WorldWideScience

Sample records for storage facility wesf

  1. Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  2. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  3. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  4. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    Energy Technology Data Exchange (ETDEWEB)

    COVEY, L.I.

    2000-11-28

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

  5. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, 90 Sr and 137 Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the 137 Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF

  6. Quality Assurance Program Plan (QAPP) Waste Encapsulation and Storage Facility (WESF)

    International Nuclear Information System (INIS)

    ROBINSON, P.A.

    2000-01-01

    This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD

  7. Waste Encapsulation and Storage Facility (WESF) Design Reconstitution Plan

    International Nuclear Information System (INIS)

    HERNANDEZ, R.

    1999-01-01

    The purpose of Design Reconstitution is to establish a Design Baseline appropriate to the current facility mission. The scope of this plan is to ensure that Systems, Structures and Components (SSC) identified in the WESF Basis for Interim Operation (HNF-SDWM-BIO-002) are adequately described and documented, in order to support facility operations. In addition the plan addresses the adequacy of selected Design Topics which are also crucial for support of the facility Basis for Interim Operation (BIO)

  8. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cells 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas

  9. Waste and Encapsulation Storage Facility (WESF) Essential and Support Drawing List

    International Nuclear Information System (INIS)

    SHANNON, W.R.

    1999-01-01

    Provides listing of Essential and Support Drawings for the Waste and Encapsulation Storage Facility. The drawings identified in this document will comprise the Waste Encapsulation and Storage Facility essential and support drawing list. This list will replace drawings identified as the ''WESF Essential and support drawing list''. Additionally, this document will follow the applicable requirements of HNF-PRO-242 Engineering Drawing Requirements'' and FSP-WESF-001, Section EN-1 ''Documenting Engineering Changes''. An essential drawing is defined as an engineering drawing identified by the facility staff as necessary to directly support the safe operation or maintenance of the facility. A support drawing is defined as a drawing identified by the facility staff that further describes the design details of structures, systems, or components shown on essential drawings or is frequently used by the support staff

  10. Waste and Encapsulation Storage Facility (WESF) Essential and Support Drawing List

    International Nuclear Information System (INIS)

    SHANNON, W.R.

    1999-01-01

    This supporting document provides a detailed list of the Essential and Support drawing for the Waste and Storage Encapsulation Facility. The drawings identified in this document will comprise the Waste Encapsulation and Storage Facility essential and support drawing list. This list will replace drawings identified as the ''WESF Essential and support drawing list''. Additionally, this document will follow the applicable requirements of HNF-PRO-242 Engineering Drawing Requirements'' and FSP-WESF-001, Section EN-1 ''Documenting Engineering Changes''. An essential drawing is defined as an engineering drawing identified by the facility staff as necessary to directly support the safe operation or maintenance of the facility. A support drawing is defined as a drawing identified by the facility staff that further describes the design details of structures, systems, or components shown on essential drawings or is frequently used by the support staff

  11. Facility effluent monitoring plan for WESF

    Energy Technology Data Exchange (ETDEWEB)

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  12. Facility effluent monitoring plan for WESF

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    1999-01-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the efferent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability

  13. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    1999-01-01

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units, and the < 90 day accumulation areas

  14. Waste and Encapsulation Storage Facility (WESF) Essential and Support Drawing List

    International Nuclear Information System (INIS)

    SHANNON, W.R.

    1999-01-01

    The drawings identified in this document will comprise the Waste Encapsulation and Storage Facility essential and support drawing list. This list will replace drawings identified as the ''WESF Essential and support drawing list''. Additionally, this document will follow the applicable requirements of HNF-PRO-242 ''Engineering Drawing Requirements'' and FSP-WESF-001, Section EN-1 ''Documenting Engineering Changes''. An essential drawing is defined as an engineering drawing identified by the facility staff as necessary to directly support the safe operation or maintenance of the facility. A support drawing is defined as a drawing identified by the facility staff that further describes the design details of structures, systems, or components shown on essential drawings or is frequently used by the support staff

  15. Waste and Encapsulation Storage Facility (WESF) Essential and Support Drawing List

    International Nuclear Information System (INIS)

    SHANNON, W.R.

    1999-01-01

    The drawings identified in this document will comprise the Waste Encapsulation and Storage Facility essential and support drawing list. This list will replace drawings identified as the ''WESF Essential and support drawing list''. Additionally, this document will follow the applicable requirements of HNF-PRO-242'' Engineering Drawing Requirements'' and FSP-WESF-001, Section EN-1 ''Documenting Engineering Changes''. An essential drawing is defined as an engineering drawing identified by the facility staff as necessary to directly support the safe operation or maintenance of the facility. A support drawing is defined as a drawing identified by the facility staff that further describes the design details of structures, systems, or components shown on essential drawings or is frequently used by the support staff

  16. Waste encapsulation storage facility (WESF) standards/requirements identification document (S/RIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, B.S., Westinghouse Hanford

    1996-07-29

    This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ES{ampersand}H) standards/requirements for the Waste Encapsulation Storage Facility (WESF). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  17. Interface Control Document Between the Double-Shell Tank (DST) system and the Waste Encapsulation and Storage Facility (WESF)

    International Nuclear Information System (INIS)

    HOFFERBER, G.A.

    2000-01-01

    This Interface Control Document (ICD) describes interfaces between the Double-Shell Tanks (DST) System and Waste Encapsulation and Storage Facility (WESF) (figure 1). WESF is currently operational as a storage facility for cesium and strontium capsules. This ICD covers current operational interfaces and those envisioned during Terminal Clean Out (TCO) activities in the future. WESF and the DST System do not have a direct physical interface. The waste will be moved by tank trailer to the 204-AR waste unloading facility. The purpose of the ICD process is to formalize working agreements between the River Protection Project (RPP) DST System and systems/facilities operated by organizations or companies internal and external to RPP. This ICD has been developed as part of the requirements basis for design of the DST System to support the Phase I Privatization effort

  18. Characterization of a WESF [Waste Encapsulation and Storage Facility] cesium chloride capsule after fifteen months service in a dry operation/wet storage commercial irradiator

    International Nuclear Information System (INIS)

    Kjarmo, H.E.; Tingey, G.L.

    1988-08-01

    After 15 months of service, a Hanford Waste Encapsulation and Storage Facility (WESF) 137 Cs gamma source capsule was removed for examination from a commercial irradiator at Radiation Sterilizers Incorporated (RSI), Westerville, Ohio. The examination was conducted by Pacific Northwest Laboratory and was the first study of a 137 Cs source capsule after use in a commercial dry operation/wet storage (dry/wet) irradiator. The capsule was cycled 3327 times during the 15-month period with steady-state temperature differences ranging from 70 to 82/degree/C during the air-to-water cycle. The capsule was examined to determine the amount of corrosion that had occurred during this period and to determine if any degradation of the container was evident as the result of thermal cycling. Metallographic examinations were performed on sections that were removed from the inner capsule wall and bottom end cap and the outer capsule bottom end cap weld. The three regions of the inner capsule that were examined for corrosion were the salt/void interface, midwall, and bottom (including the end cap weld). The amount of corrosion measured (0.0002 to 0.0007 in.) is comparable to the corrosion produced (about 0.001 in.) during the melt-cast filling of a capsule. No observable effects of irradiator operation were found during this examination. Consequently, based on this examination, no degradation of WESF 137 Cs capsules is expected when they are used in irradiators similar to the RSI irradiator. 9 refs., 12 figs., 2 tabs

  19. Supporting calculations and assumptions for use in WESF safetyanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hey, B.E.

    1997-03-07

    This document provides a single location for calculations and assumptions used in support of Waste Encapsulation and Storage Facility (WESF) safety analyses. It also provides the technical details and bases necessary to justify the contained results.

  20. Functions and requirements document, WESF decoupling project, low-level liquid waste system

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.H., Fluor Daniel Hanford

    1997-02-27

    The Waste Encapsulation and Storage Facility (WESF) was constructed in 1974 to encapsulate and store cesium and strontium which were isolated at B Plant from underground storage tank waste. The WESF, Building 225-B, is attached physically to the west end of B Plant, Building 221-B, 200 East area. The WESF currently utilizes B Plant facilities for disposing liquid and solid waste streams. With the deactivation of B Plant, the WESF Decoupling Project will provide replacement systems allowing WESF to continue operations independently from B Plant. Four major systems have been identified to be replaced by the WESF Decoupling Project, including the following: Low Level Liquid Waste System, Solid Waste Handling System, Liquid Effluent Control System, and Deionized Water System.

  1. Waste encapsulation and storage facility function analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate Waste Encapsulation and Storage Facility (WESF)

  2. Safety analysis report for packaging (onsite) for the Waste Encapsulation and Storage Facility ion exchange module

    International Nuclear Information System (INIS)

    Romano, T.

    1997-01-01

    The Waste Encapsulation and Storage Facility (WESF) is in need of providing an emergency ion exchange system to remove cesium or strontium from the pool cell in the event of a capsule failure. The emergency system is call the WESF Emergency Ion Exchange System and the packaging is called the WESF ion exchange module (WIXM). The packaging system will meet the onsite transportation requirements for a Type B, highway route controlled quantity package as well as disposal requirements for Category 3 waste

  3. Maintenance implementation plan for the B Plant/WESF. Revision 4

    International Nuclear Information System (INIS)

    Tritt, S.E.; Lueck, B.H.

    1996-01-01

    This Maintenance Implementation Plan (MIP) has been developed for maintenance functions associated with the B Plant/WESF (Waste Encapsulation Storage Facility) complex. The objective of this plan is to provide baseline information for establishing and identifying WHC conformance programs and policies applicable to implementation of DOE order 4330.4B guidelines. In addition, this maintenance plan identifies the actions necessary to develop a cost-effective and efficient maintenance program at B Plant/WESF. The B Plant WESF facility complex consists of three main facilities and several support structures located in the 200 East Area of the Hanford site. B Plant is a transition facility that is required to ensure safe storage and management of WESF (operating facility) cesium and strontium capsules. B Plant/WESF also contains substantial radiological inventory from previous campaigns. There are no production activities at B Plant, but several of its operating systems are required to accomplish the current B Plant/WESF mission. B Plant/WESF are each considered a nuclear facility due to the storage of cesium and strontium capsules at WESF and the large radiological inventory from past processing

  4. Waste Encapsulation and Storage Facility interim operational safety requirements

    CERN Document Server

    Covey, L I

    2000-01-01

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  5. Return of isotope capsules to the Waste Encapsulation and Storage Facility

    International Nuclear Information System (INIS)

    1994-05-01

    Cesium-137 and strontium-90 isotopes were removed from Hanford Site high-level tank wastes, and were encapsulated at the Hanford Site's Waste Encapsulation and Storage Facility (WESF), beginning in 1974. Over the past several years, radioactive isotope capsules have been sent to other U.S. Department of Energy (DOE)-controlled sites to be used for research and development applications, as well as leased to a number of commercial facilities for commercial applications (e.g., sterilization of medical supplies). Due to uncertainty regarding the cause of the release of a small quantity of cesium-137 to an isolated water basin from a WESF cesium-137 capsule in a commercial facility in Decatur, Georgia, the DOE has determined that it needs to return leased capsules from IOTECH, Incorporated (IOTECH), Northglenn, Colorado; Pacific Northwest Laboratory (PNL), Richland, Washington; and the Applied Radiant Energy Corporation (ARECO), Lynchburg, Virginia; to the WESF Facility on the Hanford Site, to ensure safe management and storage, pending final disposition. All of these capsules located at the commercial facilities were successfully tested during Calendar Year 1993, and none showed any indication of off-normal specifications. Storage at the WESF will continue under the actions selected in the Record of Decision for the Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland, Washington

  6. Sampling and analysis plan (SAP) for WESF drains and TK-100 sump

    International Nuclear Information System (INIS)

    Simmons, F.M.

    1998-01-01

    The intent of this project is to determine whether the Waste Encapsulation and Storage Facility (WESF) floor drain piping and the TK-100 sump are free from contamination. TK-100 is currently used as a catch tank to transfer low level liquid waste from WESF to Tank Farms via B Plant. This system is being modified as part of the WESF decoupling since B Plant is being deactivated. As a result of the 1,1,1-trichloroethane (TCA) discovery in TK-100, the associated WESF floor drains and the pit sump need to be sampled. Breakdown constituents have been reviewed and found to be non-hazardous. There are 29 floor drains that tie into a common header leading into the tank. To prevent high exposure during sampling of the drains, TK-100 will be removed into the B Plant canyon and a new tank will be placed in the pit before any floor drain samples are taken. The sump will be sampled prior to TK-100 removal. A sample of the sludge and any liquid in the sump will be taken and analyzed for TCA and polychlorinated biphenyl (PCB). After the sump has been sampled, the vault floor will be flushed. The flush will be transferred from the sump into TK-100. TK-100 will be moved into B Plant. The vault will then be cleaned of debris and visually inspected. If there is no visual indication of TCA or PCB staining, the vault will be painted and a new tank installed. If there is an indication of TCA or PCB from laboratory analysis or staining, further negotiations will be required to determine a path forward. A total of 8 sets of three 40ml samples will be required for all of the floor drains and sump. The sump set will include one 125ml solid sample. The only analysis required will be for TCA in liquids. PCBs will be checked in sump solids only. The Sampling and Analysis Plan (SAP) is written to provide direction for the sampling and analytical activities of the 29 WESF floor drains and the TK-100 sump. The intent of this plan is to define the responsibilities of the various organizations

  7. Documentation associated with the WESF preparation for receiving 25 cesium capsules from the Applied Radiant Energy Corporation (ARECO)

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M.W.

    1996-10-21

    The purpose of this report is to compile all documentation associated with facility preparation of WESF to receive 25 cesium capsules from ARECO. The WESF validated it`s preparedness by completing a facility preparedness review using a performance indicator checklist.

  8. WESF cesium capsule behavior at high temperature or during thermal cycling

    International Nuclear Information System (INIS)

    Tingey, G.L.; Gray, W.J.; Shippell, R.J.; Katayama, Y.B.

    1985-06-01

    Double-walled stainless steel (SS) capsules prepared for storage of radioactive 137 Cs from defense waste are now being considered for use as sources for commercial irradiation. Cesium was recovered at B-plant from the high-level radioactive waste generated during processing of defense nuclear fuel. It was then purified, converted to the chloride form, and encapsulated at the Hanford Waste Encapsulation and Storage Facility (WESF). The molten cesium chloride salt was encapsulated by pouring it into the inner of two concentric SS cylinders. Each cylinder was fitted with a SS end cap that was welded in place by inert gas-tungsten arc welding. The capsule configuration and dimensions are shown in Figure 1. In a recent review of the safety of these capsules, Tingey, Wheelwright, and Lytle (1984) indicated that experimental studies were continuing to produce long-term corrosion data, to reaffirm capsule integrity during a 90-min fire where capsule temperatures reached 800 0 C, to monitor mechanical properties as a function of time, and to assess the effects of thermal cycling due to periodic transfer of the capsules from a water storage pool to the air environment of an irradiator facility. This report covers results from tests that simulated the effects of the 90-min fire and from thermal cycling actual WESF cesium capsules for 3845 cycles over a period of six months. 11 refs., 39 figs., 9 tabs

  9. Next generation storage facility

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1994-01-01

    With diminishing requirements for plutonium, a substantial quantity of this material requires special handling and ultimately, long-term storage. To meet this objective, we at Los Alamos, have been involved in the design of a storage facility with the goal of providing storage capabilities for this and other nuclear materials. This paper presents preliminary basic design data, not for the structure and physical plant, but for the container and arrays which might be configured within the facility, with strong emphasis on criticality safety features

  10. Large mass storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Arnold M.

    1978-08-01

    This is the final report of a study group organized to investigate questions surrounding the acquisition of a large mass storage facility. The programatic justification for such a system at Brookhaven is reviewed. Several candidate commercial products are identified and discussed. A draft of a procurement specification is developed. Some thoughts on possible new directions for computing at Brookhaven are also offered, although this topic was addressed outside of the context of the group's deliberations. 2 figures, 3 tables.

  11. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  12. Spent fuel storage facility, Kalpakkam

    International Nuclear Information System (INIS)

    Shreekumar, B.; Anthony, S.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Kalpakkam is designed to store spent fuel arising from PHWRs. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Kalpakkam was hot commissioned in December 2006. All systems, structures and components (SSCs) related to safety are designed to meet the operational requirements

  13. Large mass storage facility

    International Nuclear Information System (INIS)

    Peskin, A.M.

    1978-01-01

    The report of a committee to study the questions surrounding possible acquisition of a large mass-storage device is presented. The current computing environment at BNL and justification for an online large mass storage device are briefly discussed. Possible devices to meet the requirements of large mass storage are surveyed, including future devices. The future computing needs of BNL are prognosticated. 2 figures, 4 tables

  14. Natural Gas Storage Facilities, US, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Platts Natural Gas Storage Facilities geospatial data layer contains points that represent locations of facilities used for natural gas storage in the United...

  15. 30 CFR 56.6800 - Storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  16. 30 CFR 57.6800 - Storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  17. 30 CFR 56.4430 - Storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 56.4430 Section 56.4430 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for...

  18. Characterization of an aged WESF capsule

    International Nuclear Information System (INIS)

    Kenna, B.T.; Schultz, F.J.

    1983-07-01

    A joint effort by SNLA and ORNL was initiated for a detailed characterization of an 18-year-old WESF 137 Cs source which has been used in the Sandia Irradiator for Dried Sewage Solids. The study included evaluation of the inner and outer stainless steel capsules by optical metallography, electron microprobe, and physical testing. Analysis of the residual atmospheres within the two containers was also done. The CsCl was analyzed for isotopic content and impurities. No potential problem areas, including corrosion, were found

  19. Bidding strategy for an energy storage facility

    DEFF Research Database (Denmark)

    Nasrolahpour, Ehsan; Zareipour, Hamidreza; Rosehart, William D.

    2016-01-01

    to maximize its profit, while the market operator aims at maximizing the social welfare. In this case, the storage facility adapts its strategic behavior to take advantage of market conditions. To model the imperfectly competitive market, a bi-level optimization model is implemented to present......This paper studies operation decisions of energy storage facilities in perfectly and imperfectly competitive markets. In a perfectly competitive market, the storage facility is operated to maximize the social welfare. However, in a imperfectly competitive market, the storage facility operates...

  20. Interim Storage Facility decommissioning. Final report

    International Nuclear Information System (INIS)

    Johnson, R.P.; Speed, D.L.

    1985-01-01

    Decontamination and decommissioning of the Interim Storage Facility were completed. Activities included performing a detailed radiation survey of the facility, removing surface and imbedded contamination, excavating and removing the fuel storage cells, restoring the site to natural conditions, and shipping waste to Hanford, Washington, for burial. The project was accomplished on schedule and 30% under budget with no measurable exposure to decommissioning personnel

  1. Dry Well Storage Facility conceptual design study

    International Nuclear Information System (INIS)

    1979-02-01

    The Dry Well Storage Facility described is assumed to be located adjacent to or near a Spent Fuel Receiving and Packaging Facility and/or a Packaged Fuel Transfer Facility. Performance requirements, quality levels and codes and standards, schedule and methods of performance, special requirements, quality assurance program, and cost estimate are discussed. Appendices on major mechanical equipment and electric power requirements are included

  2. Dry Well Storage Facility conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The Dry Well Storage Facility described is assumed to be located adjacent to or near a Spent Fuel Receiving and Packaging Facility and/or a Packaged Fuel Transfer Facility. Performance requirements, quality levels and codes and standards, schedule and methods of performance, special requirements, quality assurance program, and cost estimate are discussed. Appendices on major mechanical equipment and electric power requirements are included.

  3. Design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes the general safety requirements applicable to the design of both wet and dry spent fuel storage facilities; Section 3 deals with the design requirements specific to either wet or dry storage. Recommendations for the auxiliary systems of any storage facility are contained in Section 4; these are necessary to ensure the safety of the system and its safe operation. Section 5 provides recommendations for establishing the quality assurance system for a storage facility. Section 6 discusses the requirements for inspection and maintenance that must be considered during the design. Finally, Section 7 provides guidance on design features to be considered to facilitate eventual decommissioning. 18 refs

  4. Onsite storage facility for low level radwaste

    International Nuclear Information System (INIS)

    Maxwell, M.G.

    1984-01-01

    The Tennessee Valley Authority (TVA) has designed and constructed an onsite storage facility for low level radwaste (LLRW) at its Browns Ferry Nuclear Plant in northern Alabama. The paper addresses the function of this facility and provides a complete description of the reinforced concrete storage modules which are the principal structural elements of the facility. The loads and loading combinations for the design of the storage modules are defined to include the foundation design parameters. Other aspects of the modules that are addressed are; the structural roof elements that provide access to the modules, shielding requirements for the LLRW, and tornado missile considerations

  5. Storage fee analysis for a retrievable surface storage facility

    International Nuclear Information System (INIS)

    Field, B.B.; Rosnick, C.K.

    1973-12-01

    Conceptual design studies are in progress for a Water Basin Concept (WBC) and an alternative Sealed Storage Cask Concept (SSCC) of a Retrievable Surface Storage Facility (RSSF) intended as a Federal government facility for storing high-level radioactive wastes until a permanent disposal method is established. The RSSF will be a man-made facility with a design life of at least 100 y, and will have capacity to store all of the high-level waste from the reprocessing of nuclear power plant spent fuels generated by the industry through the year 2000. This report is a basic version of ARH-2746, ''Retrievable Surface Storage Facility, Water Basin Concept, User Charge Analysis.'' It is concerned with the issue of establishing a fee to cover the cost of storing nuclear wastes both in the RSSF and at the subsequent disposal facility. (U.S.)

  6. Tier II Chemical Storage Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities that store hazardous chemicals above certain quantities must submit an annual emergency and hazardous chemical inventory on a Tier II form. This is a...

  7. May compact storage facilities be licensed

    International Nuclear Information System (INIS)

    Gleim, A.; Winter, G.

    1980-01-01

    The authors examine as potential statements fo fact for licensing so-called compact storage facilities for spent fuel elements Sec. 6 to 9c of the German Atomic Energy Act and Sec. 4 of the German Radiation Protection Ordinance. They find that none of these provisions were applicable to compact stroage facilities. In particular, the storage of spent fuel elements was no storage of nuclear fuels licensable under Sec. 6 of the Atomic Energy Act, because Sec. 6 did not cover spent fuel elements. Also in the other wording of the Atomic Energy Act there was no provision, which could be used as a statement of fact for licensing compact storage facilities. Such facilities could not be licensed and, for that reason, were not permitted. (IVR) [de

  8. Storage facility for radioactive wastes

    International Nuclear Information System (INIS)

    Okada, Kyo

    1998-01-01

    Canisters containing high level radioactive wastes are sealed in overpacks in a receiving building constructed on the ground. A plurality of storage pits are formed in a layered manner vertically in multi-stages in deep underground just beneath the receiving building, for example underground of about 1000m from the ground surface. Each of the storage pits is in communication with a shaft which vertically communicates the receiving building and the storage pits, and is extended plainly in a horizontal direction from the shaft. The storage pit comprises an overpack receiving chamber, a main gallery and a plurality of galleries. A plurality of holes for burying the overpacks are formed on the bottom of the galleries in the longitudinal direction of the galleries. A plurality of overpack-positioning devices which run in the main gallery and the galleries by remote operation are disposed in the main gallery and the galleries. (I.N.)

  9. Daily storage management of hydroelectric facilities

    NARCIS (Netherlands)

    Chappin, E.J.L.; Ferrero, M.; Lazzeroni, P.; Lukszo, Z.; Olivero, M.; Repetto, M.

    2012-01-01

    This work presents a management procedure for hydroelectric facilities with daily storage. The water storage gives an additional degree of freedom allowing to shift in time power production when it is more convenient and to work at the maximum efficiency of hydraulic turbine. The management is

  10. WESF (173)Cs gamma ray sources

    Science.gov (United States)

    Kenna, B. T.

    1984-10-01

    The Waste Encapsulation and Storage Facility (WESP) at Hanford, Washington has been separating cesium from stored liquid defense waste since 1945. This is done to alleviate the heat generated by the decay of radioactive Cs137. The cesium is converted to CsCl, doubly encapsulated in 316l stainless steel, and placed in storage. The potential utility of these Cs137 capsules as gamma radiation sources was demonstrated. Registration of the capsule with the NRC as a sealed gamma source would facilitate the licensing of non-DOE irradiation facilities using this source. To grant this registration, the NRC requires characteristics of the capsule. It must also be demonstrated that the capsule will maintain its integrity under both normal circumstances and specified abnormal conditions. The required information is provided through collation of results of studies and tests done previously by other laboratories.

  11. Regional spent fuel storage facility (RSFSF)

    International Nuclear Information System (INIS)

    Dyck, H.P.

    1999-01-01

    The paper gives an overview of the meetings held on the technology and safety aspects of regional spent fuel storage facilities. The questions of technique, economy and key public and political issues will be covered as well as the aspects to be considered for implementation of a regional facility. (author)

  12. Spent fuel element storage facility

    International Nuclear Information System (INIS)

    Ukaji, Hideo; Yamashita, Rikuo.

    1981-01-01

    Purpose: To always keep water level of a spent fuel cask pit equal with water level of spent fuel storage pool by means of syphon principle. Constitution: The pool water of a spent fuel storage pool is airtightly communicated through a pipe with the pool water of a spent fuel cask, and a gate is provided between the pool and the cask. Since cask is conveyed into the cask pit as the gate close while conveying, the pool water level is raised an amount corresponding to the volume of the cask, and water flow through scattering pipe and the communication pipe to the storage pool. When the fuel is conveyed out of the cask, the water level is lowered in the amount corresponding to the volume in the cask pit, and the water in the pool flow through the communication pipe to the cask pit. (Sekiya, K.)

  13. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  14. Operation of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide was prepared as part of the IAEA's programme on safety of spent fuel storage. This is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes key activities in the operation of spent fuel storage facilities. Section 3 lists the basic safety considerations for storage facility operation, the fundamental safety objectives being subcriticality, heat removal and radiation protection. Recommendations for organizing the management of a facility are contained in Section 4. Section 5 deals with aspects of training and qualification; Section 6 describes the phases of the commissioning of a spent fuel storage facility. Section 7 describes operational limits and conditions, while Section 8 deals with operating procedures and instructions. Section 9 deals with maintenance, testing, examination and inspection. Section 10 presents recommendations for radiation and environmental protection. Recommendations for the quality assurance (QA) system are presented in Section 11. Section 12 describes the aspects of safeguards and physical protection to be taken into account during operations; Section 13 gives guidance for decommissioning. 15 refs, 5 tabs

  15. 303-K Storage Facility closure plan

    International Nuclear Information System (INIS)

    1993-01-01

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5

  16. Calcined solids storage facility closure study

    International Nuclear Information System (INIS)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C.

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a open-quotes Settlement Agreementclose quotes (or open-quotes Batt Agreementclose quotes) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed

  17. Calcined solids storage facility closure study

    Energy Technology Data Exchange (ETDEWEB)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  18. The cascad spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Guay, P.; Bonnet, C.

    1991-01-01

    France has a wide variety of experimental spent fuels different from LWR spent fuel discharged from commercial reactors. Reprocessing such fuels would thus require the development and construction of special facilities. The French Atomic Energy Commission (CEA) has consequently opted for long-term interim storage of these spent fuels over a period of 50 years. Comparative studies of different storage concepts have been conducted on the basis of safety (mainly containment barriers and cooling), economic, modular design and operating flexibility criteria. These studies have shown that dry storage in a concrete vault cooled by natural convection is the best solution. A research and development program including theoretical investigations and mock-up tests confirmed the feasibility of cooling by natural convection and the validity of design rules applied for fuel storage. A facility called CASCAD was built at the CEA's Cadarache Nuclear Research Center, where it has been operational since mid-1990. This paper describes the CASCAD facility and indicates how its concept can be applied to storage of LWR fuel assemblies

  19. Ontario hydro waste storage concepts and facilities

    International Nuclear Information System (INIS)

    Carter, T.J.; Mentes, G.A.

    1976-01-01

    Ontario Hydro presently operates 2,200 MWe of CANDU heavy water reactors with a further 11,000 MWe under design or construction. The annual quantities of low and medium level solid wastes expected to be produced at these stations are tabulated. In order to manage these wastes, Ontario Hydro established a Radioactive Waste Operations Site within the Bruce Nuclear Power Development located on Lake Huron about 250 km northwest of Toronto. The Waste Operations Site includes a 19-acre Storage Site plus a Radioactive Waste Volume Reduction Facility consisting of an incinerator and waste compactor. Ontario has in use or under construction both in-ground and above-ground storage facilities. In-ground facilities have been used for a number of years while the above-ground facilities are a more recent approach. Water, either in the form of precipitation, surface or subsurface water, presents the greatest concern with respect to confinement integrity and safe waste handling and storage operations

  20. Continuous inventory in SNM storage facilities

    International Nuclear Information System (INIS)

    Chambers, W.H.

    1975-01-01

    Instrumentation and data processing techniques that provide inexpensive verification of material in storage were investigated. Transfers of special nuclear materials (SNM) into the storage area are accompanied by an automated verification of the container identity, weight, and the radiation signature of the contents. This information is computer-processed and stored for comparison at subsequent transfers and also provides the data base for record purposes. Physical movement of containers across the boundary of the storage area is presently accomplished by operating personnel in order to minimize expensive modifications to existing storage facilities. Personnel entering and leaving the storage area are uniquely identified and also through portal monitors capable of detecting small quantities of SNM. Once material is placed on the storage shelves, simple, low-cost container tagging and radiation sensors are activated. A portion of the prescribed gamma signature, obtained by duplicate shelf monitors during the transfer verification, is thus continuously checked against the stored identification data. Radiation detector design is severely constrained by the need to discriminate individual signatures in a high background area and the need for low unit costs. In operation any unauthorized change in signal is analyzed along with auxiliary data from surveillance sensors to activate the appropriate alarms. (auth))

  1. Monitoring of the storage facility Asse II

    International Nuclear Information System (INIS)

    Regenauer, Urban; Wittwer, Christiane

    2012-01-01

    The storage facility Asse II is former salt mine near Wolfenbuettel in Niedersachsen. From 1967 to 1978 totally 125787 barrels with low-and medium-level radioactive wastes were disposed in the salt cavern. Since 1988 ingress of saturated brines from the adjoining rocks were observed in the mine. An extensive monitoring concept was installed for the surveillance of possible radionuclides released with the mine air into the surrounding. The report is aimed to n describe the actual situation in the salt mine Asse II with special emphasis to the monitoring concept. The discussion is based on the history of the storage facility that was primarily a research mine. Furthermore a regional accompanying process is described that was created in 2007.

  2. Safety assessment for spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Practice has been prepared as part of the IAEA's programme on the safety assessment of interim spent fuel storage facilities which are not an integral part of an operating nuclear power plant. This report provides general guidance on the safety assessment process, discussing both deterministic and probabilistic assessment methods. It describes the safety assessment process for normal operation and anticipated operational occurrences and also related to accident conditions. 10 refs, 2 tabs

  3. CNAEM waste processing and storage facility

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.; Kahraman, A.; Altunkaya, M.

    1998-01-01

    Radioactive waste in Turkey is generated from various applications. Radioactive waste management activities are carried out in a facility at Cekmece Nuclear Research and Training Center (CNAEM). This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes and their activities are up to 10 -3 Ci/m 3 (except spent sealed sources). Chemical treatment and cementation of liquid radwaste, segregation and compaction of solid wastes and conditioning of spent sources are the main processing activities of this facility. A.so, analyses, registration, quality control and interim storage of conditioned low-level wastes are the other related activities of this facility. Conditioned wastes are stored in an interim storage building. All waste management activities, which have been carried out in CNAEM, are generally described in this paper. (author)

  4. Interim Storage of Plutonium in Existing Facilities

    International Nuclear Information System (INIS)

    Woodsmall, T.D.

    1999-01-01

    'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the

  5. Robotic inspection of nuclear waste storage facilities

    International Nuclear Information System (INIS)

    Fulbright, R.; Stephens, L.M.

    1995-01-01

    The University of South Carolina and the Westinghouse Savannah River Company have developed a prototype mobile robot designed to perform autonomous inspection of nuclear waste storage facilities. The Stored Waste Autonomous Mobile Inspector (SWAMI) navigates and inspects rows of nuclear waste storage drums, in isles as narrow as 34 inches with drums stacked three high on each side. SWAMI reads drum barcodes, captures drum images, and monitors floor-level radiation levels. The topics covered in this article reporting on SWAMI include the following: overall system design; typical mission scenario; barcode reader subsystem; video subsystem; radiation monitoring subsystem; position determination subsystem; onboard control system hardware; software development environment; GENISAS, a C++ library; MOSAS, an automatic code generating tool. 10 figs

  6. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 6 Book 1, contains information on design studies of a Monitored Retrievable Storage (MRS) facility. Topics include materials handling; processing; support systems; support utilities; spent fuel; high-level waste and alpha-bearing waste storage facilities; and field drywell storage

  7. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 7, contains cost estimate information for a monitored retrievable storage (MRS) facility. Cost estimates are for onsite improvements, waste storage, and offsite improvements for the Clinch River Site

  8. Interim Storage Facility for LLW of Decommissioning Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Amato, S.; Ugolini, D.; Basile, F. [European Commission, Joint Research Centre, Nuclear Decommissioning and Facility Management Unit, TP 800, Via E. Fermi 2749, 21027 Ispra - VA (Italy)

    2009-06-15

    JRC-Ispra has initiated a Decommissioning and Waste Management (D and WM) Programme of all its nuclear facilities. In the frame of this programme, it has been decided to build an interim storage facility to host conditioned low level waste (LLW) that had been produced during the operation of JRC-Ispra nuclear research reactors and laboratories and that will be produced from their decommissioning. This paper presents the main characteristics of the facility. The storage ISFISF has a rectangular shape with uniform height and it is about 128 m long, 41 m wide and 9 m high. The entire surface affected by the facility, including screening area and access roads, is about 27.000 m{sup 2}. It is divided in three sectors, a central one, about 16 m long, for loading/unloading operations and operational services and two lateral sectors, each about 55 m long, for the conditioned LLW storage. Each storage sector is divided by a concrete wall in two transversal compartments. The ISFISF, whose operational lifetime is 50 years, is designed to host the conditioned LLW boxed in UNI CP-5.2 packages, 2,5 m long, 1.65 m wide, and 1,25 m high. The expected nominal inventory of waste is about 2100 packages, while the maximum storage is 2540 packages, thus a considerably large reserve capacity is available. The packages will be piled in stacks of maximum number of five. The LLW is going to be conditioned with a cement matrix. The maximum weight allowed for each package has been fixed at 16.000 kg. The total radioactivity inventory of waste to be hosted in the facility is about 30 TBq (mainly {beta}/{gamma} emitters). In order to satisfy the structural, seismic, and, most of all, radiological requirements, the external walls of the ISFISF are made of pre-fabricated panels, 32 cm thick, consisting of, from inside to outside, 20 cm of reinforced concrete, 7 cm of insulating material, and again 5 cm of reinforced concrete. For the same reason the roof is made with pre-fabricated panels in

  9. Spacing Sensitivity Analysis of HLW Intermediate Storage Facility

    International Nuclear Information System (INIS)

    Youn, Bum Soo; Lee, Kwang Ho

    2010-01-01

    Currently, South Korea's spent fuels are stored in its temporary storage within the plant. But the temporary storage is expected to be reaching saturation soon. For the effective management of spent fuel wastes, the need for intermediate storage facility is a desperate position. However, the research for the intermediate storage facility for waste has not made active so far. In addition, in case of foreign countries it is mostly treated confidentially and the information isn't easy to collect. Therefore, the purpose of this study is creating the basic thermal analysis data for the waste storage facility that will be valuable in the future

  10. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 1, contains cost estimate summaries for a monitored retrievable storage (MRS) facility. The cost estimate is based on the engineering performed during the conceptual design phase of the MRS Facility project

  11. WESF hot cells waste minimization criteria hot cells window seals evaluation

    International Nuclear Information System (INIS)

    Walterskirchen, K.M.

    1997-01-01

    WESF will decouple from B Plant in the near future. WESF is attempting to minimize the contaminated solid waste in their hot cells and utilize B Plant to receive the waste before decoupling. WESF wishes to determine the minimum amount of contaminated waste that must be removed in order to allow minimum maintenance of the hot cells when they are placed in ''laid-up'' configuration. The remaining waste should not cause unacceptable window seal deterioration for the remaining life of the hot cells. This report investigates and analyzes the seal conditions and hot cell history and concludes that WESF should remove existing point sources, replace cerium window seals in F-Cell and refurbish all leaded windows (except for A-Cell). Work should be accomplished as soon as possible and at least within the next three years

  12. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    The Basis for Design established the functional requirements and design criteria for an Integral Monitored Retrievable Storage (MRS) facility. The MRS Facility design, described in this report, is based on those requirements and includes all infrastructure, facilities, and equipment required to routinely receive, unload, prepare for storage, and store spent fuel (SF), high-level waste (HLW), and transuranic waste (TRU), and to decontaminate and return shipping casks received by both rail and truck. The facility is complete with all supporting facilities to make the MRS Facility a self-sufficient installation

  13. Features and safety aspects of spent fuel storage facility, Tarapur

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Tarapur is designed to store spent fuel arising from PHWRs in different parts of the country. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Tarapur was hot commissioned after regulatory clearances

  14. The industrial facility for Grouping, Storage and Disposal

    International Nuclear Information System (INIS)

    Torres, Patrice

    2013-07-01

    The industrial facility for grouping, storage and disposal (called Cires in French), in the Aube district, is run by Andra. The facility is licensed to dispose of very-low-level waste, to collect non-nuclear-power radioactive waste and to provide storage for some of the waste for which a final management solution has not yet been found. The Cires facility is located a few kilometers from the Aube disposal facility (CSA), another of Andra's waste disposal facilities, currently dealing with low- and intermediate-level, short-lived waste. Contents: Andra in the Aube district, an exemplary industrial operator - The industrial facility for grouping, storage and disposal (Cires); Disposal of very-low-level waste (VLLW); The journey taken by VLL waste; Grouping of non-nuclear-power waste; Storage of non-nuclear-power waste; The journey taken by non-nuclear-power waste; Protecting present and future generations

  15. TWRS HLW interim storage facility search and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, R.B., Westinghouse Hanford

    1996-05-16

    The purpose of this study was to identify and provide an evaluation of interim storage facilities and potential facility locations for the vitrified high-level waste (HLW) from the Phase I demonstration plant and Phase II production plant. In addition, interim storage facilities for solidified separated radionuclides (Cesium and Technetium) generated during pretreatment of Phase I Low-Level Waste Vitrification Plant feed was evaluated.

  16. Radiation analysis for a generic centralized interim storage facility

    International Nuclear Information System (INIS)

    Gillespie, S.G.; Lopez, P.; Eble, R.G.

    1997-01-01

    This paper documents the radiation analysis performed for the storage area of a generic Centralized Interim Storage Facility (CISF) for commercial spent nuclear fuel (SNF). The purpose of the analysis is to establish the CISF Protected Area and Restricted Area boundaries by modeling a representative SNF storage array, calculating the radiation dose at selected locations outside the storage area, and comparing the results with regulatory radiation dose limits. The particular challenge for this analysis is to adequately model a large (6000 cask) storage array with a reasonable amount of analysis time and effort. Previous analyses of SNF storage systems for Independent Spent Fuel Storage Installations at nuclear plant sites (for example in References 5.1 and 5.2) had only considered small arrays of storage casks. For such analyses, the dose contribution from each storage cask can be modeled individually. Since the large number of casks in the CISF storage array make such an approach unrealistic, a simplified model is required

  17. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  18. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  19. Comparison of concepts for independent spent fuel storage facilities

    International Nuclear Information System (INIS)

    Held, Ch.; Hintermayer, H.P.

    1978-01-01

    The design and the construction costs of independent spent fuel storage facilities show significant differences, reflecting the fuel receiving rate (during the lifetime of the power plant or within a very short period), the individual national policies and the design requirements in those countries. Major incremental construction expenditures for storage facilities originate from the capacity and the type of the facilities (casks or buildings), the method of fuel cooling (water or air), from the different design of buildings, the redundancy of equipment, an elaborate quality assurance program, and a single or multipurpose design (i.e. interim or long-term storage of spent fuel, interim storage of high level waste after fuel storage). The specific costs of different designs vary by a factor of 30 to 60 which might in the high case increase the nuclear generating costs remarkably. The paper also discusses the effect of spent fuel storage on fuel cycle alternatives with reprocessing or disposal of spent fuel. (author)

  20. 2727-S Nonradioactive Dangerous Waste Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Wilczek, T.A.; Laws, J.R.; Izatt, R.D.

    1992-01-01

    This closure plan describes the activities for final closure of the 2727-S Nonradioactive Dangerous Waste Storage (NRDWS) Facility at the Hanford Site. The 2727-S NRDWS Facility provided container storage for nonradioactive dangerous and extremely hazardous wastes generated in the research and development laboratories, process operations, and maintenance and transportation functions throughout the Hanford Site. Storage operations began at the 2727-S NRDWS Facility March 14, 1983, and continued until December 30, 1986, when the last shipment of materials from the facility took place. These storage operations have been moved to the new 616 NRDWS Facility, which is an interim status unit located between the 200 East and 200 West Areas of the Hanford Site

  1. 303-K Storage Facility: Report on FY98 closure activities

    International Nuclear Information System (INIS)

    Adler, J.G.

    1998-01-01

    This report summarizes and evaluates the decontamination activities, sampling activities, and sample analysis performed in support of the closure of the 303-K Storage Facility. The evaluation is based on the validated data included in the data validation package (98-EAP-346) for the 303-K Storage Facility. The results of this evaluation will be used for assessing contamination for the purpose of closing the 303-K Storage Facility as described in the 303-K Storage Facility Closure Plan, DOE/RL-90-04. The closure strategy for the 303-K Storage Facility is to decontaminate the interior of the north half of the 303-K Building to remove known or suspected dangerous waste contamination, to sample the interior concrete and exterior soils for the constituents of concern, and then to perform data analysis, with an evaluation to determine if the closure activities and data meet the closure criteria. The closure criteria for the 303-K Storage Facility is that the concentrations of constituents of concern are not present above the cleanup levels. Based on the evaluation of the decontamination activities, sampling activities, and sample data, determination has been made that the soils at the 303-K Storage Facility meet the cleanup performance standards (WMH 1997) and can be clean closed. The evaluation determined that the 303-K Building cannot be clean closed without additional closure activities. An additional evaluation will be needed to determine the specific activities required to clean close the 303-K Storage Facility. The radiological contamination at the 303-K Storage Facility is not addressed by the closure strategy

  2. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1994-04-01

    This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification

  3. Storage facility for highly radioactive solid waste

    International Nuclear Information System (INIS)

    Kitano, Shozo

    1996-01-01

    A heat insulation plate is disposed at an intermediate portion between a ceiling wall of a storage chamber and an upper plate of a storage pit in parallel with them. A large number of highly radioactive solid wastes contained in canisters are contained in the storage pit. Cooling air is introduced from an air suction port, passes a channel on the upper side of the heat insulation plate formed by the ceiling of the storage chamber and the heat insulation plate, and flows from a flow channel on the side of the wall of the storage chamber to the lower portion of the storage pit. Afterheat is removed by the air flown from the lower portion to ventilation tubes at the outer side of container tubes. The air heated to a high temperature through the flow channel on the lower side of the heat insulation plate between the heat insulation plate and the upper plate of the storage pit, and is exhausted to an exhaustion port. Further, a portion of a heat insulation plate as a boundary between the cooling air and a high temperature air formed on the upper portion of the storage pit is formed as a heat transfer plate, so that the heat of the high temperature air is removed by the cooling air flowing the upper flow channel. This can prevent heating of the ceiling wall of the storage chamber. (I.N.)

  4. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    International Nuclear Information System (INIS)

    Shank, D.R.

    1995-01-01

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  5. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  6. Technical Safety Requirements for the Waste Storage Facilities May 2014

    International Nuclear Information System (INIS)

    Laycak, D. T.

    2014-01-01

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  7. Development of a state radioactive materials storage facility

    International Nuclear Information System (INIS)

    Schmidt, P.S.

    1995-01-01

    The paper outlines the site selection and facility development processes of the state of Wisconsin for a radioactive materials facility. The facility was developed for the temporary storage of wastes from abandoned sites. Due to negative public reaction, the military site selected for the facility was removed from consideration. The primary lesson learned during the 3-year campaign was that any project involving radioactive materials is a potential political issue

  8. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Laycak, D.T.

    2010-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  9. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  10. Documentation associated with the shipping of Hot-Cell Waste from WESF 225-B to the 200W (218-W-3AE) burial grounds under shipment number RSR-37338

    International Nuclear Information System (INIS)

    PAWLAK, M.W.

    1998-01-01

    The purpose of this report is to compile the records generated during the Packaging and Shipping of WESF Hot-Cell Waste from the 225-B Facility to 200W (218-W-3AE) burial grounds. A total of six 55-gallon drums were packaged and shipped using the Chem-Nuc Cask in accordance with WHC-SD-TP-SARP-025, Rev.0 ''Safety Analysis Report for Packaging (Onsite) for Type B Material in the CNS-14-215H Cask''

  11. the effects of unavailability of technical storage facilities

    African Journals Online (AJOL)

    unavailability of the technical storage facilities to the marketing of fruits and vegetables for economic ... vegetables are important profitable small-scale juice enterprises (Thomson,. 1990). ..... Knott's handbook for vegetables growers. 2nd ed.

  12. Safety analysis report for the Waste Storage Facility. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  13. Project quality assurance plant: Sodium storage facility, project F-031

    International Nuclear Information System (INIS)

    Shultz, J.W.; Shank, D.R.

    1994-11-01

    The Sodium Storage Facility Project Quality Assurance Plan delineates the quality assurance requirements for construction of a new facility, modifications to the sodium storage tanks, and tie-ins to the FFTF Plant. This plan provides direction for the types of verifications necessary to satisfy the functional requirements within the project scope and applicable regulatory requirements determined in the Project Functional Design Criteria (FDC), WHC-SD-FF-FDC-009

  14. Integral Monitored Retrievable Storage (MRS) Facility conceptual basis for design

    International Nuclear Information System (INIS)

    1985-10-01

    The purpose of the Conceptual Basis for Design is to provide a control document that establishes the basis for executing the conceptual design of the Integral Monitored Retrievable Storage (MRS) Facility. This conceptual design shall provide the basis for preparation of a proposal to Congress by the Department of Energy (DOE) for construction of one or more MRS Facilities for storage of spent nuclear fuel, high-level radioactive waste, and transuranic (TRU) waste. 4 figs., 25 tabs

  15. Dry storage of spent fuel elements: interim facility

    International Nuclear Information System (INIS)

    Quihillalt, O.J.

    1993-01-01

    Apart from the existing facilities to storage nuclear fuel elements at Argentina's nuclear power stations, a new interim storage facility has been planned and projected by the Argentinean Atomic Energy Commission (CNEA) that will be constructed by private group. This article presents the developments and describes the activities undertaken until the national policy approach to the final decision for the most suitable alternative to be adopted. (B.C.A.). 09 refs, 01 fig, 09 tabs

  16. Staging and storage facility feasibility study. Final report

    International Nuclear Information System (INIS)

    Swenson, C.E.

    1995-02-01

    This study was performed to investigate the feasibility of adapting the design of the HWVP Canister Storage Building (CSB) to meet the needs of the WHC Spent Nuclear Fuel Project for Staging and Storage Facility (SSF), and to develop Rough Order of Magnitude (ROM) cost and schedule estimates

  17. Documented Safety Analysis for the Waste Storage Facilities March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  18. Documented Safety Analysis for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  19. Capabilities for processing shipping casks at spent fuel storage facilities

    International Nuclear Information System (INIS)

    Baker, W.H.; Arnett, L.M.

    1978-01-01

    Spent fuel is received at a storage facility in heavily shielded casks transported either by rail or truck. The casks are inspected, cooled, emptied, decontaminated, and reshipped. The spent fuel is transferred to storage. The number of locations or space inside the building provided to perform each function in cask processing will determine the rate at which the facility can process shipping casks and transfer spent fuel to storage. Because of the high cost of construction of licensed spent fuel handling and storage facilities and the difficulty in retrofitting, it is desirable to correctly specify the space required. In this paper, the size of the cask handling facilities is specified as a function of rate at which spent fuel is received for storage. The minimum number of handling locations to achieve a given throughput of shipping casks has been determined by computer simulation of the process. The simulation program uses a Monte Carlo technique in which a large number of casks are received at a facility with a fixed number of handling locations in each process area. As a cask enters a handling location, the time to process the cask at that location is selected at random from the distribution of process time. Shipping cask handling times are based on experience at the General Electric Storage Facility, Morris, Illinois. Shipping cask capacity is based on the most recent survey available of the expected capability of reactors to handle existing rail or truck casks

  20. Status of spent fuel storage facilities in Switzerland

    International Nuclear Information System (INIS)

    Beyeler, P.C.; Lutz, H.R.; Heesen, W. von

    1999-01-01

    Planning of a dry spent fuel storage facility in Switzerland started already 15 years ago. The first site considered for a central interim storage facility was the cavern of the decommissioned pilot nuclear plant at Lucens in the French-speaking part of Switzerland. This project was terminated in the late eighties because of lack of public acceptance. The necessary acceptance was found in the small town of Wuerenlingen which has hosted for many years the Swiss Reactor Research Centre. The new project consists of centralised interim storage facilities for all types of radioactive waste plus a hot cell and a conditioning and incinerating facility. It represents a so-called integrated storage solution. In 1990, the new company 'ZWILAG Zwischenlager Wuerenlingen AG' (ZWILAG) was founded and the licensing procedures according to the Swiss Atomic law were initiated. On August 26, 1996 ZWILAG got the permit for construction of the whole facility including the operating permit for the storage facilities. End of construction and commissioning are scheduled for autumn 1999. The nuclear power station Beznau started planning a low level waste and spent fuel storage facility on its own, because in 1990 its management thought that by 1997 the first high active waste from the reprocessing facilities in France would have to be taken back. This facility at the Beznau site, called ZWIBEZ, was licensed according to a shorter procedure so its construction was finished by 1997. The two facilities for high level waste and spent fuel provide space for a total of 278 casks, which is sufficient for the waste and spent fuel of the four Swiss nuclear power stations including their life extension programme. (author)

  1. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  2. 303-K Radioactive Mixed-Waste Storage Facility closure plan

    International Nuclear Information System (INIS)

    1991-11-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors chemical-separation systems, and related facilities used for the production o special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 303-K Radioactive Mixed-Waste Storage Facility (303-K Facility) has been used since 1943 to store various radioactive,and dangerous process materials and wastes generated by the fuel manufacturing processes in the 300 Area. The mixed wastes are stored in US Department of Transportation (DOT)-specification containers (DOT 1988). The north end of the building was used for storage of containers of liquid waste and the outside storage areas were used for containers of solid waste. Because only the north end of the building was used, this plan does not include the southern end of the building. This closure plan presents a description of the facility, the history of materials and wastes managed, and a description of the procedures that will be followed to chose the 303-K Facility as a greater than 90-day storage facility. The strategy for closure of the 303-K Facility is presented in Chapter 6.0

  3. Automation in a material processing/storage facility

    International Nuclear Information System (INIS)

    Peterson, K.; Gordon, J.

    1997-01-01

    The Savannah River Site (SRS) is currently developing a new facility, the Actinide Packaging and Storage Facility (APSF), to process and store legacy materials from the United States nuclear stockpile. A variety of materials, with a variety of properties, packaging and handling/storage requirements, will be processed and stored at the facility. Since these materials are hazardous and radioactive, automation will be used to minimize worker exposure. Other benefits derived from automation of the facility include increased throughput capacity and enhanced security. The diversity of materials and packaging geometries to be handled poses challenges to the automation of facility processes. In addition, the nature of the materials to be processed underscores the need for safety, reliability and serviceability. The application of automation in this facility must, therefore, be accomplished in a rational and disciplined manner to satisfy the strict operational requirements of the facility. Among the functions to be automated are the transport of containers between process and storage areas via an Automatic Guided Vehicle (AGV), and various processes in the Shipping Package Unpackaging (SPU) area, the Accountability Measurements (AM) area, the Special Isotope Storage (SIS) vault and the Special Nuclear Materials (SNM) vault. Other areas of the facility are also being automated, but are outside the scope of this paper

  4. Thermo-aeraulics of high level waste storage facilities

    International Nuclear Information System (INIS)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume; Duret, Bernard

    2006-01-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete structures; - GALATEE

  5. Thermo-aeraulics of high level waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume [CEA/Valrho, B.P. 17171, F-30207 Bagnols-sur-Ceze (France); Duret, Bernard [CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-07-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete

  6. Final safety analysis report for the irradiated fuels storage facility

    International Nuclear Information System (INIS)

    Bingham, G.E.; Evans, T.K.

    1976-01-01

    A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1 1 / 2 cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100 0 F is reached

  7. Energy Storage Facilities | Transportation Research | NREL

    Science.gov (United States)

    , electric, and fuel cell battery and ultracapacitor pack testing. Their voltages range from 0-100 volts component developers and automobile manufacturers improve battery and energy storage system designs by enhancing performance and extending battery life. Sophisticated experimentation, modeling, and analysis

  8. Review of safety issues that pertain to the use of WESF cesium chloride capsules in an irradiator

    International Nuclear Information System (INIS)

    Tingey, G.L.; Wheelwright, E.J.; Lytle, J.M.

    1984-07-01

    Since the recovery of the fission product cesium-137 began in 1967, about 1500 capsules, each containing an average of about 50,000 curies of cesium chloride, have been produced. These capsules were designed to safely store this gamma-emitting fission product, but they are now considered to be a valuable source for irradiators. The capsules were designed to have a large margin of safety in their mechanical properties. Impact, percussion, and thermal tests have been conducted that demonstrate their ability to meet anticipated licensing requirements. Although this document is not intended to develop or evaluate accident scenarios, an examination of the effects of heating a capsule to 800 0 C for up to 90 min was completed. At 800 0 C, the salt volume would be expected to exceed the initial capsule volume in a few (up to 1/3) of the WESF capsules. Under these conditions, the inner capsule would expand to accommodate the salt volume and the gas pressure. The strength and ductility of the capsule are more than adequate to permit this expansion with a safety margin of at least a factor of three. Capsules have now been stored in the WESF pool for 10 years, and 15 capsules have been used in the Sandia Irradiator for Dried Sewage Solids facility for nearly 5 years without any capsule failure. This experience, along with available laboratory and production data, gives reasonable assurance that the capsules can be safely used in properly designed commercial irradiators. This is especially the case when one considers current and future evaluation programs designed to assess the long-term effects of corrosion and mechanical properties degradation

  9. Dry-type radioactive material storage facility

    International Nuclear Information System (INIS)

    Yamanaka, Yasuharu; Matsuda, Masami; Kanai, Hidetoshi; Ganda, Takao.

    1996-01-01

    A plurality of container tubes containing a plurality of canisters therein are disposed in a canister storage chamber. High level radioactive materials are filled in the canisters in the form of glass solidification materials. The canister storage chamber is divided into two cooling channels by a horizontal partition wall. Each of the container tubes is suspended from a ceiling slab and pass through the horizontal partition wall. Namely, each of the container tubes vertically traverses the cooling channel formed between the ceiling slab and the partition wall and extends to the cooling channel formed between the partition wall and a floor slab. Cooling gases heated in the cooling channel below the partition wall are suppressed from rising to the cooling channel above the partition wall. Therefore, the container tubes are efficiently cooled even in a cooling channel above the partition wall to unify temperature distribution in the axial direction of the container tubes. (I.N.)

  10. Monitored Retrievable Storage (MRS) facility project status

    International Nuclear Information System (INIS)

    Milner, R.A.; Trebules, V.W.; Blandford, J.B.

    1994-01-01

    1993 has been yet another year of major change in the Monitored Retrievable Storage (MRS) project. The change in administration has brought a new Secretary of Energy to the Department. Secretary O'Leary has brought a strong leadership background and fresh ideas to address the Department's many complex challenges, including the Civilian Radioactive Waste Management System (CRWMS). Dr. Daniel Dreyfus was named Director of the Office of Civilian Radioactive Waste Management. Mr. Richard Stallings has been named, as the new, Nuclear Waste Negotiator under the Nuclear Waste Policy Act, Amendments of 1987. The overall mission of the Office of Civilian Radioactive Waste Management (OCRWM) has not changed. OCRWM is tasked with finding technically sound, environmentally responsible and economically viable solutions to spent nuclear fuel and high-level radioactive waste storage and disposal

  11. Away from reactor (AFR) storage facilities

    International Nuclear Information System (INIS)

    Feuerwerger, P.

    1980-08-01

    The author believes that on-site storage, rather than AFRs, should be supported and encouraged. However, if AFRs are mandated, they should be owned and operated cooperatively among the utilities, if financing and PUC problems can be overcome. If Government ownership and operation is mandated, the AFRs should be run by an independent agency or office with a revolving fund dedicated to specific tasks

  12. Hexone Storage and Treatment Facility closure plan

    International Nuclear Information System (INIS)

    1992-11-01

    The HSTF is a storage and treatment unit subject to the requirements for the storage and treatment of dangerous waste. Closure is being conducted under interim status and will be completed pursuant to the requirements of Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and WAC 173-303-640. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. The known hazardous/dangerous waste remaining at the site before commencing other closure activities consists of the still vessels, a tarry sludge in the storage tanks, and residual contamination in equipment, piping, filters, etc. The treatment and removal of waste at the HSTF are closure activities as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and WAC 173-303

  13. Design criteria tank farm storage and staging facility. Revision 1

    International Nuclear Information System (INIS)

    Lott, D.T.

    1994-01-01

    Tank Farms Operations must store/stage material and equipment until work packages are ready to work. Consumable materials are also required to be stored for routine and emergency work. Connex boxes and open storage is currently used for much of the storage because of the limited space at 272AW and 272WA. Safety issues based on poor housekeeping and material deteriorating due to weather damage has resulted from this inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. Project W-402 and W-413 will provide a storage/staging area in 200 East and West Areas by the construction of two new storage facilities. The new facilities will be used by Operations, Maintenance and Materials groups to adequately store material and equipment. These projects will also furnish electrical services to the facilities for lighting and HVAC. Fire Protection shall be extended to the 200 East facility from 272AW if necessary

  14. 303-K Storage Facility closure plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-15

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  15. Dry spent fuel storage facility at Kozloduy Nuclear Power Plant

    International Nuclear Information System (INIS)

    Goehring, R.; Stoev, M.; Davis, N.; Thomas, E.

    2004-01-01

    The Dry Spent Fuel Storage Facility (DSF) is financed by the Kozloduy International Decommissioning Support Fund (KIDSF) which is managed by European Bank for Reconstruction and Development (EBRD). On behalf of the Employer, the Kozloduy Nuclear Power Plant, a Project Management Unit (KPMU) under lead of British Nuclear Group is managing the contract with a Joint Venture Consortium under lead of RWE NUKEM mbH. The scope of the contract includes design, manufacturing and construction, testing and commissioning of the new storage facility for 2800 VVER-440 spent fuel assemblies at the KNPP site (turn-key contract). The storage technology will be cask storage of CONSTOR type, a steel-concrete-steel container. The licensing process complies with the national Bulgarian regulations and international rules. (authors)

  16. Inventory extension at the Nuclear Materials Storage Facility

    International Nuclear Information System (INIS)

    Stanbro, W.D.; Longmire, V.; Olinger, C.T.; Argo, P.E.

    1996-09-01

    The planned renovation of the Nuclear Material Storage Facility (NMSF) at Los Alamos National Laboratory will be a significant addition to the plutonium storage capacity of the nuclear weapons complex. However, the utility of the facility may be impaired by an overly conservative approach to performing inventories of material in storage. This report examines options for taking advantage of provisions in Department of Energy orders to extend the time between inventories. These extensions are based on a combination of modern surveillance technology, facility design features, and revised operational procedures. The report also addresses the possibility that NMSF could be the site of some form of international inspection as part of the US arms control and nonproliferation policy

  17. Gas storage facilities. Investigation of their social value. Supplement

    International Nuclear Information System (INIS)

    1997-02-01

    The socio-economic factors resulting from location of gas storage facilities are evaluated. Various alternatives to the existing projects are estimated, for instance 11 new pipelines, in some cases combined with new production capacity, LNG facilities, differentiated tariffs, reconstruction of decentralized heat/power plants etc. Theoretical considerations and models, among others involving gas storage abroad, are presented. Seasonal storage, emergency storage, storage controlled by economic optimization (profitable purchases, sales at highest market) are described for various types of facilities, like aquifers, caverns and LNG-stores. Natural gas supplies in Europe, infrastructure and resources are compared to the Danish conditions. Sensitivity of the Danish heating market for natural gas consumption is investigated. Reduction in energy use for space heating by 2005 will change the needs of storage of 740 Mm 3 gas to 650 Mm 3 . Extra consumption by the decentralized power/heat plants is not accounted for in this estimation. Dynamic models of the future gas consumption are based on the EU 'European Energy 2020'. (EG)

  18. Gas storage facilities. Investigation of their social value

    International Nuclear Information System (INIS)

    1997-02-01

    The socio-economic factors resulting from location of gas storage facilities are evaluated. Various alternatives to the existing projects are estimated, for instance 11 new pipelines, in some cases combined with new production capacity, LNG facilities, differentiated tariffs, reconstruction of decentralized heat/power plants etc. Theoretical considerations and models, among others involving gas storage abroad, are presented. Seasonal storage, emergency storage, storage controlled by economic optimization (profitable purchases, sales at highest market) are described for various types of facilities, like aquifers, caverns and LNG-stores. Natural gas supplies in Europe, infrastructure and resources are compared to the Danish conditions. Sensitivity of the Danish heating market for natural gas consumption is investigated. Reduction in energy use for space heating by 2005 will change the needs of storage of 740 Mm 3 gas to 650 Mm 3 . Extra consumption by the decentralized power/heat plants is not accounted for in this estimation. Dynamic models of the future gas consumption are based on the EU 'European Energy 2020'. (EG)

  19. The target vacuum storage facility at iThemba LABS

    Science.gov (United States)

    Neveling, R.; Kheswa, N. Y.; Papka, P.

    2018-05-01

    A number of nuclear physics experiments at iThemba LABS require target foils that consist of specific isotopes of elements which are reactive in air. Not only is it important to prepare these targets in a suitable environment to prevent oxidation, but consideration should also be given to the long term storage and handling facilities of such targets. The target vacuum storage facility at iThemba LABS, as well as additional hardware necessary to transport and install the target foils in the experimental chamber, will be discussed.

  20. Criticality safety considerations. Integral Monitored Retrievable Storage (MRS) Facility

    International Nuclear Information System (INIS)

    1986-09-01

    This report summarizes the criticality analysis performed to address criticality safety concerns and to support facility design during the conceptual design phase of the Monitored Retrievable Storage (MRS) Facility. The report addresses the criticality safety concerns, the design features of the facility relative to criticality, and the results of the analysis of both normal operating and hypothetical off-normal conditions. Key references are provided (Appendix C) if additional information is desired by the reader. The MRS Facility design was developed and the related analysis was performed in accordance with the MRS Facility Functional Design Criteria and the Basis for Design. The detailed description and calculations are documented in the Integral MRS Facility Conceptual Design Report. In addition to the summary portion of this report, explanatary notes for various terms, calculation methodology, and design parameters are presented in Appendix A. Appendix B provides a brief glossary of technical terms

  1. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  2. Introducing Systematic Aging Management for Interim Storage Facilities in Germany

    International Nuclear Information System (INIS)

    Spieth-Achtnich, Angelika; Schmidt, Gerhard

    2014-01-01

    In Germany twelve at-reactor and three central (away from reactor) dry storage facilities are in operation, where the fuel is stored in combined transport-and-storage casks. The safety of the storage casks and facilities has been approved and is licensed for up to 40 years operating time. If the availability of a final disposal facility for the stored wastes (spent fuel and high-level wastes from reprocessing) will be further delayed the renewal of the licenses can become necessary in future. Since 2001 Germany had a regulatory guideline for at-reactor dry interim storage of spent fuel. In this guideline some elements of ageing were implemented, but no systematic approach was made for a state-of-the-art ageing management. Currently the guideline is updated to include all kind of storage facilities (central storages as well) and all kinds of high level waste (also waste from reprocessing). Draft versions of the update are under discussion. In these drafts a systematic ageing management is seen as an instrument to upgrade the available technical knowledge base for possible later regulatory decisions, should it be necessary to prolong storage periods to beyond the currently approved limits. It is further recognized as an instrument to prevent from possible and currently unrecognized ageing mechanisms. The generation of information on ageing can be an important basis for the necessary safety-relevant verifications for long term storage. For the first time, the demands for a systematic monitoring of ageing processes for all safety-related components of the storage system are described. In addition, for inaccessible container components such as the seal system, the neutron shielding, the baskets and the waste inventory, the development of a monitoring program is recommended. The working draft to the revised guideline also contains recommendations on non-technical ageing issues such as the long-term preservation of knowledge, long term personnel planning and long term

  3. Commercial experience with facility deactivation to safe storage

    International Nuclear Information System (INIS)

    Sype, T.T.; Fischer, S.R.; Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J.

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex

  4. Commercial experience with facility deactivation to safe storage

    Energy Technology Data Exchange (ETDEWEB)

    Sype, T.T. [Sandia National Labs., Albuquerque, NM (United States); Fischer, S.R. [Los Alamos National Lab., NM (United States); Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J. [Sandia National Labs., Albuquerque, NM (United States)

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex.

  5. Centralized interim storage facility for radioactive wastes at Wuerenlingen (ZWILAG)

    International Nuclear Information System (INIS)

    Lutz, H.R.; Schnetzler, U.

    1994-01-01

    Radioactive waste management in Switzerland is the responsibility of the waste producers; in this respect, the law requires permanent, safe management of the wastes by means of final disposal. Nagra is responsible for the research and development work associated with final disposal. Processing of the wastes into a form suitable for disposal, as well as interim storage, remain the responsibility of the waste producers. In order to supplement the existing conditioning and storage facilities at the nuclear power plants and to replace the outdated waste treatment plant at the Paul Scherrer Institute (PSI) at Wuerenlingen, the operators of the Swiss nuclear power plants are planning a joint treatment and storage facility at the PSI-East site. The organisation ''Zwischenlager Wuerenlingen AG'', which was set up at the beginning of 1990, has been entrusted with this task. (author) 4 figs

  6. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  7. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  8. Storage facility for solid medium level waste at Eurochemic

    International Nuclear Information System (INIS)

    Balseyro-Castro, M.

    1976-01-01

    An engineered surface storage facility is described; it will serve for the interim storage of solid and solidified medium-level waste resulting from the reprocessing of irradiated fuels. Up till now, two storage bunkers have been constructed. Each of them is 64 m long, 12 m wide and 8 m high and can take up to about 5,000 drums of 220 1 volume. The drums are stored in a vertical position and in four layers. The waste product drums are transported by a wagon to the entrance of the bunkers from where they are transferred in to the bunker by an overhead crane which is remotely controlled by high-frequency modulated laser beams. A closed-circuit camera is used to watch the handling operations. The waste stored is fully retrievable, either by means of an overhead crane of a lift-truck and can then be transported to an ultimate storage site

  9. Inventory extension considerations for long-term storage at the nuclear materials storage facility

    International Nuclear Information System (INIS)

    Olinger, C.T.; Stanbro, W.D.; Longmire, V.; Argo, P.E.; Nielson, S.M.

    1996-01-01

    Los Alamos National Laboratory is in the process of modifying its nuclear materials storage facility to a long-term storage configuration. In support of this effort, we examined technical and administrative means to extend periods between physical inventories. Both the frequency and sample size during a physical inventory could significantly impact required sizing of the non-destructive assay (NDA) laboratory as well as material handling capabilities. Several options are being considered, including (1) treating each storage location as a separate vault, (2) minimizing the number of items returned for quantitative analysis by optimizing the use of in situ confirmatory measurements, and (3) utilizing advanced monitoring technologies. Careful consideration of these parameters should allow us to achieve and demonstrate safe and secure storage while minimizing the impact on facility operations and without having to increase the size of the NDA laboratory beyond that required for anticipated shipping and receiving activities

  10. Performance assessment of the proposed Monitored Retrievable Storage Facility

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.; Winter, C.

    1986-02-01

    Pacific Northwest laboratory (PNL) has completed a performance evaluation of the proposed monitored retrievable storage (MRS) facility. This study was undertaken as part of the Department of Energy MRS Program at PNL. The objective of the performance evaluation was to determine whether the conceptual MRS facility would be able to process spent fuel at the specified design rate of 3600 metric tons of uranium (MTU) per year. The performance of the proposed facility was assessed using the computer model COMPACT (Computer Optimization of Processing and Cask Transport) to simulate facility operations. The COMPACT model consisted of three application models each of which addressed a different aspect of the facility's operation: MRS/waste transportation interface; cask handling capability; and disassembly/consolidation (hot cell) operations. Our conclusions, based on the assessment of design criteria for the proposed facility, are as follows: Facilities and equipment throughout the facility have capability beyond the 3600 MTU/y design requirement. This added capability provides a reserve to compensate for unexpected perturbations in shipping or handling of the spent fuel. Calculations indicate that the facility's maximum maintainable processing capability is approximately 4800 MTU/y

  11. Preconceptual design for a Monitored Retrievable Storage (MRS) transfer facility

    International Nuclear Information System (INIS)

    Woods, W.D.; Jowdy, A.K.; Smith, R.I.

    1990-09-01

    The contract between the DOE and the utilities specifies that the DOE will receive spent fuel from the nuclear utilities in 1998. This study investigates the feasibility of employing a simple Transfer Facility which can be constructed quickly, and operate while the full-scale MRS facilities are being constructed. The Transfer Facility is a hot cell designed only for the purpose of transferring spent fuel assemblies from the Office of Civilian Radioactive Waste Management (OCRWM) transport casks (shipped from the utility sites) into onsite concrete storage casks. No operational functions other than spent fuel assembly transfers and the associated cask handling, opening, and closing would be performed in this facility. Radioactive waste collected in the Transfer Facility during operations would be stored until the treatment facilities in the full-scale MRS facility became operational, approximately 2 years after the Transfer Facility started operation. An alternate wherein the Transfer Facility was the only waste handling building on the MRS site was also examined and evaluated. 6 figs., 26 tabs

  12. Safety of Long-term Interim Storage Facilities - Workshop Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this workshop was to discuss and review current national activities, plans and regulatory approaches for the safety of long term interim storage facilities dedicated to spent nuclear fuel (SF), high level waste (HLW) and other radioactive materials with prolonged storage regimes. It was also intended to discuss results of experiments and to identify necessary R and D to confirm safety of fuel and cask during the long-term storage. Safety authorities and their Technical Support Organisation (TSO), Fuel Cycle Facilities (FCF) operating organisations and international organisations were invited to share information on their approaches, practices and current developments. The workshop was organised in an opening session, three technical sessions, and a conclusion session. The technical sessions were focused on: - National approaches for long term interim storage facilities; - Safety requirements, regulatory framework and implementation issues; - Technical issues and operational experience, needs for R and D. Each session consisted of a number of presentations followed by a panel discussion moderated by the session Chairs. A summary of each session and subsequent discussion that ensued are provided as well as a summary of the results of the workshop with the text of the papers given and presentations made

  13. Criteria for designing an interim waste storage facility

    International Nuclear Information System (INIS)

    Vicente, Roberto

    2011-01-01

    The long-lived radioactive wastes with activity above clearance levels generated by radioisotope users in Brazil are collected into centralized waste storage facilities under overview of the National Commission on Nuclear Energy (CNEN). One of these centers is the Radioactive Waste Management Department (GRR) at the Nuclear and Energy Research Institute (IPEN), in Sao Paulo, which since 1978 also manages the wastes generated by IPEN itself. Present inventory of stored wastes includes about 160 tons of treated wastes, distributed in 1290 steel, 200-liters drums, and 52 steel, 1.6 m 3 -boxes, with an estimated total activity of 0.8 TBq. Radionuclides present in these wastes are fission and activation products, transuranium elements, and isotopes from the uranium and thorium decay series. The capacity and quality of the storage rooms at GRR evolved along the last decades to meet the requirements set forth by the Brazilian regulatory authorities.From a mere outdoor concrete platform over which drums were simply stacked and covered with canvas to the present day building, a great progress was made in the storage method. In this paper we present the results of a study in the criteria that were meant to guide the design of the storage building, many of which were eventually adopted in the final concept, and are now built-in features of the facility. We also present some landmarks in the GRR's activities related to waste management in general and waste storage in particular, until the treated wastes of IPEN found their way into the recently licensed new storage facility. (author)

  14. Spatial interpolation of gamma dose in radioactive waste storage facility

    Science.gov (United States)

    Harun, Nazran; Fathi Sujan, Muhammad; Zaidi Ibrahim, Mohd

    2018-01-01

    External radiation measurement for a radioactive waste storage facility in Malaysian Nuclear Agency is a part of Class G License requirement under Atomic Licensing Energy Board (AELB). The objectives of this paper are to obtain the distribution of radiation dose, create dose database and generate dose map in the storage facility. The radiation dose measurement is important to fulfil the radiation protection requirement to ensure the safety of the workers. There are 118 sampling points that had been recorded in the storage facility. The highest and lowest reading for external radiation recorded is 651 microSv/hr and 0.648 microSv/hour respectively. The calculated annual dose shows the highest and lowest reading is 1302 mSv/year and 1.3 mSv/year while the highest and lowest effective dose reading is 260.4 mSv/year and 0.26 mSv/year. The result shows that the ALARA concept along time, distance and shield principles shall be adopted to ensure the dose for the workers is kept below the dose limit regulated by AELB which is 20 mSv/year for radiation workers. This study is important for the improvement of planning and the development of shielding design for the facility.

  15. 190-C Facility <90 Day Storage Pad training plan

    International Nuclear Information System (INIS)

    Little, N.C.

    1996-12-01

    This is the Environmental Restoration Contractor (ERC) team training plan for the 190-C Facility <90 Day Storage Pad of Hazardous Waste. It is intended to meet the requirements of Washington Administrative Code (WAC) 173-303-330 and the Hanford Dangerous Waste Permit. Training unrelated to compliance with WAC 173-303-330 is not addressed in this training plan. WAC 173-303-330(1)(d)(ii, v, vi) requires that personnel be familiarized, where applicable, with waste feed cut-off systems, response to ground-water contamination incidents, and shutdown of operations. These are not applicable to 190-C Facility <90 Day Storage Pad, and are therefore not covered in this training plan

  16. Conceptual design and cost estimation of dry cask storage facility for spent fuel

    International Nuclear Information System (INIS)

    Maki, Yasuro; Hironaga, Michihiko; Kitano, Koichi; Shidahara, Isao; Shiomi, Satoshi; Ohnuma, Hiroshi; Saegusa, Toshiari

    1985-01-01

    In order to propose an optimum storage method of spent fuel, studies on the technical and economical evaluation of various storage methods have been carried out. This report is one of the results of the study and deals with storage facility of dry cask storage. The basic condition of this work conforms to ''Basic Condition for Spent Fuel Storage'' prepared by Project Group of Spent Fuel Dry Storage at July 1984. Concerning the structural system of cask storage facilities, trench structure system and concrete silo system are selected for storage at reactor (AR), and a reinforced concrete structure of simple design and a structure with membrance roof are selected for away from reactor (AFR) storage. The basic thinking of this selection are (1) cask is put charge of safety against to radioactivity and (2) storage facility is simplified. Conceptual designs are made for the selected storage facilities according to the basic condition. Attached facilities of storage yard structure (these are cask handling facility, cask supervising facility, cask maintenance facility, radioactivity control facility, damaged fuel inspection and repack facility, waste management facility) are also designed. Cost estimation of cask storage facility are made on the basis of the conceptual design. (author)

  17. INEL storage facility for sealed sources from the commercial sector

    International Nuclear Information System (INIS)

    Kingsford, C.O.; Satterthwaite, B.C.

    1994-08-01

    Commercially owned sealed radiation sources determine by the US Nuclear Regulatory Commission to be a public health or safety hazard are accepted by the US Department of Energy, under the Atomic Energy Act of 1954, as material for reuse of recycle. To implement this policy, the sealed sources must be stored until proper disposition is determined. This report documents the investigation and selection process undertaken to locate a suitable storage facility at the Idaho National Engineering Laboratory

  18. Treatment and storage of radioactive gases from nuclear facilities

    International Nuclear Information System (INIS)

    Johannsen, K.H.; Schwarzbach, R.

    1980-01-01

    Treatment of exhaust air from nuclear facilities aimed at retaining or separating the radionuclides of iodine, xenon, and krypton as well as of tritium and carbon-14 and their storage are of special interest in connection with increasing utilization of nuclear power in order to reduce releases of radioactive materials to the atmosphere. The state of the art and applicability of potential processes of separating volatile fission and activation products from nuclear power stations and reprocessing plants are reviewed. Possibilities of ultimate storage are presented. An evaluation of the current stage of development shows that processes for effective separation of radioactive gases are available. Recent works are focused on economy and safety optimization. Long-term storage, in particular of extremely long-lived radionuclides, needs further investigation. (author)

  19. Methods for expanding the capacity of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1990-06-01

    At the beginning of 1989 more than 55,000 metric tonnes of heavy metal (MTHM) of spent Light Water Reactor (LWR) and Heavy Water Reactor (HWR) fuel had been discharged worldwide from nuclear power plants. Only a small fraction of this fuel has been reprocessed. The majority of the spent fuel assemblies are currently held at-reactor (AR) or away-from-reactor (AFR) in storage awaiting either chemical processing or final disposal depending on the fuel concept chosen by individual countries. Studies made by NEA and IAEA have projected that annual spent fuel arising will reach about 10,000 t HM in the year 2000 and cumulative arising will be more than 200,000 t HM. Taking into account the large quantity of spent fuel discharged from NPP and that the first demonstrations of the direct disposal of spent fuel or HLW are expected only after the year 2020, long-term storage will be the primary option for management of spent fuel until well into the next century. There are several options to expand storage capacity: (1) to construct new away-from-reactor storage facilities, (2) to transport spent fuel from a full at-reactor pool to another site for storage in a pool that has sufficient space to accommodate it, (3) to expand the capacity of existing AR pools by using compact racks, double-tierce, rod consolidation and by increasing the dimensions of existing pools. The purpose of the meeting was: to exchange new information on the international level on the subject connected with the expansion of storage capacities for spent fuel; to elaborate the state-of-the-art of this problem; to define the most important areas for future activity; on the basis of the above information to give recommendations to potential users for selection and application of the most suitable methods for expanding spent fuel facilities taking into account the relevant country's conditions. Refs, figs and tabs

  20. Occupational dose estimates for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Harty, R.; Stoetzel, G.A.

    1986-06-01

    Occupational doses were estimated for radiation workers at the monitored retrievable storage (MRS) facility. This study provides an estimate of the occupational dose based on the current MRS facility design, examines the extent that various design parameters and assumptions affect the dose estimates, and identifies the areas and activities where exposures can be reduced most effectively. Occupational doses were estimated for both the primary storage concept and the alternate storage concept. The dose estimates indicate the annual dose to all radiation workers will be below the 5 rem/yr federal dose equivalent limit. However, the estimated dose to most of the receiving and storage crew (the workers responsible for the receipt, storage, and surveillance of the spent fuel and its subsequent retrieval), to the crane maintenance technicians, and to the cold and remote maintenance technicians is above the design objective of 1 rem/yr. The highest annual dose is received by the riggers (4.7 rem) in the receiving and storage crew. An indication of the extent to which various design parameters and assumptions affect the dose estimates was obtained by changing various design-based assumptions such as work procedures, background dose rates in radiation zones, and the amount of fuel received and stored annually. The study indicated that a combination of remote operations, increased shielding, and additional personnel (for specific jobs) or changes in operating procedures will be necessary to reduce worker doses below 1.0 rem/yr. Operations that could be made at least partially remote include the removal and replacement of the tiedowns, impact limiters, and personnel barriers from the shipping casks and the removal or installation of the inner closure bolts. Reductions of the background dose rates in the receiving/shipping and the transfer/discharge areas may be accomplished with additional shielding

  1. Hanford facility dangerous waste permit application, PUREX storage tunnels

    International Nuclear Information System (INIS)

    Price, S.M.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997

  2. The amino acid's backup bone - storage solutions for proteomics facilities.

    Science.gov (United States)

    Meckel, Hagen; Stephan, Christian; Bunse, Christian; Krafzik, Michael; Reher, Christopher; Kohl, Michael; Meyer, Helmut Erich; Eisenacher, Martin

    2014-01-01

    Proteomics methods, especially high-throughput mass spectrometry analysis have been continually developed and improved over the years. The analysis of complex biological samples produces large volumes of raw data. Data storage and recovery management pose substantial challenges to biomedical or proteomic facilities regarding backup and archiving concepts as well as hardware requirements. In this article we describe differences between the terms backup and archive with regard to manual and automatic approaches. We also introduce different storage concepts and technologies from transportable media to professional solutions such as redundant array of independent disks (RAID) systems, network attached storages (NAS) and storage area network (SAN). Moreover, we present a software solution, which we developed for the purpose of long-term preservation of large mass spectrometry raw data files on an object storage device (OSD) archiving system. Finally, advantages, disadvantages, and experiences from routine operations of the presented concepts and technologies are evaluated and discussed. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013. Published by Elsevier B.V.

  3. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force

  4. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force.

  5. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS. ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    International Nuclear Information System (INIS)

    Rutherford, W.W.; Geuther, W.J.; Strankman, M.R.; Conrad, E.A.; Rhoadarmer, D.D.; Black, D.M.; Pottmeyer, J.A.

    2009-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  6. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  7. Preliminary safety evaluation (PSE) for Sodium Storage Facility at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Bowman, B.R.

    1994-01-01

    This evaluation was performed for the Sodium Storage Facility (SSF) which will be constructed at the Fast Flux Test Facility (FFTF) in the area adjacent to the South and West Dump Heat Exchanger (DHX) pits. The purpose of the facility is to allow unloading the sodium from the FFTF plant tanks and piping. The significant conclusion of this Preliminary Safety Evaluation (PSE) is that the only Safety Class 2 components are the four sodium storage tanks and their foundations. The building, because of its imminent risk to the tanks under an earthquake or high winds, will be Safety Class 3/2, which means the building has a Safety Class 3 function with the Safety Class 2 loads of seismic and wind factored into the design

  8. 616 Nonradioactive Dangerous Waste Storage Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this storage unit, including the Part A included with this document, is provided at the beginning of the Part A Section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings. The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application (Revision 0) was submitted to the Washington State Department of Ecology and the US Environmental Protection Agency on July 31, 1989. Revision 1, addressing Washington State Department of Ecology review comments made on Revision 0 dated November 21, 1989, and March 23, 1990, was submitted on June 22, 1990. This submittal, Revision 2, addresses Washington State Department of Ecology review comments made on Revision 1, dated June 22, 1990, August 30, 1990, December 18, 1990, and July 8, 1991

  9. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    International Nuclear Information System (INIS)

    Berry, C.J.

    1998-01-01

    In order to assess the microbial condition of foreign spent nuclear fuel storage facilities and their possible impact on SRS storage basins, twenty-three water samples were analyzed from 12 different countries. Fifteen of the water samples were analyzed and described in an earlier report (WSRC-TR-97-00365 [1]). This report describes nine additional samples received from October 1997 through March 1998. The samples include three from Australia, two from Denmark and Germany and one sample from Italy and Greece. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate-reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to all other foreign samples analyzed to date and monthly samples pulled from the receiving basin for off-site fuel (RBOF), at SRS. Of the nine samples analyzed, four samples from Italy, Germany and Greece had considerably higher microbiological activity than that historically found in the RBOF. This microbial activity included high levels of enzyme diversity and the presence of viable organisms that have been associated with microbial influenced corrosion in other environments. The three samples from Australia had microbial activities similar to that in the RBOF while the two samples from Denmark had lower levels of microbial activity. These results suggest that a significant number of the foreign storage facilities have water quality standards that allow microbial proliferation and survival

  10. Study for the selection of a supplementary spent fuel storage facility for KANUPP

    International Nuclear Information System (INIS)

    Ahmed, W.; Iqbal, M.J.; Arshad, M.

    1999-01-01

    Steps taken for construction of the spent fuel facility of Karachi Nuclear Power Plant (KANUPP) are the following: choice of conceptual design and site selection; preliminary design and preparation of Preliminary Safety Analysis Report (PSAR); Construction of the facility and preparation of PSAR; testing/commissioning and loading of the storage facility. Characterisation of the spent fuel is essential for design of the storage facility. After comparison of various storage types, it seems that construction of dry storage facility based on concrete canisters at KANUPP site is a suitable option to enhance the storage capacity

  11. Radon exposure at a radioactive waste storage facility.

    Science.gov (United States)

    Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M

    2014-06-01

    The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.

  12. Thermal operations conditions in a national waste terminal storage facility

    International Nuclear Information System (INIS)

    1976-09-01

    Some of the major technical questions associated with the burial of radioactive high-level wastes in geologic formations are related to the thermal environments generated by the waste and the impact of this dissipated heat on the surrounding environment. The design of a high level waste storage facility must be such that the temperature variations that occur do not adversely affect operating personnel and equipment. The objective of this investigation was to assist OWI by determining the thermal environment that would be experienced by personnel and equipment in a waste storage facility in salt. Particular emphasis was placed on determining the maximum floor and air temperatures with and without ventilation in the first 30 years after waste emplacement. The assumed facility design differs somewhat from those previously analyzed and reported, but many of the previous parametric surveys are useful for comparison. In this investigation a number of 2-dimensional and 3-dimensional simulations of the heat flow in a repository have been performed on the HEATING5 and TRUMP heat transfer codes. The representative repository constructs used in the simulations are described, as well as the computational models and computer codes. Results of the simulations are presented and discussed. Comparisons are made between the recent results and those from previous analyses. Finally, a summary of study limitations, comparisons, and conclusions is given

  13. Secondary containment systems for bulk oil storage facilities

    International Nuclear Information System (INIS)

    Carr, B.A.

    1996-01-01

    The United States Environmental Protection Agency has conducted site inspections at several onshore bulk oil above ground storage facilities, to ensure that owners follow the spill prevention, control and countermeasure regulations. The four violations which were most frequently cited at these facilities were: (1) lack of a spill prevention plan, (2) lack of appropriate containment equipment to prevent discharged oil from reaching a navigable water course, (3) inadequate secondary containment structures, and (4) lack of an adequate quick drainage system in the facility tank loading/unloading area. Suggestions for feasible designs which would improve the impermeability of secondary containment for above ground storage tanks (AST) included the addition of a liner, retrofitting the bottom of an AST with a second steel plate, using a geosynthetic liner on top of the original bottom, installing a leak detection system in the interstitial space between the steel plates, or installing an under-tank liner with a leak detection system during construction of a new AST. 2 refs

  14. West Valley facility spent fuel handling, storage, and shipping experience

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs

  15. The dynamic storage and restart facilities in MABEL-2

    International Nuclear Information System (INIS)

    Nye, M.T.S.

    1983-12-01

    MABEL-2 is a FORTRAN program for calculating clad ballooning in a PWR during a LOCA. Originally written with fixed array storage, the use of the code has been extended by including dynamic storage. The lengths of the arrays in the program are set at execution time, varying from run to run. This allows much greater freedom in the choice of mesh and the size of case run. The use of computer memory is also more efficient. In addition a restart facility has been included which allows the user to break off and restart execution of the program (once or many times) during a transient. By using this facility much longer calculations can be run. Should an error in either input data or program become apparent late in a transient, the case need only be re-run from the last dump because some input data can be altered at restart. The use of these new facilities and the coding changes are described. (author)

  16. Reorganizing Nigeria's Vaccine Supply Chain Reduces Need For Additional Storage Facilities, But More Storage Is Required.

    Science.gov (United States)

    Shittu, Ekundayo; Harnly, Melissa; Whitaker, Shanta; Miller, Roger

    2016-02-01

    One of the major problems facing Nigeria's vaccine supply chain is the lack of adequate vaccine storage facilities. Despite the introduction of solar-powered refrigerators and the use of new tools to monitor supply levels, this problem persists. Using data on vaccine supply for 2011-14 from Nigeria's National Primary Health Care Development Agency, we created a simulation model to explore the effects of variance in supply and demand on storage capacity requirements. We focused on the segment of the supply chain that moves vaccines inside Nigeria. Our findings suggest that 55 percent more vaccine storage capacity is needed than is currently available. We found that reorganizing the supply chain as proposed by the National Primary Health Care Development Agency could reduce that need to 30 percent more storage. Storage requirements varied by region of the country and vaccine type. The Nigerian government may want to consider the differences in storage requirements by region and vaccine type in its proposed reorganization efforts. Project HOPE—The People-to-People Health Foundation, Inc.

  17. Strategic sizing of energy storage facilities in electricity markets

    DEFF Research Database (Denmark)

    Nasrolahpour, Ehsan; Kazempour, Seyyedjalal; Zareipour, Hamidreza

    2016-01-01

    This paper proposes a model to determine the optimasize of an energy storage facility from a strategic investor’s perspective. This investor seeks to maximize its profit through making strategic planning, i.e., storage sizing, and strategic operational, i.e., offering and bidding, decisions. We...... consider the uncertainties associated with rival generators’ offering strategies and future load levels in the proposed model. The strategic investment decisions include the sizes of charging device, discharging device and energy reservoir. The proposed model is a stochastic bi-level optimization problem......; the planning and operation decisions are made in the upper-level, and market clearing is modeled in the lower-level under different operating scenarios. To make the proposed model computationally tractable, an iterative solution technique based on Benders’ decomposition is implemented. This provides a master...

  18. Viability of Existing INL Facilities for Dry Storage Cask Handling

    Energy Technology Data Exchange (ETDEWEB)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil; Marschman, Steve

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  19. Viability of Existing INL Facilities for Dry Storage Cask Handling

    Energy Technology Data Exchange (ETDEWEB)

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  20. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J.

    2013-10-01

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  1. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    In April 1985, the Department of Energy (DOE) selected the Clinch River site as its preferred site for the construction and operation of the monitored retrievable storage (MRS) facility (USDOE, 1985). In support of the DOE MRS conceptual design activity, available data describing the site have been gathered and analyzed. A composite geotechnical description of the Clinch River site has been developed and is presented herein. This report presents Clinch River site description data in the following sections: general site description, surface hydrologic characteristics, groundwater characteristics, geologic characteristics, vibratory ground motion, surface faulting, stability of subsurface materials, slope stability, and references. 48 refs., 35 figs., 6 tabs

  2. Construction of JRR-3 spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Adachi, M.

    1982-01-01

    To store the JRR-3 metallic natural uranium spent fuel elements, dry storage facility has been constructed in JAERI. This facility has a capacity of about 30T of uranium. The elements are placed in encapsulated canister, then stored in drywell in the store. The store is basically an ordinary concrete box, about 12m long, 13m wide, and 5m deep. The store comprises a 10 x 10 lattice array of the drywells. The drywell consists of a stainless steel liner which is 2.5m deep, 36cm ID and 0.8cm thickness. A drywell also has an air inlet, outlet pipe for radiation monitoring and a shield plug in carbon steel for radiation protection. A canister which consists of stainless steel with 0.5cm thickness contains 36 elements. Sealing of the canister is accomplished by fusion welding

  3. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  4. Thermal stress analysis of the fuel storage facility

    International Nuclear Information System (INIS)

    Chen, W.W.

    1991-12-01

    This paper presents the results of a nonlinear finite-element analysis to determine the structural integrity of the walls of the nuclear fuel storage room in the Radio Isotope Power System Facility of the Fuels and Materials Examination Facility (FMEF) Project. The analysis was performed to assess the effects of thermal loading on the walls that would result from a loss-of-cooling accident. The results obtained from using the same three-dimensional finite-element model with different types of elements, the eight-node brick element and the nonlinear concrete element, and the calculated results using the analytical solutions, are compared. The concrete responses in terms of octahedral normal and shearing stresses are described. The crack and crush states of the concrete were determined on the basis of multiaxial failure criteria

  5. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  6. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document

  7. Monitored Retrievable Storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume

  8. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs{hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document.

  9. Monitored Retrievable Storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs {hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume.

  10. Summary Report for Capsule Dry Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    JOSEPHSON, W S

    2003-09-04

    There are 1.936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project (CDSP) is conducted under the assumption the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event vitrification of the capsule contents is pursued. A cut away drawing of a typical cesium chloride (CsCI) capsule and the capsule property and geometry information are provided in Figure 1.1. Strontium fluoride (SrF{sub 2}) capsules are similar in design to CsCl capsules. Further details of capsule design, current state, and reference information are given later in this report and its references. Capsule production and life history is covered in WMP-16938, Capsule Characterization Report for Capsule Dry Storage Project, and is briefly summarized in Section 5.2 of this report.

  11. A monitored retrievable storage facility: Technical background information

    International Nuclear Information System (INIS)

    1991-07-01

    The US government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an integral part of the federal system for safe and permanent disposal of the nation's high-level radioactive wastes. The MRS will accept shipments of spent fuel from commercial nuclear power plants, temporarily store the spent fuel above ground, and stage shipments of it to a geologic repository for permanent disposal. The law authorizing the MRS provides an opportunity for a state or an Indian tribe to volunteer to host the MRS. The law establishes the Office of the Nuclear Waste Negotiator, who is to seek a state or an Indian tribe willing to host an MRS at a technically-qualified site on reasonable terms, and is to negotiate a proposed agreement specifying the terms and conditions under which the MRS would be developed and operated at that site. This agreement can ensure that the MRS is acceptable to -- and benefits -- the host community. The proposed agreement must be submitted to Congress and enacted into law to become effective. This technical background information presents an overview of various aspects of a monitored retrievable storage facility, including the process by which it will be developed

  12. Recommendations on the proposed Monitored Retrievable Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    Following the Department of Energy's announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE's primary and secondary sites, were invited to participate in the state's review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor's Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

  13. Recommendations on the proposed Monitored Retrievable Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    Following the Department of Energy`s announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE`s primary and secondary sites, were invited to participate in the state`s review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor`s Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

  14. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This report presents a summary design description of the Conceptual Design for an Integral Monitored Retrievable Storage (MRS) Facility, as prepared by The Ralph M. Parsons Company under an A-E services contract with the Richland Operations Office of the Department of Energy. More detailed design requirements and design data are set forth in the Basis for Design and Design Report, bound under separate cover and available for reference by those desiring such information. The design data provided in this Design Report Executive Summary, the Basis for Design, and the Design Report include contributions by the Waste Technology Services Division of Westinghouse Electric Corporation (WEC), which was responsible for the development of the waste receiving, packaging, and storage systems, and Golder Associates Incorporated (GAI), which supported the design development with program studies. The MRS Facility design requirements, which formed the basis for the design effort, were prepared by Pacific Northwest Laboratory for the US Department of Energy, Richland Operations Office, in the form of a Functional Design Criteria (FDC) document, Rev. 4, August 1985. 9 figs., 6 tabs

  15. Monitored retrievable storage submission to Congress: Volume 2, Environmental assessment for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    1986-02-01

    This Environmental Assessment (EA) supports the DOE proposal to Congress to construct and operate a facility for monitored retrievable storage (MRS) of spent fuel at a site on the Clinch River in the Roane County portion of Oak Ridge, Tennessee. The first part of this document is an assessment of the value of, need for, and feasibility of an MRS facility as an integral component of the waste management system. The second part is an assessment and comparison of the potential environmental impacts projected for each of six site-design combinations. The MRS facility would be centrally located with respect to existing reactors, and would receive and canister spent fuel in preparation for shipment to and disposal in a geologic repository. 207 refs., 57 figs., 132 tabs

  16. B plant/WESF integrated annual safety appraisal

    International Nuclear Information System (INIS)

    Anderson, J.K.

    1990-12-01

    This report provides the results of the Fiscal Year 1990 Annual Integrated Safety Appraisal of the B Plant and Waste Encapsulation and Storage Facility in the Hanford Site 200 East Area. The appraisal was conducted in August and September 1990, by the Defense Waste Disposal Safety group, in conjunction with Health Physics and Emergency Preparedness. Reports of these three organizations for their areas of responsibility are presented. The purpose of the appraisal was to determine if the areas being appraised meet US Department of Energy (DOE) and Westinghouse Hanford Company (WHC) requirements and current industry standards of good practice. A further purpose was to identify areas in which program effectiveness could be improved. In accordance with the guidance of WHC Management Requirements and Procedures 5.6, previously identified deficiencies which are being resolved by line management were not repeated as Findings or Observations unless progress or intended disposition was considered to be unsatisfactory. The overall assessment is that there are no major safety problems associated with current operations. Programs are in place to provide the necessary safety controls, evaluations, overviews, and support. In most respects these programs are being implemented effectively. However, there are a number of deficiencies in details of program design and implementation. The appraisal identified a total of 23 Findings and 27 Observations of deficiencies. All Observations are Seriousness Category 3. Fifteen Findings were Category 2 and 8 were Category 3. Most of the Category 2 Findings were so categorized on the basis of noncompliance with mandatory DOE Orders or WHC policies and procedures, rather than potential risk to personnel

  17. Conceptual Design of an Antiproton Generation and Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Peggs, Stephen

    2006-10-24

    The Antiproton Generation and Storage Facility (AGSF) creates copious quantities of antiprotons, for bottling and transportation to remote cancer therapy centers. The first step in the generation and storage process is to accelerate an intense proton beam down the Main Linac for injection into the Main Ring, which is a Rapid Cycling Synchrotron that accelerates the protons to high energy. The beam is then extracted from the ring into a transfer line and into a Proton Target. Immediately downstream of the target is an Antiproton Collector that captures some of the antiprotons and focuses them into a beam that is transported sequentially into two antiproton rings. The Precooler ring rapidly manipulates antiproton bunches from short and broad (in momentum) to long and thin. It then performs some preliminary beam cooling, in the fraction of a second before the next proton bunch is extracted from the Main Ring. Pre-cooled antiprotons are passed on to the Accumulator ring before the next antiprotons arrive from the target. The Accumulator ring cools the antiprotons, compressing them into a dense state that is convenient for mass storage over many hours. Occasionally the Accumulator ring decelerates a large number of antiprotons, injecting them into a Deceleration Linac that passes them into a waiting Penning trap.

  18. Conceptual Design of an Antiproton Generation and Storage Facility

    International Nuclear Information System (INIS)

    Peggs, Stephen

    2006-01-01

    The Antiproton Generation and Storage Facility (AGSF) creates copious quantities of antiprotons, for bottling and transportation to remote cancer therapy centers. The first step in the generation and storage process is to accelerate an intense proton beam down the Main Linac for injection into the Main Ring, which is a Rapid Cycling Synchrotron that accelerates the protons to high energy. The beam is then extracted from the ring into a transfer line and into a Proton Target. Immediately downstream of the target is an Antiproton Collector that captures some of the antiprotons and focuses them into a beam that is transported sequentially into two antiproton rings. The Precooler ring rapidly manipulates antiproton bunches from short and broad (in momentum) to long and thin. It then performs some preliminary beam cooling, in the fraction of a second before the next proton bunch is extracted from the Main Ring. Pre-cooled antiprotons are passed on to the Accumulator ring before the next antiprotons arrive from the target. The Accumulator ring cools the antiprotons, compressing them into a dense state that is convenient for mass storage over many hours. Occasionally the Accumulator ring decelerates a large number of antiprotons, injecting them into a Deceleration Linac that passes them into a waiting Penning trap

  19. Hazards assessment for the Hazardous Waste Storage Facility

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency

  20. Establishing a central waste processing and storage facility in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.; Darko, E.O.

    2001-01-01

    Radioactive waste and spent sealed sources in Ghana are generated from various nuclear applications - diagnostic and therapeutic procedures in medicine, measurement and processing techniques in industry, irradiation techniques for food preservation and sterilization of medical products and a research reactor for research and teaching. Statistics available indicate that over 15 institutions in Ghana are authorized to handle radiation sources. At present radioactive waste and spent sealed sources are collected and stored in the interim facility without conditioning. With the increasing use of radioactive sources in the industry, medicine for diagnostic and therapeutic purpose and research and teaching, the volume of waste is expected to increase. The radioactive waste expected include spent ion exchange resins from the nuclear reactor water purification system, incompactible solid waste from mechanical filter, liquid and organic waste and spent sealed sources. It is estimated that four 200L drums will be needed annually to condition the waste to be generated. The National Radioactive Waste Management Centre (NRWMC) was therefore established to carry radioactive waste safety operations in Ghana and research to ensure that each waste type is managed in the most appropriate manner. Its main task includes development and establishment of the radioactive waste management infrastructure with a capacity considering the future nuclear technology development in Ghana. The first phase covers the establishment of administrative structure, development of basic regulations and construction of the radioactive waste processing and storage facility. The Ghana Radioactive Waste Management regulation has been presented to the Parliament of Ghana for consideration. The initial draft was reviewed by the RPB. A 3-day national seminar on the Understanding and Implementation of the Regulation on Radioactive Waste Management in Ghana was held to discuss and educate the general public on the

  1. Building arrangement and site layout design guides for on site low level radioactive waste storage facilities

    International Nuclear Information System (INIS)

    McMullen, J.W.; Feehan, M.J.

    1986-01-01

    Many papers have been written by AE's and utilities describing their onsite storage facilities, why they are needed, NRC regulations, and disposal site requirements. This paper discusses a typical storage facility and address the design considerations and operational aspects that are generally overlooked when designing and siting a low level radioactive waste storage facility. Some topics to be addressed are: 1. Container flexibility; 2. Modular expansion capabilities; 3. DOT regulations; 4. Meterological requirements; 5. OSHA; 6. Fire protection; 7. Floods; 8. ALARA

  2. Study of hydrogen vehicle storage in enclosed parking facilities

    Energy Technology Data Exchange (ETDEWEB)

    Belzile, M A [Transport Canada, Ottawa, ON (Canada). ecoTECHNOLOGY for Vehicles; Cook, S [Canadian Hydrogen and Fuel Cell Association, Vancouver, BC (Canada)

    2009-07-01

    This paper reported on a coordinated research program between Transport Canada and Hydrogen and Fuel Cells Canada that examines issues of hydrogen vehicle storage. The ecoTECHNOLOGY for Vehicles (eTV) program focuses on the safety issues of operating and storing hydrogen fuelled vehicles in enclosed parking facilities. The aim of the program is to review existing research, current building standards applied in Canada, standards applied to natural gas vehicles, and standards and recommended practices for the design of fuel cell vehicles. Any potential gaps in safety will be considered in the design of CFD modeling scenarios. Considerations that extend beyond previously performed studies include the effect of Canadian climate on vehicle safety and leak detection equipment, fail-safe mechanism performance, as well as analyses of the frequency of hydrogen leak occurrences and the probability of ignition. The results of the study will facilitate policy makers and authorities in making decisions regarding the storage of hydrogen fuelled vehicles as they become more popular.

  3. Treatment, Storage and Disposal (TSD) Corrective Action Facility Polygons, Region 9, 2015, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — RCRA Treatment, Storage and Disposal facilities (TSDs) are facilities that have treated, stored or disposed of hazardous wastes. They are required to clean up...

  4. Retrievable surface storage facility conceptual system design description

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts.

  5. Retrievable surface storage facility conceptual system design description

    International Nuclear Information System (INIS)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts

  6. An analytical model for computation of reliability of waste management facilities with intermediate storages

    International Nuclear Information System (INIS)

    Kallweit, A.; Schumacher, F.

    1977-01-01

    A high reliability is called for waste management facilities within the fuel cycle of nuclear power stations which can be fulfilled by providing intermediate storage facilities and reserve capacities. In this report a model based on the theory of Markov processes is described which allows computation of reliability characteristics of waste management facilities containing intermediate storage facilities. The application of the model is demonstrated by an example. (orig.) [de

  7. Development of Accident Scenario for Interim Spent Fuel Storage Facility Based on Fukushima Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongjin; Choi, Kwangsoon; Yoon, Hyungjoon; Park, Jungsu [KEPCO-E and C, Yongin (Korea, Republic of)

    2014-05-15

    700 MTU of spent nuclear fuel is discharged from nuclear fleet every year and spent fuel storage is currently 70.9% full. The on-site wet type spent fuel storage pool of each NPP(nuclear power plants) in Korea will shortly exceed its storage limit. Backdrop, the Korean government has rolled out a plan to construct an interim spent fuel storage facility by 2024. However, the type of interim spent fuel storage facility has not been decided yet in detail. The Fukushima accident has resulted in more stringent requirements for nuclear facilities in case of beyond design basis accidents. Therefore, there has been growing demand for developing scenario on interim storage facility to prepare for beyond design basis accidents and conducting dose assessment based on the scenario to verify the safety of each type of storage.

  8. 190-C Facility <90 Day Storage Pad supplemental information to the Hanford facility contingency plan

    International Nuclear Information System (INIS)

    Little, N.C.

    1996-12-01

    The 190-C Facility <90 Day Storage Pad stores waste oils primarily contaminated with lead generated while draining equipment within the building of residual lubricating oils. Waste oils are packaged and stored in fifty-five gallon drums, or other containers permitted by the Site Specific Waste Management Instruction. Bechtel Hanford, Inc. (BHI) manual BHI-EE-02, Environmental Requirements Procedures, references this document. This document is to be used to demonstrate compliance with the contingency plan requirements in Washington Administrative Code, Chapter 173-303, Dangerous Waste Regulations, for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units (units). Refer to BHI-EE-02, for additional information

  9. Heat removal tests on dry storage facilities for nuclear spent fuels

    International Nuclear Information System (INIS)

    Wataru, M.; Saegusa, T.; Koga, T.; Sakamoto, K.; Hattori, Y.

    1999-01-01

    In Japan, spent fuel generated in NPP is controlled and stored in dry storage facility away-from reactor. Natural convection cooling system of the storage facility is considered advantageous from both safety and economic point of view. In order to realize this type of facility it is necessary to develop an evaluation method for natural convection characteristics and to make a rational design taking account safety and economic factors. Heat removal tests with the reduces scale models of storage facilities (cask, vault and silo) identified the the flow pattern in the test modules. The temperature and velocity distributions were obtained and the heat transfer characteristics were evaluated

  10. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    King, J.W.

    1993-01-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction

  11. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    King, J.W.

    1993-08-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  12. Fuel Assemblies Thermal Analysis in the New Spent Fuel Storage Facility at Inshass Site

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, Ahmed

    1999-01-01

    New Wet Storage Facility (NSF) is constructed at Inshass site to solve the problem of spent fuel storage capacity of ETRR-1 reactor . The Engineering Safety Heat Transfer Features t hat characterize the new facility are presented. Thermal analysis including different scenarios of pool heat load and safety limits are discussed . Cladding temperature limit during handling and storage process are specified for safe transfer of fuel

  13. A new framework to assess risk for a spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Ryu, J. H.; Jae, M. S.; Jung, C. W.

    2004-01-01

    A spent fuel dry storage facility is a dry cooling storage facility for storing irradiated nuclear fuel and associated radioactive materials. It has very small possibilities to release radiation materials. It means a safety analysis for a spent fuel dry storage facility is required before construction. In this study, a new framework for assessing risk associated with a spent fuel dry storage facility is represented. A safety assessment framework includes 3 modules such as assessment of basket/cylinder failure rates, that of overall storage system, and site modeling. A reliability physics model for failure rates, event tree analysis(ETA)/fault tree analysis for system analysis, Bayesian analysis for initial events data, and MACCS code for consequence analysis have been used in this study

  14. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    International Nuclear Information System (INIS)

    Cho, Chun-Hyung; Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun

    2011-01-01

    Research highlights: → We compare the costs of wet and dry interim storage facilities for PWR spent fuel. → We use the parametric method and quotations to deduce unknown cost items. → Net present values and levelized unit prices are calculated for cost comparisons. → A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  15. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chun-Hyung, E-mail: skycho@krmc.or.kr [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2011-05-15

    Research highlights: > We compare the costs of wet and dry interim storage facilities for PWR spent fuel. > We use the parametric method and quotations to deduce unknown cost items. > Net present values and levelized unit prices are calculated for cost comparisons. > A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  16. Unsaturated zone investigation at the radioactive waste storage facility site

    Energy Technology Data Exchange (ETDEWEB)

    Skuratovic, Zana; Mazeika, Jonas; Petrosius, Rimantas; Jakimaviciute-Maseliene, Vaidote [Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius (Lithuania); Klizas, Petras; Mokrik, Robert [Vilnius University, M.K. Ciurlionio St. 21/27, LT-03101 Vilnius (Lithuania)

    2014-07-01

    Unsaturated zone is an important part of water circulation cycle and an integral part of many hydrological and hydrogeological factors and processes. The soils of unsaturated zone are regarded as the first natural barrier to a large extent able to limit the spread of contaminants. Nuclear waste disposal site (Maisiagala radioactive waste storage facility site) was analysed in terms of the moisture movement through the unsaturated zone. Extensive data sets of the hydraulic properties, water content and isotope composition have been collected and summarized. The main experimental and observational tasks included the collection of soil samples; determination of the physical properties and the hydraulic conductivity values of soil samples, moisture extraction from the soil sample for isotopic studies; observation of the groundwater dynamics at the Maisiagala piezometer; groundwater sampling for isotopic analysis ({sup 3}H, {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H ); and monthly precipitation isotopic analysis. Distribution features of globally widespread radionuclide tritium ({sup 3}H) and the water molecule tracer isotopes in precipitation, unsaturated zone soil moisture profiles and groundwater were determined. It was used the well-known unsaturated flow and transport model of HYDRUS-1D (Simunek et al., 2008). In this study, van Genuchten equations for the retention and conductivity estimations have been used. The retention characteristics and van Genuchten model parameters were estimated internally by HYDRUS based on the empirical equations involved in the program. Basic inputs of the tritium transport simulation are the tritium input function and meteorological variables (precipitation and potential evapotranspiration). In order to validate the representativeness of the hydraulic parameters, the model has been used to estimate the tritium distribution in the unsaturated zone, which properly represents the dynamics of the unsaturated zone. The uniformity of the daily

  17. Licensing of spent fuel storage facility including its physical protection in the Czech Republic

    International Nuclear Information System (INIS)

    Fajman, V.; Sedlacek, J.

    1992-01-01

    The current spent fuel management policies as practised in the Czech Republic are described, and the conception of the fuel cycle back end is outlined. The general principles and the legislative framework are explained of the licensing process concerning spent fuel interim storage facilities, including the environmental impact assessment component. The history is outlined of the licensing process for the spent fuel storage facility at the Dukovany NPP site, including the licensing of the transport and storage cask. The basic requirements placed on the physical safeguarding of the facility and on the licensing process are given. (J.B.). 13 refs

  18. Safety analysis report for the mixed waste storage facility and portable storage units at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Peatross, R.

    1997-01-01

    The Mixed Waste Storage Facility (MWSF) including the Portable Storage Units (PSUs) is a government-owned contractor-operated facility located at the Idaho National Engineering Laboratory (INEL). Lockheed Martin Idaho Technologies Company (LMITCO) is the current operating contractor and facility Architect/Engineer as of September 1996. The operating contractor is referred to as open-quotes the Companyclose quotes or open-quotes Companyclose quotes throughout this document. Oversight of MWSF is provided by the Department of Energy Idaho Operations Office (DOE-ID). The MWSF is located in the Power Burst Facility (PBF) Waste Reduction Operations Complex (WROC) Area, approximately 10.6 km (6.6 mi) from the southern INEL boundary and 4 km (2.5 mi) from U.S. Highway 20

  19. Current status of the first interim spent fuel storage facility in Japan

    International Nuclear Information System (INIS)

    Shinbo, Hitoshi; Kondo, Mitsuru

    2008-01-01

    In Japan, storage of spent fuels outside nuclear power plants was enabled as a result of partial amendments to the Nuclear Reactor Regulation Law in June 2000. Five months later, Mutsu City in Aomori Prefecture asked the Tokyo Electric Power Company (TEPCO) to conduct technical surveys on siting of the interim spent fuel storage facility (we call it 'Recyclable-Fuel Storage Center'). In April 2003, TEPCO submitted the report on siting feasibility examination, concluded that no improper engineering data for siting, construction of the facility will be possible from engineering viewpoint. Siting Activities for publicity and public acceptance have been continued since then. After these activities, Aomori Prefecture and Mutsu City approved siting of the Recyclable Fuel Storage Center in October 2005. Aomori Prefecture, Mutsu City, TEPCO and Japan Atomic Power Company (JAPC) signed an agreement on the interim spent fuel storage Facility. A month later, TEPCO and JAPC established Recyclable-Fuel Storage Company (RFS) in Mutsu City through joint capital investment, specialized in the first interim spent fuel storage Facility in Japan. In May 2007, we made an application for establishment permit, following safety review by regulatory authorities. In March 2008, we started the preparatory construction. RFS will safely store of spent fuels of TEPCO and JAPC until they will be reprocessed. Final storage capacity will be 5,000 ton-U. First we will construct the storage building of 3,000 ton-U to be followed by second building. We aim to start operation by 2010. (author)

  20. Resource Conservation and Recovery Act closure plan for the Intermediate-Level Transuranic Storage Facility mixed waste container storage units

    International Nuclear Information System (INIS)

    Nolte, E.P.; Spry, M.J.; Stanisich, S.N.

    1992-11-01

    This document describes the proposed plan for clean closure of the Intermediate-Level Transuranic Storage Facility mixed waste container storage units at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act closure requirements. Descriptions of the location, size, capacity, history, and current status of the units are included. The units will be closed by removing waste containers in storage, and decontamination structures and equipment that may have contacted waste. Sufficient sampling and documentation of all activities will be performed to demonstrate clean closure. A tentative schedule is provided in the form of a milestone chart

  1. Experience in ultimate storage of radwaste, illustrated by the information on geomechanics gained in the Asse storage facility

    International Nuclear Information System (INIS)

    Schmidt, M.W.

    1981-01-01

    Among the numerous variants of storing radioactive waste in the deep geological underground the storage in appropriate mineral salt formations has a couple of particular advantages. In order to effect research- and development works with regard to a safe secular storage of radioactive wastes, the former mineral salt deposit ASSE was assigned to the GSF in the year 1965. At this test plant storage technologies are developed, tested and the operational efficiency of according technical facilities is demonstrated. As a part of these duties several technical and natural scientific fields like nuclear engineering, mining, geomechanics, geochemistry or hydrogeology are worked in interdisciplinarily. Departing from the existing mine building of the shaft ASSE storage bunkers for low- and intermediate-level radioactive wastes (LAW/MAW) are presented. Accompanying geotechnical investigations are explained. An outlook alludes to an eventually possible development potential of the storage bunker arrangement from the geomechanic view. (orig./HP) [de

  2. Characterization and environmental management of stormwater runoff from road-salt storage facilities.

    Science.gov (United States)

    2004-01-01

    The objectives of this study were to assess the quantity and quality of salt-contaminated water generated from stormwater runoff at VDOT's salt storage facilities and to evaluate management/treatment alternatives to reduce costs and better protect th...

  3. Design, construction and monitoring of temporary storage facilities for removed contaminants

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Funaki, Hironori; Kurikami, Hiroshi; Sakamoto, Yoshiaki; Tokizawa, Takayuki

    2013-01-01

    Since the Fukushima Daiichi nuclear power plant accident caused by the Tohoku Region Pacific Coast Earthquake on March 11, 2011, decontamination work has been conducted in the surrounding environment within the Fukushima prefecture. Removed contaminants including soil, grass and trees are to be stored safely at temporary storage facilities for up to three years, after which they will be transferred to a planned interim storage facility. The decontamination pilot project was carried out in both the restricted and planned evacuation areas in order to assess decontamination methods and demonstrate measures for radiation protection of workers. Fourteen temporary storage facilities of different technical specifications were designed and constructed under various topographic conditions and land use. In order to support the design, construction and monitoring of temporary storage facilities for removed contaminants during the full-scale decontamination within the prefecture of Fukushima, technical know-how obtained during the decontamination pilot project has been identified and summarized in this paper. (author)

  4. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  5. Application of dose evaluation of the MCNP code for interim spent fuel cask storage facility

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Iimoto, Takeshi; Ishikawa, Satoshi; Tsuboi, Takafumi; Teramura, Masahiro; Okamura, Tomomi; Narumiya, Yoshiyuki

    2007-01-01

    The interim storage facility for spent fuel metallic cask is designed as a concrete building structure with air inlet and outlet for circulating the natural cooling. The feature of the interim storage facility is big capacity of spent fuel at several thousands MTU and restricted site usage. It is important to evaluate realistic dose rate in shielding design of the interim storage facility, therefore the three-dimensional continuous-energy Monte Carlo radiation transport code MCNP that exactly treating the complicated geometry was applied. The validation of dose evaluation for interim storage facility by MCNP code were performed by three kinds of neutron shielding benchmark experiments; cask shadow shielding experiment, duct streaming experiment and concrete deep penetration experiment. Dose rate distributions at each benchmark were measured and compared with the calculated results. The comparison showed a good consistency between calculation and experiment results. (author)

  6. Proceedings of the Topical Meeting on the safety of nuclear fuel cycle intermediate storage facilities

    International Nuclear Information System (INIS)

    1998-01-01

    The CSNI Working Group on Fuel Cycle Safety held an International Topical Meeting on safety aspects of Intermediate Storage Facilities in Newby Bridge, England, from 28 to 30 October 1997. The main purpose of the meeting was to provide a forum for the exchange of information on the technical issues on the safety of nuclear fuel cycle facilities (intermediate storage). Titles of the papers are: An international view on the safety challenges to interim storage of spent fuel. Interim storage of intermediate and high-level waste in Belgium: a description and safety aspects. Encapsulated intermediate level waste product stores at Sellafield. Safety of interim storage facilities of spent fuel: the international dimension and the IAEA's activities. Reprocessing of irradiated fuel and radwaste conditioning at Belgoprocess site: an overview. Retrieval of wastes from interim storage silos at Sellafield. Outline of the fire and explosion of the bituminization facility and the activities of the investigation committee (STAIJAERI). The fire and explosion incident of the bituminization facility and the lessons learned from the incident. Study on the scenario of the fire incident and related analysis. Study on the scenario of the explosion incident and related analysis. Accident investigation board report on the May 14, 1997 chemical explosion at the plutonium reclamation facility, Hanford site, Richland, Washington. Dry interim storage of spent nuclear fuel elements in Germany. Safe and effective system for the bulk receipt and storage of light water reactor fuel prior to reprocessing. Receiving and storage of glass canisters at vitrified waste storage center of Japan Nuclear Fuel Ltd. Design and operational experience of dry cask storage systems. Sellafield MOX plant; Plant safety design (BNFL). The assessment of fault studies for intermediate term waste storage facilities within the UK nuclear regulatory regime. Non-active and active commissioning of the thermal oxide

  7. Safety analysis report for the Mixed Waste Storage Facility and portable storage units at the Idaho National Engineering Laboratory. Revision 4

    International Nuclear Information System (INIS)

    Peatross, R.

    1997-01-01

    This revision contains Section 2 only which gives a description of the Mixed Waste Storage Facility (MWSF) and its operations. Described are the facility location, services and utilities, process description and operation, and safety support systems. The MWSF serves as a storage and repackaging facility for low-level mixed waste

  8. Design criteria tank farm storage and staging facility

    International Nuclear Information System (INIS)

    Lott, D.T.

    1995-01-01

    Tank Farms Operations must store/stage material and equipment until work packages are ready to work. Consumable materials are also required to be stored for routine and emergency work. Safety issues based on poor housekeeping and material deterioration due to weather damage has resulted from inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. This document provides the design criteria for the design of the storage and staging buildings near 272AW and 272WA buildings

  9. Periodic inspections of lightning protection systems in intermediate storage facilities of nuclear technological plants

    International Nuclear Information System (INIS)

    Witzel, Andre; Schulz, Olav

    2013-01-01

    Especially for nuclear technological plants, periodic inspections of lightning protection systems are of great importance. This article shows the sequence of maintenance programs using the examples of the intermediate storage facilities of the nuclear technological plants Grohnde and Unterweser as well as the central intermediate storage facility in Gorleben and gives a description of the extensive measures of inspecting the external and internal lightning protection and the global earth termination system.

  10. The DOE position on the MRS [monitored retrievable storage] facility

    International Nuclear Information System (INIS)

    1989-06-01

    The DOE supports the development of an MRS facility as an integral part of the waste-management system because an MRS facility would allow the DOE to better meet its strategic objectives of timely disposal, timely and adequate waste acceptance, schedule confidence, and system flexibility. This facility would receive, store, and stage shipments of intact spent fuel to the repository and could be later expanded to perform additional functions that may be determined to be beneficial or required as the system design matures. Recognizing the difficulty of DOE-directed siting through national or regional screening, the DOE prefers an MRS facility that is sited through the efforts of the Nuclear Waste Negotiator, especially if the siting negotiations lead to linkages that allow the advantages of an MRS facility to be more fully realized. Even if such revised linkages are not achieved, however, the DOE supports the development of the MRS facility. 23 refs

  11. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    1994-06-01

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft 2 waste storage facility for RCRA waste, one 42,000 ft 2 waste storage facility for toxic waste (TSCA), and one 200,000 ft 2 mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required

  12. Simulator Facility for Attitude Control and Energy Storage of Spacecraft

    National Research Council Canada - National Science Library

    Tsiotras, Panagiotis

    2002-01-01

    This report concerns a designed and built experimental facility that will allow the conduction of experiments for validating advanced attitude control algorithms for spacecraft in a weightless environment...

  13. Cooperative Optimal Operation of Wind-Storage Facilities

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa; Hu, Weihao; Chen, Zhe

    2014-01-01

    investment cost. We suggest benefitting the storage unit as a regulation service provider beside its normal operation for mitigating wind power imbalances. This idea comes from the fact that storage units have a fast ramping capability which is necessary to meet close to real-time regulation needs......As the penetration of wind power increases in power systems across the world, wind forecast errors become an emerging problem. Storage units are reliable tools to be used in cooperation with wind farms to mitigate imbalance penalties. Nevertheless they are not still economically viable due to huge....... In this paper a framework is proposed to formulate the optimal design of storage unit’s operation under different scenarios. These scenarios include whether the wind farm is actually generating more or less than the scheduled level submitted to day-ahead market. The results emphasize that the deployment...

  14. Preliminary site requirements and considerations for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    1991-08-01

    This report presents preliminary requirements and considerations for siting monitored retrievable storage (MRS) facility. It purpose is to provide guidance for assessing the technical suitability of potential sites for the facility. It has been reviewed by the NRC staff, which stated that this document is suitable for ''guidance in making preliminary determinations concerning MRS site suitability.'' The MRS facility will be licensed by the US Nuclear Regulatory Commission. It will receive spent fuel from commercial nuclear power plants and provide a limited amount of storage for this spent fuel. When a geologic repository starts operations, the MRS facility will also stage spent-fuel shipments to the repository. By law, storage at the MRS facility is to be temporary, with permanent disposal provided in a geologic repository to be developed by the DOE

  15. Spent fuel receipt and lag storage facility for the spent fuel handling and packaging program

    International Nuclear Information System (INIS)

    Black, J.E.; King, F.D.

    1979-01-01

    Savannah River Laboratory (SRL) is participating in the Spent Fuel Handling and Packaging Program for retrievable, near-surface storage of spent light water reactor (LWR) fuel. One of SRL's responsibilities is to provide a technical description of the wet fuel receipt and lag storage part of the Spent Fuel Handling and Packaging (SFHP) facility. This document is the required technical description

  16. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Koischwitz, Ingmar [Gesellschaft fuer Nuklear-Service mbH, 45127 Essen (Germany); Dinter, Andreas [E.ON Kernkraft GmbH, Kernkraftwerk Stade, 21657 Stade (Germany)

    2008-07-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m{sup 3} in total, equally distributed into four storage tanks with a capacity of max 3 m{sup 3} for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  17. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    International Nuclear Information System (INIS)

    Koischwitz, Ingmar; Dinter, Andreas

    2008-01-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m 3 in total, equally distributed into four storage tanks with a capacity of max 3 m 3 for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  18. Durability of spent nuclear fuels and facility components in wet storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Wet storage continues to be the dominant option for the management of irradiated fuel elements and assemblies (fuel units). Fuel types addressed in this study include those used in: power reactors, research and test reactors, and defence reactors. Important decisions must be made regarding acceptable storage modes for a broad variety of fuel types, involving numerous combinations of fuel and cladding materials. A broadly based materials database has the following important functions: to facilitate solutions to immediate and pressing materials problems; to facilitate decisions on the most effective long term interim storage methods for numerous fuel types; to maintain and update a basis on which to extend the licenses of storage facilities as regulatory periods expire; to facilitate cost-effective transfer of numerous fuel types to final disposal. Because examinations of radioactive materials are expensive, access to materials data and experience that provide an informed basis to analyse and extrapolate materials behaviour in wet storage environments can facilitate identification of cost-effective approaches to develop and maintain a valuable materials database. Fuel storage options include: leaving the fuel in wet storage, placing the fuel in canisters with cover gases, stored underwater, or transferring the fuel to one of several dry storage modes, involving a range of conditioning options. It is also important to anticipate the condition of the various materials as periods of wet storage are extended or as decisions to transfer to dry storage are implemented. A sound basis for extrapolation is needed to assess fuel and facility component integrity over the expected period of wet storage. A materials database also facilitates assessment of the current condition of specific fuel and facility materials, with minimal investments in direct examinations. This report provides quantitative and semi-quantitative data on materials behaviour or references sources of data to

  19. Durability of spent nuclear fuels and facility components in wet storage

    International Nuclear Information System (INIS)

    1998-04-01

    Wet storage continues to be the dominant option for the management of irradiated fuel elements and assemblies (fuel units). Fuel types addressed in this study include those used in: power reactors, research and test reactors, and defence reactors. Important decisions must be made regarding acceptable storage modes for a broad variety of fuel types, involving numerous combinations of fuel and cladding materials. A broadly based materials database has the following important functions: to facilitate solutions to immediate and pressing materials problems; to facilitate decisions on the most effective long term interim storage methods for numerous fuel types; to maintain and update a basis on which to extend the licenses of storage facilities as regulatory periods expire; to facilitate cost-effective transfer of numerous fuel types to final disposal. Because examinations of radioactive materials are expensive, access to materials data and experience that provide an informed basis to analyse and extrapolate materials behaviour in wet storage environments can facilitate identification of cost-effective approaches to develop and maintain a valuable materials database. Fuel storage options include: leaving the fuel in wet storage, placing the fuel in canisters with cover gases, stored underwater, or transferring the fuel to one of several dry storage modes, involving a range of conditioning options. It is also important to anticipate the condition of the various materials as periods of wet storage are extended or as decisions to transfer to dry storage are implemented. A sound basis for extrapolation is needed to assess fuel and facility component integrity over the expected period of wet storage. A materials database also facilitates assessment of the current condition of specific fuel and facility materials, with minimal investments in direct examinations. This report provides quantitative and semi-quantitative data on materials behaviour or references sources of data to

  20. Spent unreprocessed fuel (SURF) facility evaluation plan of the alternative storage concepts

    International Nuclear Information System (INIS)

    Berry, S.M.

    1978-01-01

    Concepts were evaluated for the storage of unreprocessed spent fuel in a retrievable surface storage facility. This document provides a systematic format for making a concept selection from the seven alternative concepts presented in RHO-LD-2. Results of the evaluation was that the Drywell concept was rated highest with the Water Basin Concept and the Sealed Storage Cask concept with multiple canisters of SURF coming in a close second and third

  1. 224-T Transuranic Waste Storage and Assay Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-01-01

    Westinghouse Hanford Company is a major contractor to the US Department of Energy Richland Field Office and serves as cooperator of the 224-T Transuranic Waste Storage and Assay Facility, the storage unit addressed in this permit application. At the time of submission of this portion of the Hanford Facility. Dangerous Waste Permit Application covering the 224-T Transuranic Waste Storage and Assay Facility, many issues identified in comments to the draft Hanford Facility Dangerous Waste Permit remain unresolved. This permit application reflects the positions taken by the US Department of Energy, Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application (Revision 0) consists of both a Part A and Part B permit application. An explanation of the Part A revisions associated with this unit, including the Part A revision currently in effect, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application contains information current as of March 1, 1992

  2. Minimizing energy consumption of accelerators and storage ring facilities

    International Nuclear Information System (INIS)

    The discussion of energy usage falls naturally into three parts. The first is a review of what the problem is, the second is a description of steps that can be taken to conserve energy at existing facilities, and the third is a review of the implications of energy consumption on future facilities

  3. Understanding and Managing Aging of Spent Nuclear Fuel and Facility Components in Wet Storage

    International Nuclear Information System (INIS)

    Johnson, A. B.

    2007-01-01

    Storage of nuclear fuel after it has been discharged from reactors has become the leading spent fuel management option. Many storage facilities are being required to operate longer than originally anticipated. Aging is a term that has emerged to focus attention on the consequences of extended operation on systems, structures, and components that comprise the storage facilities. The key to mitigation of age-related degradation in storage facilities is to implement effective strategies to understand and manage aging of the facility materials. A systematic approach to preclude serious effects of age-related degradation is addressed in this paper, directed principally to smaller facilities (test and research reactors). The first need is to assess the materials that comprise the facility and the environments that they are subject to. Access to historical data on facility design, fabrication, and operation can facilitate assessment of expected materials performance. Methods to assess the current condition of facility materials are summarized in the paper. Each facility needs an aging management plan to define the scope of the management program, involving identification of the materials that need specific actions to manage age-related degradation. For each material identified, one or more aging management programs are developed and become part of the plan Several national and international organizations have invested in development of comprehensive and systematic approaches to aging management. A method developed by the US Nuclear Regulatory Commission is recommended as a concise template to organize measures to effectively manage age-related degradation of storage facility materials, including the scope of inspection, surveillance, and maintenance that is needed to assure successful operation of the facility over its required life. Important to effective aging management is a staff that is alert for evidence of materials degradation and committed to carry out the aging

  4. Radioactive waste storage facility and underground disposal method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Endo, Yoshihiro.

    1997-01-01

    A sealed container storage chamber is formed in underground rocks. A container storage pool is formed on the inner bottom of the sealed vessel storage chamber. A heat exchanger for cooling water and a recycling pump are disposed on an operation floor of the sealed vessel storage chamber. Radioactive wastes sealed vessels in which radioactive wastes are sealed are transferred from the ground to the sealed vessel storage chamber through a sealed vessel transferring shaft, and immersed in cooling water stored in the vessel storage pool. When after heat of the radioactive wastes is removed by the cooling water, the cooling water in the vessel storage pool is sucked up to the ground surface. After dismantling equipments, bentonite-type fillers are filled in the inside of the sealed vessel storage chamber, sealed vessel transferring shaft, air supplying shaft and air exhaustion shaft, and the radioactive waste-sealed vessels can be subjected stably to into underground disposal. (I.N.)

  5. Impacts of ramping inflexibility of conventional generators on strategic operation of energy storage facilities

    DEFF Research Database (Denmark)

    Nasrolahpour, Ehsan; Kazempour, Jalal; Zareipour, Hamidreza

    2016-01-01

    This paper proposes an approach to assist a pricemaker merchant energy storage facility in making its optimal operation decisions. The facility operates in a pool-based electricity market, where the ramping capability of other resources is limited. Also, wind power resources exist in the system...

  6. Hazard categorization and baseline documentation for the Sodium Storage Facility. Revision 1

    International Nuclear Information System (INIS)

    Bowman, B.R.

    1995-01-01

    Hazard Categorization evaluation has been performed in accordance with DOE-STD-1027 for the Sodium Storage Facility at FFTF and a determination of less than Category 3 or non-nuclear has been made. Hazard Baseline Documentation has been performed in accordance with DOE-EM-STD-5502 and a determination of ''Radiological Facility'' has been made

  7. New low-level radioactive waste disposal/storage facilities for the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    Within the next few years the Savannah River Plant will require new facilities for the disposal and/or storage of solid low-level radioactive waste. Six options have been developed which would meet the regulatory and site-specific requirements for such facilities

  8. Economic analysis of a centralized LLRW storage facility in New York State

    International Nuclear Information System (INIS)

    Spath, J.P.; Voelk, H.; Brodie, H.

    1994-01-01

    In response to the possibility of no longer having access to out-of-State disposal facilities, the New York State Energy Research and Development Authority (Energy Authority) was directed by the New York State Legislature (1990-91 State Operation Budget Appropriations) to conduct a low-level radioactive waste (LLRW) storage study. One of the objectives of this study was to investigate the economic viability of establishing a separate Centralized Storage Facility for Class A LLRW from medical and academic institutions. This resulted in the conceptual design of a nominal Centralized Storage Facility capable of storing 100,000 cubic feet of dry-solid and liquid wastes and freezer storage capacity of 20,000 cubic feet for biological wastes. The facility itself includes office and laboratory space as well as receipt, inspection, and health physics monitoring stations. The Conceptual Design was initially developed to define the scope and detail of the cost parameters to be evaluated. It established a basis for conducting comparisons of the cost of four alternative project approaches and the sensitivity of unit storage costs to siting-related costs. In estimating costs of a Centralized Storage Facility, four cases were used varying assumptions with respect to parameters such as volume projections and freezer capacity; siting costs; and site acquisition costs

  9. Problems and experience of ensuring nuclear safety in NPP spent fuel storage facilities in Russia

    International Nuclear Information System (INIS)

    Vnukov, Victor S.; Ryazanov, Boris G.

    2003-01-01

    The amount of Nuclear Power Plant (NPP) spent fuel in special storage facilities of Russia runs to more than 15000 tons and the annual growth is equal to about 850 tons. The storage facilities for spent nuclear fuel from the main nuclear reactors of Russia (RBMK-1000, VVER-1000, BN-600, EGP-6) were designed in the 60s - 70s. In the last years when the concept of closed fuel cycle and safety requirements had changed, the need was generated to have the nuclear storage facilities more crowded. First of all it is due to the necessity to increase the storage capacity because the RBMK-1000, VVER-1000, EGP-6 fuel is not reprocessed. So there comes the need for the facilities of a bigger capacity which meet the current safety requirements. The paper presents the results of studies of the most important nuclear safety issues, in particular: development of regulatory requirements; analysis of design-basis and beyond-the design-basis accidents (DBA and BDBA); computation code development and verification; justification of nuclear safety when water density goes down; the use of burn-up fraction values; the necessity and possibility to experimentally study the storage facility subcriticality; development of storage norms and rules for new types of fuel assemblies with mixed fuel and burnable poison. (author)

  10. Optimal control of hydroelectric facility incorporating pump storage

    International Nuclear Information System (INIS)

    Zhao, Guangzhi; Davison, Matt

    2009-01-01

    We consider a simple model of a pump-assisted hydroelectric facility operating in a market with time-varying but deterministic power prices and constant water inflows. The engineering details of the facility are described by a model containing several parameters. We present an algorithm for optimizing first the energy and then the profit produced by these plants. This algorithm allows us to describe the relationships between control trajectory and time, and between inflow and price. Remarkably, we see that under some reasonable choices of facility parameters and for power prices that are not extremely variable, the optimal profit operation of these facilities is not too different from their optimal energy operation, and the control is less affected by the price as the inflow rate increases. (author)

  11. Hanford Site existing irradiated fuel storage facilities description

    Energy Technology Data Exchange (ETDEWEB)

    Willis, W.L.

    1995-01-11

    This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

  12. New facility for processing and storage of radioactive and toxic chemical waste

    International Nuclear Information System (INIS)

    Gallagher, F.E. III

    1976-01-01

    A new facility for the processing and storage of radioactive and toxic chemical waste is described. The facility is located in the science and engineering complex of the Santa Barbara campus of the University of California, near the Pacific Ocean. It is designed to provide a safe and secure processing and storage area for hazardous wastes, while meeting the high aesthetic standards and ecological requirements of campus and community regulatory boards. The ventilation system and fire prevention features will be described in detail. During the design phase, a small laboratory was added to provide an area for the radiation protection and industrial hygiene programs. Operational experience with this new facility is discussed

  13. Selection of away-from-reactor facilities for spent fuel storage. A guidebook

    International Nuclear Information System (INIS)

    2007-09-01

    This publication aims to provide information on the approaches and criteria that would have to be considered for the selection of away-from-reactor (AFR) type spent fuel storage facilities, needs for which have been growing in an increasing number of Member States producing nuclear power. The AFR facilities can be defined as a storage system functionally independent of the reactor operation providing the role of storage until a further destination such as a disposal) becomes available. Initially developed to provide additional storage space for spent fuel, some AFR storage options are now providing additional spaces for extended storage of spent fuel with a prospect for long term storage, which is becoming a progressive reality in an increasing number of Member States due to the continuing debate on issues associated with the endpoints for spent fuel management and consequent delays in the implementation of final steps, such as disposal. The importance of AFR facilities for storage of spent fuel has been recognized for several decades and addressed in various IAEA publications in the area of spent fuel management. The Guidebook on Spent Fuel Storage (Technical Reports Series No. 240 published in 1984 and revised in 1991) discusses factors to be considered in the evaluation of spent fuel storage options. A technical committee meeting (TCM) on Selection of Dry Spent Fuel Storage Technologies held in Tokyo in 1995 also deliberated on this issue. However, there has not been any stand-alone publication focusing on the topic of selection of AFR storage facilities. The selection of AFR storage facilities is in fact a critical step for the successful implementation of spent fuel management programmes, due to the long operational periods required for storage and fuel handling involved with the additional implication of subsequent penalties in reversing decisions or changing the option mid-stream especially after the construction of the facility. In such a context, the long

  14. Deactivation and Storage Issues Shared by Fossil and Nuclear Facilities

    International Nuclear Information System (INIS)

    Thomas S. LaGuardia

    1998-01-01

    The deactivation of a power plant, be it nuclear or fossil fueled, requires that the facility be placed in a safe and stable condition to prevent unacceptable exposure of the public or the environment to hazardous materials until the facility can be decommissioned. The conditions at two Texas plants are examined. These plants are fossil fueled, but their conditions might be duplicated at a nuclear plant

  15. Valuing hydrological forecasts for a pumped storage assisted hydro facility

    Science.gov (United States)

    Zhao, Guangzhi; Davison, Matt

    2009-07-01

    SummaryThis paper estimates the value of a perfectly accurate short-term hydrological forecast to the operator of a hydro electricity generating facility which can sell its power at time varying but predictable prices. The expected value of a less accurate forecast will be smaller. We assume a simple random model for water inflows and that the costs of operating the facility, including water charges, will be the same whether or not its operator has inflow forecasts. Thus, the improvement in value from better hydrological prediction results from the increased ability of the forecast using facility to sell its power at high prices. The value of the forecast is therefore the difference between the sales of a facility operated over some time horizon with a perfect forecast, and the sales of a similar facility operated over the same time horizon with similar water inflows which, though governed by the same random model, cannot be forecast. This paper shows that the value of the forecast is an increasing function of the inflow process variance and quantifies how much the value of this perfect forecast increases with the variance of the water inflow process. Because the lifetime of hydroelectric facilities is long, the small increase observed here can lead to an increase in the profitability of hydropower investments.

  16. 18 CFR 157.213 - Underground storage field facilities.

    Science.gov (United States)

    2010-04-01

    ... the storage reservoir boundary, as defined by fluid contacts or natural geological barriers; the... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES... 7 OF THE NATURAL GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7...

  17. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    Science.gov (United States)

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  18. Intervention in independent spent fuel storage facility license application proceedings for storage on the power plant site

    International Nuclear Information System (INIS)

    Jordan, J.

    1992-01-01

    This presentation summarizes the intervention in the Nuclear Regulatory Commission (NRC) licensing process for currently operating Independent Spent fuel Storage Installation (ISFSI) projects at Carolina Power and Light's Company's H.B. Robinson, Duke Power Company's Oconee, and Virginia Power Company's Surry. In addition, intervention at dry storage facilities that are currently under development are also described. The utilities and reactors include Baltimore Gas and Electric Company's Calvert Cliffs, Public Service Company of Colorado's Fort St. Vrain plant, Northern States Power Company's Prairie Island, Wisconsin Electric Power Company's Point Beach, and Consumers Power Company's Palisades

  19. Conceptual design report for the away from reactor spent fuel storage facility, Savannah River Plant

    International Nuclear Information System (INIS)

    1978-12-01

    The Department of Energy (DOE) requested that Du Pont prepare a conceptual design and appraisal of cost for Federal budget planning for an away from reactor spent fuel storage facility that could be ready to store fuel by December 1982. This report describes the basis of the appraisal of cost in the amount of $270,000,000 for all facilities. The proposed action is to provide a facility at the Savannah River Plant. The facility will have an initial storage capacity of 5000 metric tons of spent fuel and will be capable of receiving 1000 metric tons per year. The spent fuel will be stored in water-filled concrete basins that are lined with stainless steel. The modular construction of the facility will allow future expansion of the storage basins and auxiliary services in a cost-effective manner. The facility will be designed to receive, handle, decontaminate and reship spent fuel casks; to remove irradiated fuel from casks; to place the fuel in a storage basin; and to cool and control the quality of the water. The facility will also be designed to remove spent fuel from storage basins, load the spent fuel into shipping casks, decontaminated loaded casks and ship spent fuel. The facility requires a license by the Nuclear Regulatory Commission (NRC). Features of the design, construction and operations that may affect the health and safety of the workforce and the public will conform with NRC requirements. The facility would be ready to store fuel by January 1983, based on normal Du Pont design and construction practices for DOE. The schedule does not include the effect of licensing by the NRC. To maintain this option, preparation of the documents and investigation of a site at the Savannah River Plant, as required for licensing, were started in FY '78

  20. Modeling of information flows in natural gas storage facility

    Science.gov (United States)

    Ranjbari, Leyla; Bahar, Arifah; Aziz, Zainal Abdul

    2013-09-01

    The paper considers the natural-gas storage valuation based on the information-based pricing framework of Brody-Hughston-Macrina (BHM). As opposed to many studies which the associated filtration is considered pre-specified, this work tries to construct the filtration in terms of the information provided to the market. The value of the storage is given by the sum of the discounted expectations of the cash flows under risk-neutral measure, conditional to the constructed filtration with the Brownian bridge noise term. In order to model the flow of information about the cash flows, we assume the existence of a fixed pricing kernel with liquid, homogenous and incomplete market without arbitrage.

  1. Assessment of Energy Storage Technologies for Army Facilities.

    Science.gov (United States)

    1986-05-01

    pentraerythritol, penta- glycerine, and neopentyl glycol , and is intended for use as thermal storage in passive solar architecture. In a broad interpretation of...Candidate binaries include (1) glycols and :. ,..polyhedric alcohols that are mixed with water and (2) certain alkane-alcohol combina- I .,, tions. Since use...transferred from a lower to a higher temperature and combined with the solid absorbent. Liquid absorbents include sulfuric acid, the alkene glycols , and

  2. Conceptual design of interim storage facility for CNAI

    International Nuclear Information System (INIS)

    Fuenzalida Troyano, Carlos S.; Bergallo, Juan E.; Nassini, Horacio E.P.; Blanco, Anibal; Delmastro, Dario F.

    2007-01-01

    The reduced storage capacity available in the two spent fuel pools of argentine PHWR Atucha-1 power plant, the current plans for extending the reactor operation beyond its design lifetime, and the government decision on Atucha-2 NPP construction ending, have motivated the evaluation of a dry storage option for the interim management of spent fuel assemblies. Two different designs are presently being analyzed by an expert working group, from both technical and economical points of views. Authors are proposing a modular system consisting of an arrangement of reinforced concrete structures into which welded metallic canisters loaded with 37 spent fuel assemblies each stored in horizontal position. The reinforced concrete module is designed to provide the necessary physical protection and biological shielding to the loaded canisters during long-term storage, as well as passive means to remove the spent fuel decay heat by a combination of radiation, conduction and natural air convection. In this works are presented advances in the conceptual designs for a spent nuclear fuel system to Atucha I nuclear power plant. (author) [es

  3. Automated Storage Retrieval System (ASRS) Role Towards Achievement of Safety Objective and Safety Culture in Radioactive Storage Facilities

    International Nuclear Information System (INIS)

    Mohamad Hakiman Mohd Yusoff; Nurul Wahida Ahmad Khairuddin; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin; Muhammad, Z.A.; Nur Azna Mahmud; Norfazlina Zainal Abidin

    2012-01-01

    Waste Technology Development Centre (WasTeC) has been awarded with quality management system ISO 9001:2000 in June 2004 or now known as ISO 9001:2008. The scope of the unit's ISO certification is radioactive waste management and storage of radioactive material. To meet the objectives and requirements ISO 9001:2008, WasTeC has started a project known as Automated Storage and Retrieval System (ASRS). ASRS is a computing controlled method for automatically depositing and retrieving waste from defined locations. The system is used to replace the existing process of storage and retrieval of radioactive waste at storage facility at block 33.The main objective of this project is to reduced the radiation exposure to the worker and potential forklift accident occur during storage and retrieval of the radioactive waste. By using the ASRS system, WasTeC/ Nuclear Malaysia can provide a safe storage of radioactive waste and the use of this system can eliminate the repeat handling and can improve productivity. (author)

  4. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    Energy Technology Data Exchange (ETDEWEB)

    Lamolla, Meritxell Martell [MERIENCE Strategic Thinking, 08734 Olerdola, Barcelona (Spain)

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  5. Improving aircraft accident forecasting for an integrated plutonium storage facility

    International Nuclear Information System (INIS)

    Rock, J.C.; Kiffe, J.; McNerney, M.T.; Turen, T.A.

    1998-06-01

    Aircraft accidents pose a quantifiable threat to facilities used to store and process surplus weapon-grade plutonium. The Department of Energy (DOE) recently published its first aircraft accident analysis guidelines: Accident Analysis for Aircraft Crash into Hazardous Facilities. This document establishes a hierarchy of procedures for estimating the small annual frequency for aircraft accidents that impact Pantex facilities and the even smaller frequency of hazardous material released to the environment. The standard establishes a screening threshold of 10 -6 impacts per year; if the initial estimate of impact frequency for a facility is below this level, no further analysis is required. The Pantex Site-Wide Environmental Impact Statement (SWEIS) calculates the aircraft impact frequency to be above this screening level. The DOE Standard encourages more detailed analyses in such cases. This report presents three refinements, namely, removing retired small military aircraft from the accident rate database, correcting the conversion factor from military accident rates (accidents per 100,000 hours) to the rates used in the DOE model (accidents per flight phase), and adjusting the conditional probability of impact for general aviation to more accurately reflect pilot training and local conditions. This report documents a halving of the predicted frequency of an aircraft impact at Pantex and points toward further reductions

  6. Transuranic waste storage and assay facility (TRUSAF) interim safety basis

    International Nuclear Information System (INIS)

    Gibson, K.D.

    1995-09-01

    The TRUSAF ISB is based upon current facility configuration and procedures. The purpose of the document is to provide the basis for interim operation or restrictions on interim operations and the authorization basis for the TRUSAF at the Hanford Site. The previous safety analysis document TRUSAF hazards Identification and Evaluation (WHC 1977) is superseded by this document

  7. the effects of unavailability of technical storage facilities to the ...

    African Journals Online (AJOL)

    flavour and good appearance to our daily food, rather they are the major. 1. Development Studies Institute ... Morogoro. 3. Food Science and Technology, Sokoine University of Agriculture, P.O. Box 3006,. Morogoro. ..... To design good packing facilities for fruits and vegetables instead of. “Tengas”. • To have transport ...

  8. Ventilation and air conditioning system in waste treatment and storage facilities

    International Nuclear Information System (INIS)

    Kinoshita, Hirotsugu; Sugawara, Kazushige.

    1987-01-01

    So far, the measures concerning the facilities for treating and storing radioactive wastes in nuclear fuel cycle in Japan were in the state which cannot be said to be sufficient. In order to cope with this situation, electric power companies constructed and operated radioactive waste concentration and volume reduction facilities, solid waste storing facilities for drums, high level solid waste storing facilities, spent fuel cask preserving facilities and so on successively in the premises of nuclear power stations, and for the wastes expected in future, the research and the construction plan of the facilities for treating and storing low, medium and high level wastes have been advanced. The ventilation and air conditioning system for these facilities is the important auxiliary system which has the mission of maintaining safe and pleasant environment in the facilities and lowering as far as possible the release of radioactive substances to outside. The outline of waste treatment and storage facilities is explained. The design condition, ventilation and air conditioning method, the features of respective waste treatment and storage facilities, and the problems for the future are described. Hereafter, mechanical ventilation system continues to be the main system, and filters become waste, while the exchange of filters is accompanied by the radiation exposure of workers. (Kako, I.)

  9. The INFN-CNAF Tier-1 GEMSS Mass Storage System and database facility activity

    Science.gov (United States)

    Ricci, Pier Paolo; Cavalli, Alessandro; Dell'Agnello, Luca; Favaro, Matteo; Gregori, Daniele; Prosperini, Andrea; Pezzi, Michele; Sapunenko, Vladimir; Zizzi, Giovanni; Vagnoni, Vincenzo

    2015-05-01

    The consolidation of Mass Storage services at the INFN-CNAF Tier1 Storage department that has occurred during the last 5 years, resulted in a reliable, high performance and moderately easy-to-manage facility that provides data access, archive, backup and database services to several different use cases. At present, the GEMSS Mass Storage System, developed and installed at CNAF and based upon an integration between the IBM GPFS parallel filesystem and the Tivoli Storage Manager (TSM) tape management software, is one of the largest hierarchical storage sites in Europe. It provides storage resources for about 12% of LHC data, as well as for data of other non-LHC experiments. Files are accessed using standard SRM Grid services provided by the Storage Resource Manager (StoRM), also developed at CNAF. Data access is also provided by XRootD and HTTP/WebDaV endpoints. Besides these services, an Oracle database facility is in production characterized by an effective level of parallelism, redundancy and availability. This facility is running databases for storing and accessing relational data objects and for providing database services to the currently active use cases. It takes advantage of several Oracle technologies, like Real Application Cluster (RAC), Automatic Storage Manager (ASM) and Enterprise Manager centralized management tools, together with other technologies for performance optimization, ease of management and downtime reduction. The aim of the present paper is to illustrate the state-of-the-art of the INFN-CNAF Tier1 Storage department infrastructures and software services, and to give a brief outlook to forthcoming projects. A description of the administrative, monitoring and problem-tracking tools that play a primary role in managing the whole storage framework is also given.

  10. Studies and research concerning BNFP: converting reprocessing plant's fuel receiving and storage area to an away-from-reactor (AFR) storage facility. Final report

    International Nuclear Information System (INIS)

    Cottrell, J.E.; Shallo, F.A.; Musselwhite, E.L.; Wiedemann, G.F.; Young, M.

    1979-09-01

    Converting a reprocessing plant's fuel receiving and storage station into an Away-From-Reactor storage facility is evaluated in this report. An engineering analysis is developed which includes (1) equipment modifications to the facility including the physical protection system, (2) planning schedules for licensing-related activities, and (3) cost estimates for implementing such a facility conversion. Storage capacities are evaluated using the presently available pools of the existing Barnwell Nuclear Fuel Plant-Fuel Receiving and Storage Station (BNFP-FRSS) as a model

  11. Studies and research concerning BNFP: converting reprocessing plant's fuel receiving and storage area to an away-from-reactor (AFR) storage facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, Jim E.; Shallo, Frank A.; Musselwhite, E Larry; Wiedemann, George F.; Young, Moylen

    1979-09-01

    Converting a reprocessing plant's fuel receiving and storage station into an Away-From-Reactor storage facility is evaluated in this report. An engineering analysis is developed which includes (1) equipment modifications to the facility including the physical protection system, (2) planning schedules for licensing-related activities, and (3) cost estimates for implementing such a facility conversion. Storage capacities are evaluated using the presently available pools of the existing Barnwell Nuclear Fuel Plant-Fuel Receiving and Storage Station (BNFP-FRSS) as a model.

  12. Technical study of a thermally dense long term interim storage facility

    International Nuclear Information System (INIS)

    Le Duigou, A.; Badie, M.; Duret, B.; Bricard, A.

    2001-01-01

    The COFRE concept is aimed at the surface and thermal densification of the interim storage facility for irradiated fuels. The facility provides the biological shielding. A conditioning cell is used to load and retrieve the fuel assemblies. The facility container is the second containment barrier. The high power levels are managed by an auxiliary cooling system whose original feature is the passive use of a water evaporation-condensation cycle in a sealed circuit. The removable evaporator abuts the container. The air cooled condenser is placed outside the facility. Contact resistance and heat pipe mode were successfully modelled and are undergoing experimental validation on the THERESE and REBECA loops. (author)

  13. Facility handling and operational considerations with dry storage casks

    International Nuclear Information System (INIS)

    Moegling, J.; McCreery, P.N.

    1982-09-01

    The Tennessee Valley Authority, in conjunction with US DOE and Pacific Northwest Laboratory, is conducting the first US commercial demonstration of spent fuel storage in casks. The two casks selected for this study are the Castor Ic, on loan from Gesellschaft fur Nuklear Service of Essen, West Germany and the DOE supplied REA 2023, manufactured by Ridihalgh, Eggers, and Associates, of Columbus, Ohio. Preparations began in the spring of 1982. The casks are expected to be loaded with fuel at Brown's Ferry Nuclear Station early in 1984, and the test completed about two years later. NRC is issuing a two-year license for this test under 10 CFR 72

  14. Storage facilities for radioactive waste in tertiary education environment

    International Nuclear Information System (INIS)

    Sinclair, G.; Benke, G.

    1994-01-01

    The research and teaching endeavors of the university environment generate an assortment of radioactive waste that is unique in the range of isotopes and activities present, although the physical quantities of the waste may not be large. Universities may also be subject to unexpected, close public scrutiny of their operations due to the diverse nature of the university campus. This is rarely the case for other generators of radioactive waste. The experience of Monash University in formulating solutions for long term storage of radioactive waste is examined with respect to design, location and administration of the waste stores that were finally constructed. 7 refs., 1 tab., 1 fig

  15. Interim nuclear spent fuel storage facility - From complete refusal to public acceptance

    International Nuclear Information System (INIS)

    Kacena, Michal

    1998-01-01

    Full text: As usual in P.R., there was a complicated, politically sensitive situation we had to face at the beginning and it wasn't easy to create the right P.R. programme with the right targets: CEZ needed a new storage facility for the nuclear spent fuel from its two NPPs - Dukovany and Temelin. Firstly, CEZ preferred to build an on-site facility for the Dukovany NPP to last until the year 2004; secondly, a facility for the Temelin NPP several years later. But the Czech Government decided to limit Dukovany's storage capacity during a public discussion in 1992. Therefore, at the end of 1993, CEZ started the site selection process for a central storage facility targeted at ten regions in the country. In P.R. we decided on two main goals: 1. To gain public acceptance of a central storage facility at least at one site, and hopefully at more. 2. To change public opinion (especially around the Dukovany NPP) in order to create the proper atmosphere for changing the government's decision to limit storage capacity. We wanted to prove that we could choose the fight technical and economical solution without political limits. This obviously presented a challenge as it would be problematic for CEZ to be very visible in the campaign: We wanted people to know that the government had made a bad decision, but we also had to make it clear that our objections were based not on questions of momentary corporate advantage but instead on solid technical grounds. Most would only see self interest. We wanted to show them the facts. Of course, some times it wasn't easy to hit both targets at the same time. There was a lot of hard work in the middle. We gained new experience and we learned a lot trying to get public confidence in nuclear safety, in our company's reliability and in some local profits for a storage site: Firstly none of those regions was excited by the idea o a storage facility in its backyard. Most of them were very strongly and actively against it and did not want to

  16. Administrative Court Stade, decision of March 22, 1985 (interim storage facility at Gorleben)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This decision deals with the planned interim storage facility of Gorleben (F.R.G.). The provisions introduced by the 4th ammendment to sec. 5 para. 6 and 9a to 9c of the German Atomic Energy Act might contain a definite regulation of the 'Entsorgung' of nuclear power stations. Sec. 6 of the Atomic Energy Act is not applicable to interim storage facilities because irradiated nuclear fuel has a double nature: It is spent fuel and nuclear waste as well. Considering current licensing procedures of construction and operation of nuclear installations in the field of 'Entsorgung', special legal regulations for the construction and operation of an interim storage facility have to be required. (CW)

  17. Relative risk measure suitable for comparison of design alternatives of interim spent nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Ferjencik, M.

    1997-01-01

    Accessible reports on risk assessment of interim spent nuclear fuel storage facilities presume that only releases of radioactive substances represent undesired consequences. However, only certain part of the undesired consequences is represented by them. Many other events are connected with safety and are able to cause losses to the operating company. The following two presumptions are pronounced based on this. 1. Any event causing a disturbance of a safety function of the storage facility is an incident event. 2. Any disturbance of a safety function is an undesired consequence. If the facility safety functions are identified and if the severity of their disturbances is quantified, then it is possible to combine consequence severity quantifications and event frequencies into a risk measure. Construction and application of such a risk measure is described in this paper. The measure is shown to be a tool suitable for comparison of interim storage technology design alternatives. (author)

  18. Study on uncertainty evaluation system for the safety evaluation of interim spent fuel storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyeon; Shin, Myeong Won; Rhy, Seok Jin; Cho, Dong Keon; Park, Dong Hwan [Kyunghee Univ., Seoul (Korea, Republic of); Cheong, Beom Jin [Minstry of Science and Technology, Gwacheon (Korea, Republic of)

    1998-03-15

    The main objective os to develop a technical standards for the facility operation of the interm, spent fuel storage facility and to develop a draft for the technical criteria to be legislated. The another objective os to define a uncertainty evaluation system for burn up credit application in criticality analysis and to investigate an applicability of this topic for future regulatory activity. Investigate a status of art for the operational criteria of spent fuel interm wet storage. Collect relevant laws, decree, notices and standards related to the operation of storage facility and study on the legislation system. Develop a draft of technical standards and criteria to be legislated. Define an evaluation system for the uncertainty analysis and study on the status of art in the field of criticality safety analysis. Develop an uncertainty evaluation system in criticality analysis with burnup credit and investigate an applicability as well as its benefits of this policy.

  19. Decontamination of transport casks and of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1990-06-01

    The present document provides an analysis of the technical papers presented at the meeting as well as a summary of the panel discussion. Conclusions and Recommendations: The meeting agreed that the primary source of contamination of transport casks is the production of radioactive isotopes in nuclear fuel and activation products of fuel components in nuclear reactors. The type, amount of mechanism for the release of these isotopes depend on the reactor type and fuel handling process. The widespread use of pools for the storage and handling of fuel provides an easy path for the transfer of contamination. Control of pool water conditions is essential for limiting the spread of contamination. For plants where casks are immersed in pools for loading, the immersion times should be minimised. Casks should be designed for ease of decontamination. The meeting discussed the use of stainless steel and suitable paints for coating casks. Designers should consider the appropriate coating for specific applications. The use of pressurized water for decontamination is recommended whenever possible. A number of commercially available reagents exist for decontaminating cask external surfaces. More work, however, is needed to cope with Pressurized Water Reactor crud within casks. Leaking fuel should be identified and isolated before storage in pools. Basic studies of the uptake and release of contamination from cask surfaces should be initiated. Standardization of methods of contamination measurement and instrumentation should be instituted. Refs, figs and tabs

  20. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  1. Initial Operation of the Savannah River Site Advanced Storage Monitoring Facility

    International Nuclear Information System (INIS)

    McCurry, D.R.

    2001-01-01

    An advanced storage monitoring facility has been constructed at the Savannah River Site capable of storing sensitive nuclear materials (SNM) with access to monitoring information available over the Internet. This system will also have monitoring information available over the Internet to appropriate users. The programs will ultimately supply authenticated and encrypted data from the storage sites to certified users to demonstrate the capability of using the Internet as a safe and secure communications medium for remote monitoring of sensitive items

  2. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.

    2003-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  3. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Jeffrey Bryant

    2008-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  4. Temporary storage facility for spent nuclear fuels at the Atucha I nuclear power station (CNA)

    International Nuclear Information System (INIS)

    Wasinger, K.

    1983-01-01

    According to plans of the Argentine Atomic Energy Commission (CNEA), the spent nuclear fuel elements of the Atucha I Nuclear Power Station are to be stored temporarily pending a decision about the ultimate disposal concept. The holding capacity of the first fuel storage facility built by the German KWU together with the whole power plant had been expanded in 1978 to a level good until mid-1982. In 1977, KWU drafted the concept of another fuel storage facility. Like the first one, it was designed as a wet storage system attached to the power plant installations and had a holding capacity of 6944 fuel elements, which corresponds to some 1100 te of uranium. This extends the storage capacity up until 1996. In 1978, KWU was commissioned by CNEA to plan the whole facility and deliver the mechanical and electrical equipment. CNEA themselves assumed responsibility for the construction work. The second fuel storage facility was commissioned three years after the start of construction. (orig.) [de

  5. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    Fajman, V.; Bartak, L.; Coufal, J.; Brzobohaty, K.; Kuba, S.

    1999-01-01

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  6. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    International Nuclear Information System (INIS)

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA reg-sign canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA reg-sign, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities

  7. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    International Nuclear Information System (INIS)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-01-01

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal

  8. Safety report for Central Interim Storage facility for radioactive waste from small producers

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    2004-01-01

    In 1999 the Agency for Radwaste Management took over the management of the Central Interim Storage (CIS) in Brinje, intended only for radioactive waste from industrial, medical and research applications. With the transfer of the responsibilities for the storage operation, ARAO, the new operator of the facility, received also the request from the Slovenian Nuclear Safety Administration for refurbishment and reconstruction of the storage and for preparation of the safety report for the storage with the operational conditions and limitations. In order to fulfill these requirements ARAO first thoroughly reviewed the existing documentation on the facility, the facility itself and the stored inventory. Based on the findings of this review ARAO prepared several basic documents for improvement of the current conditions in the storage facility. In October 2000 the Plan for refurbishment and modernization of the CIS was prepared, providing an integral approach towards remediation and refurbishment of the facility, optimization of the inventory arrangement and modernization of the storage and storing utilization. In October 2001 project documentation for renewal of electric installations, water supply and sewage system, ventilation system, the improvements of the fire protection and remediation of minor defects discovered in building were completed according to the Act on Construction. In July 2003 the safety report was prepared, based on the facility status after the completion of the reconstruction works. It takes into account all improvements and changes introduced by the refurbishment and reconstruction of the facility according to project documentation. Besides the basic characteristics of the location and its surrounding, it also gives the technical description of the facility together with proposed solutions for the renewal of electric installations, renovation of water supply and sewage system, refurbishment of the ventilation system, the improvement of fire

  9. Conceptual design study of a concrete canister spent-fuel storage facility

    International Nuclear Information System (INIS)

    Lidfors, E.D.; Tabe, T.; Johnson, H.M.

    1979-01-01

    This report presents a conceptual design study for the interim storage of CANDU spent fuel in concrete canisters. The canisters will be concrete flasks, which contain fuel prepackaged in double steel containment, and will be cooled by natural air convection. This is one of the methods proposed as a potential alternative to water pool storage. A preliminary study of this concept was done by CAFS (Committee Assessing Fuel Storage), and WNRE (Whiteshell Nuclear Research Establishment) is currently conducting a development and demonstration program. This study of a central facility for the storage of all Canadian spent fuel arisings to the year 2000 was completed in 1975. A brief description of the facilities required and the operations involved, a summary of costs, a survey of the monitoring requirements and a prediction of the personnel exposures associated with this method of storing spent fuel are reported here. The estimated total cost of interim storage in cylindrical canisters at a central site is $6.02/kg U (1975 dollars). Approximately half of this cost is incurred in the shipment of fuel from the reactors to the storage facility. (author)

  10. Long-term storage of radioactive solid waste within disposal facilities

    International Nuclear Information System (INIS)

    Wakerley, M.W.; Edmunds, J.

    1986-05-01

    A study of the feasibility and implications of operating potential disposal facilities for low and intermediate level solid radioactive waste in a retrievable storage mode for extended periods of up to 200 years has been carried out. The arisings of conditioned UK radioactive waste up to the year 2030 have been examined. Assignments of these wastes to different types of underground disposal facilities have been made on the basis of their present activity and that which they will have in 200 years time. Five illustrative disposal concepts proposed both in the UK and overseas have been examined with a view to their suitability for adaption for storage/disposal duty. Two concepts have been judged unsuitable because either the waste form or the repository structure were considered unlikely to last the storage phase. Three of the concepts would be feasible from a construction and operational viewpoint. This suggests that with appropriate allowance for geological aspects and good repository and waste form design that storage/disposal within the same facility is achievable. The overall cost of the storage/disposal concepts is in general less than that for separate surface storage followed by land disposal, but more than that for direct disposal. (author)

  11. Long term integrity of spent fuel and construction materials for dry storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T [CRIEPI (Japan)

    2012-07-01

    In Japan, two dry storage facilities at reactor sites have already been operating since 1995 and 2002, respectively. Additionally, a large scale dry storage facility away from reactor sites is under safety examination for license near the coast and desired to start its operation in 2010. Its final storage capacity is 5,000tU. It is therefore necessary to obtain and evaluate the related data on integrity of spent fuels loaded into and construction materials of casks during long term dry storage. The objectives are: - Spent fuel rod: To evaluate hydrogen migration along axial fuel direction on irradiated claddings stored for twenty years in air; To evaluate pellet oxidation behaviour for high burn-up UO{sub 2} fuels; - Construction materials for dry storage facilities: To evaluate long term reliability of welded stainless steel canister under stress corrosion cracking (SCC) environment; To evaluate long term integrity of concrete cask under carbonation and salt attack environment; To evaluate integrity of sealability of metal gasket under long term storage and short term accidental impact force.

  12. Retrieval of fluidizable radioactive wastes from storage facilities

    International Nuclear Information System (INIS)

    2006-08-01

    This report provides guidance for strategic planning and implementation of resuspension and retrieval of stored fluid or fluidizable radioactive wastes. The potential risks associated with preparation and realization of these processes are included in the report, and lessons learned from previous applications are highlighted. Technological procedures and equipment used in various countries for resuspension and remobilization of stored fluidizable radioactive wastes are described in the attached annexes as potential options. Waste retrieval is a maturing technology of major importance now that Member States are moving forward in the responsible management of wastes by removal to safe interim storage or disposal. Retrieval of fluidizable wastes is a four-phase operation: (1) access to the waste, (2) mobilize the waste, (3) remove the waste; and (4) transfer the waste.This report divides successful retrieval of radioactive waste into two areas. The first area applies the concept of the waste retrieval as being the final component of a systematic process of old waste management. It also encompasses characterization as it applies to waste retrieval and downstream processes, including acceptance of wastes for treatment, conditioning, storage or disposal. It should be in conformity with national policy, as well as complying with international safety standards and environmental agreements. The second area of the report focuses on implementation of waste retrieval in a wide range of scenarios and using a wide range of retrieval approaches, equipment and technologies. Technical processes are further explained as part of the experience gained in advanced countries on the subject. A set of detailed retrieval technology descriptions by country is included as Annexes to this report. Thirteen experts from seven Member States that previously implemented, or have planned for the near future, significant resuspension and remobilization operations were involved in the preparation of

  13. Monitored retrievable storage submission to Congress: Volume 2, Environmental assessment for a monitored retrievable storage facility. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-02-01

    This Environmental Assessment (EA) supports the DOE proposal to Congress to construct and operate a facility for monitored retrievable storage (MRS) of spent fuel at a site on the Clinch River in the Roane County portion of Oak Ridge, Tennessee. The first part of this document is an assessment of the value of, need for, and feasibility of an MRS facility as an integral component of the waste management system. The second part is an assessment and comparison of the potential environmental impacts projected for each of six site-design combinations. The MRS facility would be centrally located with respect to existing reactors, and would receive and canister spent fuel in preparation for shipment to and disposal in a geologic repository. 207 refs., 57 figs., 132 tabs.

  14. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review

    International Nuclear Information System (INIS)

    Sun, Yongjun; Wang, Shengwei; Xiao, Fu; Gao, Diance

    2013-01-01

    Highlights: • Little study reviews the load shifting control using different facilities. • This study reviews load shifting control using building thermal mass. • This study reviews load shifting control using thermal energy storage systems. • This study reviews load shifting control using phase change material. • Efforts for developing more applicable load shifting control are addressed. - Abstract: For decades, load shifting control, one of most effective peak demand management methods, has attracted increasing attentions from both researchers and engineers. Different load shifting control strategies have been developed when diverse cold thermal energy storage facilities are used in commercial buildings. The facilities include building thermal mass (BTM), thermal energy storage system (TES) and phase change material (PCM). Little study has systematically reviewed these load shifting control strategies and therefore this study presents a comprehensive review of peak load shifting control strategies using these thermal energy storage facilities in commercial buildings. The research and applications of the load shifting control strategies are presented and discussed. The further efforts needed for developing more applicable load shifting control strategies using the facilities are also addressed

  15. Engineering program in order to increase the irradiated fuel storage capacity in pool facilities of Juragua

    International Nuclear Information System (INIS)

    Rodriguez R, J.

    1996-01-01

    In 1993, a technical program in the spent fuel storage area of Nuclear Plant Juragua was launched. Such a program tries to carry out an engineering assessment of the possibility of increasing the spent fuel storage capacity in pool storage facilities by using high density racks (re-racking) instead of the original (non-compact) ones. The purpose of the above-mentioned program is to evaluate possible solutions that can be applied to the construction works prior to plant operation. The first stage of the program for the 1994-95 period is an ongoing Engineering-Economic Feasibility Study (EEFS), which endeavors to examine the capabilities of the reloading pool in Unit-1 Reactor building and long-term storage pool in auxiliary building in high density storage conditions. Technical details of the EEFS and reached results and difficulties are described. (author). 5 refs., 2 figs

  16. Environmental information document: New hazardous and mixed waste storage/disposal facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.; Towler, O.O.

    1987-04-01

    Site selection, alternative facilities and alternative operations are described for new hazardous and mixed waste storage/disposal facilities at the Savannah River Plant. Performance assessments and cost estimates for the alternatives are presented

  17. Resource Conservation and Recovery Act Closure Plan for the Y-12 9409-5 Tank Storage Facility

    International Nuclear Information System (INIS)

    1995-02-01

    This document presents information on the closure of the Y-12 9409-5 Tank Storage Facility. Topics discussed include: facility description; closure history; closure performance standard; partial closure; maximum waste inventory; closure activities; schedule; and postclosure care

  18. Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingyu

    2018-04-10

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extended life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex structures

  19. The 4843 Alkali Metal Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows

  20. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  1. Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF

  2. Near-surface storage facilities for vitrified high-level wastes

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kulichenko, V.V.; Kryukov, I.I.; Krylova, N.V.; Paramoshkin, V.I.; Strakhov, M.V.

    1980-01-01

    Concurrently with the development of methods for solidifying liquid radioactive wastes, reliable and safe methods for the storage and disposal of solidified wastes are being devised in the USSR and other countries. One of the main factors affecting the choice of storage conditions for solidified wastes originating from the vitrification of high-level liquid wastes from fuel reprocessing plants is the problem of removing the heat produced by radioactive decay. In order to prevent the temperature of solidified wastes from exceeding the maximum permissible level for the material concerned, it is necessary to limit either the capacity of waste containers or the specific heat release of the wastes themselves. In order that disposal of high-level wastes in geological formations should be reliable and economic, solidified wastes undergo interim storage in near-surface storage facilities with engineered cooling systems. The paper demonstrates the relative influences of specific heat release, of the maximum permissible storage temperature for vitrified wastes and of the methods chosen for cooling wastes in order for the dimensions of waste containers to be reduced to the extent required. The effect of concentrating wastes to a given level in the vitrification process on the cost of storage in different types of storage facility is also examined. Calculations were performed for the amount of vitrified wastes produced by a reprocessing plant with a capacity of five tonnes of uranium per 24 hours. Fuel elements from reactors of the water-cooled, water-moderated type are sent for reprocessing after having been held for about two years. The dimensions of the storage facility are calculated on the assumption that it will take five years to fill

  3. Safeguards and security design guidelines for conceptual monitored retrievable storage (MRS) facilities

    International Nuclear Information System (INIS)

    Byers, K.R.; Clark, R.G.; Harms, N.L.; Roberts, F.P.

    1984-07-01

    Existing safeguards/security regulations and licensing requirements that may be applicable to an MRS facility are not currently well-defined. Protection requirements consistent with the NRC-graded safeguards approach are identified, as a baseline safeguards system with a comparison of the impacts on safeguards and security of salient features of the different storage concepts. In addition, MRS facility design features and operational considerations are proposed that would enhance facility protection and provide additional assurance that protection systems and procedures would be effectively implemented. 3 figures

  4. Probabilistic risk analysis for Test Area North Hot Shop Storage Pool Facility

    International Nuclear Information System (INIS)

    Meale, B.M.; Satterwhite, D.G.

    1990-01-01

    A storage pool facility used for storing spent fuel and radioactive debris from the Three Mile Island (TMI) accident was evaluated to determine the risk associated with its normal operations. Several hazards were identified and examined to determine if any any credible accident scenarios existed. Expected annual occurrence frequencies were calculated for hazards for which accident scenarios were identified through use of fault trees modeling techniques. Fault tree models were developed for two hazards: (1) increased radiation field and (2) spread of contamination. The models incorporated facets of the operations within the facility as well as the facility itself. 6 refs

  5. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Science.gov (United States)

    2010-07-01

    ... areas; construction and safety precautions. 75.1903 Section 75.1903 Mineral Resources MINE SAFETY AND...; construction and safety precautions. (a) Permanent underground diesel fuel storage facilities must be— (1... with at least 240 pounds of rock dust and provided with two portable multipurpose dry chemical type...

  6. Cost Implications of an Interim Storage Facility in the Waste Management System

    Energy Technology Data Exchange (ETDEWEB)

    Jarrell, Joshua J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joseph, III, Robert Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petersen, Gordon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nutt, Mark [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, Joe [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cotton, Thomas [Complex Systems Group, Bozeman, MT (United States)

    2016-09-01

    This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.

  7. Norwegian work on establishing a combined storage and disposal facility for low and intermediate level waste

    International Nuclear Information System (INIS)

    International Atomic Energy Agency WATRP Review Team.

    1995-12-01

    The IAEA has, through its Waste Management Assessment and Technical Review Programme (WATRP), evaluated policies and facilities related to management of radioactive waste in Norway. It is concluded that the Himdalen site, in combination with the chosen engineering concept, can be suitable for the storage and disposal of the relatively small amounts of Norwegian low and intermediate level waste

  8. Modification of an existing radwaste facility to provide onsite low level waste storage

    International Nuclear Information System (INIS)

    Ault, G.M.; Reiss, J.F.; Commonwealth Edison Co., Chicago, IL)

    1985-01-01

    The decision of whether or not to install onsite storage capacity for low-level radioactive waste is dictated by individual utility circumstances. Commonwealth Edison has decided to construct facilities to store low-level radwaste onsite at each of their four operating nuclear stations, and they plan to have those facilities in operation by January, 1986. At Dresden, that onsite storage capacity is being provided by modifying an existing radwaste building which already has installed a remotely-operated precision-placement type crane. The purposes of this paper are to describe: (1) how Commonwealth Edison arrived at the decision to construct onsite storage facilities as a hedge against possible disruption of burial site availability in January, 1986; (2) why the desire to minimize the capital investment for this protection led to selection of an uncomplicated design for their ''standard'' facility and to the decision to modify an existing building at Dresden rather than construct a new one; and (3) what is being done to adapt the Dresden 1 Decontamination/Radwaste Building for extended onsite storage

  9. A study on safety analysis methodology in spent fuel dry storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Che, M. S.; Ryu, J. H.; Kang, K. M.; Cho, N. C.; Kim, M. S. [Hanyang Univ., Seoul (Korea, Republic of)

    2004-02-15

    Collection and review of the domestic and foreign technology related to spent fuel dry storage facility. Analysis of a reference system. Establishment of a framework for criticality safety analysis. Review of accident analysis methodology. Establishment of accident scenarios. Establishment of scenario analysis methodology.

  10. Optimal control of indoor climate in agricultural storage facilities for potatoes and onions

    NARCIS (Netherlands)

    Lukasse, L.J.S.; Maldegem, van J.; Dierkes, E.; Voort, van der A.J.; Kramer-Cuppen, de J.E.; Kolk, van der G.

    2009-01-01

    This paper presents the use of receding horizon optimal control (RHOC) for optimal climate control in storage facilities for potatoes and onions. RHOC is used on a supervisory level above the classical feedback climate controller. Some theoretical issues on RHOC are discussed, amongst which a

  11. Numerical simulation of radon migration from a uranium ore storage facility

    International Nuclear Information System (INIS)

    Vasil'ev, I.A.; Politov, V.Yu.; Chernov, V.V.; Shestakov, A.A.

    2007-01-01

    Data on geologic structure and radiation environment in the vicinity of the tailings storage facility (TSF) of Kara-Balta uranium hydrometallurgical factory in Kyrgyzstan were used to design a mathematical model of radon migration from the surface of TSF. Numerical calculations have been performed to describe prevalence of radon contamination [ru

  12. Structural and seismic analyses of waste facility reinforced concrete storage vaults

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1995-01-01

    Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940's through the early 1960's. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at critical locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted

  13. Treatment and storage of high-level activity RAW and spent fuel from nuclear facilities

    International Nuclear Information System (INIS)

    Tomov, E.

    2010-01-01

    The most acceptable for the development of nuclear energy sector scenario is processing, storage and disposal of all SNF and waste from in the country of origin. Linking the supply of fresh nuclear fuel with subsequent transportation and processing would solve many of the problems related to its storage and accumulation at the site of the operator of the facility. Construction of NPP Belene is a prerequisite for a favorable solution to the management of SNF and HLW. At the stage of feasibility study for the construction of a deep geological repository, the studies of variants of the quantities of HLW from SNF reprocessing allow for a preliminary assessment of the capacity of the storage facility

  14. Operational experience in the spent fuel receipt and storage facility at the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Nakashima, S.; Yamaguchi, Y.; Iimura, I.; Yamamura, O.; Ogata, Y.

    1992-01-01

    The development of the double containment system led to the reduction of labor time for the cask decontamination to one-tenth compared to the original manner. And also it led to the great decrease of floor contamination in the receipt and storage facility. The decrease permitted as many as about 20,000 visitors to take tours in the fuel receipt and storage facility in the past three years without contamination trouble with the visitors. Different types of spent fuels can be easily handled and stored by the specially designed tools in the pool water. The exchange of the cooling water in the transport cask before unloading and the use of the storage container keep contamination of the pool water to a minimum. The pool water treatment system has been successfully operated. As result, the pool water condition has been well-controlled

  15. Development of technical design for waste processing and storage facilities for Novi Han repository

    International Nuclear Information System (INIS)

    Canizares, J.; Benitez, J.C.; Asuar, O.; Yordanova, O.; Demireva, E.; Stefanova, I.

    2005-01-01

    Empresarion Agrupados Internacional S.A. (Spain) and ENPRO Consult Ltd. (Bulgaria) were awarded a contract by the Central Finance and Contracts Unit to develop the technical design of the waste processing and storage facilities at the Novi Han repository. At present conceptual design phase is finished. This conceptual design covers the definition of the basic design requirements to be applied to the installations defined above, following both European and Bulgarian legislation. In this paper the following items are considered: 1) Basic criteria for the layout and sizing of buildings; 2) Processing of radioactive waste, including: treatment and conditioning of disused sealed sources; treatment of liquid radioactive wastes; treatment of solid radioactive waste; conditioning of liquid and solid radioactive waste; 3) Control of waste packages and 4) Storage of radioactive waste, including storage facility and waste packages. An analysis of inventories of stored and estimated future wastes and its subsequent processes is also presented and the waste streams are illustrated

  16. Dry storage facility for spent fuel or high-level wastes

    International Nuclear Information System (INIS)

    Geoffroy, J.; Dobremelle, M.; Fabre, J.C.; Bonnet, C.

    1989-01-01

    The French Atomic Energy Commission (CEA) has specific irradiated fuels which, due to their properties, cannot be reprocessed directly in existing industrial facilities. Accordingly, for the spent fuels from the EL4 and OSIRIS power plants, the CEA has been faced with the problem of selecting a process that will allow the storage of these materials under satisfactory technical and economic conditions. The authors discuss how three conditions must be satisfied to store irradiated fuels releasing heat: containment of radioactive materials, biological shielding, and thermal cooling to guarantee an acceptable temperature- level throughout. In view of the need for an interim storage facility using a simple cooling process requiring only minimal maintenance and monitoring, dry storage in a concrete vault cooled by natural convection was selected. This choice was made within the framework of a research and development program in which theoretical heat transfer investigations and mock-up tests confirmed the feasibility of cooling by natural convection

  17. A multi-tank storage facility to effect power control in the PBMR power cycle

    International Nuclear Information System (INIS)

    Matimba, T.A.D.; Krueger, D.L.W.; Mathews, E.H.

    2007-01-01

    This article presents the concept of a storage facility used to effect power control in South Africa's PBMR power cycle. The concept features a multiple number of storage vessels whose purpose is to contain the working medium, helium, as it is withdrawn from the PBMR's closed loop power cycle, at low energy demand. This helium is appropriately replenished to the power cycle as the energy demand increases. Helium mass transfer between the power cycle and the storage facility, henceforth known as the inventory control system (ICS), is carried out by way of the pressure differential that exists between these two systems. In presenting the ICS concept, emphasis is placed on storage effectiveness; hence the discussion in this paper is centred on those features which accentuate storage effectiveness, namely:- Storage vessel multiplicity; - Unique initial pressures for each vessel arranged in a cascaded manner; and - A heat sink placed in each vessel to provide thermal inertia. Having presented the concept, the objective is to qualitatively justify the presence of each of the above-mentioned features using thermodynamics as a basis

  18. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information.

  19. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system

  20. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information

  1. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses

  2. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  3. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses.

  4. Design and construction of low level radioactive waste disposal facility at Rokkasho storage center

    International Nuclear Information System (INIS)

    Takahashi, K.; Itoh, H.; Iimura, H.; Shimoda, H.

    1992-01-01

    Japan Nuclear Fuel Industries Co., Inc. (JNFI) which has been established to dispose through burial the low-level radioactive waste (LLW) produced by nuclear power stations over the country is now constructing Rokkasho LLW Storage Center at Rokkasho Village,Aomori Prefecture. At this storage center JNFI plans to bury about 200,000m 3 , of LLW (equivalent to about one million drums each with a 200 liter capacity), and ultimately plans to bury about 600,000m 3 about 3 million drums of LLW. About the construction of the burial facilities for the first-stage LLW equivalent to 200,000 drums (each with a 200-liter capacity) we obtained the government's permit in November, 1990 and set out the construction work from the same month, which has since been promoted favorably. The facilities are scheduled to start operation from December, 1992. This paper gives an overview of at these facilities

  5. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  6. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1997-01-01

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations

  7. Loads imposed on dual purpose casks in German on-site-storage facilities for long term intermediate storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, N.; Rabe, O. [TUeV NORD EnSys Hannover GmbH und Co. KG, Hanover (Germany)

    2004-07-01

    In accordance with recent changes of the atomic energy act and in order to secure reliable removal of spent fuel from the nuclear power plants' fuel storage ponds the German utilities filed license applications for a total of 12 onsite- storage facilities for spent fuel assemblies. By the end of 2003 the last of these storage facilities were licensed and are currently under construction. The first on-site-storage facility of that line became operational in late 2002. There are several design lines of storage facilities with different handling procedures or possible accident conditions. Short term interim storage facilities for a few casks are characterized by individual concrete hoods shielding the casks in horizontal position whereas long term intermediate storage facilities currently erected for large numbers of casks typically feature a condensed pattern of casks stored in upright position and massive structures of reinforced concrete. TUeV Hannover/Sachsen-Anhalt e. V. (now TUeV NORD EnSys Hannover GmbH and Co. KG) has been contracted as a body of independent experts for the assessment of all related safety requirements on behalf of the national licensing authority, the federal office for radiation protection (BfS).

  8. Loads imposed on dual purpose casks in German on-site-storage facilities for long term intermediate storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Wetzel, N.; Rabe, O.

    2004-01-01

    In accordance with recent changes of the atomic energy act and in order to secure reliable removal of spent fuel from the nuclear power plants' fuel storage ponds the German utilities filed license applications for a total of 12 onsite- storage facilities for spent fuel assemblies. By the end of 2003 the last of these storage facilities were licensed and are currently under construction. The first on-site-storage facility of that line became operational in late 2002. There are several design lines of storage facilities with different handling procedures or possible accident conditions. Short term interim storage facilities for a few casks are characterized by individual concrete hoods shielding the casks in horizontal position whereas long term intermediate storage facilities currently erected for large numbers of casks typically feature a condensed pattern of casks stored in upright position and massive structures of reinforced concrete. TUeV Hannover/Sachsen-Anhalt e. V. (now TUeV NORD EnSys Hannover GmbH and Co. KG) has been contracted as a body of independent experts for the assessment of all related safety requirements on behalf of the national licensing authority, the federal office for radiation protection (BfS)

  9. Technical, economic and institutional aspects of regional spent fuel storage facilities

    International Nuclear Information System (INIS)

    2005-11-01

    A particular challenge facing countries with small nuclear programmes is the preparation for extended interim storage and then disposal of their spent nuclear fuel. The costs and complications of providing for away-from-reactor storage facilities and/or geological repositories for relatively small amounts of spent fuel may be prohibitively high, motivating interest in regional solutions. This publication addresses the technical, economic and institutional aspects of regional spent fuel storage facilities (RSFSF) and is based on the results of a series of meetings on this topic with participants from IAEA Member States. Topics discussed include safety criteria and standards, safeguards and physical protection, fuel acceptance criteria, long term stability of systems and stored fuel, selection of site, infrastructure aspects, storage technology, licensing, operations, transport, decommissioning, as well as research and development. Furthermore the publication comprises economic, financial and institutional considerations including organizations and legal aspects followed by political and public acceptance and ethical considerations. Approaches and processes for implementation are discussed, as well as the overall benefits and risks of implementing a regional facility. It is illustrated that implementing a RSFSF facility would involve simultaneously addressing a wide range of diverse challenges. The appendix to this report tabulates the numerous issues that have been touched upon in the study. It appears, however, from the discussions that the challenges can in principle be met; the RSFSF concept is technically feasible and potentially economically viable. The technical committees producing this report did not identify any obvious institutional deficiencies that would prevent completion of such a project. Storing spent fuel in a few safe, reliable, secure facilities could enhance safeguards, physical protection and non-proliferation benefits. The committee also

  10. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  11. Scale economies in a series of generic interim SNF storage facilities - 15104

    International Nuclear Information System (INIS)

    Rothwell, G.

    2015-01-01

    This paper describes a micro-economic, cost-engineering model of a centralized (Generic Interim Storage Facility - GISF) facility to monitor LWR irradiated fuel with particular attention to scale economies (e.g., to compare the likely costs at a power plant site or at regional, national and international facilities). This paper is based on the cost estimates of the Private Fuel Services Facility (PFSF) on the Skull Valley Band of Goshute Indians' Reservation in Utah, licensed by the US NRC in 2006 to centralize storage of 40.000 metric tons of heavy metal (MTHM) for 20 to 40 years. Assuming movement of the 40.000 MTHM every 40 years to a new facility, the levelized costs are 144 dollars/kg without high security and physical protection, and 208 dollars/kg with high security through 2111 (assuming disposal within a century), or about 0.50 dollars/MWh to 0.75 dollars/MWh depending on the burnup and thermal efficiency of the nuclear power plant. This cost estimate is generalized to explore scale economies for facilities with and without high security and physical protection. There are declining levelized costs with increasing size to 120.000 MTHM without high security, and to 500.000 MTHM with high security, i.e., the higher the level of security, the stronger the economies of scale. (author)

  12. The regulatory approach for spent nuclear storage and conditioning facility: The Hanford example

    International Nuclear Information System (INIS)

    Sellers, E.D.; Mooers, G.C. III; Daschke, K.D.; Driggers, S.A.; Timmins, D.C.

    1996-01-01

    Hearings held before the House Subcommittee on Energy and Mineral Resources in March 1994, requested that officials of federal agencies and other experts explore options for providing regulatory oversight of the US Department of Energy (DOE) facilities and operations. On January, 25, 1995, the DOE, supported by the White House Office of Environmental Quality and the Office of Management and Budget, formally initiated an Advisory Committee on External Regulation of DOE Nuclear Safety. In concert with this initiative and public opinion, the DOE Richland Operations Office has initiated the K Basin Spent Nuclear Fuel Project -- Regulatory Policy. The DOE has established a program to move the spent nuclear fuel presently stored in the K Basins to a new storage facility located in the 200 East Area of the Hanford Site. New facilities will be designed and constructed for safe conditioning and interim storage of the fuel. In implementing this Policy, DOE endeavors to achieve in these new facilities ''nuclear safety equivalency'' to comparable US Nuclear Regulatory Commission (NRC)-licensed facilities. The DOE has established this Policy to take a proactive approach to better align its facilities to the requirements of the NRC, anticipating the future possibility of external regulation. The Policy, supplemented by other DOE rules and directives, form the foundation of an enhanced regulatory, program that will be implemented through the DOE K Basin Spent Nuclear Fuel Project (the Project)

  13. 36 CFR 1234.10 - What are the facility requirements for all records storage facilities?

    Science.gov (United States)

    2010-07-01

    ... prevent water leaks and the piping assembly is inspected for potential leaks regularly. If drainage piping... facility must ensure that the roof membrane does not permit water to penetrate the roof. NARA strongly... the exception of fire protection sprinkler piping and storm water roof drainage piping) must not be...

  14. Handling of multiassembly sealed baskets between reactor storage and a remote handling facility

    International Nuclear Information System (INIS)

    Massey, J.V.; Kessler, J.H.; McSherry, A.J.

    1989-06-01

    The storage of multiple fuel assemblies in sealed (welded) dry storage baskets is gaining increasing use to augment at-reactor fuel storage capacity. Since this increasing use will place a significant number of such baskets on reactor sites, some initial downstream planning for their future handling scenarios for retrieving multi-assembly sealed baskets (MSBs) from onsite storage and transferring and shipping the fuel (and/or the baskets) to a federally operated remote handling facility (RHF). Numerous options or at-reactor and away-from-reactor handling were investigated. Materials handling flowsheets were developed along with conceptual designs for the equipment and tools required to handle and open the MSBs. The handling options were evaluated and compared to a reference case, fuel handling sequence (i.e., fuel assemblies are taken from the fuel pool, shipped to a receiving and handling facility and placed into interim storage). The main parameters analyzed are throughout, radiation dose burden and cost. In addition to evaluating the handling of MSBs, this work also evaluated handling consolidated fuel canisters (CFCs). In summary, the handling of MSBs and CFCs in the store, ship and bury fuel cycle was found to be feasible and, under some conditions, to offer significant benefits in terms of throughput, cost and safety. 14 refs., 20 figs., 24 tabs

  15. On possibilities of using global monitoring in effective prevention of tailings storage facilities failures.

    Science.gov (United States)

    Stefaniak, Katarzyna; Wróżyńska, Magdalena

    2018-02-01

    Protection of common natural goods is one of the greatest challenges man faces every day. Extracting and processing natural resources such as mineral deposits contributes to the transformation of the natural environment. The number of activities designed to keep balance are undertaken in accordance with the concept of integrated order. One of them is the use of comprehensive systems of tailings storage facility monitoring. Despite the monitoring, system failures still occur. The quantitative aspect of the failures illustrates both the scale of the problem and the quantitative aspect of the consequences of tailings storage facility failures. The paper presents vast possibilities provided by the global monitoring in the effective prevention of these failures. Particular attention is drawn to the potential of using multidirectional monitoring, including technical and environmental monitoring by the example of one of the world's biggest hydrotechnical constructions-Żelazny Most Tailings Storage Facility (TSF), Poland. Analysis of monitoring data allows to take preventive action against construction failures of facility dams, which can have devastating effects on human life and the natural environment.

  16. Release of radionuclides following severe accident in interim storage facility. Source term determination

    International Nuclear Information System (INIS)

    Morandi, S.; Mariani, M.; Giacobbo, F.; Covini, R.

    2006-01-01

    Among the severe accidents that can cause the release of radionuclides from an interim storage facility, with a consequent relevant radiological impact on the population, there is the impact of an aircraft on the facility. In this work, a safety assessment analysis for the case of an aircraft crash into an interim storage facility is tackled. To this aim a methodology, based upon DOE, IAEA and NUREG standard procedures and upon conservative yet realistic hypothesis, has been developed in order to evaluate the total radioactivity, source term, released to the biosphere in consequence of the impact, without recurring to the use of complicated numerical codes. The procedure consists in the identification of the accidental scenarios, in the evaluation of the consequent damage to the building structures and to the waste packages and in the determination of the total release of radionuclides through the building-atmosphere interface. The methodology here developed has been applied to the case of an aircraft crash into an interim storage facility currently under design. Results show that in case of perforation followed by a fire incident the total released activity would be greater of some orders of magnitude with respect to the case of mere perforation. (author)

  17. Scheme of higher-density storage of spent nuclear fuel in Chernobyl NPP interim storage facility no. 1

    International Nuclear Information System (INIS)

    Britan, P.M.

    2008-01-01

    On 29. March 2000 the Cabinet of Ministers of Ukraine issued a decree prescribing that the last operating unit of Chernobyl NPP be shut down before its design lifetime expiry. In accordance with the Contract concluded on 14 June 1999 between the National Energy-generating Company 'Energoatom' and the Consortium of Framatome, Campenon Bernard-SGE and Bouygues, in order to store the spent ChNPP fuel a new interim dry storage facility (ISF-2) for spent ChNPP fuel would be built. Currently the spent nuclear fuel (spent fuel assemblies - SFAs) is stored in reactor cooling pools and in the reactors on Units 1, 2, 3, as well as in the wet Interim Storage Facility (ISF-1). Taking into account the expected delay with the commissioning of ISF-2, and in connection with the scheduled activities to build the New Safe Confinement (including the taking-down of the existing ventilation stack of ChNPP Units 3 and 4) and the expiry of the design operation life of Units 1 and 2, it is expedient to remove the nuclear fuel from Units 1, 2 and 3. This is essential to improve nuclear safety and ensure that the schedule of construction of the New Safe Confinement is met. The design capacity of ISF-1 (17 800 SFAs) is insufficient to store all SFAs (21 284) currently on ChNPP. A technically feasible option that has been applied on other RBMK plants is denser storage of spent nuclear fuel in the cooling ponds of the existing ISF-1. The purpose of the proposed modifications is to introduce changes to the ISF-1 design supported by necessary justifications required by the Ukrainian codes with the objective of enabling the storage of additional SFAs in the existing storage space (cooling pools). The need for the modification is caused by the requirement to remove nuclear fuel from the ChNPP units as soon as possible, before the work begins to decommission these units, as well as to create safe conditions for the construction of the New Safe Confinement over the existing Shelter Unit. (author)

  18. Safety research activities for Japanese regulations of spent fuel interim storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Japan Nuclear Energy Safety Organization (JNES) carries out (a) preparation of technical documents, (b) technical evaluations of standards (prepared by academic societies), etc. and (c) other R and D activities, to support Nuclear Regulation Authority (NRA: which controls the regulations for Spent Fuel Interim Storage Facilities). In 2012 fiscal year, JNES carried out dynamic test of spent fuel to examine the integrity of spent fuel under cask drop accidents, and preparation for PWR spent fuel storage test to prove long term integrity of spent fuel and cask itself. Some of these tests will be also carried out in 2013 fiscal year and after. (author)

  19. Dust exposure in workers from grain storage facilities in Costa Rica.

    Science.gov (United States)

    Rodríguez-Zamora, María G; Medina-Escobar, Lourdes; Mora, Glend; Zock, Jan-Paul; van Wendel de Joode, Berna; Mora, Ana M

    2017-08-01

    About 12 million workers are involved in the production of basic grains in Central America. However, few studies in the region have examined the occupational factors associated with inhalable dust exposure. (i) To assess the exposure to inhalable dust in workers from rice, maize, and wheat storage facilities in Costa Rica; (ii) to examine the occupational factors associated with this exposure; and (iii) to measure concentrations of respirable and thoracic particles in different areas of the storage facilities. We measured inhalable (dust concentrations in 176 personal samples collected from 136 workers of eight grain storage facilities in Costa Rica. We also measured respirable (dust particles in several areas of the storage facilities. Geometric mean (GM) and geometric standard deviation (GSD) inhalable dust concentrations were 2.0mg/m 3 and 7.8 (range=dust concentrations were associated with job category [GM for category/GM for administrative staff and other workers (95% CI)=4.4 (2.6, 7.2) for packing; 20.4 (12.3, 34.7) for dehulling; 109.6 (50.1, 234.4) for unloading in flat bed sheds; 24.0 (14.5, 39.8) for unloading in pits; and 31.6 (18.6, 52.5) for drying], and cleaning task [15.8 (95% CI: 10.0, 26.3) in workers who cleaned in addition to their regular tasks]. Higher area concentrations of thoracic dust particles were found in wheat (GM and GSD=4.3mg/m 3 and 4.5) and maize (3.0mg/m 3 and 3.9) storage facilities, and in grain drying (2.3mg/m 3 and 3.1) and unloading (1.5mg/m 3 and 4.8) areas. Operators of grain storage facilities showed elevated inhalable dust concentrations, mostly above international exposure limits. Better engineering and administrative controls are needed. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. 616 Nonradioactive Dangerous Waste Storage Facility -- Essential/support drawing list. Revision 2

    International Nuclear Information System (INIS)

    Busching, K.R.

    1994-01-01

    This document identifies the essential and supporting engineering drawings for the 616 Nonradioactive Dangerous Waste Storage Facility. The purpose of the documents is to describe the criteria used to identify and the plan for updating and maintaining their accuracy. Drawings are designated as essential if they relate to safety systems, environmental monitoring systems, effluents, and facility HVAC, electrical, and plumbing systems. Support drawings are those which are frequently used or describe a greater level of detail for equipment, components, or systems shown on essential drawings. A listing of drawings identified as essential or support is provided in Table A

  1. Periodic Safety Review in Interim Storage Facilities - Current Regulation and Experiences in Germany

    International Nuclear Information System (INIS)

    Neles, Julia Mareike; Schmidt, Gerhard

    2014-01-01

    Periodic safety reviews in nuclear power plants in Germany have been performed since the end of the 1980's as an indirect follow-up of the accident in Chernobyl and, in the meantime, are formally required by law. During this process the guidelines governing this review were developed in stages and reached their final form in 1996. Interim storage facilities and other nuclear facilities at that time were not included, so the guidelines were solely focused on the specific safety issues of nuclear power plants. Following IAEA's recommendations, the Western European Nuclear Regulator Association (WENRA) introduced PSRs in its safety reference levels for storage facilities (current version in WGWD report 2.1 as of Feb 2011: SRLs 59 - 61). Based on these formulations, Germany improved its regulation in 2010 with a recommendation of the Nuclear Waste Management Commission (Entsorgungskommission, ESK), an expert advisory commission for the federal regulatory body BMU. The ESK formulated these detailed requirements in the 'ESK recommendation for guides to the performance of periodic safety reviews for interim storage facilities for irradiated fuel elements and heat-generating radioactive waste'. Before finalization of the guideline a test phase was introduced, aimed to test the new regulation in practice and to later include the lessons learned in the final formulation of the guideline. The two-year test phase started in October 2011 in which the performance of a PSR will be tested at two selected interim storage facilities. Currently these recommendations are discussed with interested/concerned institutions. The results of the test phase shall be considered for improvements of the draft and during the final preparation of guidelines. Currently the PSR for the first ISF is in an advanced stage, the second facility just started the process. Preliminary conclusions from the test phase show that the implementation of the draft guideline requires interpretation. The aim of a

  2. Proposal for construction of a proton--proton storage accelerator facility (Isabelle)

    International Nuclear Information System (INIS)

    1975-06-01

    A proposal is made for the construction of proton storage rings at the Brookhaven Alternating Gradient Synchrotron (AGS) using superconducting magnets for which much of the technology has already been developed. This proton-proton colliding beam facility, ''ISABELLE,'' will provide large increases in both the center-of-mass energy and the luminosity, key machine parameters for high energy physics. The physics potential and the general description of the facility are discussed in detail, and the physical plant layout, a cost estimate and schedule, and future options are given.(U.S.)

  3. Thermodynamic Evaluation of Floating Production Storage and Offloading Facilities with Liquefaction Processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Sánchez, Yamid Alberto Carranza; Junior, Silvio de Oliveira

    2016-01-01

    Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing.They have gained interest because they are more flexible than conventional plants and can be used for producingoil and gas in deep-water fields. In general, gas export is challenging...... because of the lack of infrastructure in remotelocations. The present work investigates the possibility of integrating liquefaction processes on such facilities, consideringfour possible petroleum compositions, which differ in their contents of carbon dioxide, light and heavy hydrocarbons.The performance...

  4. Emergency preparedness hazards assessment for the Concentrate, Storage and Transfer Facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents this facility Emergency Preparedness Hazards Assessment (EPHA) for the Concentrate, Storage and Transfer Facility (CSTF) located on the Department of Energy (DOE) Savannah River Site (SRS). The CSTF encompasses the F-Area and the H-Area Tank Farms including the Replacement High Level Waste Evaporator (RHLWE) (3H evaporator) as a segment of the H-Area Tank Farm. This EPHA is intended to identify and analyze those hazards that are significant enough to warrant consideration in the tank farm operational emergency management programs

  5. General overview and a review of storage rings, research facilities, and insertion devices

    International Nuclear Information System (INIS)

    Winick, H.

    1989-01-01

    Synchrotron radiation, the electromagnetic radiation given off by electrons in circular motion, is revolutionizing many branches of science and technology by offering beams of vacuum ultraviolet light and x rays of immense flux and brightness. In the past decade there has been an explosion of interest in these applications leading to increased exploitation of existing rings and activity to construct new research facilities based on advanced storage rings and insertion device sources. Applications include basic and applied research in biology, chemistry, medicine, and physics plus many areas of technology. In this article they present a general overview of the field of synchrotron radiation research, its history, the present status and future prospects of storage rings and research facilities, and the development of wiggler and undulator insertion devices as sources of synchrotron radiation. 66 references, 20 figures, 1 table

  6. Experience with the licensing of the interim spent fuel storage facility modification

    International Nuclear Information System (INIS)

    Bezak, S.; Beres, J.

    1999-01-01

    After political and economical changes in the end of eighties, the utility operating the nuclear power plants in the Slovak Republic (SE, a.s.) decided to change the original scheme of the back-end of the nuclear fuel cycle; instead of reprocessing in the USSR/Russian Federation spent fuel will be stored in an interim spent fuel storage facility until the time of the final decision. As the best solution, a modification of the existing interim spent fuel storage facility has been proposed. Due to lack of legal documents for this area, the Regulatory Authority of the Slovak Republic (UJD SR) performed licensing procedures of the modification on the basis of recommendations by the IAEA, the US NRC and the relevant parts of the US CFR Title 10. (author)

  7. Computer program for storage of historical and routine safety data related to radiologically controlled facilities

    International Nuclear Information System (INIS)

    Marsh, D.A.; Hall, C.J.

    1984-01-01

    A method for tracking and quick retrieval of radiological status of radiation and industrial safety systems in an active or inactive facility has been developed. The system uses a mini computer, a graphics plotter, and mass storage devices. Software has been developed which allows input and storage of architectural details, radiological conditions such as exposure rates, current location of safety systems, and routine and historical information on exposure and contamination levels. A blue print size digitizer is used for input. The computer program retains facility floor plans in three dimensional arrays. The software accesses an eight pen color plotter for output. The plotter generates color plots of the floor plans and safety systems on 8 1/2 x 11 or 20 x 30 paper or on overhead transparencies for reports and presentations

  8. Synchrotron radiation A general overview and a review of storage rings, research facilities, and insertion devices

    International Nuclear Information System (INIS)

    Winick, H.

    1989-01-01

    Synchrotron radiation, the electromagnetic radiation given off by electrons in circular motion, is revolutionizing many branches of science and technology by offering beams of vacuum ultraviolet light and x rays of immense flux and brightness. In the past decade there has been an explosion of interest in these applications leading activity to construct new research facilities based on advanced storage rings and insertion device sources. Applications include basic and applied research in biology, chemistry, medicine, and physics plus many areas of technology. In this article we present a general overview of the field of synchrotron radiation research, its history, the present status and future prospects of storage rings and research facilities, and the development of wiggler and undulator insertion devices as sources of synchrotron radiation

  9. Computerization of nuclear material accounting and control at storage facilities of RT-1 plant, PA Mayak

    International Nuclear Information System (INIS)

    Krakhmal'nik, V.I.; Menshchikov, Yu.L.; Mozhaev, D.A.

    1999-01-01

    Computerized system for nuclear material (NM) accounting and control at RT-1 plant is being created on the basis of advanced engineering and programming tools, which give a possibility to ensure prompt access to the information required, to unify the accounting and report documentation, make statistical processing of the data, and trace the NM transfers in the chain of its storage at facilities of RT-1 plant. Currently, the accounting is performed in parallel, both by the old methods and with computerized system. The following functions are performed by the system at the current stage: input of data on the end product's (plutonium dioxide) quantitative and qualitative composition; data input on the localization of containers with finished products at storage facilities of the plant and the product's temporary characteristics; selective verification of the data on containers and batches, according to the criteria prespecified by the user; data protection against unauthorized access; data archiving; report documents formation and providing [ru

  10. Survey and assessment of radioactive waste management facilities in the United States. Section 2.5. Air-cooled vault storage facilities

    International Nuclear Information System (INIS)

    1986-01-01

    There are two basic types of air-cooled vaults for the storage of spent nuclear fuel or vitrified HLRW. The two types, differentiated by the method of air cooling used, are the open-vault concept and the closed-vault concept. The following aspects of these air-cooled vault storage facility concepts are discussed: description and operation of facilities; strucutral design considerations and analysis; nuclear design considerations and analyses; vault environmental design considerations; unique design features; and accident analysis

  11. Demand management of city gas per season and study of estimating proper size of LNG storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y.H.; Kim, S.D. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-09-01

    LNG storage facilities are indispensable to satisfy demand throughout the year by saturating the time difference of supply and demand that appears due to seasonal factors. The necessity of storage facilities is more important in a country like Korea where LNG is not produced at all and imports are relied upon. The problem of deciding how much storage facilities to keep and in what pattern to import LNG is a question to solve in order to minimize the costs related to the construction of LNG storage facilities while not causing any problem in the supply and demand of LNG. This study analyzes how the import of LNG and the consumption pattern of LNG for power generation affect the decision on the size of storage facilities. How the shipping control, and how LNG demand for power generation affect the decision of requirement of storage facilities, and why the possibility of shipping control should be investigated in the aspect of costs is investigated. As a result of this study, I presented necessary basic data for drafting a policy by assessing the minimum requirements of storage facilities needed for balancing the supply and demand with the various shipping control and LNG consumption patterns through simulation up to the year 2010. 10 refs., 33 figs., 66 tabs.

  12. Highest manageable level of radioactivity in the waste storage facilities of power plants

    International Nuclear Information System (INIS)

    Elkert, J.; Lennartsson, R.

    1991-01-01

    This project presents and discusses an investigation of the highest level of radioactivity possible to handle in the waste storage facilities. The amount of radioactivity, about 0.1% of the fuel inventory, is the same in both of the cases but the amount of water is very different. The hypothetical accident was supposed to be damage of the reactor fuel caused by loss of coolant. (K.A.E.)

  13. Operations and Maintenance Concept Plan for the Immobilized High Level Waste (IHLW) Interim Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    JANIN, L.F.

    2000-08-30

    This O&M Concept looks at the future operations and maintenance of the IHLW/CSB interim storage facility. It defines the overall strategy, objectives, and functional requirements for the portion of the building to be utilized by Project W-464. The concept supports the tasks of safety basis planning, risk mitigation, alternative analysis, decision making, etc. and will be updated as required to support the evolving design.

  14. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena. (JRD)

  15. Implementation plan for deployment of Federal Interim Storage facilities for commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1986-12-01

    This document is the third annual report on plans for providing Federal Interim Storage (FIS) capacity. References are made to the first and second annual reports, as necessary. Background factors and aspects that were considered in the development of this deployment plan and activities and interactions considered to be required to implement an FIS program are discussed. A generic description of the approach that the Department plans to follow in deploying FIS facilities is also described

  16. Implementation plan for deployment of Federal Interim Storage facilities for commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1985-01-01

    This document is the second annual report on plans for providing Federal Interim Storage (FIS) capacity. References are made to the first annual report as necessary (DOE/RW-0003, 1984). Background factors and aspects that were considered in the development of this deployment plan and activities and interactions considered to be required to implement an FIS program are discussed. The generic approach that the Department plans to follow in deploying FIS facilities is also described

  17. Operations and Maintenance Concept Plan for the Immobilized High-Level Waste (IHLW) Interim Storage Facility

    International Nuclear Information System (INIS)

    JANIN, L.F.

    2000-01-01

    This OandM Concept looks at the future operations and maintenance of the IHLW/CSB interim storage facility. It defines the overall strategy, objectives, and functional requirements for the portion of the building to be utilized by Project W-464. The concept supports the tasks of safety basis planning, risk mitigation, alternative analysis, decision making, etc. and will be updated as required to support the evolving design

  18. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    International Nuclear Information System (INIS)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena

  19. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-01-01

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides

  20. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES

    International Nuclear Information System (INIS)

    PARSA, Z.

    2001-01-01

    Intense muon sources for the purpose of providing intense high energy neutrino beams (ν factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both ± μ. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider

  1. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.

    Energy Technology Data Exchange (ETDEWEB)

    PARSA,Z.

    2001-06-18

    Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

  2. Site dose calculations for the INEEL/TMI-2 storage facility

    International Nuclear Information System (INIS)

    Jones, K.B.

    1997-01-01

    The U.S. Department of Energy (DOE) is licensing an independent spent-fuel storage installation (ISFSI) for the Three Mile Island unit 2 (TMI-2) core debris to be constructed at the Idaho Chemical Processing Plant (ICPP) site at the Idaho National Engineering and Environmental Laboratory (INEEL) using the NUHOMS spent-fuel storage system. This paper describes the site dose calculations, performed in support of the license application, that estimate exposures both on the site and for members of the public. These calculations are unusual for dry-storage facilities in that they must account for effluents from the system in addition to skyshine from the ISFSI. The purpose of the analysis was to demonstrate compliance with the 10 CFR 20 and 10 CFR 72.104 exposure limits

  3. Investigation of Storage Options for Scientific Computing on Grid and Cloud Facilities

    International Nuclear Information System (INIS)

    Garzoglio, Gabriele

    2012-01-01

    In recent years, several new storage technologies, such as Lustre, Hadoop, OrangeFS, and BlueArc, have emerged. While several groups have run benchmarks to characterize them under a variety of configurations, more work is needed to evaluate these technologies for the use cases of scientific computing on Grid clusters and Cloud facilities. This paper discusses our evaluation of the technologies as deployed on a test bed at FermiCloud, one of the Fermilab infrastructure-as-a-service Cloud facilities. The test bed consists of 4 server-class nodes with 40 TB of disk space and up to 50 virtual machine clients, some running on the storage server nodes themselves. With this configuration, the evaluation compares the performance of some of these technologies when deployed on virtual machines and on “bare metal” nodes. In addition to running standard benchmarks such as IOZone to check the sanity of our installation, we have run I/O intensive tests using physics-analysis applications. This paper presents how the storage solutions perform in a variety of realistic use cases of scientific computing. One interesting difference among the storage systems tested is found in a decrease in total read throughput with increasing number of client processes, which occurs in some implementations but not others.

  4. Fire hazards analysis for W-413, West Area Tank Farm Storage and Staging Facility

    International Nuclear Information System (INIS)

    Huckfeldt, R.A.; Lott, D.T.

    1994-01-01

    In accordance with DOE Order 5480.7A, a Fire Hazards Analysis must be performed for all new facilities. The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objectives of the Order are met. The Order acknowledges a graded approach commensurate with the hazards involved. Tank Farms Operations must sore/stage material and equipment such as pipes, fittings, conduit, instrumentation and others related items until work packages are ready to work. Consumable materials, such as nut, bolts and welding rod, are also requires to be stored for routine and emergency work. Connex boxes and open storage is currently used for much of the storage because of the limited space at and 272WA. Safety issues based on poor housekeeping and material deteriorating due to weather damage has resulted from this inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. This facility is classified as a safety class 4 building

  5. Final safety-analysis report for the Fifth Calcined Solids Storage Facility

    International Nuclear Information System (INIS)

    1982-01-01

    Radioactive aqueous wastes generated by the solvent extraction of uranium from expended fuels at ICPP will be calcined in the New Waste Calcining Facility (NWCF). The calcined solids are pneumatically transferred to stainless steel bins enclosed in concrete vaults for interim storage of up to 500 years. The Fifth Calcined Solids Storage Facility (CSSF) provides 1000 m 3 of storage and consists of seven annular stainless steel bins inside a reinforced concrete vault set on bedrock. Storage of calcined solids is essentially a passive operation with very little opportunity for release of radionuclides and with no potential for criticality. There will be no potential for fire or explosion. Shielding has been designed to assure that the radiation levels at the vault exterior surfaces will be limited to less than 0.5 mRem/h. A sump in the vault floor will collect any in-leakage that may occur. Any water that collects in the sump will be sampled then removed with the sump jet. There will be an extremely small chance of release of radioactive particulates into the atmosphere as a result of a bin leak. The Design Basis Accident (DBA) postulates the spill of solids from an eroded fill line into the vault coupled with a failure of the vault cooling air radiation monitor. For the DBA, the maximum calculated radiation dose to an exposed individual near the site boundary is less than 1.2 μRem to the bone and lung

  6. Evaluation of Dynamic Behavior of Pile Foundations for Interim Storage Facilities Through Geotechnical Centrifuge Tests

    International Nuclear Information System (INIS)

    Shizuo Tsurumaki; Hiroyuki Watanabe; Akira Tateishi; Kenichi Horikoshi; Shunichi Suzuki

    2002-01-01

    In Japan, there is a possibility that interim storage facilities for recycled nuclear fuel resources may be constructed on quaternary layers, rather than on hard rock. In such a case, the storage facilities need to be supported by pile foundations or spread foundations to meet the required safety level. The authors have conducted a series of experimental studies on the dynamic behavior of storage facilities supported by pile foundations. A centrifuge modeling technique was used to satisfy the required similitude between the reduced size model and the prototype. The centrifuge allows a high confining stress level equivalent to prototype deep soils to be generated (which is considered necessary for examining complex pile-soil interactions) as the soil strength and the deformation are highly dependent on the confining stress. The soil conditions were set at as experimental variables, and the results are compared. Since 2000, the Nuclear Power Engineering Corporation (NUPEC) has been conducting these research tests under the auspices on the Ministry of Economy, Trade and Industry of Japan. (authors)

  7. Improving of spent fuel monitoring in condition of Slovak wet interim spent fuel storage facility

    International Nuclear Information System (INIS)

    Miklos, M.; Krsjak, V.; Bozik, M.; Vasina, D.

    2008-01-01

    Monitoring of WWER fuel assemblies condition in Slovakia is presented in the paper. The leak tightness results of fuel assemblies used in Slovak WWER units in last 20 years are analyzed. Good experiences with the 'Sipping system' are described. The Slovak wet interim spent fuel storage facility in NPP Jaslovske Bohunice was build and put in operation in 1986. Since 1999, leak tests of WWER-440 fuel assemblies are provided by special leak tightness detection system 'Sipping in Pool' delivered by Framatome-ANP facility with external heating for the precise detection of active specimens. Another system for monitoring of fuel assemblies condition was implemented in December 2006 under the name 'SVYPP-440'. First non-active tests started at February 2007 and are described in the paper. Although those systems seems to be very effective, the detection time of all fuel assemblies in one storage pool is too long (several months). Therefore, a new 'on-line' detection system, based on new sorbent KNiFC-PAN for effective 134 Cs and 137 Cs activity was developed. This sorbent was compared with another type of sorbent NIFSIL and results are presented. The design of this detection system and its possible application in the Slovak wet spent fuel storage facility is discussed. For completeness, the initial results of the new system are also presented. (authors)

  8. Storage fee analysis for a nuclear waste terminal storage facility. Final report

    International Nuclear Information System (INIS)

    1976-09-01

    A model was developed for determining a pricing schedule designed to recover federal government costs incurred in the development, design, construction, operation, decommissioning, and surveillance of a federal repository for high-level waste generated by the commercial nuclear power industry. As currently constructed, the model computes current dollar prices on a yearly basis for a single unit charge or a split fee based upon two user-provided quantity flows. Over the period of facility operation, the computed-cost schedule shows variability on a year-to-year basis only within specified ranges. The model uses as basic input data: cost schedule for the federal repository; quantity flow schedule for each factor to be charged; schedule for escalation rate, discount rate, and interest rate; and fraction of costs to be recovered on each quantity flow if the split-fee option is used. The model allows testing of these variables in order to determine the relative significance of each component with regard to cost to, and impact on, the nuclear power industry. Another feature of the model is its versatility. Not only is the user able to specify the percent of total costs to be covered by each method of fee assessment listed above but also the user can specify a revenue-cost ratio, an option that would prove useful in trying to assess the general uncertainty involved when dealing in the future. In addition, the model accepts either current-dollar or constant-dollar cost measures, and in the case of the latter escalates the costs with user-provided assumptions

  9. Design, construction and commissioning of the new solid waste management and storage facilities of Ignalina NPP, Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Goehring, R.; Wenninger, K. [RWE NUKEM GmbH, Alzenau (Germany)

    2006-04-15

    The contract for the design, construction and commissioning (turn-key) of the New Solid Waste Management and Storage Facilities (SWMSF) has been awarded to RWE NUKEM GmbH. The contract was signed on the 30.11.2005. The New Solid Waste Management and Storage Facilities (SWMSF) are financed by the Ignalina Decommissioning Support Fund which is managed by European Bank for Reconstruction and Development (EBRD). The new facilities are required on the Ignalina Nuclear Power Plant (INPP) in order to support ongoing decomissioning work, including removal of waste from existing waste storage buildings. (orig.)

  10. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  11. A feasibility study for the storage of plutonium pits in non-partitioned warehouse facilities

    International Nuclear Information System (INIS)

    James, D.; Parameswaren, S.; Nagendran, S.

    1999-02-01

    It is projected that up to 20,000 plutonium pits will be stored at Pantex for up to 50 years. The proposed storage system has to meet longevity, safety and cost requirements. Thermal, mechanical, chemical, nuclear criticality and safety performance characteristics of any proposed plutonium container design need to be formally analyzed. Plutonium generates thermal energy as it decays. The generated thermal energy may cause excessive rise of temperature. For safety and other considerations, it is important that the plutonium temperature remains relatively constant and no hot spots develop. Plutonium containers should not be disassembled for routine monitoring and there are various reasons for the need to monitor the plutonium non-obtrusively. Therefore, accurate predictions of the temperature distribution within the storage container based upon external monitoring within the storage facility needs to be developed. A heat transfer analysis of the storage container is required. The heat transfer analysis, however, requires the knowledge of the temperature and velocity of the air circulating around the containers in order to determine the heat transferred to the air from the containers by convection. Therefore, a complete flow field analysis is required prior to performing the conduction analysis of each pit. The objective of this research is, therefore, to develop and validate a numerical model to predict the temperature distribution within the plutonium storage container as a function of the ambient air temperature within the warehouse

  12. Evaluation of the long duration efficiency of the ECC storage facility of Cogema La Hague plant

    International Nuclear Information System (INIS)

    Baganz, C.; Bouland, P.; Breton, E.

    2004-01-01

    The ECC facility of Cogema La Hague has been designed in view of the storage of 24000 CSD-C type containers produced by the ACC facility. It comprises a reception and unloading unit, and a modular storage unit (alveoles). The safety of the facility is based on: a controlled ventilation (low pressurization rooms, controlled atmosphere, heat and toxic gases evacuation), a construction ensuring the static confinement, the sub-criticality and the radiological protection, and the possibility of natural ventilation of the alveoles (earthquake-dimensioned equipments). On the basis of these safety functions, the conformability of the facility with respect to long duration has been analyzed considering three aspects of the facility: the infrastructure, the waste packages and the ventilation system. In normal operation, a foreseeable service life of at least 100 years is established: simpleness and accessibility of ventilation systems, no significant corrosion of packages, durability of the reinforced concrete structure. The demonstration of a service life greater than 100 years would require the improvement of our knowledge about concretes in terms of experience feedback. The behaviour of the facility in terms of loss of technical mastery has been considered too. The scenario retained for this situation is the prolonged stoppage (several months or years) of the nuclear ventilation after a 100 years of disposal. After this period of time, both the thermal power and the hydrogen generation from waste packages will have significantly diminished, allowing a loss of technical mastery era of several years with no impact on concretes integrity. However, during long situations of non-controlled atmosphere, the corrosion behaviour of stainless steels is not predictable. (J.S.)

  13. The low to intermediate activity and short living waste storage facility. For a controlled management of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    Sited at about 50 km of Troyes (France), the Aube facility started in 1992 and has taken over the Manche facility for the surface storage of low to intermediate and short living radioactive wastes. The Aube facility (named CSFMA) is the answer to the safe management of these wastes at the industrial scale and for 50 years onward. This brochure presents the facility specifications, the wastes stored at the center, the surface storage concept, the processing and conditioning of waste packages, and the environmental monitoring performed in the vicinity of the site. (J.S.)

  14. Development of evaluation method for heat removal design of dry storage facilities. pt. 1. Heat removal test on vault storage system of cross flow type

    International Nuclear Information System (INIS)

    Sakamoto, Kazuaki; Koga, Tomonari; Wataru, Masumi; Hattori, Yasuo

    1997-01-01

    The report describes the result of heat removal test of passive cooling vault storage system of cross flow type using 1/5 scale model. Based on a prospect of steady increase in the amount of spent fuel, it is needed to establish large capacity dry storage technologies for spent fuel. Air flow patterns, distributions of air temperature and velocity were measured, by which heat removal characteristics of the system were made clear. Air flow patterns in the storage module depended on the ratio of the buoyant force to the inertial force; the former generated by the difference of air temperatures and the height of the storage module, the latter by the difference of air densities between the outlet of the storage module and ambience and the height of the chimney of the storage facility. A simple method to estimate air flow patterns in the storage module was suggested, where Ri(Richardson) number was applied to represent the ratio. Moreover, heat transfer coefficient from a model of storage tube to cooling air was evaluated, and it was concluded that the generalized expression of heat transfer coefficient for common heat exchangers could be applied to the vault storage system of cross flow type, in which dozens of storage tubes were placed in a storage module. (author)

  15. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    International Nuclear Information System (INIS)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO 2 oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO 2 pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs

  16. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment ampersand storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage ampersand treatment facilities

    International Nuclear Information System (INIS)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory's storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations

  17. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  18. Work Plan: Phase II Investigation at the Former CCC/USDA Grain Storage Facility in Montgomery City, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-05-01

    From September 1949 until September 1966, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) leased property at the southeastern end of Montgomery City, Missouri, for the operation of a grain storage facility. During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities.

  19. Material handling for the Los Alamos National Laboratory Nuclear Storage Facility

    International Nuclear Information System (INIS)

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-01-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels

  20. Effects of temperature on concrete cask in a dry storage facility for spent nuclear fuels

    International Nuclear Information System (INIS)

    Huang Weiqing; Wu Ruixian; Zheng Yukuan

    2011-01-01

    In the dry storage of spent nuclear fuels,concrete cask serves both as a shielding and a structural containment. The concrete in the storage facility is expected to endure the decay heat of the spent nuclear fuel during its service life. Thus, effects of the sustaining high temperature on concrete material need be evaluated for safety of the dry storage facility. In this paper, we report an experimental program aimed at investigating possible high temperature effects on properties of concrete, with emphasis on the mechanical stability, porosity,and crack-resisting ability of concrete mixes prepared using various amounts of Portland cement, fly ash, and blast furnace slag. The experimental results obtained from concrete specimens exposed to a temperature of 94 degree C for 90 days indicate that: (1) compressive strength of the concrete remains practically unchanged; (2) the ultrasonic pulse velocity, and dynamic modulus of elasticity of the concrete decrease in early stage of the high-temperature exposure,and gradually become stable with continuing exposure; (3) shrinkage of concrete mixes exhibits an increase in early stage of the exposure and does not decrease further with time; (4) concrete mixes containing pozzolanic materials,including fly ash and blast furnace slag, show better temperature-resisting characteristics than those using only Portland cement. (authors)

  1. Feasibility study on utilization of radiation from spent fuel in storage facility

    International Nuclear Information System (INIS)

    Wataru, Masumi; Sakamoto, Kazuaki; Saegusa, Toshiari; Sakaya, Tadatsugu; Fujiwara, Hiroaki.

    1997-01-01

    Spent fuels of nuclear power plant are stored safely until reprocessing because they are radioactive in addition to energy resources. It is foreseen that the amount of the stored spent fuel increases in the long term. Therefore, in the government, discussion on the storage away from reactor is in progress as well as one at reactor. Spent fuel emits a radioactive ray for a long time. In the storage facility, radiation is shielded not to have a detrimental influence upon the health and environment. If radioactive ray is incorrectly handled, it is hazardous for the health and the environment. But, it is very useful if it is properly utilized under a careful management. In the industry, radioactive ray by isotopes (e.g. Co-60) is used widely. In a view of the effective utilization of energy, the promotion of the siting, the regional development and the creation of employment opportunities of local inhabitants, it is preferable to make use of radiation from the spent fuel. In this study, feasibility of utilization of radiation energy from the spent fuel in a storage facility was evaluated. (author)

  2. Phase II Investigation at the Former CCC/USDA Grain Storage Facility in Savannah, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division. Applied Geosciences and Environmental Management Section

    2012-05-01

    From approximately 1949 until 1970, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility on federally owned property approximately 0.25 mi northwest of Savannah, Missouri. During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In November 1998, carbon tetrachloride was detected in a private well (Morgan) roughly 50 ft south of the former CCC/USDA facility, as a result of statewide screening of private wells near former CCC/USDA facilities, conducted in Missouri by the U.S. Environmental Protection Agency (EPA 1999). The 1998 and subsequent investigations by the EPA and the Missouri Department of Natural Resources (MDNR) confirmed the presence of carbon tetrachloride in the Morgan well, as well as in a second well on property currently owned by the Missouri Department of Transportation (MoDOT), directly east of the former CCC/USDA facility. The identified concentrations in these two wells were above the EPA maximum contaminant level (MCL) and the Missouri risk-based corrective action default target level (DTL) values of 5.0 μg/L for carbon tetrachloride in water used for domestic purposes (EPA 1999; MDNR 2000a,b, 2006). Because the observed contamination in the Morgan and MoDOT wells might be linked to the past use of carbon tetrachloride-based fumigants at its former grain storage facility, the CCC/USDA is conducting an investigation to (1) characterize the source(s), extent, and factors controlling the subsurface distribution and movement of carbon tetrachloride and (2) evaluate the potential risks to human health, public welfare, and the environment posed by the contamination. This work is being performed in accord with an Intergovernmental Agreement established in 2007 between the Farm Service Agency of the USDA and the MDNR, to address carbon tetrachloride

  3. Radioactive waste storage facilities, involvement of AVN in inspection and safety assessment

    International Nuclear Information System (INIS)

    Simenon, R.; Smidts, O.

    2006-01-01

    The legislative and regulatory framework in Belgium for the licensing and the operation of radioactive waste storage buildings are defined by the Royal Decree of 20 July 2001 (hereby providing the general regulations regarding to the protection of the population, the workers and the environment against the dangers of ionising radiation). This RD introduces in the Belgian law the radiological protection and ALARA-policy concepts. The licence of each nuclear facility takes the form of a Royal Decree of Authorization. It stipulates that the plant has to be in conformity with its Safety Analysis Report. This report is however not a public document but is legally binding. Up to now, the safety assessment for radioactive waste storage facilities, which is implemented in this Safety Analysis Report, has been judged on a case-by-case basis. AVN is an authorized inspection organisation to carry out the surveillance of the Belgian nuclear installations and performs hereby nuclear safety assessments. AVN has a role in the nuclear safety and radiation protection during all the phases of a nuclear facility: issuance of licenses, during design and construction phase, operation (including reviewing and formal approval of modifications) and finally the decommissioning. Permanent inspections are performed on a regular basis by AVN, this by a dedicated site inspector, who is responsible for a site of an operator with nuclear facilities. Besides the day-to-day inspections during operation there are also the periodic safety reviews. AVN assesses the methodological approaches for the analyses, reviews and approves the final studies and results. The conditioned waste in Belgium is stored on the Belgoprocess' sites (region Mol-Dessel) for an intermediate period (about 80 years). In the meantime, a well-defined inspection programme is being implemented to ensure that the conditioned waste continues to be stored safely during this temporary storage period. This programme was draw up by

  4. Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility

    International Nuclear Information System (INIS)

    SCHULTZ, M.V.

    2000-01-01

    As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to

  5. CPP-603 Underwater Fuel Storage Facility Site Integrated Stabilization Management Plan (SISMP), Volume I

    International Nuclear Information System (INIS)

    Denney, R.D.

    1995-10-01

    The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been constructed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 to the Secretary of Energy regarding an improved schedule for remediation in the Defense Nuclear Facilities Complex. As described in the DNFSB Recommendation 94-1 Implementation Plan, issued February 28, 1995, an INEL Spent Nuclear Fuel Management Plan is currently under development to direct the placement of SNF currently in existing INEL facilities into interim storage, and to address the coordination of intrasite SNF movements with new receipts and intersite transfers that were identified in the DOE SNF Programmatic and INEL Environmental Restoration and Waste Management Environmental Impact Statement Record, of Decision. This SISMP will be a subset of the INEL Spent Nuclear Fuel Management Plan and the activities described are being coordinated with other INEL SNF management activities. The CPP-603 relocation activities have been assigned a high priority so that established milestones will be meet, but there will be some cases where other activities will take precedence in utilization of available resources. The Draft INEL Site Integrated Stabilization Management Plan (SISMP), INEL-94/0279, Draft Rev. 2, dated March 10, 1995, is being superseded by the INEL Spent Nuclear Fuel Management Plan and this CPP-603 specific SISMP

  6. DARA Solid Storage Facility evaluation and recommendations, Y-12 Bear Creek Burial Grounds, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Barton, W.D. III; Hughey, J.C.

    1992-08-01

    The Disposal Area Remedial Action (DARA) Solid Storage Facility (SSF) is a rectangular concrete vault with two high-density Polyethlene (HDPE) liners and covered with a metal building. The SSF was originally designed and constructed to receive saturated sediments from the excavation of the Oil Retention Ponds and Tributary 7 at the Oak Ridge Y-12 Plant. The sediments placed in the SSF were generally high-water-content soils contaminated with polychlorinated biphenyls (PCBs) and volatile organic carbons. The facility was intended to dewater the sediments by allowing the free water to percolate to a 6-in. sand layer covering the entire floor of the facility. The sand layer then drained into sumps located at the east and west ends of the facility. An application for a Part-B Permit was submitted to the state of Tennessee in February 1992 (MMES 1992a). This report is being submitted to support approval of that permit application and to address certain issues known to the regulators regarding this facility

  7. Monitored Retrievable Storage conceptual system study: dry receiving and handling facility

    International Nuclear Information System (INIS)

    1984-01-01

    A preconceptual design and estimate for a MRS receiving and handling (R and H) facility at a hypothetical site in the United States are presented. The facility consists of a receiving and handling building plus associated operating buildings, system, and site development features. The R and H building and the supporting buildings and site development features are referred to as the R and H area. Adjoining the R and H area will be an interim waste storage area currently being considered by others. The desirability of building a full capacity (3000-MTU) MRS facility initially versus adding additional capacity at a later date in a phased construction program was investigated. Several advantages of phased construction include incorporation of new designs, modification of receiving-handling-packaging, and changes in regulatory requirements or the waste management program which may develop following startup and operation of an 1800-MTU MRS facility. The cost of a 3000-MTU MRS facility constructed initially was estimated at $193,200,000. If a phased construction program was implemented, including escalation to the mid-point of Phase 2 construction, a capital expenditure of $215,300,000 is estimated - a cost penalty of $22,100,000 or about 11% for phased construction

  8. TSD-DOSE : a radiological dose assessment model for treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Pfingston, M.

    1998-01-01

    In May 1991, the U.S. Department of Energy (DOE), Office of Waste Operations, issued a nationwide moratorium on shipping slightly radioactive mixed waste from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. Studies were subsequently conducted to evaluate the radiological impacts associated with DOE's prior shipments through DOE's authorized release process under DOE Order 5400.5. To support this endeavor, a radiological assessment computer code--TSD-DOSE (Version 1.1)--was developed and issued by DOE in 1997. The code was developed on the basis of detailed radiological assessments performed for eight commercial hazardous waste TSD facilities. It was designed to utilize waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste handling operations at a TSD facility. The code has since been released for use by DOE field offices and was recently used by DOE to evaluate the release of septic waste containing residual radioactive material to a TSD facility licensed under the Resource Conservation and Recovery Act. Revisions to the code were initiated in 1997 to incorporate comments received from users and to increase TSD-DOSE's capability, accuracy, and flexibility. These updates included incorporation of the method used to estimate external radiation doses from DOE's RESRAD model and expansion of the source term to include 85 radionuclides. In addition, a detailed verification and benchmarking analysis was performed

  9. Social assessment of siting a low-level radioactive waste storage facility in Michigan

    International Nuclear Information System (INIS)

    Stoffle, R.W.; Traugott, M.J.; Stone, J.V.; McIntyre, P.D.; Davidson, C.C.; Jensen, F.V.; Coover, G.E.

    1990-01-01

    This report presents findings from a social assessment of siting a low-level radioactive waste storage facility in Michigan. Social assessments derive from direct interaction between researchers and study participants. The report is organized into five chapters. Chapter One, Summary of Findings, focuses on key findings from the statewide telephone surveys and the in-depth ethnographic study conducted by the SNR/ISR study team. These and additional findings are discussed in greater detail in the three subsequent chapters. Chapter Two, Statewide Telephone Survey Findings, presents the knowledge, attitudes and beliefs statewide residents have regarding the LLRW project. Chapter Three, Statewide Demographic Findings, presents a detailed examination of differences among various demographic groups and includes regional analysis. Chapter Four, Hillsdale-area Ethnographic Study Findings, discusses perceived impacts of the proposed LLRW storage facility on local residents who mistakenly came to believe that their area had been specially selected as the location for the facility. Specifically, the chapter presents the development, spread, shape and persistence of what is termed a risk perception shadow in the greater Hillsdale area. Possible causes of the shadow also are discussed, and comparisons are made between statewide and Hillsdale-area survey populations. Chapter Five, Research Methods, presents a discussion of the social assessment research methods used to derive these findings

  10. 225-B ion exchange piping design documentation

    International Nuclear Information System (INIS)

    Prather, M.C.

    1996-02-01

    This document describes the interface between the planned permanent ion exchange piping system and the planned portable ion exchange system. This is part of the Waste Encapsulation and Storage Facility (WESF). In order to decouple this WESF from B-Plant and to improve recovery from a capsule leak, contaminated pool cell water will be recirculated through a portable ion exchange resin system

  11. Development of evaluation method for heat removal design of dry storage facilities. Pt. 4. Numerical analysis on vault storage system of cross flow type

    International Nuclear Information System (INIS)

    Sakamoto, Kazuaki; Hattori, Yasuo; Koga, Tomonari; Wataru, Masumi

    1999-01-01

    On the basis of the result of the heat removal test on vault storage system of cross flow type using the 1/5 scale model, an evaluation method for the heat removal design was established. It was composed of the numerical analysis for the convection phenomena of air flow inside the whole facility and that for the natural convection and the detailed turbulent mechanism near the surface of the storage tube. In the former analysis, air temperature distribution in the storage area obtained by the calculation gave good agreement within ±3degC with the test result. And fine turbulence models were introduced in the latter analysis to predict the separation flow in the boundary layer near the surface of the storage tube and the buoyant flow generated by the heat from the storage tube. Furthermore, the properties of removing the heat in a designed full-scale storage facility, such as flow pattern in the storage area, temperature and heat transfer rate of the storage tubes, were evaluated by using each of three methods, which were the established numerical analysis method, the experimental formula demonstrated in the heat removal test and the conventional evaluation method applied to the past heat removal design. As a result, the safety margin and issues included in the methods were grasped, and the measures to make a design more rational were proposed. (author)

  12. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  13. Transverse coupling impedance of the storage ring at the European Synchrotron Radiation Facility

    Directory of Open Access Journals (Sweden)

    T. F. Günzel

    2006-11-01

    Full Text Available The vertical and horizontal impedance budgets of the European Synchrotron Radiation Facility (ESRF storage ring are calculated by element-by-element wake potential calculation. Resistive wall wakes are calculated analytically; the short range geometrical wakes are calculated by a 3D electromagnetic field solver. The effect of the quadrupolar wakes due to the flatness of most ESRF vacuum chambers is included in the model. It can well explain the sensitivity of the horizontal single bunch threshold on vacuum chamber changes, in particular, in low-gap sections of the ESRF storage ring. The values of the current thresholds on the transverse planes could be predicted correctly by the model within a factor of 2.

  14. Interim dry cask storage of irradiated Fast Flux Test Facility fuel

    International Nuclear Information System (INIS)

    Scott, P.L.

    1994-09-01

    The Fast Flux Test Facility (FFTF), located at the US Department of Energy's (DOE'S) Hanford Site, is the largest, most modern, liquid metal-cooled test reactor in the world. This paper will give an overview of the FFTF Spent Fuel Off load project. Major discussion areas will address the status of the fuel off load project, including an overview of the fuel off load system and detailed discussion on the individual components that make up the dry cask storage portion of this system. These components consist of the Interim Storage Cask (ISC) and Core Component Container (CCC). This paper will also discuss the challenges that have been addressed in the evolution of this project

  15. Radiation shielding at interim storage facility for CANDU-type nuclear spent fuel

    International Nuclear Information System (INIS)

    Mateescu, S.; Radu, M. Pantazi D.; Stanciu, M.

    1997-01-01

    Technical measures in radiological protection are taken in the interim storage facility design to ensure that, during normal operation, exposures of workers and members of public to ionizing radiation are limited to levels lower than regulatory limits. The spent fuel storage design provides for radiation exposure to be as low as reasonable achievable (ALARA principles). The evaluation of radiation shields includes the most conservative provisions: - all locations which may contain spent fuel are full; - the spent fuel has reached the maximum burnup; - the post irradiation cooling period should be the minimum reasonable; - equipment for handling contains the maximum amount of spent fuel. Radiation shields should ensure that external radiation fields do not exceed limits accepted by the Regulatory Body Module. The evaluation has been performed with two computer codes, QAD-5K and MICROSHIELD-4. (authors)

  16. Pilot scale facility to determine gaseous emissions from livestock slurry during storage

    DEFF Research Database (Denmark)

    Petersen, Søren O; Skov, Morten; Drøscher, Per

    2009-01-01

    Livestock production is a growing source of air pollution, locally and to the wider environment. Improved livestock manure management has the potential to reduce environmental impacts, but there is a need for methodologies to precisely quantify emissions. This paper describes and evaluates a novel...... storage facility for livestock slurry consisting of eight 6.5-m3 cylindrical units. The stores may be equipped with airtight covers and ventilated during storage or during measurement only. Each store has eight air inlets (160 mm diameter) and a single outlet in the cover connected to a main ventilation...... duct. The stores can also be used as static enclosures. Ventilation can be regulated within the range of 50 to 250 m3 h-1 A gas sampling line enables sampling of odorants using automatic thermal desorption tubes, ammonia using acid traps, and greenhouse gases using gas sampling bags (pooled samples...

  17. Intermediate storage facility for vitrified high level waste from the reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    1978-04-01

    An intermediate storage facility for vitrified high level waste is described. The design was made specifically for Swedish conditions but can due to modular design be applied also for other conditions. Most of the plant is located underground with a rock cover of about 30 m in order to provide protection against external forces such as acts of war and sabotage. The storage area consists of four caverns each with 150 pits. Each pit can take 10 waste cylinders of 0.4 m diameter and 1.5 m length containing 150 liters of glass. The capacity can be increased by adding additional caverns. Cooling is obtained by forced air convection. Reception areas, auxiliary systems and operation of the plant are also described

  18. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Thomas, Jay

    1999-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S.-origin from foreign research reactors to the United States. As of July 1999, over 18% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These 2400 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into L-Area in April 1997 and approximately 86 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show how the empty

  19. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Conatser, E.R.; Thomas, J.E. [Westinghouse Savannah River Company, Aiken, SC 29808 (United States)

    2000-07-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These {approx}2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment

  20. Preparation for tritiated waste management of fusion facilities: Interim storage WAC

    Energy Technology Data Exchange (ETDEWEB)

    Decanis, C., E-mail: christelle.decanis@cea.fr [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Canas, D. [CEA, DEN/DADN, Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Derasse, F. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Pamela, J. [CEA, Agence ITER-France, F-13108 Saint-Paul-lez-Durance (France)

    2016-11-01

    Highlights: • Fusion devices including ITER will generate tritiated waste. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Interim storage is a buffer function in the process management and definition of the waste acceptance criteria (WAC) is a key milestone in the facility development cycle. • Defining WAC is a relevant way to identify ahead of time the studies to be launched and the required actions to converge on a detailed design for example material specific studies, required treatment, interfaces management, modelling and monitoring studies. - Abstract: Considering the high mobility of tritium through the package in which it is contained, the new 50-year storage concepts proposed by the French Alternative Energies and Atomic Energy Commission (CEA) currently provide a solution adapted to the management of waste with tritium concentrations higher than the accepted limits in the disposals. The 50-year intermediate storage corresponds to 4 tritium radioactive periods i.e., a tritium reduction by a factor 16. This paper details the approach implemented to define the waste acceptance criteria (WAC) for an interim storage facility that not only takes into account the specificity of tritium provided by the reference scheme for the management of tritiated waste in France, but also the producers’ needs, the safety analysis of the facility and Andra’s disposal requirements. This will lead to define a set of waste specifications that describe the generic criteria such as acceptable waste forms, general principles and specific issues, e.g. conditioning, radioactive content, tritium content, waste tracking system, and quality control. This approach is also a way to check in advance, during the design phase of the waste treatment chain, how the future waste could be integrated into the overall waste management routes and identify possible key points that need further investigations (design changes, selection

  1. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Conatser, E.R.; Thomas, J.E.

    2000-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These ∼2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show

  2. Improvement of numerical simulation methods on safety assessment of the spent fuel storage facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Improvement of numerical simulation methods on safety assessment of the spent fuel storage facility is one of main objectives of JNES activities. For the thermal and structural analyses, the radiative heat transfer analysis code S-FOKS has been developed to reduce computing time and to avoid using large memory area. In order to simulate the specular reflection, a new model (called 'model-2') is planned to install to S-FOKS code. The theoretical values with the specular reflection in simple geometry were lead to verify S-FOKS model-2. (author)

  3. An information management system for a spent nuclear fuel interim storage facility

    International Nuclear Information System (INIS)

    Horak, K.; Giles, T.; Finch, R.; Jow, H.N.; Chiu, H.L.

    2010-01-01

    We describe an integrated information management system for an independent spent fuel dry-storage installation (ISFSI) that can provide for (1) secure and authenticated data collection, (2) data analysis, (3) dissemination of information to appropriate stakeholders via a secure network, and (4) increased public confidence and support of the facility licensing and operation through increased transparency. This information management system is part of a collaborative project between Sandia National Laboratories, Taiwan Power Co., and the Fuel Cycle Materials Administration of Taiwan's Atomic Energy Council, which is investigating how to implement this concept.

  4. Thermal analysis of the unloading cell of the Spanish centralized interim storage facility (CISF)

    International Nuclear Information System (INIS)

    Perez Dominguez, J. R.; Perez Vara, R.; Huelamo Martinez, E.

    2016-01-01

    This article deals with the thermal analysis performed for the Untoading Cell of Spain Centralized Interim Storage Facility, CISF (ATC, in Spanish). The analyses are done using computational fluid dynamics (CFD) simulation, with the aim of obtaining the air flow required to remove the residual heat of the elements stored in the cell. Compliance with the admissible heat limits is checked with the results obtained in the various operation and accident modes. The calculation model is flexible enough to allow carrying out a number of sensitivity analyses with the different parameters involved in the process. (Author)

  5. Ventilation and exhaust ducts for dry storage facilities with self-heating radioactive materials

    International Nuclear Information System (INIS)

    Knappe, O.; Hame, W.

    1986-01-01

    The storage facilities are cooled by natural convection. In order to achieve this, the air inlet and outlet openings or ducts for the PWR and BWR fuel store are arranged at the level of the roof structure. There are two types of air inlet openings arranged on top and on the sides respectively but having got common inlet ducts. Air supply is improved by means of baffle noses, baffle edges, and baffle plates. The exhaust air ducts terminate near the roof structure, the openings having got dropping edges, protective sills and separating plates. (orig./PW)

  6. An information management system for a spent nuclear fuel interim storage facility.

    Energy Technology Data Exchange (ETDEWEB)

    Finch, Robert J.; Chiu, Hsien-Lang (Taiwan Power Co., Taipei, 10016 Taiwan); Giles, Todd; Horak, Karl Emanuel; Jow, Hong-Nian (Jow International, Kirkland, WA)

    2010-12-01

    We describe an integrated information management system for an independent spent fuel dry-storage installation (ISFSI) that can provide for (1) secure and authenticated data collection, (2) data analysis, (3) dissemination of information to appropriate stakeholders via a secure network, and (4) increased public confidence and support of the facility licensing and operation through increased transparency. This information management system is part of a collaborative project between Sandia National Laboratories, Taiwan Power Co., and the Fuel Cycle Materials Administration of Taiwan's Atomic Energy Council, which is investigating how to implement this concept.

  7. Construction of mixed waste storage RCRA facilities, Buildings 7668 and 7669: Environmental assessment

    International Nuclear Information System (INIS)

    1994-04-01

    The Department of Energy has prepared an environmental assessment, DOE/EA-0820, to assess the potential environmental impacts of constructing and operating two mixed waste Resource Conservation and Recovery Act (RCRA) storage facilities. The new facilities would be located inside and immediately west of the security-fenced area of the Oak Ridge National Laboratory Hazardous Waste Management Area in Melton Valley, Tennessee. Based on the analyses in the environmental assessment, the Department has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department is issuing this finding of no significant impact

  8. Safety of spent fuel elements storage under water at La Hague facility

    International Nuclear Information System (INIS)

    Guezenec, J.Y.

    1990-12-01

    Awaiting for a decision about radioactive waste repository, the spent fuel elements are stored in the storage pools at the La Hague facility. The water in the pools is permanently cooled and purified to maintain the temperature, radioactivity and chemical pollution under preset limits. The first safety problem is concerned with the spent fuel transport casks. Opening of the casks is done under water in a number of facilities. The most recent approach is done by the company To, which established dry manipulation which enables to minimise the risk of possible cask failures as well as external contamination of cooling fins of the casks. Another general safety related problem is related to criticality risk caused by possible cooling failures or by external events like earthquakes. Special probability limit is set up for seismic events to be less than 10 -7 /year. Equally, risk of fuel assembly failures due to possible chocs and possibility of defects in pool isolation are taken into account [fr

  9. A preliminary analysis of floating production storage and offloading facilities with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Carranza-Sánchez, Yamid Alberto; Junior, Silvio de Oliveira

    2016-01-01

    Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing. They have gained interest because they are more flexible than conventional plants and can be used for producing oil and gas in deep-water fields. In general, gas export is challenging...... because of the lack of infrastructure in remote locations. The present work investigates the possibility of integrating liquefaction processes on such facilities, considering two mixed-refrigerant and two expansion-based processes suitable for offshore applications. Two FPSO configurations are considered...... in this work, and they were suggested by Brazilian operators for fields processing natural gas with moderate to high content of carbon dioxide. The performance of the combined systems is analysed by conducting energy and exergy analyses. The integration of gas liquefaction results in greater power consumption...

  10. An Evaluation Model for Tailings Storage Facilities Using Improved Neural Networks and Fuzzy Mathematics

    Directory of Open Access Journals (Sweden)

    Sen Tian

    2014-01-01

    Full Text Available With the development of mine industry, tailings storage facility (TSF, as the important facility of mining, has attracted increasing attention for its safety problems. However, the problems of low accuracy and slow operation rate often occur in current TSF safety evaluation models. This paper establishes a reasonable TSF safety evaluation index system and puts forward a new TSF safety evaluation model by combining the theories for the analytic hierarchy process (AHP and improved back-propagation (BP neural network algorithm. The varying proportions of cross validation were calculated, demonstrating that this method has better evaluation performance with higher learning efficiency and faster convergence speed and avoids the oscillation in the training process in traditional BP neural network method and other primary neural network methods. The entire analysis shows the combination of the two methods increases the accuracy and reliability of the safety evaluation, and it can be well applied in the TSF safety evaluation.

  11. Analysis of removal of residual decay heat from interim storage facilities by means of the CFD program FLUENT

    International Nuclear Information System (INIS)

    Stratmann, W.; Hages, P.

    2004-01-01

    Within the scope of nuclear licensing procedures of on-site interim storage facilities for dual purpose casks it is necessary, among other things, to provide proof of sufficient removal of the residual decay heat emitted by the casks. The results of the analyses performed for this purpose define e.g. the boundary conditions for further thermal analyses regarding the permissible cask component temperatures or the maximum permissible temperatures of the fuel cladding tubes of the fuel elements stored in the casks. Up to now, for the centralized interim storage facilities in Germany such analyses were performed on the basis of experimental investigations using scaled-down storage geometries. In the engineering phase of the Lingen on-site interim storage facility, proof was furnished for the first time using the CFD (computational fluid dynamics) program FLUENT. The program FLUENT is an internationally recognized and comprehensively verified program for the calculation of flow and heat transport processes. Starting from a brief discussion of modeling and the different boundary conditions of the computation, this contribution presents various results regarding the temperatures of air, cask surfaces and storage facility components, the mass flows through the storage facility and the heat transfer at the cask surface. The interface point to the cask-specific analyses is defined to be the cask surface

  12. Consolidated Storage Facilities: Camel's Nose or Shared Burden? - 13112

    Energy Technology Data Exchange (ETDEWEB)

    Williams, James M. [Western Interstate Energy Board, 1600 Broadway, Suite 1700, Denver CO 80202 (United States)

    2013-07-01

    The Blue Ribbon Commission (BRC) made a strong argument why the reformulated nuclear waste program should make prompt efforts to develop one or more consolidated storage facilities (CSFs), and recommended the amendment of NWPA Section 145(b) 2 (linking 'monitored retrievable storage' to repository development) as an essential means to that end. However, other than recommending that the siting of CSFs should be 'consent-based' and that spent nuclear fuel (SNF) at stranded sites should be first-in-line for removal, the Commission made few recommendations regarding how CSF development should proceed. Working with three other key Senators, Jeff Bingaman attempted in the 112. Congress to craft legislation (S. 3469) to put the BRC recommendations into legislative language. The key reason why the Nuclear Waste Administration Act of 2012 did not proceed was the inability of the four senators to agree on whether and how to amend NWPA Section 145(b). A brief review of efforts to site consolidated storage since the Nuclear Waste Policy Amendments Act of 1987 suggests a strong and consistent motivation to shift the burden to someone (anyone) else. This paper argues that modification of NWPA Section 145(b) should be accompanied by guidelines for regional development and operation of CSFs. After review of the BRC recommendations regarding CSFs, and the 'camel's nose' prospects if implementation is not accompanied by further guidelines, the paper outlines a proposal for implementation of CSFs on a regional basis, including priorities for removal from reactor sites and subsequently from CSFs to repositories. Rather than allowing repository siting to be prejudiced by the location of a single remote CSF, the regional approach limits transport for off-site acceptance and storage, increases the efficiency of removal operations, provides a useful basis for compensation to states and communities that accept CSFs, and gives states with shared

  13. Industrial gamma irradiation facility with a wet storage source in Syrian Arab Republic

    International Nuclear Information System (INIS)

    Othman, I.; Moussa, A.; Stepanov, D.G.; Ermakov, V.

    1998-01-01

    A gamma radiation facility was built in Damascus, Syria. The plant (ROBO) is a Co-60 wet storage, batch/continuous facility with nominal capacity of 1.85x10 16 Bq. The initial activity is 3.7x10 15 Bq. The ratio of maximum absorbed dose to the minimum one within irradiated materials is around 1.3+/-0.03. The irradiator consists of two sections to select required sources for irradiation. Two pools were constructed. The main pool will serve as biological shield for the main sources frame. The second pool will host a fixed circular frame to be used as calibration source or to irradiate small samples to low doses. The conveyor consists of a chain facility moving along trucks. A repair section is provided on the conveyor route in the load-unload area for carrying out inspection, repair, etc. The trucks are holed with a rectangular frames. Loading, unloading and rearrangement of the products is carried out automatically. This mechanism is carried out by seven pneumatic cylinders, lifting devices and roller conveyors. Many safety features were included: push-back platform, followed by pit used as a physical barrier. Interlocks are connected to the platform, pit cover and to ionization chambers. In case of power failure or any overriding of interlocks, the irradiator comes to emergency dropping. Ventilation system, fire system, emergency power and closed water purification system are indicated on control panel. The facility will be utilized for medical products sterilization, research and calibration

  14. Technical report on design base events related to the safety assessment of a Low-level Waste Storage Facility (LWSF)

    International Nuclear Information System (INIS)

    Karino, Motonobu; Uryu, Mitsuru; Miyata, Kazutoshi; Matsui, Norio; Imamoto, Nobuo; Kawamata, Tatsuo; Saito, Yasuo; Nagayama, Mineo; Wakui, Yasuyuki

    1999-07-01

    The construction of a new Low-level Waste Storage Facility (LWSF) is planned for storage of concentrated liquid waste from existing Low-level Radioactive Waste Treatment Facility in Tokai Reprocessing Plant of JNC. An essential base for the safety designing of the facility is correctly implemented the adoption of the defence in depth principle. This report summarized criteria for judgement, selection of postulated events, major analytical conditions for anticipated operational occurrences and accidents for the safety assessment and evaluation of each event were presented. (Itami, H.)

  15. Containers for short-term storage of nuclear materials at the Los Alamos plutonium facility

    International Nuclear Information System (INIS)

    Hagan, R.; Gladson, J.

    1997-01-01

    The Los Alamos Plutonium Facility for the past 18 yr has stored nuclear samples for archiving and in support of nuclear materials research and processing programs. In the past several years, a small number of storage containers have been found in a deteriorated condition. A failed plutonium container can cause personnel contamination exposure and expensive physical area decontamination. Containers are stored in a physically secure radiation area vault, making close inspection costly in the form of personnel radiation exposure and work time. A moderate number of these containers are used in support of plutonium processing and must withstand daily handling abuse. A 2-yr evaluation of failed containers and those that have shown no deterioration has been conducted. Based on that study, a program was established to formalize our packing methods and materials and standardize the size and shape of containers that are used for short-term use. A standardized set of containers was designed, evaluated, tested, and procured for use in the facility. This paper reviews our vault storage problems, shows some failed containers, and presents our planned solutions to provide safe and secure containment of nuclear materials

  16. Thermal analysis of the drywell for the Nuclear Material Storage Facility

    International Nuclear Information System (INIS)

    Steinke, R.G.

    1997-01-01

    The Nuclear Materials Storage Facility Renovation Project has a conceptual design for the facility to store nuclear materials in containers inside drywells with passive cooling for long-term storage. The CFX thermal-hydraulic computer program was used to analyze internal heat-transfer processes by conduction, convection, and radiation with natural circulation of air by hydraulic buoyancy with turbulence and thermal stratification (TS) evaluated. A vertical drywell was modeled with 14 containers on support plates at 12-in. intervals. The TS of bay air outside the drywell increased the container maximum temperature by 0.728 F for each 1.0 F of bay-air TS from the bottom to the top of the drywell. The drywell outer-surface peak heat flux was shifted downward because of the effect of bay-air TS. An equivalent model was evaluated by the nodal-network conduction, convection, and radiation heat-transfer computer program (Thermal System Analysis Program) TSAP. The TSAP results are in good agreement with the CFX-model results, with the difference in results understood based on the approximations of each model

  17. Storage ring design of the 8 GeV synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    Hara, M.; Bc, S.H.; Motonaga, S.

    1990-01-01

    In Japan, RIKEN (Institute of Physical and Chemical Research) and JAERI (Japan Atomic Energy Research Institute) have organized a joint design team and started a design study for an 8 GeV synchrotron radiation X-ray source. This paper outlines the status of the design study for the 8 GeV highly brilliant synchrotron radiation X-ray source ring named Super Photon Ring (SPring-8). The facility consists of a main storage ring, a full-energy injector booster synchrotron and a pre-injector 1 GeV linac. The injector linac and synchrotron are laid outside the storage ring because to permit the use of the linac and synchrotron not only as an injector but also as an electron or positron beam source. The purpose of the facility is to provide stable photon beams with high brilliance in the X-ray region. The energy of the stored electrons (positrons) is fixed at 8 GeV to fulfill the required condition using conventional type insertion devices. (N.K.)

  18. MRS systems study, Task F: Transportation impacts of a monitored retrievable storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Brentlinger, L.A.; Gupta, S.; Plummer, A.M.; Smith, L.A.; Tzemos, S.

    1989-05-01

    The passage of the Nuclear Waste Policy Amendments Act of 1987 (NWPAA) modified the basis from which the Office of Civilian Radioactive Waste Management (OCRWM) had derived and developed the configuration of major elements of the waste system (repository, monitored retrievable storage, and transportation). While the key aspects of the Nuclear Waste Policy Act of 1982 remain unaltered, NWPAA provisions focusing site characterization solely at Yucca Mountain, authorizing a monitored retrievable storage (MRS) facility with specific linkages to the repository, and establishing an MRS Review Commission make it prudent for OCRWM to update its analysis of the role of the MRS in the overall waste system configuration. This report documents the differences in transportation costs and radiological dose under alternative scenarios pertaining to a nuclear waste management system with and without an MRS, to include the effect of various MRS packaging functions and locations. The analysis is limited to the impacts of activities related directly to the hauling of high-level radioactive waste (HLW), including the capital purchase and maintenance costs of the transportation cask system. Loading and unloading impacts are not included in this study because they are treated as facility costs in the other task reports. Transportation costs are based on shipments of 63,000 metric tons of uranium (MTU) of spent nuclear fuel and 7,000 MTU equivalent of HLW. 10 refs., 41 tabs.

  19. Good Practices for Water Quality Management in Research Reactors and Spent Fuel Storage Facilities

    International Nuclear Information System (INIS)

    2011-01-01

    Water is the most common fluid used to remove the heat produced in a research reactor (RR). It is also the most common media used to store spent fuel elements after being removed from the reactor core. Spent fuel is stored either in the at-reactor pool or in away-from-reactor wet facilities, where the fuel elements are maintained until submission to final disposal, or until the decay heat is low enough to allow migration to a dry storage facility. Maintaining high quality water is the most important factor in preventing degradation of aluminium clad fuel elements, and other structural components in water cooled research reactors. Excellent water quality in spent fuel wet storage facilities is essential to achieve optimum storage performance. Experience shows the remarkable success of many research reactors where the water chemistry has been well controlled. In these cases, aluminium clad fuel elements and aluminium pool liners show few, if any, signs of either localized or general corrosion, even after more than 30 years of exposure to research reactor water. In contrast, when water quality was allowed to degrade, the fuel clad and the structural parts of the reactor have been seriously corroded. The driving force to prepare this publication was the recognition that, even though a great deal of information on research reactor water quality is available in the open literature, no comprehensive report addressing the rationale of water quality management in research reactors has been published to date. This report is designed to provide a comprehensive catalogue of good practices for the management of water quality in research reactors. It also presents a brief description of the corrosion process that affects the components of a research reactor. Further, the report provides a basic understanding of water chemistry and its influence on the corrosion process; specifies requirements and operational limits for water purification systems of RRs; describes good practices

  20. Cold storage facilities in the home. A complex question; Kotitalouden kylmaesaeilytys on monitahoinen kysymys

    Energy Technology Data Exchange (ETDEWEB)

    Marjomaa, T. [Work Efficiency Inst., Helsinki (Finland)

    1997-08-01

    Cold storage plays a central station in the management of food matters in Banish household. The need for freezing becomes especially emphasised in preserving berries, vegetables and game. The matter of how much and what kind of a cold storage is needed varies from household to household and according to people`s stage in life - even according to the days of the week. The average Banish household uses an average of 1-4 refrigeration devices. Most of them are switched on throughout the year. Despite the low connected loads, the yearly consumption of electricity is significant. The daily (24 h) power consumption of freezer-refrigerators included in TTS-Institute`s study in 1995-1996 was 1.13-2.13 kWh with the corresponding annual consumption then being 412-777 kWh. The methods provided by product development have made it possible to improve the energy-saving effects of refrigeration devices. For instance the structural properties of devices have.been developed: these include thicker insulation and the structure of compressors. condensers and evaporators. The TTS-Institute has proposed product development ideas. e.g. on the convertibility of cold-storage facilities. (orig.)

  1. Benchmarking of MCNP for calculating dose rates at an interim storage facility for nuclear waste.

    Science.gov (United States)

    Heuel-Fabianek, Burkhard; Hille, Ralf

    2005-01-01

    During the operation of research facilities at Research Centre Jülich, Germany, nuclear waste is stored in drums and other vessels in an interim storage building on-site, which has a concrete shielding at the side walls. Owing to the lack of a well-defined source, measured gamma spectra were unfolded to determine the photon flux on the surface of the containers. The dose rate simulation, including the effects of skyshine, using the Monte Carlo transport code MCNP is compared with the measured dosimetric data at some locations in the vicinity of the interim storage building. The MCNP data for direct radiation confirm the data calculated using a point-kernel method. However, a comparison of the modelled dose rates for direct radiation and skyshine with the measured data demonstrate the need for a more precise definition of the source. Both the measured and the modelled dose rates verified the fact that the legal limits (<1 mSv a(-1)) are met in the area outside the perimeter fence of the storage building to which members of the public have access. Using container surface data (gamma spectra) to define the source may be a useful tool for practical calculations and additionally for benchmarking of computer codes if the discussed critical aspects with respect to the source can be addressed adequately.

  2. TEMPERATURE PREDICTION IN 3013 CONTAINERS IN K AREA MATERIAL STORAGE (KAMS) FACILITY USING REGRESSION METHODS

    International Nuclear Information System (INIS)

    Gupta, N

    2008-01-01

    3013 containers are designed in accordance with the DOE-STD-3013-2004. These containers are qualified to store plutonium (Pu) bearing materials such as PuO2 for 50 years. DOT shipping packages such as the 9975 are used to store the 3013 containers in the K-Area Material Storage (KAMS) facility at Savannah River Site (SRS). DOE-STD-3013-2004 requires that a comprehensive surveillance program be set up to ensure that the 3013 container design parameters are not violated during the long term storage. To ensure structural integrity of the 3013 containers, thermal analyses using finite element models were performed to predict the contents and component temperatures for different but well defined parameters such as storage ambient temperature, PuO 2 density, fill heights, weights, and thermal loading. Interpolation is normally used to calculate temperatures if the actual parameter values are different from the analyzed values. A statistical analysis technique using regression methods is proposed to develop simple polynomial relations to predict temperatures for the actual parameter values found in the containers. The analysis shows that regression analysis is a powerful tool to develop simple relations to assess component temperatures

  3. Suitable areas for a long-term radioactive waste storage facility in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, P.; Paiva, I.; Trindade, R. [Instituto Tecnologico e Nuclear, Dept. de Proteccao Radiologica e Seguranca Nuclear, Sacavem (Portugal); Mateus, A. [Lisboa Univ., Dept. de Geologia and Creminer, Faculdade de Ciencias (Portugal)

    2006-07-01

    Radioactive wastes in Portugal result mainly from the application of radioactive materials in medicine, research, industry and from U-ores mining and milling activities. Sealed and unsealed sources (including liquid effluents and N.O.R.M.) classified as radioactive wastes have been collected, segregated, conditioned and stored in the Portuguese Radioactive Waste Interim Storage Facility (P.R.W.I.S.F.) since the sixties. The Radiological Protection and Nuclear Safety Department (D.P.R.S.N.) of the Nuclear and Technological Institute (I.T.N.) is responsible for the R.W.I.S.F. management, located nearby Lisbon (S.a.c.a.v. ). Despite recent improvements performed at R.W.I.S.F., the 300 m3 storage capacity will be soon used up if current average store-rate remains unaltered. Being aware of the tendency for radioactive waste production increase in Portugal and of the international rules and recommendations on disposal sites for this kind of wastes, it becomes clear that the P.R.W.I.S.F. must be updated. In this work, a first evaluation of suitable areas to host a long-term radioactive waste storage facility was carried out using a Geographic Information System (G.I.S.) base. Preference and exclusionary criteria were applied, keeping constant the map scale (1:1000000). After processing exclusionary criteria, remaining areas were scored by overlaying three preference criteria. A composite score was determined for each polygon (problem solution) by summing the three preference criteria scores. The highest scores resulted from the combination of these criteria correspond to 4% of the territory, spatially distributed in seven of the eighteen Portuguese mainland administrative districts. Work in progress will use this area as reference for site selection, criss-crossing appropriate criteria for scales ranging from 1:50000 to 1:25000. (authors)

  4. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E. [Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State St, Atlanta, GA 30332-0745 (United States)

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reaction rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)

  5. Suitable areas for a long-term radioactive waste storage facility in Portugal

    International Nuclear Information System (INIS)

    Duarte, P.; Paiva, I.; Trindade, R.; Mateus, A.

    2006-01-01

    Radioactive wastes in Portugal result mainly from the application of radioactive materials in medicine, research, industry and from U-ores mining and milling activities. Sealed and unsealed sources (including liquid effluents and N.O.R.M.) classified as radioactive wastes have been collected, segregated, conditioned and stored in the Portuguese Radioactive Waste Interim Storage Facility (P.R.W.I.S.F.) since the sixties. The Radiological Protection and Nuclear Safety Department (D.P.R.S.N.) of the Nuclear and Technological Institute (I.T.N.) is responsible for the R.W.I.S.F. management, located nearby Lisbon (S.a.c.a.v. ). Despite recent improvements performed at R.W.I.S.F., the 300 m3 storage capacity will be soon used up if current average store-rate remains unaltered. Being aware of the tendency for radioactive waste production increase in Portugal and of the international rules and recommendations on disposal sites for this kind of wastes, it becomes clear that the P.R.W.I.S.F. must be updated. In this work, a first evaluation of suitable areas to host a long-term radioactive waste storage facility was carried out using a Geographic Information System (G.I.S.) base. Preference and exclusionary criteria were applied, keeping constant the map scale (1:1000000). After processing exclusionary criteria, remaining areas were scored by overlaying three preference criteria. A composite score was determined for each polygon (problem solution) by summing the three preference criteria scores. The highest scores resulted from the combination of these criteria correspond to 4% of the territory, spatially distributed in seven of the eighteen Portuguese mainland administrative districts. Work in progress will use this area as reference for site selection, criss-crossing appropriate criteria for scales ranging from 1:50000 to 1:25000. (authors)

  6. Leak-Path Factor Analysis for the Nuclear Materials Storage Facility

    International Nuclear Information System (INIS)

    Shaffer, C.; Leonard, M.

    1999-01-01

    Leak-path factors (LPFs) were calculated for the Nuclear Materials Storage Facility (NMSF) located in the Plutonium Facility, Building 41 at the Los Alamos National Laboratory Technical Area 55. In the unlikely event of an accidental fire powerful enough to fail a container holding actinides, the subsequent release of oxides, modeled as PuO 2 aerosols, from the facility and into the surrounding environment was predicted. A 1-h nondestructive assay (NDA) laboratory fire accident was simulated with the MELCOR severe accident analysis code. Fire-driven air movement along with wind-driven air infiltration transported a portion of these actinides from the building. This fraction is referred to as the leak-path factor. The potential effect of smoke aerosol on the transport of the actinides was investigated to verify the validity of neglecting the smoke as conservative. The input model for the NMSF consisted of a system of control volumes, flow pathways, and surfaces sufficient to model the thermal-hydraulic conditions within the facility and the aerosol transport data necessary to simulate the transport of PuO 2 particles. The thermal-hydraulic, heat-transfer, and aerosol-transport models are solved simultaneously with data being exchanged between models. A MELCOR input model was designed such that it would reproduce the salient features of the fire per the corresponding CFAST calculation. Air infiltration into and out of the facility would be affected strongly by wind-driven differential pressures across the building. Therefore, differential pressures were applied to each side of the building according to guidance found in the ASHRAE handbook using a standard-velocity head equation with a leading multiplier to account for the orientation of the wind with the building. The model for the transport of aerosols considered all applicable transport processes, but the deposition within the building clearly was dominated by gravitational settling

  7. Concept for an ultimate storage facility for heat-generating radioactive waste in clay stone in Germany

    International Nuclear Information System (INIS)

    Bollingerfehr, Wilhelm; Poehler, Matthias

    2010-01-01

    According to the German reference ultimate storage concept heat-generating radioactive waste from the operation of nuclear power stations should be stored permanently maintenance-free and in a non-recoverable manner in a salt formation. Within the framework of investigations into the utilisation of alternative host rocks a concept for an ultimate storage facility in clay stone was developed in an R and D project. For this purpose all important aspects of the design, development, operation and shutdown were taken into account for a model region in northern Germany. It was established that storage in 50 m deep vertical boreholes in a mine at a depth of about 350 m appears to be the most practical solution for an ultimate storage facility in clay stone. Compared to the reference concept in salt an ultimate storage facility in clay stone requires solid support of all mine openings with steel arches or shotcrete. Because of the lower maximum permissible temperature in the backfilling material (bentonite) the area required for the ultimate storage facility is about five times larger. A period of more than 100 years is estimated from survey to shutdown. (orig.)

  8. The Earthscope USArray Array Network Facility (ANF): Evolution of Data Acquisition, Processing, and Storage Systems

    Science.gov (United States)

    Davis, G. A.; Battistuz, B.; Foley, S.; Vernon, F. L.; Eakins, J. A.

    2009-12-01

    Since April 2004 the Earthscope USArray Transportable Array (TA) network has grown to over 400 broadband seismic stations that stream multi-channel data in near real-time to the Array Network Facility in San Diego. In total, over 1.7 terabytes per year of 24-bit, 40 samples-per-second seismic and state of health data is recorded from the stations. The ANF provides analysts access to real-time and archived data, as well as state-of-health data, metadata, and interactive tools for station engineers and the public via a website. Additional processing and recovery of missing data from on-site recorders (balers) at the stations is performed before the final data is transmitted to the IRIS Data Management Center (DMC). Assembly of the final data set requires additional storage and processing capabilities to combine the real-time data with baler data. The infrastructure supporting these diverse computational and storage needs currently consists of twelve virtualized Sun Solaris Zones executing on nine physical server systems. The servers are protected against failure by redundant power, storage, and networking connections. Storage needs are provided by a hybrid iSCSI and Fiber Channel Storage Area Network (SAN) with access to over 40 terabytes of RAID 5 and 6 storage. Processing tasks are assigned to systems based on parallelization and floating-point calculation needs. On-site buffering at the data-loggers provide protection in case of short-term network or hardware problems, while backup acquisition systems at the San Diego Supercomputer Center and the DMC protect against catastrophic failure of the primary site. Configuration management and monitoring of these systems is accomplished with open-source (Cfengine, Nagios, Solaris Community Software) and commercial tools (Intermapper). In the evolution from a single server to multiple virtualized server instances, Sun Cluster software was evaluated and found to be unstable in our environment. Shared filesystem

  9. Thermal Analysis of a Dry Storage Concept for Capsule Dry Storage Project

    International Nuclear Information System (INIS)

    JOSEPHSON, W.S.

    2003-01-01

    There are 1,936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project is conducted under the assumption that the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event that vitrification of the capsule contents is pursued. The Capsule Advisory Panel (CAP) was created by the Project Manager for the Hanford Site Capsule Dry Storage Project (CDSP). The purpose of the CAP is to provide specific technical input to the CDSP; to identify design requirements; to ensure design requirements for the project are conservative and defensible; to identify and resolve emerging, critical technical issues, as requested; and to support technical reviews performed by regulatory organizations, as requested. The CAP will develop supporting and summary documents that can be used as part of the technical and safety bases for the CDSP. The purpose of capsule dry storage thermal analysis is to: (1) Summarize the pertinent thermal design requirements sent to vendors, (2) Summarize and address the assumptions that underlie those design requirements, (3) Demonstrate that an acceptable design exists that satisfies the requirements, (4) Identify key design features and phenomena that promote or impede design success, (5) Support other CAP analyses such as corrosion and integrity evaluations, and (6) Support the assessment of proposed designs. It is not the purpose of this report to optimize or fully analyze variations of postulated acceptable designs. The present evaluation will indicate the impact of various possible design features, but not systematically pursue design improvements obtainable through analysis

  10. A study on radiation shielding design in MACSTOR-400(CANDU spent fuel storage facility)

    International Nuclear Information System (INIS)

    Lee, Yoon Hee

    2006-02-01

    Since the spent fuel pool will be saturated in the near future, spent fuel storage facilities are urgently needed. Because of high radiation and decay heat, spent fuel management is difficult and important. In this study, the shielding thickness of MACSTOR-400 that satisfies the general surface dose rate limit has been investigated. And the radiation shielding safety at site boundary has also been evaluated. IAEA recommends the safety series as a guideline and the U.S. follows the NUREG guide for spent fuel storage facility design. In Japan, the regulation for internal transfer is applied to the spent fuel storage. In Korea, the ACT notification for radiation protection is considered. As a shielding design requirement, it is stated that the occupational exposure dose rate must not exceed 1 mSv/week. From this value, it is assumed that the surface dose rate limit is 25 μSv/hr. And for multi unit operation in same site, the dose rate limit at the controlled area boundary is 0.25 mSv/yr. MCNP code and Microshield program were used for calculating the surface dose rate and the dose rate at site boundary respectively. The shielding should be at least 90 cm thick except the air inlet to follow the surface dose rate limit. Additional shielding is needed on air inlet because the dose rate on air inlet is higher than the dose rate on concrete surface. Without the shielding structure, the shielding thickness should be at least 127 cm. In order to satisfy the surface dose rate limit with maintaining the same concrete thickness on air inlet, shielding structure is required on air inlet. The optimum shielding structure has been proposed in this study. The allowable number of MACSTORs with considering other nuclear facilities in Wolsung site is calculated at 60. It is expected that the required number of MACSTORs are 28 in order to store the total amount of spent fuel generated during NPP operation in Wolsung. Therefore, it seems to be safe in radiation point at site boundary

  11. A study on radiation shielding design in MACSTOR-400(CANDU spent fuel storage facility)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hee

    2006-02-15

    Since the spent fuel pool will be saturated in the near future, spent fuel storage facilities are urgently needed. Because of high radiation and decay heat, spent fuel management is difficult and important. In this study, the shielding thickness of MACSTOR-400 that satisfies the general surface dose rate limit has been investigated. And the radiation shielding safety at site boundary has also been evaluated. IAEA recommends the safety series as a guideline and the U.S. follows the NUREG guide for spent fuel storage facility design. In Japan, the regulation for internal transfer is applied to the spent fuel storage. In Korea, the ACT notification for radiation protection is considered. As a shielding design requirement, it is stated that the occupational exposure dose rate must not exceed 1 mSv/week. From this value, it is assumed that the surface dose rate limit is 25 μSv/hr. And for multi unit operation in same site, the dose rate limit at the controlled area boundary is 0.25 mSv/yr. MCNP code and Microshield program were used for calculating the surface dose rate and the dose rate at site boundary respectively. The shielding should be at least 90 cm thick except the air inlet to follow the surface dose rate limit. Additional shielding is needed on air inlet because the dose rate on air inlet is higher than the dose rate on concrete surface. Without the shielding structure, the shielding thickness should be at least 127 cm. In order to satisfy the surface dose rate limit with maintaining the same concrete thickness on air inlet, shielding structure is required on air inlet. The optimum shielding structure has been proposed in this study. The allowable number of MACSTORs with considering other nuclear facilities in Wolsung site is calculated at 60. It is expected that the required number of MACSTORs are 28 in order to store the total amount of spent fuel generated during NPP operation in Wolsung. Therefore, it seems to be safe in radiation point at site boundary

  12. Status and operational experience report of spent fuel storage facility in Kozloduy NPP for the period 1990 - 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kalimanov, M [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1994-12-31

    Spent Fuel Storage Facility (SFSF) of Kozloduy NPP is designed for a long-term storage of 4920 spent fuel assemblies which are generated by all units for ten year operational period. The assemblies are stored in SFSF after 3 year storage in the reactor cooling pool. The SFSF operational safety is ensured by a number of strictly followed regulations related to: arrangement of the assemblies and conditions at which they are stored; transportation of the assemblies to the facility; residual heat removal; quality of the water used in the storage pool; water temperature and level control. Two independent groups of experts have carried out investigations to study the building safety. Their reports have been considered and accepted by the council of the Ministry of Environment which was the final step in licensing the SFSF.

  13. Fire protection considerations in the design of plutonium handling and storage facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    Unwanted fire in a facility that handles plutonium must be addressed early in the facility design. Such fires have the potential for transporting radioactive contamination throughout the building and widespread downwind dispersal. Features that mitigate such events can be severely challenged during the fire. High temperatures can cause storage containers to burst; a very efficient dispersal mechanism for radioactive contamination. The fire will also establish ventilation patterns that cause the migration of smoke and radioactive contamination throughout the facility. The smoke and soot generated by the fire will enter the exhaust system and travel to the filtration system where it will deposit on the filters. The quantity of smoke generated during a typical multi-room fire is expected to blind most High Efficiency Particulate Airfilter (HEPA) media. The blinding can have two possible outcomes. (1) The air movement though the facility is reduced, compromising the negative pressure containment and allowing contamination to leave the building though doors and other openings; or (2) the filters collapse allowing the contamination to bypass the filtration media and exit the building through the filter plenum. HEPA filter blinding during severe fires can be prevented or mitigated. Increasing the face surface area of HEPA filters will increase the smoke filtration capacity of the system, thus preventing blinding. As an alternative sandfilters can be provided to mitigate the effects of the HEPA filter bypass. Both concepts have distinct advantages. This paper will explore these two design concepts and two others; it will describe the design requirements necessary for each concept to prevent unacceptable contamination spread. The intent is to allow the filter media selection to be based on a comprehensive understanding of the four different design concepts

  14. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

  15. Advice about the safety of graphite storage silos of Saint Laurent des Eaux facility

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the safety analysis made by the national association of the local commissions of information about nuclear activities (ANCLI), about the safety of graphite storage silos of Saint Laurent des Eaux nuclear facility. The analysis covers: the operation safety and the accident hypothesis, the monitoring of indoor and outdoor contamination in routine situation, the geotechnical characteristics of the site environment, the isotopic inventory and the estimation of radioactivity in routine and accidental situation, the estimation of doses received by the population in accidental situation and the internal emergency plan. After examination of these different points, the scientific committee of the ANCLI considers that a new global evaluation of risks, which integrates more recent exposure data, has to be carried out. (J.S.)

  16. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    International Nuclear Information System (INIS)

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable

  17. RCRA Facilities Assessment (RFA), Oak Ridge National Laboratory, container storage accumulation areas

    International Nuclear Information System (INIS)

    1987-01-01

    The Oak Ridge National Laboratory (ORNL) remedial action strategy is based on a memorandum from the Environmental Protection Agency (EPA) to the Department of Energy (DOE) in which EPA elected to enforce regulatory requirements for ORNL through its amended Resource Conservation and Recovery Act (RCRA) authority. This report, which completes the requirements of II.A.1 of the Hazardous and Solid Waste Amendments (HSWA) permit, identifies areas near the point of waste generation in which wastes are accumulated before they are transferred into the permitted waste storage facilities. In includes background information on each area and an assessment of the need for further remedial attention. The waste accumulation areas described in this addendum bear identification numbers indicative of the WAGs of which they are a part. Waste accumulation areas that are located inside a building and in which there is no potential for releases to the environment are not included in this report

  18. Verification of maximum impact force for interim storage cask for the Fast Flux Testing Facility

    International Nuclear Information System (INIS)

    Chen, W.W.; Chang, S.J.

    1996-01-01

    The objective of this paper is to perform an impact analysis of the Interim Storage Cask (ISC) of the Fast Flux Test Facility (FFTF) for a 4-ft end drop. The ISC is a concrete cask used to store spent nuclear fuels. The analysis is to justify the impact force calculated by General Atomics (General Atomics, 1994) using the ILMOD computer code. ILMOD determines the maximum force developed by the concrete crushing which occurs when the drop energy has been absorbed. The maximum force, multiplied by the dynamic load factor (DLF), was used to determine the maximum g-level on the cask during a 4-ft end drop accident onto the heavily reinforced FFTF Reactor Service Building's concrete surface. For the analysis, this surface was assumed to be unyielding and the cask absorbed all the drop energy. This conservative assumption simplified the modeling used to qualify the cask's structural integrity for this accident condition

  19. Facile Synthesis of Porous ZnMnO3 Spherulites with a High Lithium Storage Capability

    International Nuclear Information System (INIS)

    Liu, Xinru; Zhao, Chenhao; Zhang, He; Shen, Qiang

    2015-01-01

    Graphical abstract: Porous ZnMnO 3 spherulites show an enhanced high lithium storage capability when potentially applied as a lithium-ion battery anode for the first time. - Highlights: • Composite Zn 0.5 Mn 0.5 CO 3 microspheres are facilely co-precipitated. • Porous ZnMnO 3 spherulites can be used as a lithium-ion battery anode. • Porous ZnMnO 3 spherulites show superior electrochemical properties. • A synergistic effect of Zn-O and Mn-O components in cubic ZnMnO 3 is proposed. - Abstract: In this paper, pure-phase ZnMnO 3 porous spherulites are uniquely synthesized through the thermal decomposition of Zn-Mn binary carbonate precursors facilely co-precipitated at room temperature, possessing an average diameter of 1.2 ± 0.3 μm and acquiring porosity with a specific surface area of 24.3 m 2 g −1 . When tentatively applied as lithium-ion battery anodes for the first time, these porous spherulites deliver an initial discharge capacity of 1294 mAh g −1 at 500 mA g −1 and retain an reversible value of 879 mAh g −1 over 150 cycles. By comparison, the equimolar powder mixture of nano-sized ZnO and MnO 2 synergistically shows a higher lithium storage capability than the two unary transition metal oxides, but lower than anode material ZnMnO 3 . Aside from its nanostructured characteristics, an inner atomic synergistic effect within the cubic lattices may account for the superior electrochemical performance of well-crystallized ZnMnO 3

  20. Use of base isolation techniques for the design of high-level waste storage facility enclosure at INEL

    International Nuclear Information System (INIS)

    Vallenas, J.M.; Wong, Chun K.; Beer, M.J.

    1993-08-01

    Current Department of Energy criteria for facilities subjected to natural hazards provide guidelines to place facilities or portions of facilities into usage categories. Usage categories are based on characteristics such as mission dependence, type of hazardous materials involved, and performance goals. Seismic requirements are significantly more stringent for facilities falling into higher ''hazard facility use categories''. A special problem arises in cases where a facility or portion of a facility is dependent on another facility of lower ''hazard facility use category'' for support or protection. Creative solutions can minimize the cost Unpact of ensuring that the lower category item does not compromise the performance of the higher category item. In this paper, a base isolation solution is provided for a ''low hazard facility use category'' weather enclosure designed so it will not collapse onto a ''high hazard facility use category'' high level waste storage facility at INEL. This solution is compared to other more conventional procedures. Details, practical limitations, licensing and regulatory considerations, and cost comparisons are provided

  1. Analysis for seismic response of dry storage facility for spent fuel

    International Nuclear Information System (INIS)

    Ko, Y.-Y.; Hsu, S.-Y.; Chen, C.-H.

    2009-01-01

    Most of the dry storage systems for spent fuel are freestanding, which leads to stability concerns in an earthquake. In this study, as a safety check, the ABAQUS/Explicit code is adopted to analyse the seismic response of the dry storage facility planned to be installed at Nuclear Power Plant no. 1 (NPP1) in Taiwan. A 3D coupled finite element (FE) model was established, which consisted of a freestanding cask, a concrete pad, and underneath soils interacting with frictional contact interfaces. The scenario earthquake used in the model included an artificial earthquake compatible to the design spectrum of NPP1, and a strong ground motion modified from the time history recorded during the Chi-Chi earthquake. The results show that the freestanding cask will slide, but not tip over, during strong earthquakes. The scale of the sliding is very small and a collision between casks will not occur. In addition, the differential settlement of the foundation pad that takes place due to the weight of the casks increases the sliding potential of the casks during earthquakes

  2. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    International Nuclear Information System (INIS)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County

  3. Spent fuel handling and storage facility for an LWR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Baker, W.H.; King, F.D.

    1979-01-01

    The facility will have the capability to handle spent fuel assemblies containing 10 MTHM/day, with 30% if the fuel received in legal weight truck (LWT) casks and the remaining fuel received in rail casks. The storage capacity will be about 30% of the annual throughput of the reprocessing plant. This size will provide space for a working inventory of about 50 days plant throughput and empty storage space to receive any fuel that might be in transit of the reprocessing plant should have an outage. Spent LWR fuel assemblies outside the confines of the shipping cask will be handled and stored underwater. To permit drainage, each water pool will be designed so that it can be isolated from the remaining pools. Pool water quality will be controlled by a filter-deionizer system. Radioactivity in the water will be maintained at less than or equal to 2 x 10 -4 Ci/m 3 ; conductivity will be maintained at 1 to 2 μmho/cm. The temperature of the pool water will be maintained at less than or equal to 40 0 C to retard algae growth and reduce evaporation. Decay heat will be transferred to the environment via a heat exchanger-cooling tower system

  4. Vibro Replacement, Dynamic Compaction, and Vibro Compaction case histories for petroleum storage tank facilities

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, N; Scott, J. [Geopac West Ltd., Richmond, BC (Canada)

    2010-07-01

    This paper discussed approaches to tank farm ground improvement via 3 Canadian ground improvement case histories in order to set forth the advantages of ground improvement for foundation support at petroleum storage tank facilities. Each case study featured a particular set of site conditions, performance criteria, and ground improvement techniques selected to attain the desired foundation performance. The first case study involved a Vibro Replacement stone column to meet strict seismicity requirements, the second employed Dynamic Compaction to mitigate deep variable fill within a former gravel pit, and the last encompassed Vibro Compaction applied to a site with a sand fill soil profile. The site conditions, the design requirements, the ground improvement solution, the execution, and the quality control techniques and results were presented for each case history. Soil reinforcement and ground improvement to treat loose and soft soils below heavy storage tanks can be an economical solution to foundation design challenges. However, it is important to select proper methods and tailor the densification programs to the specific subsoil conditions and design requirements. In each application, the selected ground improvement technique exceeded the specified in-situ testing requirements. 3 refs., 9 figs.

  5. Radioprotection considerations on the expansion project of an interim storage facility for radioactive waste

    International Nuclear Information System (INIS)

    Boni-Mitake, Malvina; Suzuki, Fabio F.; Dellamano, Jose C.

    2009-01-01

    The Radioactive Waste Management (GRR) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) receives, treats, packs, characterizes and stores institutional radioactive wastes generated at IPEN-CNEN/SP and also those received from several radiological facilities in the country. The current storage areas have been used to store the treated radioactive waste since the early 1980's and their occupation is close to their full capacity, so a storage area expansion is needed. The expansion project includes the rebuilding of two sheds and the enlargement of the third one in the area currently occupied by the GRR and in a small adjacent area. The civil works will be in controlled area, where the waste management operations will be maintained, so all the steps of this project should be planned and optimized, from the radioprotection point of view. The civil construction will be made in steps. During the project implementation there will be transfer operations of radioactive waste packages to the rebuilt area. After these transfer operations, the civil works will proceed in the vacant areas. This project implies on radiological monitoring, dose control of the involved workers, decontamination and clearance of areas and it is also envisaged the need for repacking of some radioactive waste. The objective this paper is to describe the radioprotection study developed to this expansion project, taking into account the national radioprotection and civil construction regulations. (author)

  6. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Science.gov (United States)

    Cao, Zeyuan; Wei, Bingqing

    2015-05-01

    Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni))/single-walled carbon nanotube (SWNT) macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  7. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  8. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county`s future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  9. Radioactive material dry-storage facility and radioactive material containing method

    International Nuclear Information System (INIS)

    Kanai, Hidetoshi; Kumagaya, Naomi; Ganda, Takao.

    1997-01-01

    The present invention provides a radioactive material dry storage facility which can unify the cooling efficiency of a containing tube and lower the pressure loss in a storage chamber. Namely, a cylindrical body surrounds a first containing tube situated on the side of an air discharge portion among a plurality of containing tubes and forms an annular channel extending axially between the cylindrical body and the first containing tube. An air flow channel partitioning member is disposed below a second containing tube situated closer to an air charging portion than the first containing tube. A first air flow channel is formed below the air channel partitioning member extending from the air charging portion to the annular channel. The second air channel is formed above the air channel partitioning member and extends from the air charging portion to the air discharge portion by way of a portion between the second containing tubes and the portion between the cylindrical body and the first containing tube. Then, low temperature air can be led from the air charging portion to the periphery of the first containing tube. The effect of cooling the first containing tube can be enhanced. The difference between the cooling efficiency between the second containing tube and the first containing tube is decreased. (I.S.)

  10. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Directory of Open Access Journals (Sweden)

    Zeyuan eCao

    2015-05-01

    Full Text Available Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni/single-walled carbon nanotube (SWNT macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  11. Alternative disposal technologies for new low-level radioactive waste disposal/storage facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    A Draft Environmental Impact Statement for Waste Management Activities for groundwater protection has been prepared for the Savannah River Plant. Support documentation for the DEIS included an Environmental Information Document on new radioactive waste disposal and storage facilities in which possible alternative disposal technologies were examined in depth. Six technologies that would meet the needs of the Savannah River Plant that selected for description and analysis include near surface disposal, near surface disposal with exceptions, engineered storage, engineered disposal, vault disposal of untreated waste, and a combination of near surface disposal, engineered disposal, and engineered storage. 2 refs

  12. Safety issues in construction of facilities for long-term storage of radioactive waste at vector site

    Energy Technology Data Exchange (ETDEWEB)

    Tokarevskyi, O.; Alekseeva, Z.; Kondratiev, S. [State Scientific and Technical Center for Nuclear and Radiation Safety, Kyiv (Ukraine); Rybalka, N. [State Nuclear Regulatory Inspectorate of Ukraine, Kyiv (Ukraine)

    2013-07-01

    In Ukraine, it is planned to create a number of near-surface facilities for disposal of short-lived RW and long-term (up to 100 years) storage of long-lived RW at the Vector site in the Chernobyl exclusion zone. The expected streams of long-lived RW are analyzed in the paper. According to the analysis of RW streams, in particular, issues are considered on development of RW acceptance criteria, admissible radiological impacts during preparation of RW for long-term storage, reliability of barriers (RW packages, modules and structures, etc.) during long-term storage of RW. (orig.)

  13. Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas

    International Nuclear Information System (INIS)

    1999-03-01

    The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified

  14. Hydrazine blending and storage facility, interim response action, draft implementation document for rinsewater transfer, phase 2

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-09

    This Draft Implementation Document (ID) for Rinsewater Transfer has been prepared as a requirement for conducting and completing the Interim Response Action (IRA) at the Hydrazine Blending and Storage Facility (HBSF) located at Rocky Mountain Arsenal (RMA) in Commerce City, Colorado. This document has been prepared in accordance with requirements set forth in the October 1988 Final Decision Document for the HBSF IRA (Peer, 1988) and the Amendment to the Final Decision Document (HLA, 1991). The HBSF IRA task was separated into two phases that comprise complete decommissioning of the HBSF as cited in the Federal Facility Agreement. The design portion of Phase I of the HBSF IRA included analytical methods development and laboratory certification for analysis of hydrazine fuel compounds (hydrazine, monomethyl hydrazine) (MMH), and unsymmetrical dimethyl hydrazine (UDMH) and n-nitrosodimethylamine (NDMA) in HBSF rinsewater, chemical characterization of hydrazine rinsewater, bench- and pilot-scale testing of ultraviolet (UV) light/chemical oxidation treatment systems for treatment of hydrazine rinsewater, full-scale startup testing of a UV light/chemical oxidation treatment system, and air monitoring during startup testing as described in the Draft Final Treatment Report (HLA, 1991).

  15. ISABELLE: a proposal for construction of a proton--proton storage accelerator facility

    International Nuclear Information System (INIS)

    1976-05-01

    The construction of an Intersecting Storage Accelerator Facility (ISA or ISABELLE) at Brookhaven National Laboratory is proposed. ISABELLE will permit the exploration of proton-proton collisions at center-of-mass energies continuously variable from 60 to 400 GeV and with luminosities of 10 32 to 10 33 cm -2 sec -1 over the entire range. An overview of the physics potential of this machine is given, covering the production of charged and neutral intermediate vector bosons, the hadron production at high transverse momentum, searches for new, massive particles, and the energy dependence of the strong interactions. The facility consists of two interlaced rings of superconducting magnets in a common tunnel about 3 km in circumference. The proton beams will collide at eight intersection regions where particle detectors will be arranged for studying the collision processes. Protons of approximately 30 GeV from the AGS will be accumulated to obtain the design current of 10A prior to acceleration to final energy. The design and performance of existing full-size superconducting dipoles and quadrupoles is described. The conceptual design of the accelerator systems and the conventional structures and buildings is presented. A preliminary cost estimate and construction schedule are given. Possible future options such as proton-antiproton, proton-deuteron and electron-proton collisions are discussed

  16. Occupational radiation dose assessment for a non site specific spent fuel storage facility

    International Nuclear Information System (INIS)

    Hadley, J.; Eble, R.G. Jr.

    1997-01-01

    To expedite the licensing process of the non site specific Centralized Interim Storage Facility (CISF) the Department of Energy has completed a phase I CISF Topical Safety Analysis Report (TSAR). The TSAR will be used in licensing the phase I CISF if a site is designated. An occupational radiation does assessment of the facility operations is performed as part of the phase I CISF design. The first phase of the CISF has the capability to receive, transfer, and store SNF in dual-purpose cask/canister systems (DPC's). Currently there are five vendor technologies under consideration. The preliminary dose assessment is based on estimated occupational exposures using traditional power plant ISFSI and transport cask handling processes. The second step in the process is to recommend ALARA techniques to reduce potential exposures. A final dose assessment is completed implementing the ALARA techniques and a review is performed to ensure that the design is in compliance with regulatory criteria. The dose assessment and ALARA evaluation are determined using the following input information: Dose estimates from vendor SAR's; ISFSI experience with similar systems; Traditional methods of operations; Expected CISF cask receipt rates; and feasible ALARA techniques. 5 refs., 1 tab

  17. Feasibility assessment grants in support of volunteer siting of a monitored retrievables storage facility

    International Nuclear Information System (INIS)

    Benson, A.; Weisman, N.M.; Morgan, W.

    1993-01-01

    The Monitored Retrievable Storage facility (MRS) is an integral component of the planned Federal radioactive waste management system. The MRS will temporarily store spent fuel from commercial nuclear power plants prior to shipment to a geologic repository for permanent disposal. To facilitate voluntary siting of an MRS facility, Congress, in 1987, authorized the award of feasibility assessment grants by the Department of Energy to assist potentially interested jurisdictions to consider the possibility of hosting an MRS. This paper addresses the experience with MRS feasibility assessment grants to date, reviewing the current status of grant applications and presenting observations on the grant program and the voluntary siting approach, which it supports. The authors note that although the voluntary siting process has yet to identify an MRS host, the feasibility assessment grants have been successful in generating interest and active consideration and debate regarding MRS siting among States, Indian Tribes, and affected units of local government. Continued information efforts about the grant process and more proactive DOE support for and participation in the voluntary siting process are among the recommendations offered

  18. A cost effective approach for criticality accident analysis of a DOE SNF storage facility

    International Nuclear Information System (INIS)

    Garrett, R.L.; Couture, G.F.; Gough, S.T.

    1997-01-01

    This paper presents the methodologies used to derive criticality accident analyses for a spent nuclear fuel receipt, storage, handling, and shipping facility. Two criticality events are considered: process-induced and Natural Phenomena Hazards (NPH)-induced. The criticality analyses required the development of: (1) the frequency at which each sceanario occurred, (2) the estimated number of fissions for each scenario, and (3) the consequences associated with each criticality scenario. A fault tree analysis was performed to quantify the frequency of criticality due to process-induced events. For the frequency analysis of NPH-induced criticality, a probabilistic approach was employed. To estimate the consequences of a criticality event, the resulting fission yield was determined using a probabilistic approach. For estimating the source term, a 95% amount of overall conservatism was targeted. This methodology applied to the facility criticality scenarios indicated that: (1) the 95th percentile yield levels from the historical yield distributions are approximately 5 x 10 17 fissions and 5 x 10 18 fissions for internal event and NPH-induced criticality event, respectively; and (2) using probabilistic Latin Hypercube Sampling, the downwind 95th percentile dose to a receptor at the US DOE reservation boundary is 2.2 mrem. This estimate is compared to the bounding dose of 1.4 rem. 4 refs., 1 fig

  19. Corrosion of aluminium-clad spent fuel in LVR-15 research reactor storage facilities. Final report

    International Nuclear Information System (INIS)

    Splichal, K.; Berka, J.; Keilova, E.

    2006-03-01

    The corrosion of the research reactor aluminium clad spent fuel in water was investigated in two storage facilities. The standard racks were delivered by the IAEA and consisted of two aluminium alloys AA 6061 and Szav-1 coupons. Bimetallic couples create aluminium alloy and stainless steel 304 coupons. Rolled and extruded AA 6061 material was also tested. Single coupons, bimetallic and crevice couples were exposed in the at-reactor basin (ARB) and the high-level wastage pool (HLW). The water chemistry parameters were monitored and sedimentation of impurities was measured. The content of impurities of mainly Cl and SO 4 was in the range of 2 to 15 μg/l in the HLW pool; it was about one order higher in ARB. The Fe content was below 2 μg/l for both facilities. After two years of exposure the pitting was evaluated as local corrosion damage. The occurrence of pits was evaluated predominantly on the surfaces of single coupons and on the outer and inner surfaces of bimetallic and crevices coupons. No correlation was found between the pitting initiation and the type of aluminium alloys and rolled and extruded materials. In bimetallic couples the presence of stainless coupons did not have any effect on local corrosion. The depth of pits was lower than 50 μm for considerable areas of coupons and should be compared with the results of other participating institutes. (author)

  20. Impact of Nitrification on the Formation of N-Nitrosamines and Halogenated Disinfection Byproducts within Distribution System Storage Facilities.

    Science.gov (United States)

    Zeng, Teng; Mitch, William A

    2016-03-15

    Distribution system storage facilities are a critical, yet often overlooked, component of the urban water infrastructure. This study showed elevated concentrations of N-nitrosodimethylamine (NDMA), total N-nitrosamines (TONO), regulated trihalomethanes (THMs) and haloacetic acids (HAAs), 1,1-dichloropropanone (1,1-DCP), trichloroacetaldehyde (TCAL), haloacetonitriles (HANs), and haloacetamides (HAMs) in waters with ongoing nitrification as compared to non-nitrifying waters in storage facilities within five different chloraminated drinking water distribution systems. The concentrations of NDMA, TONO, HANs, and HAMs in the nitrifying waters further increased upon application of simulated distribution system chloramination. The addition of a nitrifying biofilm sample collected from a nitrifying facility to its non-nitrifying influent water led to increases in N-nitrosamine and halogenated DBP formation, suggesting the release of precursors from nitrifying biofilms. Periodic treatment of two nitrifying facilities with breakpoint chlorination (BPC) temporarily suppressed nitrification and reduced precursor levels for N-nitrosamines, HANs, and HAMs, as reflected by lower concentrations of these DBPs measured after re-establishment of a chloramine residual within the facilities than prior to the BPC treatment. However, BPC promoted the formation of halogenated DBPs while a free chlorine residual was maintained. Strategies that minimize application of free chlorine while preventing nitrification are needed to control DBP precursor release in storage facilities.

  1. Radiation shielding and dose rate evaluation at the interim storage facility for spent fuel from Cernavoda NPP

    International Nuclear Information System (INIS)

    Stanciu, Marcela; Mateescu, Silvia; Pantazi, Doina; Penescu, Maria

    2000-01-01

    At present studies necessary to license the Interim Storage Facility for the Spent Fuel (CANDU type) from Cernavoda NPP are developed in our country.The spent fuel from Cernavoda NPP is discharged into Spent Fuel Bay in Service Building of the plant, where it remains several years for cooling. After this period, the bundles of spent fuel are to be transferred to the Interim Storage Facility.The dry interim storage solution seems to be the most appropriate variant for Cernavoda NPP.The design of the Spent Fuel Interim Storage Facility must meet the applicable safety requirements in order to ensure radiological protection of the personnel, public and environment during all phases of the facility achievement. In this paper we intend to present the calculation of radiation shielding at the spent fuel interim storage facility for two technical solutions: - Concrete Monolithic Module and Concrete Storage Cask. In order to quantify the fuel composition after irradiation, the isotope generation and depletion code ORIGEN 2.1 has been used, taking into account a cooling time of 7 years and 9 years, respectively, for these two variants. The shielding calculations have been performed using the computer codes QAD-5K and MICROSHIELD-4. The evaluations refer only to gamma radiation because the resulting neutron source (from (α,n) reactions and spontaneous fission) is insignificant as compared to the gamma source. The final results consist in the minimum thickness of the shielding and the corresponding external dose rates, ensuring a design average dose rate based on national and international regulations. (authors)

  2. Screening and identification of sites for a proposed Monitored Retrievable Storage Facility

    International Nuclear Information System (INIS)

    1985-04-01

    The Director, Office of Civilian Radioactive Waste Management (OCRWM), Department of Energy (DOE), has identified the Clinch River Breeder Reactor site, the DOE Oak Ridge Reservation and the Tennessee Valley Authority (TVA) Hartsville Nuclear Plant site as preferred and alternative sites, respectively, for development of site-specific designs as part of the proposal for construction of an integrated Monitored Retrievable Storage (MRS) Facility. The proposal, developed pursuant to Section 141 (b) of the Nuclear Waste Policy Act of 1982, will be submitted to Congress in January 1986. The Director expects to propose to Congress that an MRS be constructed at the perferred site. His judgment could change based on information to be developed between now and January 1986. The decision to construct an MRS facility and final site selection are reserved by Congress for itself. The Director's judgment is based on the results of a rigorous site screening and evaluation process described in this report. The three sites were selected from among eleven sites evaluated in detail. The Clinch River Breeder Reactor site, owned by the Tennessee Valley Authority, was identified as the preferred site. It has several particularly desirable features including: (1) federal ownership and control by the Department of Energy; (2) particularly good transportation access (five miles to the nearest interstate highway and direct rail access); (3) site characteristics and current data base judged by the NRC in 1983 as sufficient for granting a limited work authorization for the now cancelled breeder reactor; and (4) a technical community in the vicinity of site which can provide experienced nuclear facility support functions. 6 figs., 2 tabs

  3. MONITOR: A computer model for estimating the costs of an integral monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Reimus, P.W.; Sevigny, N.L.; Schutz, M.E.; Heller, R.A.

    1986-12-01

    The MONITOR model is a FORTRAN 77 based computer code that provides parametric life-cycle cost estimates for a monitored retrievable storage (MRS) facility. MONITOR is very flexible in that it can estimate the costs of an MRS facility operating under almost any conceivable nuclear waste logistics scenario. The model can also accommodate input data of varying degrees of complexity and detail (ranging from very simple to more complex) which makes it ideal for use in the MRS program, where new designs and new cost data are frequently offered for consideration. MONITOR can be run as an independent program, or it can be interfaced with the Waste System Transportation and Economic Simulation (WASTES) model, a program that simulates the movement of waste through a complete nuclear waste disposal system. The WASTES model drives the MONITOR model by providing it with the annual quantities of waste that are received, stored, and shipped at the MRS facility. Three runs of MONITOR are documented in this report. Two of the runs are for Version 1 of the MONITOR code. A simulation which uses the costs developed by the Ralph M. Parsons Company in the 2A (backup) version of the MRS cost estimate. In one of these runs MONITOR was run as an independent model, and in the other run MONITOR was run using an input file generated by the WASTES model. The two runs correspond to identical cases, and the fact that they gave identical results verified that the code performed the same calculations in both modes of operation. The third run was made for Version 2 of the MONITOR code. A simulation which uses the costs developed by the Ralph M. Parsons Company in the 2B (integral) version of the MRS cost estimate. This run was made with MONITOR being run as an independent model. The results of several cases have been verified by hand calculations

  4. Integrated monitoring and reviewing systems for the Rokkasho Spent Fuel Receipt and Storage Facility

    International Nuclear Information System (INIS)

    Yokota, Yasuhiro; Ishikawa, Masayuki; Matsuda, Yuji

    1998-01-01

    The Rokkasho Spent Fuel Receipt and Storage (RSFS) Facility at the Rokkasho Reprocessing Plant (RRP) in Japan is expected to begin operations in 1998. Effective safeguarding by International Atomic Energy Agency (IAEA) and Japan Atomic Energy Bureau (JAEB) inspectors requires monitoring the time of transfer, direction of movement, and number of spent fuel assemblies transferred. At peak throughput, up to 1,000 spent fuel assemblies will be accepted by the facility in a 90-day period. In order for the safeguards inspector to efficiently review the resulting large amounts of inspection information, an unattended monitoring system was developed that integrates containment and surveillance (C/S) video with radiation monitors. This allows for an integrated review of the facility's radiation data, C/S video, and operator declaration data. This paper presents an outline of the integrated unattended monitoring hardware and associated data reviewing software. The hardware consists of a multicamera optical surveillance (MOS) system radiation monitoring gamma-ray and neutron detector (GRAND) electronics, and an intelligent local operating network (ILON). The ILON was used for time synchronization and MOS video triggers. The new software consists of a suite of tools, each one specific to a single data type: radiation data, surveillance video, and operator declarations. Each tool can be used in a stand-alone mode as a separate ion application or configured to communicate and match time-synchronized data with any of the other tools. A data summary and comparison application (Integrated Review System [IRS]) coordinates the use of all of the data-specific review tools under a single-user interface. It therefore automates and simplifies the importation of data and the data-specific analyses

  5. Fire criticality probability analysis for 300 Area N Reactor fuel fabrication and storage facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.E.

    1995-02-08

    Uranium fuel assemblies and other uranium associated with the shutdown N Reactor are stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility (Facility). The 3712 Building, where the majority of the fuel assemblies and other uranium is stored, is where there could be a potential for a criticality bounding case. The purpose of this study is to evaluate the probability of potential fires in the Facility 3712 Building that could lead to criticality. This study has been done to support the criticality update. For criticality to occur, the wooden fuel assembly containers would have to burn such that the fuel inside would slump into a critical geometry configuration, a sufficient number of containers burn to form an infinite wide configuration, and sufficient water (about a 17 inch depth) be placed onto the slump. To obtain the appropriate geometric configuration, enough fuel assembly containers to form an infinite array on the floor would have to be stacked at least three high. Administrative controls require the stacks to be limited to two high for 1.25 wt% enriched finished fuel. This is not sufficient to allow for a critical mass regardless of the fire and accompanying water moderation. It should be noted that 0.95 wt% enriched fuel and billets are stacked higher than only two high. In this analysis, two initiating events will be considered. The first is a random fire that is hot enough and sufficiently long enough to burn away the containers and fuel separators such that the fuel can establish a critical mass. The second is a seismically induced fire with the same results.

  6. Calculation of radiation exposure of the environment of interim storage facilities for the dry storage of spent fuel in dual-purpose casks

    Energy Technology Data Exchange (ETDEWEB)

    Wortmann, B.; Stratmann, W. [STEAG Encotec GmbH, Essen (Germany)

    2004-07-01

    Acceptance problems in the public concerning the transport of spent nuclear fuel elements and a new political objective of the Federal Government have forced the German utilities to embark on on-site interim storage projects for the temporary storage of spent nuclear fuel elements. STEAG encotec GmbH, Essen, Germany, was awarded contracts for the conceptual planning including necessary shielding calculations for the majority of the 13 nuclear sites which opted for the dry storage concept. The capacity of the storage facilities ranges from 80 to 100 casks, according to the storage needs of the plants. The average dose rate at the surface of each cask was limited to 0.5 mSv/h, independent of the type of radiation. These new buildings should not significantly increase the exposure of the public to radiation already originating from the existing nuclear power plant. The layout of the storage building therefore has to ensure that additional target values of 10-20 iSv/y are not exceeded. These very low target values as well as the requirement to avoid high mechanical impacts to the casks in case of external events led to a thickness of walls and ceilings of between 1.2 m and 1.3 m. To remove the decay heat from the casks by natural convection sufficient cross sections of the air inlet and outlet ducts are required.

  7. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities; Instalaciones de almacenamiento de combustible nuclear gastado en seco para instalaciones nucleares mexicanas

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J., E-mail: juan.salmeron@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  8. New Low-Level Radioactive Waste Storage/Disposal Facilities at the Savannah River Plant: Environmental information document

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.; Towler, O.O.

    1987-04-01

    Site selection, alternative facilities, and alternative operations are described for a new low-level solid radioactive waste storage/disposal operation at the Savannah River Plant. Performance assessments and cost estimates for the alternatives are presented. Appendix G contains an intensive archaeological survey of alternative waste disposal areas in the Savannah River Plant area. 117 refs., 99 figs., 128 tabs

  9. Optimal use of the Gaz de France underground gas storage facilities; Utilisation optimale des stockages souterrains de Gaz de France

    Energy Technology Data Exchange (ETDEWEB)

    Favret, F.; Rouyer, E.; Bayen, D.; Corgier, B. [Gaz de France (GDF), 75 - Paris (France)

    2000-07-01

    This paper describes the tools developed by Gaz de France to optimize the use of its whole set of underground gas storage facilities. After a short introduction about the context and the purposes, the methodology and the models are detailed. The operational results obtained during the last three years are presented, and some conclusions and perspectives are given. (authors)

  10. Evalution of NDA techniques and instruments for assay of nuclear waste at a waste terminal storage facility

    International Nuclear Information System (INIS)

    Blakeman, E.D.; Allen, E.J.; Jenkins, J.D.

    1978-05-01

    The use of Nondestructive Assay (NDA) instrumentation at a nuclear waste terminal storage facility for purposes of Special Nuclear Material (SNM) accountability is evaluated. Background information is given concerning general NDA techniques and the relative advantages and disadvantages of active and passive NDA methods are discussed. The projected characteristics and amounts of nuclear wastes that will be delivered to a waste terminal storage facility are presented. Wastes are divided into four categories: High Level Waste, Cladding Waste, Intermediate Level Waste, and Low Level Waste. Applications of NDA methods to the assay of these waste types is discussed. Several existing active and passive NDA instruments are described and, where applicable, results of assays performed on wastes in large containers (e.g., 55-gal drums) are given. It is concluded that it will be difficult to routinely achieve accuracies better than approximately 10--30% with ''simple'' NDA devices or 5--20% with more sohpisticated NDA instruments for compacted wastes. It is recommended that NDA instruments not be used for safeguards accountability at a waste storage facility. It is concluded that item accountability methods be implemented. These conclusions and recommendations are detailed in a concurrent report entitled ''Recommendations on the Safeguards Requirements Related to the Accountability of Special Nuclear Material at Waste Terminal Storage Facilities'' by J.D. Jenkins, E.J. Allen and E.D. Blakeman

  11. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Feng, Jinkui, E-mail: jinkui@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Ci, Lijie [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Xiong, Shenglin [School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.

  12. CFD analysis and experimental investigation associated with the design of the Los Alamos nuclear materials storage facility

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Hopkins, S.; Gregory, W.S.; Martin, R.A.

    1997-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory is being renovated for long-term storage of canisters designed to hold heat-generating nuclear materials, such as powders, ingots, and other components. The continual heat generation within the canisters necessitates a reliable cooling scheme of sufficient magnitude which maintains the stored material temperatures within acceptable limits. The primary goal of this study was to develop both an experimental facility and a computational fluid dynamics (CFD) model of a subsection of the NMSF which could be used to observe general performance trends of a proposed passive cooling scheme and serve as a design tool for canister holding fixtures. Comparisons of numerical temperature and velocity predictions with empirical data indicate that the CFD model provides an accurate representation of the NMSF experimental facility. Minor modifications in the model geometry and boundary conditions are needed to enhance its accuracy, however, the various fluid and thermal models correctly capture the basic physics

  13. Environmental safety aspects of the new solid radioactive waste management and storage facility at the Ignalina Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ragaisis, Valdas; Poskas, Povilas; Simonis, Vytautas; Adomaitis, Jonas Erdvilas [Lithuanian Energy Institute, Kaunas (Lithuania). Nuclear Engineering Lab.

    2011-11-15

    New solid radioactive waste management and interim storage facilities will be constructed for the Ignalina Nuclear Power Plant to support ongoing decommissioning activities, including removal and treatment of operational waste from the existing storage buildings. The paper presents approach and methods that have been used to assess radiological impacts to the general public potentially arising under normal operation and accident conditions and to demonstrate compliance with regulations in force. The assessment of impacts from normal operation includes evaluation of exposure arising from release of airborne radioactive material and from facilities and packages containing radioactive material. In addition, radiological impacts from other nearby operating and planned nuclear facilities are taken into consideration. The assessment of impacts under accident conditions includes evaluation of exposure arising from the selected design and beyond design basis accidents. (orig.)

  14. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Science.gov (United States)

    2010-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  15. Studies and research concerning BNFP: life of project operating expenses for away-from-reactor (AFR) spent fuel storage facility. Final report

    International Nuclear Information System (INIS)

    Shallo, F.A.

    1979-09-01

    Life of Project operating expenses for a licensed Away-From-Reactor (AFR) Spent Fuel Storage Facility are developed in this report. A comprehensive business management structure is established and the functions and responsibilities for the facility organization are described. Contractual provisions for spent fuel storage services are evaluated

  16. Facility for the storage of spent, heat-emitting and container-enclosed nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Hennings, U.

    1987-01-01

    Patent for facility for the storage of spent, heat-emitting and container-enclosed nuclear reactor fuel assemblies, which are arranged within a building in a horizontal position and are cooled by a gas stream, whereby the building has a storage and a loading zone, characterized by the fact that pallet trucks arranged one above the other in a row and such that an interspace is left for the receiving positions for the containers, the the pallet trucks can be moved along rails that extend between two side walls arranged opposite to one another in the storage zone, that the storage zone can be loaded and unloaded by opening located in these two side walls, and that the gas stream only circulates within the building

  17. Circular letter from January 22, 2004 to the presidents of companies having the status of chartered storage facility

    International Nuclear Information System (INIS)

    2004-01-01

    This circular letter is intended for owners of storage facilities for petroleum products benefiting from the obligation of strategic storage according to the article 2 of law no 92-1443 from December 31, 1992. The attached document recalls the reasons and content of this obligation, the prevailing strategic storage rules in France (reference texts, products in concern, operators, stockpiles localization, product substitution possibilities..), the monthly declarations, the controls and sanctions, the annual plan of stocks localization, the obligation of information, the loss of chartered status or the renouncement. A schematic synthesis of the system of stockpiles constitution is presented in appendix, for France and for the French overseas departements. The other appendixes concern: the list of petroleum products concerned by the legal obligation of strategic storage, the relations between the professional committee of strategic stockpiles (CPSSP) and the anonymous society of security stocks management (SAGESS), and some examples of monthly and annual declaration forms. (J.S.)

  18. Design Technique for the High-Boiling Propellant Storage and Preparation Facility at the Cosmodrome «Vostochny»

    Directory of Open Access Journals (Sweden)

    O. E. Denisov

    2014-01-01

    Full Text Available The offered project of storage facility allows us to simplify and unitise the ground-based infrastructure objects. The storage facility implements a full preparatory cycle of the propellant components (PC in all parameters. Another problem the developers of complexes of groundbased equipment face now is bulk receipt of PC from manufacturer. The tanks of launch complexes cannot accept such volumes of propellant. It proves that there is a need to create a storage facility. The facility solves problems concerning the components receipt, temperature preparation, moisture content (drying, gas content, and supply to consumers. For preparation the perspective technologies with low power consumption are used.Receiving the propellant from the dispensing platform is carried out via filters of rough cleaning. Transfer from transport tankage goes using a pump. The received product passes through a gas separator to clean technological gas impurity.To prepare propellant temperature, a technology of cryogenic bubbling by boiling nitrogen is chosen. To improve efficiency of cryogenic bubbling it is advised to use the specialized capacities. Railway dimensions, admissible for the trainload goods across the railroads of Siberia and the Far East, define their sizes.As a drying technology and a gas content preparation the preliminary propellant filtration using vertical electro-separators is chosen to save a space. The chamber vertical electroseparators allow 2 — 3 times increase of dehydration capacity.The article presents calculations to prove that using the chosen cooling and drying technologies is efficient.Prepared PC can be supplied:• to transport-fueling containers (TFC with the subsequent transportation to the launch complexes either by the railway or by road;• to mobile fuelling tanks, which feed rocket-carrier tanks on arrival at the blast-off;• to transport capacities for transportation to the object outside the cosmodrome (spaceport;• directly

  19. Design report for the interim waste containment facility at the Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    1986-05-01

    Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection

  20. Qualification testing facility for packages to be used for transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2009-01-01

    The radioactive materials (RAM) packaging have to comply to all modes and transport condition, routine or in accident conditions possibly to occur during transportation operations. It is well known that the safety in the transport of RAM is dependent on packaging appropriate for the contents being shipped rather than on operational and/or administrative actions required for the package. The quality of these packages - type A, B or C has to be proved by performing qualification tests in accordance with the ROMANIAN nuclear regulation conditions provided by CNCAN Order no. 357/22.12.2005- 'Norms for a Safe Transport of Radioactive Material', the IAEA Vienna Recommendation stipulated in the Safety standard TS-R-1- Regulation for the Safe Transport of Radioactive Material, 2005 Edition, and other applicable international recommendations. The paper will describe the components of the designed testing facilities, and the qualification testing to be performed for all type A, B and C packages subjected to the testing. In addition, a part of the qualification tests for a package (designed and manufactured in INR Pitesti) used for transport and storage of spent fuel LEU elements of a TRIGA nuclear reactor will be described and analyzed. Quality assurance and quality controls measures taken in order to meet technical specification provided by the design are also presented and commented. The paper concludes that the new Romanian Testing Facilities for RAM packages will comply with the national safe standards as well as with the IAEA applicable recommendation provided by the TS-R-1 safety standard. (author)

  1. Environmental Assessment For the Proposed Construction of A Hazardous Materials Issue Facility and a Hazardous Wastes Storage Facility at Buckley Air Force Base, Colorado

    Science.gov (United States)

    2005-04-01

    hazardous materials in accordance with the Occupational Health and Safety Administration ( OSHA ) storage standards. This facility would make the...subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia , Pakistan, or the Philippine Islands; and • Native Hawaiian and Other...regulated by the USEPA and the OSHA . The state of Colorado also has regulations pertaining to ACM abatement. Emissions of asbestos fibers into the

  2. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    International Nuclear Information System (INIS)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

    1985-06-01

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year

  3. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    Energy Technology Data Exchange (ETDEWEB)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

    1985-06-01

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

  4. Design of the energy storage system for the High Energy Gas Laser Facility at LASL

    International Nuclear Information System (INIS)

    Riepe, K.B.; Kircher, M.J.

    1977-01-01

    The Antares laser is being built in the High Energy Gas Laser Facility (HEGLF) at Los Alamos to continue laser fusion experiments at very high power. The laser medium will be pumped by an electrical discharge, which requires an energy input of about 5 MJ in a few microseconds at about 500 kV. The energy storage system which will provide the pulsed power will be a bank of high-voltage pulse-forming networks. Tradeoff studies have been performed comparing the performance of multi-mesh networks with single-mesh networks. The single-mesh network requires about 20% more energy than a two-mesh network, but will tolerate three times the inductance of a two-mesh network. Analysis also shows that amplifier gain is not sensitive to impedance mismatch among the pulse-forming network, the transmission cables, and the gas discharge. A prototype pulse-forming network is being built to test components and trigger performance. It is a Marx generator storing 300 kJ at 1.2 MV open circuit, with 3 μH internal inductance

  5. Monitored Retrievable Storage (MRS) Facility and its impact on spent fuel transportation

    International Nuclear Information System (INIS)

    Joy, D.S.; Jolley, R.L.

    1986-01-01

    The Department of Energy has identified nine potential sites for a repository to permanently dispose of radioactive wastes. DOE has released several sets of maps and tables identifying expected transportation routes between nuclear reactors and repository sites. More recently, the DOE has announced three potential Monitored Retrievable Storage Facility (MRS) sites in the state of Tennessee. Obviously, if a large portion of the spent fuel is routed to Tennessee for consolidation and repackaging, there will be significant changes in the estimated routes. For typical scenarios, the number of shipments in the vicinity of the repository will be reduced. For example, with direct reactor to repository shipments, 995 highway and 262 rail shipments are expected to arrive at the repository annually. With a MRS these numbers are reduced to 201 and 30, respectively. The remaining consolidated fuel would be transported from the MRS in 22 dedicated trains (each train transporting five casks). Conversely, the MRS would result in an increase in the number of spent fuel shipments traveling through the eastern part of Tennessee. However, the operation of a MRS would significantly reduce the number of shipments through the central and western parts of the state

  6. Novel Mesoporous Flowerlike Iron Sulfide Hierarchitectures: Facile Synthesis and Fast Lithium Storage Capability

    Directory of Open Access Journals (Sweden)

    Quanning Ma

    2017-12-01

    Full Text Available The 3D flowerlike iron sulfide (F-FeS is successfully synthesized via a facile one-step sulfurization process, and the electrochemical properties as anode materials for lithium ion batteries (LIBs are investigated. Compared with bulk iron sulfide, we find that the unique structural features, overall flowerlike structure, composed of several dozen nanopetals and numerous small size iron sulfide particles embedded within the fine nanopetals, and hierarchical pore structure features provide signification improvements in lithium storage performance, with a high-rate discharge capacity of 779.0 mAh g−1 at a rate of 5 A g−1, due to effectively alleviating the volume expansion during the lithiation/delithiation process, and shorting the diffusion length of both lithium ion and electron. Especially, an excellent cycling stability are achieved, a high discharge capacity of 890 mAh g−1 retained at a rate of 1.0 A g−1, suggesting its promising applications in lithium ion batteries (LIBs.

  7. Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities.

    Science.gov (United States)

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2015-07-07

    As part of the Environmental Defense Fund's Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.

  8. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  9. ICPP calcined solids storage facility closure study. Volume III: Engineering design files

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The following information was calculated to support cost estimates and radiation exposure calculations for closure activities at the Calcined Solids Storage Facility (CSSF). Within the estimate, volumes were calculated to determine the required amount of grout to be used during closure activities. The remaining calcine on the bin walls, supports, piping, and floor was also calculated to approximate the remaining residual calcine volumes at different stages of the removal process. The estimates for remaining calcine and vault void volume are higher than what would actually be experienced in the field, but are necessary for bounding purposes. The residual calcine in the bins may be higher than was is experienced in the field as it was assumed that the entire bin volume is full of calcine before removal activities commence. The vault void volumes are higher as the vault roof beam volumes were neglected. The estimations that follow should be considered rough order of magnitude, due to the time constraints as dictated by the project`s scope of work. Should more accurate numbers be required, a new analysis would be necessary.

  10. ICPP calcined solids storage facility closure study. Volume III: Engineering design files

    International Nuclear Information System (INIS)

    1998-02-01

    The following information was calculated to support cost estimates and radiation exposure calculations for closure activities at the Calcined Solids Storage Facility (CSSF). Within the estimate, volumes were calculated to determine the required amount of grout to be used during closure activities. The remaining calcine on the bin walls, supports, piping, and floor was also calculated to approximate the remaining residual calcine volumes at different stages of the removal process. The estimates for remaining calcine and vault void volume are higher than what would actually be experienced in the field, but are necessary for bounding purposes. The residual calcine in the bins may be higher than was is experienced in the field as it was assumed that the entire bin volume is full of calcine before removal activities commence. The vault void volumes are higher as the vault roof beam volumes were neglected. The estimations that follow should be considered rough order of magnitude, due to the time constraints as dictated by the project's scope of work. Should more accurate numbers be required, a new analysis would be necessary

  11. 241-CX-70, 241-CX-71, and 241-CX-72 underground storage tanks at the strontium semiworks facility supplemental information to the Hanford Facility Contingency Plan

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-03-01

    This document is a unit-specific contingency plan for the underground storage tanks at the Strontium Semiworks Facility and is intended to be used as a supplement to the Hanford Facility Contingency Plan. This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of WAC 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units. Radioactive material is contained in three underground storage tanks: 241-CX-70, 241-CX-71, and 241-CX-72. Tank 241-CX-70 has been emptied, except for residual quantities of waste, and has been classified as an elementary neutralization tank under the RCRA. Tanks 241-CX-71 and 241-CX-72 contain radioactive and Washington State-only dangerous waste material, but do not present a significant hazard to adjacent facilities, personnel, or the environment. Currently, dangerous waste management activities are not being applied at the tanks. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the Strontium Semiworks Facility

  12. Current situation with the centralized storage facilities for non-power radioactive wastes in Latin American countries

    International Nuclear Information System (INIS)

    Benitez, Juan C.; Salgado, Mercedes; Idoyaga Navarro, Maria L.; Escobar, Carolina; Mallaupoma, Mario; Sbriz, Luciano; Moreno, Sandra; Gozalez, Olga; Gomez, Patricia; Mora, Patricia; Miranda, Alberto; Aguilar, Lola; Zarate, Norma; Rodriguez, Carmen

    2008-01-01

    Full text: Several Latin American (LA) countries have been firmly committed to the peaceful applications of ionizing radiations in medicine, industry, agriculture and research in order to achieve socioeconomic development in diverse sectors. Consequently the use of radioactive materials and radiation sources as well as the production of radioisotopes and labeled compounds may always produce radioactive wastes which require adequate management and, in the end, disposal. However, there are countries in the Latin American region whose radioactive waste volumes do not easily justify a national repository. Moreover, such facilities are extremely expensive to develop. It is unlikely that such an option will become available in the foreseeable future for most of these countries, which do not have nuclear industries. Storage has long been incorporated as a step in the management of radioactive wastes. In the recent years, there have been developments that have led some countries to consider whether the roles of storage might be expanded to provide longer-term care of long-live radioactive wastes The aim of this paper is to discuss the current situation with the storage facilities/conditions for the radioactive wastes and disused sealed radioactive sources in Latin-American countries. In some cases a brief description of the existing facilities for certain countries are provided. In other cases, when no centralized facility exists, general information on the radioactive inventories and disused sealed sources is given. (author)

  13. Fuel storage tanks at FAA facilities : Order 1050.15A : executive summary.

    Science.gov (United States)

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for emergency backup generators providing secondary power to air navigational...

  14. Final environmental assessment and Finding-of-No-Significant-Impact - drum storage facility for interim storage of materials generated by environmental restoration operations

    International Nuclear Information System (INIS)

    1994-09-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0995, for the construction and operation of a drum storage facility at Rocky Flats Environmental Technology Site, Golden, Colorado. The proposal for construction of the facility was generated in response to current and anticipated future needs for interim storage of waste materials generated by environmental restoration operations. A public meeting was held on July 20, 1994, at which the scope and analyses of the EA were presented. The scope of the EA included evaluation of alternative methods of storage, including no action. A comment period from July 5, 1994 through August 4, 1994, was provided to the public and the State of Colorado to submit written comment on the EA. No written comments were received regarding this proposed action, therefore no comment response is included in the Final EA. Based on the analyses in the EA, DOE has determined that the proposed action would not significantly affect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an Environmental Impact Statement is not required and the Department is issuing this Finding of No Significant Impact

  15. Pilot-benchmarking of the WENRA safety reference levels for the spent fuel intermediate storage facility Ahaus

    International Nuclear Information System (INIS)

    Lorenz, Bernd; Roeder, Markus; Brandt, Klaus-Dieter

    2008-01-01

    Full text: The Western European Nuclear Regulator's Association (WENRA) has 2007 issued the draft of the 'Waste and Spent Fuel Storage Safety Reference Levels'. The objective of WENRA is to strive for a harmonized safety level of nuclear facilities within the European Community and these Reference Levels are a benchmark method to demonstrate the achieved level for the regulatory system and the implementation as well. Safety Reference Levels exist at the moment for Reactor Safety, Waste Storage and Decommissioning in different stages of development. ENISS, the European Nuclear Installations Safety Standards Initiative, a FORATOM based special organisation of nuclear operators, has discussed these Safety Reference Levels very intensively with WENRA and the agreement was to make a implementation benchmark-exercise for the storage facilities before the authorities finally agree on the Reference Levels. This benchmark was scheduled for the year 2008. Because of the special situation in Germany where a large number of storage facilities is in operation the German authorities felt that it would be useful to initiate a Pilot-Benchmark to get first results on the feasibility of the Reference Levels and the burden imposed to authorities and operators by these benchmark-exercises. GNS, a subsidiary company of the utilities, agreed to step into this process on a voluntary basis with its storage facility for spent fuel in Ahaus. The exercise was done in a very efficient way and in good co-operation between the authorities, local and federal, and the operator. The results in terms of safety assessments have been very satisfactory showing the high degree of safety. Although the facility was for the first time licensed already in 1987 the compliance with nearly all Reference Levels from 2007 could be demonstrated. It became also clear that newer facilities would fulfil the desired safety standard too. Nevertheless, in spite of the good results the exercise revealed some weak

  16. Microbiological contamination with moulds in work environment in libraries and archive storage facilities.

    Science.gov (United States)

    Zielinska-Jankiewicz, Katarzyna; Kozajda, Anna; Piotrowska, Malgorzata; Szadkowska-Stanczyk, Irena

    2008-01-01

    Microbiological contamination with fungi, including moulds, can pose a significant health hazard to those working in archives or museums. The species involved include Aspergillus, Penicillium, Geotrichum, Alternaria, Cladosporium, Mucor, Rhizopus, Trichoderma, Fusarium which are associated mostly with allergic response of different types. The aim of the study was to analyse, both in quantitative and qualitative terms, workplace air samples collected in a library and archive storage facilities. Occupational exposure and the related health hazard from microbiological contamination with moulds were assessed in three archive storage buildings and one library. Air samples (total 60) were collected via impact method before work and at hourly intervals during work performance. Surface samples from the artifacts were collected by pressing a counting (RODAC) plate filled with malt extract agar against the surface of the artifacts. The air sample and surface sample analyses yielded 36 different mould species, classified into 19 genera, of which Cladosporium and Penicillium were the most prevalent. Twelve species were regarded as potentially pathogenic for humans: 8 had allergic and 11 toxic properties, the latter including Aspergillus fumigatus. Quantitative analysis revealed air microbiological contamination with moulds at the level ranging from 1.8 x 10(2)-2.3 x 10(3) cfu/m(3). In surface samples from library and archive artifacts, 11 fungal species were distinguished; the number of species per artifact varying from 1-6 and colony count ranging from 4 x 10(1) to 8-10(1) cfu/100 cm(2). Higher contamination levels were found only for Cladosporium cladosporioides (1.48 x 10(3) cfu/100 cm(2)) and Paecillomyces varioti (1.2 x 10(2) cfu/100 cm(2)). At the workposts examined, although no clearly visible signs of mould contamination could be found, the study revealed abundant micromycetes, with the predominant species of Cladosporium and Penicillium. The detected species included

  17. Economic and Environmental Evaluation of Flexible Integrated Gasification Polygeneration Facilities Equipped with Carbon Capture and Storage

    Science.gov (United States)

    Aitken, M.; Yelverton, W. H.; Dodder, R. S.; Loughlin, D. H.

    2014-12-01

    Among the diverse menu of technologies for reducing greenhouse gas (GHG) emissions, one option involves pairing carbon capture and storage (CCS) with the generation of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which a Fischer-Tropsch (FT) process reactor and combined cycle turbine produce liquid fuels and electricity, respectively. With low concentrations of sulfur and other contaminants, the synthetic fuels are expected to be cleaner than conventional crude oil products. And with CO2 as an inherent byproduct of the FT process, most of the GHG emissions can be eliminated by simply compressing the CO2 output stream for pipeline transport. In fact, the incorporation of CCS at such facilities can result in very low—or perhaps even negative—net GHG emissions, depending on the fraction of biomass as input and its CO2 signature. To examine the potential market penetration and environmental impact of coal and biomass to liquids and electricity (CBtLE), which encompasses various possible combinations of input and output parameters within the overall energy landscape, a system-wide analysis is performed using the MARKet ALlocation (MARKAL) model. With resource supplies, energy conversion technologies, end-use demands, costs, and pollutant emissions as user-defined inputs, MARKAL calculates—using linear programming techniques—the least-cost set of technologies that satisfy the specified demands subject to environmental and policy constraints. In this framework, the U.S. Environmental Protection Agency (EPA) has developed both national and regional databases to characterize assorted technologies in the industrial, commercial, residential, transportation, and generation sectors of the U.S. energy system. Here, the EPA MARKAL database is updated to include the costs and emission characteristics of CBtLE using figures from the literature. Nested sensitivity analysis is then

  18. A study on radiation shield design of storage facility for low and intermediate level radioactive waste in Bangladesh

    International Nuclear Information System (INIS)

    Khan, JJahirul Haque

    2005-02-01

    Bangladesh has no nuclear power reactor but has only one 3 MW TRIGA Mark-II Research Reactor. The Bangladesh Atomic Energy commission (BAEC) operates a 3 MW TRIGA Mark-II Research Reactor and maintains not only the nuclear facilities at its Atomic Energy Research Establishment (AERE) at Savar (near Dhaka) but also the related radiation facilities the whole country. The main sources of radioactive wastes result from the use of sealed and unsealed radiation sources in medicine industry, research, agriculture, etc as well as from operation and maintenance of the nuclear facilities the whole country. As a result radioactive wastes are increasing day by day and these wastes are classified as low and intermediate level radioactive waste (LILW) following the radiation safety philosophy of IAEA recommendations in Bangladesh. Radioactive waste is very sensitive issue to public and environment from the hazardous standpoint of ionizing radiation. Therefore, storage facility of LILW is very essential for safe radioactive waste management in Bangladesh and in parallel: this study is of a great importance due to new installation of this storage facility in future. The basic objective of this study is to recommend the radiation shield design parameters of the installation of storage facility for low and intermediate level radioactive waste from the points of view of radiation safety and sensitivity analysis. The shield design of this installation has been carried out with the Monte Carlo Code MCNP4C and the point Kernel Code Micro Shield 5.05 respectively considering the ICRP-60 (1990) recommendations for occupational exposure limit (10 μ Sv/hr). For more safety purpose every equivalent dose rate at different positions of this installation is considered below 9 μ Sv/hr in this study. The radiation shield design parameters are recommended based on MCNP4C calculated results than those of Micro Shield due to more credible results and these parameters are: (I) 51 cm thickness of

  19. The very-low activity waste storage facility. A new waste management system

    International Nuclear Information System (INIS)

    2006-01-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  20. Assessment of plutonium storage safety issues at Department of Energy facilities

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy (DOE) mission for utilization and storage of nuclear materials has recently changed as a result of the end of the ''Cold War'' era. Past and current plutonium storage practices largely reflect a temporary, in-process, or in-use storage condition which must now be changed to accommodate longer-term storage. This report summarizes information concerning current plutonium metal and oxide storage practices which was presented at the Office of Defense programs (DP) workshop in Albuquerque, New Mexico on May 26-27, 1993 and contained in responses to questions by DP-62 from the field organizations

  1. Assessment of the Proposed Design of a New Spent Sealed Radioactive Sources Storage Facility at Novi Han

    International Nuclear Information System (INIS)

    Alardin, J.M.; Lacroix, J.P.; Glibert, R.; Marneffe, L. de

    2001-09-01

    The NOVI HAN radioactive waste repository (NHRWR) in Bulgaria, built according to a Soviet design, was commissioned in 1964. The State Committee on the Use of Atomic Energy for Peaceful Purposes (CUAEPP) temporarily stopped operations at the repository from October 1994 until measures for improvement of the facility are undertaken. Since 1994, the Spent Sealed Radioactive Sources (SSRS) have been temporarily stored at the facilities at IRT-2000 research reactor of the Bulgarian Academy of Sciences (BAS) in Sofia. In view of the importance of the radiological risks associated with the present management of the SSRS in Bulgaria, the present study contract has been launched to critically review the proposal to provide a new interim storage facility for SSRS at NHRWR. A comprehensive critical review was performed of the feasibility study for the construction of a new SSRS facility at Novi Han, carried out by the local consultant engineering company (EQE), and detailed recommendations were made concerning the proposed new development at the site. The authors think that new concepts and procedures in the management of all categories of SSRS including smoke detectors have to be introduced, taking into account the regulatory framework and the inventories of existing and anticipated SSRS. This should be the basis for the technical specification of the new facilities for conditioning and storage of spent sealed radioactive sources (not only SHARS). (author)

  2. An assessment of potential risk resulting from a maximum credible accident scenario at the proposed explosive waste storage facility (EWSF)

    International Nuclear Information System (INIS)

    Otsuki, K.; Harrach, R.; Berger, R.

    1992-10-01

    Lawrence Livermore National Laboratory (LLNL) proposes to build, permit, and operate a storage facility for explosive wastes at LLNL's Explosive Test Site, Site 300. The facility would consist of four existing magazines, four new magazettes (small concrete vaults), and a new prefabricated metal building. Ash from on-site treatment of explosive waste would also be stored in the prefabricated metal building prior to sampling analysis, and shipment. The magazettes would be installed at each magazine-and would provide segregated storage for explosive waste types including detonators, actuators, and other initiating devices. The proposed facility would be used to store explosive wastes generated by the Hydrotest and Explosive Development Programs at LLNL prior to treatment on-site or shipment to permitted, commercial, off-site treatment facilities. Explosive wastes to be stored in the proposed facility represent a full spectrum of Department of Energy (DOE) and LLNL explosive wastes. This document identifies and evaluates the risk to human health and the environment associated with the operation of the proposed EWSF

  3. Final work plan : investigation of potential contamination at the former CCC/USDA grain storage facility in Hanover, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2008-11-19

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility at the northeastern edge of the city of Hanover, Kansas, from 1950 until the early 1970s. During this time, commercial grain fumigants containing carbon tetrachloride were in common use by the grain storage industry to preserve grain in their facilities. In February 1998, trace to low levels of carbon tetrachloride (below the maximum contaminant level [MCL] of 5.0 {micro}g/L) were detected in two private wells near the former grain storage facility at Hanover, as part of a statewide USDA private well sampling program that was implemented by the Kansas Department of Health and Environment (KDHE) near former CCC/USDA facilities. In April 2007, the CCC/USDA collected near-surface soil samples at 1.8-2 ft BGL (below ground level) at 61 locations across the former CCC/USDA facility. All soil samples were analyzed by the rigorous gas chromatograph-mass spectrometer analytical method (purge-and-trap method). No contamination was found in soil samples above the reporting limit of 10 {micro}g/kg. In July 2007, the CCC/USDA sampled indoor air at nine residences on or adjacent to its former facility to address the residents concerns regarding vapor intrusion. Low levels of carbon tetrachloride were detected at four of the nine homes. Because carbon tetrachloride found in private wells and indoor air at the site might be linked to historical use of fumigants containing carbon tetrachloride at its former grain storage facility, the CCC/USDA is proposing to conduct an investigation to determine the source and extent of the carbon tetrachloride contamination associated with the former facility. This investigation will be conducted in accordance with the intergovernmental agreement between the KDHE and the Farm Service Agency (FSA) of the USDA. The investigation at Hanover will be performed, on behalf of the CCC/USDA, by the Environmental Science

  4. The GreenLab Research Facility: A Micro-Grid Integrating Production, Consumption and Storage of Clean Energy

    Science.gov (United States)

    McDowell Bomani, Bilal Mark; Elbuluk, Malik; Fain, Henry; Kankam, Mark D.

    2012-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The NASA Glenn Research Center (GRC) has initiated a laboratory-pilot study that concentrates on using biofuels as viable alternative fuel resources for the field of aviation, as well as, utilizing wind and solar technologies as alternative renewable energy resources, and in addition, the use of pumped water for storage of energy that can be retrieved through hydroelectric generation. This paper describes the GreenLab Research Facility and its power and energy sources with .recommendations for worldwide expansion and adoption of the concept of such a facility

  5. Site selection experience for a new low-level radioactive waste storage/disposal facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Helton, B.D.

    1985-10-01

    Preliminary performance criteria and site selection guides specific to the Savannah River Plant, were developed for a new low-level radioactive waste storage/disposal facility. These site selection guides were applied to seventeen potential sites identified at SRP. The potential site were ranked based on how well they met a set of characteristics considered important in site selection for a low-level radioactive waste disposal facility. The characteristics were given a weighting factor representing its relative importance in meeting site performance criteria. A candidate site was selected and will be the subject of a site characterization program

  6. [Assessment of cyto- and genotoxicity of natural waters in the vicinity of radioactive waste storage facility using Allium-test].

    Science.gov (United States)

    Udalova, A A; Geras'kin, S A; Dikarev, V G; Dikareva, N S

    2014-01-01

    Efficacy of bioassays of "aberrant cells frequency" and "proliferative activity" in root meristem of Allium cepa L. is studied in the present work for a cyto- and genotoxicity assessment of natural waters contaminated with 90Sr and heavy metals in the vicinity of the radioactive waste storage facility in Obninsk, Kaluga region. The Allium-test is shown to be applicable for the diagnostics of environmental media at their combined pollution with chemical and radioactive substances. The analysis of aberration spectrum shows an important role of chemical toxicants in the mutagenic potential of waters collected in the vicinity of the radioactive waste storage facility. Biological effects are not always possible to explain from the knowledge on water contamination levels, which shows limitations of physical-chemical monitoring in providing the adequate risk assessment for human and biota from multicomponent environmental impacts.

  7. Assessment of furnaces including fuel storage facilities according to the 12th Federal Emission Control Ordinance (BImSchV)

    International Nuclear Information System (INIS)

    Hensler, G.; Ott, H.; Wunderlich, O.; Mair, K.

    1990-01-01

    Existing quantities of substances pursuant to Annex II of the 12th Federal Emission Control Ordinance in furnaces or in fuel storage facilities do not present a general hazard for fireplaces fired with coal, wood, heavy and light fuel oil within the meaning of the Accident Ordinance. In case of a fire in a storage facility for black coal, brown coal, untreated wood, light and heavy fuel oil, a general hazard on account of the release of developed substances is obviously excluded. Dispersion calculations pursuant to VDI 3783 have shown that concentrations of beryllium, arsenic, nickel, cobalt and mercury compounds in the vicinity of the fire source are so small that a general hazard can be excluded. (orig./DG) [de

  8. Housing and population sprawl near tailings storage facilities in the Witwatersrand: 1952 to current

    Directory of Open Access Journals (Sweden)

    Melanie A. Kneen

    2015-11-01

    Full Text Available Mining, tailings storage facilities (TSFs, dust pollution and growth in residential housing development are synonymous with the Witwatersrand, South Africa. Encroachment of housing onto land close to TSFs, i.e. areas rendered marginal because of the dust hazard and risk of structural failure, has continued unabated for decades, intensifying human exposure to windblown mineral dust. Recent research indicates that the finer milling used for modern gold extraction results in aeolian dust emanating from the TSFs which contributes to a higher proportion of inhalable particles in the source material. Air quality dispersion modelling, validated by ambient aerosol monitoring campaigns, indicates that episodic dust events generate particulate matter (PM10 and, specifically, quartz dust concentrations that are unhealthy at distances of up to 2 km downwind from TSFs. This contribution documented residential development from 1952 to 2011 (using historical aerial photographs, census data from 2001 and 2011 and ancillary information to determine the population exposed to dust emanations from the TSFs. Using the images, land use was classified into residential areas, TSF footprints and open areas, onto which a series of 500 m buffer zone contours were superimposed. The resulting statistics were used to assess the populations exposed to dust hazard within the defined buffer zones. Overall, housing development has experienced a growth of approximately 700% since 1952 at a rate of 14% per year. Analysis of recent monitoring campaign data has confirmed multiple occurrences of quartzrich inhalable dust in residential settings at levels that exceed occupational health standards, extrapolated to values for population exposure.

  9. Characterization and reclamation assessment for the Central Shops Diesel Storage Facility, Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.

    1993-10-01

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful clean-ups. Central Shops Diesel Storage Facility at Savannah River Site was characterized to determine the extent of subsurface diesel fuel contamination using innovative approaches and effective bioremediation techniques for clean-up of the contaminant plume have been established.

  10. Safety evaluation for packaging (onsite) singly encapsulated cesium chloride capsules

    International Nuclear Information System (INIS)

    Smyth, W.W.

    1997-01-01

    Three nonstandard Waste Encapsulation and Storage Facility (WESF) cesium chloride capsules are being shipped from WESF (225B building) to the 324 building. They would normally be shipped in the Beneficial Uses Shipping System (BUSS) cask under its US Department of Energy (DOE) license (DOE 1996), but these capsules are nonstandard: one has a damaged or defective weld in the outer layer of encapsulation, and two have the outer encapsulation removed. The 3 capsules, along with 13 other capsules, will be overpacked in the 324 building to meet the requirements for storage in WESF's pool

  11. Coordination Between Wind Power, Hydro Storage Facility and Conventional Generating Units According to the Annual Growth Load

    Directory of Open Access Journals (Sweden)

    Shahrokh Shojaeean

    2013-04-01

    Full Text Available Considering the growing trend of the consumption of the electric power and the global tendency to substitute new renewable sources of energy, this paper proposes a Monte Carlo based method to determine an optimal level of this change. Considering the limitation of the wind farms in continuous supply of electric power, hydrostatic power storage facilities are used beside wind farms so that the electric power could be stored and fed in a continuous flow into power systems. Due to the gradual exclusion of conventional generators and 5 percent annual load increments, LOLE index was used in order to calculate the amount of the wind power and the capacity of the necessary power storage facility. To this end, LOLE index was calculated for the first year as the reference index for the estimation of the amount of wind power and the capacity of the storage facility in consequent years. For the upcoming years, calculations have been made to account for the gradual exclusion of conventional generators in proportion to load increments. The proposed method has been implemented and simulated on IEEE-RTS test system.

  12. Ice storage facilities may use excess contingents of electricity. Reduction of the payback period by smart grids; Eisspeicher koennen ueberschuessige Stromkontingente nutzen. Amortisationszeit durch Smart Grid verkuerzen

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Klaus [Fafco S.A., Biel (Switzerland); Schmid, Wolfgang

    2013-03-11

    In Germany, energy storage device attain a great importance in the energy supply. However, up to now economical technologies are missing in order to store fluctuating offers of electricity from renewable energy sources directly in a storage medium. Within the modern refrigeration and air conditioning, ice storage facilities proved over decades could take up this position and could be one component of the energy policy turnaround. New tariff offers as well as the construction of virtual power plants let expect that ice storage facilities may amortize within few years.

  13. New challenges in the safety assessment of radioactive waste storage and disposal facilities in the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Linge, I.; Utkin, S. [Nuclear Safety Inst. (IBRAE RAN), Moscow (Russian Federation)

    2014-07-01

    Russian radioactive waste (RW) management practice (disposal, in particular) is characterized by a number of features which makes it fundamentally different from the international one. The technologies used in the middle of the XX century became widespread even after the nuclear arms race was over. As a result: Industrial sites comprise a large number of old solid RW storage facilities and surface water reservoirs (ponds, lakes), which capacity varies from one to several hundred million cubic meters, storing liquid RW; Deep well injection of liquid RW into aquifers has been in practice since the early 1960's. Major changes aimed at addressing the accumulated problems began to occur only a decade ago. In 2008, a large-scale state nuclear legacy program was initiated, and in 2011, the framework act «On RW management» was passed. New tasks were set before the Russian nuclear industry for the purpose of establishing a unified state system for RW management. It was accompanied by a number of new challenges in the safety justification and calculation tools development. They are discussed in the paper with significant consideration to the existing nuclear legacy facilities; unique liquid radioactive waste storage and disposal facilities; and new-built disposal facilities. (author)

  14. The planning, construction, and operation of a radioactive waste storage facility for an Australian state radiation regulatory authority

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.D.; Kleinschmidt, R.; Veevers, P. [Radiation Health, Queensland (Australia)

    1995-12-31

    Radiation regulatory authorities have a responsibility for the management of radioactive waste. This, more often than not, includes the collection and safe storage of radioactive sources in disused radiation devices and devices seized by the regulatory authority following an accident, abandonment or unauthorised use. The public aversion to all things radioactive, regardless of the safety controls, together with the Not In My Back Yard (NIMBY) syndrome combine to make the establishment of a radioactive materials store a near impossible task, despite the fact that such a facility is a fundamental tool for regulatory authorities to provide for the radiation safety of the public. In Queensland the successful completion and operational use of such a storage facility has taken a total of 8 years of concerted effort by the staff of the regulatory authority, the expenditure of over $2 million (AUS) not including regulatory staff costs and the cost of construction of an earlier separate facility. This paper is a summary of the major developments in the planning, construction and eventual operation of the facility including technical and administrative details, together with the lessons learned from the perspective of the overall project.

  15. Sanitary evaluation of domestic water supply facilities with storage tanks and detection of Aeromonas, enteric and related bacteria in domestic water facilities in Okinawa Prefecture of Japan.

    Science.gov (United States)

    Miyagi, Kazufumi; Sano, Kouichi; Hirai, Itaru

    2017-08-01

    To provide for temporary restrictions of the public water supply system, storage tanks are commonly installed in the domestic water systems of houses and apartment buildings in Okinawa Prefecture of Japan. To learn more about the sanitary condition and management of these water supply facilities with storage tanks (hereafter called "storage tank water systems") and the extent of bacterial contamination of water from these facilities, we investigated their usage and the existence of Aeromonas, enteric and related bacteria. Verbal interviews concerning the use and management of the storage tank water systems were carried out in each randomly sampled household. A total of 54 water samples were collected for bacteriological and physicochemical examinations. Conventional methods were used for total viable count, fecal coliforms, identification of bacteria such as Aeromonas, Enterobacteriaceae and non-fermentative Gram-negative rods (NF-GNR), and measurement of residual chlorine. On Aeromonas species, tests for putative virulence factor and an identification using 16S rRNA and rpoB genes were also performed. Water from the water storage systems was reported to be consumed directly without boiling in 22 of the 54 houses (40.7%). 31 of the sampled houses had installed water storage tanks of more than 1 cubic meter (m 3 ) per inhabitant, and in 21 of the sampled houses, the tank had never been cleaned. In all samples, the total viable count and fecal coliforms did not exceed quality levels prescribed by Japanese waterworks law. Although the quantity of bacteria detected was not high, 23 NF-GNR, 14 Enterobacteriaceae and 5 Aeromonas were isolated in 42.6%, 7.4% and 3.7% of samples respectively. One isolated A. hydrophila and four A. caviae possessed various putative virulence factors, especially A. hydrophila which had diverse putative pathogenic genes such as aer, hlyA, act, alt, ast, ser, and dam. Many bacteria were isolated when the concentration of residual chlorine

  16. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    International Nuclear Information System (INIS)

    Burgard, K.C.

    1998-01-01

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis

  17. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Burgard, K.C.

    1998-04-09

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  18. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  19. Characterization of spent fuel assemblies for storage facilities using non destructive assay

    International Nuclear Information System (INIS)

    Lebrun, A.; Bignan, G.; Recroix, H.; Huver, M.

    1999-01-01

    Many non destructive assay (NDA) techniques have been developed by the French Atomic Energy Commission (CEA) for spent fuel characterization and management. Passive and active neutron methods as well as gamma spectrometric methods have been carried out and applied to industrial devices like PYTHON TM and NAJA. Many existing NDA methods can be successfully applied to storage, but the most promising are the neutron methods combined with on line evolution codes. For dry storage applications, active neutron measurements require further R and D to achieve accurate results. Characterization data given by NDA instruments can now be linked to automatic fuel recognition. Both information can feed the storage management software in order to meet the storage operation requirements like: fissile mass inventory, operators declaration consistency or automatic selection of proper storage conditions. (author)

  20. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hee Dong; Han, Seul Gi; Lee, Sang Dong; Kim, Ki Hong; Ryu, Eag Hyang; Park, Hwa Gyu [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2014-10-15

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al{sup 27}, C{sup 12}, B{sup 11}, B{sup 10} and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B{sup 10} content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B{sup 10} content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B{sup 10} content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B{sup 10} content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 10{sup 10} order, however, usual neutron flux from spent fuel is 10{sup 8} order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B{sup 10} content is little decreased, so, initial neutron absorbing ability could be kept continuously.