed by gamma irradiation exposure (100-250 krad) was found to give a 4-5 fold enhancement in the refrigerated storage life of these fish. Representative samples of fish given different treatments were examined at regular intervals during storage at 0-2 degC for sensory evaluation, total bacterial count and chemical freshness indices. (author)

  9. Rock bed storage with heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, H.E.; Mills, G.L.

    1979-05-01

    The study, Rock Bed Storage with Heat Pump, established the feasibility of mating a heat pump to a rock bed storage to effect optimal performance at the lowest cost in single family residences. The operating characteristics of off-the-shelf components of heat pump/rock bed storage systems were studied, and the results were used to formulate configurations of representative systems. These systems were modeled and subsequently analyzed using the TRNSYS computer program and a life cycle cost analysis program called LCCA. A detailed load model of a baseline house was formulated as part of the TRNSYS analysis. Results of the analysis involved the development of a technique to confine the range of heat pump/rock bed storage systems to those systems which are economical for a specific location and set of economic conditions. Additionally, the results included a comparison of the detailed load model with simple UA models such as the ASHRAE bin method. Several modifications and additions were made to the TRNSYS and LCCA computer programs during the course of the study.

  10. Utilization of Boxes for Pesticide Storage in Sri Lanka

    DEFF Research Database (Denmark)

    Pieris, Ravi; Weerasinghe, Manjula; Abeywickrama, Tharaka

    2017-01-01

    Pesticide self-poisoning is now considered one of the two most common methods of suicide worldwide. Encouraging safe storage of pesticides is one particular approach aimed at reducing pesticide self-poisoning. CropLife Sri Lanka (the local association of pesticide manufacturers), with the aid of ...

  11. One-dimensional nanomaterials for energy storage

    Science.gov (United States)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  12. Technical Aspects Regarding the Preservation of Dry Onions in Different Storage Conditions

    Directory of Open Access Journals (Sweden)

    Marian Vintila

    2014-11-01

    Full Text Available Research refers to the ability to maintain the quality of dry onions in different conditions of temperature, the three varieties used in experimentation (De Buzau, Daytona and Countach being stored after proper preparation at ambient temperature (+20…+22°C, refrigerated (+10…+12°C and cold conditions (+3…+5°C. Storage life, the level of weight (mass and decay losses and evolution of some chemical components determined from the 9 variants led to the conclusion that the best results were obtained by De Buzau variety for storage under ambient conditions and Daytona variety for storage under refrigerated and cold conditions. Moreover large differences between varieties and their behavior depending on storage conditions require choosing resistant cultivars and optimum storage temperatures according to destination and period of marketing or consumption.

  13. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corporation

    2017-09-06

    Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4% RMS error and resistance growth with 15% RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  14. Simulating shelf life determination by two simultaneous criteria.

    Science.gov (United States)

    Peleg, Micha; Normand, Mark D

    2015-12-01

    The shelf life of food and pharmaceutical products is frequently determined by a marker's concentration or quality index falling below or surpassing an assigned threshold level. Naturally, different chosen markers would indicate different shelf life for the same storage temperature history. We demonstrate that if there are two markers, such as two labile vitamins, the order in which their concentrations cross their respective thresholds may depend not only on their degradation kinetic parameters but also on the particular storage temperature profile, be it isothermal or non-isothermal. Thus, at least theoretically, the order observed in accelerated storage need not be always indicative of the actual order at colder temperatures, except where the two degradation reactions follow the same kinetic order and their temperature-dependence rate parameter is also the same. This is shown with simulated hypothetical degradation reactions that follow first or zero order kinetics and whose rate constant's temperature-dependence obeys the exponential model. It is also demonstrated with simulated hypothetical Maillard reaction's products whose synthesis rather than their degradation follows pseudo zero order kinetics. The software developed to do the simulations and calculate the thresholds crossing points has been posted on the Internet as a freely downloadable interactive Wolfram Demonstration, which can be used as a tool in storage studies and shelf life prediction. In principle, the methodology can be extended from two to any number of markers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Behavior of whey protein concentrates under extreme storage conditions

    Science.gov (United States)

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  16. Effect of irradiation on shelf - life and quality characteristics of two (2) solanum species

    International Nuclear Information System (INIS)

    Riverson, N. M

    2013-07-01

    Garden eggs (solanum spp) are grown as a commercial crop for domestic consumption and also for export. In addition to major production challenges such as limited shelf-life, poor post-harvest handling and the lack of quality standards, garden eggs are prone to infection by pest and diseases at all stages of growth. This theses provides information on the effect of gamma radiation doses (1 - 3kGy) on the shelf life and some quality characteristics of three varieties of garden eggs Solanum aethiopicum GH 8772 and aethiopicum GH 8773, and aethiopicum torvum under two packaging conditions. Quality attributes of colour, firmness, and wrinkleness were assessed using a nine-point hedonic scale in decreasing order of acceptability. The numbers of rotten fruits were recorded on weekly basis throughout the storage period of four weeks. The physiochemical properties (moisture content, weight loss and pH) were determined by standard methods. The microbiological quality was assessed by estimating the population of aerobic mesophiles and yeast and moulds using the methods of serial dilution and pour plating. The three varieties of garden eggs used in the study responded differently to gamma radiation and storage. Salannum torvum showed discolouration and subsequent fungal spoilage in the first week of storage after irradiation under both unpackaged and packaged conditions; howbeit the unirradiated had acceptable scores (>4.33) in terms of colour, firmness, and wrinkleness throughout the storage period. At the end of the storage period samples of S. torvum had lower values in terms of moisture (26.78%), weight loss (9.3 g) and pH (2.9) under unpackaged condition, but high vitamin C content of 14.83 mg/100g. Samples S. torvum under packaged conditions had higher values in terms of colour, firmness, and wrinkleness as well as pH and vitamin C. However the effect of packaging was not significant with respect to the quality attributes and physiochemical properties. Decline in colour

  17. Leveraging Available Data to Support Extension of Transportation Packages Service Life

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K.; Abramczyk, G.; Bellamy, S.; Daugherty, W.; Hackney, B.; Hoffman, E.; Skidmore, E.; Stefek, T.

    2012-06-12

    Data obtained from testing shipping package materials have been leveraged to support extending the service life of select shipping packages while in nuclear materials transportation. Increasingly, nuclear material inventories are being transferred to an interim storage location where they will reside for extended periods of time. Use of a shipping package to store nuclear materials in an interim storage location has become more attractive for a variety of reasons. Shipping packages are robust and have a qualified pedigree for their performance in normal operation and accident conditions within the approved shipment period and storing nuclear material within a shipping package results in reduced operations for the storage facility. However, the shipping package materials of construction must maintain a level of integrity as specified by the safety basis of the storage facility through the duration of the storage period, which is typically well beyond the one year transportation window. Test programs have been established to obtain aging data on materials of construction that are the most sensitive/susceptible to aging in certain shipping package designs. The collective data are being used to support extending the service life of shipping packages in both transportation and storage.

  18. Leveraging Available Data to Support Extension of Transportation Packages Service Life

    International Nuclear Information System (INIS)

    Dunn, K.; Abramczyk, G.; Bellamy, S.; Daugherty, W.; Hackney, B.; Hoffman, E.; Skidmore, E.; Stefek, T.

    2012-01-01

    Data obtained from testing shipping package materials have been leveraged to support extending the service life of select shipping packages while in nuclear materials transportation. Increasingly, nuclear material inventories are being transferred to an interim storage location where they will reside for extended periods of time. Use of a shipping package to store nuclear materials in an interim storage location has become more attractive for a variety of reasons. Shipping packages are robust and have a qualified pedigree for their performance in normal operation and accident conditions within the approved shipment period and storing nuclear material within a shipping package results in reduced operations for the storage facility. However, the shipping package materials of construction must maintain a level of integrity as specified by the safety basis of the storage facility through the duration of the storage period, which is typically well beyond the one year transportation window. Test programs have been established to obtain aging data on materials of construction that are the most sensitive/susceptible to aging in certain shipping package designs. The collective data are being used to support extending the service life of shipping packages in both transportation and storage.

  19. Multiobjective Reliable Cloud Storage with Its Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Xiyang Liu

    2016-01-01

    Full Text Available Information abounds in all fields of the real life, which is often recorded as digital data in computer systems and treated as a kind of increasingly important resource. Its increasing volume growth causes great difficulties in both storage and analysis. The massive data storage in cloud environments has significant impacts on the quality of service (QoS of the systems, which is becoming an increasingly challenging problem. In this paper, we propose a multiobjective optimization model for the reliable data storage in clouds through considering both cost and reliability of the storage service simultaneously. In the proposed model, the total cost is analyzed to be composed of storage space occupation cost, data migration cost, and communication cost. According to the analysis of the storage process, the transmission reliability, equipment stability, and software reliability are taken into account in the storage reliability evaluation. To solve the proposed multiobjective model, a Constrained Multiobjective Particle Swarm Optimization (CMPSO algorithm is designed. At last, experiments are designed to validate the proposed model and its solution PSO algorithm. In the experiments, the proposed model is tested in cooperation with 3 storage strategies. Experimental results show that the proposed model is positive and effective. The experimental results also demonstrate that the proposed model can perform much better in alliance with proper file splitting methods.

  20. Neutrino Signals in Electron-Capture Storage-Ring Experiments

    Directory of Open Access Journals (Sweden)

    Avraham Gal

    2016-06-01

    Full Text Available Neutrino signals in electron-capture decays of hydrogen-like parent ions P in storage-ring experiments at GSI are reconsidered, with special emphasis placed on the storage-ring quasi-circular motion of the daughter ions D in two-body decays P → D + ν e . It is argued that, to the extent that daughter ions are detected, these detection rates might exhibit modulations with periods of order seconds, similar to those reported in the GSI storage-ring experiments for two-body decay rates. New dedicated experiments in storage rings, or using traps, could explore these modulations.

  1. Gas storage materials, including hydrogen storage materials

    Science.gov (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  2. Neural Network Modeling to Predict Shelf Life of Greenhouse Lettuce

    Directory of Open Access Journals (Sweden)

    Wei-Chin Lin

    2009-04-01

    Full Text Available Greenhouse-grown butter lettuce (Lactuca sativa L. can potentially be stored for 21 days at constant 0°C. When storage temperature was increased to 5°C or 10°C, shelf life was shortened to 14 or 10 days, respectively, in our previous observations. Also, commercial shelf life of 7 to 10 days is common, due to postharvest temperature fluctuations. The objective of this study was to establish neural network (NN models to predict the remaining shelf life (RSL under fluctuating postharvest temperatures. A box of 12 - 24 lettuce heads constituted a sample unit. The end of the shelf life of each head was determined when it showed initial signs of decay or yellowing. Air temperatures inside a shipping box were recorded. Daily average temperatures in storage and averaged shelf life of each box were used as inputs, and the RSL was modeled as an output. An R2 of 0.57 could be observed when a simple NN structure was employed. Since the "future" (or remaining storage temperatures were unavailable at the time of making a prediction, a second NN model was introduced to accommodate a range of future temperatures and associated shelf lives. Using such 2-stage NN models, an R2 of 0.61 could be achieved for predicting RSL. This study indicated that NN modeling has potential for cold chain quality control and shelf life prediction.

  3. EOS as the present and future solution for data storage at CERN

    CERN Document Server

    Peters, AJ; Adde, G

    2015-01-01

    EOS is an open source distributed disk storage system in production since 2011 at CERN. Development focus has been on low-latency analysis use cases for LHC(1) and non- LHC experiments and life-cycle management using JBOD(2) hardware for multi PB storage installations. The EOS design implies a split of hot and cold storage and introduced a change of the traditional HSM(3) functionality based workflows at CERN.The 2015 deployment brings storage at CERN to a new scale and foresees to breach 100 PB of disk storage in a distributed environment using tens of thousands of (heterogeneous) hard drives. EOS has brought to CERN major improvements compared to past storage solutions by allowing quick changes in the quality of service of the storage pools. This allows the data centre to quickly meet the changing performance and reliability requirements of the LHC experiments with minimal data movements and dynamic reconfiguration. For example, the software stack has met the specific needs of the dual computing centre set-...

  4. The Assured Storage Integrated Management System: What is it and what will it cost?

    International Nuclear Information System (INIS)

    Kerr, T.A.; Newberry, W.F.

    1996-01-01

    The Assured Storage Integrated Management System for low-level radioactive waste as an alternative to traditional disposal is attracting favorable attention from many states, regulators, processors, and low-level radioactive waste generators. open-quotes Assured storageclose quotes is defined as a management system for safely isolating waste, while preserving options for its long-term management, through: robust, accessible facilities; planned preventive maintenance; and sureties adequate to address contingencies or implement future alternatives. Following introduction of the concept in RADWASTE Magazine, the Connecticut Hazardous Waste Management Service (among several others) requested a briefing on the idea. The Connecticut Hazardous Waste Management Service then requested that the National Low-Level Waste Management Program at the Idaho National Engineering Laboratory evaluate the life cycle costs of the Assured Storage Integrated Management System versus traditional disposal. Building on some of that work, this paper discusses the concept of an Assured Storage Integrated Management System for low-level radioactive waste as well as examines cost elements of the Assured Storage Integrated Management System in comparison to traditional disposal facilities. Further analyses conducted for the Connecticut study will more clearly define and quantify potential differences in life-cycle costs between the Assured Storage Integrated Management System and traditional disposal

  5. Depleted uranium storage and disposal trade study: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  6. Depleted uranium storage and disposal trade study: Summary report

    International Nuclear Information System (INIS)

    Hightower, J.R.; Trabalka, J.R.

    2000-01-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options)

  7. Long-Term Storage of Cryptosporidium parvum for In Vitro Culture

    NARCIS (Netherlands)

    Paziewska-Harris, A.; Schoone, G.; Schallig, H. D. F. H.

    2018-01-01

    The long-term storage of Cryptosporidium life-cycle stages is a prerequisite for in vitro culture of the parasite. Cryptosporidium parvum oocysts, sporozoites, and intracellular forms inside infected host cells were stored for 6-12 mo in liquid nitrogen utilizing different cryoprotectants (dimethyl

  8. Studies on the Storage Stability and Feasibility of Radurization of Indian Mackerel (Rastrelliger Kanagurta)

    Energy Technology Data Exchange (ETDEWEB)

    Ghadi, S. V.; Alur, M. D.; Venugopal, V.; Doke, S. N.; Ghosh, S. K.; Lewis, N. F.; Nadkarni, G. B. [Biochemistry and Food Technology Division, Bhabha Atomic Research Centre, Bombay (India)

    1978-04-15

    Mackerel (Rastrelliger kanagurta) is one of the commercially important varieties of fish in India, preferred by the consumer in a fresh condition. Due to its short storage life, large portions of the catch are either sun-dried or cured with salt, yielding products that fetch a very low price. The conservation of fresh fish would facilitate better distribution in the interior of the country. Radurization of mackerel offers a potential for extending the shelf-life in ice by a factor of three. A dose of 150 krad was observed to be optimal to enhance the storage life to 25-28 days from 10 -12 days without inducing undesirable changes in the organoleptic attributes. Time-temperature-tolerance (TTT) between 0-20 Degree-Sign C of the radurized and unirradiated mackerel was ascertained with reference to physico-chemical, microbiological and organoleptic parameters. The rate of spoilage of unirradiated mackerel was 3-fold higher than that of radurized samples when the storage temperature did not exceed 5 Degree-Sign C. It was observed that alterations in shear force, water-holding capacity and plasticity index were less in radurized samples, pointing to the retention of textural attributes during the extended storage. The microflora of mackerel during storage revealed that the terminal flora of the unirradiated mackerel were predominantly gram-negative including Pseudomonas and Enterobacteria spp. while that of radurized fish comprised mainly Bacillus and Micrococcus spp. The spores of Bacillus sp. 128 isolated from radurized mackerel were observed to exhibit exceptionally high resistance to both u.v. and gamma radiation. Packaging and transportation have also been examined to ascertain the feasibility of this process for general application. (author)

  9. Effect of gamma radiation on post harvest storage life of onion bulb under ordinary room condition

    International Nuclear Information System (INIS)

    Jabeen, N.; Badshah, N.; Mahboob, F.; Ayub, G.

    2003-01-01

    Post harvest storage life of radiated onion bulbs harvested at different stages of maturity and stored at ordinary room temperature (30-39 degree C) was studied at the Department of Horticulture, NWFP Agricultural University, Peshawar, during August 2002. Onion bulbs were harvested at two stages i.e. drooping and complete dried leaf. Four radiation doses of 2, 4, 6 and 8 kilo rad (Kr) were applied with normal (control). The data of experiment was collected from weight loss, rot attack, sprouting, firmness and taste pungency. The results revealed that various radiation doses significantly affected weight loss, rot attack, sprouting, firmness and taste pungency. Onion bulbs radiated with 8 Kr showed minimum percent weight loss (28.59%), decrease in firmness and taste pungency. Minimum percent rot attack (6.3%) was observed in 6 and 8 Kr. Radiation doses of 4, 6 and 8 Kr showed no sprouting at all. Maximum weight loss (43.20%), rot attack (16.2%), sprouting (40.78%), decrease in firmness and taste pungency were recorded for control. The results showed that harvesting stages are statistically non-significant. The interaction between radiation doses and harvesting stages are also non-significant. Harvesting stages significantly affected weight loss, rot attack, sprouting and taste pungency. Onion bulbs of complete dried leaf stage recorded maximum percent weight loss (35.42%), percent sprouting (11.7%) and taste pungency while minimum percent weight loss (31.62%), percent sprouting (5.01%) and taste pungency was observed in onion bulbs of drooping stage. Maximum percent rot attack (10.9%) was noted in onion bulbs of drooping stage while minimum (7.3%) in onion bulbs of complete dried leaf stage. Radiation dose of 8 Kr is recommended to reduce the post-harvest losses in onion bulbs. Drooping stage comparatively prolonged the shelf life of bulb

  10. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Sanjoy

    2013-03-31

    1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the

  11. PC-Cluster based Storage System Architecture for Cloud Storage

    OpenAIRE

    Yee, Tin Tin; Naing, Thinn Thu

    2011-01-01

    Design and architecture of cloud storage system plays a vital role in cloud computing infrastructure in order to improve the storage capacity as well as cost effectiveness. Usually cloud storage system provides users to efficient storage space with elasticity feature. One of the challenges of cloud storage system is difficult to balance the providing huge elastic capacity of storage and investment of expensive cost for it. In order to solve this issue in the cloud storage infrastructure, low ...

  12. Real - time Optimization of Distributed Energy Storage System Operation Strategy Based on Peak Load Shifting

    Science.gov (United States)

    Wang, Qian; Lu, Guangqi; Li, Xiaoyu; Zhang, Yichi; Yun, Zejian; Bian, Di

    2018-01-01

    To take advantage of the energy storage system (ESS) sufficiently, the factors that the service life of the distributed energy storage system (DESS) and the load should be considered when establishing optimization model. To reduce the complexity of the load shifting of DESS in the solution procedure, the loss coefficient and the equal capacity ratio distribution principle were adopted in this paper. Firstly, the model was established considering the constraint conditions of the cycles, depth, power of the charge-discharge of the ESS, the typical daily load curves, as well. Then, dynamic programming method was used to real-time solve the model in which the difference of power Δs, the real-time revised energy storage capacity Sk and the permission error of depth of charge-discharge were introduced to optimize the solution process. The simulation results show that the optimized results was achieved when the load shifting in the load variance was not considered which means the charge-discharge of the energy storage system was not executed. In the meantime, the service life of the ESS would increase.

  13. Silicon-embedded copper nanostructure network for high energy storage

    Science.gov (United States)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  14. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  15. FAME Storage Time in an Optimized Natural Antioxidant Mixture

    Directory of Open Access Journals (Sweden)

    Rodolfo Lopes Coppo

    2013-01-01

    Full Text Available The study of B100 biodiesel oxidation stability, and its conservation, is extremely important to control its quality, especially regarding storage. Many spices have shown antioxidant effect and are the targets of study. Knowing the oxidation process in greater detail allows a reliable storage period to be stipulated for the biodiesel without its degradation until the time of use. Results have shown that according to the accelerated stove method, the optimal mixture, composed of 100% of oregano extract, can confer a 535-day shelf life to biodiesel without evident oxidation. According to the results obtained by the Rancimat method, the ideal mixture consists of 100% rosemary, resulting in 483 days of storage. The application of the process variable showed that the accelerated stove method was more suitable to determine oxidative stability of biodiesel.

  16. Energy storage devices for future hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Karden, Eckhard; Ploumen, Serve; Fricke, Birger [Ford Research and Advanced Engineering Europe, Suesterfeldstr. 200, D-52072 Aachen (Germany); Miller, Ted; Snyder, Kent [Ford Sustainable Mobility Technologies, 15050 Commerce Drive North, Dearborn, MI 48120 (United States)

    2007-05-25

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential ''battery pack'' system suppliers are discussed. (author)

  17. Energy storage devices for future hybrid electric vehicles

    Science.gov (United States)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  18. Hydrological analysis relevant to surface water storage at Jabiluka. Supervising Scientist report 142

    International Nuclear Information System (INIS)

    Chiew, F.H.S.; Wang, Q.J.

    1999-01-01

    The report is prepared for the Supervising Scientist at Jabiru. It describes part of an investigation into hydrological issues relating to the water management system proposed for the Jabiluka project. Specifically, the objective is to estimate the water storage capacity required to store surface runoff and other water within the total containment zone (TCZ) of the Jabiluka project. The water storage volume is calculated for a range of probabilities up to 0.002% that the pond design volume would be exceeded over a 30-year mine life. In this study, 50 000 sets of 30 years of daily rainfall and monthly pan evaporation data are stochastically generated to simulate the storage water balance. The approach used by Kinhill and Energy Resources of Australia (ERA) is reviewed and the pond design compared with the estimates derived here. The Kinhill-ERA approach is described in the Jabiluka Mill Alternative Public Environment Report and the Jabiluka Mill Alternative Public Environment Report Technical Appendices (hereon referred to as Jabiluka PER Appendices) (1998). The two reports also provide background to many other issues. The structural design of the storage and other features of the mine site are not considered here. This study also assumes that the bunds and other drainage diversion structures will prevent all water outside the TCZ from entering the TCZ and vice versa. The storage water balance components are discussed in section 2. Some of the water inflows into the storage and losses from the storage are discussed in detail, while elsewhere, the values used by Kinhill-ERA are adopted. Section 3 describes the selection of the climate stations used here, the rainfall and pan evaporation characteristics in the area and the stochastic generation of 1.5 million years of daily rainfall and monthly pan evaporation data. Section 4 describes the approach used to estimate the storage capacity, and presents the storage capacity estimates for various probabilities of

  19. SOLID-STATE STORAGE DEVICE WITH PROGRAMMABLE PHYSICAL STORAGE ACCESS

    DEFF Research Database (Denmark)

    2017-01-01

    a storage device action request, and the storage device evaluating a first rule of the one or more rules by determining if the received request fulfills request conditions comprised in the first rule, and in the affirmative the storage device performing request actions comprised in the first rule......Embodiments of the present invention includes a method of operating a solid-state storage device, comprising a storage device controller in the storage device receiving a set of one or more rules, each rule comprising (i) one or more request conditions to be evaluated for a storage device action...... request received from a host computer, and (ii) one or more request actions to be performed on a physical address space of a non-volatile storage unit in the solid-state storage device in case the one or more request conditions are fulfilled; the method further comprises: the storage device receiving...

  20. Storage of intact heads prior to processing limits the shelf-life of fresh-cut Lactuca sativa L.

    NARCIS (Netherlands)

    Witkowska, I.M.; Woltering, E.J.

    2014-01-01

    Harvested lettuce heads are usually transported and stored for some period of time under a variety of conditions prior to processing. During storage, especially under suboptimal conditions, nutritional composition of the harvested produce continues to change. The possible impact of prior storage of

  1. Quality evaluation of polypropylene packaged corn yogurt during storage

    Science.gov (United States)

    Aini, Nur; Prihananto, V.; Sustriawan, B.; Astuti, Y.; Maulina, M. R.

    2018-01-01

    Packaging is an important factor to control the process of quality decrease of any food product, including to determine the shelf life. The objective of this study was to determine changes quality of corn yogurt packaged using polypropylene. The method were using was package yogurt polypropylene, then it was stored in a refrigerator at 5, 10, or 15°C during 21 days. The yogurt was analysed every 7 days over a 21-day period. The results indicate that protein content decreased during storage, while the lactic acid bacteria, total acid, pH, viscosity, and total solids were increased. At the end of storage, the amount of lactic acid bacteria still fulfil the minimum requirements of a probiotic food, with a count of 6.407 log CFU/g. Overal scoring by panelist (scores ranged from 0 to 5) have a 4.78 at the beginning of storage. By the 21st day of storage, yogurt was packaging using transparent polypropylene having a score of 3.85, and that stored in opaque white packaging having a value of 3.95.

  2. Compact Holographic Data Storage

    Science.gov (United States)

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  3. Developing new transportable storage casks for interim dry storage

    International Nuclear Information System (INIS)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R.

    2004-01-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication

  4. Life-cycle energy analyses of electric vehicle storage batteries

    Science.gov (United States)

    Sullivan, D.; Morse, T.; Patel, P.; Patel, S.; Bondar, J.; Taylor, L.

    1980-12-01

    Nickel-zinc, lead-acid, nickel-iron, zinc-chlorine, sodium-sulfur (glass electrolyte), sodium-sulfur (ceramic electrolyte), lithium-metal sulfide, and aluminum-air batteries were studied in order to evaluate the energy used to produce the raw materials and to manufacture the battery, the energy consumed by the battery during its operational life, and the energy that could be saved from the recycling of battery materials into new raw materials. The value of the life cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. Battery component materials, the energy requirements for battery production, and credits for recycling are described. The operational energy for an electric vehicle and the procedures used to determine it are discussed.

  5. MICROBIOLOGICAL QUALITY AND SHELF LIFE OF FRESH PACKAGED TILAPIA FILLETS STORED UNDER DIFFERENT CHILL TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Odoli Cyprian

    2013-02-01

    Full Text Available Nile tilapia (Oreochromis niloticus farmed in recirculation aquaculture system (RAS was filleted and packaged in 100% air and 50% CO2: 50% N2 modified atmosphere (MA prior to storage at 1˚C and -1˚C for up to 27 days. Fillets were sampled regularly and analysed for headspace gas composition, sensory and microbial changes. Shelf life varied with apparent relation to storage temperature, package atmosphere and microflora. Pseudomonads were reported as the main spoilage organisms in tilapia fillets during chilled storage conditions. Sensory analysis of cooked samples as well as microbial growth indicated fillets packaged in 100% air had a shelf life of 13-15 days during storage at 1˚C and 20 days at -1˚C. At the end of shelf life in 100% air packaged groups, TVC and pseudomonads counts reached log 7 colony-forming units g-1 in flesh. Whereas in 50% CO2: 50% N2 packaged fillets, the lag phase and generation time of bacteria was extended and recorded counts of < log 4 colony-forming units g-1 up to 27 days of storage at both 1˚C and -1˚C. However, 50% CO2 : 50% N2 conditions restricted fillets shelf life to 23 days based on sensorial changes mainly fillets colour characteristics.

  6. Effect of storage and LEO cycling on manufacturing technology IPV nickel-hydrogen cells

    Science.gov (United States)

    Smithrick, John J.

    1987-01-01

    Yardney Manufacturing Technology (MANTECH) 50 A-hr space weight individual pressure vessel nickel-hydrogen cells were evaluated. This consisted of investigating: the effect of storage and charge/discharge cycling on cell performance. For the storage test the cells were precharged with hydrogen, by the manufacturer, to a pressure of 14.5 psia. After undergoing activation and acceptance tests, the cells were discharged at C/10 rate (5A) to 0.1 V or less. The terminals were then shorted. The cells were shipped to NASA Lewis Research Center where they were stored at room temperature in the shorted condition for 1 year. After storage, the acceptance tests were repeated at NASA Lewis. A comparison of test results indicate no significant degradation in electrical performance due to 1 year storage. For the cycle life test the regime was a 90 minute low earth orbit at deep depths of discharge (80 and 60 percent). At the 80 percent DOD the three cells failed on the average at cycle 741. Failure for this test was defined to occur when the cell voltage degraded to 1 V prior to completion of the 35 min discharge. The DOD was reduced to 60 percent. The cycle life test was continued.

  7. Effect of packaging during storage time on retail display shelf life of longissimus muscle from two different beef production systems.

    Science.gov (United States)

    Luzardo, S; Woerner, D R; Geornaras, I; Engle, T E; Delmore, R J; Hess, A M; Belk, K E

    2016-06-01

    Two studies were conducted to evaluate the influence of packaging and production system (PS) on retail display life color (L*, a*, and b*), fatty acid profile (% of total fatty acids), lipid oxidation (thiobarbituric acid reactive substances; mg malondialdehyde/kg of muscle), vitamin E content (µg/g of muscle), and odor (trained panelists) during storage of LM. Four (or 3) different packaging treatments were applied to LM from steers fattened on grazing systems (Uruguayan) or on high-concentrate diets (U.S.). From fabrication to application of treatments, Uruguayan LM were vacuum packaged for air shipment and U.S. LM were also vacuum packaged and kept in a cooler until Uruguayan samples arrived. Treatments were applied 7 d after slaughter. In Exp. 1, treatments were vacuum packaging (VP), low-oxygen (O) modified atmosphere packaging (MAP) with nitrogen (N2) and carbon dioxide (MAP/CO), low-O MAP with N2 plus CO and carbon monoxide (MAP/CO), and VP plus an application of peroxyacetic acid (VP/PAA). In Exp. 2 block 1, treatments were VP, MAP/CO, and VP with ethyl-arginate HCl incorporated into the film as an antimicrobial agent (VP/AM). In Exp. 2 block 2, treatments were VP, MAP/CO, MAP/CO, and VP/AM. After 35 d storage, steaks were evaluated during simulated retail display for up to 6 d. In Exp. 1, Uruguayan steaks under MAP/CO had greater ( packaging treatments on d 6 of display in Exp. 1. Packaging × PS × time interaction was significant ( 0.05) were detected among both VP and MAP/CO in U.S. steaks at this time. No significant ( > 0.05) packaging × PS × time interaction was observed in Exp. 2. Only PS (both experiments) and time (Exp. 1) affected ( Packaging × PS, PS × time, and packaging × PS × time interactions were not significant ( > 0.05) for any of the fatty acids. Beef from Uruguayan had lower ( < 0.05) SFA and MUFA and greater ( < 0.05) PUFA and n-6 and n-3 fatty acid percentages than U.S. beef. Complexity of fresh meat postmortem chemistry

  8. Effect of maturity stages, variety and storage environment on sugar ...

    African Journals Online (AJOL)

    This study clearly demonstrated the importance of integrated agro-technology of combining cultivar, maturity stage and storage environment in shelf life improvement of tomato by reducing the rate of ripening and utilization of sugar, reducing water loss and maintaining marketability. Key words: Tomato, maturity stage, ...

  9. Storage of parbaked bread affects shelf life of fully baked end product: a ¹H NMR study.

    Science.gov (United States)

    Bosmans, Geertrui M; Lagrain, Bert; Ooms, Nand; Fierens, Ellen; Delcour, Jan A

    2014-12-15

    Full baking of earlier partially baked (parbaked) bread can supply fresh bread to the consumer at any time of the day. When parbaked bread loaves were stored at -25, 4 or 23°C, the extent of crumb to crust moisture migration and amylopectin retrogradation differed with storage temperature, and the firming rate was evidently lowest during frozen storage. The extent of crumb to crust moisture migration during parbaked bread storage largely determined the mass of the fresh finished bread, and its crumb and crust moisture contents. Initial NMR proton mobility, initial resilience, the extent of amylopectin retrogradation and changes in firmness and resilience during storage of fully baked bread were affected by its crumb moisture content. The lowest firming rate was observed for finished bread resulting from parbaked bread stored at -25°C, while the highest firming rate was observed for finished bread from parbaked bread stored at 23°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Developing new transportable storage casks for interim dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R. [Hitachi Zosen Diesel and Engineering Co., Ltd., Tokyo (Japan)

    2004-07-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication.

  11. A statistical approach to electrical storage sizing with application to the recovery of braking energy

    International Nuclear Information System (INIS)

    Musolino, V.; Pievatolo, A.; Tironi, E.

    2011-01-01

    In the context of efficient energy use, electrical energy in electric drives plays a fundamental role. High efficiency energy storage systems permit energy recovery, peak shaving and power quality functions. Due to their cost and the importance of system integration, there is a need for a correct design based on technical-economical optimization. In this paper, a method to design a centralized storage system for the recovery of the power regenerated by a number of electric drives is presented. It is assumed that the drives follow deterministic power cycles, but shifted by an uncertain amount. Therefore the recoverable energy and, consequently, the storage size requires the optimization of a random cost function, embedding both the plant total cost and the saving due to the reduced energy consumption during the useful life of the storage. The underlying stochastic model for the power profile of the drives as a whole is built from a general Markov chain framework. A numerical example, based on Monte Carlo simulations, concerns the maximization of the recoverable potential energy of multiple bridge cranes, supplied by a unique grid connection point and a centralized supercapacitor storage system. -- Highlights: ► Recovery of braking power produced by multiple electric drives. ► Temporal power profile modeled through the multinomial distribution and Markov chains. ► Storage sizing via random cost function optimization. ► The search region for the optimization is given explicitly. ► The value of energy recovered during the useful life of the storage outweighs its cost.

  12. Investigations on Mushroom Storage and Quality Parameters

    Directory of Open Access Journals (Sweden)

    Ömür Dündar

    2016-03-01

    Full Text Available In this study, researchers on storage and quality properties of mushrooms cultivated in the world and Turkey have been investigated. Mushrooms contain some important minerals and vitamins such as iron, calcium, phosphorus, potassium, copper and folate, thiamine, riboflavin, niacin, vitamin B, C, D and also they are a good source of carbohydrate and protein. After harvest, to extend the shelf life of mushrooms, some applications such as pre-cooling, storage in appropriate temperature, use of different types of polyethylene packaging, modified atmosphere packaging, nitric oxide and UV light applications were done on mushrooms. The effects of these applications on physical and chemical features such as like weight loss, firmness, cap opening rate, cap diameter, stem diameter, browning, colour, respiration rate, enzymatic reactions, total phenols, total sugars, aminoacid content were investigated.

  13. Effect of Thyme and Rosemary on The Quality Characteristics, Shelf-life, and Residual Nitrite Content of Sausages During Cold Storage

    Science.gov (United States)

    Jin, Sang Keun; Choi, Jung Seok; Lee, Seung Jae

    2016-01-01

    The effects of thyme and rosemary on the quality characteristics of sausages during cold storage were investigated. Sausages were prepared with thyme and rosemary powder (1 and 2%) and stored for 6 weeks at 10℃. The pH was significantly decreased in sausages by addition of thyme and rosemary compared to that observed in the control before and after storage. At 4 weeks of storage, the residual nitrite content was decreased by thyme and rosemary compared to the control. Lightness (L*) and yellowness (b*) were increased during storage, whereas redness (a*) and whiteness (W) were decreased before and after storage by addition of thyme and rosemary. The amount of TPC and lactic acid bacteria was lower at the end of storage in sausage containing thyme and rosemary. The 2, 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging capacity of sausages was increased by addition of thyme and rosemary compared to that in the control before and after storage. In particular, T2 (0.2% thyme addition) showed the highest DPPH radical scavenging capacity during storage. In a sensory evaluation, flavor and overall acceptability were lower in sausages containing thyme and rosemary than in the control. However, at the end of storage (6 wk), aroma, flavor and overall acceptability were not significantly different among the sausage samples. PMID:27857542

  14. Cathodic Protection Design Algorithms for Refineries Aboveground Storage Tanks

    Directory of Open Access Journals (Sweden)

    Kosay Abdul sattar Majbor

    2017-12-01

    Full Text Available Storage tanks condition and integrity is maintained by joint application of coating and cathodic protection. Iraq southern region rich in oil and petroleum product refineries need and use plenty of aboveground storage tanks. Iraq went through conflicts over the past thirty five years resulting in holding the oil industry infrastructure behind regarding maintenance and modernization. The primary concern in this work is the design and implementation of cathodic protection systems for the aboveground storage tanks farm in the oil industry. Storage tank external base area and tank internal surface area are to be protected against corrosion using impressed current and sacrificial anode cathodic protection systems. Interactive versatile computer programs are developed to provide the necessary system parameters data including the anode requirements, composition, rating, configuration, etc. Microsoft-Excel datasheet and Visual Basic.Net developed software were used throughout the study in the design of both cathodic protection systems. The case study considered in this work is the eleven aboveground storage tanks farm situated in al-Shauiba refinery in southern IRAQ. The designed cathodic protection systems are to be installed and monitored realistically in the near future. Both systems were designed for a life span of (15-30 years, and all their parameters were within the internationally accepted standards.

  15. Effect of harvest time on storage loss and sprouting in onion

    Directory of Open Access Journals (Sweden)

    T. SUOJALA

    2008-12-01

    Full Text Available Storability of onion is affected by timing of harvest. However, the optimal time for maximum yield and maximum storability do not necessarily coincide. This study aimed to determine the most suitable harvest time for obtaining a high bulb yield with high quality and storability. Storage experiments were conducted on onions produced in field experiments at a research field and on farms in four years. Results indicate that harvesting could be delayed to 100% maturity, or even longer, without a marked increase in storage loss. In rainy years, late harvest is likely to impair the quality. The incidence of sprouting in shelf life tests varied considerably between years. An early harvest before 50% maturity and a delayed harvest increased the risk of sprouting. It may be concluded that the harvesting of onions for long-term storage can be timed to take place between 50% maturity and even some weeks after complete maturity without a loss in storage quality. Therefore, it is possible to combine high yield and good storage quality.

  16. Visible spectroscopy as a tool for the assessment of storage conditions of fresh pork packaged in modified atmosphere

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Christensen, Mette; Ann Tørngren, Mari

    2016-01-01

    The storage conditions of fresh meat are known to impact its colour and microbial shelf life. In the present study, visible spectroscopy was evaluated as a method to assess meat storage conditions and its optimisation. Fresh pork steaks (longissimus thoracis et lumborum and semimembranosus) were...

  17. Improving Postharvest Storage of Apple Cv.

    Directory of Open Access Journals (Sweden)

    H. Etemadi Nasab

    2013-06-01

    Full Text Available Apple is one of the important fruit in Iran. according to respiration and ethylene production behaviors, apple classified as a climacteric fruit. Therefore, any treatments, which can inhibit or prevent the action of ethylene, they can increase the postharvest life of horticultural production. 1-methylcyclopropane (1-MCP is one of the chemical which is environmental save and use as a very small concentrations. In this experiment, the effects of 1-MCP at concentrations of 0 (as a control, 0.25, 0.5, 0.75 and 1 µl.l-1 were used in apple cv. "Golab Kohanz", a land race fruits which is cultivated from long times ago in Iran. After the 1-MCP treatment, they were moved to cold room at 2 ºC and RH of ca 90% for 60 days. Samples were removed from the cold room and analysis for physicochemical characteristics. "Golab Kohanz" apples treated with 1-MCP showed improved fruit firmness, titratable acidity (TA, and total soluble solid after 147 days at 2ºC , compared to the control non-treated fruits. Also, treatment with 1-MCP significantly reduced the incidence of superficial scald in "Golab Kohanze". In general, 1-MCP-treated apples delay ripening during storing in cold room and increased shelf life. Overall, the results indicate that 1-MCP has tremendous potential for maintaining apple quality during storage and post storage.

  18. Chitosan-limonene coating in combination with modified atmosphere packaging preserve postharvest quality of cucumber during storage

    NARCIS (Netherlands)

    Maleki, Gisoo; Sedaghat, Naser; Woltering, Ernst J.; Farhoodi, Mehdi; Mohebbi, Mohebbat

    2018-01-01

    Since cucumbers suffer from a short postharvest life, applying different technologies is increasingly used as effective ways to increase their shelf life and quality. In this study a combination of chitosan-limonene coating and MAP storage has been used as a postharvest treatment to maintain

  19. The NRC activities concerning Boraflex use in spent-fuel storage racks

    International Nuclear Information System (INIS)

    Kopp, L.I.

    1996-01-01

    The U.S. Nuclear Regulatory Commission (NRC) has issued several generic communications to the nuclear industry identifying two issues with respect to using Boraflex in spent-fuel storage racks. The first issue related to gamma-radiation-induced shrinkage of Boraflex and the potential to develop tears or gaps in the material. This phenomenon is typically accounted for in criticality analyses of spent-fuel storage racks. The second issue concerned long-term Boraflex performance throughout the intended service life of the racks as a result of both gamma irradiation and exposure to the wet pool environment

  20. Smart Electrochemical Energy Storage Devices with Self-Protection and Self-Adaptation Abilities.

    Science.gov (United States)

    Yang, Yun; Yu, Dandan; Wang, Hua; Guo, Lin

    2017-12-01

    Currently, with booming development and worldwide usage of rechargeable electrochemical energy storage devices, their safety issues, operation stability, service life, and user experience are garnering special attention. Smart and intelligent energy storage devices with self-protection and self-adaptation abilities aiming to address these challenges are being developed with great urgency. In this Progress Report, we highlight recent achievements in the field of smart energy storage systems that could early-detect incoming internal short circuits and self-protect against thermal runaway. Moreover, intelligent devices that are able to take actions and self-adapt in response to external mechanical disruption or deformation, i.e., exhibiting self-healing or shape-memory behaviors, are discussed. Finally, insights into the future development of smart rechargeable energy storage devices are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Energy storage

    Science.gov (United States)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  2. Microbial biodiversity, quality and shelf life of microfiltered and pasteurized extended shelf life (ESL) milk from Germany, Austria and Switzerland.

    Science.gov (United States)

    Schmidt, Verena S J; Kaufmann, Veronika; Kulozik, Ulrich; Scherer, Siegfried; Wenning, Mareike

    2012-03-01

    Information on factors limiting the shelf life of extended shelf life (ESL) milk produced by microfiltration and subsequent pasteurization is very limited. In this study, three different batches of ESL milk were analyzed at different stages of the production process and during storage at 4 °C, 8 °C and 10 °C in order to evaluate the changes in bacterial cell counts, microbial diversity and enzymatic quality. Additionally, detailed biodiversity analyses of 250 retail ESL milk packages produced by five manufacturers in Germany, Austria and Switzerland were performed at the end of shelf life. It was observed that microfiltration decreased the microbial loads by 5-6 log₁₀ units to lower than 1 CFU/mL. However, bacterial counts at the end of shelf life were extremely variable and ranged between ESL treatment, causing stochastic variations of initial species distributions in individual packages. This would result in the development of significantly different bacterial populations during cold storage, including the occasional development of high numbers of pathogenic species such as B. cereus or Acinetobacter. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Special equipment support the fuel storage

    International Nuclear Information System (INIS)

    Vega, M. E.

    2014-01-01

    In the current juncture one of the keys to any company that works in a market that is as demanding as the nuclear, is its ability to developed new technological products that they can adapt to the different special situations/needs of nuclear Power Plants during their operating life. As an example, below are some of the specialized equipment that ENSA has been developing for more than thirty years that has been doing work in the area of fuel storage. (Author)

  4. Thermodynamic analysis of pumped thermal electricity storage

    International Nuclear Information System (INIS)

    White, Alexander; Parks, Geoff; Markides, Christos N.

    2013-01-01

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater need for electricity storage. Although there are many existing and emerging storage technologies, most have limitations in terms of geographical constraints, high capital cost or low cycle life, and few are of sufficient scale (in terms of both power and storage capacity) for integration at the transmission and distribution levels. This paper is concerned with a relatively new concept which will be referred to here as Pumped Thermal Electricity Storage (PTES), and which may be able to make a significant contribution towards future storage needs. During charge, PTES makes use of a high temperature ratio heat pump to convert electrical energy into thermal energy which is stored as ‘sensible heat’ in two thermal reservoirs, one hot and one cold. When required, the thermal energy is then converted back to electricity by effectively running the heat pump backwards as a heat engine. The paper focuses on thermodynamic aspects of PTES, including energy and power density, and the various sources of irreversibility and their impact on round-trip efficiency. It is shown that, for given compression and expansion efficiencies, the cycle performance is controlled chiefly by the ratio between the highest and lowest temperatures in each reservoir rather than by the cycle pressure ratio. The sensitivity of round-trip efficiency to various loss parameters has been analysed and indicates particular susceptibility to compression and expansion irreversibility

  5. Radurisation of broilers for shelf life extension

    International Nuclear Information System (INIS)

    Bok, H.E.; Holzapfel, W.H.; Van der Linde, H.J.

    1982-01-01

    Radurization is discussed as a method for the shelf life extension of refrigerated chicken carcasses. One of the advantages is that radurization eliminates potential food pathogenic bacteria like Salmonella in the chicken carcasses. Materials and methods for the radurization of chicken are discussed. The objective of the investigation was to determine the influence of different irradiation doses and storage conditions on the microbiological shelf life and organoleptic quality of fresh broilers

  6. Qualitative Characteristics and Determining Shelf-Life of Milk Beverage Product Supplemented with Coffee Extracts.

    Science.gov (United States)

    Yoon, Ji-Woo; Ahn, Sung-Il; Kim, Ha-Na; Park, Jun-Hong; Park, Sun-Young; Kim, Jae-Hoon; Oh, Duk-Geun; Jhoo, Jin-Woo; Kim, Gur-Yoo

    2017-01-01

    This study was conducted to establish the shelf-life of a milk beverage product supplemented with coffee extracts. Qualitative changes including peroxide value (PV), microorganism content, caffeine content, and sensory evaluation were measured periodically in beverages kept at 10, 20, and 30°C for 8 wk. Lipid oxidation of the product was measured by peroxide value analysis, and apparent changes were observed during a 4 wk storage period. Caffeine analysis revealed that the changes in caffeine content were negligible during the storage period. Total aerobic bacteria, Escherichia coli , yeast, and mold were not detected in the products during an 8 wk storage period. Sensory evaluation revealed that after 4 wk of storage overall acceptance was less than 3 points on a 5-point scale. In this study, PV was used as an indicator of the shelf-life of the milk beverage product. PV analysis revealed that a value of 20 meq/kg was the end of the shelf-life using the Arrhenius equation and the accelerated shelf-life test (ASLT). Assuming that the beverages are kept at 4°C during distribution, calculation of when the PV reached the quality limit point (20 meq/kg) was done with the equation ln(PV) = 0.3644X - 2.21834 and, using that equation, PV = e 0.3644X-2.21834 was calculated. Therefore, 14.3086 wk was determined to be the shelf-life of the milk beverage supplemented with coffee when stored at 4°C.

  7. Vase life and rehydration capacity of dry-stored gladiolus flowers at low temperature

    Directory of Open Access Journals (Sweden)

    Lucas Cavalcante da Costa

    Full Text Available ABSTRACT: Normally, it is not recommended the conditioning of gladiolus stems in water during storage or transport. Hydration of petals may accelerate flower opening, even at a low temperature, which compromises quality at marketing moment. However, for this species, neither the effect of prolonged dry cold storage nor its behavior when transferred to water at room temperature has been evaluated. The present study aimed to evaluate the vase life and the rehydration capacity of gladiolus flowers ( Gladiolus grandiflora Hort. after dry storage at low temperature. Flower stems of cultivars Blue Frost, Gold Field, Traderhorn, and Jester were dry-stored at a temperature of 5 ± 1 ºC and relative humidity of 85% for 12, 24, 36, and 48h. Control stems remained always in deionized water. After storage, they were returned to the water at room temperature and evaluated for vase life (adopting the discard criterion when 50% of the basal flowers displayed loss of color and wilting, fresh weight change (%, water uptake rate and transpiration rate, as well as relative water content of the petals (%. In dry cold storage conditions, for up to 36h, the vase life was not affected although incomplete rehydration of the flowers. Rehydration capacity of the stem is linked to the staggered opening of flowers along the inflorescence.

  8. LH2 on-orbit storage tank support trunnion design and verification

    International Nuclear Information System (INIS)

    Bailey, W.J.; Fester, D.A.; Toth, J.M.

    1986-01-01

    A subcritical liquid hydrogen orbital storage and transfer experiment is being designed for flight in the shuttle cargo bay. The Cryogenic Fluid Management Facility (CFMF) includes a liquid hydrogen storage tank supported in a vacuum jacket by two fiberglass epoxy composite trunnion mounts. The capability of the CFMF to meet a seven mission requirement is extremely sensitive to the fatigue life of the composite trunnions at cryogenic temperatures. An E-glass/S-glass epoxy composite material was selected for the trunnions since it provided desirable strength, weight and thermal characteristics. Because of the limited extent of analytical or experimental treatment of the fatigue life of this composite at cryogenic temperature, an experimental program was conducted to provide verification of the trunnion design and performance capability at ambient and liquid hydrogen temperatures. Basic material fatigue property data were obtained for the laminate of interest using specifically prepared test specimens. Full-scale trunnions were manufactured and subjected to cyclic load testing to verify fatigue life. An analytical evaluation of the thermal performance of the trunnions was conducted, and a test setup is being manufactured to correlate analytical predictions with test results

  9. Sheet GT3-2. General approach of life phases on a long term for uranium mining residues storages and comparison with other storages

    International Nuclear Information System (INIS)

    2009-01-01

    This document aims at specifying the short term, middle term and long term boundaries for a sustainable management and rehabilitated ancient uranium mining sites and of uranium mining residue storage sites. It presents a general overview of site evolution in time, and then, more precisely, the different functions (rehabilitation management, corrective actions, control and monitoring, and so on) and equipment (confinement works, measurement system) at stake in the management of these sites and the control of their impacts. Functions and equipment implemented on such a site, as well as time scales corresponding to different approaches are compared with those of other types of storage. The peculiarity of ancient uranium mining sites and its implications in terms of management on a long term are discussed

  10. Graphene hybridization for energy storage applications.

    Science.gov (United States)

    Li, Xianglong; Zhi, Linjie

    2018-05-08

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  11. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  12. Sizing Study of Second Life Li-ion Batteries for Enhancing Renewable Energy Grid Integration

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Stroe, Daniel Loan

    2016-01-01

    Renewable power plants must comply with certain codes and requirements to be connected to the grid, being the ramp rate compliance one of the most challenging requirements, especially for photovoltaic or wind energy generation plants. Battery based energy storage systems represent a promising...... economically viable, the use of second life batteries is investigated in the present work. This paper proposes a method to determine the optimal sizing of a second life battery energy storage system (SLBESS). SLBESS performance is also validated and, as an ultimate step, the power exchanged with the batteries...... solution due to the fast dynamics of electrochemical storage systems, besides their scalability and flexibility. However, large-scale battery energy storage systems are still too expensive to be a mass market solution for the renewable energy resources integration. Thus, in order to make battery investment...

  13. Keeping carrots quality during storage by irradiation

    International Nuclear Information System (INIS)

    El-Nashaby, F.M.; Hafez, S.A.

    2000-01-01

    Fresh carrots were gamma irradiated at 0, 0.1, 0.2, 0.5 and 1.0 KGy doses using cobalt-60 source. A portion of the irradiated carrots was stored at ambient temperature (20-25 degree C) and the rest was packed in polyethylene bags and stored in refrigerator temperature (5± 1 degree C). The results indicated that the sprouting of carrots were completely inhibited by radiation dose of 0.2 KGy either at ambient temperature or cold storage, while the non-irradiated samples started to sprout after 2 and 4 weeks of storage at ambient temperature and cold storage respectively. Furthermore, samples treated with gamma rays showed lower values of weight loss compared to the untreated ones during storage. Concerning storage temperature, it was found that the rate of weight loss during storage was higher at ambient temperature than in refrigerator. Micro-organisms were greatly affected by gamma rays, their counts were found to be decreased by increasing irradiation dose as compared with the control sample. Moreover, during storage period, refrigerated samples showed lower bacterial and molds counts than samples stored at ambient temperature. On the other hand, it was also observed that irradiated samples at the higher dose i.e. 1.0 KGy stored either at ambient temperature or in refrigerator showed higher bacterial and molds counts than unirradiated ones. The lowest dose (0.1 KGy) had no effect on carotene and sugars contents of carrots while increasing the dose above 0.2 KGy led to gradual decrease in carotene contents and gradual increase in total soluble sugars contents of the samples with increasing the irradiation dose compared with the nonirradiated ones. The results proved that gamma irradiation dose of 0.2 Gy was effective for sprout inhibition of carrots and increase their shelf-life to 10 weeks at ambient temperature without adverse effects on carotene and sugars contents of treated carrots

  14. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  15. A design study for a fission product fixation plant and storage at Windscale

    International Nuclear Information System (INIS)

    Hill, K.M.; Ridley, G.; Adler, D.G.

    1961-01-01

    A flowsheet for a production plant has been worked out and the problems of designing a reliable production plant utilising it have been assessed. The properties of current glass compositions have been considered in relation to problems of permanent storage for periods of 800 to 1000 years and various storage proposals assessed. The performance of the preferred type of storage, i.e. dry storage in natural draught air-cooled vaults, has been estimated and consideration given to a number of variables affecting the optimum design. The design problems of a storage of the required life have been investigated in relation to suitable types of site and proposals made as to the types of construction to be used. Design work on tunnel loading facilities has been carried to the state of demonstrating feasibility. The capital costs and the economics of this type of waste storage have been investigated for unalloyed Magnox fuel and brief consideration given to alloyed and cermet fuels. Attention has been given to development problems of the whole system where they arise. (author)

  16. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1990-01-01

    This document represents a synthesis relative to tritium storage. After indicating the main storage particularities as regards tritium, storages under gaseous and solid form are after examined before establishing choices as a function of the main criteria. Finally, tritium storage is discussed regarding tritium devices associated to Fusion Reactors and regarding smaller devices [fr

  17. An intertemporal decision framework for electrochemical energy storage management

    Science.gov (United States)

    He, Guannan; Chen, Qixin; Moutis, Panayiotis; Kar, Soummya; Whitacre, Jay F.

    2018-05-01

    Dispatchable energy storage is necessary to enable renewable-based power systems that have zero or very low carbon emissions. The inherent degradation behaviour of electrochemical energy storage (EES) is a major concern for both EES operational decisions and EES economic assessments. Here, we propose a decision framework that addresses the intertemporal trade-offs in terms of EES degradation by deriving, implementing and optimizing two metrics: the marginal benefit of usage and the average benefit of usage. These metrics are independent of the capital cost of the EES system, and, as such, separate the value of EES use from the initial cost, which provides a different perspective on storage valuation and operation. Our framework is proved to produce the optimal solution for EES life-cycle profit maximization. We show that the proposed framework offers effective ways to assess the economic values of EES, to make investment decisions for various applications and to inform related subsidy policies.

  18. Shelf life extension of fresh turmeric ( Curcuma longa L.) using gamma radiation

    Science.gov (United States)

    Dhanya, R.; Mishra, B. B.; Khaleel, K. M.; Cheruth, Abdul Jaleel

    2009-09-01

    Gamma radiation processing was found to extend shelf life of fresh turmeric. A 5 kGy radiation dose and 10 °C storage temperature was found to keep peeled turmeric samples microbe free and acceptable until 60 days of storage. The control sample without radiation treatment spoiled within a week of storage. The changes in color, texture and moisture content of fresh turmeric due to radiation treatment were found to be statistically insignificant.

  19. Shelf life extension of fresh turmeric (Curcuma longa L.) using gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dhanya, R. [P.G. Department and Research Centre in Botany, Sir Syed College, Taliparamba 670142, Kerala (India); Mishra, B.B. [Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Khaleel, K.M. [P.G. Department and Research Centre in Botany, Sir Syed College, Taliparamba 670142, Kerala (India)], E-mail: khaleelchovva@yahoo.co.in; Cheruth, Abdul Jaleel [DMJM International (Cansult Maunsell/AECOM Ltd.), Consultant of Gardens Sector Projects, Alain Municipality and Eastern Emirates, P.O. Box 1419, Al-Ain, Abu Dhabi (United Arab Emirates)], E-mail: abdul79jaleel@yahoo.co.in

    2009-09-15

    Gamma radiation processing was found to extend shelf life of fresh turmeric. A 5 kGy radiation dose and 10 {sup o}C storage temperature was found to keep peeled turmeric samples microbe free and acceptable until 60 days of storage. The control sample without radiation treatment spoiled within a week of storage. The changes in color, texture and moisture content of fresh turmeric due to radiation treatment were found to be statistically insignificant.

  20. Shelf life extension of fresh turmeric (Curcuma longa L.) using gamma radiation

    International Nuclear Information System (INIS)

    Dhanya, R.; Mishra, B.B.; Khaleel, K.M.; Cheruth, Abdul Jaleel

    2009-01-01

    Gamma radiation processing was found to extend shelf life of fresh turmeric. A 5 kGy radiation dose and 10 o C storage temperature was found to keep peeled turmeric samples microbe free and acceptable until 60 days of storage. The control sample without radiation treatment spoiled within a week of storage. The changes in color, texture and moisture content of fresh turmeric due to radiation treatment were found to be statistically insignificant.

  1. Energy storage

    International Nuclear Information System (INIS)

    2012-01-01

    After having outlined the importance of energy storage in the present context, this document outlines that it is an answer to economic, environmental and technological issues. It proposes a brief overview of the various techniques of energy storage: under the form of chemical energy (hydrocarbons, biomass, hydrogen production), thermal energy (sensitive or latent heat storage), mechanical energy (potential energy by hydraulic or compressed air storage, kinetic energy with flywheels), electrochemical energy (in batteries), electric energy (super-capacitors, superconductor magnetic energy storage). Perspectives are briefly evoked

  2. Meeting the regulatory challenges of mixed waste storage and monitoring: A novel approach

    International Nuclear Information System (INIS)

    Wilkinson, Dennis; Shaw, Mark

    1992-01-01

    This paper describes an original approach to providing safe storage of Remote Handled TRU Mixed Waste that is required to meet the EPA double liner and leachate collection system standards. This system, known as the 'Environmental Vault Liner', also allows a cost effective means of complying with the EPA's inspection requirements per 40 CFR 265.170, Use and Management of Containers. This approach is modular in nature, allowing additional storage capacity to be added on a demand basis, thereby eliminating significant upfront costs associated with large storage facilities built on estimated needs over many years. It reduces the financial and technical risks associated with large storage construction projects, allows modifications to new Liners put into service based on changing regulations and technologies. The Environmental Vault Liner offers additional benefits including easy waste retrieval, a 300 year design life, continuous below ground liquid detection and monitoring, replaceable instrumentation, inert (Nitrogen) atmosphere for container storage, continuous air monitoring, and remote visual container inspections. (author)

  3. Data needs for long-term dry storage of LWR fuel. Interim report

    International Nuclear Information System (INIS)

    Einziger, R.E.; Baldwin, D.L.; Pitman, S.G.

    1998-04-01

    The NRC approved dry storage of spent fuel in an inert environment for a period of 20 years pursuant to 10CFR72. However, at-reactor dry storage of spent LWR fuel may need to be implemented for periods of time significantly longer than the NRC's original 20-year license period, largely due to uncertainty as to the date the US DOE will begin accepting commercial spent fuel. This factor is leading utilities to plan not only for life-of-plant spent-fuel storage during reactor operation but also for the contingency of a lengthy post-shutdown storage. To meet NRC standards, dry storage must (1) maintain subcriticality, (2) prevent release of radioactive material above acceptable limits, (3) ensure that radiation rates and doses do not exceed acceptable limits, and (4) maintain retrievability of the stored radioactive material. In light of these requirements, this study evaluates the potential for storing spent LWR fuel for up to 100 years. It also identifies major uncertainties as well as the data required to eliminate them. Results show that the lower radiation fields and temperatures after 20 years of dry storage promote acceptable fuel behavior and the extension of storage for up to 100 years. Potential changes in the properties of dry storage system components, other than spent-fuel assemblies, must still be evaluated

  4. Two-dimensional heterostructures for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)

    2017-06-12

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  5. Shelf-life Assessment of Food Undergoing Oxidation-A Review.

    Science.gov (United States)

    Calligaris, Sonia; Manzocco, Lara; Anese, Monica; Nicoli, Maria Cristina

    2016-08-17

    Oxidation is the most common event leading to the end of shelf life of microbiologically stable foods. Thus, a reliable shelf-life assessment is crucial to verify how long the product will last before it becomes oxidized to an unacceptable level to the consumers. Shelf-life assessment strategies of foods and beverages suffering oxidation are critically discussed focusing on definition of the acceptability limit, as well as the choice of the proper oxidative indicators, and methodologies for shelf-life testing. Testing methodologies for shelf-life determination under actual and accelerated storage conditions are considered, highlighting possible uncertainties, pitfalls, and future research needs.

  6. Improving the Hygienic Quality and Shelf-Life of Minced Common Carp Fish by Gamma Irradiation

    International Nuclear Information System (INIS)

    El-Khawas, Kh.H.; Fawzia, M.; El-Nashaby; Abd El-daim, M.H.

    1999-01-01

    This investigation aimed to improve the hygienic quality and extend cold storage life of minced carp fish by gamma irradiation. The frozen samples were gamma irradiation at 0, 2, 4 and 6 kGy doses and the effects of these treatments on the chemical properties, microbiological aspects and sensory properties were studied post treatments and during cold storage. Irradiation of samples at doses of 2, 4 and 6 kGy greatly reduced its microbial counts and prolonged its shelf-life for 2, 4, and 6 weeks at 4 ±degree, respectively against only 3 days for control samples. Moreover, 4 kGy dose completely destroyed Staph aureus. The chemical composition of samples did not alter neither by γirradiation treatments nor by cold storage. Furthermore, irradiation treatments had no effects on pH-value, TVBN and TMA contents, while a gradual increase in these chemical quality indexes was observed during cold storage. However, both irradiation treatments and cold storage increased the TBA value

  7. Status of spent fuel storage facilities in Switzerland

    International Nuclear Information System (INIS)

    Beyeler, P.C.; Lutz, H.R.; Heesen, W. von

    1999-01-01

    Planning of a dry spent fuel storage facility in Switzerland started already 15 years ago. The first site considered for a central interim storage facility was the cavern of the decommissioned pilot nuclear plant at Lucens in the French-speaking part of Switzerland. This project was terminated in the late eighties because of lack of public acceptance. The necessary acceptance was found in the small town of Wuerenlingen which has hosted for many years the Swiss Reactor Research Centre. The new project consists of centralised interim storage facilities for all types of radioactive waste plus a hot cell and a conditioning and incinerating facility. It represents a so-called integrated storage solution. In 1990, the new company 'ZWILAG Zwischenlager Wuerenlingen AG' (ZWILAG) was founded and the licensing procedures according to the Swiss Atomic law were initiated. On August 26, 1996 ZWILAG got the permit for construction of the whole facility including the operating permit for the storage facilities. End of construction and commissioning are scheduled for autumn 1999. The nuclear power station Beznau started planning a low level waste and spent fuel storage facility on its own, because in 1990 its management thought that by 1997 the first high active waste from the reprocessing facilities in France would have to be taken back. This facility at the Beznau site, called ZWIBEZ, was licensed according to a shorter procedure so its construction was finished by 1997. The two facilities for high level waste and spent fuel provide space for a total of 278 casks, which is sufficient for the waste and spent fuel of the four Swiss nuclear power stations including their life extension programme. (author)

  8. Guidance on the safety assessment methodology for storage of radioactive waste

    International Nuclear Information System (INIS)

    Kinyanjui, M.N.

    2014-04-01

    This project on safety assessment on storage was carried out with the main objective of ensuring safety of human life and our environment. This is the fundamental principle of radiation protection. Safety assessment has been evaluated as a tool in the safety case in the pre-construction, operational and the post closure phase of storage. In particular the iterative process of evaluating and predicting safety scenarios at each stage of the process has proved to be prudent. It is important that this concept be adopted for this type of facility to ensure safety of mankind and the environment now and in the future.

  9. LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K. [Savannah River National Laboratory; Bellamy, S. [Savannah River National Laboratory; Daugherty, W. [Savannah River National Laboratory; Sindelar, R. [Savannah River National Laboratory; Skidmore, E. [Savannah River National Laboratory

    2013-08-18

    Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintain integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.

  10. Hydrogen storage in Mg: a most promising material

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, A.; Lal, C.

    2009-01-01

    In the last one decade hydrogen has attracted worldwide interest as an energy carrier. This has generated comprehensive investigations on the technology involved and how to solve the problems of production, storage and applications of hydrogen. The interest in hydrogen as energy of the future is due to it being a clean energy, most abundant element in the universe, the lightest fuel and richest in energy per unit mass. Hydrogen as a fuel can be used to cook food, drive cars, jet planes, run factories and for all our domestic energy requirements. It can provide cheap electricity. In short, hydrogen shows the solution and also allows the progressive and non-traumatic transition of today's energy sources, towards feasible safe reliable and complete sustainable energy chains. The present article deals with the hydrogen storage in metal hydrides with particular interest in Mg as it has potential to become one of the most promising storage materials. Many metals combine chemically with Hydrogen to form a class of compounds known as Hydrides. These hydrides can discharge hydrogen as and when needed by raising their temperature or pressure. An optimum hydrogen-storage material is required to have various properties viz. high hydrogen capacity per unit mass and unit volume which determines the amount of available energy, low dissociation temperature, moderate dissociation pressure, low heat of formation in order to minimize the energy necessary for hydrogen release, low heat dissipation during the exothermic hydride formation, reversibility, limited energy loss during charge and discharge of hydrogen, fast kinetics, high stability against O 2 and moisture for long cycle life, cyclibility, low cost of recycling and charging infrastructures and high safety. So far most of the hydrogen storage alloys such as LaNi 5 , TiFe, TiMn 2 , have hydrogen storage capacities, not more than 2 wt% which is not satisfactory for practical application as per DOE Goal. A group of Mg based

  11. Sensory shelf-life limiting factor of high hydrostatic pressure processed avocado paste.

    Science.gov (United States)

    Jacobo-Velázquez, D A; Hernández-Brenes, C

    2011-08-01

    High hydrostatic pressure (HHP) processing pasteurizes avocado paste without a significant impact on flavor. Although HHP-treated avocado paste stored under refrigeration is safe for human consumption for months, sensory changes taking place during storage cause the rejection of the product by consumers within days. Although it is known that the shelf life of the product ends before its microbial counts are high, its sensory shelf life limiting factor remains unknown. The present study focused on the use of a trained panel and a consumer panel to determine the sensory shelf life limiting factor of HHP-treated avocado paste. The trained panel identified sour and rancid flavors as the main sensory descriptors (critical descriptors) that differentiated stored from freshly processed samples. Further data obtained from consumers identified sour flavor as the main cause for a significant decrease in the acceptability (shelf life limiting factor) of refrigerated HHP-treated avocado paste. The study allowed the elucidation of a proposed deterioration mechanism for HHP-treated avocado paste during its refrigerated shelf life. The information through this work enhances scientific knowledge of the product and proposes the sour flavor development during storage as a relevant sensory attribute that needs to be improved in order to enhance the product shelf life. At present, HHP is the most effective commercial nonthermal technology to process avocado paste when compared to thermal and chemical alternatives. HHP-treated avocado paste is a microbiologically stable food for a period of at least 45 d stored under refrigeration. However, previous published work indicated that consumers rejected the product after approximately 19 d of storage due to sensory changes. This manuscript presents a sensory study that permitted the identification of the critical sensory descriptor that is acting as the sensory shelf life limiting factor of the product. The data presented herein along with

  12. Effects of Packaging on Shelf Life and Postharvest Qualities of Radish Roots during Storage at Low Temperature for an Extended Period

    Directory of Open Access Journals (Sweden)

    Dulal Chandra

    2018-01-01

    Full Text Available To investigate the effects of packaging on the quality aspects of radish, Korean radish roots (Raphanus sativus L. var. Kwandong were stored at 0°C after different packaging treatments such as keeping in paper cartoon box (control, keeping in plastic crates (PC, packaging with micro perforated HDPE film in PC (HDPE + PC, curing followed by keeping in PC (Curing + PC, and curing followed by packaging with micro perforated HDPE film in PC (Curing + HDPE + PC. Weight losses of radish roots were remarkably lower (<3% in both HDPE film packaged samples compared to that of control (10% or without film (≈18%. L⁎ values, whiteness index, total soluble solids, and flesh and skin firmness were better maintained in Curing + HDPE + PC treatment compared to other treatments. Lower color difference values were also found in this treatment. Both film packaged samples had lower scores of black spot, surface shrinkage, and fungal infection incidence which revealed significantly longer marketable periods. HDPE film packaged samples exhibited longer shelf life more than one and two months compared to control and unpacked samples, respectively. Results suggest that HDPE film packaging can extend postharvest life of radish while curing might have little but beneficial effects in maintaining the quality characteristics. To our knowledge, this is the first report on quality evaluation of Korean radish during an extended storage period simulating the Korean industrial practices.

  13. Technical factors in the site selection for a radioactive wastes storage of low and intermediate level

    International Nuclear Information System (INIS)

    Badillo A, V. E.; Ramirez S, J. R.; Palacios H, J. C.

    2009-10-01

    The storage on surface or near surface it is viable for wastes of low and intermediate level which contain radio nuclides of short half life that would decay at insignificant levels of radioactivity in some decades and also radio nuclides of long half life but in very low concentrations. The sites selection, for the construction of radioactive waste storages, that present an appropriate stability at long term, a foreseeable behavior to future and a capacity to fulfill other operational requirements, is one of the great tasks that confront the waste disposal agencies. In the selection of potential sites for the construction of a radioactive wastes storage of low and intermediate level, several basic judgments should be satisfied that concern to physiography, climatology, geologic, geo-hydrology, tectonic and seismic aspects; as well as factors like the population density, socioeconomic develops and existent infrastructure. the necessary technician-scientific investigations for the selection of a site for the construction of radioactive waste storages are presented in this work and they are compared with the pre-selection factors realized in specify areas in previous studies in different regions of the Mexican Republic. (Author)

  14. Shelf-life evaluation of bilayered human skin equivalent, MyDerm™.

    Directory of Open Access Journals (Sweden)

    Wan Tai Seet

    Full Text Available Skin plays an important role in defense against infection and other harmful biological agents. Due to its fragile structure, skin can be easily damaged by heat, chemicals, traumatic injuries and diseases. An autologous bilayered human skin equivalent, MyDerm™, was engineered to provide a living skin substitute to treat critical skin loss. However, one of the disadvantages of living skin substitute is its short shelf-life, hence limiting its distribution worldwide. The aim of this study was to evaluate the shelf-life of MyDerm™ through assessment of cell morphology, cell viability, population doubling time and functional gene expression levels before transplantation. Skin samples were digested with 0.6% Collagenase Type I followed by epithelial cells dissociation with TrypLE Select. Dermal fibroblasts and keratinocytes were culture-expanded to obtain sufficient cells for MyDerm™ construction. MyDerm™ was constructed with plasma-fibrin as temporary biomaterial and evaluated at 0, 24, 48 and 72 hours after storage at 4°C for its shelf-life determination. The morphology of skin cells derived from MyDerm™ remained unchanged across storage times. Cells harvested from MyDerm™ after storage appeared in good viability (90.5%±2.7% to 94.9%±1.6% and had short population doubling time (58.4±8.7 to 76.9±19 hours. The modest drop in cell viability and increased in population doubling time at longer storage duration did not demonstrate a significant difference. Gene expression for CK10, CK14 and COL III were also comparable between different storage times. In conclusion, MyDerm™ can be stored in basal medium at 4°C for at least 72 hours before transplantation without compromising its functionality.

  15. Shelf-life evaluation of bilayered human skin equivalent, MyDerm™.

    Science.gov (United States)

    Seet, Wan Tai; Manira, Maarof; Maarof, Manira; Khairul Anuar, Khairoji; Chua, Kien-Hui; Ahmad Irfan, Abdul Wahab; Ng, Min Hwei; Aminuddin, Bin Saim; Ruszymah, Bt Hj Idrus

    2012-01-01

    Skin plays an important role in defense against infection and other harmful biological agents. Due to its fragile structure, skin can be easily damaged by heat, chemicals, traumatic injuries and diseases. An autologous bilayered human skin equivalent, MyDerm™, was engineered to provide a living skin substitute to treat critical skin loss. However, one of the disadvantages of living skin substitute is its short shelf-life, hence limiting its distribution worldwide. The aim of this study was to evaluate the shelf-life of MyDerm™ through assessment of cell morphology, cell viability, population doubling time and functional gene expression levels before transplantation. Skin samples were digested with 0.6% Collagenase Type I followed by epithelial cells dissociation with TrypLE Select. Dermal fibroblasts and keratinocytes were culture-expanded to obtain sufficient cells for MyDerm™ construction. MyDerm™ was constructed with plasma-fibrin as temporary biomaterial and evaluated at 0, 24, 48 and 72 hours after storage at 4°C for its shelf-life determination. The morphology of skin cells derived from MyDerm™ remained unchanged across storage times. Cells harvested from MyDerm™ after storage appeared in good viability (90.5%±2.7% to 94.9%±1.6%) and had short population doubling time (58.4±8.7 to 76.9±19 hours). The modest drop in cell viability and increased in population doubling time at longer storage duration did not demonstrate a significant difference. Gene expression for CK10, CK14 and COL III were also comparable between different storage times. In conclusion, MyDerm™ can be stored in basal medium at 4°C for at least 72 hours before transplantation without compromising its functionality.

  16. Shelf life extension of Pacific white shrimp (Litopenaeus vannamei) using chitosan and ε-polylysine during cold storage.

    Science.gov (United States)

    Na, Soyoung; Kim, Jin-Hee; Jang, Hye-Jin; Park, Hee Jung; Oh, Se-Wook

    2018-05-01

    In this study, we examined the effects of an ε-polylysine (PL) and chitosan (CH) coating on the quality of shrimp under refrigeration. Pacific white shrimp (Litopenaeus vannamei) were coated with PL, CH, or CH + PL and stored at 4 °C for 15 days. The quality of shrimp was measured by observing changes in microbiota, pH, total volatile basic nitrogen (TVB-N), and sensory characteristics. Among the coating films, the CH + PL coating most effectively inhibited the growth of mesophilic and psychrotrophic bacteria, Pseudomonas spp., and H 2 S-producing bacteria. This coating increased the shelf life of shrimp by decreasing the amount of mesophilic and psychrotrophic bacteria, with inhibition greater than three log cycles on the ninth day of storage. In addition, the CH and CH + PL coatings effectively suppressed the formation of TVB-N compared with that in the control by 43% and 30%, respectively. The pH of all treated samples increased slowly compared with that of the control, but no significant difference was observed. Sensory quality was similar to microbial and physicochemical properties, and the acceptability of all treated samples gradually decreased. Copyright © 2018. Published by Elsevier B.V.

  17. H(+) -ATPase-defective variants of Lactobacillus delbrueckii subsp. bulgaricus contribute to inhibition of postacidification of yogurt during chilled storage.

    Science.gov (United States)

    Wang, Xinhui; Ren, Hongyang; Liu, Dayu; Wang, Bing; Zhu, Wenyou; Wang, Wei

    2013-02-01

    Continued acid production by Lactobacillus delbrueckii subsp. bulgaricus during the chilled storage of yogurt is the major cause of postacidification, resulting in a short shelf life. Two H(+) -ATPase defective variants of L. delbrueckii subsp. bulgaricus were successfully isolated and their H(+) -ATPase activities were reduced by 51.3% and 34.3%, respectively. It was shown that growth and acid production of variants were remarkably inhibited. The variants were more sensitive to acidic condition and had a significant rate for inactivation of H(+) -ATPase by N, N-dicyclohexylcarbodiimide (DCCD), along with a low H(+) -extrusion, suggesting that H(+) -ATPase is direct response for H(+) -extrusion. In addition, the variants were also more sensitive to NaCl, while H(+) -ATPase activities of variants and parent strain were significantly enhanced by NaCl stress. Obviously, H(+) -ATPase might be involved in Na(+) transportation. Furthermore, variants were inoculated in fermented milk to ferment yogurt. There was no significant difference in flavor, whereas the postacidification of yogurt during chilled storage was remarkably inhibited. It is suggested that application of L. delbrueckii subsp. bulgaricus with reduced H(+) -ATPase activity in yogurt fermentation is one of effect, economic and simple avenues of inhibiting postacidification of yogurt during refrigerated storage, giving a longer shelf life. During yogurt fermentation, continued acid production by Lactobacillus delbrueckii subsp. bulgaricus during the chilled storage of yogurt leads to milk fermentation with high postacidification, resulting in a short shelf life. In this work, 2 acid-sensitive variant strains of L. delbrueckii subsp. bulgaricus were isolated. The characteristics related to H(+) -ATPase were compared and it was observed that milk fermented by the variants had lower postacidification, giving a longer shelf life. Application of L. delbrueckii subsp. bulgaricus with reduced H(+) -ATPase activity

  18. Effects of high hydrostatic pressure on the overall quality of Pêra-Rio orange juice during shelf life.

    Science.gov (United States)

    Spira, Paz; Bisconsin-Junior, Antonio; Rosenthal, Amauri; Monteiro, Magali

    2018-01-01

    The effect of high hydrostatic pressure on antioxidant activity, total phenolic compounds, physicochemical characteristics, color, pectin methylesterase activity, and microbiological count were evaluated during the shelf life of Pêra-Rio orange juice. Pressurized (520 MPa, 60 ℃, for 360 s), non-processed and pasteurized (95 ℃/30 s) orange juice were compared at zero time of storage. Pressurized and pasteurized juices were studied during a refrigerated 90-day shelf life. Pressurization did not cause expressive change in physicochemical characteristics of Pêra-Rio orange juice along shelf life, but significantly reduced pectin methylesterase residual activity to 13% and microbiological counts below detection levels up to 68 days of storage, with small counts (30.0 × 10 CFU/mL mesophilic aerobic bacteria and 20.7 × 10 CFU/mL yeast and mold) at 90 days, capable of ensuring the juice's stability along shelf life. Lightness ( L*) and b* values were significantly reduced by high hydrostatic pressure during shelf life, while a* values were significantly higher. Ascorbic acid decreased around 80% during shelf life. Antioxidant activity remained stable after processing and during storage.

  19. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications.

    Science.gov (United States)

    Su, Dang Sheng; Schlögl, Robert

    2010-02-22

    Electrochemical energy storage is one of the important technologies for a sustainable future of our society, in times of energy crisis. Lithium-ion batteries and supercapacitors with their high energy or power densities, portability, and promising cycling life are the cores of future technologies. This Review describes some materials science aspects on nanocarbon-based materials for these applications. Nanostructuring (decreasing dimensions) and nanoarchitecturing (combining or assembling several nanometer-scale building blocks) are landmarks in the development of high-performance electrodes for with long cycle lifes and high safety. Numerous works reviewed herein have shown higher performances for such electrodes, but mostly give diverse values that show no converging tendency towards future development. The lack of knowledge about interface processes and defect dynamics of electrodes, as well as the missing cooperation between material scientists, electrochemists, and battery engineers, are reasons for the currently widespread trial-and-error strategy of experiments. A concerted action between all of these disciplines is a prerequisite for the future development of electrochemical energy storage devices.

  20. Red cell concentrate storage and transport temperature.

    Science.gov (United States)

    Hancock, V; Cardigan, R; Thomas, S

    2011-10-01

    This study investigated the current U.K. guidelines for storage and transport of red cell concentrates (RCC) in saline, adenine, glucose and mannitol (SAGM). The guidelines stipulate storage at 2-6 °C but allow exposure to between 1-10 °C core temperature in a single occurrence of less than 5 h and a surface temperature of 2-10 °C for no more than 12 h during transportation. Twenty RCC units in SAGM were selected on the day of blood collection (day 0) and in vitro quality was tested pre- and post-temperature deviation at 10 °C and up to day 42 of storage. Each group of 10 RCC units was incubated for either 12 h or for both 5 and 12 h. Haemolysis was below the 0·8% U.K. limit at day 42 in all units, although there was an unexpected trend towards lower haemolysis in packs incubated for 5 and 12 h rather than just 12 h alone. Supernatant potassium was significantly higher than reference data on day 35 (P levels of adenosine triphosphate and, 2,3-diphosphoglycerate to reference data from previous studies, throughout storage. These results suggest that exposure to 10 °C for 12 h or for 5 and 12 h did not adversely affect in vitro red cell quality for the remainder of the components shelf life. © 2011 The Authors. Transfusion Medicine © 2011 British Blood Transfusion Society.

  1. Thermochemical Heat Storage: from Reaction Storage Density to System Storage Density

    NARCIS (Netherlands)

    Jong, A.J. de; Vliet, L.D. van; Hoegaerts, C.L.G.; Roelands, C.P.M.; Cuypers, R.

    2016-01-01

    Long-term and compact storage of solar energy is crucial for the eventual transition to a 100% renewable energy economy. For this, thermochemical materials provide a promising solution. The compactness of a long-term storage system is determined by the thermochemical reaction, operating conditions,

  2. Spoilage and shelf-life extension of fresh fish and shellfish.

    Science.gov (United States)

    Ashie, I N; Smith, J P; Simpson, B K

    1996-01-01

    Fresh fish and shellfish are highly perishable products due to their biological composition. Under normal refrigerated storage conditions, the shelf life of these products is limited by enzymatic and microbiological spoilage. However, with increasing consumer demands for fresh products with extended shelf life and increasing energy costs associated with freezing and frozen storage, the fish-processing industry is actively seeking alternative methods of shelf life preservation and marketability of fresh, refrigerated fish and at the same time economizing on energy costs. Additional methods that could fulfill these objectives include chemical decontamination, low-dose irradiation, ultra-high pressure, and modified atmosphere packaging (MAP). This review focuses on the biochemical and microbiological composition of fresh fish/shellfish, the spoilage patterns in these products, factors influencing spoilage, and the combination treatments that can be used in conjunction with refrigeration to extend the shelf life and keeping quality of fresh fish/shellfish. The safety concerns of minimally processed/MAP fish, specifically with respect to the growth of Clostridium botulinum type E, is also addressed.

  3. Handling and postharvest shelf life of ora-pro-nobis leaves

    Directory of Open Access Journals (Sweden)

    Camila Karen Reis Barbosa

    2015-08-01

    Full Text Available The goal of this study was to assess the effects of hydrocooling and plastic bag use on the postharvest quality ora-pro-nobis (Pereskia aculeata Mill. leaves stored at 5 and 25ºC. The experiments were conducted in a split plot scheme, with treatments in plots and subplots storage time in a randomized block design. The leaf chlorophyll content, mass loss (ML, relative water content (RWC, soluble sugars levels, reducings (RED, non-reducings and starch were determined. In leaves stored at 25ºC, the ML was higher when leaves were hydrocooled. The highest RWC resulted from the use of plastic bag, which prevented the leaves from wilting for a longer period of time. The soluble sugars levels varied according to the increase or decrease in RWC. The contents of RED decreased with the time of storage at 25°C. The cold storage increased the shelf life of ora-pro-nobis by 168 hours. The hydrocooling increased the RWC of leaves, although it did not influence the shelf life. The perforated plastic bag was effective in increasing the shelf life, and when associated with hydrocooling, the plastic bags provide a lower rate of loss of fresh mass.

  4. A review on technology maturity of small scale energy storage technologies★

    Directory of Open Access Journals (Sweden)

    Nguyen Thu-Trang

    2017-01-01

    Full Text Available This paper reviews the current status of energy storage technologies which have the higher potential to be applied in small scale energy systems. Small scale energy systems can be categorized as ones that are able to supply energy in various forms for a building, or a small area, or a limited community, or an enterprise; typically, they are end-user systems. Energy storage technologies are classified based on their form of energy stored. A two-step evaluation is proposed for selecting suitable storage technologies for small scale energy systems, including identifying possible technical options, and addressing techno-economic aspects. Firstly, a review on energy storage technologies at small scale level is carried out. Secondly, an assessment of technology readiness level (TRL is conducted. The TRLs are ranked according to information gathered from literature review. Levels of market maturity of the technologies are addressed by taking into account their market development stages through reviewing published materials. The TRLs and the levels of market maturity are then combined into a technology maturity curve. Additionally, market driving factors are identified by using different stages in product life cycle. The results indicate that lead-acid, micro pumped hydro storage, NaS battery, NiCd battery, flywheel, NaNiCl battery, Li-ion battery, and sensible thermal storage are the most mature technologies for small scale energy systems. In the near future, hydrogen fuel cells, thermal storages using phase change materials and thermochemical materials are expected to become more popular in the energy storage market.

  5. Shelf-life extension of fresh chicken through radurisation

    International Nuclear Information System (INIS)

    Niemand, J.G.; Van der Linde, H.J.

    1982-01-01

    The article discusses the shelf-life extension of fresh chicken through radurization. In order to assess the potential of this process on the South African market, a detailed investigation was carried out to determine the shelf-life extension under local conditions. The following aspects were investigated; 1) reduction of bacterial numbers at different radurisation doses; 2) influence of storage temperature on shelf-life and 3) the elimination of Salmonella. Organoleptic testing was carried out on poultry radurised to doses of 3, 5, 7,5 and 10 kGy as well as on non-radurised controls

  6. Study of flywheel energy storage for space stations

    Science.gov (United States)

    Gross, S.

    1984-01-01

    The potential of flywheel systems for space stations using the Space Operations Center (SOC) as a point of reference is discussed. Comparisons with batteries and regenerative fuel cells are made. In the flywheel energy storage concept, energy is stored in the form of rotational kinetic energy using a spinning wheel. Energy is extracted from the flywheel using an attached electrical generator; energy is provided to spin the flywheel by a motor, which operates during sunlight using solar array power. The motor and the generator may or may not be the same device. Flywheel energy storage systems have a very good potential for use in space stations. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special impotance relative to batteries, are high energy density (lighter weight), longer cycle and operating life, and high efficiency which minimizes the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the potential for very high discharge rate. Major disadvantages are noted.

  7. Alternatives for water basin spent fuel storage using pin storage

    International Nuclear Information System (INIS)

    Viebrock, J.M.; Carlson, R.W.

    1979-09-01

    The densest tolerable form for storing spent nuclear fuel is storage of only the fuel rods. This eliminates the space between the fuel rods and frees the hardware to be treated as non-fuel waste. The storage density can be as much as 1.07 MTU/ft 2 when racks are used that just satisfy the criticality and thermal limitations. One of the major advantages of pin storage is that it is compatible with existing racks; however, this reduces the storage density to 0.69 MTU/ft 2 . Even this is a substantial increase over the 0.39 MTU/ft 2 that is achievable with current high capacity stainless steel racks which have been selected as the bases for comparison. Disassembly requires extensive operation on the fuel assembly to remove the upper end fitting and to extract the fuel rods from the assembly skeleton. These operations will be performed with the aid of an elevator to raise the assembly where each fuel rod is grappled. Lowering the elevator will free the fuel rod for transfer to the storage canister. A storage savings of $1510 per MTU can be realized if the pin storage concept is incorporated at a new away-from-reactor facility. The storage cost ranges from $3340 to $7820 per MTU of fuel stored with the lower cost applying to storage at an existing away-from-reactor storage facility and the higher cost applying to at-reactor storage

  8. Shelf life of artisanal demi-glace sauce

    Directory of Open Access Journals (Sweden)

    Natálya Vidal de HOLANDA

    2017-10-01

    Full Text Available Abstract The objective of this study was to elaborate and evaluate the shelf life of the liquid artisanal demi-glace sauce considering sensory, microbiological and lipid oxidation characteristics during 75 days of storage compared to commercial hydrated demi-glace sauce. Sensory aspects (visual and olfactory, counts of coliform and Staphylococcus aureus, determination of Salmonella sp. and lipid oxidation were evaluated every 15 days. The artisanal demi-glace sauce was homogenous, without sensory alteration during the storage period, with olfactory alteration only at the end. The commercial demi-glace sauce remained unchanged until t3 (30 days, from t4 (45 days presented turbid appearance, followed by phase separation and with unpleasant odor in t6 (75 days. The lipid oxidation showed an increased concentration of malonaldehyde at every evaluated time. The artisanal and commercial demi-glace sauces showed a significant difference at t1, t2, t4 and t5, when the artisanal sauce had lower contents of malonaldehyde (18, 23, 36 and 11%, respectively, only at the 30th and 75th days of storage there was significant similarity. The sauces were within the microbiological standards required by the law. Although the artisanal demi-glace sauce does not contain conservatives, its shelf life was similar to the hydrated commercial product.

  9. Effect of gamma radiation and storage time on the volatile constituents, pirerine, piperettine and sensory quality of pepper

    Energy Technology Data Exchange (ETDEWEB)

    Bahari, I; Ishak, S; Ayub, M K [National Univ. of Malaysia, Bangi, Selangor

    1983-12-01

    The use of gamma radiation in prolonging the storage life of black and white peppers is promising. Doses up to 9 kGy and storage period up to 6 months did not significantly change (P<0.05) the volatile constituents of the peppers. Besides the increase in piperine content of unirradiated pepper there was no change in piperettine and piperine contents of both pepper with respect to increase in dose and storage time. No sensory change was detected for the treatments used (author).

  10. Life cycle cost report of VHLW cask

    International Nuclear Information System (INIS)

    1995-06-01

    This document, the Life Cycle Cost Report (LCCR) for the VHLW Cask, presents the life cycle costs for acquiring, using, and disposing of the VHLW casks. The VHLW cask consists of a ductile iron cask body, called the shielding insert, which is used for storage and transportation, and ultimately for disposal of Defense High Level Waste which has been vitrified and placed into VHLW canisters. Each ductile iron VHLW shielding insert holds one VHLW canister. For transportation, the shielding insert is placed into a containment overpack. The VHLW cask as configured for transportation is a legal weight truck cask which will be licensed by NRC. The purpose of this LCCR is to present the development of the life cycle costs for using the VHLW cask to transport VHLW canisters from the generating sites to a disposal site. Life cycle costs include the cost of acquiring, operating, maintaining, and ultimately dispositioning the VHLW cask and its associated hardware. This report summarizes costs associated with transportation of the VHLW casks. Costs are developed on the basis of expected usage, anticipated source and destination locations, and expected quantities of VHLW which must be transported. DOE overhead costs, such as the costs associated with source and destination facility handling of the VHLW, are not included. Also not included are costs exclusive to storage or disposal of the VHLW waste

  11. Effect of gamma irradiation and storage time on microbial growth and physicochemical characteristics of pumpkin (Cucurbita Moschata Duchesne ex Poiret) puree.

    Science.gov (United States)

    Gliemmo, María F; Latorre, María E; Narvaiz, Patricia; Campos, Carmen A; Gerschenson, Lía N

    2014-01-01

    The effect of gamma irradiation (0-2 kGy) and storage time (0-28 days) on microbial growth and physicochemical characteristics of a packed pumpkin puree was studied. For that purpose, a factorial design was applied. The puree contained potassium sorbate, glucose and vanillin was stored at 25°C . Gamma irradiation diminished and storage time increased microbial growth. A synergistic effect between both variables on microbial growth was observed. Storage time decreased pH and color of purees. Sorbate content decreased with storage time and gamma irradiation. Mathematical models of microbial growth generated by the factorial design allowed estimating that a puree absorbing 1.63 kGy would have a shelf-life of 4 days. In order to improve this time, some changes in the applied hurdles were assayed. These included a thermal treatment before irradiation, a reduction of irradiation dose to 0.75 kGy and a decrease in storage temperature at 20°C . As a result, the shelf-life of purees increased to 28 days.

  12. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  13. Retrievable surface storage: interim storage of solidified high-level waste

    International Nuclear Information System (INIS)

    LaRiviere, J.R.; Nelson, D.C.

    1976-01-01

    Studies have been conducted on retrievable-surface-storage concepts for the interim storage of solidified high-level wastes. These studies have been reviewed by the Panel on Engineered Storage, convened by the Committee on Radioactive Waste Management of the National Research Council-National Academy of Sciences. The Panel has concluded that ''retrievable surface storage is an acceptable interim stage in a comprehensive system for managing high-level radioactive wastes.'' The scaled storage cask concept, which was recommended by the Panel on Engineered Storage, consists of placing a canister of waste inside a carbon-steel cask, which in turn is placed inside a thick concrete cylinder. The waste is cooled by natural convection air flow through an annulus between the cask and the inner wall of the concrete cylinder. The complete assembly is placed above ground in an outdoor storage area

  14. Storage Optimization for Export Containers in the Port of Izmir

    Directory of Open Access Journals (Sweden)

    Deniz Türsel Eliiyi

    2013-07-01

    Full Text Available In this study, we consider a real-life export container storage problem at an important container terminal in the Port of Izmir, Turkey. Currently, the container storage decisions at the port are taken by operators manually, which leads to continuous unnecessary re-handling movements of the containers. High transportation costs, waste of time, and inefficient capacity utilization in the container storage area are the consequences of non-optimal decisions. The main goal of this study is to minimize the transportation costs and the number of re-handling moves while storing the export containers at the terminal yard. We formulate the problem in two stages. While the first stage assigns the containers of the same vessel to a group of yard bays via an optimization model, the second stage decides on the exact location of each container with the help of an efficient heuristic approach. The experimental results with real data are presented and discussed.

  15. Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage

    NARCIS (Netherlands)

    Yan, C.; Shi, W.; Li, X.; Zhao, Y.

    2016-01-01

    Seasonal cold storage using natural cold sources for cooling is a sustainable cooling technique. However, this technique suffers from limitations such as large storage space and poor reliability. Combining seasonal storage with short-term storage might be a promising solution while it is not

  16. Pendugaan Umur Simpan Benih Kedelai Menggunakan Metode Accelerated Shelf-life Testing (ASLT

    Directory of Open Access Journals (Sweden)

    Suci Rahmi

    2016-04-01

    Full Text Available The aim of this study is to estimate the shelf-life of soybean seed using Accelerated Shelf-life Testing (ASLT model. Seed germination was used as parameter to predict the shelf-life of soybean seed. ASLT method was performed using five different temperature treatments 35oC, 40oC, 45oC, 50oC, and 55oC respectively with 80 % Relative Humidity (RH. Another parameter measured in identifying decrease of soybean seed quality was moisture content. The results showed that moisture content of soybean seed during storage at all temperatures was increased. On the other hand, the seed germination decreased during period of accelerated storage. Based on data from decreasing soybean seed germination, the estimated shelf-life of seeds stored at room temperature of 25oC was 431 days or 14.3 months and 160 days or 5.3 months when stored on 300C.

  17. Effect of gamma radiation and storage on cashew apple (Anacardium occidentale L.) quality

    International Nuclear Information System (INIS)

    Souza, Adriana Régia Marques de; Brazaca, Solange Guidolin Canniatti; Arthur, Valter; Oliveira, Anderson Giovani Cândico; Spoto, Marta Helena Fillet; Walder, Júlio Marcos Melges

    2009-01-01

    The non-efficiency or absence of techniques for adequate handling, transport, and storage of cashew stalks associated with a high level of perishability, generates high economic loss in the commercialization of these fruits, hence the development of conservation methods becomes a necessity in order to enhance the profitability. Cashew apples from precocious dwarf cashew tree were irradiated with doses of 0, 0.5, and 1.0 kGy and stored during nine days under refrigeration at 4 ºC for evaluation of the quality stability during storage. Chemical analyses were performed to verify changes in reducing sugars, Brix, vitamin C, and pH. Alterations in the firmness and color were also observed. The levels of vitamin C decreased as a function of storage as well as a function of the radiation doses employed. The firmness of the fruits was influenced by both the radiation doses and storage time, increasing during storage and decreasing as the radiation doses increased. Irradiation was shown to be efficient in the prolongation of the shelf-life of cashew stalks. (author) [pt

  18. Platelet concentrates for transfusion-metabolic and storage aspects.

    Science.gov (United States)

    Farrugia, A

    1994-01-01

    Transfusion of platelets concentrated from donated blood is an established therapeutic modality in clinical medicine. Over the past 25 years much effort has gone into optimising the conditions for the collection, preparation and storage of platelets for transfusion. Despite significant advances, platelet production is still a costly process requiring a dedicated environment and the use of specially formulated plastic storage containers. A progressive lesion over storage limits the shelf life and the availability of donated platelets, while the need to store platelets in the donor's autologous plasma also results in a loss of valuable fresh plasma for fractionation. Recent studies have addressed the issues of platelet quality and plasma economy by examining the possibility of storing platelets in a synthetic medium. Platelets stored in a variety of crystalloid solutions have been shown to retain in vitro and in vivo properties equivalent or superior to platelets stored in autologous donor plasma. Some additional insight has been gained on the metabolic patterns of stored platelets. In particular, studies have shown that, under these conditions, platelets are unable to oxidise dextrose to any significant extent, and that dextrose is invariably broken down to lactate, irrespective of the oxygen tensions in the platelet's environment. This in turn leads to the metabolic lesion of platelet storage, whereby low pH results in loss of platelet viability. Platelets stored in synthetic dextrose-free media are capable of maintaining aerobic ATP generation, and acetate-a component of many media studied-has been shown to be metabolised by platelets. Similarly, platelets prepared from blood collected into a dextrose-free anticoagulant have satisfactory properties both when suspended in autologous plasma or in a dextrose-free synthetic medium. The requirements for storage in special, high gas-permeable, containers, and for constant agitation during storage, were both found to be

  19. Biochemical and Microbiological Changes during the Ivorian Sorghum Beer Deterioration at Different Storage Temperatures

    OpenAIRE

    Constant K. Attchelouwa; Solange Aka-Gbézo; Florent K. N’guessan; Clémentine A. Kouakou; Marcellin K. Djè

    2017-01-01

    In order to extend shelf life of traditional sorghum beers, it is of importance to evaluate their spoilage characteristics. Therefore, the microbiological, biochemical, and sensory changes of the Ivorian sorghum beer tchapalo during storage at ambient temperature (28 to 30 °C) for four days and at 4 °C for six days were assessed. The aerobic mesophilic bacteria and the yeast counts remained stable during the storage time. However, variations were observed in the lactic acid bacteria and aceti...

  20. Spent fuel storage requirements 1987

    International Nuclear Information System (INIS)

    1987-09-01

    Historical inventories of spent fuel and utility estimates of future discharges from US commercial nuclear reactors are presented through the year 2005. The ultimate needs for additional storage capacity are estimated. These estimtes are based on the maximum capacities within current and planned at-reactor facilities and on any planned transshipments of fuel to other reactors or facilities. Historical data through December, 1986, and projected discharges through the end of reactor life are used in this analysis. The source data was supplied by the utilities to the DOE Energy Information Administration (EIA) through the 1987 RW-859 data survey. 14 refs., 4 figs., 9 tabs

  1. Monitoring and analysis of liquid storage in LNG tank based on different support springs

    Science.gov (United States)

    He, Hua; Sun, Jianping; Li, Ke; Wu, Zheng; Chen, Qidong; Chen, Guodong; Cao, Can

    2018-04-01

    With the rapid development of social modernization, LNG vehicles are springing up in daily life. However, it is difficult to monitor and judge the liquid storage tanks accurately and quickly. Based on this, this paper presents a new method of liquid storage monitoring, LNG tank on-line vibration monitoring system. By collecting the vibration frequency of LNG tank and tank liquid and supporting spring system, the liquid storage quality in the tank can be calculated. In this experiment, various vibration modes of the tank spring system are fully taken into account. The vibration effects of different types of support springs on the LNG tank system were investigated. The results show that the spring model has a great influence on the test results. This study provides a technical reference for the selection of suitable support springs for liquid storage monitoring.

  2. Feasibility Study of Energy Storage Systems in Wind/Diesel Applications Using the HOMER Model

    Directory of Open Access Journals (Sweden)

    Andrew Stiel

    2012-10-01

    Full Text Available With an increased focus on solutions to the ensuing “climate crisis”, the need for energy storage systems is becoming increasingly important as a means to increase the penetration of renewable technologies such as wind energy. The Vanadium Redox Battery is one such energy storage system showing considerable potential owing to its flexibility in power output and capacity, high efficiency and long operating life. This study models the use of the Vanadium Redox Battery as an integration technology in realistic large-scale remote wind/diesel power systems using the HOMER Micropower Optimization Model computer program developed by the US National Renewable Energy Laboratory. Results from this modelling demonstrate the significant financial and environmental benefits to be gained in installing energy storage in a wind farm. The storage system considered here was a Vanadium Redox Battery.

  3. Method of storing the fuel storage pot in a fuel storage tank for away-from-reactor-storage

    International Nuclear Information System (INIS)

    Ishiguro, Jun-ichi.

    1980-01-01

    Purpose: To prevent the contact of sodium in the away-from-reactor-storage fuel storage tank with sodium in a fuel storage pool having radioactivity ana always retain clean state therein. Method: Sodium is filled in a container body of the away-from-reactor-storage fuel storage tank, and a conduit, a cycling pump, and cooling means are disposed to form a sodium coolant cycling loop. The fuel storage pool is so stored in the container body that the heat of the pool is projected from the liquid surface of the sodium in the container. Therefore, the sodium in the container is isolated from the sodium in the pool containing strong radioactivity to prevent contact of the former sodium from the latter sodium. (Sekiya, K.)

  4. Shelf Life Determination of Fresh Blueberries (Vaccinium corymbosum Stored under Controlled Atmosphere and Ozone

    Directory of Open Access Journals (Sweden)

    Anibal Concha-Meyer

    2015-01-01

    Full Text Available Fresh blueberries are commonly stored and transported by refrigeration in controlled atmospheres to protect shelf life for long periods of storage. Ozone is an antimicrobial gas that can extend shelf life and protect fruit from microbial contamination. Shelf life of fresh highbush blueberries was determined over 10-day storage in isolated cabinets at 4°C or 12°C under different atmosphere conditions, including air (control; 5% O2 : 15% CO2 : 80% N2 (controlled atmosphere storage (CAS; and ozone gas (O3 4 ppm at 4°C or 2.5 ppm at 12°C, at high relative humidity (90–95%. Samples were evaluated for yeast and molds growth, weight loss, and firmness. CAS and O3 did not delay or inhibit yeast and molds growth in blueberries after 10 days at both temperatures. Fruit stored at 4°C showed lower weight loss values compared with 12°C. Blueberries stored under O3 atmosphere showed reduced weight loss at 12°C by day 10 and loss of firmness when compared to the other treatments. Low concentrations of ozone gas together with proper refrigeration temperature can help protect fresh blueberries quality during storage.

  5. Shelf Life Determination of Fresh Blueberries (Vaccinium corymbosum) Stored under Controlled Atmosphere and Ozone.

    Science.gov (United States)

    Concha-Meyer, Anibal; Eifert, Joseph D; Williams, Robert C; Marcy, Joseph E; Welbaum, Gregory E

    2015-01-01

    Fresh blueberries are commonly stored and transported by refrigeration in controlled atmospheres to protect shelf life for long periods of storage. Ozone is an antimicrobial gas that can extend shelf life and protect fruit from microbial contamination. Shelf life of fresh highbush blueberries was determined over 10-day storage in isolated cabinets at 4°C or 12°C under different atmosphere conditions, including air (control); 5% O2 : 15% CO2 : 80% N2 (controlled atmosphere storage (CAS)); and ozone gas (O3) 4 ppm at 4°C or 2.5 ppm at 12°C, at high relative humidity (90-95%). Samples were evaluated for yeast and molds growth, weight loss, and firmness. CAS and O3 did not delay or inhibit yeast and molds growth in blueberries after 10 days at both temperatures. Fruit stored at 4°C showed lower weight loss values compared with 12°C. Blueberries stored under O3 atmosphere showed reduced weight loss at 12°C by day 10 and loss of firmness when compared to the other treatments. Low concentrations of ozone gas together with proper refrigeration temperature can help protect fresh blueberries quality during storage.

  6. Rheological studies during the storage on irradiated wheat grains

    Energy Technology Data Exchange (ETDEWEB)

    Elbagoury, O H; Rizk, T Y [Agron Dept., Fac. of Agric., Ain shams University, Cairo, (Egypt); Sharabash, M T.M.; Hammad, A H.A. [National Center for Research and Radiation Tech. Cairo, (Egypt)

    1995-10-01

    Wheat grains T. aestivum cv. Giza 157 were irradiated with different doses starting from O up to 320 krad at room temperature and good ventilation. It was declared that specific density of grains, as well as the contents of flour, pollards and oil were not affected significantly. On the other side. bran was increased by extending the shelf-life of grains, whilst it was decreased as the dosage increased. Meanwhile, the interaction between gamma rays and storage had suppression effects on the total protein in grains. Farinograph test on wheat dough showed that both water absorption and dough weaking were increased, whilst the time needed for dough development, dough stability and Valorimeter number were decreased as affected by the increase in both the magnitude of gamma ray dosage and the time of storage. Also, the extensograph test on wheat dough showed that its resistance tended to be higher, whereas, both dough extensibility and its strength were decreased. Meanwhile, the proportional number was increased as the dosage and the time of storage increased. 2 tabs.

  7. Rheological studies during the storage on irradiated wheat grains

    International Nuclear Information System (INIS)

    Elbagoury, O.H.; Rizk, T.Y.; Sharabash, M.T.M.; Hammad, A.H.A.

    1995-01-01

    Wheat grains T. aestivum cv. Giza 157 were irradiated with different doses starting from O up to 320 krad at room temperature and good ventilation. It was declared that specific density of grains, as well as the contents of flour, pollards and oil were not affected significantly. On the other side. bran was increased by extending the shelf-life of grains, whilst it was decreased as the dosage increased. Meanwhile, the interaction between gamma rays and storage had suppression effects on the total protein in grains. Farinograph test on wheat dough showed that both water absorption and dough weaking were increased, whilst the time needed for dough development, dough stability and Valorimeter number were decreased as affected by the increase in both the magnitude of gamma ray dosage and the time of storage. Also, the extensograph test on wheat dough showed that its resistance tended to be higher, whereas, both dough extensibility and its strength were decreased. Meanwhile, the proportional number was increased as the dosage and the time of storage increased. 2 tabs

  8. Spent fuel storage - dry storage options and issues

    International Nuclear Information System (INIS)

    Akins, M.J.

    2007-01-01

    The increase in the number of nuclear energy power generation facilities will require the ability to store the spent nuclear fuel for a long period until the host countries develop reprocessing or disposal options. Plants have storage pools which are closely associated with the operating units. These are excellent for short term storage, but require active maintenance and operations support which are not desirable for the long term. Over the past 25 years, dry storage options have been developed and implemented throughout the world. In recent years, protection against terrorist attack has become an increasing source of design objectives for these facilities, as well as the main nuclear plant. This paper explores the current design options of dry storage cask systems and examines some of the current design issues for above ground , in-ground, or below-ground storage of spent fuel in dry casks. (author)

  9. Geometric Process-Based Maintenance and Optimization Strategy for the Energy Storage Batteries

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-01-01

    Full Text Available Renewable energy is critical for improving energy structure and reducing environment pollution. But its strong fluctuation and randomness have a serious effect on the stability of the microgrid without the coordination of the energy storage batteries. The main factors that influence the development of the energy storage system are the lack of valid operation and maintenance management as well as the cost control. By analyzing the typical characteristics of the energy storage batteries in their life cycle, the geometric process-based model including the deteriorating system and the improving system is firstly built for describing the operation process, the preventive maintenance process, and the corrective maintenance process. In addition, this paper proposes an optimized management strategy, which aims to minimize the long-run average cost of the energy storage batteries by defining the time interval of the detection and preventive maintenance process as well as the optimal corrective maintenance times, subjected to the state of health and the reliability conditions. The simulation is taken under the built model by applying the proposed energy storage batteries’ optimized management strategy, which verifies the effectiveness and applicability of the management strategy, denoting its obvious practicality on the current application.

  10. Shelf life extension of litchi (Litchi chinensis) and overcoming quarantine barriers to international trade using radiation technology

    International Nuclear Information System (INIS)

    Gautam, Satyendra; Saxena, Sudhanshu; Kumar, Sanjeev; Hajare, Sachin N.; Wadhawan, Surbhi; Mishra, B.B.; More, Varsha S.; Sharma, Arun

    2010-01-01

    Litchi (Litchi chinensis) has a very short shelf life of 2-3 days at ambient temperature limiting its marketability. Gamma radiation processing in combination with low temperature storage was explored as a method to achieve shelf life extension and fulfill quarantine requirement for export during storage physics, biochemical, microbiological, organoleptic, antioxidant and radioprotective properties of two major commercially grown Indian cultivars of litchi, 'Shahi' and 'China', were analysed. Radiation treatment reduced microbial load in a dose dependent manner. Radiation (0.5kGy) treated and low temperature stored fruits retained the 'good' organoleptic rating till 28 days of storage while maintaining other quality attributes. (author)

  11. NREL Energy Storage Projects. FY2014 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burton, Evan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeff [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grad, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jun, Myungsoo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neubauer, Jeremy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sprague, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Han, Taeyoung [General Motors, Detroit, MI (United States); Hartridge, Steve [CD-adapco, Detroit, MI (United States); Shaffer, Christian E. [EC Power, Aurora, CO (United States)

    2015-03-01

    The National Renewable Energy Laboratory supports energy storage R&D under the Office of Vehicle Technologies at the U.S. Department of Energy. The DOE Energy Storage Program’s charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation’s goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are; Advanced Battery Development through the United States Advanced Battery Consortium (USABC); Battery Testing, Analysis, and Design; Applied Battery Research (ABR); and Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT) In FY14, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL’s R&D projects in FY14 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY14 projects under NREL’s Energy Storage R&D program are briefly described below. Each of these is discussed in depth in this report.

  12. Evaporative cooling system for storage of fruits and vegetables - a review.

    Science.gov (United States)

    Lal Basediya, Amrat; Samuel, D V K; Beera, Vimala

    2013-06-01

    Horticultural produce are stored at lower temperature because of their highly perishable nature. There are many methods to cool the environment. Hence, preserving these types of foods in their fresh form demands that the chemical, bio-chemical and physiological changes are restricted to a minimum by close control of space temperature and humidity. The high cost involved in developing cold storage or controlled atmosphere storage is a pressing problem in several developing countries. Evaporative cooling is a well-known system to be an efficient and economical means for reducing the temperature and increasing the relative humidity in an enclosure and this effect has been extensively tried for increasing the shelf life of horticultural produce in some tropical and subtropical countries. In this review paper, basic concept and principle, methods of evaporative cooling and their application for the preservation of fruits and vegetables and economy are also reported. Thus, the evaporative cooler has prospect for use for short term preservation of vegetables and fruits soon after harvest. Zero energy cooling system could be used effectively for short-duration storage of fruits and vegetables even in hilly region. It not only reduces the storage temperature but also increases the relative humidity of the storage which is essential for maintaining the freshness of the commodities.

  13. Chitosan extends the shelf-life of filleted tilapia ( Oreochromis niloticus) during refrigerated storage

    Science.gov (United States)

    Cao, Rong; Liu, Qi; Yin, Bangzhong; Wu, Biao

    2012-09-01

    Shelf-life extension of aquatic products is of significant economical importance. To determine the potential effect of chitosan on the shelf-life of filleted tilapia, this study analyzed the bacterial community diversity in fresh and spoiled tilapia fillets stored at (4 ± 1)°C and examined the antimicrobial activity of chitosan against relevant bacteria isolates. Results showed that Pseudomonas (20%) and Aeromonas (16%) were abundant in fresh tilapia fillets, whereas Pseudomonas (52%), Aeromonas (32%) and Staphylococcus (12%) were dominant in the spoiled samples. Chitosan showed wide-spectrum antibacterial activity against bacteria isolated from tilapia and 5.0 g L-1 chitosan was selected for application in preservation. We further determined the shelf-life of chitosan-treated, filleted tilapia stored at (4 ± 1)°C based on microbiological, biochemical and sensory analyses. Results showed that the shelf-life of chitosan-treated, filleted tilapia was extended to 12 d, whereas that of untreated, control samples was 6 d. These indicate that chitosan, as a natural preservative, has great application potential in the shelf-life extension of tilapia fillets.

  14. Shelf Life Prediction for Canned Gudeg using Accelerated Shelf Life Testing (ASLT) Based on Arrhenius Method

    Science.gov (United States)

    Nurhayati, R.; Rahayu NH, E.; Susanto, A.; Khasanah, Y.

    2017-04-01

    Gudeg is traditional food from Yogyakarta. It is consist of jackfruit, chicken, egg and coconut milk. Gudeg generally have a short shelf life. Canning or commercial sterilization is one way to extend the shelf life of gudeg. This aims of this research is to predict the shelf life of Andrawinaloka canned gudeg with Accelerated Shelf Life Test methods, Arrhenius model. Canned gudeg stored at three different temperature, there are 37, 50 and 60°C for two months. Measuring the number of Thio Barbituric Acid (TBA), as a critical aspect, were tested every 7 days. Arrhenius model approach is done with the equation order 0 and order 1. The analysis showed that the equation of order 0 can be used as an approach to estimating the shelf life of canned gudeg. The storage of Andrawinaloka canned gudeg at 30°C is predicted untill 21 months and 24 months for 25°C.

  15. Post harvest Quality of Mango (Mangifera Indica L.) Fruit Affected by Different Levels of Gibberellic Acid During Storage

    International Nuclear Information System (INIS)

    Islam, M.K.; Khan, M.Z.H.; Sarkar, M.A.R; Yeasmin, S.; Ali, M.K.; Uddin, M.H.

    2013-01-01

    The experiment consisted of two popular mango varieties in Bangladesh (viz., Langra and Khirshapat) and four different levels of Gibberellic acid (GA 3 ) solution, namely, control, 100, 200 and 400 ppm. The two factors experiment was assigned in randomized complete block design with three replicates. Data obtained from various biochemical analyses in terms of physicochemical properties and shelf life of post harvest mango, were recorded and statistically analyzed for comparison among the mean values using Duncan's Multiple Range Test (DMRT) and Least Significant Difference (LSD). The Khirshapat showed better performance in achieving higher quantity of moisture, progressively lost physiological weight, increased pulp pH, TSS after 6th day of storage, produced more quantity of sugar (total, reducing and non-reducing), as well as extended shelf life and delayed skin color changes than Langra at all the storage duration. Different levels of GA 3 solution subjected to the investigation demonstrated significant variation in most of the physicochemical properties and shelf life of mango at different days after storage. The results explored that some physicochemical properties viz., physiological weight loss, moisture content, pulp pH, TSS, sugar (total, reducing and non reducing), were rapidly increased from untreated mangoes. GA 3 at 400 ppm showed better performance in delaying the changes in physicochemical properties and extended shelf life. (author)

  16. Maximizing Shelf Life of Paneer-A Review.

    Science.gov (United States)

    Goyal, Sumit; Goyal, Gyanendra Kumar

    2016-06-10

    Paneer resembling soft cheese is a well-known heat- and acid-coagulated milk product. It is very popular in the Indian subcontinent and has appeared in the western and Middle East markets. The shelf life of paneer is quite low and it loses freshness after two to three days when stored under refrigeration. Various preservation techniques, including chemical additives, packaging, thermal processing, and low-temperature storage, have been proposed by researchers for enhancing its shelf life. The use of antimicrobial additives is not preferred because of perceived toxicity risks. Modified atmosphere packaging has been recommended as one of the best techniques for maximizing the shelf life of paneer.

  17. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    International Nuclear Information System (INIS)

    Stone, Timothy Amos

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design and performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance program

  18. Changes in the microbiological quality of mangrove oysters (Crassostrea brasiliana) during different storage conditions.

    Science.gov (United States)

    Montanhini, Maike Taís Maziero; Montanhini Neto, Roberto

    2015-01-01

    This study aimed to determine the effect of temperature and period of postharvest storage on the microbiological quality and shelf life of raw mangrove oysters, Crassostrea brasiliana. A total of 150 dozen oysters were collected directly from the points of extraction or cultivation in southern Brazil, and in the laboratory, they were stored raw at 5, 10, 15, 20, and 25°C for 1, 4, 8, 11, and 15 days. On each of these days, the oysters were subjected to microbiological analyses of aerobic mesophilic count, total coliforms, enterococci, Escherichia coli, Staphylococcus aureus, and Salmonella. None of the tested samples under any storage condition showed contamination levels above those allowed by Brazilian legislation for E. coli, S. aureus, and Salmonella, and there was no change (P > 0.05) in the counts of these microorganisms due to the temperature and/or period of oyster storage. Counts of enterococci and total coliforms showed a tendency to increase (P mangrove oysters remain in safe microbiological conditions for consumption up to 8 days after harvesting, regardless of temperature, and their shelf life may be extended to 15 days if they are stored at temperatures not exceeding 15°C.

  19. Use of irradiation in combination with preservation techniques to extend the shelf-life of tropical fruits and their products

    International Nuclear Information System (INIS)

    Noomhorm, A.; Ilangantileke, S.G.; Upadhyay, I.P.; Karki, D.B.; Apintanapong, M.

    1998-01-01

    Gamma irradiation in combination with other treatment processes was investigated with a view to extending the shelf-life of some tropical fruits in fresh and processed conditions. A low dose of irradiation (0.6 kGy) combined with hot water treatment (at 55 deg. C for 20 min) extended the shelf-life of fresh mangoes from 15 to 32 days at 20 deg. C storage. The shelf-life of fresh lychees was extended to 16 days by irradiation (1 kGy) and storage at 5 deg. C through reducing the rotting and preserving the fruit colour. A shelf-life of up to 30 days was obtained by a combination of hot benomyl dipping of the lychess (at 55 deg. C for 2 min) and polyethylene packaging, whereas modified atmosphere storage in CO 2 did not control pericarp browning. Irradiation as a means of preservation was investigated in processed fruits such as semi-dried mangoes and longans, and mango puree. A minimum dose of 2 kGy extended the shelf-life of the semi-dried mangoes and longans for up to 75 days when stored at 14 deg. C, without mould growth, whereas these fruits deteriorated at 30 deg. C storage, as indicated by discoloration and a deterioration in the flavour. On the other hand, doses of up to 4 kGy and storage at a low temperature (5 deg. C) were necessary to maintain microorganism growth (as determined by the aerobic plate count) at the lowest level; no microorganisms were observed at 6 kGy and higher. The chemical attributes of the puree tended to remain unaffected by the irradiation treatment but were more sensitive to the storage duration and conditions. The puree was preserved for as long as 60 days at 5 deg. C, without compromising the keeping quality. (author)

  20. Locally Minimum Storage Regenerating Codes in Distributed Cloud Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Wei Luo; Wei Liang; Xiangyang Liu; Xiaodai Dong

    2017-01-01

    In distributed cloud storage sys-tems, inevitably there exist multiple node fail-ures at the same time. The existing methods of regenerating codes, including minimum storage regenerating (MSR) codes and mini-mum bandwidth regenerating (MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage re-generating (LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group (4, 2) or (5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. The-oretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.

  1. Assessing storage adequacy

    International Nuclear Information System (INIS)

    Amirault, P.

    2004-01-01

    Government policy encourages the use of natural gas. It is expected that liquefied natural gas (LNG) and Arctic gas will make up 20 to 25 per cent of supply. This presentation provided an outlook of storage value based on a technical analysis by the National Petroleum Counsel (NPC) report. A moderately robust growth is expected in the residential and commercial load which may be partially offset by robust growth in electricity. The net result is an increase in storage requirements. It was concluded that there is a strong case for growth in storage demand but a lack of good sites for additional capacity. This will lead to higher storage values. The NPC sees the need for 1 Tcf more storage use by 2025, of which 700 Bcf will need to come from new storage. In particular, current storage levels may not be sufficient to meet a colder than normal winter, and deliverability is affected by field inventory. Most storage capacity was built before 1985, mostly by regulated entities. It is expected that only 250 to 400 Bcf will be added over the next 25 years in North America. If storage becomes scarce, prices will move to the marginal cost of new additions, and the upper limit on price will be determined by salt cavern storage. An increase of $1.00 in the price of leasing storage would add about $0.11 to the average price of consumed gas. tabs., figs

  2. Shelf life extension of whole-wheat breadsticks: Formulation and packaging strategies.

    Science.gov (United States)

    Alamprese, Cristina; Cappa, Carola; Ratti, Simona; Limbo, Sara; Signorelli, Marco; Fessas, Dimitrios; Lucisano, Mara

    2017-09-01

    The aim of this study was the shelf life extension of whole-wheat breadsticks through the addition of a rosemary extract and packaging under nitrogen. Shelf life was studied at four temperatures (20, 27, 35, 48°C) for up to 200 storage days. The minimal changes observed in moisture, water activity and texture of the samples, coupled with the high peroxide values (13-539meqO 2 /kg fat ) measured at the end of storage, and the exponential increase of hexanal concentrations (up to 13-34mg/kg) confirmed that quality decay of whole-wheat breadsticks is mainly associated to lipid oxidation. The kinetic study of oxidation development and the consumer sensory acceptance determined by the survival analysis demonstrated that the rosemary extract addition yields a 42% shelf life extension, higher than that observed using nitrogen in the package (24-29%). The combination of the formulation and packaging strategies gave the best result (83% shelf life extension at 25°C). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Microbial Count and Shelf Life of Phalsa(Grewia Asiatica) Juice

    International Nuclear Information System (INIS)

    Saddozai, A. A.; Mumtaz, A.; Raza, S.; Saleem, S. A.

    2015-01-01

    The study investigated the shelf life of laboratory developed phalsa juice at room temperature. Phalsa was purchased from local market, juice was prepared and kept in sterilized bottles at room temperature. Physicochemical and microbial and oragnoleptic quality of the juice was examined till two weeks. Microbial activity in phalsa juice increased while organoleptic attributes such as texture (mouth feel), flavour, taste, colour and overall acceptability of phalsa juice were decreased during the study period. The pH and TSS value were decreased from 3.99 to 3.54 and from 11.22 to 9.55, respectively after 2 weeks storage. Total plate count also showed decline from 6.2*10/sup -1/ to 3.2 * 10/sup -1/ cfuml/sup -1/ whereas yeast and mould counts increased simultaneously from 2.6*10/sup -1/ and nil to 5.5*10/sup -1/ and 2.4*10/sup -1/ cfuml/sup -1/, respectively during the storage. To increase shelf life of phalsa juice storage at refrigerated temperature with/without preservatives is recommended. (author)

  4. Life cycle cost and risk estimation of environmental management options

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.

    1996-01-01

    The evaluation process is demonstrated in this paper through comparative analysis of two alternative scenarios identified for the management of the alpha-contaminated fixed low-level waste currently stored at INEL. These two scenarios, the Base Case and the Delay Case, are realistic and based on actual data, but are not intended to exactly match actual plans currently being developed at INEL. Life cycle cost estimates were developed for both scenarios using the System Cost Model; resulting costs are presented and compared. Life cycle costs are shown as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Although there are some short-term cost savings for the Delay Case, cumulative life cycle costs eventually become much higher than costs for the Base Case over the same period of time, due mainly to the storage and repackaging necessary to accommodate the longer Delay Case schedule. Life cycle risk estimates were prepared using a new risk analysis method adapted to the System Cost Model architecture for automated, systematic cost/risk applications. Relative risk summaries are presented for both scenarios as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Relative risk of the Delay Case is shown to be higher than that of the Base Case. Finally, risk and cost results are combined to show how the collective information can be used to help identify opportunities for risk or cost reduction and highlight areas where risk reduction can be achieved most economically

  5. Short-term storage evaluation of quality and antioxidant capacity in chestnut-wheat bread.

    Science.gov (United States)

    Rinaldi, Massimiliano; Paciulli, Maria; Dall'Asta, Chiara; Cirlini, Martina; Chiavaro, Emma

    2015-01-01

    Bread traditionally made from wheat is now often supplemented with alternative functional ingredients as chestnut flours; no data have been previously published about the staling of chestnut-containing bread. Thus short-term storage (3 days) for chestnut flour-supplemented soft wheat bread is evaluated by means of selected physicochemical properties (i.e. water dynamics, texture, colour, crumb grain characteristic, total antioxidant capacity). Bread prepared with a 20:80 ratio of chestnut:soft wheat flours maintained its moisture content in both crust and crumb. Crumb hardness, after baking, was found to be significantly higher than that of the soft wheat bread; it did not change during storage, whereas it significantly increased in the control bread until the end of the shelf life. The supplemented bread presented a heterogeneous crumb structure, with a significant decrease in the largest pores during shelf life, relative to the shrinkage of crumb grain. The control exhibited a significant redistribution of crumb holes, with a decrease in the smallest grain classes and an increase in the intermediate ones, most likely caused by cell wall thickening. The colour of the crumb remained unaltered in both breads. The crust of the control presented a significant decrease of a* (redness) and that of the supplemented bread exhibited a decrease of b* (yellowness). The antioxidant capacity was detected after day 1 of storage in the chestnut flour bread only. Chestnut flour supplementation could represent a feasible way of producing bread with improved characteristics, not only just after baking but also during shelf life. © 2014 Society of Chemical Industry.

  6. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System

    Directory of Open Access Journals (Sweden)

    Michael Schimpe

    2018-03-01

    Full Text Available Utility-scale battery storage systems typically consist of multiple smaller units contributing to the overall power dispatch of the system. Herein, the power distribution among these units is analyzed and optimized to operate the system with increased energy efficiency. To improve the real-life storage operation, a holistic system model for battery storage systems has been developed that enables a calculation of the energy efficiency. A utility-scale Second-Life battery storage system with a capacity of 3.3 MWh/3 MW is operated and evaluated in this work. The system is in operation for the provision of primary control reserve in combination with intraday trading for controlling the battery state of charge. The simulation model is parameterized with the system data. Results show that losses in power electronics dominate. An operational strategy improving the energy efficiency through an optimized power flow distribution within the storage system is developed. The power flow distribution strategy is based on the reduction of the power electronics losses at no-load/partial-load by minimizing their in-operation time. The simulation derived power flow distribution strategy is implemented in the real-life storage system. Field-test measurements and analysis prove the functionality of the power flow distribution strategy and reveal the reduction of the energy throughput of the units by 7%, as well as a significant reduction of energy losses in the units by 24%. The cost savings for electricity over the system’s lifetime are approximated to 4.4% of its investment cost.

  7. The effect of gamma radiation and storage time on the volatile constituents, pirerine, piperettine and sensory quality of pepper

    International Nuclear Information System (INIS)

    Bahari, I.; Ishak, S.; Ayub, M.K.

    1983-01-01

    The use of gamma radiation in prolonging the storage life of black and white peppers is promising. Doses up to 9 kGy and storage period up to 6 months did not significantly change (P<0.05) the volatile constituents of the peppers. Besides the increase in piperine content of unirradiated pepper there was no change in piperettine and piperine contents of both pepper with respect to increase in dose and storage time. No sensory change was detected for the treatments used (author)

  8. A Techno-Commercial Assessment of Residential and Bulk Battery Energy Storage

    Science.gov (United States)

    Nadkarni, Aditya

    2013-01-01

    Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types of services have been analyzed considering current market pricing of Lithium-ion batteries and power conditioning equipment. Energy Storage Valuation Tool 3.0 (Beta) has been used to exclusively determine the value of energy storage in the services analyzed. The results indicate that on the residential level, Lithium-ion battery energy storage may not be a cost beneficial option for retail tariff management or demand charge management as only 20-30% of the initial investment is recovered at the end of 15 year plant life. SRP's two retail Time-of-Use price plans E-21 and E-26 were analyzed in respect of their ability to increase returns from storage compared to those with flat pricing. It was observed that without a coupled PV component, E-21 was more suitable for customer premises energy storage, however, its revenue stream reduces with addition to PV. On the grid scale, however, with carefully chosen service hierarchy such as distribution investment deferral, spinning or balancing reserve support, the initial investment can be recovered to an extent of about 50-70%. The study done here is specific to Salt River Project inputs and data. Results for all the services analyzed are highly location specific and are only indicative of the overall viability and returns from them.

  9. Delayed replantation of rat teeth after use of reconstituted powdered milk as a storage medium.

    Science.gov (United States)

    dos Santos, Cláudia Letícia Vendrame; Sonoda, Celso Koogi; Poi, Wilson Roberto; Panzarini, Sônia Regina; Sundefeld, Maria Lúcia Marçal Mazza; Negri, Márcia Regina

    2009-02-01

    Minimal extraoral dry storage period and moist storage for the avulsed tooth are identified as key steps for the treatment protocol of tooth replantation. Among the possible moist storage media, bovine milk has stood out because of its capacity of preserving the integrity of the periodontal ligament (PDL) fibers. This condition has attracted the attention to investigate the use of powdered milk, which is one of the presentation forms of bovine milk, as a feasible storage medium in cases of delayed tooth replantation. The aim of this study was to evaluate the healing process after delayed replantation of rat teeth stored in reconstituted powdered milk and long shelf-life (ultra high temperature) whole milk. Forty maxillary right rat incisors were assigned to four groups (n = 10): group I--the teeth were extracted and immediately replanted into theirs sockets; group II--the teeth were stored for 60 min in 200 ml of freshly reconstituted powdered milk; group III--the teeth were stored for 60 min in 200 ml of long shelf-life whole milk; group IV--the teeth were kept dry for the same time. All procedures were performed at room temperature. Next, the root canals of teeth in groups II, III, and IV were instrumented, filled with a calcium hydroxide-based paste, and replanted into their sockets. All animals received systemic antibiotic therapy and were killed by anesthetic overdose 60 days after replantation. The pieces containing the replanted teeth were removed, fixed, decalcified, and paraffin-embedded. Semi-serial 6-microm-thick sections were obtained and stained with hematoxylin and eosin for histomorphological analysis. There was statistically significant difference (P < 0.05) between groups I and IV regarding the presence of replacement resorption and PDL remnants on root surface. The powdered milk and long shelf-life whole milk presented similar results to each other and may be indicated as storage media for avulsed teeth.

  10. Effect of freezing rate and storage time on shelf-life quality of hot boned and conventionally boned ground beef

    International Nuclear Information System (INIS)

    Gapud, V.G.; Schlimme, D.V.

    1986-01-01

    Commercially processed, 80% lean, chub packaged ground beef (both conventionally boned and hot boned) was frozen to O F (-18 0 C) at three rates: 72, 96, and 120 hours before storage at O F (-18 0 C). The meat was examined after 0, 1.5, 3, 6, 9, and 12 months storage for the following attributes: psychrophile and aerobic plate counts, free fatty acid (FFA) and thiobarbituric acid (TBA) values, niacin content, raw and cooked color, moisture, fat and protein contents, and cook shrink and texture of cooked patties. Freezing rates had no significant effect on microbial load, niacin content, color, or cook shrink and texture. Freezing rate had a significant effect upon TBA and FFA values. Niacin, cook shrink and moisture values declined and TBA and FFA values increased with storage. Raw meat Hunter L value increased and Hunter a/b value declined during storage. Substantial quality differences between meat types were found

  11. Storage Policies and Optimal Shape of a Storage System

    NARCIS (Netherlands)

    Zaerpour, N.; De Koster, René; Yu, Yugang

    2013-01-01

    The response time of a storage system is mainly influenced by its shape (configuration), the storage assignment and retrieval policies, and the location of the input/output (I/O) points. In this paper, we show that the optimal shape of a storage system, which minimises the response time for single

  12. Effect of high carbon dioxide storage and gamma irradiation on membrane deterioration in cauliflower florets

    International Nuclear Information System (INIS)

    Voisine, R.; Hombourger, C.; Willemot, C.; Castaigne, F.; Makhlouf, J.

    1993-01-01

    Controlled atmospheres and gamma irradiation are technologies which extend storage-life of fruits and vegetables. Separate and combined effects of high CO 2 storage and gamma irradiation on cell membranes from cauliflower florets (Brassica oleracea L., Botrytis group) were investigated. Storage of the florets for 8 days at 13°C, either under 15% carbon dioxide or in air after irradiation at 2 kGy, accelerated the deterioration of microsomal membranes during storage. Both treatments caused an early loss in lipid phosphate. Irradiation enhanced the free fatty acid content of the membranes during storage and caused an extensive protein loss. When irradiation and high CO 2 storage were combined, electrolyte leakage significantly increased while protein loss was considerably reduced. The results indicate that high CO 2 and irradiation accelerate membrane degradation through different mechanisms. The combined effects of the treatments were not additive, but membrane yield was apparently reduced. CO 2 protected the membranes from protein loss induced by irradiation. The apparent increase in electrolyte leakage after irradiation may be caused by the release of ions following cell wall deterioration

  13. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine

  14. TECHNOLOGY OF FRESH HERBS STORAGE USING HYDROGEL AND ANTIOXIDANT COMPOSITION

    Directory of Open Access Journals (Sweden)

    Olesia PRISS

    2017-12-01

    Full Text Available There is a stable consumer demand for fresh culinary herbs. Also, the greenery contains a large number of valuable phytonutrients. Despite high efficiency and increasing annual production of fresh herbs, the problem of preserving their quality in the post-harvest period remains unresolved. Because of the high specific surface area of evaporation, in the green crops droop quickly, they lose their marketable quality, and, as a result, the level of profitability of greenery production in general is being reduced. It is necessary to use new effective approaches to leafy greens storage in order to reduce product losses during transportation and storage. For example, agrarian hydrogel can be used for storage of greenery. Hydrogel is an acrylic potassium polymer that is non-toxic and has a high environmental standard. The hydrogel granules can absorb up to 250 times more moisture than their weight. We propose the following procedure as the method of greenery preservation: the greens are packed in bundles and put in sticks in polyethylene bags with a fastener, pre-filled with hydrogel solutions. The storage temperature is maintained optimally for each species of fresh herbs, the relative humidity is 95 ± 3%. Usage of the proposed method allows obtaining environment-friendly products, preserving their high biological value and increasing the shelf life. The accumulation of peroxide products, which cause physiological disorders, is inhibited as the result of such storage. The use of hydrogel reduces the natural loss of mass by 10% as compared with the control. Duration of greenery storage increases by 30 days.

  15. Centrifugal Spinning and Its Energy Storage Applications

    Science.gov (United States)

    Yao, Lu

    Lithium-ion batteries (LIBs) and supercapacitors are important electrochemical energy storage systems. LIBs have high specific energy density, long cycle life, good thermal stability, low self-discharge, and no memory effect. However, the low abundance of Li in the Earth's crust and the rising cost of LIBs urge the attempts to develop alternative energy storage systems. Recently, sodium-ion batteries (SIBs) have become an attractive alternative to LIBs due to the high abundance and low cost of Na. Although the specific capacity and energy density of SIBs are not as high as LIBs, SIBs can still be promising power sources for certain applications such as large-scale, stationary grids. Supercapacitors are another important class of energy storage devices. Electric double-layer capacitors (EDLCs) are one important type of supercapacitors and they exhibit high power density, long cycle life, excellent rate capability and environmental friendliness. The potential applications of supercapacitors include memory protection in electronic circuitry, consumer portable electronic devices, and electrical hybrid vehicles. The electrochemical performance of SIBs and EDLCs is largely dependent on the electrode materials. Therefore, development of superior electrodes is the key to achieve highperformance alternative energy storage systems. Recently, one-dimensional nano-/micro-fiber based electrodes have become promising candidates in energy storage because they possess a variety of desirable properties including large specific surface area, well-guided ionic/electronic transport, and good electrode-electrolyte contact, which contribute to enhanced electrochemical performance. Currently, most nano-/micro-fiber based electrodes are prepared via electrospinning method. However, the low production rate of this approach hinders its practical application in the production of fibrous electrodes. Thus, it is significantly important to employ a rapid, low-cost and scalable nano

  16. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per; Sampson, Michele; Wolff, Dietmar; Bevilaqua, Arturo; Wasinger, Karl; Saegusa, Toshiari; Seelev, Igor

    2016-09-01

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years until reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on

  17. StorageTek T10000 Tape Cartridge

    CERN Multimedia

    1985-01-01

    Oracle StorageTek T10000T2 cartridge has total capacity of 5 TB. It is actually manufactured by Fuji Film, uses Barium Ferrite (BaFe) particles technology data store, but is also equipped with RFID chip. There is over 1 km of tape inside of the cartridge with 3584 data tracks and it supports over 25000 load/unload cycles. The archival life is estimated to be around 30 years and uncorrected bit error rate is 10-19. CERN however usually migrates data to newer technologies roughly every 5 years in order to keep the footprint under control.

  18. Preserve the memory of storage centers; Peserver la memoire des centres de stockage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Many centuries are sufficient for the short life low and intermediate level radioactive wastes to reach a radioactivity level offering no danger for the human health. This document presents the management of the storage Center memory and the different applied technologies. (A.L.B.)

  19. QUALITY OF MINIMALLY PROCESSED ‘FUJI’ APPLE UNDER REFRIGERATED STORAGE AND TREATMENT WITH ADDITIVES

    Directory of Open Access Journals (Sweden)

    MARINES BATALHA MORENO

    Full Text Available ABSTRACT The aim of this study was to evaluate the ability to prolong the useful life of the minimally processed ‘Fuji’ apple by applying the individual or combined additives (L-cysteine chloride, L-ascorbic acid and calcium chloride and to determine the appropriate period of storage of the whole fruit to perform the minimum processing. The experimental design was completely randomized in three-factor design with three replications. Factor A was composed of storage periods of whole apples, pre-processing, in cold chambers (20, 78, 138 and 188 days; the factor B was represented by storage periods minimum post-processing, simulating shelf life (3, 6, 9 and 12 days, and factor C was represented by chemical additives (distilled water, as control, 0.5% L-cysteine chloride, 1% L-ascorbic acid, 0.5% L-cysteine chloride along with 1% calcium chloride and 1% L-ascorbic acid together with 1% calcium chloride. The evaluated dependent variables were pulp color (L* and hº, soluble solids, titratable acidity, content of phenolic compounds, antioxidant capacity and quantification of polyphenol oxidase. In addition, was analyzed the presence or absence of Salmonella sp. and Escherichia coli. The prolongation of the storage time of ‘Fuji’ apples in a refrigerated atmosphere promotes increased susceptibility to browning and softening after processing from 78 days of storage. The use of additives in the process, helps prevent these problems, especially when combined 0.5% L-cysteine chloride with 1% calcium chloride, achieving an excellent conservation in refrigerated shelf up to 6 days. From a microbiological aspect, minimally processed apples are toxicologically safe.

  20. Monitored Retrievable Storage conceptual system studies: closed-cycle vault

    International Nuclear Information System (INIS)

    Washington, J.A.; Ganley, J.T.

    1984-02-01

    The Nuclear Waste Policy Act of 1982 requires the DOE to submit a proposal to Congress by June 1985 for the construction of one or more Monitored Retrieval Storage (MRS) facilities. In response, the DOE initiated studies to develop system descriptions and cost estimates for preconceptual designs of storage concepts suitable for use at MRS facilities. This report provides a system description and cost estimates for a Closed-Cycle Vault (CCV) MRS facility. The facility description is divided into four parts: (1) the R and H area, (2) the interface facility, (3) the on-site transport system, and (4) the storage system. The MRS facility has been designed to meet handling rates of 1800 and 3000 MTU/yr. The corresponding peak inventories are 15,000 and 72,000 MTU. Three types of cases were considered, based on the material to be stored: (1) Spent fuel only; (2) HLW and TRU waste; and (3) HLW only. For each of these three types, a cost estimate was done for a 15,000 and a 72,000 MTU facility, resulting in six different cost estimates. Section 4 presents the cost analysis of the CCV MRS system. Tables 4-2 through 4-7 give the construction or capital costs for the six cases. Tables 4-8 through 4-13 show the total discounted life-cycle costs for each of the six cases. These life-cycle costs include operating and decommissioning costs. These tables also show the time distribution of the capital costs. Table 2-1 summarizes the capital, operating, and discounted costs for the six cases studied. 2 references, 15 figures, 18 tables

  1. Hydrogen storage for fuel cell applications: Challenges, opportunities and prospects for metal-organic frameworks

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2013-07-01

    Full Text Available and release, and cycle life of the materials. In the past decade, there has been growing interest in metal organic frameworks (MOFs) as hydrogen storage materials and significant progress has been made in this regard. The challenges, opportunities...

  2. Effect of thiabendazole and packing materials on kinnow mandarin during storage

    International Nuclear Information System (INIS)

    Farooqi, W.A.; Ahmad, Maqbool; Hussain, A.M.; Qureshi, M.J.

    1975-01-01

    Effects of thiabendazole and some packing materials (tissue paper, wax paper and polyethylene film) on the shelf-life of Kinnow mandarins during storage at refrigerated and non-refrigerated temperatures were studied. Physiological, and organoleptic characteristics; control of fruit-rot in treated and untreated fruits and residual effect of thiabendazole in the peel and pulp of treated fruits are reported

  3. Effect of thiabendazole and packing materials on kinnow mandarin during storage

    Energy Technology Data Exchange (ETDEWEB)

    Farooqi, W A; Ahmad, Maqbool; Hussain, A M; Qureshi, M J

    1975-01-01

    Effects of thiabendazole and some packing materials (tissue paper, wax paper and polyethylene film) on the shelf-life of Kinnow mandarins during storage at refrigerated and non-refrigerated temperatures were studied. Physiological, and organoleptic characteristics; control of fruit-rot in treated and untreated fruits and residual effect of thiabendazole in the peel and pulp of treated fruits are reported.

  4. Break-Even Points of Battery Energy Storage Systems for Peak Shaving Applications

    Directory of Open Access Journals (Sweden)

    Claudia Rahmann

    2017-06-01

    Full Text Available In the last few years, several investigations have been carried out in the field of optimal sizing of energy storage systems (ESSs at both the transmission and distribution levels. Nevertheless, most of these works make important assumptions about key factors affecting ESS profitability such as efficiency and life cycles and especially about the specific costs of the ESS, without considering the uncertainty involved. In this context, this work aims to answer the question: what should be the costs of different ESS technologies in order to make a profit when considering peak shaving applications? The paper presents a comprehensive sensitivity analysis of the interaction between the profitability of an ESS project and some key parameters influencing the project performance. The proposed approach determines the break-even points for different ESSs considering a wide range of life cycles, efficiencies, energy prices, and power prices. To do this, an optimization algorithm for the sizing of ESSs is proposed from a distribution company perspective. From the results, it is possible to conclude that, depending on the values of round trip efficiency, life cycles, and power price, there are four battery energy storage systems (BESS technologies that are already profitable when only peak shaving applications are considered: lead acid, NaS, ZnBr, and vanadium redox.

  5. Long-Time Data Storage: Relevant Time Scales

    Directory of Open Access Journals (Sweden)

    Miko C. Elwenspoek

    2011-02-01

    Full Text Available Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is habitable for complex life is about half a billion years. A system retrieved within the next million years will be read by beings very closely related to Homo sapiens. During this time the surface of the earth will change making it risky to place a small number of large memory systems on earth; the option to place it on the moon might be more favorable. For much longer timescales both options do not seem feasible because of geological processes on the earth and the flux of small meteorites to the moon.

  6. Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery

    International Nuclear Information System (INIS)

    Iribarren, Diego; Petrakopoulou, Fontina; Dufour, Javier

    2013-01-01

    This study evaluates the environmental and thermodynamic performance of six coal-fired power plants with CO 2 capture and storage. The technologies examined are post-combustion capture using monoethanolamine, membrane separation, cryogenic fractionation and pressure swing adsorption, pre-combustion capture through coal gasification, and capture performing conventional oxy-fuel combustion. The incorporation of CO 2 capture is evaluated both on its own and in combination with CO 2 transport and geological storage, with and without beneficial use. Overall, we find that pre-combustion CO 2 capture and post-combustion through membrane separation present relatively low life-cycle environmental impacts and high exergetic efficiencies. When accounting for transport and storage, the environmental impacts increase and the efficiencies decrease. However, a better environmental performance can be achieved for CO 2 capture, transport and storage when incorporating beneficial use through enhanced oil recovery. The performance with enhanced coal-bed methane recovery, on the other hand, depends on the impact categories evaluated. The incorporation of methane recovery results in a better thermodynamic performance, when compared to the incorporation of oil recovery. The cumulative energy demand shows that the integration of enhanced resource recovery strategies is necessary to attain favourable life-cycle energy balances. - Highlights: ► Evaluation of six different CO 2 capture technologies for coal-fired power plants. ► Calculation of life-cycle environmental impacts and exergetic efficiencies. ► Suitability of post-combustion capture with membrane separation. ► Suitability of pre-combustion capture through coal gasification. ► Improved performance when incorporating enhanced resource recovery

  7. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  8. Comparison of quality attributes of buffalo meat curry at different storage temperature.

    Science.gov (United States)

    Kandeepan, Gurunathan; Anjaneyulu, Anne Seet Ram; Kondaiah, Napa; Mendiratta, Sanjod Kumar

    2011-01-01

    The product quality of curry is determined by the food animal source, raw materials and the method of processing. Moreover the scientific information on processing and quality of traditional buffalo meat curry from different groups of buffaloes is not available. This study was undertaken to develop processed curry from different buffalo groups and to compare its quality during storage at ambient and refrigeration temperature. The meat samples were collected from the longissimus dorsi muscle of the carcasses from each group of buffaloes slaughtered according to the traditional halal method. Buffalo meat curry was prepared in a pressure cooker with the standardized formulation. This final product was subjected to evaluation of quality and shelf life. To evaluate the effect of different groups of meat samples on the quality of curry, product yield, pH, proximate composition, water activity (aw), thiobarbituric acid reactive substances (TBARS), calorific value, sensory attributes and microbiological assay were determined The energy of meat curry from young buffaloes was significantly lower than the meat curry from spent animal groups. The overall acceptability of curry decreased significantly during 3 days ambient storage compared to refrigeration storage. Scientific processing by adopting good manufacturing practices and suitable packaging helped greatly to improve the shelf life of the ambient temperature stored buffalo meat curry. Buffalo meat curry from young male group showed better product characteristics and overall acceptability scores than spent buffalo group.

  9. Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1995-09-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

  10. SECON - A tool for estimation of storage costs and storage project revenue

    International Nuclear Information System (INIS)

    Hall, O.

    1997-01-01

    The SECON model Storage ECONomics is useful for gas suppliers, storage operators, gas distributors and consumers when investigating new storage possibilities. SECON has been used within the Sydkraft group to compare cost for different types of storage and to identify the market niche for lined rock cavern (LRC) storage. In the model cost for the different storage types, salt caverns, LNG, and LRC can be compared. By using input according to market needs each storage type can be validated for a specific service e.g. peak shaving, seasonal storage or balancing. The project revenue can also be calculated. SECON includes three models for income calculation; US storage service, Trading and Avoided Supply Contract Costs. The income models calculates annual turnover, pay of time, net present value, internal rate of return and max. liquidity shortfall for the project. The SECON will facilitate sensitivity analysis both regarding cost for different services and different storage types and on the income side by using different scenarios. At the poster session SECON will be presented live and the delegates will have the opportunity to test the model. (au)

  11. Concrete storage cask for interim storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nabemoto, Toyonobu; Fujiwara, Hiroaki; Kobayashi, Shunji; Shionaga, Ryosuke

    2004-01-01

    Experiments and analytical evaluation of the fabrication, non-destructive inspection and structural integrity of reinforced concrete body for storage casks were carried out to demonstrate the concrete storage cask for spent fuel generated from nuclear power plants. Analytical survey on the type of concrete material and fabrication method of the storage cask was performed and the most suitable fabrication method for the concrete body was identified to reduce concrete cracking. The structural integrity of the concrete body of the storage cask under load conditions during storage was confirmed and the long term integrity of concrete body against degradation dependent on environmental factors was evaluated. (author)

  12. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

  13. Dynamics investigation of change of freshness and properties of new types of semi-smoked sausages during storage

    Directory of Open Access Journals (Sweden)

    Ірина Іллівна Маркович

    2015-03-01

    Full Text Available Stable quality of sausages during storage is achieved through improving processes, modes and storage conditions, use of various food additives and antioxidants that will positively affect the inhibition of hydrolytic and oxidative changes in lipids. In production technology of semi- smoked sausages we propose the use of plant material – flour of sprouted and not sprouted lentil, and to lengthen shelf life – thyme and juniper 

  14. Biomarker for Glycogen Storage Diseases

    Science.gov (United States)

    2017-07-03

    Fructose Metabolism, Inborn Errors; Glycogen Storage Disease; Glycogen Storage Disease Type I; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Glycogen Storage Disease Type VI; Glycogen Storage Disease Type VII; Glycogen Storage Disease Type VIII

  15. Ethanol as radon storage: applications for measurement

    International Nuclear Information System (INIS)

    Winter, I.; Philipsborn, H. von

    1997-01-01

    Ethanol as Radon Storage: Applications for Measurement Ethanol has a solubility for radon of 6 Bq/l per kBq/m 3 air, 24 times higher than water. On filtration of ethanol, radon decay products are completely adsorbed on glass fiber filters, as previously reported for water. Hence: 1. A new simple method for measuring radon in soil air, without expensive equipment. 2. The production of mailable radon calibration sources ('radonol') with 50-100 kBq/l in PET-bottles with 3.8 days half-life, using uraniferous rocks as primary source. (orig.) [de

  16. Shelf life stability of lactobacilli encapsulated in raspberry powder: insights into non-dairy probiotics.

    Science.gov (United States)

    Anekella, Kartheek; Orsat, Valérie

    2014-06-01

    Study the shelf-life quality changes in raspberry juice with encapsulated lactobacilli (Lactobacillus rhamnosus NRRL B-4495 and Lactobacillus acidophilus NRRL B-442) obtained by spray drying and understand the various factors involved. Raspberry powder was obtained from spray drying lactobacilli and raspberry juice with maltodextrin as an additive. Shelf life of the powder was analyzed over a period of 30 d. Acid and bile tolerance and antibiotic resistance was compared before and after spray drying. Water activity, survival, and scanning electron microscope images were also measured during the shelf life. A combination of processing conditions: inlet temperature (°C), maltodextrin to juice solids ratio and inlet feed rate (ml/min) during spray drying had a significant role on the survival of lactobacilli during shelf life. Refrigerated storage provided a higher shelf-life stability with regards to CFU/g (as high as 84% on day 0 and 98% retention by the end of 30 d) compared to room temperature storage. Probiotic properties during shelf life are affected by the processing conditions and encapsulated food matrix. Thus, understanding these aspects in vitro during shelf life gives us a brief insight into the future of non-dairy probiotics.

  17. Carbon storage potential in natural fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Pervaiz, Muhammad; Sain, Mohini M. [Faculty of Forestry, Advanced Wood Composite Group, Earth Science Center, University of Toronto, 33 Willcocks Street, Toronto, Ont. (Canada) M5S 3B3

    2003-11-01

    The environmental performance of hemp based natural fiber mat thermoplastic (NMT) has been evaluated in this study by quantifying carbon storage potential and CO{sub 2} emissions and comparing the results with commercially available glass fiber composites. Non-woven mats of hemp fiber and polypropylene matrix were used to make NMT samples by film-stacking method without using any binder aid. The results showed that hemp based NMT have compatible or even better strength properties as compared to conventional flax based thermoplastics. A value of 63 MPa for flexural strength is achieved at 64% fiber content by weight. Similarly, impact energy values (84-154 J/m) are also promising. The carbon sequestration and storage by hemp crop through photosynthesis is estimated by quantifying dry biomass of fibers based on one metric ton of NMT. A value of 325 kg carbon per metric ton of hemp based composite is estimated which can be stored by the product during its useful life. An extra 22% carbon storage can be achieved by increasing the compression ratio by 13% while maintaining same flexural strength. Further, net carbon sequestration by industrial hemp crop is estimated as 0.67 ton/h/year, which is compatible to all USA urban trees and very close to naturally, regenerated forests. A comparative life cycle analysis focused on non-renewable energy consumption of natural and glass fiber composites shows that a net saving of 50 000 MJ (3 ton CO{sub 2} emissions) per ton of thermoplastic can be achieved by replacing 30% glass fiber reinforcement with 65% hemp fiber. It is further estimated that 3.07 million ton CO{sub 2} emissions (4.3% of total USA industrial emissions) and 1.19 million m{sup 3} crude oil (1.0% of total Canadian oil consumption) can be saved by substituting 50% fiber glass plastics with natural fiber composites in North American auto applications. However, to compete with glass fiber effectively, further research is needed to improve natural fiber processing

  18. Determination of the optimum irradiation dose for shelf-life of peas and cherry tomatoes

    International Nuclear Information System (INIS)

    Zaman, M. B.; Hayumbu, P.; Siwale, J.; Mutale, C.; Kabwe, L.

    1991-01-01

    Green peas (Pisum Sativum), cultivar (mangetout) and yellow cherry tomatoes (lycoperscum esculantum), cultivar (cerasiforme) were irradiated for different absorbed doses, and their physical characteristics observed under cold storage conditions, in order to extend their shelf lives. Results suggest that 580 Gy is the maximum optimum dose. At this dose the shelf life of cherry tomatoes is shown to be extended. No beneficial effect was recorded on the storage life of green peas. A good correlation was found between the degradation of chlorophill and the spread of spotting disease for this product. (author)., 19 refs., 2 tab

  19. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  20. Neutron storage

    International Nuclear Information System (INIS)

    Strelkov, A.V.

    2004-01-01

    The report is devoted to neutron storage (NS) and describes the history of experiments on the NS development. Great attention is paid to ultracold neutron (UCN) storage. The experiments on the UCN generation, transport, spectroscopy, storage and detection are described. Experiments on searching the UCN electric-dipole moment and electric charge are continued. Possible using of UCN for studying the nanoparticles is discussed [ru

  1. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1989-01-01

    A general synthesis about tritium storage is achieved in this paper and a particular attention is given to practical application in the Fusion Technology Program. Tritium, storage under gaseous form and solid form are discussed (characteristics, advantages, disadvantages and equipments). The way of tritium storage is then discussed and a choice established as a function of a logic which takes into account the main working parameters

  2. Studies on irradiated BNFL culture medium for decontamination and longer storage

    International Nuclear Information System (INIS)

    Singh, Antaryami; Malodia, P.; Jain, S.K.; Ram Gopal

    2001-01-01

    The feasibility of gamma radiation for microbial decontamination and shelf-life extension of culture medium was studied. Changes in total viable count, coliform count and fungal count on exposure to 5, 10, 15, 20 and 25 kGy of gamma radiation were examined. The total viable counts were reduced on irradiation. Complete destruction of bacterial and fungal contamination was observed at 20 kGy. Studies were conducted to examine the changes in microbial contamination of the medium during storage. There was no post irradiation proliferation of microorganisms. Also, no significant change in the efficiency of the irradiated culture medium was observed. Thus, irradiation is extremely useful for longer storage and quality-assurance. (author)

  3. Licensing of spent fuel dry storage and consolidated rod storage

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs

  4. Postharvest Ripening and Shelf Life of Mango ( Mangifera indica L ...

    African Journals Online (AJOL)

    Postharvest Ripening and Shelf Life of Mango ( Mangifera indica L.) Fruit as Influenced by ... evaluate the influence of 1-Methylcyclopropene (1-MCP) and polyethylene packaging (PP) on postharvest storage of mango. ... HOW TO USE AJOL.

  5. Ultra-Capacitor Energy Storage in a Large Hybrid Electric Bus

    Science.gov (United States)

    Viterna, L. A.

    1997-01-01

    The power requirements for inner city transit buses are characterized by power peaks about an order of magnitude larger than the average power usage of the vehicle. For these vehicles, hybrid power trains can offer significantly improved fuel economy and exhaust emissions. A critical design challenge, however, has been developing the energy storage and power management system to respond to these rapid power variations. Most hybrid vehicles today use chemical energy storage batteries to supplement the power from the fuel burning generator unit. Chemical storage batteries however, present several difficulties in power management and control. These difficulties include (1) inadequate life, (2) limited current delivery as well as absorption during regenerative braking, (3) inaccurate measurement of state of charge, and (4) stored energy safety issues. Recent advances in ultra-capacitor technology create an opportunity to address these concerns. The NASA Lewis Research Center, in cooperation with industry and academia, has developed an advanced hybrid electric transit bus using ultra-capacitors as the primary energy storage system. At over 15,000-kg gross weight, this is the largest vehicle of its kind ever built using this advanced energy storage technology. Results of analyses show that the vehicle will match the performance of an equivalent conventionally powered vehicle over typical inner city drive cycles. This paper describes the overall power system architecture, the evolution of the control strategy, and analysis of power flow and vehicle performance.

  6. Traditional alcoholic beverages of Tanzania: production, quality and changes in quality attributes during storage.

    Science.gov (United States)

    Tüsekwa, A B; Mosha, T C; Laswai, H S; Towo, E E

    2000-03-01

    Traditional alcoholic beverages of Tanzania play an important role in the daily social, economic, nutritional and cultural life of the people. Production, quality and changes in quality attributes during ambient temperature storage were investigated in traditional Tanzanian beers (Mbege and Komoni) and wines (Mnanasi, Wanzuki and Mofru). The quality attributes of the alcoholic beverages indicated that pH levels were in the range of 4.15-4.20 and 3.9-5.5 for the beers and wines respectively. Total, fixed and volatile acidity in the beers were in the range of 0.41-0.62, 0.28-0.38 and 0.06-0.09 g/100 mL respectively while in the wines acidity levels were in the range of 0.23-0.66, 0.13-0.33 and 0.05-0.06 g/100 mL for the total, fixed and volatile acidity respectively. Concentration of total solids in the beers ranged between 7.00 and 12.80 degrees Brix while in the wines ranged between 3.45 and 6.65 degrees Brix. Specific gravity of the beers ranged between 1.0097 and 1.0374 while for wines the specific gravity was lower, ranging between 0.9971 and 0.9989. Alcohol concentration was higher in wines (range 3.84-9.75 g/100 mL) than in beers (range 1.72-2.76 g/100 mL). Storage of the beverages under ambient temperatures for various lengths of time resulted in significant (P Wines were more stable during storage than beers, with Mofru wine being the most stable. The rates of total acid production per hour were Mnanasi (0.0196 g/100 mL), Wanzuki (0.0047 g/100 mL) and Mofru (0.0005 g/100 mL). Use of low brewing technologies involving uncontrolled fermentation, unsanitary conditions and use of rudimentary equipment for processing, packaging and storage resulted in beers and wines of low quality and short shelf-life. To foster commercial exploitation of the products, there is a need to develop appropriate small and medium-level brewing technologies that will improve the quality of the traditional alcoholic beverages and extend their shelf-life through hygienic and controlled

  7. Reversible deep storage: reversibility options for storage in deep geological formations

    International Nuclear Information System (INIS)

    2009-01-01

    This report describes the definition approach to reversibility conditions, presents the main characteristics of high-activity and intermediate-activity long-lived wastes, describes the storage in deep geological formations (safety functions, general description of the storage centre), discusses the design options for the different types of wastes (container, storage module, handling processes, phenomenological analysis, monitoring arrangements) and the decision process in support reversibility (steering of the storage process, progressive development and step-by-step closing), and reports and discusses the researches concerning the memory of the storage site

  8. Raw-appearing Restructured fish models made with Sodium alginate or Microbial transglutaminase and effect of chilled storage

    Directory of Open Access Journals (Sweden)

    Helena Moreno

    2013-03-01

    Full Text Available Restructuring by adding Sodium Alginate or Microbial Transglutaminase (MTGase using cold gelation technology make it possible to obtain many different raw products from minced and/or chopped fish muscle that are suitable for being used as the basis of new restructured products with different physicochemical properties and even different compositions. Special consideration must be given to their shelf-life and the changes that may take place during chilling, both in visual appearance and physicochemical properties. After chilled storage, the restructured models made with different muscular particle size and composition at low temperature (5 °C, it was observed that microbial growth limited the shelf-life to 7-14 days. Mechanical properties increased (p 0.05 was detected during storage.

  9. One- and two-stage Arrhenius models for pharmaceutical shelf life prediction.

    Science.gov (United States)

    Fan, Zhewen; Zhang, Lanju

    2015-01-01

    One of the most challenging aspects of the pharmaceutical development is the demonstration and estimation of chemical stability. It is imperative that pharmaceutical products be stable for two or more years. Long-term stability studies are required to support such shelf life claim at registration. However, during drug development to facilitate formulation and dosage form selection, an accelerated stability study with stressed storage condition is preferred to quickly obtain a good prediction of shelf life under ambient storage conditions. Such a prediction typically uses Arrhenius equation that describes relationship between degradation rate and temperature (and humidity). Existing methods usually rely on the assumption of normality of the errors. In addition, shelf life projection is usually based on confidence band of a regression line. However, the coverage probability of a method is often overlooked or under-reported. In this paper, we introduce two nonparametric bootstrap procedures for shelf life estimation based on accelerated stability testing, and compare them with a one-stage nonlinear Arrhenius prediction model. Our simulation results demonstrate that one-stage nonlinear Arrhenius method has significant lower coverage than nominal levels. Our bootstrap method gave better coverage and led to a shelf life prediction closer to that based on long-term stability data.

  10. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  11. A study on the Development of Zr-Ti-Mn-V-Ni hydrogen Storage Alloy for Ni-MH Rechargeable Battery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Myung; Jung, Jae Han; Lee, Sang Min; Lee, Jae Young [Department of Meterial Science and Engineering, Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-12-15

    The Zr-based AB{sub 5} type Laves phase hydrogen storage alloys have some promising properties, long cycle life, high discharge capacity, as electrode materials in reversible metal hydride batteries. However, when these alloys are used as negative electrode for battery, there is a problem that their rate capabilities are worse than those of commercialized AB{sub 5} type hydrogen storage alloys. In this work, we tried to develop the Zr-based AB type Laves phase hydrogen storage alloys which have high capacity and, especially, high rate capability (author). 21 refs., 2 tabs., 13 figs.

  12. Determination of storage conditions for new biscuits using their sorption isotherms

    OpenAIRE

    G. Diukareva; A. Pak; A. Gasanova

    2015-01-01

    Introduction For the formation of biscuits quality natural carrier of iodine and sweetener from stevia leaves were used. Desorption of moisture is the dominant process, which will determine the guaranteed shelf life of biscuits. The conditions for the developed biscuits storage was determined by investigating of sorption isotherms and kinetics of reaching the equilibrium moisture content. Materials and Methods. The objects of stud...

  13. Medical images storage using discrete cosine transform

    International Nuclear Information System (INIS)

    Arhouma, Ali M.; Ajaal, Tawfik; Marghani, Khaled

    2010-01-01

    The advances in technology during the last decades have made the use of digital images as one of the common things in everyday life. While the application of digital images in communicating information is very important, the cost of storing and transmitting images is much larger compared to storage and transmission of text. The main problem with all of the images was the fact that they take large size of memory space, large transmission bandwidth and long transmission time. Image data compression is needed to reduce the storage space,transmission bandwidth and transmission time. Medical image compression plays a key role as hospitals move towards filmless imaging and go completely digital. Image compression allows Picture Archiving and Communication Systems (PACS) to reduce the file size on their storage requirements while maintaining relevant diagnostic information. The reduced image file size yield reduced transmission times. Even as the capacity of storage media continues to increase, it is expected that the volume of uncompressed data produced by hospitals will exceed capacity of storage and drive up costs. This paper proposes a Discrete Cosine Transform (DCT) algorithm which can help to solve the image storage and transmission time problem in hospitals. Discrete cosine transform (DCT) has become the most popular technique for image compression over the past several years. One of the major reasons for its popularity is its selection as the standard for JPEG. DCTs are most commonly used for non-analytical applications such as image processing and digital signal-processing (DSP) applications such as video conferencing, fax systems, video disks, and high-definition television HDTV. They also can be used on a matrix of practically any dimension. The proposed (DCT) algorithm improves the performance of medical image compression while satisfying both the medical image quality, and the high compression ratio. Application of DCT coding algorithm to actual still images

  14. The chilled storage life and retail display performance of vacuum and carbon dioxide packed hot deboned beef striploins.

    Science.gov (United States)

    Bell, R G; Penney, N; Gilbert, K V; Moorhead, S M; Scott, S M

    1996-04-01

    appear to be the combination of choice. This combination would enable commercial processors to produce quality table beef with a chilled storage life of up to 70 days.

  15. Optical storage networking

    Science.gov (United States)

    Mohr, Ulrich

    2001-11-01

    For efficient business continuance and backup of mission- critical data an inter-site storage network is required. Where traditional telecommunications costs are prohibitive for all but the largest organizations, there is an opportunity for regional carries to deliver an innovative storage service. This session reveals how a combination of optical networking and protocol-aware SAN gateways can provide an extended storage networking platform with the lowest cost of ownership and the highest possible degree of reliability, security and availability. Companies of every size, with mainframe and open-systems environments, can afford to use this integrated service. Three mayor applications are explained; channel extension, Network Attached Storage (NAS), Storage Area Networks (SAN) and how optical networks address the specific requirements. One advantage of DWDM is the ability for protocols such as ESCON, Fibre Channel, ATM and Gigabit Ethernet, to be transported natively and simultaneously across a single fiber pair, and the ability to multiplex many individual fiber pairs over a single pair, thereby reducing fiber cost and recovering fiber pairs already in use. An optical storage network enables a new class of service providers, Storage Service Providers (SSP) aiming to deliver value to the enterprise by managing storage, backup, replication and restoration as an outsourced service.

  16. International database on ageing management and life extension

    International Nuclear Information System (INIS)

    Ianko, L.; Lyssakov, V.; McLachlan, D.; Russell, J.; Mukhametshin, V.

    1995-01-01

    International database on ageing management and life extension for reactor pressure vessel materials (RPVM) is described with the emphasis on the following issues: requirements of the system; design concepts for RPVM database system; data collection, processing and storage; information retrieval and dissemination; RPVM information assessment and evaluation. 1 fig

  17. Effect of Different Storage Period on Lactic Acid Bacterias from Goji Yogurt and Goji Yogurt with Honey

    Directory of Open Access Journals (Sweden)

    Ancuta M. Rotar

    2014-05-01

    Full Text Available Lactic acid bacterias (LAB: Streptococcus thermophilus-ST, Lactobacillus bulgaricus-LB are well known in the food technology area for their ability to produce lactic acid (LA from carbohydrates throught fermentation. In case of goji yogurt the interaction between the two species of LAB has influence on the fermentation period and LA quantity. LAB’s are widely used in the food industry because their growth in the dairy products lowers the carbohydrate content, they can also drop the pH values under 4.0, values were common pathogens are inhibited, and because of all these properties they are capable to prolong the shelf life. The present study aims to observe the evolution of LAB’s – ST and LB, from goji yogurt (7% (A and goji yogurt (7% with honey (B during the shelf life in corelation with other physico-chemical properties such as sugar content, fat content and dry matter. The samples for the evaluation were taken in the first day of storage, at the middle of storage period and in the last day of storage.

  18. Effect of gamma irradiation on microbial load and sensory charactaristics of Nile Bolti fish during cold storage

    International Nuclear Information System (INIS)

    Roushdy, H.M.; Elfouly, M.Z.; Abdelbaki, M.M.; Taha, R.A.; Yousef, B.M.

    1984-01-01

    The main objective of this study is to investigate the effect of varying low dose levels of gamma radiation (0.5, 1.5 and 3.OKGY on the microbiological and organoleptic properties of bolti fish (Tilapia nilotica) under post irradiation cold storage conditions (5 0 C±1). It has been found that the maximum shelf life of fresh bolti fish does not exceed 6 days. A great reduction in the total microbial counts, psychrophilic and proteolytic bacteria could be achieved due to irradiation processes. The percentages of inactivated cells for these organisms reached 98.6% 100% and 81.7% respectively at the dose level 3.0 KGY. The values of microorganisms during storage at 5 0 C, indicated their progressive increase and the palatability scores was going, parallel with the increase in the microbial load. The dose of 3 KGY proved to be for keeping the microbial counts at lower level during storage and hence extended the shelf life of fresh bolti fish by three times as compared with the unirradiated samples

  19. Evolutionary dynamics of RNA-like replicators : A bioinformatic approach to the origin of life

    NARCIS (Netherlands)

    Takeuchi, N.

    2010-01-01

    The origin of life has always attracted scientific inquiries. The RNA world hypothesis suggests that, before the evolution of DNAs and proteins, primordial life was based on RNAs both for information storage and chemical catalysis. In its simplest form, an RNA world consists of RNA molecules that

  20. Fuel storage tank

    International Nuclear Information System (INIS)

    Peehs, M.; Stehle, H.; Weidinger, H.

    1979-01-01

    The stationary fuel storage tank is immersed below the water level in the spent fuel storage pool. In it there is placed a fuel assembly within a cage. Moreover, the storage tank has got a water filling and a gas buffer. The water in the storage tank is connected with the pool water by means of a filter, a surge tank and a water purification facility, temperature and pressure monitoring being performed. In the buffer compartment there are arranged catalysts a glow plugs for recombination of radiolysis products into water. The supply of water into the storage tank is performed through the gas buffer compartment. (DG) [de

  1. Effects of Long-Term Storage Time and Original Sampling Month on Biobank Plasma Protein Concentrations

    Directory of Open Access Journals (Sweden)

    Stefan Enroth

    2016-10-01

    Full Text Available The quality of clinical biobank samples is crucial to their value for life sciences research. A number of factors related to the collection and storage of samples may affect the biomolecular composition. We have studied the effect of long-time freezer storage, chronological age at sampling, season and month of the year and on the abundance levels of 108 proteins in 380 plasma samples collected from 106 Swedish women. Storage time affected 18 proteins and explained 4.8–34.9% of the observed variance. Chronological age at sample collection after adjustment for storage-time affected 70 proteins and explained 1.1–33.5% of the variance. Seasonal variation had an effect on 15 proteins and month (number of sun hours affected 36 proteins and explained up to 4.5% of the variance after adjustment for storage-time and age. The results show that freezer storage time and collection date (month and season exerted similar effect sizes as age on the protein abundance levels. This implies that information on the sample handling history, in particular storage time, should be regarded as equally prominent covariates as age or gender and need to be included in epidemiological studies involving protein levels.

  2. Secure Storage Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Aderholdt, Ferrol [Tennessee Technological University; Caldwell, Blake A [ORNL; Hicks, Susan Elaine [ORNL; Koch, Scott M [ORNL; Naughton, III, Thomas J [ORNL; Pogge, James R [Tennessee Technological University; Scott, Stephen L [Tennessee Technological University; Shipman, Galen M [ORNL; Sorrillo, Lawrence [ORNL

    2015-01-01

    The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention on elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to

  3. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  4. Clinical neurogenetics: neuropathic lysosomal storage disorders.

    Science.gov (United States)

    Pastores, Gregory M; Maegawa, Gustavo H B

    2013-11-01

    The lysosomal storage disorders are a clinically heterogeneous group of inborn errors of metabolism, associated with the accumulation of incompletely degraded macromolecules within several cellular sites. Affected individuals present with a broad range of clinical problems, including hepatosplenomegaly and skeletal dysplasia. Onset of symptoms may range from birth to adulthood. Most are associated with neurologic features. Later-onset forms are often misdiagnosed as symptoms, which might include psychiatric manifestations, are slowly progressive, and may precede other neurologic or systemic features. Symptomatic care, which remains the mainstay for most subtypes, can lead to significant improvement in quality of life. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Spent-fuel storage: a private sector option

    International Nuclear Information System (INIS)

    Thomas, J.A.; Ross, S.R.

    1983-01-01

    The investigation was performed to delineate the legal and financial considerations for establishing private sector support for the planning and development of an independent spent-fuel storage facility (ISFSF). The preferred institutional structure was found to be one in which a not-for-profit corporation contracts with a limited partnership to handle the spent fuel. The limited partnership acquires the necessary land and constructs the ISFSF facility and then leases the facility to the not-for-profit corporation, which acquires spent-fuel rods from the utilities. The DOE must agree to purchase the spent-fuel rods at the expiration of term and warrant continued operation of the facility if policy changes at the federal level force the removal of the rods prior to completion of the contracted storage cycle. The DOE planning base estimate of spent-fuel storage requirements indicates a market potential adequate to support 10,000 MTU or more of spent-fuel storage prior to the time a government repository is available to accept spent fuel around the turn of the century. The estimated construction cost of a 5000-MTU water basin facility is $552 million. The total capital requirements to finance such a facility are estimated to be $695 million, based on an assumed capital structure of 70 percent debt and 30 percent equity. The estimated total levelized cost of storage, including operating costs, for the assumed 17-year life of the facility is $223 per kilogram of uranium. This is equivalent to a slightly less than one mill per kilowatt-hour increase in nuclear fuel costs at the nuclear power station that was the source of the spent fuel. In conclusion, within the context of the new Nuclear Waste Policy Act of 1982, the study points to both the need for and the advantages of private sector support for one or more ISFSFs and establishes a workable mechanism for the recovery of the costs of owning and operating such facilities. 3 figures, 4 tables

  6. Energy storage

    International Nuclear Information System (INIS)

    Odru, P.

    2010-01-01

    This book proposes a broad overview of the technologies developed in the domains of on-board electricity storage (batteries, super-capacitors, flywheels), stationary storage (hydraulic dams, compressed air, batteries and hydrogen), and heat storage (sensible, latent and sorption) together with their relative efficiency, their expected developments and what advantages they can offer. Eminent specialists of this domain have participated to the redaction of this book, all being members of the Tuck's Foundation 'IDees' think tank. (J.S.)

  7. Prospects and Limits of Energy Storage in Batteries.

    Science.gov (United States)

    Abraham, K M

    2015-03-05

    Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.

  8. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  9. Irradiation control of pathogenic bacteria and their growth during storage time in cooled chicken

    International Nuclear Information System (INIS)

    Ha Yiming; Wang Feng; Fan Bei; Liu Shuliang; Ju Hua

    2009-01-01

    The growth of pathogenic bacteria during storage time and their D 10 values by irradiation in cooled chicken were evaluated. The total numbers of colony, E.coli 10003, Campylobacter jejuni33560 and CY04 of the D 10 values were 1.434 kGy, 0.408 kGy, 0.175 kGy, 0.2 kGy respectively in cooled chicken. The results show that total bacteria count in vacuum packaged cooled chicken sample is 5.66 lg(CFU/g) and 4.90 lg (CFU/g) after 3 kGy and 5 kGy irradiation. And in storage at 0∼4 degree C the storage shelf-life of irradiated vacuum packaged cooled chicken could extend to 21 d and 28 d. It can be deduced that pathogenic bacteria can be controlled effectively by irradiation. (authors)

  10. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  11. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    International Nuclear Information System (INIS)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K.; Akimoto, H.

    2013-01-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery

  12. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Science.gov (United States)

    Kaji, K.; Zhang, J.; Horie, H.; Akimoto, H.; Tanaka, K.

    2013-12-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  13. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K. [Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo (Japan); Akimoto, H. [Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-12-10

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  14. Preliminary long-term stability criteria for compressed air energy storage caverns in salt domes

    Energy Technology Data Exchange (ETDEWEB)

    Thoms, R.L.; Martinez, J.D.

    1978-08-01

    Air storage caverns, which are an essential and integral component of a CAES plant, should be designed and operated so as to perform satisfactorily over the intended life of the overall facility. It follows that the long-term ''stability'' of air storage caverns must be considered as a primary concern in projecting the satisfactory operation of CAES facilities. As used in the report, ''stability'' of a storage cavern implies the extent to which an acceptable amount of cavern storage volume can be utilized with routine maintenance for a specified time interval, e.g., 35 years. In this context, cavern stability is relative to both planned utilization and time interval of operation. The objective of the study was to review the existing literature and consult knowledgeable workers in the storage industry, and then report state-of-the-art findings relative to long-term stability of compressed air energy storage caverns in salt domes. Further, preliminary cavern stability criteria were to be presented in a form consistent with the amount of information available on cavern performance in salt domes. Another objective of the study was to outline a methodology for determining the long-term stability of site-specific CAES cavern systems in salt domes.

  15. ERDA's Chemical Energy Storage Program

    Science.gov (United States)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  16. Stability of flavoured phytosterol-enriched drinking yogurts during storage as affected by different packaging materials.

    Science.gov (United States)

    Semeniuc, Cristina Anamaria; Cardenia, Vladimiro; Mandrioli, Mara; Muste, Sevastiţa; Borsari, Andrea; Rodriguez-Estrada, Maria Teresa

    2016-06-01

    The aim of this study was to investigate the influence of different packaging materials on storage stability of flavoured phytosterol-enriched drinking yogurts. White vanilla (WV) and blood orange (BO) phytosterol-enriched drinking yogurts conditioned in mono-layer and triple-layer co-extruded plastic bottles were stored at +6 ± 1 °C for 35 days (under alternating 12 h light and 12 h darkness) to simulate shelf-life conditions. Samples were collected at three different storage times and subjected to determination of total sterol content (TSC), peroxide value (PV) and thiobarbituric acid reactive substances (TBARs). TSC was not significantly affected by packaging material or storage time and met the quantity declared on the label. PV was significantly influenced by yogurt type × packaging material × storage time interaction and TBARs by packaging material × storage time interaction. Between the two packaging materials, the triple-layer plastic mini bottle with black coloured and completely opaque intermediate layer offered the best protection against lipid oxidation. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  18. Nanowire modified carbon fibers for enhanced electrical energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  19. Real Life Lab BIPV field testing in the Netherlands

    NARCIS (Netherlands)

    Ritzen, M.; Vroon, Z.; Rovers, R.; Geurts, C.; Blocken, B.

    2015-01-01

    Integration of PV in the Building Envelope (BIPV) is one of the four key developments necessary for large market PV penetration, together with PV efficiency improvement, price decrease and electricity storage [1]. In the course of BIPV development, Real-Life Lab demonstration projects are realized

  20. Real life lab BIPV field testing in the Netherlands

    NARCIS (Netherlands)

    Ritzen, M.J.; Vroon, Z.; Geurts, C.P.W.; Rovers, R.; Blocken, B.J.E.

    2015-01-01

    Integration of PV in the Building Envelope (BIPV) is one of the four key developments necessary for large market PV penetration, together with PV efficiency improvement, price decrease and electricity storage [1]. In the course of BIPV development, Real-Life Lab demonstration projects are realized

  1. Energy storage

    CERN Document Server

    Brunet, Yves

    2013-01-01

    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  2. Electricity Storage. Technology Brief

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Kempener, R. [International Renewable Energy Agency IRENA, Bonn (Germany)

    2012-04-15

    Electricity storage is a key technology for electricity systems with a high share of renewables as it allows electricity to be generated when renewable sources (i.e. wind, sunlight) are available and to be consumed on demand. It is expected that the increasing price of fossil fuels and peak-load electricity and the growing share of renewables will result in electricity storage to grow rapidly and become more cost effective. However, electricity storage is technically challenging because electricity can only be stored after conversion into other forms of energy, and this involves expensive equipment and energy losses. At present, the only commercial storage option is pumped hydro power where surplus electricity (e.g. electricity produced overnight by base-load coal or nuclear power) is used to pump water from a lower to an upper reservoir. The stored energy is then used to produce hydropower during daily high-demand periods. Pumped hydro plants are large-scale storage systems with a typical efficiency between 70% and 80%, which means that a quarter of the energy is lost in the process. Other storage technologies with different characteristics (i.e. storage process and capacity, conversion back to electricity and response to power demand, energy losses and costs) are currently in demonstration or pre-commercial stages and discussed in this brief report: Compressed air energy storage (CAES) systems, Flywheels; Electrical batteries; Supercapacitors; Superconducting magnetic storage; and Thermal energy storage. No single electricity storage technology scores high in all dimensions. The technology of choice often depends on the size of the system, the specific service, the electricity sources and the marginal cost of peak electricity. Pumped hydro currently accounts for 95% of the global storage capacity and still offers a considerable expansion potential but does not suit residential or small-size applications. CAES expansion is limited due to the lack of suitable

  3. Storage in Europe

    International Nuclear Information System (INIS)

    Cabanes, J.M.; Rottenberg, J.; Abiad, A.; Caudron, S.; Girault, Ph.

    2007-01-01

    Storage represents one of the key elements among the different modulation tools. How the problem of storage is put forward in Europe in front of the increasing uncertainty of the gas demand and prices? What are the policies implemented by storage facility operators? To what extend storage can amortize gas prices volatility or allow the market actors to take the best profit of this volatility? These are the questions debated at this workshop by four specialists of this domain. (J.S.)

  4. The long term storage of advanced gas-cooled reactor (AGR) fuel

    International Nuclear Information System (INIS)

    Standring, P.N.

    1999-01-01

    The approach being taken by BNFL in managing the AGR lifetime spent fuel arisings from British Energy reactors is given. Interim storage for up to 80 years is envisaged for fuel delivered beyond the life of the Thorp reprocessing plant. Adopting a policy of using existing facilities, to comply with the principles of waste minimisation, has defined the development requirements to demonstrate that this approach can be undertaken safely and business issues can be addressed. The major safety issues are the long term integrity of both the fuel being stored and structure it is being stored in. Business related issues reflect long term interactions with the rest of the Sellafield site and storage optimisation. Examples of the development programme in each of these areas is given. (author)

  5. Scheme of higher-density storage of spent nuclear fuel in Chernobyl NPP interim storage facility no. 1

    International Nuclear Information System (INIS)

    Britan, P.M.

    2008-01-01

    On 29. March 2000 the Cabinet of Ministers of Ukraine issued a decree prescribing that the last operating unit of Chernobyl NPP be shut down before its design lifetime expiry. In accordance with the Contract concluded on 14 June 1999 between the National Energy-generating Company 'Energoatom' and the Consortium of Framatome, Campenon Bernard-SGE and Bouygues, in order to store the spent ChNPP fuel a new interim dry storage facility (ISF-2) for spent ChNPP fuel would be built. Currently the spent nuclear fuel (spent fuel assemblies - SFAs) is stored in reactor cooling pools and in the reactors on Units 1, 2, 3, as well as in the wet Interim Storage Facility (ISF-1). Taking into account the expected delay with the commissioning of ISF-2, and in connection with the scheduled activities to build the New Safe Confinement (including the taking-down of the existing ventilation stack of ChNPP Units 3 and 4) and the expiry of the design operation life of Units 1 and 2, it is expedient to remove the nuclear fuel from Units 1, 2 and 3. This is essential to improve nuclear safety and ensure that the schedule of construction of the New Safe Confinement is met. The design capacity of ISF-1 (17 800 SFAs) is insufficient to store all SFAs (21 284) currently on ChNPP. A technically feasible option that has been applied on other RBMK plants is denser storage of spent nuclear fuel in the cooling ponds of the existing ISF-1. The purpose of the proposed modifications is to introduce changes to the ISF-1 design supported by necessary justifications required by the Ukrainian codes with the objective of enabling the storage of additional SFAs in the existing storage space (cooling pools). The need for the modification is caused by the requirement to remove nuclear fuel from the ChNPP units as soon as possible, before the work begins to decommission these units, as well as to create safe conditions for the construction of the New Safe Confinement over the existing Shelter Unit. (author)

  6. INVESTIGATION OF THE PROPERTIES OF MARMALADE WITH PLANT CRYOADDITIVES DURING STORAGE

    Directory of Open Access Journals (Sweden)

    N. Shmatchenko

    2018-04-01

    Full Text Available This article presents the results of studies of the properties of marmalade with natural plant cryoadditives during storage for 3 months (90 days. To improve the organoleptic characteristics and antioxidant properties of marmalade, plant additives of cryogenic origin were used, namely cryopastes from quince, apple, carrot, pumpkin, grapes, and cryopowders from rose hips, sea buckthorn, and grapes. It is shown that the use of plant cryoadditives makes it possible to increase the biological value and antioxidant properties of new types of marmalade. For new types of marmalade with cryoadditives, during its shelf life, these properties have not been studied earlier. However, it should be noted that such studies are necessary and relevant for solving the problem of preserving the quality indicators and antioxidant capacity of marmalade with cryoadditives. New kinds of marmalade have high organoleptic characteristics during the whole storage period. It is shown that the storage conditions of marmalade, according to current regulatory documentation, are suitable for new marmalade products, since the physico-chemical and microbiological indicators vary, but remain within acceptable limits. Thus, the moisture content decreases to almost 31%, the acidity rises by 12–16%, compared to freshly prepared samples. The content of reducing substances increases by 30–64%. It is determined that the value of the antioxidant capacity of all the samples developed is much higher – almost 2.3–8 times than the same figure for the control sample. After the storage period, the antioxidant capacity is reduced by 15–35%, but this data also significantly exceeds the antioxidant capacity of the control sample. Storage of marmalade with cryopastes and cryopowders for 90 days is possible, since all the basic physico-chemical, microbiological, and organoleptic indicators at the end of shelf life meet the requirements. Indicators of antioxidant capacity for them also

  7. The ANDRA, two years after the June 2006, 28 programming law. Assessment and perspectives for the Manche storage centre. Press conference of June 2008, 27

    International Nuclear Information System (INIS)

    2008-01-01

    This report first presents the main activities of ANDRA (the French national agency for radioactive waste management), describes and comments the legal frame built up by the programming law of the June 2006, 28. It presents the Manche waste storage centre, its waste types, storage concept, cover and control, and actions to keep the memory of this site for the next generations. It gives an overview of ANDRA's missions, role as industrial operator, and financing, describes the three general interest missions (national inventory of radioactive materials and wastes, collection and processing of common usage radioactive objects, and decontamination of sites polluted by radioactivity), discusses the results obtained for the inventory. It presents the project of reversible deep storage of high and intermediate level and long life wastes (a facility is foreseen to operate in 2025), and the project of a hollow storage site for low level and long life wastes

  8. FY2011 Annual Report for NREL Energy Storage Projects

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

    2012-04-01

    This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

  9. Storage duration effect on deformation recovery of repacked alginates

    Directory of Open Access Journals (Sweden)

    Siti Sunarintyas

    2009-09-01

    Full Text Available Background: Manufacturers supply alginate impression materials as a powder that is packaged in bulk and in individual container. Some Indonesian dental suppliers often repackage the bulk alginate into individual plastic packages which are not tied tightly and stored in the display room without air conditioner. It is known that critical factors to the shelf life of alginate includer avoidance of moisture contamination which may lead to premature setting of the alginate and avoidance of high temperature which may cause depolymerization of the alginate. Purpose: The aim of this study was to determine storage duration effect of repacked alginates on deformation recovery. Methods: Two brands of alginates (Tulip®TU, and Aroma Fine DF III®AF were repacked into 120 plastic containers. The samples were stored in room condition (temperature 29° C ± 1° C, relative humidity 60% ± 10% for 1, 2, 3, 4 and 5 weeks. The alginates setting time and recovery from deformation were measured according to the ANSI/ADA specification number 18 (ISO 1563. result: The results revealed that there was decreased setting time during 5 weeks but there was slight decreased in deformation recovery after 3 weeks storage. The ANOVA showed there was no significant difference of alginates deformation recovery among the storage times (p > 0.05. Conclusion: Storage duration of repacked alginates in plastic containers during 5 weeks in room condition do not influence the alginate deformation recovery.

  10. Spent fuel storage requirements, 1988

    International Nuclear Information System (INIS)

    1988-10-01

    Historical inventories of spent fuel and Department of Energy (DOE) estimates of future discharges from US commercial nuclear reactors are presented for the next 20 years, through the year 2007. The eventual needs for additional spent fuel storage capacity are estimated. These estimates are based on the maximum capacities within current and planned at-reactor facilities and on any planned transshipments of fuel to other reactors or facilities. Historical data through December 1987 and projected discharges through the end of reactor life are used in this analysis. The source data was supplied by the utilities to DOE through the 1988 RW-859 data survey and by DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 12 refs., 3 figs., 28 tabs

  11. Waste encapsulation storage facility (WESF) standards/requirements identification document (S/RIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, B.S., Westinghouse Hanford

    1996-07-29

    This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ES{ampersand}H) standards/requirements for the Waste Encapsulation Storage Facility (WESF). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  12. Utilizing cloud storage architecture for long-pulse fusion experiment data storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Liu, Qiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan, Hubei (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zheng, Wei, E-mail: zhenghaku@gmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan, Hubei (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei (China); Wan, Kuanhong; Hu, Feiran; Yu, Kexun [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan, Hubei (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei (China)

    2016-11-15

    Scientific data storage plays a significant role in research facility. The explosion of data in recent years was always going to make data access, acquiring and management more difficult especially in fusion research field. For future long-pulse experiment like ITER, the extremely large data will be generated continuously for a long time, putting much pressure on both the write performance and the scalability. And traditional database has some defects such as inconvenience of management, hard to scale architecture. Hence a new data storage system is very essential. J-TEXTDB is a data storage and management system based on an application cluster and a storage cluster. J-TEXTDB is designed for big data storage and access, aiming at improving read–write speed, optimizing data system structure. The application cluster of J-TEXTDB is used to provide data manage functions and handles data read and write operations from the users. The storage cluster is used to provide the storage services. Both clusters are composed with general servers. By simply adding server to the cluster can improve the read–write performance, the storage space and redundancy, making whole data system highly scalable and available. In this paper, we propose a data system architecture and data model to manage data more efficient. Benchmarks of J-TEXTDB performance including read and write operations are given.

  13. Utilizing cloud storage architecture for long-pulse fusion experiment data storage

    International Nuclear Information System (INIS)

    Zhang, Ming; Liu, Qiang; Zheng, Wei; Wan, Kuanhong; Hu, Feiran; Yu, Kexun

    2016-01-01

    Scientific data storage plays a significant role in research facility. The explosion of data in recent years was always going to make data access, acquiring and management more difficult especially in fusion research field. For future long-pulse experiment like ITER, the extremely large data will be generated continuously for a long time, putting much pressure on both the write performance and the scalability. And traditional database has some defects such as inconvenience of management, hard to scale architecture. Hence a new data storage system is very essential. J-TEXTDB is a data storage and management system based on an application cluster and a storage cluster. J-TEXTDB is designed for big data storage and access, aiming at improving read–write speed, optimizing data system structure. The application cluster of J-TEXTDB is used to provide data manage functions and handles data read and write operations from the users. The storage cluster is used to provide the storage services. Both clusters are composed with general servers. By simply adding server to the cluster can improve the read–write performance, the storage space and redundancy, making whole data system highly scalable and available. In this paper, we propose a data system architecture and data model to manage data more efficient. Benchmarks of J-TEXTDB performance including read and write operations are given.

  14. Vitellogenin-RNAi and ovariectomy each increase lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers.

    Science.gov (United States)

    Tetlak, Alicia G; Burnett, Jacob B; Hahn, Daniel A; Hatle, John D

    2015-12-01

    Reduced reproduction has been shown to increase lifespan in many animals, yet the mechanisms behind this trade-off are unclear. We addressed this question by combining two distinct, direct means of life-extension via reduced reproduction, to test whether they were additive. In the lubber grasshopper, Romalea microptera, ovariectomized (OVX) individuals had a ~20% increase in lifespan and a doubling of storage relative to controls (Sham operated). Similarly, young female grasshoppers treated with RNAi against vitellogenin (the precursor to egg yolk protein) had increased fat body mass and halted ovarian growth. In this study, we compared VgRNAi to two control groups that do not reduce reproduction, namely buffer injection (Buffer) and injection with RNAi against a hexameric storage protein (Hex90RNAi). Each injection treatment was tested with and without ovariectomy. Hence, we tested feeding, storage, and lifespans in six groups: OVX and Buffer, OVX and Hex90RNAi, OVX and VgRNAi, Sham and Buffer, Sham and Hex90RNAi, and Sham and VgRNAi. Ovariectomized grasshoppers and VgRNAi grasshoppers each had similar reductions in feeding (~40%), increases in protein storage in the hemolymph (150-300%), and extensions in lifespan (13-21%). Ovariectomized grasshoppers had higher vitellogenin protein levels than did VgRNAi grasshoppers. Last but not least, when ovariectomy and VgRNAi were applied together, there was no greater effect on feeding, protein storage, or longevity. Hence, feeding regulation, and protein storage in insects, may be conserved components of life-extension via reduced reproduction.

  15. Design of Dimensional Model for Clinical Data Storage and Analysis

    Directory of Open Access Journals (Sweden)

    Dipankar SENGUPTA

    2013-06-01

    Full Text Available Current research in the field of Life and Medical Sciences is generating chunk of data on daily basis. It has thus become a necessity to find solutions for efficient storage of this data, trying to correlate and extract knowledge from it. Clinical data generated in Hospitals, Clinics & Diagnostics centers is falling under a similar paradigm. Patient’s records in various hospitals are increasing at an exponential rate, thus adding to the problem of data management and storage. Major problem being faced corresponding to storage, is the varied dimensionality of the data, ranging from images to numerical form. Therefore there is a need for development of efficient data model which can handle this multi-dimensionality data issue and store the data with historical aspect.For the stated problem lying in façade of clinical informatics we propose a clinical dimensional model design which can be used for development of a clinical data mart. The model has been designed keeping in consideration temporal storage of patient's data with respect to all possible clinical parameters which can include both textual and image based data. Availability of said data for each patient can be then used for application of data mining techniques for finding the correlation of all the parameters at the level of individual and population.

  16. Extended storage for radioactive wastes: relevant aspects related to the safety

    International Nuclear Information System (INIS)

    Castillo, Reinaldo G.; Peralta V, José L.P.; Estevez, Gema G. F.

    2013-01-01

    The safe management of radioactive waste is an issue of great relevance globally linked to the issue of the peaceful use of nuclear energy. Among the steps in the management of this waste, the safe storage is one of the most important. Given the high costs and uncertainties existing among other aspects of the variants of disposal of radioactive waste, the prolonged storage of these wastes for periods exceeding 50 years is an option that different countries more and more value. One of the fundamental problems to take into account is the safety of the stores, so in this work are evaluated different safety components associated with these facilities through a safety analysis methodology. Elements such as human intrusion, the construction site, the design of the facility, among others are identified as some of the key aspects to take into account when evaluating the safety of these types of facilities. Periods of activities planned for a long-term storage of radioactive waste exceed, in general, the useful life of existing storage facilities. This work identified new challenges to overcome in order to meet the requirements for the achievement of a safe management of radioactive waste without negative impacts on the environment and man

  17. State-of-Charge Balancing Control of a Modular Multilevel Converter with an Integrated Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    Hui Liang

    2018-04-01

    Full Text Available With the fast development of the electric vehicle industry, the reuse of second-life batteries in vehicles are becoming more attractive, however, both the state-of-charge (SOC inconsistency and the capacity inconsistency of second-life batteries have limits in their utilization. This paper focuses on the second-life batteries applied battery energy storage system (BESS based on modular multilevel converter (MMC. By analyzing the power flow characteristics among all sources within the MMC-BESS, a three-level SOC equilibrium control strategy aiming to battery capacity inconsistency is proposed to balance the energy of batteries, which includes SOC balance among three-phase legs, SOC balance between the upper and lower arms of each phase, and SOC balance of submodules within each arm. In battery charging and discharging control, by introducing power regulations based on battery capacity proportion of three-phase legs, capacity deviation between the upper and lower’s arm, and the capacity coefficient of the submodule into the SOC feedback control loop, SOC balance of all battery modules is accomplished, thus effectively improving the energy utilization of second-life battery energy storage system. Finally, the effectiveness and feasibility of the proposed methods are verified by results obtained from simulations and the experimental platform.

  18. The effect of ionizing radiation and storage temperature on the post-harvest growth and some quality properties of mushrooms (Agaricus bisporus

    Directory of Open Access Journals (Sweden)

    Kryspina Śmierzchalska

    2013-12-01

    Full Text Available The effects of a dose of 2.0 kGy (Co-60 and three ranges of storage temperature (0-4°C, 9-11°C, 18-19°C on increasing the shelf-life and some quality properties of the mushrooms were investigated. The retardation of mushroom growth and ageing by ionizing radiation was estimated by measurements of the cap diameter, stem elongation, cap opening and discoloration of cap surface. The control of fungal and bacterial diseases was also evaluated. The effect of lower doses, 0.5 and 1.0 kGy, was compared at the storage temperature of 10°C. The irradiation of mushrooms soon after harvest and storage at temperatures of 10 and 16°C allowed the retention of quality and increased the shelf-life to 8 days; at 18-19°C to 6 days.

  19. Optimal routing in an automated storage/retrieval system with dedicated storage

    NARCIS (Netherlands)

    Berg, van den J.P.; Gademann, A.J.R.M.

    1999-01-01

    We address the sequencing of requests in an automated storage/retrieval system with dedicated storage. We consider the block sequencing approach, where a set of storage and retrieval requests is given beforehand and no new requests come in during operation. The objective for this static problem is

  20. Assessment of frozen storage duration effect on quality characteristics of various horse muscles

    Directory of Open Access Journals (Sweden)

    Pil Nam Seong

    2017-12-01

    Full Text Available Objective The study aimed at assessing the effects of frozen storage duration on quality characteristics, lipid oxidation and sensory quality of various horse muscles. Methods Five representative muscles: longissimus dorsi (LD, gluteus medius (GM, semimembranosus (SM, biceps femoris (BF, and triceps brachii (TB at 24 h post-mortem obtained from 28-mo-old Jeju female breed horses (n = 8 were used in the present investigation. The muscles were vacuum-packaged and frozen at −20°C for 120, 240, and 360 days. All the samples were analyzed for thawing and cooking losses, pH, Warner–Bratzler shear forces (WBSF, color traits, total volatile basic nitrogen (TVBN, thiobarbituric acid reactive substances (TBARS and sensory traits. The muscle samples analyzed on day 0 of frozen storage (fresh, non-frozen were used for comparison. Results Results revealed that thawing and cooking losses significantly (p<0.05 increased in all the muscles after 120 days and then remained unchanged up to 360 days of frozen storage. The TBARS and TVBN contents significantly increased as increasing frozen storage time up to 360 days (p<0.05. While, significant decreases in WBSF values were observed for all the muscles with increased frozen storage time (p<0.05. Frozen storage variously affected the color traits of the muscles for instance; the redness of LD, GM, and BF muscles showed a decreasing tendency during frozen storage while it was not changed in TB and SM muscles. Furthermore, the frozen storage did not produce detrimental effects on sensory quality as it did not cause flavor and juiciness defects whereas it partially improved the tenderness of all the muscles studied. Conclusion Based on the results obtained from our work, it is concluded that frozen storage could be applied to increase the long-term shelf life of horsemeat while still retaining its sensory quality.

  1. Shelf-Life of Boiled Salted Duck Meat Stored Under Normal and Modified Atmosphere.

    Science.gov (United States)

    Zhai, Yang; Huang, Jichao; Khan, Iftikhar Ali; Guo, Yuchen; Huang, Ming; Zhou, Guanghong

    2018-01-01

    The objective of this study was to investigate the physicochemical properties and changes in the microbial counts of boiled salted duck (BSD) meat packed under various conditions. BSD meat was stored under normal atmosphere (C) and two modified atmosphere packaging (MAP) conditions: M1 (N 2 , 100%) and M2 (CO 2 /N 2 , 30%/70%) at 4 °C. Microbiological quality, pH, redness, lipid oxidation, headspace gas composition, and water activity of BSD meat were measured. The results showed that the time to reach the maximum acceptable total viable counts (TVC, 4.9 log CFU/g) was 12, 18, and 21 d in C, M1, and M2 samples, respectively. Significant difference in the redness values was observed in all treatments during storage. The redness value of C group was significantly lower than that in M1 and M2 groups at the end of storage. The thiobarbituric acid-reactive substances (TBARS) values under MAP were 0.24 to 0.26 mg MDA/kg meat at the end of storage, lower (P shelf-life of BSD meat to 21 d during storage at 4 °C, suggesting that MAP can be a practical approach to extend the shelf-life and maintain the quality of BSD products. This study evaluated the application of MAP for a cooked duck product. Our results showed that MAP can be utilized to extend the shelf-life. This technology may be used for preservation of other cooked meat products. © 2017 Institute of Food Technologists®.

  2. Water Storage: Quo Vadis?

    Science.gov (United States)

    Smakhtin, V.

    2017-12-01

    Humans stored water - in various forms - for ages, coping with water resources variability, and its extremes - floods and droughts. Storage per capita, and other storage-related indicators, have essentially become one way of reflecting the progress of economic development. Massive investments went into large surface water reservoirs that have become the characteristic feature of the earth's landscapes, bringing both benefits and controversy. As water variability progressively increases with changing climate, globally, on one hand, and the idea of sustainable development receives strong traction, on another - it may be worth the while to comprehensively examine current trends and future prospects for water storage development. The task is surely big, to say the least. The presentation will aim to initiate a structured discussion on this multi-facet issue and identify which aspects and trends of water storage development may be most important in the context of Sustainable Development Goals, Sendai Framework for Disaster Risk Reduction, Paris Agreement on Climate Change, and examine how, where and to what extent water storage planning can be improved. It will cover questions like i) aging of large water storage infrastructure, the current extent of this trend in various geographical regions, and possible impacts on water security and security of nations; ii) improved water storage development planning overall in the context of various water development alternatives and storage options themselves and well as their combinations iii) prospects for another "storage revolution" - speed increase in dam numbers, and where, if at all this is most likely iv) recent events in storage development, e.g. is dam decommissioning a trend that picks pace, or whether some developing economies in Asia can do without going through the period of water storage construction, with alternatives, or suggestions for alleviation of negative impacts v) the role of subsurface storage as an

  3. A new storage-ring light source

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  4. Highly Stable Aqueous Zinc-ion Storage Using Layered Calcium Vanadium Oxide Bronze Cathode

    KAUST Repository

    Xia, Chuan; Guo, Jing; Li, Peng; Zhang, Xixiang; Alshareef, Husam N.

    2018-01-01

    Cost-effective aqueous rechargeable batteries are attractive alternatives to non-aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc-ion batteries (ZIBs), based on Zn2+ intercalation chemistry, stand out as they can employ high-capacity Zn metal as anode material. Herein, we report a layered calcium vanadium oxide bronze as cathode material for aqueous Zn batteries. For the storage of Zn2+ ions in aqueous electrolyte, we demonstrate that calcium based bronze structure can deliver a high capacity of 340 mAh g-1 at 0.2 C, good rate capability and very long cycling life (96% retention after 3000 cycles at 80 C). Further, we investigate the Zn2+ storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 Wh kg-1 at a power density of 53.4 W kg-1.

  5. Highly Stable Aqueous Zinc-ion Storage Using Layered Calcium Vanadium Oxide Bronze Cathode

    KAUST Repository

    Xia, Chuan

    2018-02-12

    Cost-effective aqueous rechargeable batteries are attractive alternatives to non-aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc-ion batteries (ZIBs), based on Zn2+ intercalation chemistry, stand out as they can employ high-capacity Zn metal as anode material. Herein, we report a layered calcium vanadium oxide bronze as cathode material for aqueous Zn batteries. For the storage of Zn2+ ions in aqueous electrolyte, we demonstrate that calcium based bronze structure can deliver a high capacity of 340 mAh g-1 at 0.2 C, good rate capability and very long cycling life (96% retention after 3000 cycles at 80 C). Further, we investigate the Zn2+ storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 Wh kg-1 at a power density of 53.4 W kg-1.

  6. Assessment of dry storage performance of spent LWR fuel assemblies with increasing burnup

    International Nuclear Information System (INIS)

    Peehs, M.; Garzarolli, F.; Goll, W.

    1999-01-01

    Although the safety of a dry long-term spent fuel store is scarcely influenced if a few fuel rods start to leak during extended storage - since all confinement systems are designed to retain gaseous activity safely - it is a very conservative safety goal to avoid the occurrence of systematic rod defects. To assess the extended storage performance of a spent fuel assembly (FA), the experience can be collated into 3 storage modes: I - fast rate of temperature decrease δ max ≥ δ ≥ 300 deg. C, II - medium rate of decrease for the fuel rod dry storage temperature 300 deg. C > δ ≥ 200 deg. C, III - slow to negligible rate of temperature decrease for δ 2 -fuel are practically immobile during storage. Consequently all fission-product-driven defect mechanisms will not take place. The leading defect mechanism - also for fuel rods with increased burnup - remains creep due to the hoop strain resulting from the fuel rod internal fission gas pressure. Limiting the creep to its primary and secondary stages prevents fuel rod degradation. The allowable uniform strain of the cladding is 1 - 2%. Calculations were performed to predict the dry storage performance of fuel assemblies with a burnup ≤ 55 GW · d/tHM based on the fuel assemblies end of life (EOL)-data and on a representative curve T = f(t). The maximum allowable hot spot temperature of a fuel rod in the CASTOR V cask was between 348 deg. C (U FA) and 358 deg. C (MOX FA). The highest hoop strain predicted after 40 years of storage is 0.77% proving that spent LWR fuel dry storage is safe. (author)

  7. Design, Fabrication, and Testing of the INSTAR [INertial STorage And Recovery] System: A Flywheel-based, High Power Energy Storage System for Improved Hybrid Vehicle Fuel Efficiency

    OpenAIRE

    Talancon, Daniel Raul

    2015-01-01

    This thesis describes the development of the INSTAR system: a high-power, cost-effective energy storage system designed to improve HEV regenerative braking capabilities by combining chemical batteries with an electromechanical flywheel. This combination allows the regenerative braking system in hybrid vehicles to recapture more available braking energy at a lower battery pack charging current, increasing vehicle energy efficiency while also potentially increasing battery life.A prototype flyw...

  8. Spent fuel storage requirements: the need for away-from-reactor storage

    International Nuclear Information System (INIS)

    1980-01-01

    The analyses of on-site storage capabilities of domestic utilities and estimates of timing and magnitude of away-from-reactor (AFR) storage requirements were presented in the report DOE/ET-0075 entitled Spent Fuel Storage Requirements: The Need For Away-From-Reactor Storage published in February 1979 by the US Department of Energy. Since utility plans and requirements continue to change with time, a need exists to update the AFR requirements estimates as appropriate. This short report updates the results presented in DOE/ET-0075 to reflect recent data on reactor operations and spent fuel storage. In addition to the updates of cases representing the range of AFR requirements in DOE/ET-0075, new cases of interest reflecting utility and regulatory trends are presented

  9. Analysis of ethylene biosynthesis and perception during postharvest cold storage of Marsh and Star Ruby grapefruits.

    Science.gov (United States)

    Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo

    2015-10-01

    Grapefruits are among the citrus species more sensitive to cold and develop chilling injury symptoms during prolonged postharvest storage at temperatures lower than 8 ℃-10 ℃. The plant hormone ethylene has been described either to protect or potentiate chilling injury development in citrus whereas little is known about transcriptional regulation of ethylene biosynthesis, perception and response during cold storage and how the hormone is regulating its own perception and signaling cascade. Then, the objective of the present study was to explore the transcriptional changes in the expression of ethylene biosynthesis, receptors and response genes during cold storage of the white Marsh and the red Star Ruby grapefruits. The effect of the ethylene action inhibitor, 1-MCP, was evaluated to investigate the involvement of ethylene in the regulation of the genes of its own biosynthesis and perception pathway. Ethylene production was very low at the harvest time in fruits of both varieties and experienced only minor changes during storage. By contrast, inhibition of ethylene perception by 1-MCP markedly induced ethylene production, and this increase was highly stimulated during shelf-life at 20 ℃, as well as transcription of ACS and ACO. These results support the auto-inhibitory regulation of ethylene in grapefruits, which acts mainly at the transcriptional level of ACS and ACO genes. Moreover, ethylene receptor1 and ethylene receptor3 were induced by cold while no clear role of ethylene was observed in the induction of ethylene receptors. However, ethylene appears to be implicated in the transcriptional regulation of ERFs both under cold storage and shelf-life. © The Author(s) 2014.

  10. Impact of different cryoprotectants on the survival of freeze-dried Lactobacillus rhamnosus and Lactobacillus casei/paracasei during long-term storage.

    Science.gov (United States)

    Jofré, A; Aymerich, T; Garriga, M

    2015-01-01

    The production of long shelf-life highly concentrated dried probiotic/starter cultures is of paramount importance for the food industry. The aim of the present study was to evaluate the protective effect of glucose, lactose, trehalose, and skim milk applied alone or combined upon the survival of potentially probiotic Lactobacillus rhamnosus CTC1679, Lactobacillus casei/paracasei CTC1677 and L. casei/paracasei CTC1678 during freeze-drying and after 39 weeks of storage at 4 and 22 °C. Immediately after freeze-drying, the percentage of survivors was very high (≥ 94%) and only slight differences were observed among strains and cryoprotectants. In contrast, during storage, survival in the dried state depended on the cryoprotectant, temperature and strain. For all the protectants assayed, the stability of the cultures was remarkably higher when stored under refrigeration (4 °C). Under these conditions, skim milk alone or supplemented with trehalose or lactose showed the best performance (reductions ≤ 0.9 log units after 39 weeks of storage). The lowest survival was observed during non-refrigerated storage and with glucose and glucose plus milk; no viable cells left at the end of the storage period. Thus, freeze-drying in the presence of appropriate cryoprotectants allows the production of long shelf-life highly concentrated dried cultures ready for incorporation in high numbers into food products as starter/potential probiotic cultures.

  11. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage.

    Science.gov (United States)

    Martínez-Flores, Héctor E; Garnica-Romo, Ma Guadalupe; Bermúdez-Aguirre, Daniela; Pokhrel, Prashant Raj; Barbosa-Cánovas, Gustavo V

    2015-04-01

    Thermosonication has been successfully tested in food for microbial inactivation; however, changes in bioactive compounds and shelf-life of treated products have not been thoroughly investigated. Carrot juice was thermo-sonicated (24 kHz, 120 μm amplitude) at 50 °C, 54 °C and 58 °C for 10 min (acoustic power 2204.40, 2155.72, 2181.68 mW/mL, respectively). Quality parameters and microbial growth were evaluated after processing and during storage at 4 °C. Control and sonicated treatments at 50 °C and 54 °C had 10, 12 and 14 d of shelf-life, respectively. Samples sonicated at 58 °C had the best quality; microbial growth remained low at around 3-log for mesophiles, 4.5-log for yeasts and molds and 2-log for enterobacteria after 20 d of storage. Furthermore, thermo-sonicated juice at 58 °C retained >98% of carotenoids and 100% of ascorbic acid. Phenolic compounds increased in all stored, treated juices. Thermo-sonication is therefore a promising technology for preserving the quality of carrot juice by minimising the physicochemical changes during storage, retarding microbial growth and retaining the bioactive compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Cna 1 spent fuel element interim dry storage system thermal analysis

    International Nuclear Information System (INIS)

    Hilal, R. E; Garcia, J. C; Delmastro, D. F

    2006-01-01

    At the moment, the Atucha I Nuclear Power Plant (Cnea-I) located in the city of Lima, has enough room to store its spent fuel (Sf) in their two pools spent fuel until about 2015.In case of life extension a spend fuel element interim dry storage system is needed.Nucleolectrica Argentina S.A. (N A-S A) and the Comision Nacional de Energia Atomica (Cnea), have proposed different interim dry storage systems.These systems have to be evaluated in order to choose one of them.The present work's objective is the thermal analysis of one dry storage alternative for the Sf element of Cna 1.In this work a simple model was developed and used to perform the thermal calculations corresponding to the system proposed by Cnea.This system considers the store of sealed containers with 37 spent fuels in concrete modules.Each one of the containers is filled in the pool houses and transported to the module in a transference cask with lead walls.Fulfill the maximum cladding temperature requirement ( [es

  13. Gamma radiation in increasing productivity of Agaricus bisporus and Pleurotus sajor-caju and enhancing storage life of P. sajor-caju

    International Nuclear Information System (INIS)

    Roy, M.K.; Chatterjee, S.R.; Bahukhandi, D.; Sharma, R.; Philips, A.S.

    2000-01-01

    Gamma radiation of spawn of Agaricus bisporus and pleurotus sajor-caju at doses of 0.1 to 0.3 kGy and 0.1 to 0.25 kGy respectively, reduced the mycelial spawn run time and exerted a stimulatory effect on the growth of these two mushrooms. Irradiation also increased yield of these mushrooms. In all cases of the former, the highest yield of 2.57g was recorded from spawn irradiated at 0.3 kGy, while with the latter, best yield of 1119 g was recorded from spawn treated with 0.25 kGy. The control (non-irradiated) spawns of A. bisporus and P. sajor-caju gave yields of 2.03 g and 565 g respectively. Thus, a major boost in yields could be achieved using this technology. The shelf life of P. sajor-caju could be extended up to 9 days by 0.5 kGy of radiation, when the treated fruit bodies were held at 15 deg C as against the un-irradiated ones which had a shelf-life of 6 days. This dose neither adversely affected the browning of the fruit bodies at 45 deg C, nor lowered their protein (protein + free amino acids) and carbohydrate contents. Irradiation, however, at all the doses from 0.1 to 0.75 kGy enhanced the rehydration ratio and total free amino acid contents. The rehydration ratio of 0.62 was the maximum, reached with a dose of 0.25 kGy as against the control, which showed a value of 5.0. Dehydration along with gamma radiation treatment could play an important role for long term storage of mushrooms. Weight loss of un-dehydrated fruit bodies also decreased as a result of irradiation. (author)

  14. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  15. Effects of storage methods on time-related changes of titanium surface properties and cellular response

    International Nuclear Information System (INIS)

    Lu Haibin; Zhou Lei; Wan Lei; Li Shaobing; Rong Mingdeng; Guo Zehong

    2012-01-01

    Titanium implants are sold in the market as storable medical devices. All the implants have a certain shelf life during which they maintain their sterility, but variations of the surface properties through this duration have not been subject to a comprehensive assessment. The aim of this study was to investigate the effects of storage methods on time-related changes of titanium surface properties. Acid-etched titanium discs (Sa = 0.82 µm) were placed in a sealed container (tradition method) or submerged in the ddH 2 O/NaCl solution (0.15 mol L −1 )/CaCl 2 solution (0.15 mol L −1 ), and new titanium discs were used as a control group. SEM and optical profiler showed that surface morphology and roughness did not change within different groups, but the XPS analysis confirmed that the surface chemistry altered by different storage protocols as the storage duration increased, and the contact angle also varied with storage methods. The storage method also affected the protein adsorption capacity and cellular response on the titanium surface. All titanium discs stored in the solution maintained their excellent bioactivity even after four weeks storage time, but titanium discs stored in a traditional manner decreased substantially in an age-dependent manner. Much effort is needed to improve the storage methods in order to maintain the bioactivity of a titanium dental implant. (paper)

  16. Extended storage of spent fuel

    International Nuclear Information System (INIS)

    1992-10-01

    This document is the final report on the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel and Storage Facility Components during Long Term Storage (BEFAST-II, 1986-1991). It contains the results on wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries who participated in the co-ordinated research programme. Considerable quantities of spent fuel continue to arise and accumulate. Many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology with the construction of additional away-from-reactor storage pools. However, dry storage is increasingly used with most participants considering dry storage concepts for the longer term. Depending on the cladding type options of dry storage in air or inert gas are proposed. Dry storage is becoming widely used as a supplement to wet storage for zirconium alloy clad oxide fuels. Storage periods as long as under wet conditions appear to be feasible. Dry storage will also continue to be used for Al clad and Magnox type fuel. Enhancement of wet storage capacity will remain an important activity. Rod consolidation to increase wet storage capacity will continue in the UK and is being evaluated for LWR fuel in the USA, and may start in some other countries. High density storage racks have been successfully introduced in many existing pools and are planned for future facilities. For extremely long wet storage (≥50 years), there is a need to continue work on fuel integrity investigations and LWR fuel performance modelling. it might be that pool component performance in some cases could be more limiting than the FA storage performance. It is desirable to make concerted efforts in the field of corrosion monitoring and prediction of fuel cladding and poll component behaviour in order to maintain good experience of wet storage. Refs, figs and tabs

  17. Storage of platelets: effects associated with high platelet content in platelet storage containers.

    Science.gov (United States)

    Gulliksson, Hans; Sandgren, Per; Sjödin, Agneta; Hultenby, Kjell

    2012-04-01

    A major problem associated with platelet storage containers is that some platelet units show a dramatic fall in pH, especially above certain platelet contents. The aim of this study was a detailed investigation of the different in vitro effects occurring when the maximum storage capacity of a platelet container is exceeded as compared to normal storage. Buffy coats were combined in large-volume containers to create primary pools to be split into two equal aliquots for the preparation of platelets (450-520×10(9) platelets/unit) in SSP+ for 7-day storage in two containers (test and reference) with different platelet storage capacity (n=8). Exceeding the maximum storage capacity of the test platelet storage container resulted in immediate negative effects on platelet metabolism and energy supply, but also delayed effects on platelet function, activation and disintegration. Our study gives a very clear indication of the effects in different phases associated with exceeding the maximum storage capacity of platelet containers but throw little additional light on the mechanism initiating those negative effects. The problem appears to be complex and further studies in different media using different storage containers will be needed to understand the mechanisms involved.

  18. Probe Storage

    NARCIS (Netherlands)

    Gemelli, Marcellino; Abelmann, Leon; Engelen, Johannes Bernardus Charles; Khatib, M.G.; Koelmans, W.W.; Zaboronski, Olog; Campardo, Giovanni; Tiziani, Federico; Laculo, Massimo

    2011-01-01

    This chapter gives an overview of probe-based data storage research over the last three decades, encompassing all aspects of a probe recording system. Following the division found in all mechanically addressed storage systems, the different subsystems (media, read/write heads, positioning, data

  19. The Ferrocyanide/Stabilized Carbon System, a New Class of High Rate, Long Cycle Life, Aqueous Electrolyte Batteries

    KAUST Repository

    Huggins, R. A.

    2013-01-01

    different from those for energy storage in portable devices. Size and weight are not so important. Instead, matters such as power, cost, calendar life, cycle life, and safety become paramount. A new family of hexacyanoferrate materials with the same open

  20. Plutonium storage criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D. [Scientech, Inc., Germantown, MD (United States); Ascanio, X. [Dept. of Energy, Germantown, MD (United States)

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  1. Spent fuel storage rack

    International Nuclear Information System (INIS)

    Morikawa, Matsuo; Uchiyama, Yuichi.

    1983-01-01

    Purpose: To improve the safety and facilitate the design by limiting the relative displacement in a storage rack. Constitution: The outer wall of a storage rack disposed in water within a fuel pool, the pool wall opposing to the storage rack and the structure between the opposing storages racks are made as a space for confining the pool water or a structure formed with a slight gap, for example, a combination of a recessed structure and a protruded structure. In such a constitution, a space for confirming the pool water is established and the pool water thus confined forms a flow resistance when the storage rack vibrates upon earthquakes, serves as a damper and significantly reduces the responsivity. Furthermore, the relative displacement in the storage rack is limited to inhibit excess earthquake forces to exert on setting bolts and rack clamping bolts of the storage rack. (Sekiya, K.)

  2. Quality changes of the Mediterranean horse mackerel (Trachurus mediterraneus) during chilled storage: The effect of low-dose gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, Raouf [Institut National des Sciences et Technologies de la Mer, La Goulette 2060 (Tunisia); Sadok, Saloua [Institut National des Sciences et Technologies de la Mer, La Goulette 2060 (Tunisia)], E-mail: salwa.sadok@instm.rnrt.tn; Barkallah, Insaf [Centre National des Sciences et Technologies Nucleaires, Sidi-Thabet 2020 (Tunisia)

    2009-04-15

    Pelagic fishes represent the main Mediterranean fisheries in terms of quantity. However, waste and spoilage of pelagic fish are substantial for a variety of reasons, such as their high perishability and the lack or inadequate supply of ice and freezing facilities. In this work, fresh Mediterranean horse mackerel (Trachurus mediterraneus) were irradiated at 1 and 2 kGy and stored in ice for 18 days. Quality changes during storage were followed by the determination of microbial counts, trimethylamine (TMA) and volatile basic nitrogen contents. Similarly, lipid composition and sensory analysis were carried out. Irradiation treatment was effective in reducing total bacterial counts throughout storage. Total basic volatile nitrogen content (TVB-N) and TMA levels increased in all lots with storage time, their concentrations being significantly reduced by irradiation, even when the lower level (1 kGy) was used. According to the quality index method, the control lot had a sensory shelf-life of 4 days, whereas those of the irradiated lots were extended by 5 days. Also, low-dose irradiation had no adverse effect on the nutritionally important polyunsaturated fatty acids (PUFA) of Mediterranean horse mackerel. In the same way, thiobarbituric acid-reactive substances values increased with irradiation during the first day, but these values were lower at the end of storage, compared to the control. Results confirm the practical advantages of using {gamma} irradiation as an additional process to chilled storage to enhance the microbiological quality and to extend the shelf-life of small pelagic species.

  3. Quality changes of the Mediterranean horse mackerel (Trachurus mediterraneus) during chilled storage: The effect of low-dose gamma irradiation

    International Nuclear Information System (INIS)

    Mbarki, Raouf; Sadok, Saloua; Barkallah, Insaf

    2009-01-01

    Pelagic fishes represent the main Mediterranean fisheries in terms of quantity. However, waste and spoilage of pelagic fish are substantial for a variety of reasons, such as their high perishability and the lack or inadequate supply of ice and freezing facilities. In this work, fresh Mediterranean horse mackerel (Trachurus mediterraneus) were irradiated at 1 and 2 kGy and stored in ice for 18 days. Quality changes during storage were followed by the determination of microbial counts, trimethylamine (TMA) and volatile basic nitrogen contents. Similarly, lipid composition and sensory analysis were carried out. Irradiation treatment was effective in reducing total bacterial counts throughout storage. Total basic volatile nitrogen content (TVB-N) and TMA levels increased in all lots with storage time, their concentrations being significantly reduced by irradiation, even when the lower level (1 kGy) was used. According to the quality index method, the control lot had a sensory shelf-life of 4 days, whereas those of the irradiated lots were extended by 5 days. Also, low-dose irradiation had no adverse effect on the nutritionally important polyunsaturated fatty acids (PUFA) of Mediterranean horse mackerel. In the same way, thiobarbituric acid-reactive substances values increased with irradiation during the first day, but these values were lower at the end of storage, compared to the control. Results confirm the practical advantages of using γ irradiation as an additional process to chilled storage to enhance the microbiological quality and to extend the shelf-life of small pelagic species

  4. Aflatoxins & Safe Storage

    Directory of Open Access Journals (Sweden)

    Philippe eVillers

    2014-04-01

    Full Text Available The paper examines both field experience and research on the prevention of the exponential growth of aflatoxins during multi-month post harvest storage in hot, humid countries. The approach described is the application of modern safe storage methods using flexible, Ultra Hermetic™ structures that create an unbreatheable atmosphere through insect and microorganism respiration alone, without use of chemicals, fumigants, or pumps. Laboratory and field data are cited and specific examples are given describing the uses of Ultra Hermetic storage to prevent the growth of aflatoxins with their significant public health consequences. Also discussed is the presently limited quantitative information on the relative occurrence of excessive levels of aflatoxin (>20 ppb before versus after multi-month storage of such crops as maize, rice and peanuts when under high humidity, high temperature conditions and, consequently, the need for further research to determine the frequency at which excessive aflatoxin levels are reached in the field versus after months of post-harvest storage. The significant work being done to reduce aflatoxin levels in the field is mentioned, as well as its probable implications on post harvest storage. Also described is why, with some crops such as peanuts, using Ultra Hermetic storage may require injection of carbon dioxide or use of an oxygen absorber as an accelerant. The case of peanuts is discussed and experimental data is described.

  5. Effect of CaCl2 and controlled atmosphere storage on phytochemical attributes of Guava

    Directory of Open Access Journals (Sweden)

    Muhammad Sameem JAVED

    2017-10-01

    Full Text Available Abstract Guava is very delicate and alluring fruit which is being ignored since very long time despite of highly nutritious fruit and rich source of Vitamin C. It contains Vitamin C 2-3 times more than orange. Naturally the guava fruit is enriched with vitamin C and polyphenoles. Guavas fruits after harvesting were dunked in solutions of CaCl2 (1, 2 and 3% at room temperature for 5 minutes and stored for 24 days in 5% CO2 level at temperature of 10±1°C, while the humidity level of storage chamber were 80%. The stored fruits were analyzed at 6 days of interval for sugars (glucose, fructose and sucrose g/100g total phenolic contents (mgGAE/100g, antioxidant activity (µmolTE/g, and organic acids (citric, tartaric, ascorbic, and malic acids mg/100 g. The total phenolic content and antioxidant activity of guava fruits were declined during progression in storage but in fewer amounts as compared to room storage condition. Citric acid and ascorbic acid contents were reduced with the progression in storage, however tartaric and malic acid values were amplified at end of storage but the rate of changes were slower. The pretreatments in combination with modified atmosphere storage escalate the shelf life of guava and slow down nutritional degradation process.

  6. Low-technology cooling box for storage of malaria RDTs and other medical supplies in remote areas

    Directory of Open Access Journals (Sweden)

    Tsuyuoka Reiko

    2010-01-01

    Full Text Available Abstract Background With the increase in use of point-of-care diagnostic tests for malaria and other diseases comes the necessity of storing the diagnostic kits and the drugs required for subsequent management, in remote areas, where temperatures are high and electricity supply is unreliable or unavailable. Methods To address the lack of temperature-controlled storage during the introduction of community-based malaria management in Cambodia, the Cambodian National Centre for Parasitology, Entomology and Malaria Control (CNM developed prototype evaporative cooling boxes (Cambodian Cooler Boxes - CCBs for storage of perishable medical commodities in remote clinics. The performance of these CCBs for maintaining suitable storage temperatures was evaluated over two phases in 2005 and 2006-7, comparing conditions in CCBs using water as designed, CCBs with no water for evaporation, and ambient storage room temperatures. Temperature and humidity was monitored, together with the capacity of the RDTs recommended for storage between 2 to 30 degree Celsius to detect low-density malaria parasite samples after storage under these conditions. Results Significant differences were recorded between the proportion of temperatures within the recommended RDT storage conditions in the CCBs with water and the temperatures in the storage room (p Discussion and Conclusions The CCB was an effective tool for storage of RDTs at optimal conditions, and extended the effective life-span of the tests. The concept of evaporative cooling has potential to greatly enhance access to perishable diagnostics and medicines in remote communities, as it allows prolonged storage at low cost using locally-available materials, in the absence of electricity.

  7. Storage and distribution/Linear programming for storage operations

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, D

    1978-07-15

    The techniques of linear programing to solve storage problems as applied in a tank farm tie-in with refinery throughput operation include: (1) the time-phased model which works on storage and refinery operations input parameters, e.g., production, distribution, cracking, etc., and is capable of representing product stockpiling in slack periods to meet future peak demands, and investigating alternative strategies such as exchange deals and purchase and leasing of additional storage, and (2) the Monte Carlo simulation method, which inputs parameters, e.g., arrival of crude products at refinery, tankage size, likely demand for products, etc., as probability distributions rather than single values, and is capable of showing the average utilization of facilities, potential bottlenecks, investment required to achieve an increase in utilization, and to enable the user to predict total investment, cash flow, and profit emanating from the original financing decision. The increasing use of computer techniques to solve refinery and storage problems is attributed to potential savings resulting from more effective planning, reduced computer costs, ease of access and more usable software. Diagrams.

  8. Food irradiation and its role in shelf life extension of horticulture produce: a comprehensive evaluation of studies carried out in India and abroad

    International Nuclear Information System (INIS)

    Verma, J.; Gautam, S.

    2015-01-01

    Food irradiation is the process of treating foods to a controlled source of ionizing radiation, to reduce post-harvest losses and ensure its safety. With respect to horticulture produce, the role of food irradiation has been well established to fulfill the phytosanitary requirement of the importing countries and also to ensure food safety in certain commodities. Still for establishing its relevance in extending the shelf-life of horticulture produce, substantial scientific inputs are required. Our objective was therefore to summarize in brief the research findings where role of radiation processing in shelf-life extension of horticulture produce has been addressed. Low dose (0.1 kGy) of γ-radiation resulted in sprout inhibition in potatoes and onions, thus prolonging their storage life upto 4 months at 11-12℃. Radiation processing also delayed ripening process in the climacteric fruits by a week upto one month depending on the cultivars and stored condition. Shelf-life of button mushroom (Agaricus bisporus) was extended up to 10-15 days by γ-radiation treatment of 2-3 kGy and storage at 10±2℃ . A 5 kGy radiation dose and 10℃ storage temperature increased the shelf life of peeled ginger samples upto 70 days. Irradiation of guava fruits with 0.1 kGy γ-radiation increased its post harvest life by 8 days. Shelf-life of Litchi was increased upto 28 days by radiation treatment at 0.5 kGy and subsequent low temperature storage. Shelf-life of leafy vegetables increased upto 20 days by a combination process including γ-radiation (Khade, et.al., unpublished data). Electron beam irradiation (2 kGy) extended shelf-life of fresh strawberry fruits upto 4 day. Apples irradiated at 0.2-0.4 kGy showed improved quality upto 3 months of storage. Shelled sweet corn kernels treated with combination process including γ-radiation (5 kGy) treatment showed prolonged shelf-life of 30 days at 4℃ (Kumar S. et.al., unpublished data). In recent study conducted by us on shelf life

  9. Aqueous hybrid ion batteries - An environmentally friendly alternative for stationary energy storage?

    Science.gov (United States)

    Peters, Jens F.; Weil, Marcel

    2017-10-01

    Aqueous hybrid ion batteries (AHIB) are being promoted as an environmentally friendly alternative to existing stationary battery technologies. However, no quantification of their potential environmental impacts has yet been done. This paper presents a prospective life cycle assessment of an AHIB module and compares its performance with lithium-ion and sodium-ion batteries in two different stationary energy storage applications. The findings show that the claim of being an environmentally friendly technology can only be supported with some major limitations. While the AHIB uses abundant and non-toxic materials, it has a very low energy density and requires increased amounts of material for providing a given storage capacity. Per kWh of battery, results comparable to those of the alternative lithium- or sodium-ion batteries are obtained, but significantly higher impacts under global warming and ozone depletion aspects. The comparable high cycle life of the AHIB compensates this partially, requiring less battery replacements over the lifetime of the application. On the other hand, its internal inefficiencies are higher, what becomes the dominating factor when charging majorly fossil based electricity, making AHIB unattractive for this type of applications.

  10. Carbon footprint of apple and pear : orchards, storage and distribution

    OpenAIRE

    Figueiredo, F.; Castanheira, E.G.; Feliciano, M.; Rodrigues, M.A.; Peres, A.; Maia, F.; Ramos, A.; Carneiro, J.P.; Coroama, V.C.; Freire, F.

    2013-01-01

    Apple and pear represent 51% of fresh fruit orchards in Portugal. This paper presents a life-cycle (LC) greenhouse gas (GHG) assessment (so-called carbon footprint) of 3 apple and 1 pear Portuguese production systems. An LC model and inventory were implemented, encompassing the farm stage (cultivation of fruit trees in orchards), storage and distribution (transport to retail). The functional unit considered in this study was 1 kg of distributed fruit (at retail). Four different LC inventories...

  11. 3D organic Na4C6O6/graphene architecture for fast sodium storage with ultralong cycle life.

    Science.gov (United States)

    Gu, Jianan; Gu, Yue; Yang, Shubin

    2017-11-23

    Sodium-ion batteries (SIBs) have aroused increasing interest as one of the most promising replacements for lithium-ion batteries (LIBs). Here, a novel organic-inorganic 3D Na 4 C 6 O 6 -graphene architecture was successfully fabricated from commercial Na 2 C 6 O 6 and for the first time applied for sodium storage. Hence, the 3D Na 4 C 6 O 6 -graphene architecture exhibits a high reversible capacity, good cyclic performance and high-rate capability for sodium storage.

  12. MRS [monitored retrievable storage] to transportation system interfaces

    International Nuclear Information System (INIS)

    Row, T.H.; Croff, A.G.

    1987-01-01

    In March 1987, the US Department of Energy presented to Congress the proposal to construct and operate a facility for the monitored retrievable storage (MRS) of spent fuel at a site on the Clinch River in the Roane County portions of Oak Ridge. In discussing the MRS to Transportation System Interfaces, the authors provide a blending of the technical and institutional issues, for they do not believe the solutions to success of this enterprise lie wholly in one area. The authors cover: early chronology of the MRS; comparison of total-system life cycle cost estimates of the authorized system and improved-performance system (i.e., the system that includes a facility for MRS); transportation costs resulting from shipping, security and cask; assumptions for dedicated rail transport from MRS to repository; and significant results from the Total System Life Cycle Cost (TSLCC) analysis of the improved performance system. (AT)

  13. Shelf Life Extension of Toasted Groundnuts through the Application ...

    African Journals Online (AJOL)

    The use of cassava starch and soy protein concentrate edible coatings containing 20% glycerol in extending the shelf life of toasted groundnut during ambient (27 ± 1oC) storage for 14 days was studied. Chemical indices of oxidative rancidity and sensory parameters were evaluated using standard procedures. Moisture ...

  14. Effect of Storage on the Shelf life of Dehydrated Fermented Locust ...

    African Journals Online (AJOL)

    Fermented locust bean is used as a flavour intensifier for soups and stews. As beneficent as it is, problems still exist about its preservation using appropriate and affordable technology. Little is known about the shelf life of dehydrated fermented locust beans. This study aimed to investigate the effect of polythene packaging ...

  15. Third International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-18

    This is a collection of essays presented at the above-named conference held at Kobe, Japan, from March 18 through 22, 1991. At the utility energy storage session, a power research program plan, operational and economic benefits of BESP (battery energy storage plant), the Moonlight Project, etc., were presented, respectively, by EPRI (Electric Power Research Institute) of the U.S., BEWAG Corporation of Germany, and NEDO (New Energy and Industrial Technology Development Organization) of Japan, etc. At the improved lead-acid batteries session, the characteristics of improved lead-acid batteries, load levelling and life cycle, problems in BESP, comparisons and tests, etc., were presented by Japan, Italy, the U.S., etc. At the advanced batteries session, presentations were made about the sodium-sulfur battery, zinc-bromine battery, redox battery, etc. Furthermore, there were sessions on consumer energy systems, control and power conditioning technology, and commercialization and economic studies. A total 53 presentations were made. (NEDO)

  16. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    International Nuclear Information System (INIS)

    Simmons, F.

    2007-01-01

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes although helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks

  17. Optimization of the radioactive waste storage

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio

    2005-01-01

    Radioactive waste storage is the practice adopted in countries where the production of small quantities of radioactive waste does not justify the immediate investment in the construction of a repository. Accordingly, at IPEN, treated radioactive wastes, mainly solid compacted, have been stored for more than 20 years, in 200 dm 3 drums. The storage facility is almost complete and must be extended. Taking into account that a fraction of these wastes has decayed to a very low level due to the short half - life of some radionuclides and considering that 'retrieval for disposal as very low level radioactive waste' is one of the actions suggested to radioactive waste managers, the Laboratory of Waste Management of IPEN started a project to apply the concepts of clearance levels and exemption limits to optimize the radioactive waste storage capacity . This study has been carried out by determining the doses and costs related to two main options: either to maintain the present situation or to open the packages and segregate the wastes that may be subject to clearance, using the national, two international clearance levels and the annual public limit. Doses and costs were evaluated as well as the collective dose and the detriment cost. The analytical solution among the evaluated options was determined by using the technique to aid decision making known as cost-benefit analysis. At last, it was carried out the sensitivity analysis considering all criteria and parameters in order to assess the robustness of the analytical solution. This study can be used as base to other institutions or other countries with similar nuclear programs. (author)

  18. Hydrogen storage materials discovery via high throughput ball milling and gas sorption.

    Science.gov (United States)

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S

    2012-06-11

    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  19. Shelf-life increase of fresh mushrooms Pleurotus sajor-caju using gamma radiation

    International Nuclear Information System (INIS)

    Moda, Evelise Moncaio

    2008-01-01

    The production and consumption of edible mushrooms has been increasing in the last years due to its nutritional composition and sensory quality. The irradiation of mushrooms has been used with the purpose of maintaining the fresh product characteristics during shelf-life. The present study evaluated the effect of different radiation doses on the conservation of mushrooms Pleurotus sajor-caju, through by chemical, physical, microbiological and sensorial parameters. The packaging consisted on polystyrene trays with 250 g of sample, wrapped in polyvinyl chloride (PVC). The mushrooms were irradiated with doses of 125, 250, 500 and 750 Gy in a Gamma cell 220 type irradiator, and stored at 4 ± 1 deg C and 90% UR for 10 days. The proximate composition (moisture, crude fibre, total protein, total fat and ash), total soluble solids, pH, texture, color (L, a, b, Chroma and ho), enzymatic activity (polyphenoloxidase and peroxidase), microbiological (total coliform, Escherichia coli and total psychotropic bacteria) and sensory evaluation (color, taste and appearance) were determined in the 1st, 5th and 10th storage days. For the respiratory rate analysis, 30 g of sample were placed in jars and stored at 4 ± 1 deg C and 90% UR for 8 days. CO 2 was analyzed every day using a gaseous chromatograph. The results were submitted to variance analysis and average test using the SAS statistical package. The total protein and total fat values did not differ significantly between treatments or storage periods, while the moisture, crude fibre and ash values differ between treatments and periods. The dose of 750 Gy darkness the mushroom in the last evaluation, and texture was better in control during the storage period. The color (L, a), texture and proximate composition values did not differ significantly between treatments or storage periods. A significant increase was observed for soluble solids, b * and enzymatic activity values in all treatments at the end of the storage period

  20. Application of Ozone as a Result of the Chemical Plasma Technology for Preservation of the Storage Life of the Potato Corm

    International Nuclear Information System (INIS)

    Agus Purwadi; Widdi Usada; Suryadi

    2007-01-01

    It has been done the research of influence of the ozone gift (ozonization) to the potato corm to know its storage life. Ozone gas with product rate of 0.015 mg/s applied was the result of combination of plasma and chemistry process from oxygen gas in the discharge tube of the power of P=50 wall. The research was carried out by variation of the ozonization time duration on potato corm (0 minute, 4 minute, 8 minute and 12 minute) and each of its condition was observed every 5 day, 15 day, 25 day and 35 day. Observation of the condition of potato corm consisted of the analysis parameters of water stage, texture, sugar reduction, the colour and test the differentiation. From research result was shown that the potato corm ozonization at room temperature by the ozonization for 12 minute per day, potato corm could be maintained during 35 day with the water stage of 83.72% wet base (% wb), texture of 12.19 N, sugar reduction of 1.42% dry base (% db), the yellowness degree of 4.30 and the redness degree of 8.34. (author)