WorldWideScience

Sample records for stopped-flow dual-wavelength spectrophotometer

  1. Automated dual-wavelength spectrophotometer optimized for phytochrome assay

    International Nuclear Information System (INIS)

    Pratt, L.H.; Wampler, J.E.; Rich, E.S. Jr.

    1985-01-01

    A microcomputer-controlled dual-wavelength spectrophotometer suitable for automated phytochrome assay is described. The optomechanical unit provides for sequential irradiation of the sample by the two measuring wavelengths with intervening dark intervals and for actinic irradiation to interconvert phytochrome between its two forms. Photomultiplier current is amplified, converted to a digital value and transferred into the computer using a custom-designed IEEE-488 bus interface. The microcomputer calculates mathematically both absorbance and absorbance difference values with dynamic correction for photomultiplier dark current. In addition, the computer controls the operating parameters of the spectrophotometer via a separate interface. These parameters include control of the durations of measuring and actinic irradiation intervals and their sequence. 14 references, 4 figures

  2. Rapid coagulation of polystyrene latex in a stopped-flow spectrophotometer

    NARCIS (Netherlands)

    Lichtenbelt, J.W.Th.; Pathmamanoharan, C.; Wiersema, P.H.

    1974-01-01

    With a stopped-flow method the rapid coagulation by electrolyte of several polystyrene latices is measured. By extrapolating back to zero time the initial process of two single particles forming a doublet is observed. We find an average rate constant ifk11 = 6.0 × 10−12 p−1 cm3 sec su−1 at 20°C,

  3. Linear programming phase unwrapping for dual-wavelength digital holography.

    Science.gov (United States)

    Wang, Zhaomin; Jiao, Jiannan; Qu, Weijuan; Yang, Fang; Li, Hongru; Tian, Ailing; Asundi, Anand

    2017-01-20

    A linear programming phase unwrapping method in dual-wavelength digital holography is proposed and verified experimentally. The proposed method uses the square of height difference as a convergence standard and theoretically gives the boundary condition in a searching process. A simulation was performed by unwrapping step structures at different levels of Gaussian noise. As a result, our method is capable of recovering the discontinuities accurately. It is robust and straightforward. In the experiment, a microelectromechanical systems sample and a cylindrical lens were measured separately. The testing results were in good agreement with true values. Moreover, the proposed method is applicable not only in digital holography but also in other dual-wavelength interferometric techniques.

  4. Dual-wavelength laser transmission photoscanner for breast cancer detection

    International Nuclear Information System (INIS)

    Kaneko, M.; He, P.; Tanaka, H.; Takahashi, M.; Takai, M.; Baba, K.; Yamashita, Y.; Ohta, K.

    1989-01-01

    This paper reports on the prototype of a laser transmission photoscanner (LTPS) constructed and used for the detection of breast cancer and compared with x-ray mammography. LTPS has been improved to enable spectroanalysis and application in breast cancer screening. The new type is introduced. In order to obtain higher sensitivity, the output of lasers was increased in intensity. The signal integration time was increased 10-fold, and the width of the detector area was doubled. The gated operation of the detector enables the good throughput. Simultaneous scanning in the dual wavelengths of 630 and 830 nm makes it possible to differentiate hemoglobin (Hb) and oxyhemoglobin (HbO 2 ) in spectroanalysis by means of Lambert--Beer's law. Clinical application of dual-wavelength LTPS shows good correlation with pathology

  5. Dual wavelength operation in diode-end-pumped hybrid vanadate ...

    Indian Academy of Sciences (India)

    Dual wavelength operation at 1062.8 nm and 1064.1 nm in a diode-pumped hybrid laser comprising of Nd3+-doped birefringent YVO4 and GdVO4 crystals is demon-strated. A detailed characterization of the laser is performed under CW and pulsed operation. Under Q-switching, 4 W of average power at 5 kHz repetition ...

  6. Dual-Wavelength Sensitized Photopolymer for Holographic Data Storage

    Science.gov (United States)

    Tao, Shiquan; Zhao, Yuxia; Wan, Yuhong; Zhai, Qianli; Liu, Pengfei; Wang, Dayong; Wu, Feipeng

    2010-08-01

    Novel photopolymers for holographic storage were investigated by combining acrylate monomers and/or vinyl monomers as recording media and liquid epoxy resins plus an amine harder as binder. In order to improve the holographic performances of the material at blue-green wavelength band two novel dyes were used as sensitizer. The methods of evaluating the holographic performances of the material, including the shrinkage and noise characteristics, are described in detail. Preliminary experiments show that samples with optimized composite have good holographic performances, and it is possible to record dual-wavelength hologram simultaneously in this photopolymer by sharing the same optical system, thus the storage density and data rate can be doubly increased.

  7. Estimation of Snow Parameters from Dual-Wavelength Airborne Radar

    Science.gov (United States)

    Liao, Liang; Meneghini, Robert; Iguchi, Toshio; Detwiler, Andrew

    1997-01-01

    Estimation of snow characteristics from airborne radar measurements would complement In-situ measurements. While In-situ data provide more detailed information than radar, they are limited in their space-time sampling. In the absence of significant cloud water contents, dual-wavelength radar data can be used to estimate 2 parameters of a drop size distribution if the snow density is assumed. To estimate, rather than assume, a snow density is difficult, however, and represents a major limitation in the radar retrieval. There are a number of ways that this problem can be investigated: direct comparisons with in-situ measurements, examination of the large scale characteristics of the retrievals and their comparison to cloud model outputs, use of LDR measurements, and comparisons to the theoretical results of Passarelli(1978) and others. In this paper we address the first approach and, in part, the second.

  8. A novel high performance stopped-flow apparatus equipped with a special constructed mixing chamber containing a plunger under inert condition with a very short dead-time to investigate very rapid reactions

    Directory of Open Access Journals (Sweden)

    Sayyed Mostafa Habibi Khorassani

    2015-11-01

    Full Text Available The present work set out to establish a novel stopped-flow instrument equipped with a special constructed mixing chamber containing a plunger to enable a kinetic study of the very rapid reactions under a dry inert atmosphere glove bag, in particular, for the reactions are sensitive to moisture or air. A stopped-flow spectrophotometer is essentially a conventional spectrophotometer with the addition of a system for rapid mixing of solutions. The purpose of this work is to describe the fabrication and evaluation of specially constructed and in-expensive stopped-flow system. The evaluation includes determination of the dead-time, relative mixing efficiency, and the measurement of known rate constants. Herein, a dead-time of about 3.4 ms was determined in the final modified construction of the stopped-flow apparatus in order to investigate the rapid initial during which some form of reaction intermediate is presented to be formed.

  9. Ratio Imaging of Enzyme Activity Using Dual Wavelength Optical Reporters

    Directory of Open Access Journals (Sweden)

    Moritz F. Kircher

    2002-04-01

    Full Text Available The design of near-infrared fluorescent (NIRF probes that are activated by specific proteases has, for the first time, allowed enzyme activity to be imaged in vivo. In the current study, we report on a method of imaging enzyme activity using two fluorescent probes that, together, provide improved quantitation of enzymatic activity. The method employs two chemically similar probes that differ in their degradability by cathepsin B. One probe consists of the NIRF dye Cy5.5 attached to a particulate carrier, a crosslinked iron oxide nanoparticle (CLIO, through cathepsin B cleavable l-arginyl peptides. A second probe consists of Cy3.5 attached to a CLIO through proteolytically resistant d-arginyl peptides. Using mixtures of the two probes, we have shown that the ratio of Cy5.5 to Cy3.5 fluorescence can be used to determine levels of cathepsin B in the environment of nanoparticles with macrophages in suspension. After intravenous injection, tissue fluorescence from the nondegradable Cy3.5–d-arginyl probe reflected nanoparticle accumulation, while fluorescence of the Cy5.5–l-arginyl probe was dependent on both accumulation and activation by cathepsin B. Dual wavelength ratio imaging can be used for the quantitative imaging of a variety of enzymes in clinically important settings, while the magnetic properties of the probes allow their detection by MR imaging.

  10. A Dual-Wavelength Radar Technique to Detect Hydrometeor Phases

    Science.gov (United States)

    Liao, Liang; Meneghini, Robert

    2016-01-01

    This study is aimed at investigating the feasibility of a Ku- and Ka-band space/air-borne dual wavelength radar algorithm to discriminate various phase states of precipitating hydrometeors. A phase-state classification algorithm has been developed from the radar measurements of snow, mixed-phase and rain obtained from stratiform storms. The algorithm, presented in the form of the look-up table that links the Ku-band radar reflectivities and dual-frequency ratio (DFR) to the phase states of hydrometeors, is checked by applying it to the measurements of the Jet Propulsion Laboratory, California Institute of Technology, Airborne Precipitation Radar Second Generation (APR-2). In creating the statistically-based phase look-up table, the attenuation corrected (or true) radar reflectivity factors are employed, leading to better accuracy in determining the hydrometeor phase. In practice, however, the true radar reflectivities are not always available before the phase states of the hydrometeors are determined. Therefore, it is desirable to make use of the measured radar reflectivities in classifying the phase states. To do this, a phase-identification procedure is proposed that uses only measured radar reflectivities. The procedure is then tested using APR-2 airborne radar data. Analysis of the classification results in stratiform rain indicates that the regions of snow, mixed-phase and rain derived from the phase-identification algorithm coincide reasonably well with those determined from the measured radar reflectivities and linear depolarization ratio (LDR).

  11. Digitally tunable dual wavelength emission from semiconductor ring lasers with filtered optical feedback

    International Nuclear Information System (INIS)

    Khoder, Mulham; Verschaffelt, Guy; Nguimdo, Romain Modeste; Danckaert, Jan; Leijtens, Xaveer; Bolk, Jeroen

    2013-01-01

    We report on a novel integrated approach to obtain dual wavelength emission from a semiconductor laser based on on-chip filtered optical feedback. Using this approach, we show experiments and numerical simulations of dual wavelength emission of a semiconductor ring laser. The filtered optical feedback is realized on-chip by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback strength of each wavelength channel independently. By tuning the current injected into each of the amplifiers, we can effectively cancel the gain difference between the wavelength channels due to fabrication and material dichroism, thus resulting in stable dual wavelength emission. We also explore the accuracy needed in the operational parameters to maintain this dual wavelength emission. (letter)

  12. A dual-wavelength tunable laser with superimposed fiber Bragg gratings

    International Nuclear Information System (INIS)

    Álvarez-Tamayo, R I; Durán-Sánchez, M; Pottiez, O; Ibarra-Escamilla, B; Kuzin, E A; Cruz, J L; Andrés, M V

    2013-01-01

    We report a dual-wavelength tunable fiber laser. The cavity is formed by two superimposed fiber Bragg gratings (FBGs) and a temperature tunable high-birefringence fiber optical loop mirror (FOLM). FBGs with wavelengths of 1548.5 and 1538.5 nm were printed in the same section of a fiber using two different masks. The superimposed FBGs were placed on a mechanical mount that allows stretch or compression of the FBGs. As a result of the FBG strain both lines are shifted simultaneously. Dual-wavelength generation requires a fine adjustment of the cavity loss for both wavelengths. (paper)

  13. On-chip microparticle detection and sizing using a dual-wavelength waveguide laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Worhoff, Kerstin; De Ridder, Rene M.; Subramaniam, Vinod; Pollnau, Markus

    2013-01-01

    An integrated intra-laser-cavity microparticle sensor based on a dual-phase-shift, dual-wavelength distributed-feedback channel waveguide laser in Al2O3:Yb3+ is presented. Real-time detection and accurate size measurement of single microparticles with diameters ranging between 1 μm and 20 μm are

  14. Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Wörhoff, Kerstin; de Ridder, René M; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped amorphous aluminum oxide on a silicon substrate is demonstrated. Real-time detection and accurate size measurement of single micro-particles with diameters

  15. On-chip microparticle detection and sizing using a dual-wavelength waveguide laser

    NARCIS (Netherlands)

    Bernhardi, Edward; van der Werf, Kees; Hollink, Anton; Worhoff, Kerstin; de Ridder, R.M.; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-phase-shift, dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminium oxide is presented. Single micro-particles with diameters ranging between 1 μm and 20 μm are detected.

  16. A diode-pumped Nd:YAlO3 dual-wavelength yellow light source

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhai, Pei; Xia, Jing; Li, Shutao; Fu, Xihong

    2013-01-01

    We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO 3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system. (paper)

  17. Simulation of simultaneously obtaining ocean temperature and salinity using dual-wavelength Brillouin lidar

    International Nuclear Information System (INIS)

    Yu, Yin; Ma, Yong; Li, Hao; Huang, Jun; Fang, Yu; Liang, Kun; Zhou, Bo

    2014-01-01

    A method for simultaneously obtaining the ocean temperature and salinity based on dual-wavelength Brillouin lidar is proposed in this letter. On the basis of the relationships between the temperature and salinity and the Brillouin shifts, a retrieval model for retrieving the temperature and salinity is established. By using the retrieval model, the ocean temperature and salinity can be simultaneously obtained through the Brillouin shifts. Simulation based on dual-wavelength Brillouin lidar is also carried out for verification of the accuracy of the retrieval model. Results show that the errors of the retrieval model for temperature and salinity are ±0.27 °C and ±0.33‰. (letter)

  18. Dual-wavelength erbium-doped fiber laser with asymmetric fiber Bragg grating Fabry-Perot cavity

    Science.gov (United States)

    Chen, Cong; Xu, Zhi-wei; Wang, Meng; Chen, Hai-yan

    2014-11-01

    A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating (FBG) Fabry-Perot (FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.

  19. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America....

  20. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    Science.gov (United States)

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  1. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy.

    Science.gov (United States)

    Beck, Sara E; Ryu, Hodon; Boczek, Laura A; Cashdollar, Jennifer L; Jeanis, Kaitlyn M; Rosenblum, James S; Lawal, Oliver R; Linden, Karl G

    2017-02-01

    A dual-wavelength UV-C LED unit, emitting at peaks of 260 nm, 280 nm, and the combination of 260|280 nm together was evaluated for its inactivation efficacy and energy efficiency at disinfecting Escherichia coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores, compared to conventional low-pressure and medium-pressure UV mercury vapor lamps. The dual-wavelength unit was also used to measure potential synergistic effects of multiple wavelengths on bacterial and viral inactivation and DNA and RNA damage. All five UV sources demonstrated similar inactivation of E. coli. For MS2, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was most effective. When measuring electrical energy per order of reduction, the LP UV lamp was most efficient for inactivating E. coli and MS2; the LP UV and MP UV mercury lamps were equally efficient for HAdV2 and B. pumilus spores. Among the UV-C LEDs, there was no statistical difference in electrical efficiency for inactivating MS2, HAdV2, and B. pumilus spores. The 260 nm and 260|280 nm LEDs had a statistical energy advantage for E. coli inactivation. For UV-C LEDs to match the electrical efficiency per order of log reduction of conventional LP UV sources, they must reach efficiencies of 25-39% or be improved on by smart reactor design. No dual wavelength synergies were detected for bacterial and viral inactivation nor for DNA and RNA damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Stop Flow Lithography Synthesis and Characterization of Structured Microparticles

    Directory of Open Access Journals (Sweden)

    David Baah

    2014-01-01

    Full Text Available In this study, the synthesis of nonspherical composite particles of poly(ethylene glycol diacrylate (PEG-DA/SiO2 and PEG-DA/Al2O3 with single or multiple vias and the corresponding inorganic particles of SiO2 and Al2O3 synthesized using the Stop Flow Lithography (SFL method is reported. Precursor suspensions of PEG-DA, 2-hydroxy-2-methylpropiophenone, and SiO2 or Al2O3 nanoparticles were prepared. The precursor suspension flows through a microfluidic device mounted on an upright microscope and is polymerized in an automated process. A patterned photomask with transparent geometric features masks UV light to synthesize the particles. Composite particles with vias were synthesized and corresponding inorganic SiO2 and Al2O3 particles were obtained through polymer burn-off and sintering of the composites. The synthesis of porous inorganic particles of SiO2 and Al2O3 with vias and overall dimensions in the range of ~35–90 µm was achieved. BET specific surface area measurements for single via inorganic particles were 56–69 m2/g for SiO2 particles and 73–81 m2/g for Al2O3 particles. Surface areas as high as 114 m2/g were measured for multivia cubic SiO2 particles. The findings suggest that, with optimization, the particles should have applications in areas where high surface area is important such as catalysis and sieving.

  3. Crosstalk eliminating and low-density parity-check codes for photochromic dual-wavelength storage

    Science.gov (United States)

    Wang, Meicong; Xiong, Jianping; Jian, Jiqi; Jia, Huibo

    2005-01-01

    Multi-wavelength storage is an approach to increase the memory density with the problem of crosstalk to be deal with. We apply Low Density Parity Check (LDPC) codes as error-correcting codes in photochromic dual-wavelength optical storage based on the investigation of LDPC codes in optical data storage. A proper method is applied to reduce the crosstalk and simulation results show that this operation is useful to improve Bit Error Rate (BER) performance. At the same time we can conclude that LDPC codes outperform RS codes in crosstalk channel.

  4. Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection.

    Science.gov (United States)

    Cheng, Rui; Xia, Li

    2016-11-15

    It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.

  5. Extending the depth of field with chromatic aberration for dual-wavelength iris imaging.

    Science.gov (United States)

    Fitzgerald, Niamh M; Dainty, Christopher; Goncharov, Alexander V

    2017-12-11

    We propose a method of extending the depth of field to twice that achievable by conventional lenses for the purpose of a low cost iris recognition front-facing camera in mobile phones. By introducing intrinsic primary chromatic aberration in the lens, the depth of field is doubled by means of dual wavelength illumination. The lens parameters (radius of curvature, optical power) can be found analytically by using paraxial raytracing. The effective range of distances covered increases with dispersion of the glass chosen and with larger distance for the near object point.

  6. Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate

    Directory of Open Access Journals (Sweden)

    Guang-hao Shao

    2016-12-01

    Full Text Available A tunable dual-wavelength filter is experimentally demonstrated in domain-engineered lithium niobate. Application of an electric field on the y-surfaces of the sample results in the optical axes rotating clockwise and anticlockwise, which makes selective polarization rotation. The quasi phase-matching wavelengths could be adjusted through suitable domain design. A unique dual valley spectrum is obtained in a periodically poled lithium niobate structure with a central defect if the sample is placed between two parallel polarizers. The expected bandwidth could be varied from ∼1 nm to ∼40 nm. Moreover, both the spectral response and group delay dispersion could be engineered.

  7. External-cavity high-power dual-wavelength tapered amplifier with tunable THz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W is achie......A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W...... is achieved with a frequency difference of 0.86 THz, the output power is higher than 1.3 W in the 5.0 THz range of frequency difference, and the amplified spontaneous emission intensity is more than 20 dB suppressed in the range of frequency difference. The beam quality factor M2 is 1.22±0.15 at an output...

  8. Dual-wavelength external cavity laser device for fluorescence suppression in Raman spectroscopy

    Science.gov (United States)

    Zhang, Xuting; Cai, Zhijian; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been widely used in the detection of drugs, pesticides, explosives, food additives and environmental pollutants, for its characteristics of fast measurement, easy sample preparation, and molecular structure analyzing capability. However, fluorescence disturbance brings a big trouble to these applications, with strong fluorescence background covering up the weak Raman signals. Recently shifted excitation Raman difference spectroscopy (SERDS) not only can completely remove the fluorescence background, but also can be easily integrated into portable Raman spectrometers. Usually, SERDS uses two lasers with small wavelength gap to excite the sample, then acquires two spectra, and subtracts one to the other to get the difference spectrum, where the fluorescence background will be rejected. So, one key aspects of successfully applying SERDS method is to obtain a dual-wavelength laser source. In this paper, a dual-wavelength laser device design based on the principles of external cavity diode laser (ECDL) is proposed, which is low-cost and compact. In addition, it has good mechanical stability because of no moving parts. These features make it an ideal laser source for SERDS technique. The experiment results showed that the device can emit narrow-spectral-width lasers of two wavelengths, with the gap smaller than 2 nanometers. The laser power corresponding to each wavelength can be up to 100mW.

  9. Optimization of dual-wavelength intravascular photoacoustic imaging of atherosclerotic plaques using Monte Carlo optical modeling

    Science.gov (United States)

    Dana, Nicholas; Sowers, Timothy; Karpiouk, Andrei; Vanderlaan, Donald; Emelianov, Stanislav

    2017-10-01

    Coronary heart disease (the presence of coronary atherosclerotic plaques) is a significant health problem in the industrialized world. A clinical method to accurately visualize and characterize atherosclerotic plaques is needed. Intravascular photoacoustic (IVPA) imaging is being developed to fill this role, but questions remain regarding optimal imaging wavelengths. We utilized a Monte Carlo optical model to simulate IVPA excitation in coronary tissues, identifying optimal wavelengths for plaque characterization. Near-infrared wavelengths (≤1800 nm) were simulated, and single- and dual-wavelength data were analyzed for accuracy of plaque characterization. Results indicate light penetration is best in the range of 1050 to 1370 nm, where 5% residual fluence can be achieved at clinically relevant depths of ≥2 mm in arteries. Across the arterial wall, fluence may vary by over 10-fold, confounding plaque characterization. For single-wavelength results, plaque segmentation accuracy peaked at 1210 and 1720 nm, though correlation was poor (blood, a primary and secondary wavelength near 1210 and 1350 nm, respectively, may offer the best implementation of dual-wavelength IVPA imaging. These findings could guide the development of a cost-effective clinical system by highlighting optimal wavelengths and improving plaque characterization.

  10. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.

    Science.gov (United States)

    Li, Zhan; Jupp, David L B; Strahler, Alan H; Schaaf, Crystal B; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S; Chakrabarti, Supriya; Cook, Timothy A; Paynter, Ian; Saenz, Edward J; Schaefer, Michael

    2016-03-02

    Radiometric calibration of the Dual-Wavelength Echidna(®) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρ(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρ(app) are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρ(app) error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρ(app) from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars.

  11. Terahertz-wave differential detection based on simultaneous dual-wavelength up-conversion

    Directory of Open Access Journals (Sweden)

    Yuma Takida

    2017-03-01

    Full Text Available We report a terahertz (THz-wave differential detection based on simultaneous dual-wavelength up-conversion in a nonlinear optical MgO:LiNbO3 crystal with optical and electronic THz-wave sources. The broadband parametric gain and noncollinear phase-matching of MgO:LiNbO3 provide efficient conversion from superposed THz waves to spatially distributed near-infrared (NIR beams to function as a dispersive THz-wave spectrometer without any additional dispersive element. We show that the μW-level THz waves from two independent sources, a 0.78-THz injection-seeded THz-wave parametric generator (is-TPG and a 1.14-THz resonant tunneling diode (RTD, are simultaneously up-converted to two NIR waves and then detected with two NIR photodetectors. By applying a balanced detection scheme to this dual-frequency detection, we demonstrate THz-wave differential imaging of maltose and polyethylene pellets in the transmission geometry. This dual-wavelength detection is applicable to more than three frequencies and broadband THz-wave radiation for real-time THz-wave spectroscopic detection and imaging.

  12. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.

    Science.gov (United States)

    He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang

    2009-11-23

    A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz).

  13. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    International Nuclear Information System (INIS)

    Burkhard, Boeckem

    1999-01-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle Δβ, is to first approximation proportional to the refraction angle: β IR ν(β blue - β IR ) = ν Δβ, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of the in [1] proposed conception of the dual-wavelength

  14. Reduction of implantation shadowing effect by dual-wavelength exposure photo process

    CERN Document Server

    Gu, Yiming; Lee Sang Yun; Roche, William; Sturtevant, John

    2003-01-01

    As transistor engineering continues to well below 100 nm length devices, ion implantation process tolerances are making these formerly "non-critical" lithography levels more and more difficult. In order to minimize the channeling effect and to obtain a controllable profile of dopant, an angle implantation is often required. However, a shadow area of resist pattern is always accompanied with an angle implantation. This shadowing effect consumes silicon real estate, and reduces the line edge placement (LEP) tolerances. Therefore, methodologies to reduce the shadowing effect in angled implantation become a critical consideration not only for device engineering but also for photolithography. Based on the model analysis, simulation and experiments, this paper presents an effective novel process utilizing dual-wavelength exposure (DWE) to reduce the shadowing effect. The DWE process is realized by two consecutive exposures for an I-line resist with a DUV stepper/scanner and an I-line stepper. The process leverages ...

  15. Integrated nanohole array surface plasmon resonance sensing device using a dual-wavelength source

    International Nuclear Information System (INIS)

    Escobedo, C; Vincent, S; Choudhury, A I K; Campbell, J; Gordon, R; Brolo, A G; Sinton, D

    2011-01-01

    In this paper, we demonstrate a compact integrated nanohole array-based surface plasmon resonance sensing device. The unit includes a LED light source, driving circuitry, CCD detector, microfluidic network and computer interface, all assembled from readily available commercial components. A dual-wavelength LED scheme was implemented to increase spectral diversity and isolate intensity variations to be expected in the field. The prototype shows bulk sensitivity of 266 pixel intensity units/RIU and a limit of detection of 6 × 10 −4 RIU. Surface binding tests were performed, demonstrating functionality as a surface-based sensing system. This work is particularly relevant for low-cost point-of-care applications, especially those involving multiple tests and field studies. While nanohole arrays have been applied to many sensing applications, and their suitability to device integration is well established, this is the first demonstration of a fully integrated nanohole array-based sensing device.

  16. Application of dual-wavelength spectrophotometry to the uranium ore analysis

    International Nuclear Information System (INIS)

    Jin Wenlong; Yao Mingxia; Yin Zinan; Guo Hancheng.

    1988-03-01

    In the buffer solution (pH 2.2) with citric acid and sodium hydrogen phosphate, the uranium in ores can be directly determined with arsenazo III by dual-wavelength spectrophotometric method when Triethylenetetraminehexaacetic acid, diethylenetriaminepentaacetic acid and maleic acid are added as masking agents. The measuring wavelength and referential wavelength are 653.0 nm and 607.5 nm respectively. The interference of calcium can be fully eliminated because of its equivalent absorbance at these two wavelengths. The method is simple and rapid. The coefficient of variation (n=5) is less than 5% for 0.06% ∼ 0.5% of uranium in five certified reference materials. The values obtained for U agree with the certified values

  17. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation

    International Nuclear Information System (INIS)

    Luo, A-P; Luo, Z-C; Xu, W-C; Dvoyrin, V V; Mashinsky, V M; Dianov, E M

    2011-01-01

    We demonstrate a tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser by using nonlinear polarization rotation (NPR) technique. Exploiting the spectral filtering effect caused by the combination of the polarizer and intracavity birefringence, the wavelength separation of dual-wavelength mode-locked pulses can be flexibly tuned between 2.38 and 20.45 nm. Taking the advantage of NPR-induced intensity-dependent loss to suppress the mode competition, the stable dual-wavelength pulses output is obtained at room temperature. Moreover, the dual-wavelength switchable operation is achieved by simply rotating the polarization controllers (PCs)

  18. [Study of Reaction Dynamics between Bovine Serum Albumin and Folic Acid by Stopped-Flow/Fluorescence].

    Science.gov (United States)

    Ye, San-xian; Luo, Yun-jing; Qiao, Shu-liang; Li, Li; Liu, Cai-hong; Shi, Jian-long; An, Xue-jing

    2016-01-01

    As a kind of coenzyme of one-carbon enzymes in vivo, folic acid belongs to B vitamins, which can interact with other vitamins and has great significance for converting among amino acids, dividing growth of cells and protein synthesis reactions. Half-life, concentration and reaction rate constant of drugs are important parameters in pharmacokinetic study. In this paper, by utilizing fluorescence spectrophotometer and stopped-flow spectrum analyzer, reaction kinetic parameters between bovine serum albumin(BSA) and folic acid in a bionic system have been investigated, which provide references for parameters of drug metabolism related to folic acid. By using Stern-Volmer equation dealing with fluorescence quenching experiments data, we concluded that under 25, 30, and 37 degrees C, the static quenching constants of folic acid to intrinsic fluorescence from bovine serum albumin were 2.455 x 10(10), 4.900 x 10(10) and 6.427 x 10(10) L x mol(-1) x s(-1) respectively; The results of kinetic reaction rate have shown that the reaction rate of BSA and folic acid are greater than 100 mol x L(-1) x s(-1) at different temperatures, pH and buffering media, illustrating that the quenching mechanism between BSA and folic acid is to form composite static quenching process. Reaction concentration of bovine serum albumin and its initial concentration were equal to the secondary reaction formula, and the correlation coefficient was 0.998 7, while the half-life (t1/2) was 0.059 s at physiological temperature. With the increase of folic acid concentration, the apparent rate constant of this reaction had a linear increasing trend, the BSA fluorescence quenching rate constant catalyzed by folic acid was 3.174 x 10(5) mol x L(-1) x s(-1). Furthermore, with different buffer, the apparent rate constant and reaction rate constant of BSA interacting with folic acid were detected to explore the influence on the reaction under physiological medium, which is of great significance to determine the

  19. Dual wavelength multiple-angle light scattering system for cryptosporidium detection

    Science.gov (United States)

    Buaprathoom, S.; Pedley, S.; Sweeney, S. J.

    2012-06-01

    A simple, dual wavelength, multiple-angle, light scattering system has been developed for detecting cryptosporidium suspended in water. Cryptosporidium is a coccidial protozoan parasite causing cryptosporidiosis; a diarrheal disease of varying severity. The parasite is transmitted by ingestion of contaminated water, particularly drinking-water, but also accidental ingestion of bathing-water, including swimming pools. It is therefore important to be able to detect these parasites quickly, so that remedial action can be taken to reduce the risk of infection. The proposed system combines multiple-angle scattering detection of a single and two wavelengths, to collect relative wavelength angle-resolved scattering phase functions from tested suspension, and multivariate data analysis techniques to obtain characterizing information of samples under investigation. The system was designed to be simple, portable and inexpensive. It employs two diode lasers (violet InGaN-based and red AlGaInP-based) as light sources and silicon photodiodes as detectors and optical components, all of which are readily available. The measured scattering patterns using the dual wavelength system showed that the relative wavelength angle-resolved scattering pattern of cryptosporidium oocysts was significantly different from other particles (e.g. polystyrene latex sphere, E.coli). The single wavelength set up was applied for cryptosporidium oocysts'size and relative refractive index measurement and differential measurement of the concentration of cryptosporidium oocysts suspended in water and mixed polystyrene latex sphere suspension. The measurement results showed good agreement with the control reference values. These results indicate that the proposed method could potentially be applied to online detection in a water quality control system.

  20. Design and implementation of a dual-wavelength intrinsic fluorescence camera system

    Science.gov (United States)

    Ortega-Martinez, Antonio; Musacchia, Joseph J.; Gutierrez-Herrera, Enoch; Wang, Ying; Franco, Walfre

    2017-03-01

    Intrinsic UV fluorescence imaging is a technique that permits the observation of spatial differences in emitted fluorescence. It relies on the fluorescence produced by the innate fluorophores in the sample, and thus can be used for marker-less in-vivo assessment of tissue. It has been studied as a tool for the study of the skin, specifically for the classification of lesions, the delimitation of lesion borders and the study of wound healing, among others. In its most basic setup, a sample is excited with a narrow-band UV light source and the resulting fluorescence is imaged with a UV sensitive camera filtered to the emission wavelength of interest. By carefully selecting the excitation/emission pair, we can observe changes in fluorescence associated with physiological processes. One of the main drawbacks of this simple setup is the inability to observe more than a single excitation/emission pair at the same time, as some phenomena are better studied when two or more different pairs are studied simultaneously. In this work, we describe the design and the hardware and software implementation of a dual wavelength portable UV fluorescence imaging system. Its main components are an UV camera, a dual wavelength UV LED illuminator (295 and 345 nm) and two different emission filters (345 and 390 nm) that can be swapped by a mechanical filter wheel. The system is operated using a laptop computer and custom software that performs basic pre-processing to improve the image. The system was designed to allow us to image fluorescent peaks of tryptophan and collagen cross links in order to study wound healing progression.

  1. Optical fiber spectrophotometer

    International Nuclear Information System (INIS)

    Zhuang Weixin; Tian Guocheng; Ye Guoan; Zhou Zhihong; Cheng Weiwei; Huang Lifeng; Liu Suying; Tang Yanji; Hu Jingxin; Zhao Yonggang

    1998-12-01

    A method called 'Two Arm's Photo out and Electricity Send-back' is introduced. UV-365 UV/VIS/NIR spectrophotometer has been reequipped by this way with 5 meters long optical fiber. Another method called 'One Arm's Photo out and Photo Send-back' is also introduced. λ 19 UV/VIS/NIR spectrophotometer has been reequipped by this way with 10 meters long optical fiber. Optical fiber spectrophotometer can work as its main set. So it is particularly applicable to radio activity work

  2. Estimate of rain evaporation rates from dual-wavelength lidar measurements: comparison against a model analytical solution

    Science.gov (United States)

    Lolli, Simone; Di Girolamo, Paolo; Demoz, Belay; Li, Xiaowen; Welton, Ellsworth J.

    2018-04-01

    Rain evaporation significantly contributes to moisture and heat cloud budgets. In this paper, we illustrate an approach to estimate the median volume raindrop diameter and the rain evaporation rate profiles from dual-wavelength lidar measurements. These observational results are compared with those provided by a model analytical solution. We made use of measurements from the multi-wavelength Raman lidar BASIL.

  3. Dual wavelength Mode-Locking of InAs/InP quantum dot laser diodes at 1.5µm

    NARCIS (Netherlands)

    Tahvili, M.S.; Heck, M.J.R.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2011-01-01

    We report on stable dual-wavelength mode-locking of 3.1GHz and 10GHz two-section InAs/InP(100) quantum dot laser diodes. Evaluation of relative time delay between different spectral components indicates opposite sign of chirp over the two spectral lobes

  4. Multichannel scanning spectrophotometer

    International Nuclear Information System (INIS)

    Lagutin, A.F.

    1979-01-01

    A spectrophotometer designed in the Crimea astrophysical observatory is described. The spectrophotometer is intended for the installation at the telescope to measure energy distribution in the star spectra in the 3100-8550 A range. The device is made according to the scheme with a fixed diffraction lattice. The choice of the optical kinematic scheme is explained. The main design elements are shown. Some singularities of the scanning drive kinematics are considered. The device performance is given

  5. Association of age and macular pigment optical density using dual-wavelength autofluorescence imaging

    Directory of Open Access Journals (Sweden)

    Lima VC

    2013-04-01

    Full Text Available Verônica Castro Lima,1,2 Richard B Rosen,1,3 Tiago Santos Prata,2 Syril Dorairaj,4 Leigh Spielberg,1 Mauricio Maia,2 Juliana M Sallum21Retina Service, Department of Ophthalmology, The New York Eye and Ear Infirmary, New York, NY, 2Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil; 3New York Medical College, New York, NY, 4Department of Ophthalmology, Mayo Clinic, Jacksonville, FL, USABackground: Several lines of evidence suggest that macular pigment may play a protective role against age-related macular degeneration, but the influence of age on macular pigment density levels remains unclear. This study was designed to investigate the relationship between age and the normal distribution of macular pigment optical density (MPOD values surrounding the fovea.Methods: Consecutive healthy subjects with no evidence of ocular disease were enrolled in this study. After inclusion, MPOD values were measured at specific eccentricities (0.5, 1, and 2 degrees from the foveal center using a dual-wavelength autofluorescence method employing a modified confocal scanning laser ophthalmoscope. Whenever both eyes were eligible, one was randomly selected for analysis. The correlation between age and MPOD values was investigated using regression analysis.Results: Thirty subjects (30 eyes were included (mean age 48.6 ± 16.4 [range 23–77] years. Significant differences were found between MPOD values measured at 0.5, 1, and 2 degrees from the center of the fovea (0.49 ± 0.12 density units, 0.37 ± 0.11 density units, and 0.13 ± 0.05 density units, respectively, P < 0.05. Significant correlations between age and MPOD values at 0.5 and 1 degree were found (P ≤ 0.02. Values measured at 2 degrees did not correlate significantly with age (P = 0.06.Conclusion: In healthy subjects, MPOD values were highest near the foveal center. These values appeared to increase during adulthood (peak at 45–50 years, followed by a gradual reduction

  6. Noncontact simultaneous dual wavelength photoplethysmography: A further step toward noncontact pulse oximetry

    International Nuclear Information System (INIS)

    Humphreys, Kenneth; Ward, Tomas; Markham, Charles

    2007-01-01

    We present a camera-based device capable of capturing two photoplethysmographic (PPG) signals at two different wavelengths simultaneously, in a remote noncontact manner. The system comprises a complementary metal-oxide semiconductor camera and dual wavelength array of light emitting diodes (760 and 880 nm). By alternately illuminating a region of tissue with each wavelength of light, and detecting the backscattered photons with the camera at a rate of 16 frames/wavelength s, two multiplexed PPG wave forms are simultaneously captured. This process is the basis of pulse oximetry, and we describe how, with the inclusion of a calibration procedure, this system could be used as a noncontact pulse oximeter to measure arterial oxygen saturation (S p O 2 ) remotely. Results from an experiment on ten subjects, exhibiting normal S p O 2 readings, that demonstrate the instrument's ability to capture signals from a range of subjects under realistic lighting and environmental conditions are presented. We compare the signals captured by the noncontact system to a conventional PPG signal captured concurrently from a finger, and show by means of a J. Bland and D. Altman [Lancet 327, 307 (1986); Statistician 32, 307 (1983)] test, the noncontact device to be comparable to a contact device as a monitor of heart rate. We highlight some considerations that should be made when using camera-based ''integrative'' sampling methods and demonstrate through simulation, the suitability of the captured PPG signals for application of existing pulse oximetry calibration procedures

  7. Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy

    Science.gov (United States)

    Kapsalidis, Filippos; Shahmohammadi, Mehran; Süess, Martin J.; Wolf, Johanna M.; Gini, Emilio; Beck, Mattias; Hundt, Morten; Tuzson, Béla; Emmenegger, Lukas; Faist, Jérôme

    2018-06-01

    We report on the design, fabrication, and performance of dual-wavelength distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at several wavelengths in the mid-infrared (mid-IR) spectrum. In this work, two new designs are presented: for the first one, called "Neighbour" DFB, two single-mode DFB QCLs are fabricated next to each other, with minimal lateral distance, to allow efficient beam-coupling into multi-pass gas cells. In addition, the minimal distance allows either laser to be used as an integrated heater for the other, allowing to extend the tuning range of its neighbour without any electrical cross-talk. For the second design, the Vernier effect was used to realize a switchable DFB laser, with two target wavelengths which are distant by about 300 cm^{-1}. These devices are promising laser sources for Tunable Diode Laser Absorption Spectroscopy applications targeting simultaneous detection of multiple gasses, with distant spectral features, in compact and mobile setups.

  8. Multi-species trace gas sensing with dual-wavelength QCLs

    Science.gov (United States)

    Hundt, P. Morten; Tuzson, Béla; Aseev, Oleg; Liu, Chang; Scheidegger, Philipp; Looser, Herbert; Kapsalidis, Filippos; Shahmohammadi, Mehran; Faist, Jérôme; Emmenegger, Lukas

    2018-06-01

    Instrumentation for environmental monitoring of gaseous pollutants and greenhouse gases tends to be complex, expensive, and energy demanding, because every compound measured relies on a specific analytical technique. This work demonstrates an alternative approach based on mid-infrared laser absorption spectroscopy with dual-wavelength quantum cascade lasers (QCLs). The combination of two dual- and one single-DFB QCL yields high-precision measurements of CO (0.08 ppb), CO2 (100 ppb), NH3 (0.02 ppb), NO (0.4 ppb), NO2 (0.1 ppb), N2O (0.045 ppb), and O3 (0.11 ppb) simultaneously in a compact setup (45 × 45 cm2). The lasers are driven time-multiplexed in intermittent continuous wave mode with a repetition rate of 1 kHz. The individual spectra are real-time averaged (1 s) by an FPGA-based data acquisition system. The instrument was assessed for environmental monitoring and benchmarked with reference instrumentation to demonstrate its potential for compact multi-species trace gas sensing.

  9. Efficient color-tunable multiexcitonic dual wavelength emission from Type II semiconductor tetrapods.

    Science.gov (United States)

    Wu, Wen-Ya; Li, Mingjie; Lian, Jie; Wu, Xiangyang; Yeow, Edwin K L; Jhon, Mark H; Chan, Yinthai

    2014-09-23

    We synthesized colloidal InP/ZnS seeded CdS tetrapods by harnessing the structural stability of the InP/ZnS seed nanocrystals at the high reaction temperatures needed to grow the CdS arms. Because of an unexpected Type II band alignment at the interface of the InP/ZnS core and CdS arms that enhanced the occurrence of radiative excitonic recombination in CdS, these tetrapods were found to be capable of exhibiting highly efficient multiexcitonic dual wavelength emission of equal intensity at spectrally distinct wavelengths of ∼485 and ∼675 nm. Additionally, the Type II InP/ZnS seeded CdS tetrapods displayed a wider range of pump-dependent emission color-tunability (from red to white to blue) within the context of a CIE 1931 chromaticity diagram and possessed higher photostability due to suppressed multiexcitonic Auger recombination when compared to conventional Type I CdSe seeded CdS tetrapods. By employing time-resolved spectroscopy measurements, we were able to attribute the wide emission color-tunability to the large valence band offset between InP and CdS. This work highlights the importance of band alignment in the synthetic design of semiconductor nanoheterostructures, which can exhibit color-tunable multiwavelength emission with high efficiency and photostability.

  10. Laser Treatment of Professional Tattoos With a 1064/532-nm Dual-Wavelength Picosecond Laser.

    Science.gov (United States)

    Kauvar, Arielle N B; Keaney, Terrence C; Alster, Tina

    2017-12-01

    Picosecond-domain laser pulses improve the photomechanical disruption of tattoos. This study evaluates the efficacy and safety of a novel, dual-wavelength, 1,064/532-nm, picosecond-domain laser for tattoo clearance. This was a prospective, self-controlled, clinical study of 34 subjects with 39 tattoos treated at 2 sites with an interval of 4.8 ± 1.6 weeks and up to 10 treatments (mean, 7.5). Blinded evaluation and investigator assessment of serial digital images was performed to evaluate treatment efficacy in the 36 tattoos that received at least 3 treatments. Investigators also assessed efficacy before each treatment visit up to 10 treatments. Safety and tolerability was evaluated for all 39 tattoos that underwent at least 1 treatment. Blinded evaluation demonstrated that lightening of tattoos was achieved in all subjects, with 86% (31 of 36 tattoos) showing at least a 50% clearance after 3 treatments. Adverse events were few and transient in nature. Patient satisfaction and treatment tolerability were high. Treatment of single-colored and multicolored tattoos with this novel 1,064/532-nm picosecond laser is highly safe and effective.

  11. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.

    Science.gov (United States)

    Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing

    2014-10-01

    A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively.

  12. Noncontact simultaneous dual wavelength photoplethysmography: A further step toward noncontact pulse oximetry

    Science.gov (United States)

    Humphreys, Kenneth; Ward, Tomas; Markham, Charles

    2007-04-01

    We present a camera-based device capable of capturing two photoplethysmographic (PPG) signals at two different wavelengths simultaneously, in a remote noncontact manner. The system comprises a complementary metal-oxide semiconductor camera and dual wavelength array of light emitting diodes (760 and 880nm). By alternately illuminating a region of tissue with each wavelength of light, and detecting the backscattered photons with the camera at a rate of 16frames/wavelengths, two multiplexed PPG wave forms are simultaneously captured. This process is the basis of pulse oximetry, and we describe how, with the inclusion of a calibration procedure, this system could be used as a noncontact pulse oximeter to measure arterial oxygen saturation (SpO2) remotely. Results from an experiment on ten subjects, exhibiting normal SpO2 readings, that demonstrate the instrument's ability to capture signals from a range of subjects under realistic lighting and environmental conditions are presented. We compare the signals captured by the noncontact system to a conventional PPG signal captured concurrently from a finger, and show by means of a J. Bland and D. Altman [Lancet 327, 307 (1986); Statistician 32, 307 (1983)] test, the noncontact device to be comparable to a contact device as a monitor of heart rate. We highlight some considerations that should be made when using camera-based "integrative" sampling methods and demonstrate through simulation, the suitability of the captured PPG signals for application of existing pulse oximetry calibration procedures.

  13. Using a fast dual-wavelength imaging ellipsometric system to measure the flow thickness profile of an oil thin film

    Science.gov (United States)

    Kuo, Chih-Wei; Han, Chien-Yuan; Jhou, Jhe-Yi; Peng, Zeng-Yi

    2017-11-01

    Dual-wavelength light sources with stroboscopic illumination technique were applied in a process of photoelastic modulated ellipsometry to retrieve two-dimensional ellipsometric parameters of thin films on a silicon substrate. Two laser diodes were alternately switched on and modulated by a programmable pulse generator to generate four short pulses at specific temporal phase angles in a modulation cycle, and short pulses were used to freeze the intensity variation of the PEM modulated signal that allows ellipsometric images to be captured by a charge-coupled device. Although the phase retardation of a photoelastic modulator is related to the light wavelength, we employed an equivalent phase retardation technique to avoid any setting from the photoelastic modulator. As a result, the ellipsometric parameters of different wavelengths may be rapidly obtained using this dual-wavelength ellipsometric system every 4 s. Both static and dynamic experiments are demonstrated in this work.

  14. Stable Dual-Wavelength Fibre Laser with Bragg Gratings Fabricated in a Polarization-Maintaining Erbium-Doped Fibre

    International Nuclear Information System (INIS)

    Lin, Wang; Feng-Ping, Yan; Xiang-Qiao, Mao; Shui-Sheng, Jian

    2008-01-01

    A new polarization-independent dual-wavelength fibre laser by fabricating a uniform FBG and a chirped FBG in a polarization-maintaining erbium-doped fibre (PM-EDF) is proposed and demonstrated. The wavelength spacing is 0.18nm and the optical signal-to-noise ratio is greater than 50dB with pump power of 246mW. Chirped FBG is used to make the reflectivity wavelengths of two PM-FBGs match easier. Since both EDF and FBGs are polarization-maintaining without splices and the two wavelengths are polarization-independent, the maximum amplitude variation and wavelength shifts for both lasing wavelength with 3-min intervals over a period of six hours are less than 0.2 dB and 0.005 nm, respectively, which shows stable dual-wavelength output

  15. Association of age and macular pigment optical density using dual-wavelength autofluorescence imaging.

    Science.gov (United States)

    Lima, Verônica Castro; Rosen, Richard B; Prata, Tiago Santos; Dorairaj, Syril; Spielberg, Leigh; Maia, Mauricio; Sallum, Juliana M

    2013-01-01

    Several lines of evidence suggest that macular pigment may play a protective role against age-related macular degeneration, but the influence of age on macular pigment density levels remains unclear. This study was designed to investigate the relationship between age and the normal distribution of macular pigment optical density (MPOD) values surrounding the fovea. Consecutive healthy subjects with no evidence of ocular disease were enrolled in this study. After inclusion, MPOD values were measured at specific eccentricities (0.5, 1, and 2 degrees) from the foveal center using a dual-wavelength autofluorescence method employing a modified confocal scanning laser ophthalmoscope. Whenever both eyes were eligible, one was randomly selected for analysis. The correlation between age and MPOD values was investigated using regression analysis. Thirty subjects (30 eyes) were included (mean age 48.6 ± 16.4 [range 23-77] years). Significant differences were found between MPOD values measured at 0.5, 1, and 2 degrees from the center of the fovea (0.49 ± 0.12 density units, 0.37 ± 0.11 density units, and 0.13 ± 0.05 density units, respectively, P < 0.05). Significant correlations between age and MPOD values at 0.5 and 1 degree were found (P ≤ 0.02). Values measured at 2 degrees did not correlate significantly with age (P = 0.06). In healthy subjects, MPOD values were highest near the foveal center. These values appeared to increase during adulthood (peak at 45-50 years), followed by a gradual reduction after 60 years of age.

  16. Dual-wavelength photothermal optical coherence tomography for blood oxygen saturation measurement

    Science.gov (United States)

    Yin, Biwei; Kuranov, Roman V.; McElroy, Austin B.; Milner, Thomas E.

    2013-03-01

    We report design and demonstration of a dual wavelength photothermal (DWP) optical coherence tomography (OCT) system for imaging of a phantom microvessel and measurement of hemoglobin oxygen saturation (SO2) level. The DWP-OCT system contains a swept-source (SS) two-beam phase-sensitive (PhS) OCT system (1060 nm) and two intensity modulated photothermal excitation lasers (770 nm and 800 nm). The PhS-OCT probe beam (1060 nm) and photothermal excitation beams are combined into one single-mode optical fiber. A galvanometer based two-dimensional achromatic scanning system is designed to provide 14 μm lateral resolution for the PhS-OCT probe beam (1060 nm) and 13 μm lateral resolution for photothermal excitation beams. DWP-OCT system's sensitivity is 102 dB, axial resolution is 13 μm in tissue and uses a real-time digital dispersion compensation algorithm. Noise floor for optical pathlength measurements is 300 pm in the signal frequency range (380-400 Hz) of photothermal modulation frequencies. Blood SO2 level is calculated from measured optical pathlength (op) signal in a 300 μm diameter microvessel phantom introduced by the two photothermal excitation beams. En-face and B-scan images of a phantom microvessel are recorded, and six blood samples' SO2 levels are measured using DWP-OCT and compared with values provided by a commercial blood oximeter. A mathematical model indicates thermal diffusion introduces a systematic artifact that over-estimates SO2 values and is consistent with measured data.

  17. Single- and dual-wavelength laser pulses induced modification in 10×(Al/Ti)/Si multilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Salatić, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Petrović, S., E-mail: spetro@vinca.rs [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Peruško, D. [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Čekada, M.; Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Pantelić, D.; Jelenković, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2016-01-01

    Graphical abstract: - Highlights: • Experimental and numerical study of laser-induced ablation and micro-sized crater formation. • Dual-wavelength pulses induce creation of wider and deeper craters due to synergies of two processes. • Sunflower-like structure formed by dual-wavelength pulses at low irradiance. • Numerical model of nanosecond pulsed laser ablation for complex (Al/Ti)/Si system has been developed. - Abstract: The surface morphology of the ablation craters created in the multilayer 10×(Al/Ti)/Si system by nanosecond laser pulses at single- and dual wavelength has been studied experimentally and numerically. A complex multilayer thin film including ten (Al/Ti) bilayers deposited by ion sputtering on Si(1 0 0) substrate to a total thickness of 260 nm were illuminated at different laser irradiance in the range 0.25–3.5 × 10{sup 9} W cm{sup −2}. Single pulse laser irradiation was done at normal incidence in air, with the single wavelength, either at 532 nm or 1064 nm or with both laser light simultaneously in the ratio of 1:10 for energy per pulse between second harmonic and 1064 nm. Most of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the sample surface. The results show an increase in surface roughness, formation of specific nanostructures, appearance of hydrodynamic features and ablation of surface material with crater formation. Applying a small fraction (10%) of the second harmonic in dual-wavelength pulses, a modification of the 10×(Al/Ti)/Si system by a single laser pulse was reflected in the formation of wider and/or deeper craters. Numerical calculations show that the main physical mechanism in ablation process is normal evaporation without phase explosion. The calculated and experimental results agree relatively well for the whole irradiance range, what makes the model applicable to complex Al/Ti multilayer systems.

  18. In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion.

    Science.gov (United States)

    Pirnstill, Casey W; Malik, Bilal H; Gresham, Vincent C; Coté, Gerard L

    2012-09-01

    Over the past 35 years considerable research has been performed toward the investigation of noninvasive and minimally invasive glucose monitoring techniques. Optical polarimetry is one noninvasive technique that has shown promise as a means to ascertain blood glucose levels through measuring the glucose concentrations in the anterior chamber of the eye. However, one of the key limitations to the use of optical polarimetry as a means to noninvasively measure glucose levels is the presence of sample noise caused by motion-induced time-varying corneal birefringence. In this article our group presents, for the first time, results that show dual-wavelength polarimetry can be used to accurately detect glucose concentrations in the presence of motion-induced birefringence in vivo using New Zealand White rabbits. In total, nine animal studies (three New Zealand White rabbits across three separate days) were conducted. Using the dual-wavelength optical polarimetric approach, in vivo, an overall mean average relative difference of 4.49% (11.66 mg/dL) was achieved with 100% Zone A+B hits on a Clarke error grid, including 100% falling in Zone A. The results indicate that dual-wavelength polarimetry can effectively be used to significantly reduce the noise due to time-varying corneal birefringence in vivo, allowing the accurate measurement of glucose concentration in the aqueous humor of the eye and correlating that with blood glucose.

  19. A highly stable and switchable dual-wavelength laser using coupled microfiber Mach-Zehnder interferometer as an optical filter

    Science.gov (United States)

    Jasim, A. A.; Ahmad, H.

    2017-12-01

    The generation and switching of dual-wavelength laser based on compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is reported. The CM-MZI is constructed by overlapping two portions of a single tapered optical fiber which has a diameter of 9 μm as to create multi-mode interference and also to produce spatial mode beating as to suppress mode competition in the homogeneous gain medium. The system is able to generate a dual-wavelength laser output that can be switched with the aid of the polarization rotation technique. Four dual-wavelength oscillation pairs are obtained from the interference fringe peaks of the CM-MZI comb filter with a switched channel spacing of 1.5 nm, 3.0 nm, and 6.0 nm. The wavelength spacing is stable at different pump powers. The lasing wavelength has a 3-dB linewidth of about 30 pm and peak-to-floor ration of about 55 dB at a pump power of 38 mW.

  20. Dual wavelength imaging of a scrape-off layer in an advanced beam-driven field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Osin, D.; Schindler, T., E-mail: dosin@trialphaenergy.com [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688-7010 (United States)

    2016-11-15

    A dual wavelength imaging system has been developed and installed on C-2U to capture 2D images of a He jet in the Scrape-Off Layer (SOL) of an advanced beam-driven Field-Reversed Configuration (FRC) plasma. The system was designed to optically split two identical images and pass them through 1 nm FWHM filters. Dual wavelength images are focused adjacent on a large format CCD chip and recorded simultaneously with a time resolution down to 10 μs using a gated micro-channel plate. The relatively compact optical system images a 10 cm plasma region with a spatial resolution of 0.2 cm and can be used in a harsh environment with high electro-magnetic noise and high magnetic field. The dual wavelength imaging system provides 2D images of either electron density or temperature by observing spectral line pairs emitted by He jet atoms in the SOL. A large field of view, combined with good space and time resolution of the imaging system, allows visualization of macro-flows in the SOL. First 2D images of the electron density and temperature observed in the SOL of the C-2U FRC are presented.

  1. The effects of LMWOAs on biodegradation of multi-component PAHs in aqueous solution using dual-wavelength fluorimetry

    International Nuclear Information System (INIS)

    Wei Xingyuan; Sang Lingzi; Chen Jianing; Zhu Yaxian; Zhang Yong

    2009-01-01

    Biodegradation of dissolved fluorene (Flu), phenanthrene (Ph) and pyrene (Py), three polycyclic aromatic hydrocarbons (PAHs), singly or as a mixture of the three, by two bacterial strains, MEBIC 5140 (Mycobacterium flavescens) and MEBIC 5141 (Mycobacterium scrofulaceum), as well as the effects of low molecular weight organic acids (LMWOAs), e.g. malic acid, citric acid and butyric acid on biodegradation of the three PAHs in mineral salts medium aqueous solution were investigated using a newly established dual-wavelength fluorimetric method. The results showed that biodegradation processes can be monitored simultaneously, quickly and simply by dual-wavelength fluorimetry. Both co-metabolism and inhibitory effects were found during the biodegradation of the three PAHs by MEBIC 5140 and MEBIC 5141. Positive effects of butyric acid and negative effects of citric acid on biodegradation of the three PAHs in a mixture were observed. - Biodegradation processes of dissolved multi-component PAHs in a mixture and effects of LMWOAs were investigated using a dual-wavelength fluorimetry.

  2. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber

    Science.gov (United States)

    Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2018-06-01

    In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.

  3. Dobson ozone spectrophotometer modification.

    Science.gov (United States)

    Komhyr, W. D.; Grass, R. D.

    1972-01-01

    Description of a modified version of the Dobson ozone spectrophotometer in which several outdated electronic design features have been replaced by circuitry embodying more modern design concepts. The resulting improvement in performance characteristics has been obtained without changing the principle of operation of the original instrument.

  4. Monitoring tree health with a dual-wavelength terrestrial laser scanner

    Science.gov (United States)

    Hancock, S.

    2013-12-01

    harvesting). Trees were arranged so that some were clearly visible to the scanner and could be analysed individually (a best case scenario) whilst others were grouped to form a denser, more realistic canopy (a worse case scenario). A method was developed to simultaneously extract canopy structure (leaf area, tree height and clumping) and leaf biochemistry (EWT) from the laser scanner data. These results were compared to ground to assess their accuracy. References Danson, F. M., Hetherington D., Morsdorf F., Koetz B., Allgower B., 2007. Forest canopy gap fraction from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 4, 157-160. Gaulton R., Danson F. M., Ramirez F. A., Gunawan O., 2013. The potential of dual-wavelength laser scanning for estimating vegetation moisture content. Remote Sensing of Environment, 132, 32-39.

  5. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating

    Science.gov (United States)

    Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2018-03-01

    We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (current and temperature ranges.

  6. Stopped-flow technique for transit time measurement in a gas jet

    International Nuclear Information System (INIS)

    Rengan, K.; Lin, J.; Lim, T.; Meyer, R.A.; Harrell, J.

    1985-01-01

    A 'stopped-flow' technique for the measurement of transit time of reaction products in a gas jet is described. The method involved establishing the gas flow through the jet system when the reactor is operating steadily and allowing the pressure to reach equilibrium values. The gas flow is stopped by means of electrically operated valves. The transit-time measurement is achieved by opening the valves and initiating the multiscanning of total activity simultaneously. The value obtained agrees well with the transit time measured by pulsing the reactor. The 'stopped-flow' technique allows on-line measurement of transit time in any gas jet system where the physical transportation time is the major component of the transit time. This technique is especially useful for systems installed in reactors which do not have pulsing capability. (orig.)

  7. Stopped-flow injection spectrophotometric method for determination of chlorate in soil

    OpenAIRE

    Jaroon Jakmunee

    2008-01-01

    A stopped-flow injection (FI) spectrophotometric procedure based on iodometric reaction for the determination of chlorate has been developed. Standard/sample was injected into a stream of potassium iodide solution and then merged with a stream of hydrochloric acid solution to produce triiodide. By stopping the flow while the sample zone is being in a mixing coil, a slow reaction of chlorate with iodide in acidic medium was promoted to proceed with minimal dispersion of the triiodide product z...

  8. Phase retrieval from the phase-shift moiré fringe patterns in simultaneous dual-wavelength interferometry

    Science.gov (United States)

    Cheng, Jinlong; Gao, Zhishan; Bie, Shuyou; Dou, Yimeng; Ni, Ruihu; Yuan, Qun

    2018-02-01

    Simultaneous dual-wavelength interferometry (SDWI) could extend the measured range of each single-wavelength interferometry. The moiré fringe generated in SDWI indirectly represents the information of the measured long synthetic-wavelength ({λ }{{S}}) phase, thus the phase demodulation is rather arduous. To address this issue, we present a method to convert the moiré fringe pattern into a synthetic-wavelength interferogram (moiré to synthetic-wavelength, MTS). After the square of the moiré fringe pattern in the MTS method, the additive moiré pattern is turned into a multiplicative one. And the synthetic-wavelength interferogram could be obtained by a low-pass filtering in spectrum of the multiplicative moiré fringe pattern. Therefore, when the dual-wavelength interferometer is implemented with the π/2 phase shift at {λ }{{S}}, a sequence of synthetic-wavelength phase-shift interferograms with π/2 phase shift could be obtained after the MTS method processing on the captured moiré fringe patterns. And then the synthetic-wavelength phase could be retrieved by the conventional phase-shift algorithm. Compared with other methods in SDWI, the proposed MTS approach could reduce the restriction of the phase shift and frame numbers for the adoption of the conventional phase-shift algorithm. Following, numerical simulations are executed to evaluate the performance of the MTS method in processing time, frames of interferograms and the phase shift error compensation. And the necessary linear carrier for MTS method is less than 0.11 times of the traditional dual-wavelength spatial-domain Fourier transform method. Finally, the deviations for MTS method in experiment are 0.97% for a step with the height of 7.8 μm and 1.11% for a Fresnel lens with the step height of 6.2328 μm.

  9. A novel dual-wavelength laser stimulator to elicit transient and tonic nociceptive stimulation.

    Science.gov (United States)

    Dong, Xiaoxi; Liu, Tianjun; Wang, Han; Yang, Jichun; Chen, Zhuying; Hu, Yong; Li, Yingxin

    2017-07-01

    This study aimed to develop a new laser stimulator to elicit both transient and sustained heat stimulation with a dual-wavelength laser system as a tool for the investigation of both transient and tonic experimental models of pain. The laser stimulator used a 980-nm pulsed laser to generate transient heat stimulation and a 1940-nm continuous-wave (CW) laser to provide sustained heat stimulation. The laser with 980-nm wavelength can elicit transient pain with less thermal injury, while the 1940-nm CW laser can effectively stimulate both superficial and deep nociceptors to elicit tonic pain. A proportional integral-derivative (PID) temperature feedback control system was implemented to ensure constancy of temperature during heat stimulation. The performance of this stimulator was evaluated by in vitro and in vivo animal experiments. In vitro experiments on totally 120 specimens fresh pig skin included transient heat stimulation by 980-nm laser (1.5 J, 10 ms), sustained heat stimulation by 1940-nm laser (50-55 °C temperature control mode or 1.5 W, 5 min continuous power supply), and the combination of transient/sustained heat stimulation by dual lasers (1.5 J, 10 ms, 980-nm pulse laser, and 1940-nm laser with 50-55 °C temperature control mode). Hemoglobin brushing and wind-cooling methods were tested to find better stimulation model. A classic tail-flick latency (TFL) experiment with 20 Wistar rats was used to evaluate the in vivo efficacy of transient and tonic pain stimulation with 15 J, 100 ms 980-nm single laser pulse, and 1.5 W constant 1940-nm laser power. Ideal stimulation parameters to generate transient pain were found to be a 26.6 °C peak temperature rise and 0.67 s pain duration. In our model of tonic pain, 5 min of tonic stimulation produced a temperature change of 53.7 ± 1.3 °C with 1.6 ± 0.2% variation. When the transient and tonic stimulation protocols were combined, no significant difference was observed depending on the order

  10. A Dual Wavelength Echidna® Lidar (DWEL) for Forest Structure Retrieval

    Science.gov (United States)

    Strahler, A. H.; Douglas, E. S.; Martel, J.; Cook, T.; Mendillo, C.; Marshall, R. A.; Chakrabarti, S.; Schaaf, C.; Woodcock, C. E.; Li, Z.; Yang, X.; Culvenor, D.; Jupp, D.; Newnham, G.; Lovell, J.

    2012-12-01

    A newly-constructed, ground-based lidar scanner designed for automated retrieval of forest structure, the Dual Wavelength Echidna Lidar (DWEL), separates laser "hits" of leaves from hits of trunks and branches using simultaneous laser pulses at 1548 nm, where leaf water content produces strong absorption, and at 1064 nm, where leaves and branches have similar reflectances. The DWEL uses a rotating mirror scan mechanism on a revolving mount, coupled with full digitization of return waveforms, to identify, locate, and parameterize scattering events in the three-dimensional space around the scanner. In the DWEL instrument, the two measurement lasers are triggered simultaneously. Laser pulses are sharply peaked; full-width half-max pulse length of the lasers is 5.1 ns, corresponding to 1.53 m in distance. The laser pulses are expanded and collimated to a 6-mm beam diameter (1/e2), then shaped into a top-hat cross section using a diffraction apparatus. Interchangeable optics provide a beam divergence of 1.25-, 2.5-, or 5-mrad. A mirror and two dichroic filters combine the beams and join them with a visible green continuous-wave marker laser. The combined beam is guided along an optical path to the 10-cm rotating scan mirror. Scan encoders in zenith and azimuth directions resolve the pointing of the instrument to 215 units per 2π radians. Scan resolution has three settings: 1-, 2-, and 4-mrad. Scan time varies with resolution: 11 min at 4 mrad; 41 min at 2 mrad; and 2.7 hr at 1 mrad. The return beam enters the 10-cm diameter Newtonian-Nasmyth telescope and is directed to the receiver assembly, which splits the return beam using a dichroic filter and narrowband pass filters. Two 0.5 mm InGaAs photodiodes measure the return signal, which is sampled by two digitizers at 2 gigasamples per second with 10-bit precision. This provides a 7.5-cm sampling of the 1.53 m pulse, allowing very good reconstruction of the return waveform. The designed signal-to-noise ratio is 10:1 (8

  11. Design and fabrication of a diffractive beam splitter for dual-wavelength and concurrent irradiation of process points.

    Science.gov (United States)

    Amako, Jun; Shinozaki, Yu

    2016-07-11

    We report on a dual-wavelength diffractive beam splitter designed for use in parallel laser processing. This novel optical element generates two beam arrays of different wavelengths and allows their overlap at the process points on a workpiece. To design the deep surface-relief profile of a splitter using a simulated annealing algorithm, we introduce a heuristic but practical scheme to determine the maximum depth and the number of quantization levels. The designed corrugations were fabricated in a photoresist by maskless grayscale exposure using a high-resolution spatial light modulator. We characterized the photoresist splitter, thereby validating the proposed beam-splitting concept.

  12. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms.

    Science.gov (United States)

    Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro

    2015-06-15

    Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.

  13. Development of Raman spectrophotometer

    International Nuclear Information System (INIS)

    Adam, A.I.

    2008-05-01

    In this work, the Raman spectrophotometer HG.2S Jobin Yvon rebuilt and developed, the Raman setup provided as a gift for Neelian University from Amsterdam University. The main parts, which were replaced, include monochromator, an air-cooled photomultiplier tube RCA IP 28, log amplifier, hand scanning lab VIEW card for computer interfacing. The components assembled and the whole device was tested successfully. The developed setup was checked using some standard solutions, which showed perfect consistency with literature in the references and published papers. Solutions included hexane, cyclohexane, carbon tetrachloride, benzene and sodium sulfate.(Author)

  14. Dual-wavelength OR-PAM with compressed sensing for cell tracking in a 3D cell culture system

    Science.gov (United States)

    Huang, Rou-Xuan; Fu, Ying; Liu, Wang; Ma, Yu-Ting; Hsieh, Bao-Yu; Chen, Shu-Ching; Sun, Mingjian; Li, Pai-Chi

    2018-02-01

    Monitoring dynamic interactions of T cells migrating toward tumor is beneficial to understand how cancer immunotherapy works. Optical-resolution photoacoustic microscope (OR-PAM) can provide not only high spatial resolution but also deeper penetration than conventional optical microscopy. With the aid of exogenous contrast agents, the dual-wavelength OR-PAM can be applied to map the distribution of CD8+ cytotoxic T lymphocytes (CTLs) with gold nanospheres (AuNS) under 523nm laser irradiation and Hepta1-6 tumor spheres with indocyanine green (ICG) under 800nm irradiation. However, at 1K laser PRF, it takes approximately 20 minutes to obtain a full sample volume of 160 × 160 × 150 μm3 . To increase the imaging rate, we propose a random non-uniform sparse sampling mechanism to achieve fast sparse photoacoustic data acquisition. The image recovery process is formulated as a low-rank matrix recovery (LRMR) based on compressed sensing (CS) theory. We show that it could be stably recovered via nuclear-norm minimization optimization problem to maintain image quality from a significantly fewer measurement. In this study, we use the dual-wavelength OR-PAM with CS to visualize T cell trafficking in a 3D culture system with higher temporal resolution. Data acquisition time is reduced by 40% in such sample volume where sampling density is 0.5. The imaging system reveals the potential to understand the dynamic cellular process for preclinical screening of anti-cancer drugs.

  15. Dual-wavelength electroluminescence from an n-ZnO/p-GaN heterojunction light emitting diode

    International Nuclear Information System (INIS)

    Tsai, Bor-Sheng; Chiu, Hung-Jen; Chen, Tai-Hong; Lai, Li-Wen; Ho, Chai-Cheng; Liu, Day-Shan

    2015-01-01

    Highlights: • The LEDs fabricated by 450 °C- and 700 °C-annealed n-ZnO/p-GaN heterojunction structures were investigated. • The structure annealed at 700 °C emitted yellowish light composed of the dual-wavelength radiations centered at 420 and 610 nm. • The long-wavelength radiation was attributed to emerge from the deep-level emission and the Ga–O interlayer emission. - Abstract: We investigated the electro-optical properties of light emitting diodes (LEDs) fabricated by using the n-ZnO/p-GaN heterojunction structures annealed at 450 °C and 700 °C, in vacuum ambient. A dominant near-UV emission at approximately 420 nm was observed from the LED fabricated by the 450 °C-annealed n-ZnO/p-GaN heterojunction structure, whereas that of the structure annealed at 700 °C emitted a yellowish light composed of the dual-wavelength emissions centered at 420 and 610 nm. The mechanism responsible for the broad long-wavelength radiation was ascribed to the transitions associated with both the deep-level emissions due to the activation of the native defects on the n-ZnO side surface and the formation of the Ga–O interlayer resulting from the in-diffusion of oxygen atoms to the p-GaN side surface of the n-ZnO/p-GaN interface.

  16. Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber

    International Nuclear Information System (INIS)

    Ahmad, H; Soltanian, M R K; Alimadad, M; Harun, S W

    2014-01-01

    An ultra-stable dual-wavelength saturable absorber based on a cladding-embedded commercial graphene oxide (GO) solution by capillary action in a solid core photonic crystal fiber (PCF) is demonstrated for the first time. The saturation absorption property is achieved through evanescent coupling between the guided light and the cladding-filled graphene layers. Stable spacing dual-wavelength fiber lasing is attained by controlling the polarization state of a simple 0.9 m long ring of highly doped Leikki Er80-8/125 erbium-doped fiber as the primary gain medium with PCF, polarization controller and tunable bandpass filter. Embedded GO is used to generate the desired pulsed output, and the laser is capable of generating pulses having a repetition rate of 24 kHz with an average output power and pulse energy of 0.167 mW and 8.98 nJ, respectively, at the maximum pump power of 220 mW. (paper)

  17. Observation of stable bound soliton with dual-wavelength in a passively mode-locked Er-doped fiber laser

    International Nuclear Information System (INIS)

    Zheng Yu; Tian Jin-Rong; Dong Zi-Kai; Xu Run-Qin; Li Ke-Xuan; Song Yan-Rong

    2017-01-01

    A phase-locked bound state soliton with dual-wavelength is observed experimentally in a passively mode-locked Er-doped fiber (EDF) laser with a fiber loop mirror (FLM). The pulse duration of the soliton is 15 ps and the peak-to-peak separation is 125 ps. The repetition rate of the pulse sequence is 3.47 MHz. The output power is 11.8 mW at the pump power of 128 mW, corresponding to the pulse energy of 1.52 nJ. The FLM with a polarization controller can produce a comb spectrum, which acts as a filter. By adjusting the polarization controller or varying the pump power, the central wavelength of the comb spectrum can be tuned. When it combines with the reflective spectrum of the fiber Bragg grating, the total spectrum of the cavity can be cleaved into two parts, then the bound state soliton with dual-wavelength at 1549.7 nm and 1550.4 nm is obtained. (paper)

  18. Efficient phase locking of two dual-wavelength fiber amplifiers by an all-optical self-feedback loop

    Science.gov (United States)

    Lei, Bing; Chen, Keshan; Yao, Tianfu; Shi, Jianhua; Hu, Haojun

    2017-10-01

    Efficient phase locking of two dual-wavelength fiber amplifiers has been demonstrated by using a self-feedback coupling and intracavity filtering configuration, and the effect of bandwidth and wavelength spacing on their phase locking performances have been investigated in experiment. Two independent fiber lasers with different operating wavelength were combined incoherently by a 3 dB fiber coupler to form a dual-wavelength seed source laser, which was injected into the fiber amplifiers' coupling array through the self-feedback loop. The effect of bandwidth and wavelength spacing was researched by altering the seed laser's pump power and operating wavelengths respectively. As long as the feedback loop and the single-mode fiber filtering configuration were well constructed in the unidirectional ring laser cavity, stable phase locking states and high fringe visibility interference patterns could always be obtained in our experiment. When the spacing of two operating wavelength was varied from 1.6 nm to 19.6 nm, the fringe visibility decreased slightly with the increase of wavelength spacing, and the corresponding fringe visibility was always larger than 0.6. In conclusion, we believe that efficient phase locking of several multi-wavelength laser sources is also feasible by passive self-adjusting methods, and keeping the component laser beams' phase relationship stable and fixed is more important than controlling their operating wavelengths.

  19. Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering

    Directory of Open Access Journals (Sweden)

    Antoun Ayman

    2004-01-01

    Full Text Available Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix.

  20. Atomic absorption spectrophotometer

    International Nuclear Information System (INIS)

    Stockdale, T. J.

    1985-01-01

    In atomic absorption spectrophotometer, a reference path may be provided for radiation which excludes the flame. This radiation provides a signal from a detector which varies only with the instrumental drift produced by variations in the radiation source brightness and by variations in detector gain. The signal can be used to compensate for drift in other signals received through a sample path including the flame. In the present invention, radiation passes through the sample path continuously during measurement, and only through the reference path between sample measurements. Movable mirrors shift the radiation between the paths upon externally applied commands. Conveniently, the reference path measurement is made while the flame is stabilized during the change between samples. The reference path measurements are stored and used to correct for drift

  1. Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser

    Science.gov (United States)

    Chen, Y. J.; Gong, X. H.; Lin, Y. F.; Huang, J. H.; Luo, Z. D.; Huang, Y. D.

    2013-08-01

    Polarized spectroscopic properties related to 1.07 μm laser operation of a 1.8 at.% Nd3+:LaBO2MoO4 crystal grown by the Czochralski method were investigated at room temperature. Using a 2.2-mm-thick, Z-cut Nd3+:LaBO2MoO4 crystal as gain medium, orthogonally polarized dual-wavelength laser at 1,068 and 1,074 nm was first realized in a plano-concave resonator end-pumped by a quasi-continuous-wave 795 nm diode laser. A total output peak power of 1.2 W with slope efficiency of 26 % around 1.07 μm was obtained. The influences of resonator length and pump power on output laser wavelength were also investigated.

  2. Generation of dual-wavelength, synchronized, tunable, high energy, femtosecond laser pulses with nearly perfect gaussian spatial profile

    Science.gov (United States)

    Wang, J.-K.; Siegal, Y.; Lü, C.; Mazur, E.

    1992-07-01

    We use self-phase modulation in a single-mode fiber to produce broadband femtosecond laser pulses. Subsequent amplification through two Bethune cells yields high-energy, tunable, pulses synchronized with the output of an amplified colliding-pulse-modelocked (CPM) laser. We routinely obtain tunable 200 μJ pulses of 42 fs (fwhm) duration with a nearly perfect gaussian spatial profile. Although self-phase modulation in a single-mode fiber is widely used in femtosecond laser systems, amplification of a fiber-generated supercontinuum in a Bethune cell amplifier is a new feature which maintains the high-quality spatial profile while providing high gain. This laser system is particularly well suited for high energy dual-wavelength pump=probe experiments and time-resolved four-wave mixing spectroscopy.

  3. High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser

    International Nuclear Information System (INIS)

    Zhuang, W Z; Chang, M T; Su, K W; Huang, K F; Chen, Y F

    2013-01-01

    We report on high-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser. A semiconductor saturable absorber mirror is developed to achieve synchronously mode-locked operation at two spectral bands centered at 1031.67 and 1049.42 nm with a pulse duration of 1.54 ps and a pulse repetition rate of 80.3 GHz. With a diamond heat spreader to improve the heat removal efficiency, the average output power can be up to 1.1 W at an absorbed pump power of 5.18 W. The autocorrelation traces reveal that the mode-locked pulse is modulated with a beat frequency of 4.92 THz and displays a modulation depth to be greater than 80%. (paper)

  4. A tunable dual-wavelength pump source based on simulated polariton scattering for terahertz-wave generation

    International Nuclear Information System (INIS)

    Sun, Bo; Liu, Jinsong; Yao, Jianquan; Li, Enbang

    2013-01-01

    We propose a dual-wavelength pump source by utilizing stimulated polariton scattering in a LiNbO 3 crystal. The residual pump and the generated tunable Stokes waves can be combined to generate THz-wave generation via difference frequency generation (DFG). With a pump energy of 49 mJ, Stokes waves with a tuning range from 1067.8 to 1074 nm have been generated, and an output energy of up to 14.9 mJ at 1070 nm has been achieved with a conversion efficiency of 21.7%. A sum frequency generation experiment was carried out to demonstrate the feasibility of the proposed scheme for THz-wave DFG. (paper)

  5. A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal

    International Nuclear Information System (INIS)

    Sun, G C; Li, Y D; Zhao, M; Chen, X Y; Wang, J B; Chen, G B

    2013-01-01

    A diode-end-pumped Yb:YAG dual-wavelength continuous-wave (cw) laser that generates simultaneous laser action at wavelengths of 1024 and 1030 nm is demonstrated for the first time. A total output power of 897 mW for the dual-wavelength was achieved at an incident pump power of 17.8 W. Furthermore, intracavity sum-frequency mixing at 1024 and 1030 nm was then realized in an LBO crystal to reach the green range. We obtained a total cw output power of 85 mW at 513.5 nm. (paper)

  6. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  7. Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers

    NARCIS (Netherlands)

    Tahvili, M.S.; Du, L.; Heck, M.J.R.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2012-01-01

    We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two

  8. Asynchronous and synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser with a mode-locker.

    Science.gov (United States)

    Hu, Guoqing; Pan, Yingling; Zhao, Xin; Yin, Siyao; Zhang, Meng; Zheng, Zheng

    2017-12-01

    The evolution from asynchronous to synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser is experimentally investigated by tailoring the intracavity dispersion. Through tuning the intracavity-loss-dependent gain profile and the birefringence-induced filter effect, asynchronous dual-wavelength soliton pulses can be generated until the intracavity anomalous dispersion is reduced to ∼8  fs/nm. The transition from asynchronous to synchronous pulse generation is then observed at an elevated pump power in the presence of residual anomalous dispersion, and it is shown that pulses are temporally synchronized at the mode-locker in the cavity. Spectral sidelobes are observed and could be attributed to the four-wave-mixing effect between dual-wavelength pulses at the carbon nanotube mode-locker. These results could provide further insight into the design and realization of such dual-wavelength ultrafast lasers for different applications such as dual-comb metrology as well as better understanding of the inter-pulse interactions in such dual-comb lasers.

  9. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument

    Science.gov (United States)

    Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold

    2008-01-01

    A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...

  10. Optoelectronics instrumentation of a spectrophotometer

    International Nuclear Information System (INIS)

    Lopez, A.; Camas, J.; Rios, C.; Lopez, F.; Anzueto, G.; Castannon, J.; Dominguez, J.

    2016-01-01

    Today, it is necessary to characterize materials to generate knowledge and propose new technology in the development of optical sensors. However, the acquisition of spectrophotometers is not easy for the researchers that not have an economic resource. So, in this paper the design of a spectrophotometer is presented using optical technology such as light source, light and electron scattering commercially available in Mexico, and whose construction is cheap and easy to build. (Author)

  11. Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser.

    Science.gov (United States)

    Negishi, Kei; Akita, Hirotaka; Matsunaga, Yukiko

    2018-04-02

    Quality-switched (QS) lasers are known to be an effective treatment for removing solar lentigines, however, high incidence of post-inflammatory hyperpigmentation (PIH) is a concern in darker skin types. The objective of this study was to evaluate the efficacy and safety of a dual-wavelength and dual-pulse width picosecond Nd:YAG laser for removing solar lentigines in Asians. This was a prospective, IRB-approved study. Twenty cases with solar lentigines on the face were enrolled for treatment and evaluated at 1- and 3-month after the final treatment. Results were assessed by blinded evaluators using a 5-grade percentage improvement scale and Melanin index (MI) measured by a reflectance spectrophotometer. A patient self-assessment questionnaire was also administered using a 5-grade improvement scale. Additional treatment was performed if the improvement was less than 75% or the lentigo partially remained after 4 weeks. Histological evaluation was performed to compare the differences between the current picosecond laser and a QS Nd:YAG laser 532-nm using light and electron microscopy. Forty-three lesions in 20 females, skin type III or IV, age 53.7 ± 9.75 were treated and evaluated. The laser setting was: 532-nm, 750 picoseconds, average fluence of 0.35 ± 0.06 J/cm [2] using a spot size of 3 or 4 mm. Forty lesions (93.02%) achieved over 75% clearance with a single treatment and the other three lesions (6.98%) needed two treatments. PIH occurred only in 4.65% of lesions. The average score of the blinded evaluators' assessment was 4.77 and 4.58 on a 5-grade percentage improvement scale. The patients' self-assessment rating was 4.76 and 4.67 on a 5-grade scale at 1- and 3-month follow-up, respectively. The improvement rate of relative MI (MI in the lesion minus that of the normal area) was 77.60 ± 36.27% and 76.93 ± 20.95% at 1-and 3-month follow-up. Histology showed vacuolar formation by both lasers in the epidermis that were different sizes

  12. Theoretical modelling of dual-wavelength pumped Yb3+–Tm3+ co-doped silica fibre laser

    International Nuclear Information System (INIS)

    Fu, Yuqing; Chen, Jianguo

    2010-01-01

    Numerical simulations have, for the first time to our knowledge, been carried out to characterize the Yb 3+ –Tm 3+ co-doped silica fibre laser (YTFL), defined by a fibre grating and an end mirror, by using the rate equations, which take into consideration both the energy transfer processes from Yb 3+ to Tm 3+ ions and the cross-relaxation processes among different Tm 3+ ions. A dual-wavelength pumping scheme with one at 805 nm and the other at 975 nm is used to pump the YTFL. We have investigated the wavelength-dependent output power of the YTFL, from 1750 to 2200 nm, which takes its maximum output power at ∼ 1800 nm. The effect of the cross-relaxation processes in the Tm 3+ -doped silica fibre laser has been studied. The results indicate that these processes are beneficial to the laser and should be considered in the theoretical modelling. The influence of the Yb 3+ concentration on the characteristics of the YTFL has also been analysed and the results show that Yb 3+ dopants can improve the output power and slope efficiency of the laser

  13. Dual Wavelength RP-HPLC Method for Simultaneous Determination of Two Antispasmodic Drugs: An Application in Pharmaceutical and Human Serum

    Directory of Open Access Journals (Sweden)

    Najmul Hasan

    2013-01-01

    Full Text Available A reverse phase stability indicating HPLC method for simultaneous determination of two antispasmodic drugs in pharmaceutical parenteral dosage forms (injectable and in serum has been developed and validated. Mobile phase ingredients consist of Acetonitrile : buffer : sulfuric acid 0.1 M (50 : 50 : 0.3 v/v/v, at flow rate 1.0 mL/min using a Hibar μBondapak ODS C18 column monitored at dual wavelength of 266 nm and 205 nm for phloroglucinol and trimethylphloroglucinol, respectively. The drugs were subjected to stress conditions of hydrolysis (oxidation, base, acid, and thermal degradation. Oxidation degraded the molecule drastically while there was not so much significant effect of other stress conditions. The calibration curve was linear with a correlation coefficient of 0.9999 and 0.9992 for PG and TMP, respectively. The drug recoveries fall in the range of 98.56% and 101.24% with 10 pg/mL and 33 pg/mL limit of detection and limit of quantification for both phloroglucinol and trimethylphloroglucinol. The method was validated in accordance with ICH guidelines and was applied successfully to quantify the amount of trimethylphloroglucinol and phloroglucinol in bulk, injectable form and physiological fluid. Forced degradation studies proved the stability indicating abilities of the method.

  14. Synchronous dual-wavelength pulse generation in coaxial pumping scheme and its application in terahertz difference frequency generation

    Science.gov (United States)

    Liu, Yang; Zhong, Kai; Mei, Jialin; Jin, Shuo; Ge, Meng; Xu, Degang; Yao, Jianquan

    2018-02-01

    A compact and flexible dual-wavelength laser with combined two laser crystals (a-cut and c-cut Nd:YLF) as the gain media under coaxially laser-diode (LD) end-pumping configuration was demonstrated and μW-level THz wave was generated based on difference frequency generation (DFG) in a GaSe crystal. The dynamics of coaxial pumping dualwavelength laser was theoretically investigated, showing that the power ratio and pulse interval for both wavelengths could be tuned by balancing the gains at both wavelengths via tuning pump focal position. Synchronized orthogonal 1047/1053 nm laser pulses were obtained and optimal power ratio was realized with the total output power of 2.92W at 5 kHz pumped by 10-W LD power. With an 8-mm-long GaSe crystal, 0.93 μW THz wave at 1.64 THz (182 μm) was generated. Such coaxially LD end-pumped lasers can be extended to various combinations of neodymium doped laser media to produce different THz wavelengths for costless and portable applications.

  15. Study on Brilliant Blue-chitosan System by Dual-wavelength Overlapping Resonance Rayleigh Scattering Method and its Analytical Applications

    Science.gov (United States)

    Ma, Caijuan; Sun, Zijun; Liu, Guihua; Su, Zhengquan; Bai, Yan

    2018-02-01

    The method was presented for the sensitive and selective determination of chitosan (CTS) in health products with Brilliant Blue (BB) as a probe, based on dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS). In weakly acidic buffer solution, the binding of CTS and BB could result in the RRS intensities getting enhanced significantly at RRS peaks of 344 nm and 452 nm, and the scattering intensities of the two peaks were proportional to the concentration of CTS within a certain range. When the RRS intensities of the two wavelengths were superposed, the results showed higher sensitivity. Under the optimum experimental conditions, the total of the two increased RRS intensities was linear to the CTS concentration in the range of 0.02-1.80 μg/mL and the limit of detection (LOD) was 7.45 ng/mL. In this work, the optimum conditions and the effects of some foreign substances were studied. Accordingly, the new method based on DWO-RRS for the determination of CTS was developed. In addition, the effect of the molecular weight and the deacetylation degree between different chitosan molecules was discussed. Finally, this assay was applied to determine the concentration of CTS in health products with satisfactory results.

  16. Stopped-flow studies of spectral changes in human serum albumin following an alkaline pH jump

    DEFF Research Database (Denmark)

    Honoré, B

    1987-01-01

    A stopped-flow technique was used to study the spectral changes occurring in albumin following a pH jump from 11.3 to 11.8 at 25 degrees C. Ultraviolet difference spectra between various albumin species participating in the process are reported. These spectra are similar in shape to the difference...

  17. A novel stopped flow injection-amperometric procedure for the determination of chlorate.

    Science.gov (United States)

    Tue-Ngeun, Orawan; Jakmunee, Jaroon; Grudpan, Kate

    2005-12-15

    A novel stopped flow injection-amperometric (sFI-Amp) procedure for determination of chlorate has been developed. The reaction of chlorate with excess potassium iodide and hydrochloric acid, forming iodine/triiodide that is further electrochemically reduced at a glassy carbon electrode at +200mV versus Ag/AgCl electrode is employed. In order to increase sensitivity without using of too high acid concentration, promoting of the reaction by increasing reaction time and temperature can be carried out. This can be done without increase of dispersion of the product zone by stopping the flow while the injected zone is being in a mixing coil which is immersed in a water bath of 55+/-0.5 degrees C. In a closed system of FIA, a side reaction of oxygen with iodide is also minimized. Under a set of conditions, linear calibration graphs were in the ranges of 1.2x10(-6)-6.0x10(-5)moll(-1)and 6.0x10(-5)-6.0x10(-4)moll(-1). A sample throughput of 25h(-1) was accomplished. Relative standard deviation was 2% (n=21, 1.2x10(-4)moll(-1) chlorate). The proposed sFI-Amp procedure was successfully applied to the determination of chlorate in soil samples from longan plantation area.

  18. Stopped-flow injection spectrophotometric method for determination of chlorate in soil

    Directory of Open Access Journals (Sweden)

    Jaroon Jakmunee

    2008-06-01

    Full Text Available A stopped-flow injection (FI spectrophotometric procedure based on iodometric reaction for the determination of chlorate has been developed. Standard/sample was injected into a stream of potassium iodide solution and then merged with a stream of hydrochloric acid solution to produce triiodide. By stopping the flow while the sample zone is being in a mixing coil, a slow reaction of chlorate with iodide in acidic medium was promoted to proceed with minimal dispersion of the triiodide product zone. When the flow started again, a concentrated product zone was pushed into a flow cell and a signal profile due to light absorption of the product was recorded. Employing a lab-built semi-automatic stopped-FI analyser, the analysis can be performed with higher degree of automation and low chemical consumption. Linear calibration graph in the range of 5-50 mg ClO3- L-1 was obtained, with detection limit of 1.4 mg ClO3- L-1. Relative standard deviation of 2.2% (30 mg ClO3- L-1, n=10 and sample throughput of about 20 h-1 were achieved. The system was applied to soil samples and validated by batch spectrophotometric and standard titrimetric methods.

  19. Determination of myoglobin based on its enzymatic activity by stopped-flow spectrophotometry

    Science.gov (United States)

    Zheng, Qi; Liu, Zhihong; Cai, Ruxiu

    2005-04-01

    A new method has been developed for the determination of myoglobin (Mb) based on its enzymatic activity for the oxidation of o-phenylenediamine (OPDA) with hydrogen peroxide. Stopped-flow spectrophotometry was used to study the kinetic behavior of the oxidation reaction. The catalytic activity of Mb was compared to other three kinds of catalyst. The time dependent absorbance of the reaction product, 2,3-diamimophenazine (DAPN), at a wavelength of 426 nm was recorded. The initial reaction rate obtained at 40 °C was found to be proportional to the concentration of Mb in the range of 1.0 × 10 -6 to 4.0 × 10 -9 mol L -1. The detection limit of Mb was found to be 9.93 × 10 -10 mol L -1. The relative standard deviations were within 5% for the determination of different concentrations of Mb. Excess of bovine serum albumin (BSA), Ca(II), Mg(II), Cu(II), glucose, caffeine, lactose and uric acid did not interfere.

  20. Stopped-flow injection method for determination of phosphate in soils and fertilisers

    Directory of Open Access Journals (Sweden)

    Jaroon Jakmunee

    2008-02-01

    Full Text Available A stopped-flow injection system for the determination of phosphate has been developed. It involves the phosphate-molybdate-ascorbic acid reactions in the molybdenum blue method. The system is controlled by a semi-automatic stopped-FI analyser with a light emitting diode (LED-colorimeter for monitoring the absorbance change relating to the concentration of a reaction product formed during the stopping period while the injected zone of a standard or sample is being in the flow cell. The slope of the FIAgram obtained is linearly proportional to the reaction rate, which depends on the phosphate concentration. Effects of concentration of reagents, viz. sodium molybdate, ascorbic acid and nitric acid, on the slope of the FIAgram were studied. The suitable concentration is 0.02 M, 0.25 %w/v and 0.15 M, respectively. A linear calibration graph in the range of 0.3-6.0 mg P L-1 was employed for the determination of phosphate in soil and fertiliser samples. The results obtained agree well with those from a standard spectrophotometric method.

  1. Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.

    Science.gov (United States)

    Toh, Ren Wei; Li, Jie Sheng; Wu, Jie

    2018-01-04

    A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.

  2. Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output

    International Nuclear Information System (INIS)

    Yeh, C H; Shih, F Y; Wang, C H; Chow, C W; Chi, S

    2008-01-01

    In this investigation, we propose and investigate a stable and tunable dual-wavelength erbium-doped fiber (EDF) ring laser with self-injected Fabry-Perot laser diode (FP-LD) scheme. By using an FP-LD incorporated with a tunable bandpass filter (TBF) within the gain cavity, the fiber laser can lase at two single-longitudinal-mode (SLM) wavelengths simultaneously due to the self-injected operation. The proposed dual-wavelength laser has a good performance of the output power and optical side-mode suppression ratio (SMSR). The laser also shows a wide tuning range from 1523.08 to 1562.26 nm. Besides, the output stabilities of the fiber laser are also discussed

  3. A stable dual-wavelength Q-switch using a compact passive device containing photonics crystal fiber embedded with carbon platinum

    Science.gov (United States)

    Safaei, R.; Amiri, I. S.; Rezayi, M.; Ahmad, H.

    2018-01-01

    A compact fiber laser utilizing platinum nanoparticles doped on carbon (Pt/C) embedded in photonic crystal fiber capable of generating a stable Q-switch dual-wavelength is designed and verified. Stable Q-switch pulses, with a repetition rate of 73.6 kHz, pulse width of 1.45 µs and power of 3.8 nJ in two separated wavelengths of 1557.39 nm and 1558.86 nm at a pump power of 350 mW, have been obtained. This is a novel method for generating Q-switch dual-wavelength pulses using a well-protected component that introduces both a saturable absorber and Mach-Zehnder interferometer effects simultaneously in the laser cavity. Furthermore, to best of our knowledge, this is the first time that Pt/C nanoparticles have been used in a saturable absorber for optical pulse generation.

  4. Dual-wavelength vortex beam with high stability in a diode-pumped Yb:CaGdAlO4 laser

    Science.gov (United States)

    Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali

    2018-05-01

    We present a stable dual-wavelength vortex beam carrying orbital angular momentum (OAM) with two spectral peaks separated by a few terahertz in a diode-pumped Yb:CaGdAlO4 (CALGO) laser. The dual-wavelength spectrum is controlled by the pump power and off-axis loss in a laser resonator, arising from the broad emission bandwidth of Yb:CALGO. The OAM beam is obtained by a pair of cylindrical lenses serving as a π/2 convertor for high-order Hermite–Gaussian modes. The stability is verified by the fact that a 1\\hbar OAM beam with two spectral peaks at 1046.1 nm and 1057.2 nm (3.01 THz interval) can steadily operate for more than 3 h. It has great potential for scaling the application of OAM beams in terahertz spectroscopy, high-resolution interferometry, and so on.

  5. A geomorphologist's dream come true: synoptic high resolution river bathymetry with the latest generation of airborne dual wavelength lidar

    Science.gov (United States)

    Lague, Dimitri; Launeau, Patrick; Michon, Cyril; Gouraud, Emmanuel; Juge, Cyril; Gentile, William; Hubert-Moy, Laurence; Crave, Alain

    2016-04-01

    Airborne, terrestrial lidar and Structure From Motion have dramatically changed our approach of geomorphology, from low density/precision data, to a wealth of data with a precision adequate to actually measure topographic change across multiple scales, and its relation to vegetation. Yet, an important limitation in the context of fluvial geomorphology has been the inability of these techniques to penetrate water due to the use of NIR laser wavelengths or to the complexity of accounting for water refraction in SFM. Coastal bathymetric systems using a green lidar can penetrate clear water up to 50 m but have a resolution too coarse and deployment costs that are prohibitive for fluvial research and management. After early prototypes of narrow aperture green lidar (e.g., EEARL NASA), major lidar manufacturer are now releasing dual wavelength laser system that offer water penetration consistent with shallow fluvial bathymetry at very high resolution (> 10 pts/m²) and deployment costs that makes the technology, finally accessible. This offers unique opportunities to obtain synoptic high resolution, high precision data for academic research as well as for fluvial environment management (flood risk mapping, navigability,…). In this presentation, we report on the deployment of the latest generation Teledyne-Optech Titan dual-wavelength lidar (1064 nm + 532 nm) owned by the University of Nantes and Rennes. The instrument has been deployed over several fluvial and lacustrine environments in France. We present results and recommendation on how to optimize the bathymetric cover as a function of aerial and aquatic vegetation cover and the hydrology regime of the river. In the surveyed rivers, the penetration depth varies from 0.5 to 4 m with discrete echoes (i.e., onboard detection), heavily impacted by water clarity and bottom reflectance. Simple post-processing of the full waveform record allows to recover an additional 20 % depth. As for other lidar techniques, the main

  6. A novel mobile dual-wavelength laser altimetry system for improved site-specific Nitrogen fertilizer applications

    Science.gov (United States)

    Eitel, J.; Magney, T. S.; Vierling, L. A.; Brown, T. T.; Huggins, D. R.

    2012-12-01

    Reducing fertilizer inputs while maintaining yield would increase farmer's profits and similarly lessen the adverse environmental effects of production agriculture. The development of technologies that allow precise, site-specific application of Nitrogen (N) fertilizer has thus been an important research goal over the past decades. Remote sensing of foliar crop properties and function with tractor-mountable optical sensors has thought to be useful to optimize N fertilizer applications. However, on-the-go sensing of foliar crop properties and function has proven difficult, particularly during early crop growth stages when fertilizer decisions are often made. This difficulty arises from the fact that the spectral signal measured by on-the-go sensors is dominated by soil reflectance during early crop growth stages. Here, we present the basic principles behind a novel, dual-wavelength, tractor mountable laser altimetry system that measures the laser return intensity of the reflected green and red laser light. The green (532 nm) and the red (660 nm) wavelength combination allows calculation of a modified Photochemical Reflectance Index (mPRI) that have shown to be sensitive to both crop function and foliar chemistry. The small field of view of the laser points (diameter: 4 mm) combined with its high sampling rate (1000 points sec-1) allows vegetation returns to be isolated from ground returns by using simple thresholds. First tests relating foliar N of winter wheat (Triticum aestivum L.) with laser derived mPRI are promising (r2 = 0.72). Further research is needed to test the relationship between laser derived spectral indices and crop function.

  7. A dual-wavelength overlapping resonance Rayleigh scattering method for the determination of chondroitin sulfate with nile blue sulfate

    Science.gov (United States)

    Cui, Zhiping; Hu, Xiaoli; Liu, Shaopu; Liu, Zhongfang

    2011-12-01

    A dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) method was developed to detect chondroitin sulfate (CS) with nile blue sulfate (NBS). At pH 3.0-4.0 Britton-Robinson (BR) buffer medium, CS interacted with NBS to form an ion-association complex. As a result, the new spectra of resonance Rayleigh scattering (RRS), second order scattering (SOS) and frequence doubling scattering (FDS) appeared and their intensities were enhanced greatly. Their maximum wavelengths were located at 303 nm (RRS), 362 nm (RRS), 588 nm (SOS) and 350 nm (FDS), respectively. The scattering intensities of the three methods were proportional to the concentration of CS in certain ranges. The methods had high sensitivity and the detection limits were between 1.5 and 7.1 ng mL -1. The DWO-RRS method had the highest sensitivity with the detection limit being 1.5 ng mL -1. The characteristics of the spectra and optimal reaction conditions of RRS method were investigated. The effects of coexistent substances on the determination of CS were evaluated. Owing to the high sensitivity, RRS method had been applied to the determination of CS in eye drops with satisfactory results. The recovery range was between 99.4% and 104.6% and the relative standard deviation (RSD) was between 0.4% and 0.8%. In addition, the reasons for RRS enhancement were discussed and the shape of ion-association complex was characterized by atomic force microscopy (AFM).

  8. Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+ -doped aperiodically poled lithium niobate.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Rico, M L; Capmany, J

    2008-05-01

    We report a dual-wavelength continuous-wave laser at 542.4 and 546.8 nm based on an Nd(3+)-doped aperiodically poled lithium niobate crystal. Two fundamental infrared (IR) wavelengths at 1084.8 and 1093.6 nm are simultaneously oscillated and self-frequency-doubled to green. The aperiodic domain distribution patterned in the crystal allows for quasi-phase matched self-frequency-doubling of both IR fundamentals while avoiding their sum-frequency mixing.

  9. Dual-wavelength mid-infrared CW and Q-switched laser in diode end-pumped Tm,Ho:GdYTaO4 crystal

    Science.gov (United States)

    Wang, Beibei; Gao, Congcong; Dou, Renqin; Nie, Hongkun; Sun, Guihua; Liu, Wenpeng; Yu, Haijuan; Wang, Guoju; Zhang, Qingli; Lin, Xuechun; He, Jingliang; Wang, Wenjun; Zhang, Bingyuan

    2018-02-01

    Dual-wavelength continuous-wave and Q-switched lasers are demonstrated in a Tm,Ho:GdYTaO4 crystal under 790 nm laser diode end pumping for the first time to the best of our knowledge. The laser operates with a dual wavelength at 1949.677 nm and 2070 nm for continuous-wave with a spacing of about 120 nm. The maximum output power is 0.332 W with a pump power of 3 W. By using graphene as the saturable absorber, a passively Q-switched operation is performed with a dual-wavelength at 1950.323 nm and 2068.064 nm with a wavelength interval of about 118 nm. The maximum average output power of the Q-switched laser goes up to 200 mW with a minimum pulse duration of 1.2 µs and a maximum repetition rate of 34.72 kHz.

  10. Filter indexing for spectrophotometer system

    International Nuclear Information System (INIS)

    Chamran, M.M.; Scott, L.B.; Williams, P.B.

    1982-01-01

    A spectrophotometer system has an optical system for transmitting a beam from a source at select wavelengths onto a detector. A plurality of filters are positioned in a tray. A stepper mechanism indexes the tray along a path. A microcomputer controls the stepper mechanism and the optical system. The wavelength is successively changed over a range, the tray is indexed to move a select filter into the beam at a predetermined wavelength and the changing is discontinued during indexing

  11. Modernization of Atomic Absorption Spectrophotometer

    International Nuclear Information System (INIS)

    Tasic, Visa; Milivojevic, Dragan; Karabasevic, Dejan

    2003-01-01

    In Copper Institute in Bor, connection has been made between absorption spectrophotometer and standard PC with the aim to make its operation more reliable and comfortable. Applied solution includes both software and hardware components. An I/O interface module has been installed in PC [1]. Software component consists of programs for measuring and interpretation of results. Paper presents details of this job realization.(Author)

  12. Additional band broadening of peptides in the first size-exclusion chromatographic dimension of an automated stop-flow two-dimensional high performance liquid chromatography.

    Science.gov (United States)

    Xu, Jucai; Sun-Waterhouse, Dongxiao; Qiu, Chaoying; Zhao, Mouming; Sun, Baoguo; Lin, Lianzhu; Su, Guowan

    2017-10-27

    The need to improve the peak capacity of liquid chromatography motivates the development of two-dimensional analysis systems. This paper presented a fully automated stop-flow two-dimensional liquid chromatography system with size exclusion chromatography followed by reversed phase liquid chromatography (SEC×RPLC) to efficiently separate peptides. The effects of different stop-flow operational parameters (stop-flow time, peak parking position, number of stop-flow periods and column temperature) on band broadening in the first dimension (1 st D) SEC column were quantitatively evaluated by using commercial small proteins and peptides. Results showed that the effects of peak parking position and the number of stop-flow periods on band broadening were relatively small. Unlike stop-flow analysis of large molecules with a long running time, additional band broadening was evidently observed for small molecule analytes due to the relatively high effective diffusion coefficient (D eff ). Therefore, shorter analysis time and lower 1 st D column temperature were suggested for analyzing small molecules. The stop-flow two-dimensional liquid chromatography (2D-LC) system was further tested on peanut peptides and an evidently improved resolution was observed for both stop-flow heart-cutting and comprehensive 2D-LC analysis (in spite of additional band broadening in SEC). The stop-flow SEC×RPLC, especially heart-cutting analysis with shorter analysis time and higher 1 st D resolution for selected fractions, offers a promising approach for efficient analysis of complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Stopped-Flow Kinetics Experiment for Advanced Undergraduate Laboratories: Formation of Iron(III) Thiocyannate

    Science.gov (United States)

    Clark, Charles R.

    1997-10-01

    A series of 15 stopped-flow kinetic experiments relating to the formation of iron(III)- thiocyanate at 25.0 °C and I = 1.0 M (NaClO4) is described. A methodology is given whereby solution preparation and data collection are able to be carried out within the time scale of a single laboratory period (3-4 h). Kinetic data are obtained using constant [SCN-], and at three H+ concentrations (0.10, 0.20, 0.30 M) for varying concentrations of Fe3+ (ca. 0.0025 - 0.020 M). Rate data (450 nm) are consistent with rate laws for the forward and reverse reactions: kf = (k1 + k2Ka1/[H+])[Fe3+] and kr = k-1 + k-2Ka2/[H+] respectively, with k1,k-1 corresponding to the rate constants for formation and decay of FeSCN2+, k2, k-2 to the rate constants for formation and decay of the FeSCN(OH)+ ion and Ka1,Ka2 to the acid dissociation constants (coordinated OH2 ionization) of Fe3+ and FeSCN2+. Using literature values for the latter two quantities ( Ka1 = 2.04 x 10-3 M, Ka2 = 6.5 x 10-5 M) allows values for the four rate constants to be obtained. A typical data set is analyzed to give k1 = 109(10) M-1s-1, k-1 = 0.79(0.10) s-1, k2= 8020(800) M-1s-1, k-2 = 2630(230) s-1. Absorbance change data for reaction (DeltaA) follow the expression: DeltaA = Alim.Kf.[Fe3+]/(1 + Kf.[Fe3+]), with Alim corresponding to the absorbance of fully formed FeSCN2+ (i.e. free SCN- absent) and Kf to the formation constant of this complex (value in the example 112(5) M-1, c.f. 138(29) M-1 from the kinetic data).

  14. A UV pre-ionized dual-wavelength short-pulse high-power CO{sub 2} laser facility for laser particle acceleration research

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, N A; Mouris, J F; Davis, R W

    1994-12-01

    In this report we describe the Chalk River dual-wavelength, short-pulse, single-mode, high-power CO{sub 2} laser facility for research in laser particle acceleration and CANDU materials modifications. The facility is designed and built around UV-preionized transversely-excited atmospheric-pressure (TEA) Lumonics CO{sub 2} laser discharge modules. Peak focussed power densities of up to 2 x 10{sup 14} W/cm{sup 2} in 500 ps pulses have been obtained. (author). 10 refs., 9 figs.

  15. Shutter mechanism for spacecraft spectrophotometer

    Science.gov (United States)

    Weilbach, A.

    1972-01-01

    A shutter mechanism is described for the backscatter ultraviolet spectrophotometer experiment on the Nimbus D satellite. The purpose of the experiment is to determine spatial distribution of atmospheric ozone from measurements of ultraviolet radiation backscattered by the earth's atmosphere. The system consists of two independent, rotary cylinder shutters, controlled by a dual star Geneva mechanism, and driven by a single stepper motor. A single driver controls a combination of two independently driven Geneva stars. Design considerations involved the use of low friction, nonmetallic materials.

  16. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry I: design and development

    Science.gov (United States)

    Ramm, Daniel

    2018-02-01

    Three dimensional dosimetry by optical CT readout of radiosensitive gels or solids has previously been indicated as a solution for measurement of radiotherapy 3D dose distributions. The clinical uptake of these dosimetry methods has been limited, partly due to impracticalities of the optical readout such as the expertise and labour required for refractive index fluid matching. In this work a fast laser beam optical CT scanner is described, featuring fluid-less and dual wavelength operation. A second laser with a different wavelength is used to provide an alternative reference scan to the commonly used pre-irradiation scan. Transmission data for both wavelengths is effectively acquired simultaneously, giving a single scan process. Together with the elimination of refractive index fluid matching issues, scanning practicality is substantially improved. Image quality and quantitative accuracy were assessed for both dual and single wavelength methods. The dual wavelength scan technique gave improvements in uniformity of reconstructed optical attenuation coefficients in the sample 3D volume. This was due to a reduction of artefacts caused by scan to scan changes. Optical attenuation measurement accuracy was similar for both dual and single wavelength modes of operation. These results established the basis for further work on dosimetric performance.

  17. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    Science.gov (United States)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  18. Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers.

    Science.gov (United States)

    Tahvili, M S; Du, L; Heck, M J R; Nötzel, R; Smit, M K; Bente, E A J M

    2012-03-26

    We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two lobes provide a coherent bandwidth and are verified to lead to two synchronized optical pulses. The generated optical pulses are elongated in time due to a chirp which shows opposite signs over the two spectral lobes. Self-induced mode-locking in the single-section laser shows that the dual-wavelength spectra correspond to emission from ground state. In the hybrid mode-locking regime, a map of locking range is presented by measuring the values of timing jitter for several values of power and frequency of the external electrical modulating signal. An overview of the systematic behavior of InAs/InP(100) quantum dot mode-locked lasers is presented as conclusion.

  19. Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method.

    Science.gov (United States)

    Feng, Ting; Ding, Dongliang; Yan, Fengping; Zhao, Ziwei; Su, Hongxin; Yao, X Steve

    2016-08-22

    High stability single- and dual-wavelength compound cavity erbium-doped fiber lasers (EDFLs) with ultra-narrow linewidth, high optical signal to noise ratio (OSNR) and widely tunable range are demonstrated. Different from using traditional cascaded Type-1/Type-2 fiber rings as secondary cavities, we nest a Type-1 ring inside a Type-2 ring to form a passive subring cavity to achieve single-longitudinal-mode (SLM) lasing with ultra-narrow linewidth for the first time. We also show that the SLM lasing stability can be further improved by inserting a length of polarization maintaining fiber in the Type-2 ring. Using a uniform fiber Bragg grating (FBG) and two superimposed FBGs as mode restricting elements, respectively, we obtain a single-wavelength EDFL with a linewidth as narrow as 715 Hz and an OSNR as high as 73 dB, and a dual-wavelength EDFL with linewidths less than 1 kHz and OSNRs higher than 68 dB for both lasing wavelengths. Finally, by employing a novel self-designed strain adjustment device capable of applying both the compression and tension forces to the FBGs for wavelength tuning, we achieve the tuning range larger than 10 nm for both of the EDFLs.

  20. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    Science.gov (United States)

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  1. Water excretion mechanisms of the kidney studied in the rabbit using tritiated water during the stop-flow assay

    International Nuclear Information System (INIS)

    Morel, F.; Amiel, CI.; Falbriard, A.

    1960-01-01

    The pattern of water turnover in the kidney and the mechanisms of water transfer into the urine have been studied in the rabbit using tritiated water as a tracer and the stop-flow technique. The experiments have given the following results: a) During the interruption of the diuresis, the injected tritiated water is completely exchanged with the water of the renal cortex, but the tracer does not reach the deep regions of the kidney, despite the fact that the blood circulation is maintained in these regions; this suggests that the vascular loops of the vasa recta function as a mechanism of water exchange by countercurrent. b) During the osmotic polyuria following the stop-flow period, the concentration gradient of tritiated water inside the kidney diminishes progressively. The concentration of the tracer in the urine is at all time similar to that existing in the deep medulla and the renal papilla and markedly different from that of the cortex or arterial blood. This fact shows that the molecules of water in the urine excreted do not come from either the glomerular filtrate or the convoluted tubules but from the water contained in the deep regions of the kidney. Also these results indicate that the walls of the collecting ducts have a very high permeability to water diffusion. Reprint of a paper published in Revue francaise d'etudes cliniques et biologiques, Vol. IV, no. 8, p. 773-779, 1959 [fr

  2. Method and apparatus for calibrating spectrophotometers

    NARCIS (Netherlands)

    Schreutelkamp, F.H.

    2003-01-01

    The present invention relates to a method of calibrating spectrophotometers by placing one or more filters in the light path of the spectrophotometer and measuring the amount of radiation by means of a detector. The present invention furthermore relates to an apparatus to be used with such a method.

  3. A Low-Cost Quantitative Absorption Spectrophotometer

    Science.gov (United States)

    Albert, Daniel R.; Todt, Michael A.; Davis, H. Floyd

    2012-01-01

    In an effort to make absorption spectrophotometry available to high school chemistry and physics classes, we have designed an inexpensive visible light absorption spectrophotometer. The spectrophotometer was constructed using LEGO blocks, a light emitting diode, optical elements (including a lens), a slide-mounted diffraction grating, and a…

  4. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry II: dosimetric performance

    Science.gov (United States)

    Ramm, Daniel

    2018-02-01

    New clinical radiotherapy dosimetry systems need comprehensive demonstration of measurement quality. Practicality and reliability are other important aspects for clinical dosimeters. In this work the performance of an optical CT scanner for true 3D dosimetry is assessed using a radiochromic gel dosimeter. The fluid-less scanner utilised dual lasers to avoid the necessity for pre-irradiation scans and give greater robustness of image quality, enhancing practicality. Calibration methods using both cuvettes and reconstructed volumes were developed. Dosimetric accuracy was similar for dual and single wavelength measurements, except that cuvette calibration reliability was reduced for dual wavelength without pre-irradiation scanning. Detailed performance parameters were specified for the dosimetry system indicating the suitability for clinical use. The most significant limitations of the system were due to the gel dosimeter rather than the optical CT scanner. Quality assurance guidelines were developed to maintain dosimetry system performance in routine use.

  5. Incorporation of flow injection analysis with dual-wavelength overlapping resonance Rayleigh scattering for rapid determination of malachite green and its metabolite in fish.

    Science.gov (United States)

    Zhu, Jinghui; Qin, Mingyou; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2014-09-15

    A flow injection analysis (FIA) system combined with dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) has been established and validated for rapid determination of malachite green (MG) and its metabolite in fish samples. Under experimental condition, MG would react with Erythrosin (Ery) to form ion-association complexes, resulting in the occurrence of two RRS peaks and a dramatic enhancement of RRS intensity. The maximum RRS peaks were located at 286 nm and 337 nm. It is noted that the increments of both of these two peaks were proportional to the concentration of MG. The detection limit of DWO-RRS was 1.5 ng/mL, which was comparable to several reported methods. Moreover, the results of real sample analysis exhibited an acceptable recovery between 97.5% and 103.6%, indicating that the method had good reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. OCDMA PON supporting ONU inter-networking based on gain-switched Fabry-Pérot lasers with external dual-wavelength injection.

    Science.gov (United States)

    Liu, Jie; Zeng, Duoduo; Guo, Changjian; Xu, Lei; He, Sailing

    2010-10-25

    We propose and demonstrate an OCDMA-PON scheme with optical network unit (ONU) internetworking capability, which utilizes low-cost gain-switched Fabry-Pérot (GS-FP) lasers with external dual-wavelength injection as the pulse sources on the ONU side. The injection-generated optical pulses in two wavelengths from the same GS-FP laser are used separately for the PON uplink transmission and ONU internetworking. Experimental results based on a two-user OCDMA system confirm the feasibility of the proposed scheme. With OCDMA technologies, separate ONU-internetworking groups can be established using different optical codes. We also give experiment results to analyze the performance of the ONU-ONU transmission at different power of interference signals when two ONU-internetworking groups are present in the OCDMA-PON.

  7. Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: qwang365@163.com [School of Science, Qilu University of Technology, Jinan, 250353 (China); School of Microelectronics, Shandong University, Jinan, 250100 (China); Ji, Ziwu, E-mail: jiziwu@sdu.edu.cn [School of Microelectronics, Shandong University, Jinan, 250100 (China); Zhou, Yufan; Wang, Xuelin [School of Physics, Shandong University, Jinan, 250100 (China); Liu, Baoli [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Xu, Xiangang [Key Laboratory of Functional Crystal Materials and Device (Ministry of Education), Shandong University, Jinan, 250100 (China); Gao, Xingguo; Leng, Jiancai [School of Science, Qilu University of Technology, Jinan, 250353 (China)

    2017-07-15

    Highlights: • Nanopillar LED with smaller diameter shows a larger strain relaxation in the MQWs. • Nanopillar induced blue shift of green peak is smaller than that of blue peak. • Nanopillar induced blue shift of green/blue peak at 300 K is smaller than at 4 K. • PL intensity decreases with reducing nanopillar diameter with same pillar density. - Abstract: In this paper, strong phase-separated blue/green dual-wavelength InGaN/GaN nanopillar (NP) light emitting diodes (LEDs) with the same NP density and various NP diameters were fabricated using focused ion beam etching. Micro-Raman spectroscopy was used to show the effect of NP diameter on the strain relaxation in the multi-quantum-wells (MQWs). The effect of NP diameter on optical behaviors of the strong phase-separated dual-wavelength InGaN/GaN NP LEDs was investigated for the first time by using micro-photoluminescence (PL) spectroscopy. The blue shifts of PL peak energies of the NP LEDs showed that the NP LED with a smaller diameter exhibited a larger strain relaxation in the MQWs, as confirmed by micro-Raman results. And the blue shift of green emission was smaller than that of blue emission. The total integrated PL intensities from the NP arrays were enhanced compared to the as-grown sample due to the increased recombination rate and light extraction efficiency. The enhancement factor decreased with decreasing the NP diameter in our experiments, which indicated that the loss of active volume was gradually dominant for the luminous efficiency of NP LEDs compared to the increased recombination rate and light extraction efficiency.

  8. Stopped-flow kinetic studies of poly(amidoamine) dendrimer-calf thymus DNA to form dendriplexes.

    Science.gov (United States)

    Dey, Debabrata; Kumar, Santosh; Maiti, Souvik; Dhara, Dibakar

    2013-11-07

    Poly(amidoamine) (PAMAM) dendrimers are known to be highly efficient nonviral carriers in gene delivery. Dendrimer-mediated transfection is known to be a function of the dendrimer to DNA charge ratio as well as the size of the dendrimer. In the present study, the binding kinetics of four PAMAM dendrimers (G1, G2, G3, and G4) with calf thymus DNA (CT-DNA) has been studied using stopped-flow fluorescence spectroscopy. The effect of dendrimer-to-DNA charge ratio and dendrimer generation on the binding kinetics was investigated. In most cases, the results of dendrimer-CT-DNA binding can be explained by a two-step reaction mechanism: a rapid electrostatic binding between the dendrimer and DNA, followed by a conformational change of the dendrimer-DNA complex that ultimately leads to DNA condensation. It was observed that the charge ratio on the dendrimer and the DNA phosphate groups, as well as the dendrimer generation (size), has a marked effect on the kinetics of binding between the DNA and the dendrimers. The rate constant (k'1) of the first step was much higher compared to that of the second step (k'2), and both were found to increase with an increase in dendrimer concentration. Among the four generations of dendrimers, G4 exhibited significantly faster binding kinetics compared to the three smaller generation dendrimers.

  9. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    Science.gov (United States)

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  10. Anti-Mullerian hormone trend evaluation after laparoscopic surgery of monolateral endometrioma using a new dual wavelengths laser system (DWLS) for hemostasis.

    Science.gov (United States)

    Nappi, Luigi; Angioni, Stefano; Sorrentino, Felice; Cinnella, Gilda; Lombardi, Michela; Greco, Pantaleo

    2016-01-01

    Operative laparoscopy is the gold standard in the treatment of endometriotic ovarian cysts. Excisional surgery is the best technique to prevent recurrences and improve symptoms but it may result in ovarian reserve damage due to the removal of healthy ovarian cortex. The aim of this study was to assess the impact on ovarian reserve of the use of dual wavelengths laser system (DWLS) hemostasis after stripping technique of monolateral endometrioma, by dosing the anti-Mullerian hormone (AMH). This prospective study was conducted at the Institute of Obstetrics and Gynecology, University of Foggia, from December 2013 to January 2015. Forty-five women underwent excision of monolateral endometriotic ovarian cyst by stripping without using a bipolar coagulation and performing hemostasis with a DWLS. The AMH serum levels were estimated before the surgery (T0), 4-6 weeks (T1) and 6-9 months (T2) after surgery. Our results suggest that an appropriate surgical technique with the use of laser hemostasis does not determine a significant reduction of ovarian reserve. Laser hemostasis could prevent follicular reserve loss after ovarian endometrioma surgery.

  11. The effects of 595- and 1,064-nm lasers on rooster comb blood vessels using dual-wavelength and multipulse techniques.

    Science.gov (United States)

    Li, Guang; Sun, Jianfang; Shao, Xuebao; Sang, Honggui; Zhou, Zhanchao

    2011-10-01

    After laser irradiation, hemoglobin can transform into methemoglobin and coagulum, which have high absorptivity of near-infrared light. Sequential irradiation with 595 nm and 1,064 nm may be more effective than single wavelength to decrease residual vessel number in rooster combs. Six protocols (single pulse with 595 nm, double pulse with 595 nm, single pulse with 1,064 nm, double pulse with 1,064 nm, sequential irradiation with 595 nm and 1,064 nm (multiplex), and a blank control group) were used to compare the effects of sequential and single-wavelength irradiation on reducing residual vessel number, as well as the epidermal side effects, in the rooster comb. Different treatment techniques were applied to the same comb, at the same time. The treated areas of the epidermis and the residual vessels were observed using an optical microscope. All five techniques were effective in decreasing the number of residual vessels in the comb, and the side effects on the epidermis were similar for all. Considering the selectivity of the 595-nm laser and the rich melanin in the human epidermis, the dual-wavelength laser has a distinct advantage in treating vascular lesions. The authors have indicated no significant interest with commercial supporters. © 2011 by the American Society for Dermatologic Surgery, Inc.

  12. A fast and high-sensitive dual-wavelength diffuse optical tomography system using digital lock-in photon-counting technique

    Science.gov (United States)

    Chen, Weiting; Yi, Xi; Zhao, Huijuan; Gao, Feng

    2014-09-01

    We presented a novel dual-wavelength diffuse optical imaging system which can perform 2-D or 3-D imaging fast and high-sensitively for monitoring the dynamic change of optical parameters. A newly proposed lock-in photon-counting detection method was adopted for week optical signal collection, which brought in excellent property as well as simplified geometry. Fundamental principles of the lock-in photon-counting detection were elaborately demonstrated, and the feasibility was strictly verified by the linearity experiment. Systemic performance of the prototype set up was experimentally accessed, including stray light rejection and inherent interference. Results showed that the system possessed superior anti-interference capability (under 0.58% in darkroom) compared with traditional photon-counting detection, and the crosstalk between two wavelengths was lower than 2.28%. For comprehensive assessment, 2-D phantom experiments towards relatively large dimension model (diameter of 4cm) were conducted. Different absorption targets were imaged to investigate detection sensitivity. Reconstruction image under all conditions was exciting, with a desirable SNR. Study on image quality v.s. integration time put forward a new method for accessing higher SNR with the sacrifice of measuring speed. In summary, the newly developed system showed great potential in promoting detection sensitivity as well as measuring speed. This will make substantial progress in dynamically tracking the blood concentration distribution in many clinical areas, such as small animal disease modeling, human brain activity research and thick tissues (for example, breast) diagnosis.

  13. Field trial of a dual-wavelength fluorescent emission (L.I.F.E.) instrument and the Magma White rover during the MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Sattler, Birgit; Weisleitner, Klemens; Hunger, Lars; Kohstall, Christoph; Frisch, Albert; Józefowicz, Mateusz; Meszyński, Sebastian; Storrie-Lombardi, Michael; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Frischauf, Norbert; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ragonig, Christoph; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sams, Sebastian; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Soucek, Alexander; Stadler, Andrea; Stummer, Florian; Stumptner, Willibald; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    Abstract We have developed a portable dual-wavelength laser fluorescence spectrometer as part of a multi-instrument optical probe to characterize mineral, organic, and microbial species in extreme environments. Operating at 405 and 532 nm, the instrument was originally designed for use by human explorers to produce a laser-induced fluorescence emission (L.I.F.E.) spectral database of the mineral and organic molecules found in the microbial communities of Earth's cryosphere. Recently, our team had the opportunity to explore the strengths and limitations of the instrument when it was deployed on a remote-controlled Mars analog rover. In February 2013, the instrument was deployed on board the Magma White rover platform during the MARS2013 Mars analog field mission in the Kess Kess formation near Erfoud, Morocco. During these tests, we followed tele-science work flows pertinent to Mars surface missions in a simulated spaceflight environment. We report on the L.I.F.E. instrument setup, data processing, and performance during field trials. A pilot postmission laboratory analysis determined that rock samples acquired during the field mission exhibited a fluorescence signal from the Sun-exposed side characteristic of chlorophyll a following excitation at 405 nm. A weak fluorescence response to excitation at 532 nm may have originated from another microbial photosynthetic pigment, phycoerythrin, but final assignment awaits development of a comprehensive database of mineral and organic fluorescence spectra. No chlorophyll fluorescence signal was detected from the shaded underside of the samples.

  14. Fiber optic spectrophotometer with photodiode linear array

    International Nuclear Information System (INIS)

    Blanc, F.; Vernet, P.

    1988-01-01

    Spectrophotometric measurements are used in a great number of industrial processes, in nuclear environment and with optical precision components. Especially the evolution of a chemical process or of an optical coating could be followed by these measurements. Spectrophotometers, using optical fibers to transport the signal out of the instrument make possible the measurement ''in-situ'' and in real time. The advantage of using a diode array to detect the signal is an instantaneous measurement all over the spectral range without moving parts. It allows an excellent reproductibility. The instrument is controlled by a micro computer. The spectrophotometer is described and technical performance presented. An extension using optical fibers on a ''classical'' spectrophotometer (a H.P. one) is also described and technical performance presented

  15. Broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity

    Science.gov (United States)

    Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.

    2018-05-01

    We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.

  16. The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing

    Science.gov (United States)

    Ji, Wei; Chang, Jun

    2013-07-01

    In this paper, we design a WDM-RoF-PON based on linearly-polarized dual-wavelength fiber laser and CSRZ-DPSK, which can achieve wire-line and wireless access synchronously. With the CSRZ-DPSK modulation, the wireless access in ONU can save RF source and the frequency of radio carrier can be controlled by OLT. The dual-wavelength fiber laser is the union light source of WDM-PON with polarization multiplexing. By the RSOA and downstream light source reusing, the ONU can save omit laser source and makes the WDM-PON to be colorless. The networking has the credible transmission property, including wireless access and fiber transmission. The networking also has excellent covering range.

  17. Stopped-flow studies of changes in fluorescence of 8-anilino-1-naphthalene sulfonic acid caused by magnesium and salt binding to yeast enolase.

    Science.gov (United States)

    Brewer, J M

    1976-12-11

    Stopped-flow studies of magnesium and salt (potassium chloride and acetate) effects on yeast enolase were carried out by following 8-anilino-1-naphthalenesulfonic acid fluorescence changes. The fluorescence changes appear to be largely caused by subunit association and dissociation, though there is evidence in some reactions for large changes in fluorescence occurring within the dead time of the stopped-flow measurements. These data are combined with measurements of initial enzyme activity after incubation in various solvents with or without magnesium to obtain subunit association and dissociation rates. From these, it is concluded that magnesium and the salts act by directly changing the affinities of the subunits for each other, apparently by producing a rapid change in protein conformation.

  18. The Fuge Tube Diode Array Spectrophotometer

    Science.gov (United States)

    Arneson, B. T.; Long, S. R.; Stewart, K. K.; Lagowski, J. J.

    2008-01-01

    We present the details for adapting a diode array UV-vis spectrophotometer to incorporate the use of polypropylene microcentrifuge tubes--fuge tubes--as cuvettes. Optical data are presented validating that the polyethylene fuge tubes are equivalent to the standard square cross section polystyrene or glass cuvettes generally used in…

  19. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  20. Stopped Flow Kinetics of MnII Catalysed Periodate Oxidation of 2, 3- dimethylaniline - Evaluation of Stability Constant of the Ternary Intermediate Complex

    Directory of Open Access Journals (Sweden)

    Rajneesh Dutt Kaushik

    2015-03-01

    Full Text Available The formation of ternary intermediate unstable complex during the oxidation of aromatic amines by periodate ion catalysed by MnII has been proposed in case of some anilines. This paper is the first report on stopped-flow kinetic study and evaluation of stability constant of ternary complex forming in the MnII - catalysed periodate oxidation of 2, 3-dimethylaniline (D in acetone-water medium. Stop-flow spectrophotometric method was used to study the ternary complex formation and to determine its stability constant. The stop-flow trace shows the reaction to occur in two steps. The first step, which is presumably the formation of ternary complex, is relatively fast while the second stage is relatively quite slow. The stability constant evaluated for D - MnII - IO4- ternary complex by determining  equilibrium absorbance is (2.2 ± 1.0 × 105. Kinetics of ternary complex formation was defined by the rate law(A  under pseudo first order conditions. ln{[C2]eq / ( [C2]eq -[C2]} = kobs . t (A where, kobs is the pseudo first order rate constant, [C2] is concentration of ternary complex at given time t, and [C2]eq is the equilibrium concentration of ternary complex. © 2015 BCREC UNDIP. All rights reservedReceived: 3rd October 2014; Revised: 4th December 2014; Accepted: 15th December 2014How to Cite: Kaushik, R.D., Agarwal, R., Tyagi, P., Singh, O., Singh, J. (2015. Stopped Flow Kinetics of MnII Catalysed Periodate Oxidation of 2,3-dimethylaniline - Evaluation of Stability Constant of the Ternary Intermediate Complex. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 78-87. (doi:10.9767/bcrec.10.1.7621.78-87Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7621.78-87

  1. Kinetic Spectrophotometric Method for the 1,4-Diionic Organophosphorus Formation in the Presence of Meldrum′s Acid: Stopped-Flow Approach

    Directory of Open Access Journals (Sweden)

    Fatemeh Ghodsi

    2016-11-01

    Full Text Available The kinetics of the reaction between triphenylphosphine (TPP and dimethyl acetylenedicarboxylate (DMAD in the presence of Meldrum’s acid (MA for the generation of the 1,4-diionic organophosphorus compound has been investigated using the stopped-flow and UV-VIS spectrophotometry techniques. The first step of the reaction between TPP and DMAD for the generation of (I1 in ethanol was followed by the stopped-flow apparatus. This step was recognized as a fast step. The reaction between the intermediate (I1 and MA showed first-order kinetics, and it was followed by the UV-VIS spectrophotometry technique. The activation parameters for the slow step of the proposed mechanism were determined using two linearized forms of the Eyring equation. From the temperature, concentration and solvent studies, the activation energy (Ea = 20.16 kJ·mol−1 and the related activation parameters (ΔG‡ = 71.17 ± 0.015 kJ·mol−1, ΔS‡ = −185.49 ± 0.026 J·mol−1 and ΔH‡ =17.72 ± 0.007 kJ·mol−1 were calculated. The experimental data indicated that the reaction was zero-order in MA and second-order overall. The proposed mechanism was confirmed with the observed kinetic data obtained from the UV-VIS and stopped-flow techniques.

  2. Modification of a commercial spectrophotometer for photoacoustic measurement

    International Nuclear Information System (INIS)

    Bandyopadhyay, S.; Harris, J.M.; Eyring, E.M.

    1983-01-01

    This note describes how a commercial UV-VIS-NIR spectrophotometer may be adapted to function as a double beam photoacoustic spectrophotometer operating at visible wavelengths. Modification of a Varian Cary 17 spectrophotometer was carried out first by dismounting the photomultiplier tube detector module and the cell compartment of the spectrophotometer. The sample and the reference beams were focused through two externally mounted quartz lenses onto the sample and reference photoacoustic cells, respectively

  3. A Simple Spectrophotometer Using Common Materials and a Digital Camera

    Science.gov (United States)

    Widiatmoko, Eko; Widayani; Budiman, Maman; Abdullah, Mikrajuddin; Khairurrijal

    2011-01-01

    A simple spectrophotometer was designed using cardboard, a DVD, a pocket digital camera, a tripod and a computer. The DVD was used as a diffraction grating and the camera as a light sensor. The spectrophotometer was calibrated using a reference light prior to use. The spectrophotometer was capable of measuring optical wavelengths with a…

  4. Brewer spectrophotometer measurements in the Canadian Arctic

    Science.gov (United States)

    Kerr, J. B.; Evans, W. F. J.

    1988-01-01

    In the winters of 1987 and 1988 measurements were conducted with the Brewer Spectrophotometer at Alert (82.5 N) and Resolute (74.5 N). The measurements were conducted as part of our Canadian Program to search for an Arctic Ozone Hole (CANOZE). Ozone measurements were conducted in the months of December, January and February using the moon as a light source. The total ozone measurements will be compared with ozonesonde profiles, from ECC sondes, flown once per week from Alert and Resolute. A modified Brewer Spectrophotometer was used in a special study to search for chlorine dioxide at Alert in March 1987. Ground based observations at Saskatoon in February and at Alert in March 1987 failed to detect any measureable chlorine dioxide. Interference from another absorbing gas, which we speculate may be nitrous acid, prevented the measurements at the low levels of chlorine dioxide detected in the Southern Hemisphere by Solomon et al.

  5. The EUV spectrophotometer on Atmosphere Explorer.

    Science.gov (United States)

    Hinteregger, H. E.; Bedo, D. E.; Manson, J. E.

    1973-01-01

    An extreme ultraviolet (EUV) spectrophotometer for measurements of solar radiation at wavelengths ranging from 140 to 1850 A will be included in the payload of each of the three Atmosphere-Explorer (AE) missions, AE-C, -D, and -E. The instrument consists of 24 grating monochromators, 12 of which can be telecommanded either to execute 128-step scans each covering a relatively small section of the total spectrophotometer wavelength range or to maintain fixed (command-selected) wavelength positions. The remaining 12 nonscan monochromators operate at permanently fixed wavelengths and view only a small fraction of the solar disk except for one viewing the whole sun in H Lyman alpha. Ten of the 12 scan-capable monochromators also view the entire solar disk since their primary function is to measure the total fluxes independent of the distribution of sources across the solar disk.

  6. Conversion of Beckman DK-2A spectrophotometer into an automatic single-photon counting fluorescence spectrophotometer

    International Nuclear Information System (INIS)

    Chikkur, G.C.; Lagare, M.T.; Umakantha, N.

    1981-01-01

    Details of how a DK-2A spectrophotometer can be modified into an automatic single-photon counting fluorescence spectrophotometer for recording a low intensity spectrum, are reported. The single-photon count-rate converted into a DC voltage is applied at the appropriate stage in the sample channel amplifier circuit of a DK-2A to get the pen deflection proportional to the count-rate. A high intensity spectrum may be recorded in the usual way by merely turning the shaft of the mirror motor by 180 degrees. (author)

  7. [Assessment of tooth bleaching efficacy with spectrophotometer].

    Science.gov (United States)

    Zhu, Wenhao; Liu, Chang; Pan, Jie

    2014-06-01

    To analyze the changes in CIE L*, a*, and b* at cervical, body, and incisal sites after tooth bleaching by using a spectrophotometer. Sixty-seven intact and healthy maxillary central incisors were in-vestigated. These incisors were darker than A3 according to the Vita Classical shade guide. The CIE tooth shade parameters L*, a*, and b* were simultaneously recorded at three tooth areas (cervical, body, and incisal) with a spectrophotometer before and after tooth bleaching (35%H2O2 coordinating with Beyond whitening accelerator irradiating). The shade dif-ferential (DeltaE) was calculated. ANOVA, paired t-test, and Pearson correlation analysis were used for data analysis. The efficacy rates of tooth bleaching were satisfactory, with 86.6%, 86.6%, and 85.1% in the cervical, body, and incisal sites, respectively. The average values of DeltaE were 5.09, 4.44, and 4.40 in the cervical, body, and incisal sites. Tooth bleaching significantly increased L* and significantly decreased a* and b* in all tooth areas (P spectrophotometer could objectively evaluate the whitening effect of tooth bleaching at the different tooth sites. The tooth bleaching system (35%H202 coordinating with Beyond whitening accelerator irradiating) exerts powerful bleaching actions in most of the tooth areas investigated. The order of tooth bleaching effectiveness is cervicalbody>incisal. Yellow coloration is decreased mainly at the cervical site, and brightness was increased mostly at theincisal site. The effectiveness of tooth bleaching increases as the baseline b* value increases.

  8. A multi-channel coronal spectrophotometer.

    Science.gov (United States)

    Landman, D. A.; Orrall, F. Q.; Zane, R.

    1973-01-01

    We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.

  9. Aberration Correction in the Brewer Spectrophotometer

    International Nuclear Information System (INIS)

    Johnston, J.E.; Kerr, J.B.; McElroy, C.T.; Wardle, D.I.

    2000-01-01

    The optical design of the Brewer Spectrophotometer has been optimised for measurements in the 300-320 nm wavelength range. An aberration resolution limit that is much less than the 0.6 nm FWHM (full width at half maximum) is achieved by using an Ebert-Fastie spectrometer design, modified by the inclusion tilted lens that optimises performance at 310 nm. The small contribution of the remaining aberration to the measured instrument function is critical to radiometric measurement quality. Ramifications of this design to the development of instrumentation with enhanced scanning abilities are discussed. (author)

  10. Far-infrared spectrophotometer for astronomical observations

    Science.gov (United States)

    Moseley, H.; Silverberg, R. F.

    1981-01-01

    A liquid-helium-cooled far infrared spectrophotometer was built and used to make low resolution observations of the continua of several kinds of astronomical objects using the Kuiper Airborne Observatory. This instrument fills a gap in both sensitivity to continuum sources and spectral resolution between the broadband photometers with lambda/Delta lambda approximately 1 and spectrometers with lambda/Delta lambda greater than 50. While designed primarily to study planetary nebulae, the instrument permits study of the shape of the continua of many weak sources which cannot easily be observed with high resolution systems.

  11. Last improvements of the DTC 1000 spectrophotometer

    International Nuclear Information System (INIS)

    Blanc, F.

    1988-01-01

    The DTC 1000 spectrophotometer, based on optical fibers and photodiode array was developed for Pu(IV) measurement in fuel reprocessing. The apparatus takes advantage of experience acquired in optical fibers instrumentation and of the study of gamma radiation effects on fibers. This paper give the complete evolution of these last months (memory, hardware, software, background noise). But the principle of the apparatus and examples of results obtained on americium and plutonium on a previous version of the apparatus are recalled. 17 figs., 6 refs [fr

  12. Stopped-flow studies of spectral changes in bilirubin-human serum albumin following an alkaline pH jump and following binding of bilirubin

    DEFF Research Database (Denmark)

    Honoré, B

    1987-01-01

    A stopped-flow technique was used to study the spectral changes occurring in bilirubin-albumin following a pH jump as well as following binding of bilirubin at 25 degrees C. The changes were studied in two wavelength ranges, 280-310 nm (tyrosine residues) and 400-510 nm (bound bilirubin). The cha......A stopped-flow technique was used to study the spectral changes occurring in bilirubin-albumin following a pH jump as well as following binding of bilirubin at 25 degrees C. The changes were studied in two wavelength ranges, 280-310 nm (tyrosine residues) and 400-510 nm (bound bilirubin......). The changes were analyzed according to a scheme of consecutive unimolecular reactions. Spectral monitoring of a pH jump from 11.3 to 11.8 reveals that the bilirubin-albumin complex changes its structure in several steps. The UV absorption spectra show that 3.8 tyrosine residues ionize in the first step, 2...

  13. Quantitative Analysis of Piroxicam Using Temperature-Controlled Ionic Liquid Dispersive Liquid Phase Microextraction Followed By Stopped-Flow Injection Spectrofluorimetry

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ganjali

    2013-07-01

    Full Text Available Background:Piroxicam (PXM belongs to the wide class of non-steroidal anti-inflammatory drugs (NSAIDs. PXM has been widely applied in the treatment of rheumatoid arthritis, gonarthrosis, osteoarthritis, backaches, neuralgia, mialgia. In the presented work, a green and benign sample pretreatment method called temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME was followed with stopped-flow injection spectrofluorimetry (SFIS for quantitation of PXM in pharmaceutical formulations and biological samples.Methods:Temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME was applied as an environmentally friendly sample enrichment method to extract and isolate PXM prior to quantitation. Dispersion of 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF6] ionic liquid (IL through the sample aqueous solution was performed by applying a relatively high temperature. PXM was extracted into the extractor, and after phase separation, PXM in the final solution was determined by stopped-flow injection spectrofluorimetry (SFIS.Results and Major Conclusion:Different factors affecting the designed method such as IL amount, diluting agent, pH and temperature were investigated in details and optimized. The method provided a linear dynamic range of 0.2-150 μg l-1, a limit of detection (LOD of 0.046 μg l-1 and a relative standard deviation (RSD of 3.1%. Furthermore, in order to demonstrate the analytical applicability of the recommended method, it was applied for quantitation of PXM in real samples.

  14. Automated spectrophotometer for plutonium and uranium determination

    International Nuclear Information System (INIS)

    Jackson, D.D.; Hodgkins, D.J.; Hollen, R.M.; Rein, J.E.

    1975-09-01

    The automated spectrophotometer described is the first in a planned series of automated instruments for determining plutonium and uranium in nuclear fuel cycle materials. It has a throughput rate of 5 min per sample and uses a highly specific method of analysis for these elements. The range of plutonium and uranium measured is 0.5 to 14 mg and 1 to 14 mg, respectively, in 0.5 ml or less of solution with an option to pre-evaporate larger volumes. The precision of the measurements is about 0.02 mg standard deviation over the range corresponding to about 2 rel percent at the 1-mg level and 0.2 rel percent at the 10-mg level. The method of analysis involves the extraction of tetrapropylammonium plutonyl and uranyl trinitrate complexes into 2-nitropropane and the measurement of the optical absorbances in the organic phase at unique peak wavelengths. Various aspects of the chemistry associated with the method are presented. The automated spectrophotometer features a turntable that rotates as many as 24 samples in tubes to a series of stations for the sequential chemical operations of reagent addition and phase mixing to effect extraction, and then to a station for the absorbance measurement. With this system, the complications of sample transfers and flow-through cells are avoided. The absorbance measurement system features highly stable interference filters and a microcomputer that controls the timing sequence and operation of the system components. Output is a paper tape printout of three numbers: a four-digit number proportional to the quantity of plutonium or uranium, a two-digit number that designates the position of the tube in the turntable, and a one-digit number that designates whether plutonium or uranium was determined. Details of the mechanical and electrical components of the instrument and of the hardware and software aspects of the computerized control system are provided

  15. [Design of Dual-Beam Spectrometer in Spectrophotometer for Colorimetry].

    Science.gov (United States)

    Liu, Yi-xuan; Yan, Chang-xiang

    2015-07-01

    Spectrophotometers for colorimetry are usually composed of two independent and identical spectrometers. In order to reduce the volume of spectrophotometer for colorimetry, a design method of double-beam spectrometer is put forward. A traditional spectrometer is modified so that a new spectrometer can realize the function of double spectrometers, which is especially suitable for portable instruments. One slit is replaced by the double-slit, than two beams of spectrum can be detected. The working principle and design requirement of double-beam spectrometer are described. A spectrometer of portable spectrophotometer is designed by this method. A toroidal imaging mirror is used for the Czerny-Turner double-beam spectrometer in this paper, which can better correct astigmatism, and prevent the dual-beam spectral crosstalk. The results demonstrate that the double-beam spectrometer designed by this method meets the design specifications, with the spectral resolution less than 10 nm, the spectral length of 9.12 mm, and the volume of 57 mm x 54 mm x 23 mm, and without the dual-beam spectral overlap in the detector either. Comparing with a traditional spectrophotometer, the modified spectrophotometer uses a set of double-beam spectrometer instead of two sets of spectrometers, which can greatly reduce the volume. This design method can be specially applied in portable spectrophotometers, also can be widely applied in other double-beam spectrophotometers, which offers a new idea for the design of dual-beam spectrophotometers.

  16. Development of a new reference spectrophotometer

    International Nuclear Information System (INIS)

    Zwinkels, J.C.; Gignac, D.S.

    1989-01-01

    A new reference spectrophotometer is being developed at the National Research Council of Canada (NRCC) for high-accuracy transmittance measurements over the spectral range 200 to 250 nm. This computerized instrument is a single-beam design based upon a servomotor-driven double monochromator with a wavelength resolution of 0.022 nm. The other main components are: two interchangeable sources (deuterium and tungsten-halogen), two computer-selectable TE-cooled detectors (GaAs photomultiplier tube and PbS cell), all-reflective input and exit optics, and a large sample compartment. The significant feature of the optical system is a large, well-collimated measurement beam: the angle of convergence is 0.7 degrees for a slit height of 7 mm, and the maximal beam size is 37 x 20 mm. This beam geometry eliminates the need for polarization corrections (using linearly polarized light) or compensation for spatially non-uniform detector responsivity (using averaging sphere). The paper describes the instrument design and presents data from preliminary performance tests. The systematic and random sources of error that have been investigated include: wavelength accuracy and reproducibility, bandpass, beam uniformity, polarization, stray light, system drift and linearity

  17. A UV-Vis photoacoustic spectrophotometer.

    Science.gov (United States)

    Wiegand, Joseph R; Mathews, L Dalila; Smith, Geoffrey D

    2014-06-17

    A novel photoacoustic spectrophotometer (PAS) for the measurement of gas-phase and aerosol absorption over the UV-visible region of the spectrum is described. Light from a broadband Hg arc lamp is filtered in eight separate bands from 300 to 700 nm using bandpass interference filters (centered at 301 nm, 314 nm, 364 nm, 405 nm, 436 nm, 546 nm, 578 and 687 nm) and modulated with an optical chopper before entering the photoacoustic cell. All wavelength bands feature a 20-s detection limit of better than 3.0 Mm(-1) with the exception of the lower-intensity 687 nm band for which it is 10.2 Mm(-1). Validation measurements of gas-phase acetone and nigrosin aerosol absorption cross sections at several wavelengths demonstrate agreement to within 10% with those measured previously (for acetone) and those predicted by Mie theory (for nigrosin). The PAS instrument is used to measure the UV-visible absorption spectrum of ambient aerosol demonstrating a dramatic increase in the UV region with absorption increasing by 300% from 405 to 301 nm. This type of measurement throughout the UV-visible region and free from artifacts associated with filter-based methods has not been possible previously, and we demonstrate its promise for classifying and quantifying different types of light-absorbing ambient particles.

  18. AESoP: Astronomical Extinction Spectrophotometer

    Science.gov (United States)

    Linford, Justin; McGraw, J.; Zimmer, P.; Ackermann, M.; Fitch, J.

    2009-01-01

    The Earth's atmosphere is a major obstruction to the precision and accuracy of ground-based photometry. The atmosphere removes light from astronomical objects both by absorption and scattering by constituent molecules, aerosols and clouds. These effects can change significantly over short time periods and over modest angles on the sky. To further understand these effects, the UNM Measurement Astrophysics Group has designed, built and recently deployed the Astronomical Extinction Spectrophotometer (AESoP), a 100mm objective grating spectrometer. By monitoring bright stars in sensibly the same direction as a larger photometric telescope is observing, AESoP will measure the wavelength-dependent extinction due to the Earth's atmosphere from 450nm to 900nm on time scales of approximately one minute. The collocated Astronomical LIDAR for Extinction (ALE) provides a high-precision monochromatic extinction measurement at 527nm. Knowing the extinction at a single wavelength allows us to pin the relative spectra generated by AESoP. These extinction spectra can then be integrated over the bandpass of the photometric telescope system to create real time corrections of observations. We present the design and construction of AESoP along with the preliminary results of our first combined observing campaign. This effort is our first step toward breaking the 1% photometry barrier. This project is funded by AFRL Grant FA9451-04-2-0355

  19. S-naproxen-ss-1-O-acyl glucuronide degradation kinetic studies by stopped-flow high-performance liquid chromatography-H-1 NMR and high-performance liquid chromatography-UV

    DEFF Research Database (Denmark)

    Mortensen, R. W.; Corcoran, O.; Cornett, Claus

    2001-01-01

    Acyl-migrated isomers of drug beta -1-O-acyl glucuronides have been implicated in drug toxicity because they can bind to proteins. The acyl migration and hydrolysis of S-naproxen-beta -1-O-acyl glucuronide (S-nap-g) was followed by dynamic stopped-flow HPLC-H-1 NMR and HPLC methods. Nine first or...

  20. Cuvette and method for measuring refractive index in a spectrophotometer

    DEFF Research Database (Denmark)

    2017-01-01

    Embodiments of the present invention include a cuvette (100) for use in determining a refractive index of a sample matter in a spectrophotometer (600), the cuvette comprising a container (102) for holding the sample matter, the container (102) having an entry window (121) that allows input...... or integrally formed in the container and arranged in the radiation path, the photonic crystal having a grating part (111) causing a reflectance spectrum of the photonic crystal to exhibit a resonance. A spectrophotometer is also provided....

  1. Determination of tartrazine in beverage samples by stopped-flow analysis and three-way multivariate calibration of non-linear kinetic-spectrophotometric data.

    Science.gov (United States)

    Schenone, Agustina V; Culzoni, María J; Marsili, Nilda R; Goicoechea, Héctor C

    2013-06-01

    The performance of MCR-ALS was studied in the modeling of non-linear kinetic-spectrophotometric data acquired by a stopped-flow system for the quantitation of tartrazine in the presence of brilliant blue and sunset yellow FCF as possible interferents. In the present work, MCR-ALS and U-PCA/RBL were firstly applied to remove the contribution of unexpected components not included in the calibration set. Secondly, a polynomial function was used to model the non-linear data obtained by the implementation of the algorithms. MCR-ALS was the only strategy that allowed the determination of tartrazine in test samples accurately. Therefore, it was applied for the analysis of tartrazine in beverage samples with minimum sample preparation and short analysis time. The proposed method was validated by comparison with a chromatographic procedure published in the literature. Mean recovery values between 98% and 100% and relative errors of prediction values between 4% and 9% were indicative of the good performance of the method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Artificial neural networks study of the catalytic reduction of resazurin: stopped-flow injection kinetic-spectrophotometric determination of Cu(II) and Ni(II)

    International Nuclear Information System (INIS)

    Magni, Diana M.; Olivieri, Alejandro C.; Bonivardi, Adrian L.

    2005-01-01

    An artificial neural network (ANN) procedure was used in the development of a catalytic spectrophotometric method for the determination of Cu(II) and Ni(II) employing a stopped-flow injection system. The method is based on the catalytic action of these ions on the reduction of resazurin by sulfide. ANNs trained by back-propagation of errors allowed us to model the systems in a concentration range of 0.5-6 and 1-15 mg l -1 for Cu(II) and Ni(II), respectively, with a low relative error of prediction (REP) for each cation: REP Cu(II) = 0.85% and REP Ni(II) = 0.79%. The standard deviations of the repeatability (s r ) and of the within-laboratory reproducibility (s w ) were measured using standard solutions of Cu(II) and Ni(II) equal to 2.75 and 3.5 mg l -1 , respectively: s r [Cu(II)] = 0.039 mg l -1 , s r [Ni(II)] = 0.044 mg l -1 , s w [Ni(II)] = 0.045 mg l -1 and s w [Ni(II)] = 0.050 mg l -1 . The ANNs-kinetic method has been applied to the determination of Cu(II) and Ni(II) in electroplating solutions and provided satisfactory results as compared with flame atomic absorption spectrophotometry method. The effect of resazurin, NaOH and Na 2 S concentrations and the reaction temperature on the analytical sensitivity is discussed

  3. Combined pressure and cosolvent effects on enzyme activity - a high-pressure stopped-flow kinetic study on α-chymotrypsin.

    Science.gov (United States)

    Luong, Trung Quan; Winter, Roland

    2015-09-21

    We investigated the combined effects of cosolvents and pressure on the hydrolysis of a model peptide catalysed by α-chymotrypsin. The enzymatic activity was measured in the pressure range from 0.1 to 200 MPa using a high-pressure stopped-flow systems with 10 ms time resolution. A kosmotropic (trimethalymine-N-oxide, TMAO) and chaotropic (urea) cosolvent and mixtures thereof were used as cosolvents. High pressure enhances the hydrolysis rate as a consequence of a negative activation volume, ΔV(#), which, depending on the cosolvent system, amounts to -2 to -4 mL mol(-1). A more negative activation volume can be explained by a smaller compression of the ES complex relative to the transition state. Kinetic constants, such as kcat and the Michaelis constant KM, were determined for all solution conditions as a function of pressure. With increasing pressure, kcat increases by about 35% and its pressure dependence by a factor of 1.9 upon addition of 2 M urea, whereas 1 M TMAO has no significant effect on kcat and its pressure dependence. Similarly, KM increases upon addition of urea 6-fold. Addition of TMAO compensates the urea-effect on kcat and KM to some extent. The maximum rate of the enzymatic reaction increases with increasing pressure in all solutions except in the TMAO : urea 1 : 2 mixture, where, remarkably, pressure is found to have no effect on the rate of the enzymatic reaction anymore. Our data clearly show that compatible solutes can easily override deleterious effects of harsh environmental conditions, such as high hydrostatic pressures in the 100 MPa range, which is the maximum pressure encountered in the deep biosphere on Earth.

  4. A simple and low cost dual-wavelength β-correction spectrophotometric determination and speciation of mercury(II) in water using chromogenic reagent 4-(2-thiazolylazo) resorcinol

    Science.gov (United States)

    Al-Bagawi, A. H.; Ahmad, W.; Saigl, Z. M.; Alwael, H.; Al-Harbi, E. A.; El-Shahawi, M. S.

    2017-12-01

    The most common problems in spectrophotometric determination of various complex species originate from the background spectral interference. Thus, the present study aimed to overcome the spectral matrix interference for the precise analysis and speciation of mercury(II) in water by dual-wavelength β-correction spectrophotometry using 4-(2-thiazolylazo) resorcinol (TAR) as chromogenic reagent. The principle was based on measuring the correct absorbance for the formed complex of mercury(II) ions with TAR reagent at 547 nm (lambda max). Under optimized conditions, a linear dynamic range of 0.1-2.0 μg mL- 1 with correlation coefficient (R2) of 0.997 were obtained with lower limits of detection (LOD) of 0.024 μg mL- 1 and limit of quantification (LOQ) of 0.081 μg mL- 1. The values of RSD and relative error (RE) obtained for β-correction method and single wavelength spectrophotometry were 1.3, 1.32% and 4.7, 5.9%, respectively. The method was validated in tap and sea water in terms of the data obtained from inductively coupled plasma-optical emission spectrometry (ICP-OES) using student's t and F tests. The developed methodology satisfactorily overcomes the spectral interference in trace determination and speciation of mercury(II) ions in water.

  5. Hand-held spectrophotometer design for textile fabrics

    Science.gov (United States)

    Böcekçi, Veysel Gökhan; Yıldız, Kazım

    2017-09-01

    In this study, a hand-held spectrophotometer was designed by taking advantage of the developments in modern optoelectronic technology. Spectrophotometer devices are used to determine the color information from the optic properties of the materials. As an alternative to a desktop spectrophotometer device we have implemented, it is the first prototype, low cost and portable. The prototype model designed for the textile industry can detect the color tone of any fabric. The prototype model consists of optic sensor, processor, display floors. According to the color applied on the optic sensor, it produces special frequency information on its output at that color value. In Arduino type processor, the frequency information is evaluated by the program we have written and the color tone information between 0-255 ton is decided and displayed on the screen.

  6. Satellite spectrophotometer for research of the atmospheric ozone

    International Nuclear Information System (INIS)

    Getzov, P.; Mardirossian, G.; Stoyanov, S.

    2014-01-01

    The measurement of atmospheric ozone and its influence upon climate and life on Earth is undoubtedly one of the most pressing issues of present time. A mathematical model of an optical tract of a spectrophotometer has been designed. The paper presents the functional scheme of a satellite optoelectronic spectrophotometer for measuring the total content of atmospheric ozone and other gas components of the atmosphere, which has increased precision, smaller weight and energy consumption, increased space and time resolution, quickness of reaction and increased volume of useful information. The object of the paper is the design of an appliance which ensures research of ozone content in atmosphere from the board of a satellite

  7. Structure analysis of biomolecules using synchrotron radiation circular dichroism spectrophotometer

    International Nuclear Information System (INIS)

    Gekko, Kunihiko; Matsuo, Koichi

    2004-01-01

    We constructed the vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer, which is capable of measuring circular dichroism spectra to 140 nm for aqueous solutions at temperature from -30 to 70degC, using a small-scale SR source at Hiroshima Synchrotron Radiation Center (HiSOR). This spectrophotometer was used for structural analyses of amino acids, saccharides, and proteins in water. The obtained results demonstrate that a synchrotron radiation VUVCD spectroscopy provides more detailed and new information on the structures of biomolecules, based on the high energy transitions of chromophores such as hydroxyl, acetal, and peptide groups. (author)

  8. Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in H2O and D2O. Acid-base and metal ion catalysis

    International Nuclear Information System (INIS)

    Pocker, Y.; Bjorkquist, D.W.

    1977-01-01

    The approach to equilibrium between carbon dioxide and bicarbonate has been followed by zero-order kinetics both from direction of CO 2 hydration and HCO 3 - dehydration. The rates are monitored at 25.0 0 C using stopped-flow indicator technique in H 2 O as well as D 2 O. The hydration of CO 2 is subject to catalysis by H 2 O (k 0 = 2.9 x 10 -2 s -1 ) and OH - (k/sub OH - / = 6.0 x 10 3 M -1 s -1 ). The value of 0.63 for the ratio k/sub OH - //k/sub OD - / is consistent with a mechanism utilizing a direct nucleophilic attack of OH - on CO 2 . In reverse direction HCO 3 - dehydration is catalyzed predominantly by H 3 O + (k/sub H 3 O + / 4.1 x 10 4 M -1 s -1 ) and to a much lesser degree by H 2 O (k 0 = 2 x 10 -4 s -1 ). The value of 0.56 for ratio k/sub H 3 O + //kD 3 O + / indicates that HCO 3 - may be protonated either in a preequilibrium step or in a rate-determining dehydration step. Both the hydration of CO 2 and the dehydration of bicarbonate are subject to general catalysis. For CO 2 , dibasic phosphate, a zinc imidazole complex, and a copper imidazole complex all enhanced the rate of hydration with respective rate coefficients of 3 x 10 -1 , 6.0, and 2.5 M -1 s -1 . For bicarbonate, monobasic phosphate catalyzed the rate of dehydration (k/sub H 2 PO 4 - / = 1 x 10 -1 M -1 s -1 ). Additionally in going from an ionic strength of 0.1 to 1.0 there was a negligible salt effect for the water-catalyzed hydration of CO 2 . However, the rate constant for the hydronium ion catalyzed dehydration of HCO 3 - was reduced from 4.1 x 10 4 M -1 s -1 to 2.3 x 10 4 M -1 s -1 for the same change in ionic strength. Finally the rate of CO 2 uptake by the complex Co(NH 3 ) 5 OH 2 3+ was followed spectrophotometrically both in H 2 O and D 2 O to determine the solvent isotope effect for a reaction known to involve a nucleophilic attack of a Co(III)-hydroxo complex on CO 2

  9. Isosbestic points in the quality control oF spectrophotometers

    International Nuclear Information System (INIS)

    Oliveira, E.M. de.

    1987-01-01

    The methodology and results of quality control of spectrophotometers are reported and the calibrating of the monochromator by isosbestic points is presented. Four colorimetric indicators are used. The absorption curves (in acid and alkaline media) and mathematic determination of the common junction point are used for indicated the isosbetic points. (M.A.C.) [pt

  10. Reliability of shade selection using an intraoral spectrophotometer.

    Science.gov (United States)

    Witkowski, Siegbert; Yajima, Nao-Daniel; Wolkewitz, Martin; Strub, Jorge R

    2012-06-01

    In this study, we evaluate the accuracy and reproducibility of human tooth shade selection using a digital spectrophotometer. Variability among examiners and illumination conditions were tested for possible influence on measurement reproducibility. Fifteen intact anterior teeth of 15 subjects were evaluated for their shade using a digital spectrophotometer (Crystaleye, Olympus, Tokyo, Japan) by two examiners under the same light conditions representing a dental laboratory situation. Each examiner performed the measurement ten times on the labial surface of each tooth containing three evaluation sides (cervical, body, incisal). Commission International on Illumination color space values for L* (lightness), a* (red/green), and b* (yellow/blue) were obtained from each evaluated side. Examiner 2 repeated the measurements of the same subjects under different light conditions (i.e., a dental unit with a chairside lamp). To describe measurement precision, the mean color difference from the mean metric was used. The computed confidence interval (CI) value 5.228 (4.6598-5.8615) reflected (represented) the validity of the measurements. Least square mean analysis of the values obtained by examiners 1 and 2 or under different illumination conditions revealed no statistically significant differences (CI = 95%). Within the limits of the present study, the accuracy and reproducibility of dental shade selection using the tested spectrophotometer with respect to examiner and illumination conditions reflected the reliability of this device. This study suggests that the tested spectrophotometer can be recommended for the clinical application of shade selection.

  11. Fiber optic modification of a diode array spectrophotometer

    International Nuclear Information System (INIS)

    Van Hare, D.R.; Prather, W.S.

    1986-01-01

    Fiber optics were adapted to a Hewlett-Packard diode array spectrophotometer to permit the analysis of radioactive samples without risking contamination of the instrument. Instrument performance was not compromised by the fiber optics. The instrument is in routine use at the Savannah River Plant control laboratories

  12. Performance assessment of Vita Easy Shade spectrophotometer on colour measurement of aesthetic dental materials.

    Science.gov (United States)

    AlGhazali, N; Burnside, G; Smith, R W; Preston, A J; Jarad, F D

    2011-12-01

    Four different shades were used to produce 20 samples of resin-based composite and 20 samples of porcelain to evaluate the performance ability of an intra oral test spectrophotometer compared to a reference spectrophotometer. The absolute colour coordinates CIELAB values measured with both spectrophotometers were significantly different (p spectrophotometers (p < 0.05). Therefore, the Easy Shade can be used in dental practice and dental research with some limitations.

  13. 21 CFR 862.2300 - Colorimeter, photometer, or spectrophotometer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Colorimeter, photometer, or spectrophotometer for... Clinical Laboratory Instruments § 862.2300 Colorimeter, photometer, or spectrophotometer for clinical use. (a) Identification. A colorimeter, a photometer, or a spectrophotometer for clinical use is an...

  14. 21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and measure...

  15. Non-focusing optics spectrophotometer, and methods of use

    Science.gov (United States)

    Kramer, David M.; Sacksteder, Colette A.

    2004-11-02

    In one aspect, the present invention provides kinetic spectrophotometers that each comprise: (a) a light source; and (b) a compound parabolic concentrator disposed to receive light from the light source and configured to (1) intensify and diffuse the light received from the light source, and (2) direct the intensified and diffused light onto a sample. In other aspects, the present invention provides methods for measuring a photosynthetic parameter, the methods comprising the steps of: (a) illuminating a plant leaf until steady-state photosynthesis is achieved; (b) subjecting the illuminated plant leaf to a period of darkness; (c) using a kinetic spectrophotometer of the invention to collect spectral data from the plant leaf treated in accordance with steps (a) and (b); and (d) determining a value for a photosynthetic parameter from the spectral data.

  16. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    Science.gov (United States)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  17. Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance

    Science.gov (United States)

    Witte, William G., Jr.; Slemp, Wayne S.; Perry, John E., Jr.

    1991-01-01

    A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented.

  18. Online analysis by a fiber-optic diode array spectrophotometer

    International Nuclear Information System (INIS)

    Van Hare, D.R.; Prather, W.S.; O'Rourke, P.E.

    1987-01-01

    An online photometric analyzer has been developed which can make remote measurements over the 350 to 900 nm region at distances of up to 100 feet. The analyzer consists of a commercially available diode array spectrophotometer interfaced to a fiber-optic multiplexer to allow online monitoring of up to ten locations sequentially. The development of the fiber-optic interface is discussed and data from several online applications are presented to demonstrate the capabilities of the measurement system

  19. Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation

    International Nuclear Information System (INIS)

    Matsuo, K.; Fukuyama, T.; Yonehara, R.; Namatame, H.; Taniguchi, M.; Gekko, K.

    2005-01-01

    We have constructed a vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer using a synchrotron radiation and an assembled-type MgF 2 cell endurable under a high vacuum, to measure the CD spectra of biomaterials in aqueous solutions from 310 to 140 nm. To avoid the absorption of light by air and water vapor, all optical devices of the spectrophotometer were set up under a high vacuum (10 -4 Pa). A path length of the optical cell can be adjusted by various Teflon spacers in the range from 1.3 to 50 μm and its temperature can be controlled to an accuracy of ±1 deg. C over the range from -30 to 70 deg. C by a temperature-control unit using a Peltier thermoelectric element. The performance of the spectrophotometer and the optical cell constructed was tested by measuring the CD spectra of ammonium d-camphor-10-sulfonate, D- and L-isomers of amino acids, and myoglobin in aqueous solutions. The spectra obtained demonstrate that the optical system and the sample cell constructed operate normally under a high vacuum and provide useful information on the structure of biomolecules based on the higher energy chromophores

  20. Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation

    International Nuclear Information System (INIS)

    Matsu, K.; Yonehara, R.; Gekko, K.

    2004-01-01

    Full text: Circular dichroism (CD) spectroscopy is powerful for analyzing the structure of optically active materials such as biopolymers. However, no commercial CD spectrophotometer is capable of measuring the CD in the vacuum ultraviolet (VUV) region below 190 nm because of technical difficulties involved in the light source, optical device, and sample cell. CD measurements extended to the VUV region can provide more detailed and new information on the structure of biopolymers based on the higher energy transition of chromophores such as hydroxyl and acetal groups. We have constructed a VUVCD spectrophotometer to measure the CD spectra of biomaterials in aqueous solutions in the 310-140 nm wavelength region under a high vacuum, using a small-scale SR source (0.7 GeV) at Hiroshima Synchrotron Radiation Center (HiSOR). All optical devices of the spectrophotometer were set up under a high vacuum (10 -6 Torr), to avoid the absorption of light by air and water vapor. The SR light is separated into two orthogonal linearly polarized light beams by a linear polarizer and then modulated to circularly polarized light at 50 kHz by a photo-elastic modulator (PEM). In order to control PEM accurately and to stabilize the lock-in amplifier under a high vacuum, we used the optical servo-control system. Also, an assembled-type MgF 2 cell with a temperature-control unit was constructed using a Peltier thermoelectric element. Its path length can be adjusted by various Tefron spacers in the range from 1.3 to 50 μm and its temperature can be controlled within an accuracy of ± 1 deg C in the range from -30 to 70 deg C. The performance of the spectrophotometer and MgF 2 cell constructed was tested by monitoring the CD spectra of ammonium d-camphor-10-sulfonate (ACS), D- and L-isomers of amino acids. These obtained results demonstrate that the optical system and the sample cell constructed normally operate under a high vacuum to provide useful information on the structure analysis of

  1. [In vivo model to evaluate the accuracy of complete-tooth spectrophotometer for dental clinics].

    Science.gov (United States)

    Liu, Feng; Yang, Jian; Xu, Tong-Kai; Xu, Ming-Ming; Ma, Yu

    2011-02-01

    To test ΔE between measured value and right value from the Crystaleye complete-tooth spectrophotometer, and to evaluate the accuracy rate of the spectrophotometer. Twenty prosthodontists participated in the study. Each of them used Vita 3D-Master shadeguide to do the shade matching, and used Crystaleye complete-tooth spectrophotometer (before and after the test training) tested the middle of eight fixed tabs from shadeguide in the dark box. The results of shade matching and spectrophotometer were recorded. The accuracy rate of shade matching and the spectrophotometer before and after training were calculated. The average accuracy rate of shade matching was 49%. The average accuracy rate of the spectrophotometer before and after training was 83% and 99%. The accuracy of the spectrophotometer was significant higher than that in shade matching, and training can improve the accuracy rate.

  2. A pressure tuned stop-flow atomic layer deposition process for MoS2 on high porous nanostructure and fabrication of TiO2/MoS2 core/shell inverse opal structure

    Science.gov (United States)

    Li, Xianglin; Puttaswamy, Manjunath; Wang, Zhiwei; Kei Tan, Chiew; Grimsdale, Andrew C.; Kherani, Nazir P.; Tok, Alfred Iing Yoong

    2017-11-01

    MoS2 thin films are obtained by atomic layer deposition (ALD) in the temperature range of 120-150 °C using Mo(CO)6 and dimethyl disulfide (DMDS) as precursors. A pressure tuned stop-flow ALD process facilitates the precursor adsorption and enables the deposition of MoS2 on high porous three dimensional (3D) nanostructures. As a demonstration, a TiO2/MoS2 core/shell inverse opal (TiO2/MoS2-IO) structure has been fabricated through ALD of TiO2 and MoS2 on a self-assembled multilayer polystyrene (PS) structure template. Due to the self-limiting surface reaction mechanism of ALD and the utilization of pressure tuned stop-flow ALD processes, the as fabricated TiO2/MoS2-IO structure has a high uniformity, reflected by FESEM and FIB-SEM characterization. A crystallized TiO2/MoS2-IO structure can be obtained through a post annealing process. As a 3D photonic crystal, the TiO2/MoS2-IO exhibits obvious stopband reflecting peaks, which can be adjusted through changing the opal diameters as well as the thickness of MoS2 layer.

  3. Automated atomic absorption spectrophotometer, utilizing a programmable desk calculator

    International Nuclear Information System (INIS)

    Futrell, T.L.; Morrow, R.W.

    1977-01-01

    A commercial, double-beam atomic absorption spectrophotometer has been interfaced with a sample changer and a Hewlett-Packard 9810A calculator to yield a completely automated analysis system. The interface electronics can be easily constructed and should be adaptable to any double-beam atomic absorption instrument. The calculator is easily programmed and can be used for general laboratory purposes when not operating the instrument. The automated system has been shown to perform very satisfactorily when operated unattended to analyze a large number of samples. Performance statistics agree well with a manually operated instrument

  4. Ultraviolet spectrophotometer for measuring columnar atmospheric ozone from aircraft

    Science.gov (United States)

    Hanser, F. A.; Sellers, B.; Briehl, D. C.

    1978-01-01

    An ultraviolet spectrophotometer (UVS) to measure downward solar fluxes from an aircraft or other high altitude platform is described. The UVS uses an ultraviolet diffuser to obtain large angular response with no aiming requirement, a twelve-position filter wheel with narrow (2-nm) and broad (20-nm) bandpass filters, and an ultraviolet photodiode. The columnar atmospheric ozone above the UVS (aircraft) is calculated from the ratios of the measured ultraviolet fluxes. Comparison with some Dobson station measurements gives agreement to 2%. Some UVS measured ozone profiles over the Pacific Ocean for November 1976 are shown to illustrate the instrument's performance.

  5. UV-observations with a Brewer spectrophotometer at Hohenpeissenberg

    Science.gov (United States)

    Vandersee, Winfried; Koehler, U.

    1994-01-01

    Regular spectral UV-B measurements with a Brewer spectrophotometer have been performed at Hohenpeissenberg since 1990. Intercomparison of the Brewer instrument with other UV-B monitoring devices have shown agreement to within plus or minus 10 percent. Comparisons of UV-B spectra measured on fair weather days reveal the well known increasing influence of ozone on UV-B irradiance with decreasing wavelengths. The integral amplification factor the erythemal irradiance reaches values up to 2.8, which can be diminished by increasing turbidity. The influence of cirrus cloud on the UV-B is also shown.

  6. Simple LED spectrophotometer for analysis of color information.

    Science.gov (United States)

    Kim, Ji-Sun; Kim, A-Hee; Oh, Han-Byeol; Goh, Bong-Jun; Lee, Eun-Suk; Kim, Jun-Sik; Jung, Gu-In; Baek, Jin-Young; Jun, Jae-Hoon

    2015-01-01

    A spectrophotometer is the basic measuring equipment essential to most research activity fields requiring samples to be measured, such as physics, biotechnology and food engineering. This paper proposes a system that is able to detect sample concentration and color information by using LED and color sensor. Purity and wavelength information can be detected by CIE diagram, and the concentration can be estimated with purity information. This method is more economical and efficient than existing spectrophotometry, and can also be used by ordinary persons. This contribution is applicable to a number of fields because it can be used as a colorimeter to detect the wavelength and purity of samples.

  7. Results of international Dobson spectrophotometer calibrations at Arosa, Switzerland, 1990

    Science.gov (United States)

    Grass, R. D.; Komhyr, W. D.; Koenig, G. L.; Evans, R. D.

    1994-01-01

    An international comparison of Dobson ozone spectrophotometers, organized and partially funded by the World Meteorological Organization (WMO), was held at the Lichtklimatisches Observatorium (LKO) in Arosa, Switzerland, July-August 1990. Countries participating with a total of 18 Dobson instruments were Belgium, Czechoslovakia, Denmark, Germany, Greece, Hungary, Iceland, Norway, Poland, Portugal, Rumania, Spain, Switzerland, the United Kingdom, the United States, and the United Soviet Socialist Republics. The reference standard instrument for the comparison was U.S.A. Secondary Standard Dobson Spectrophotometer 65 maintained by the NOAA Climate and Monitoring and Diagnostics Laboratory, Boulder, Colorado. The mean difference in ozone obtained with the Dobson instruments relative to Dobson instrument 65, calculated from ADDSGQP observations in the air mass range 1.15-3.2, was minus 1.0 plus or minus 1.2 (1 sigma) percent. The WMO Standard Brewer Spectrometer 39 also participated. In the mean, the Brewer instrument measured 0.6 plus or minus 0.2 (1 sigma) percent more ozone than did Dobson instrument 65. Results are presented, also, of ozone vertical profile measurements made with the Dobson instruments, two Brewer spectrometers, a LIDAR, a balloon ozonesonde flown from Hohenpeissenberg, Germany, and balloon ozonesondes flown from Payerne, Switzerland.

  8. Portable visible and near-infrared spectrophotometer for triglyceride measurements.

    Science.gov (United States)

    Kobayashi, Takanori; Kato, Yukiko Hakariya; Tsukamoto, Megumi; Ikuta, Kazuyoshi; Sakudo, Akikazu

    2009-01-01

    An affordable and portable machine is required for the practical use of visible and near-infrared (Vis-NIR) spectroscopy. A portable fruit tester comprising a Vis-NIR spectrophotometer was modified for use in the transmittance mode and employed to quantify triglyceride levels in serum in combination with a chemometric analysis. Transmittance spectra collected in the 600- to 1100-nm region were subjected to a partial least-squares regression analysis and leave-out cross-validation to develop a chemometrics model for predicting triglyceride concentrations in serum. The model yielded a coefficient of determination in cross-validation (R2VAL) of 0.7831 with a standard error of cross-validation (SECV) of 43.68 mg/dl. The detection limit of the model was 148.79 mg/dl. Furthermore, masked samples predicted by the model yielded a coefficient of determination in prediction (R2PRED) of 0.6856 with a standard error of prediction (SEP) and detection limit of 61.54 and 159.38 mg/dl, respectively. The portable Vis-NIR spectrophotometer may prove convenient for the measurement of triglyceride concentrations in serum, although before practical use there remain obstacles, which are discussed.

  9. [A micro-silicon multi-slit spectrophotometer based on MEMS technology].

    Science.gov (United States)

    Hao, Peng; Wu, Yi-Hui; Zhang, Ping; Liu, Yong-Shun; Zhang, Ke; Li, Hai-Wen

    2009-06-01

    A new mini-spectrophotometer was developed by adopting micro-silicon slit and pixel segmentation technology, and this spectrophotometer used photoelectron diode array as the detector by the back-dividing-light way. At first, the effect of the spectral bandwidth on the tested absorbance linear correlation was analyzed. A theory for the design of spectrophotometer's slit was brought forward after discussing the relationships between spectrophotometer spectrum band width and pre-and post-slits width. Then, the integrative micro-silicon-slit, which features small volume, high precision, and thin thickness, was manufactured based on the MEMS technology. Finally, a test was carried on linear absorbance solution by this spectrophotometer. The final result showed that the correlation coefficients were larger than 0.999, which means that the new mini-spectrophotometer with micro-silicon slit pixel segmentation has an obvious linear correlation.

  10. PC based data system for infrared spectrophotometer PU-9512

    International Nuclear Information System (INIS)

    Ali, Mohd Yakub; Venkiteswaran, S.; Nagar, M.S.

    2000-08-01

    This report summarises the upgrading of an old Infra Red Spectrophotometer using a pc for control, data acquisition, storage and analysis. The hardware link is made through RS232C serial port. The control and data management is achieved through software. A brief account of the facilities provided and versatility of the analysis package which was developed in-house in a user friendly menu driven fashion is given here. This is supported by the analysis and inter comparison of infra red spectra of organic/inorganic reactants and products. It has specific application in synthesis and characterization of new extractants, solvents, actinide and lanthanide complexes and in the study of thermally and radiolytically degraded products. (author)

  11. Early results from the Far Infrared Absolute Spectrophotometer (FIRAS)

    Science.gov (United States)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Eplee, R. E.; Isaacman, R. B.; Fixsen, D. J.; Read, S. M.; Meyer, S. S.; Weiss, R.; Wright, E. L.

    1991-01-01

    The Far Infrared Absolute Spectrophotometer (FIRAS) on the Cosmic Background Explorer (COBE) mapped 98 percent of the sky, 60 percent of it twice, before the liquid helium coolant was exhausted. The FIRAS covers the frequency region from 1 to 100/cm with a 7 deg angular resolution. The spectral resolution is 0.2/cm for frequencies less than 20/cm and 0.8/cm for higher frequencies. Preliminary results include: a limit on the deviations from a Planck curve of 1 percent of the peak brightness from 1 to 20/cm, a temperature of 2.735 +/- 0.06 K, a limit on the Comptonization parameter y of 0.001, on the chemical potential parameter mu of 0.01, a strong limit on the existence of a hot smooth intergalactic medium, and a confirmation that the dipole anisotropy spectrum is that of a Doppler shifted blackbody.

  12. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer.

    Science.gov (United States)

    Ajanal, Manjunath; Gundkalle, Mahadev B; Nayak, Shradda U

    2012-04-01

    Herbal formulation standardization by adopting newer technique is need of the hour in the field of Ayurvedic pharmaceutical industry. As very few reports exist. These kind of studies would certainly widen the herbal research area. Chitrakadivati is one such popular herbal formulation used in Ayurveda. Many of its ingredients are known for presence of alkaloids. Presence of alkaloid was tested qualitatively by Dragondroff's method then subjected to quantitative estimation by UV-Spectrophotometer. This method is based on the reaction between alkaloid and bromocresol green (BCG). Study discloses that out of 16 ingredients, 9 contain alkaloid. Chitrakadivati has shown 0.16% of concentration of alkaloid and which is significantly higher than it's individual ingredients.

  13. RECALIBRATION OF H CANYON ONLINE SPECTROPHOTOMETER AT EXTENDED URANIUM CONCENTRATION

    International Nuclear Information System (INIS)

    Lascola, R

    2008-01-01

    The H Canyon online spectrophotometers are calibrated for measurement of the uranium and nitric acid concentrations of several tanks in the 2nd Uranium Cycle.[1] The spectrometers, flow cells, and prediction models are currently optimized for a process in which uranium concentrations are expected to range from 0-15 g/L and nitric acid concentrations from 0.05-6 M. However, an upcoming processing campaign will involve 'Super Kukla' material, which has a lower than usual enrichment of fissionable uranium. Total uranium concentrations will be higher, spanning approximately 0-30 g/L U, with no change in the nitric acid concentrations. The new processing conditions require the installation of new flow cells with shorter path lengths. As the process solutions have a higher uranium concentration, the shorter path length is required to decrease the absorptivity to values closer to the optimal range for the instrument. Also, new uranium and nitric acid prediction models are required to span the extended uranium concentration range. The models will be developed for the 17.5 and 15.4 tanks, for which nitric acid concentrations will not exceed 1 M. The restricted acid range compared to the original models is anticipated to reduce the measurement uncertainty for both uranium and nitric acid. The online spectrophotometers in H Canyon Second Uranium Cycle were modified to allow measurement of uranium and nitric acid for the Super Kukla processing campaign. The expected uranium concentrations, which are higher than those that have been recently processed, required new flow cells with one-third the optical path length of the existing cells. Also, new uranium and nitric acid calibrations were made. The estimated reading uncertainties (2σ) for Tanks 15.4 and 17.5 are ∼5% for uranium and ∼25% for nitric acid

  14. Compensation for the temperature drift of the wavelength adjustment in an acoustooptic spectrophotometer

    International Nuclear Information System (INIS)

    Vilenskii, A V; Lysoi, B G; Cherednichenko, O B

    2002-01-01

    It is shown that the temperature drift of the wavelength adjustment in acoustooptic spectrophotometers can be compensated by using the reference channel of the spectrophotometer in which the absorption lines of neodymium-doped yttrium - aluminium garnet are employed as reference lines.

  15. The Spectrophotometer II: A Module on the Spectral Properties of Light. Tech Physics Series.

    Science.gov (United States)

    Frank, Nathaniel; And Others

    This module is designed to give the learner an understanding of the nature of light and how its properties are used in the design of spectrophotometers. Problems promote the use of spectrophotometers in qualitative analysis, the optical elements used in a monochromator, and the physical properties of the prism and the diffraction grating. Other…

  16. Bulk and track etching of PET studied by spectrophotometer

    International Nuclear Information System (INIS)

    Zhu, Z.Y.; Duan, J.L.; Maekawa, Y.; Koshikawa, H.; Yoshida, M.

    2004-01-01

    UV-VIS spectra of poly(ethylene terephthalate) (PET) solutions formed by etching PET in NaOH solution were analyzed with respect to the etching time. A linear relationship between absorptions centered at 4.45 and 5.11 eV with weight loss of PET in NaOH solution was established. The relation was applied to study the influence of UV light illumination on bulk etching of PET and to evaluate pore size of etched-through tracks. It is found that bulk etching of PET can be greatly enhanced by UV illumination in air in the wavelength range around 313 nm. A surface area of about 350 nm in thickness shows a 23 times increase in bulk-etching rate after illuminated for 6 h. The phenomenon is attributed to the oxygen-assisted photo-degradation through generating of new photo-unstable species. The enhancement in bulk etching was immediately reduced as the etching proceeds below the surface with an exponential decay constant of about 1.5 μm -1 . Etching of Xe ion irradiated PET films gives extra etching products with similar chemical structure as revealed by spectrophotometer measurements. Quantitative analysis of etching products from latent tracks implies that pores of about 14.6 nm in radius are formed after etching in 0.74 N NaOH at 40 deg. C for 35 min, which is in agreement with the conductometric measurement

  17. Comparation studies of uranium analysis method using spectrophotometer and voltammeter

    International Nuclear Information System (INIS)

    Sugeng Pomomo

    2013-01-01

    Comparation studies of uranium analysis method by spectrophotometer and voltammeter had been done. The objective of experiment is to examine the reliability of analysis method and instrument performance by evaluate parameters; linearity, accuracy, precision and detection limit. Uranyl nitrate hexahydrate is used as standard, and the sample is solvent mixture of tributyl phosphate and kerosene containing uranium (from phosphoric acid purification unit Petrokimia Gresik). Uranium (U) stripping in the sample use HN0 3 0,5 N and then was analyzed by using of both instrument. Analysis of standard show that both methods give a good linearity by correlation coefficient > 0,999. Spectrophotometry give accuration 99,34 - 101,05 % with ratio standard deviation (RSD) 1,03 %; detection limit (DL) 0,05 ppm. Voltammetry give accuration 95,63 -101,49 % with RSD 3,91 %; detection limit (DL) 0,509 ppm. On the analysis of sludge samples were given the significantly different in result; spectrophotometry give U concentration 4,445 ppm by RSD 6,74 % and voltammetry give U concentration 7,693 by RSD 19,53%. (author)

  18. Construction of a photochemical reactor combining a CCD spectrophotometer and a LED radiation source.

    Science.gov (United States)

    Gombár, Melinda; Józsa, Éva; Braun, Mihály; Ősz, Katalin

    2012-10-01

    An inexpensive photoreactor using LED light sources and a fibre-optic CCD spectrophotometer as a detector was built by designing a special cell holder for standard 1.000 cm cuvettes. The use of this device was demonstrated by studying the aqueous photochemical reaction of 2,5-dichloro-1,4-benzoquinone. The developed method combines the highly quantitative data collection of CCD spectrophotometers with the possibility of illuminating the sample independently of the detecting light beam, which is a substantial improvement of the method using diode array spectrophotometers as photoreactors.

  19. Skin color analysis using a spectrophotometer in Asians.

    Science.gov (United States)

    Yun, In Sik; Lee, Won Jai; Rah, Dong Kyun; Kim, Yong Oock; Park, Be-young Yun

    2010-08-01

    To objectively describe skin color, the Commission International d'Eclairage (CIE) L*a*b* color coordinates and melanin and erythema indexes are used. However, it was difficult to understand the relationship among these parameters and to convert them into each other. We introduced a new technique to measure L*a*b* color coordinates and the melanin and erythema indexes at the same time. We analyzed the skin color of normal Asians using this method. The skin color of the forehead, cheek, upper inner arm, dorsum of hand, and anterior chest of 148 volunteers was measured using a spectrophotometer. Using a computer analysis program, L*a*b* values and the melanin and erythema indexes were presented at the same time. The averages of these data were shown according to gender, age, body parts, and correlations among the melanin and erythema indexes and L*a*b* color coordinates, and then they were analyzed. The averages of the melanin and erythema indexes of 148 participants were 1.10 +/- 0.29 and 1.29 +/- 0.38, respectively. The averages of the L*, a*, and b* values were 64.15 +/- 4.86, 8.96 +/- 2.65, and 18.34 +/- 2.39, respectively. The melanin and erythema indexes were higher in males than in females. While the correlation of the melanin index with the L* value was negative, it was positively correlated with the a* and b* values. While the erythema index showed a weak correlation with the b* value, its correlation was negative with the L* value and positive with the a* value. Our method of skin color measurement is useful. We consider the data of this study valuable basic data for the evaluation of colors of pigmental skin diseases and scars in the future.

  20. Results from laboratory and field testing of nitrate measuring spectrophotometers

    Science.gov (United States)

    Snazelle, Teri T.

    2015-01-01

    Five ultraviolet (UV) spectrophotometer nitrate analyzers were evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) during a two-phase evaluation. In Phase I, the TriOS ProPs (10-millimeter (mm) path length), Hach NITRATAX plus sc (5-mm path length), Satlantic Submersible UV Nitrate Analyzer (SUNA, 10-mm path length), and S::CAN Spectro::lyser (5-mm path length) were evaluated in the HIF Water-Quality Servicing Laboratory to determine the validity of the manufacturer's technical specifications for accuracy, limit of linearity (LOL), drift, and range of operating temperature. Accuracy specifications were met in the TriOS, Hach, and SUNA. The stock calibration of the S::CAN required two offset adjustments before the analyzer met the manufacturer's accuracy specification. Instrument drift was observed only in the S::CAN and was the result of leaching from the optical path insert seals. All tested models, except for the Hach, met their specified LOL in the laboratory testing. The Hach's range was found to be approximately 18 milligrams nitrogen per liter (mg-N/L) and not the manufacturer-specified 25 mg-N/L. Measurements by all of the tested analyzers showed signs of hysteresis in the operating temperature tests. Only the SUNA measurements demonstrated excessive noise and instability in temperatures above 20 degrees Celsius (°C). The SUNA analyzer was returned to the manufacturer at the completion of the Phase II field deployment evaluation for repair and recalibration, and the performance of the sensor improved significantly.

  1. Determination of the Performance Parameters of a Spectrophotometer: An Advanced Experiment.

    Science.gov (United States)

    Cope, Virgil W.

    1978-01-01

    Describes an advanced analytical chemistry laboratory experiment developed for the determination of the performance parameters of a spectrophotometer. Among the parameters are the baseline linearity with wavelength, wavelength accuracy and respectability, stray light, noise level and pen response time. (HM)

  2. Fundamental studies to develop certified reference material to calibrate spectrophotometer in the ultraviolet region

    International Nuclear Information System (INIS)

    Da Conceição, F C; Borges, P P; Gomes, J F S

    2016-01-01

    Spectrophotometry is the technique used in a great number of laboratories around the world. Quantitative determination of a high number of inorganic, organic and biological species can be made by spectrophotometry using calibrated spectrophotometers. International standards require the use of optical filters to perform the calibration of spectrophotometers. One of the recommended materials is the crystalline potassium dichromate (K_2Cr_2O_7), which is used to prepare solutions in specific concentrations for calibration or verification of spectrophotometers in the ultraviolet (UV) spectral regions. This paper presents the results concerning the fundamental studies for developing a certified reference material (CRM) of crystalline potassium dichromate to be used as standard of spectrophotometers in order to contribute to reliable quantitative analyses. (paper)

  3. Evaluation of accuracy of shade selection using two spectrophotometer systems: Vita Easyshade and Degudent Shadepilot.

    Science.gov (United States)

    Kalantari, Mohammad Hassan; Ghoraishian, Seyed Ahmad; Mohaghegh, Mina

    2017-01-01

    The aim of this in vitro study was to evaluate the accuracy of shade matching using two spectrophotometric devices. Thirteen patients who require a full coverage restoration for one of their maxillary central incisors were selected while the adjacent central incisor was intact. 3 same frameworks were constructed for each tooth using computer-aided design and computer-aided manufacturing technology. Shade matching was performed using Vita Easyshade spectrophotometer, Shadepilot spectrophotometer, and Vitapan classical shade guide for the first, second, and third crown subsequently. After application, firing, and glazing of the porcelain, the color was evaluated and scored by five inspectors. Both spectrophotometric systems showed significantly better results than visual method ( P spectrophotometers ( P Spectrophotometers are a good substitute for visual color selection methods.

  4. An extinction scale-expansion unit for the Beckman DK2 spectrophotometer

    Science.gov (United States)

    Dixon, M.

    1967-01-01

    The paper describes a simple but accurate unit for the Beckman DK2 recording spectrophotometer, whereby any 0·1 section of the extinction (`absorbance') scale may be expanded tenfold, while preserving complete linearity in extinction. PMID:6048800

  5. Versatile IEEE-488 data acquisition and control routines for a diode array spectrophotometer

    OpenAIRE

    Shiundu, Paul M.; Wade, Adrian P.

    1991-01-01

    The UV-visible diode array spectrophotometer is a work-horse instrument for many laboratories. This article provides simple data acquisition and control routines in Microsoft QuickBasic for a HP-8452A diode array spectrophotometer interfaced to an IBM PC/XT/AT, or compatible, microcomputer. These allow capture of full spectra and measure absorbance at one or several wavelengths at preset time intervals. The variance in absorbance at each wavelength is available as an option.

  6. Versatile IEEE-488 data acquisition and control routines for a diode array spectrophotometer

    Science.gov (United States)

    Shiundu, Paul M.

    1991-01-01

    The UV-visible diode array spectrophotometer is a work-horse instrument for many laboratories. This article provides simple data acquisition and control routines in Microsoft QuickBasic for a HP-8452A diode array spectrophotometer interfaced to an IBM PC/XT/AT, or compatible, microcomputer. These allow capture of full spectra and measure absorbance at one or several wavelengths at preset time intervals. The variance in absorbance at each wavelength is available as an option. PMID:18924888

  7. Using a digital multimeter to capture spectral information generated by a spectrophotometer broadcast / atomic absorption

    International Nuclear Information System (INIS)

    Villalobos Chaves, Alberto E.

    2006-01-01

    Spectral analysis capability of the information generated by a spectrophotometer broadcast / shimadzu AA 640-13 atomic absorption has increased, through the capture of data, using a digital multimeter as the interface between the spectrophotometer and a computer. To facilitate the identification of analytes was created Chromulan format files for the 99 chemical elements reported in the literature, and covering the region between 200 nm and 900 nm, the subject of this study. (author) [es

  8. Clinical evaluation of a dental color analysis system: the Crystaleye Spectrophotometer®.

    Science.gov (United States)

    Odaira, Chikayuki; Itoh, Sozo; Ishibashi, Kanji

    2011-10-01

    To evaluate the clinical performance of the Crystaleye Spectrophotometer(®), a dental color analysis system. Three color-measuring devices (Crystaleye Spectrophotometer(®), CAS-ID1, MSC-2000) were tested and the differences in color measurements among them were evaluated using Scheffe's F-test. Color measurements with the Crystaleye Spectrophotometer(®) were repeated 10 times by the same operator. The color difference (ΔE) between the first and tenth measurements was calculated. The Crystaleye Spectrophotometer(®) was used to measure the color of the maxillary left central incisor under two conditions (light and dark) and the effect of exterior lighting was analyzed to assess the accuracy of measurements. Furthermore, five different operators performed color measurements, and ΔE among the three devices was calculated. The ΔE between the target tooth and the crown of a single maxillary central incisor crown fabricated using data from the Crystaleye Spectrophotmeter(®) was calculated. Color differences between prebleaching and postbleaching were also analyzed with the Crystaleye Spectrophotometer(®) using the parameters ΔE, ΔL*, Δa*, and Δb*. The data from the three spectrophotometers were not significantly different. The ΔE during repeated color measurements by the same operator was 0.6. The ΔE between light and dark conditions was 0.9. The data from the five operators were not significantly different. The mean ΔE value between the target tooth and the fabricated crown was 1.2 ± 0.4, and the mean ΔE value between prebleaching and postbleaching was 3.7 ± 1.0. The Crystaleye Spectrophotometer(®) is an easy-to-use color analysis system producing accurate color measurements under clinical conditions. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer.

    Science.gov (United States)

    Baker, Andy; Ward, David; Lieten, Shakti H; Periera, Ryan; Simpson, Ellie C; Slater, Malcolm

    2004-07-01

    Protein-like fluorescence intensity in rivers increases with increasing anthropogenic DOM inputs from sewerage and farm wastes. Here, a portable luminescence spectrophotometer was used to investigate if this technology could be used to provide both field scientists with a rapid pollution monitoring tool and process control engineers with a portable waste water monitoring device, through the measurement of river and waste water tryptophan-like fluorescence from a range of rivers in NE England and from effluents from within two waste water treatment plants. The portable spectrophotometer determined that waste waters and sewerage effluents had the highest tryptophan-like fluorescence intensity, urban streams had an intermediate tryptophan-like fluorescence intensity, and the upstream river samples of good water quality the lowest tryptophan-like fluorescence intensity. Replicate samples demonstrated that fluorescence intensity is reproducible to +/- 20% for low fluorescence, 'clean' river water samples and +/- 5% for urban water and waste waters. Correlations between fluorescence measured by the portable spectrophotometer with a conventional bench machine were 0.91; (Spearman's rho, n = 143), demonstrating that the portable spectrophotometer does correlate with tryptophan-like fluorescence intensity measured using the bench spectrophotometer.

  10. Objective evaluation of whiteness of cooked rice and rice cakes using a portable spectrophotometer.

    Science.gov (United States)

    Goto, Hajime; Asanome, Noriyuki; Suzuki, Keitaro; Sano, Tomoyoshi; Saito, Hiroshi; Abe, Yohei; Chuba, Masaru; Nishio, Takeshi

    2014-03-01

    The whiteness of cooked rice and rice cakes was evaluated using a portable spectrophotometer with a whiteness index (WI). Also, by using boiled rice for measurement of Mido values by Mido Meter, it was possible to infer the whiteness of cooked rice without rice cooking. In the analysis of varietal differences of cooked rice, 'Tsuyahime', 'Koshihikari' and 'Koshinokaori' showed high whiteness, while 'Satonoyuki' had inferior whiteness. The whiteness of rice cakes made from 'Koyukimochi' and 'Dewanomochi' was higher than the whiteness of those made from 'Himenomochi' and 'Koganemochi'. While there was a significant correlation (r = 0.84) between WI values and whiteness scores of cooked rice by the sensory test, no correlation was detected between the whiteness scores and Mido values, indicating that the values obtained by a spectrophotometer differ from those obtained by a Mido Meter. Thus, a spectrophotometer may be a novel device for measurement of rice eating quality.

  11. An ultraviolet-visible spectrophotometer automation system. Part 3: Program documentation

    Science.gov (United States)

    Roth, G. S.; Teuschler, J. M.; Budde, W. L.

    1982-07-01

    The Ultraviolet-Visible Spectrophotometer (UVVIS) automation system accomplishes 'on-line' spectrophotometric quality assurance determinations, report generations, plot generations and data reduction for chlorophyll or color analysis. This system also has the capability to process manually entered data for the analysis of chlorophyll or color. For each program of the UVVIS system, this document contains a program description, flowchart, variable dictionary, code listing, and symbol cross-reference table. Also included are descriptions of file structures and of routines common to all automated analyses. The programs are written in Data General extended BASIC, Revision 4.3, under the RDOS operating systems, Revision 6.2. The BASIC code has been enhanced for real-time data acquisition, which is accomplished by CALLS to assembly language subroutines. Two other related publications are 'An Ultraviolet-Visible Spectrophotometer Automation System - Part I Functional Specifications,' and 'An Ultraviolet-Visible Spectrophotometer Automation System - Part II User's Guide.'

  12. Vacuum-ultraviolet circular dichroism of amino acids as revealed by synchrotron radiation spectrophotometer

    International Nuclear Information System (INIS)

    Matsuo, Koichi; Matsushima, Yosuke; Fukuyama, Takayuki; Gekko, Kunihiko; Senba, Shinya

    2002-01-01

    We succeeded in constructing a vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer with a small-scale synchrotron radiation source (0.7 GeV) at Hiroshima Synchrotron Radiation Center (HiSOR). This VUVCD system revealed for the first time the CD spectra of amino acids in aqueous media in the 310-140 nm region under high vacuum. These data, which cannot be observed by any types of existing CD spectrophotometers, now open a new field in the structural analysis of biomaterials on a basis of the higher energy transition of chromophores. (author)

  13. Shade determination using camouflaged visual shade guides and an electronic spectrophotometer.

    Science.gov (United States)

    Kvalheim, S F; Øilo, M

    2014-03-01

    The aim of the present study was to compare a camouflaged visual shade guide to a spectrophotometer designed for restorative dentistry. Two operators performed analyses of 66 subjects. One central upper incisor was measured four times by each operator; twice with a camouflaged visual shade guide and twice with a spectrophotometer Both methods had acceptable repeatability rates, but the electronic shade determination showed higher repeatability. In general, the electronically determined shades were darker than the visually determined shades. The use of a camouflaged visual shade guide seems to be an adequate method to reduce operator bias.

  14. PMAS: The Potsdam Multi-Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak

    NARCIS (Netherlands)

    Kelz, Andreas; Verheijen, Marc A. W.; Roth, Martin M.; Bauer, Svend M.; Becker, Thomas; Paschke, Jens; Popow, Emil; Sánchez, Sebastian F.; Laux, Uwe

    2006-01-01

    PPak is a new fiber-based integral field unit (IFU) developed at the Astrophysical Institute of Potsdam and implemented as a module into the existing Potsdam Multi-Aperture Spectrophotometer (PMAS) spectrograph. The purpose of PPak is to provide an extended field of view with a large

  15. Spectrophotometer and ultrasound evaluation of late toxicity following breast-cancer radiotherapy.

    Science.gov (United States)

    Yoshida, E J; Chen, H; Torres, M A; Curran, W J; Liu, T

    2011-10-01

    Radiation-induced normal-tissue toxicities are common, complex, and distressing side effects that affect 90% of patients receiving breast-cancer radiotherapy and 40% of patients post radiotherapy. In this study, the authors investigated the use of spectrophotometry and ultrasound to quantitatively measure radiation-induced skin discoloration and subcutaneous-tissue fibrosis. The study's purpose is to determine whether skin discoloration correlates with the development of fibrosis in breast-cancer radiotherapy. Eighteen breast-cancer patients were enrolled in our initial study. All patients were previously treated with a standard course of radiation, and the median follow-up time was 22 months. The treated and untreated breasts were scanned with a spectrophotometer and an ultrasound. Two spectrophotometer parameters-melanin and erythema indices-were used to quantitatively assess skin discoloration. Two ultrasound parameters-skin thickness and Pearson coefficient of the hypodermis-were used to quantitatively assess severity of fibrosis. These measurements were correlated with clinical assessments (RTOG late morbidity scores). Significant measurement differences between the treated and contralateral breasts were observed among all patients: 27.3% mean increase in skin thickness (p spectrophotometer parameters do not correlate with ultrasound parameters. Spectrophotometry and quantitative ultrasound are objective tools that assess radiation-induced tissue injury. Spectrophotometer parameters did not correlate with those of quantitative ultrasound suggesting that skin discoloration cannot be used as a marker for subcutaneous fibrosis. These tools may prove useful for the reduction of radiation morbidities and improvement of patient quality of life.

  16. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    Science.gov (United States)

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy.

  17. An Improved Flame Test for Qualitative Analysis Using a Multichannel UV-Visible Spectrophotometer

    Science.gov (United States)

    Blitz, Jonathan P.; Sheeran, Daniel J.; Becker, Thomas L.

    2006-01-01

    Qualitative analysis schemes are used in undergraduate laboratory settings as a way to introduce equilibrium concepts and logical thinking. The main component of all qualitative analysis schemes is a flame test, as the color of light emitted from certain elements is distinctive and a flame photometer or spectrophotometer in each laboratory is…

  18. Authentic Performance in the Instrumental Analysis Laboratory: Building a Visible Spectrophotometer Prototype

    Science.gov (United States)

    Wilson, Mark V.; Wilson, Erin

    2017-01-01

    In this work we describe an authentic performance project for Instrumental Analysis in which students designed, built, and tested spectrophotometers made from simple components. The project addressed basic course content such as instrument design principles, UV-vis spectroscopy, and spectroscopic instrument components as well as skills such as…

  19. Utilization of Android-base Smartphone to Support Handmade Spectrophotometer : A Preliminary Study

    Science.gov (United States)

    Ujiningtyas, R.; Apriliani, E.; Yohana, I.; Afrillianti, L.; Hikmah, N.; Kurniawan, C.

    2018-04-01

    Visible spectrophotometer is a powerful instrument in chemistry. We can identify the chemical species base on their specific color and then we can also determine the amount of the species using the spectrophotometer. However, the availability of visible spectrophotometer still limited, particularly for education. This affect the skill of student to have experience on handling the instrumentation. On the other hand, the communication technology creates an opportunity for student to explore their smart feature, mainly the camera. The objective of this research is to make an application that utilize the camera feature as a detector for handmade visible spectrophotometer. The software have been made based on android program, and we name it as Spectrophone®. The spectrophotometer consists of an acrylic body, sample compartment, and light sources (USB-LED lamp powered by 6600 mAh battery). Before reach the sample, the light source was filtered using colored-mica plastic. The spectrophone® apps utilize the camera to detect the color based on its RGB composition. A different colored solution will show a different RGB composition based on the concentration and specific absorbance wavelength. We then can choose one type of color composition, R or G or B only to be converted as an absorbance using -Log (Cs/Co), where Cs and Co are color composition of sample and blank, respectively. The calibration curve of metilen blue measured. In a red (R) composition, the regression is not linear (R2=0.78) compare to the result of UV-Vis spectrophotomer model Spectroquant Pharo 300 (R2=0.8053). This measurement result shows that The Spectrophone® still need to be evaluated and corrected. One problem than can we identify that the diameter of pick point of RGB composition is too wide and this will affect the reading color composition. Next, we will fix the problem and in advance we will apply this Spectrophone® in a wide scale.

  20. Low-Profile, Dual-Wavelength, Dual-Polarized Antenna

    Science.gov (United States)

    Carswell, James R.

    2010-01-01

    A single-aperture, low-profile antenna design has been developed that supports dual-polarization and simultaneous operation at two wavelengths. It realizes multiple beams in the elevation plane, and supports radiometric, radar, and conical scanning applications. This antenna consists of multiple azimuth sticks, with each stick being a multilayer, hybrid design. Each stick forms the h-plane pattern of the C and Ku-band vertically and horizontally polarized antenna beams. By combining several azimuth sticks together, the elevation beam is formed. With a separate transceiver for each stick, the transmit phase and amplitude of each stick can be controlled to synthesize a beam at a specific incidence angle and to realize a particular side-lobe pattern. By changing the transmit phase distribution through the transceivers, the transmit antenna beam can be steered to different incidence angles. By controlling the amplitude distribution, different side lobe patterns and efficiencies can be realized. The receive beams are formed using digital beam synthesis techniques, resulting in very little loss in the receive path, thus enabling a very-low loss receive antenna to support passive measurements.

  1. Vertical integration of dual wavelength index guided lasers

    NARCIS (Netherlands)

    Karouta, F.; Tan, H.H.; Jagadish, C.; Roy, van B.H.

    1999-01-01

    The vertical integration of two GaAs-based lasers operating at different wavelengths has been achieved with the use of re-growth technology. A V-channel substrate inner stripe structure was used for the bottom laser and a ridge waveguide for the top laser. Both lasers shared a common electrode and

  2. Passively synchronized dual-wavelength Q-switched lasers

    DEFF Research Database (Denmark)

    Janousek, Jiri; Tidemand-Lichtenberg, Peter; Mortensen, Jesper Liltorp

    We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG.......We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG....

  3. Development of a Novel Spectrophotometer for Biochemical Analyzer Based on Volume Holography Transmissive Grating and Linear CCD

    International Nuclear Information System (INIS)

    Ren Zhong; Liu Guodong; Huang Zhen; Zeng Lvming; Dai Longmin

    2011-01-01

    The classical surface-embossed plane and concave grating are usually used as the diffraction grating in some spectrophotometers. But the minute cracks are produced on the surface of the gratings' grooves, which leads to generate the stray-light and decrease the efficiency of instrument. Therefore, a novel custom-built spectrophotometer for BCA is developed in this paper. Meanwhile, the volume holography transmissive (VHT) grating is used as the diffraction grating in this spectrophotometer. Additionally, a high resolution CCD and data acquisition (DAQ) card with combined the virtual software platform based on LabVIEW are used to design the spectral acquisition and analysis system. Experimental results show that the spectral range and the diffraction efficiency of the spectrophotometer for BCA are greatly increased. The spectral range of the spectrophotometer for BCA can reach 300-1000 nm, its wavelength resolution can reach 1nm. And, it uses the back-splitting-light technology and multi-channel parallel analysis. Compared with other same types, this spectrophotometer has many advantages, such as, higher efficiency, simpler algorithm, higher accuracy, cheaper cost and fewer stray-light and higher imaging quality, etc. Therefore, this spectrophotometer for BCA based on VHT grating will has the greatly potential values in the fields of the biochemical or medical research.

  4. Interference of different ionic species on the analysis of phosphate in HLW using spectrophotometer

    International Nuclear Information System (INIS)

    Mishra, P.K.; Ghongane, D.E.; Valsala, T.P.; Sonavane, M.S.; Kulkarni, Y.; Changrani, R.D.

    2010-01-01

    During reprocessing of spent nuclear fuel by PUREX process different categories of radioactive liquid wastes like High Level (HL), Intermediate Level (IL) and Low Level (LL) are generated. Different methodologies are adopted for management of these wastes. Since PUREX solvent (30% Tri butyl phosphate-70% Normal Paraffin Hydrocarbon) undergoes chemical degradation in the highly acidic medium of dissolver solution, presence of phosphate in the waste streams is inevitable. Since higher concentrations of phosphate in the HLW streams will affect its management by vitrification, knowledge about the concentration of phosphate in the waste is essential before finalising the glass composition. Since a large number of anionic and cationic species are present in the waste, these species may interfere phosphate analysis using spectrophotometer. In the present work, the interference of different anionic and cationic species on the analysis of phosphate in waste solutions using spectrophotometer was studied

  5. Use of the SF-8 detection spectrophotometer for measuring absorption spectra of molten salts

    International Nuclear Information System (INIS)

    Kotlin, V.P.; Barbanel', Yu.A.

    1975-01-01

    Three versions of the use of the SF-8 spectrophotometer for high-temperature measurements are described: 1) based on the standard optical scheme at temperatures of up to 400 0 C; 2) based on a modified one-wave scheme; 3) based on a modified twin-wave scheme. The external heater used in the schemes 2 and 3 ensures that measurements can be performed at temperatures of up to 1000 0 C. In order to obtain the spectra of thin-layer samples vessels with an insert are used. For operation of the spectrophotometer according to the schemes 2 and 3 te heater may in principle be replaced by a cryostat or some other external device

  6. Application of ZnO Nanoparticle as Sulphide Gas Sensor Using UV/VIS/NIR-Spectrophotometer

    International Nuclear Information System (INIS)

    Juliasih, N; Buchari; Noviandri, I

    2017-01-01

    The nanoparticle of metal oxides has great unique characteristics that applicable to the wide industrial as sensors and catalysts for reducing environmental pollution. Sulphide gas monitors and detectors are required for assessing safety aspects, due to its toxicity level. A thin film of ZnO as the sulphide gas sensor was synthesised by the simple method of chemical liquid deposition with variation of annealing temperature from 200 ºC to 500 ºC, and characterised by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and UV/VIS/NIR-Spectrophotometer. Characterization studies showed nanoparticle size from the range 62 – 92 nm of diameters. The application this ZnO thin film to sulfide gas, detected by UV/VIS/NIR Spectrophotometer with diffuse reflectance, showed specific chemical reaction by the shifting of maximum % Reflectance peak. The gas sensing using this method is applicable at room. (paper)

  7. Construction, calibration, and application of a compact spectrophotometer for EUV(300-2500 A) plasma diagnostics

    International Nuclear Information System (INIS)

    Moos, H.W.; Chen, K.I.; Terry, J.L.

    1979-01-01

    A 400-mm normal incidence concave grating spectrophotometer, specifically designed for plasma diagnostics, is described. The wavelength drive, in which the grating is translated as well as rotated, is discussed in detail; the wavelength linearity of the sine drive and methods of improving it are analyzed. The instrument can be used in any orientation, is portable under vacuum, and quite rugged. The construction techniques utilized produce a high quality vacuum making the instrument compatible with both high purity plasma devices and synchrotron radiation sources. The photometric sensitivity calibration was found to be very stable during extended use on high temperature plasma devices. The applications of the instrument to diagnose plasmas in two tokamaks and a mirror device are decribed. A facility used for photometric calibration of extreme ultraviolet (lambda>300-A) spectrophotometers against NBS standard diodes is described. The instrumental calibration obtained using this facility was checked by using synchrotron radiation from SURF II; very good agreement was observed

  8. Differences between the human eye and the spectrophotometer in the shade matching of tooth colour.

    Science.gov (United States)

    Gómez-Polo, Cristina; Gómez-Polo, Miguel; Celemin-Viñuela, Alicia; Martínez Vázquez De Parga, Juan Antonio

    2014-06-01

    The aim of this work was to assess the agreement between instrumental and visual colour matching. Shade selection with the 3DMaster Toothguide (Vita-Zahnfabrik) was performed for 1361 maxillary central incisors and compared with the shade obtained with the EasyShade Compact (Vita-Zahnfabrik) spectrophotometer. We observed a greater correlation between the objective method and the subjective one in the colour dimension of lightness (Kappa 0.6587), followed by hue (Kappa 0.4337) and finally chroma (Kappa 0.3578). The colour dimension in which the greatest agreement is seen between the operator and the spectrophotometer is value or lightness. This study reveals differences between the measurement of colour via spectrophotometry and the visual shade selection method. According to our results, there is better agreement in the value or lightness colour dimension, which is the most important one in the choice of tooth colour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Flameless atomic absorption determination of ruthenium using a ''Saturn-1'' spectrophotometer

    International Nuclear Information System (INIS)

    Pichkov, V.N.; Sinitsyn, N.M.; Sadikova, F.G.; Govorova, M.I.; Yakshinskij, A.I.

    1980-01-01

    A flameless atomic absorption method is suggested for determining ruthenium in samples of complicated composition using a ''Saturn-1'' spectrophotometer with a L'vov graphite cuvette. The method was used for determining ruthenium in a copper-based sample (10 -3 % Ru) and in electrolyte slurries (10 -3 -10 -2 %). The limit of detection Csub(min, 0.95) = 3.0x10 -3 μg Ru/ml. Other platinum metals do not interfere [ru

  10. Development of optical spectrum acquisition with spectrophotometer for characterization of optical radiation sources

    International Nuclear Information System (INIS)

    Solano Vargas, Alvaro

    2013-01-01

    An improved process of the data acquisition system is developed with Pasco 750 interface and Pasco OS-8539 spectrophotometer. The optical spectrum and color temperature of incandescent sources available are obtained from the Laboratorio de Fotonica y Tecnologia Laser Aplicada. The procedures developed in the project are recommended to collect data and analyze results. The purchase of a new Software and the interface of Pasco is recommended to have a better operation and update [es

  11. Development of Simple and Precise Method of Arginine Determination in Rumen Fluid by Spectrophotometer

    International Nuclear Information System (INIS)

    Chacher, B.; Marghazani, I. B.; Liu, J. X.; Liu, H. Y.

    2015-01-01

    The objective of current study was to build up a convenient, economic and accurate procedure to determine arginine (ARG) concentration in rumen fluid. Rumen fluid was collected from 3 rumen fistulated Chinese Holstein dairy cows and added with or without (control) 1mmol/l unprotected ARG and blank (with only medium) in to syringe system in triplicate as a replicate. All syringes were incubated in water bath at 39 Degree C for 0, 2, 4, 6, 12 and 24 h and were terminated to measure the ARG concentration. Sakaguchi reaction method was used to analyze the ARG concentration in rumen fluid by determining the rumen degradation rate of protected and unprotected ARG. Temperature, time and absorbance were optimized in the procedure based on Sakaguchi reaction. Color consistency remained 4-6 min. The optimum temperature (0-5) Degree C was observed for maximum optical density 0.663 at wave length 500 nm. Minimum ARG that could be determined in rumen fluid by spectrophotometer was 4-5 μ g/ml. No significance (P>0.05) difference were observed between two results derived from spectrophotometer and amino acid analyzer methods. In conclusion, the spectrophotometer method of ARG determination in rumen fluid based on Sakaguchi reaction is easy, accurate, and economical and could be useful in learning ARG metabolism in the rumen. (author)

  12. Palmtop spectrophotometer for DNA and protein measurement in micro-nanoliter assays

    International Nuclear Information System (INIS)

    Qiu Tian; Huang Guoliang; Yang Xiaoyong; Ma Li; Yang Xu

    2011-01-01

    Spectrophotometer, an important tool in life science, medicine, and analytical fields, usually uses an optical path of 10 mm or more for absorbance measurement of UV light. This corresponds to a sample consumption of ≥ 50 μL in volume and a narrow measuring range of 0.5-50 ng/μL for nucleic acid samples and 0.05-2 mg/mL for protein samples. Higher concentrations must be diluted for measurement. In this paper, we developed an advanced palmtop spectrophotometer for the measurement of both DNA and protein concentrations in micro-nanoliter assays. We constructed a fiber transmission and a fiber reflection absorbance detection scheme illuminated by either UV-LED or deuterium lamp. The sensitivity of 0.5 ng/μL and a wide measuring range of 0.5-2000 ng/μL in concentrations were obtained for DNA, and the sensitivity of 0.05 mg/mL and a wide measuring range of 0.05-100 mg/mL were also obtained for protein. However, sample consumption is only 1 μL in volume for fiber transmission detection scheme and 500 nL for fiber reflection detection scheme. The linear correlation coefficient of measured concentrations to theoretical concentrations is greater than 0.99. With the profit of this work, a miniaturized spectrophotometer with better sensitivity and wider measuring range can be produced for analytical applications.

  13. Application of microplate spectrophotometer in determination of apparent amylose content and mutant selection in rice

    International Nuclear Information System (INIS)

    Zhu Xiaoyang; Shen Shengquan; Chen Wenyue; Shu Qingyao

    2004-01-01

    The application of automatic microplate spectrophotometer (SpectraMax 190, Sunnyvale, USA) was investigated for measurement of apparent amylose content (AAC) of rice grains. By using five rice varieties (IR24, Iri371, Z413, KMD1 and Xiushui 11), a microplate spectrophotometer-facilitated AAC measurement system was established with similar accuracy to that of standard protocol (NY147-88). In this system, sample was treated as NY147-88, but directly stained in a microplate and the OD values of each sample were determined by a microplate spectrophotometer. A regression equation was established by using the AAC and OD value of standard samples, and the AAC of test samples were estimated by using the equation. The system is simple, accurate and high-throughput. By using this system, about 1500 progenies of M 3 seeds (harvested from individual M 2 plants) were screened for putative AAC mutants, from which one mutant line ZXY16 was developed with a middle AAC of about 16%

  14. Quantitative analysis of skin reaction by reflectance spectrophotometer. Acute reaction following proton therapy

    International Nuclear Information System (INIS)

    Kawashima, Mitsuhiko; Okumura, Toshiyuki; Tatsuzaki, Hideo; Tsuji, Hiroshi; Tsujii, Hirohiko.

    1994-01-01

    Acute reactions induced by proton irradiation were measured using a reflectance spectrophotometer, which is commonly used in the printing and textile industries. In this method, the skin color was expressed by three parameters, lightness (L * ), chroma (C * ) and hue (h). At first, in order to evaluate the accuracy of this spectrophotometer, the skin color of a normal volunteer was measured 100 times. The values of the three parameters for normal skin were as follows (mean values and standard deviation), L * : 68.64±0.29, C * : 19.08±0.13, h: 69.41±0.76. The standard deviations with regard to L * and h, were considered to be sufficiently small when compared with the changes of these parameters (prefix: Δ) in the irradiated sites (ΔL * * and h values significantly decreased with time, and the L * values were highly correlated with elapsed treatment days. The h values had a relatively low linear correlation compared with L * . The C * values had no trends as the treatment period was extended. Among these parameters, the L * values were the most valuable for assessment of proton-induced skin reactions, and it was suggested that the L * values measured with this spectrophotometer were a useful index for showing biological effects induced by proton irradiation. Further experiments are needed to apply this method to quantify the biological effects induced by other forms of ionizing radiation. (author)

  15. Correlation between skin color evaluation by skin color scale chart and narrowband reflectance spectrophotometer.

    Science.gov (United States)

    Treesirichod, Arucha; Chansakulporn, Somboon; Wattanapan, Pattra

    2014-07-01

    Various methods are available for the evaluation of skin color. A skin color scale chart is a convenient and inexpensive tool. However, the correlation between a skin color scale chart and objective measurement has not been evaluated. To assess the correlation between skin color evaluation done by a skin color scale chart (Felix von Luschan skin color chart) and a narrowband reflectance spectrophotometer (Mexameter MX18). The participants were evaluated for skin color by using the Felix von Luschan skin color chart (range 1-36) and a narrowband reflectance spectrophotometer (Mexameter MX18) in which the results of the measurements were expressed as Erythema (E) and Melanin (M) indices. Skin color was measured on four different anatomical skin sites from each participant on the medial aspect of the volar and the dorsal regions of both forearms. A total of 208 records from 52 participants were established. The majority of participants (19.2%) were rated with the skin color scale at the number 16 (range 14-33). The mean M plus E, M, and E indices were 498.9 ± 143.9, 230.4 ± 74.4, and 268.5 ± 73.2, respectively. The correlation coefficient between the number on the skin color scale and each index: M plus E, M, and E indices were 0.90, 0.90, and 0.86, respectively, with a statistical significance of P spectrophotometer.

  16. Chemical Fouling Reduction of a Submersible Steel Spectrophotometer in Estuarine Environments Using a Sacrificial Zinc Anode.

    Science.gov (United States)

    Tait, Zachary S; Thompson, Megan; Stubbins, Aron

    2015-07-01

    The availability of in situ spectrophotometers, such as the S::CAN spectro::lyser, has expanded the possibilities for high-frequency water quality data collection. However, biological and chemical fouling can degrade the performance of in situ spectrophotometers, especially in saline environments with rapid flow rates. A complex freshwater washing system has been previously designed to reduce chemical fouling for the S::CAN spectro::lyser spectrophotometer. In the current study, we present a simpler, cheaper alternative: the attachment of a sacrificial zinc anode. Results are presented detailing the S::CAN spectro::lyser performance with and without the addition of the sacrificial anode. Attachment of the zinc anode provided efficient corrosion protection during 2-wk deployments in a highly dynamic (average tidal range, 2.5 m) saline tidal saltmarsh creek at Groves Creek, Skidaway Institute of Oceanography, Savannah, GA. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Development of an ultra-compact mid-infrared attenuated total reflectance spectrophotometer

    Science.gov (United States)

    Kim, Dong Soo; Lee, Tae-Ro; Yoon, Gilwon

    2014-07-01

    Mid-infrared spectroscopy has been an important tool widely used for qualitative analysis in various fields. However, portable or personal use is size and cost prohibitive for either Fourier transform infrared or attenuated total reflectance (ATR) spectrophotometers. In this study, we developed an ultra-compact ATR spectrophotometer whose frequency band was 5.5-11.0 μm. We used miniature components, such as a light source fabricated by semiconductor technology, a linear variable filter, and a pyro-electric array detector. There were no moving parts. Optimal design based on two light sources, a zippered configuration of the array detector and ATR optics could produce absorption spectra that might be used for qualitative analysis. A microprocessor synchronized the pulsed light sources and detector, and all the signals were processed digitally. The size was 13.5×8.5×3.5 cm3 and the weight was 300 grams. Due to its low cost, our spectrophotometer can replace many online monitoring devices. Another application could be for a u-healthcare system installed in the bathroom or attached to a smartphone for monitoring substances in body fluids.

  18. Data acquisition system and performance based on Apple II for using in experimental physics - Applications to spectrophotometer

    International Nuclear Information System (INIS)

    Costa, L.F.; Castro, J.C.

    1987-01-01

    A microcomputer based system oriented to experimental physics is described. The system was developed to achieve versatility, low cost, reliability and easy utilization. An application to this system to a dispersive spectrophotometer is also included. (author) [pt

  19. Fiberoptic spectrophotometer

    Science.gov (United States)

    Tans, Petrus P.; Lashof, Daniel A.

    1986-01-01

    A device for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated.

  20. Using the Rapid-Scanning, Ultra-Portable, Canopy Biomass Lidar (CBL) Alone and In Tandem with the Full-Waveform Dual-Wavelength Echidna® Lidar (DWEL) to Establish Forest Structure and Biomass Estimates in a Variety of Ecosystems

    Science.gov (United States)

    Schaaf, C.; Paynter, I.; Saenz, E. J.; Li, Z.; Strahler, A. H.; Peri, F.; Erb, A.; Raumonen, P.; Muir, J.; Howe, G.; Hewawasam, K.; Martel, J.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Schaefer, M.; Newnham, G.; Jupp, D. L. B.; van Aardt, J. A.; Kelbe, D.; Romanczyk, P.; Faulring, J.

    2014-12-01

    Terrestrial lidars are increasingly being deployed in a variety of ecosystems to calibrate and validate large scale airborne and spaceborne estimates of forest structure and biomass. While these lidars provide a wealth of high resolution information on canopy structure and understory vegetation, they tend to be expensive, slow scanning and somewhat ponderous to deploy. Therefore, frequent deployments and characterization of larger areas of a hectare or more can still be challenging. This suggests a role for low cost, ultra-portable, rapid scanning (but lower resolution) instruments -- particularly in scanning extreme environments and as a way to augment and extend strategically placed scans from the more highly capable lidars. The Canopy Biomass Lidar (CBL) is an inexpensive, highly portable, fast-scanning (33 seconds), time-of-flight, terrestrial laser scanning (TLS) instrument, built in collaboration with RIT, by U Mass Boston. The instrument uses a 905nm SICK time of flight laser with a 0.25o resolution and 30m range. The higher resolution, full-waveform Dual Wavelength Echidna® Lidar (DWEL), developed by Boston University, U Mass Lowell and U Mass Boston, builds on the Australian CSIRO single wavelength, full-waveform Echidna® Validation Instrument (EVI), but utilizes two simultaneous laser pulses at 1064 and 1548 nm to separate woody returns from those of foliage at a range of up to 100m range. The UMass Boston CBL has been deployed in rangelands (San Joaquin Experimental Range, CA), high altitude conifers (Sierra National Forest, CA), mixed forests (Harvard Forest LTER MA), tropical forests (La Selva and Sirena Biological Stations, Costa Rica), eucalypts (Karawatha, Brisbane TERN, Australia), and woodlands (Alice Holt Forest, UK), frequently along-side the DWEL, as well as in more challenging environments such as mangrove forests (Corcovado National Park, Costa Rica) and Massachusetts salt marshes and eroding bluffs (Plum Island LTER, and UMass Boston

  1. Comparison of accuracies of an intraoral spectrophotometer and conventional visual method for shade matching using two shade guide systems.

    Science.gov (United States)

    Parameswaran, Vidhya; Anilkumar, S; Lylajam, S; Rajesh, C; Narayan, Vivek

    2016-01-01

    This in vitro study compared the shade matching abilities of an intraoral spectrophotometer and the conventional visual method using two shade guides. The results of previous investigations between color perceived by human observers and color assessed by instruments have been inconclusive. The objectives were to determine accuracies and interrater agreement of both methods and effectiveness of two shade guides with either method. In the visual method, 10 examiners with normal color vision matched target control shade tabs taken from the two shade guides (VITAPAN Classical™ and VITAPAN 3D Master™) with other full sets of the respective shade guides. Each tab was matched 3 times to determine repeatability of visual examiners. The spectrophotometric shade matching was performed by two independent examiners using an intraoral spectrophotometer (VITA Easyshade™) with five repetitions for each tab. Results revealed that visual method had greater accuracy than the spectrophotometer. The spectrophotometer; however, exhibited significantly better interrater agreement as compared to the visual method. While VITAPAN Classical shade guide was more accurate with the spectrophotometer, VITAPAN 3D Master shade guide proved better with visual method. This in vitro study clearly delineates the advantages and limitations of both methods. There were significant differences between the methods with the visual method producing more accurate results than the spectrophotometric method. The spectrophotometer showed far better interrater agreement scores irrespective of the shade guide used. Even though visual shade matching is subjective, it is not inferior and should not be underrated. Judicious combination of both techniques is imperative to attain a successful and esthetic outcome.

  2. Satisfaction of Dental Students, Faculty, and Patients with Tooth Shade-Matching Using a Spectrophotometer.

    Science.gov (United States)

    Ballard, Erin; Metz, Michael J; Harris, Bryan T; Metz, Cynthia J; Chou, Jang-Ching; Morton, Dean; Lin, Wei-Shao

    2017-05-01

    The aims of this study were to evaluate dental students' clinical shade-matching outcomes (from subjective use of shade guide) with an objective electronic shade-matching tool (spectrophotometer); to assess patients', students', and supervising faculty members' satisfaction with the clinical shade-matching outcomes; and to assess clinicians' support for use of the spectrophotometer to improve esthetic outcomes. A total of 103 volunteer groups, each consisting of patient, dental student, and supervising faculty member at the University of Louisville, were recruited to participate in the study in 2015. Using the spectrophotometer, clinical shade-matching outcome (ΔE clinical ) and laboratory shade-matching outcome (ΔE laboratory ) were calculated. Two five-point survey items were used to assess the groups' satisfaction with the clinical shade-matching outcome and support for an objective electronic shade-matching tool in the student clinic. The results showed that both ΔE clinical (6.5±2.4) and ΔE laboratory (4.3±2.0) were outside the clinical acceptability threshold ΔE values of 2.7, when visual shade-matching method (subjective usage of shade guide) was used to fabricate definitive restorations. Characteristics of the patients, dental students, supervising faculty members, and restorations had minimal to no effect on the ΔE clinical The patients, dental students, and supervising faculty members generally had positive opinions about the clinical shade-matching outcome, despite the increased ΔE clinical observed. Overall, clinical shade-matching outcomes in this school need further improvement, but the patients' positive opinions may indicate the need to revisit the acceptability threshold ΔE value of 2.7 in the academic setting.

  3. A furnace and temperature controller for optical absorption studies with a spectrophotometer

    International Nuclear Information System (INIS)

    Mariani Rogat, F.

    1975-01-01

    The design and main features of a furnace with a temperature controller and programmer are shown. This system allows to measure the optical absorption spectrum of a sample from room temperature to 400 deg C, in a double beam spectrophotometer Perkin Elmer 350. The sample temperature can be linearly increased at different heating rates between 4 and 38 deg C/min. The temperature ramp can be stopped at any desired point and the sample temperature shall be stabilized in less than one minute. This temperature shall be kept constant within 0.5 deg C for hours. The sample is heated in vacuum. (author)

  4. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    Science.gov (United States)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  5. A broad band X-ray imaging spectrophotometer for astrophysical studies

    Science.gov (United States)

    Lum, Kenneth S. K.; Lee, Dong Hwan; Ku, William H.-M.

    1988-01-01

    A broadband X-ray imaging spectrophotometer (BBXRIS) has been built for astrophysical studies. The BBXRIS is based on a large-imaging gas scintillation proportional counter (LIGSPC), a combination of a gas scintillation proportional counter and a multiwire proportional counter, which achieves 8 percent (FWHM) energy resolution and 1.5-mm (FWHM) spatial resolution at 5.9 keV. The LIGSPC can be integrated with a grazing incidence mirror and a coded aperture mask to provide imaging over a broad range of X-ray energies. The results of tests involving the LIGSPC and a coded aperture mask are presented, and possible applications of the BBXRIS are discussed.

  6. Determining the Absorbance Spectra of Photochromic Materials From Measured Spectrophotometer Data

    Science.gov (United States)

    Downie, John D.

    1998-01-01

    If a two-state photochromic material is optically bleached, the absorbance spectrum data measured by a spectrophotometer is in general comprised of components from both the ground state and the upper state. Under general conditions, it may be difficult to extract the actual upper state spectrum from the spectrum of the bleached material. A simple algorithm is presented here for the recovery of the pure absorbance spectra of the upper state of a material such as bacteriorhodopsin, given single wavelength bleaching illumination, steady-state conditions, and accurate knowledge of phototransition rates and thermal decay rates.

  7. Visible light nitrogen dioxide spectrophotometer intercomparison: Mount Kobau, British Columbia, July 28 to August 10, 1991

    Science.gov (United States)

    Mcelroy, C. T.; Elokhov, A. S.; Elansky, N.; Frank, H.; Johnston, P.; Kerr, J. B.

    1994-01-01

    Under the auspices of the World Meteorological Organization, Environment Canada hosted an international comparison of visible light spectrophotometers at Mt. Kobau, British Columbia in August of 1991. Instruments from four countries were involved. The intercomparison results have indicated that some significant differences exist in the responses of the various instruments, and have provided a basis for the comparison of the historical data sets which currently exist as a result of the independent researches carried out in the past in the former Soviet Union, New Zealand, and Canada.

  8. Image plane detector spectrophotometer - Application to O2 atmospheric band nightglow

    Science.gov (United States)

    Luo, Mingzhao; Yee, Jeng-Hwa; Hays, Paul B.

    1988-01-01

    A new variety of low resolution spectrometer is described. This device, an image plane detector spectrophotometer, has high sensitivity and modest resolution sufficient to determine the rotational temperature and brightness of molecular band emissions. It uses an interference filter as a dispersive element and a multichannel image plane detector as the photon collecting device. The data analysis technqiue used to recover the temperature of the emitter and the emission brightness is presented. The atmospheric band of molecular oxygen is used to illustrate the use of the device.

  9. Information-measurement and control system of the five-channel stellar spectrophotometer

    International Nuclear Information System (INIS)

    Granitskij, L.V.; Bukach, A.B.; Kaplin, Yu.V.; Bondarenko, V.P.; Smirnov, A.I.

    1979-01-01

    The multichannel information-measurement control system of the five-channel stellar spectrophotometer working in photon counting regime is described. The detecting part is synthesized taking into account the principles of multifunctional use of elements of the system. In the part of the photometer scanning mechanism control a discrete drive with the step motor is used. The data are detected on the punched tape, which is convenient for putting them into computer, into a digit printing device with the decimal code or on a diagram tape of the automatic potentiometer

  10. A method for calibration of Soleil-Babinet compensator using a spectrophotometer

    Science.gov (United States)

    Wang, Jun; Chen, Lei; Li, Bo; Shi, Lili; Luo, Ting

    2010-06-01

    A method using a spectrophotometer for calibrating Soleil-Babinet compensator is proposed. It is based on the spectroscopic method which utilizes the relation between transmittance and wavelength to obtain retardation. By placing a multiple order half wave plate behind the Soleil-Babinet compensator, zero-order retardation can be measured, which is difficult to accomplish by spectroscopic method. In the experiment, the retardations of the compensator in the range 0- λ are measured. It is demonstrated that the precision of retardation is 0.45 nm at the position 0 and λ while the maximum error is less than 1 nm between the two positions.

  11. Instrumentation-related uncertainty of reflectance and transmittance measurements with a two-channel spectrophotometer.

    Science.gov (United States)

    Peest, Christian; Schinke, Carsten; Brendel, Rolf; Schmidt, Jan; Bothe, Karsten

    2017-01-01

    Spectrophotometers are operated in numerous fields of science and industry for a variety of applications. In order to provide confidence for the measured data, analyzing the associated uncertainty is valuable. However, the uncertainty of the measurement results is often unknown or reduced to sample-related contributions. In this paper, we describe our approach for the systematic determination of the measurement uncertainty of the commercially available two-channel spectrophotometer Agilent Cary 5000 in accordance with the Guide to the expression of uncertainty in measurements. We focus on the instrumentation-related uncertainty contributions rather than the specific application and thus outline a general procedure which can be adapted for other instruments. Moreover, we discover a systematic signal deviation due to the inertia of the measurement amplifier and develop and apply a correction procedure. Thereby we increase the usable dynamic range of the instrument by more than one order of magnitude. We present methods for the quantification of the uncertainty contributions and combine them into an uncertainty budget for the device.

  12. Evaluation of Biocompatibility of Root Canal Sealers on L929 Fibroblasts with Multiscan EX Spectrophotometer.

    Science.gov (United States)

    Konjhodzic-Prcic, Alma; Jakupovic, Selma; Hasic-Brankovic, Lajla; Vukovic, Amra

    2015-06-01

    The purpose of the current study was to estimate the biocompatibility of endodontic sealers with different bases on L929 mouse fibroblasts permanent cell line using Multiscan EX Spectrophotometer. Endodontics sealers used in this study were GuttaFlow (Roeko) silicone based sealer, AH plus (De Tray-DENTSPLY) epoxy resin based, Apexit (Vivadent) calcium hydroxide based and Endorez (Ultradent) methacrylate based sealer. Sealer were tested trough time, freshly mixed 24 h, 48h and 7 days after setting. Biocompatibility was determinate on permanent cell lines L929 mouse fibroblasts trough cytotoxicity using MTT assay. Level of absorption was measured with multi scan EX spectrophotometer on length 420-600 nm. Sealer based on calcium hydroxide Apexit Plus, GuttaFlow silicone based sealer and AH plus epoxy resin based sealer, have shown a low cytotoxicity through the all periods of time on culture of L292 mouse fibroblasts. Methacrylate based sealer, Endorez showed moderate cytotoxicity when freshly mixed and after 7 days. After 24 hours the visibility of the cells was 74,0% and after 48 hours 65,1%. which is slightly cytotoxic. According to results of this study there is a statistically significant difference among the groups p<0,05 for all the tested sealers. Apexit Plus, GuttaFlow and AH plus can be considered as biocompatibile. EndoREZ sealer which is based on methacrylate, after 7 days shows 50,1% of visible live cells which is considered as moderate cytotoxicity.

  13. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.

    Science.gov (United States)

    Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond

    2014-01-01

    We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.

  14. Non-invasive prediction of hematocrit levels by portable visible and near-infrared spectrophotometer.

    Science.gov (United States)

    Sakudo, Akikazu; Kato, Yukiko Hakariya; Kuratsune, Hirohiko; Ikuta, Kazuyoshi

    2009-10-01

    After blood donation, in some individuals having polycythemia, dehydration causes anemia. Although the hematocrit (Ht) level is closely related to anemia, the current method of measuring Ht is performed after blood drawing. Furthermore, the monitoring of Ht levels contributes to a healthy life. Therefore, a non-invasive test for Ht is warranted for the safe donation of blood and good quality of life. A non-invasive procedure for the prediction of hematocrit levels was developed on the basis of a chemometric analysis of visible and near-infrared (Vis-NIR) spectra of the thumbs using portable spectrophotometer. Transmittance spectra in the 600- to 1100-nm region from thumbs of Japanese volunteers were subjected to a partial least squares regression (PLSR) analysis and leave-out cross-validation to develop chemometric models for predicting Ht levels. Ht levels of masked samples predicted by this model from Vis-NIR spectra provided a coefficient of determination in prediction of 0.6349 with a standard error of prediction of 3.704% and a detection limit in prediction of 17.14%, indicating that the model is applicable for normal and abnormal value in Ht level. These results suggest portable Vis-NIR spectrophotometer to have potential for the non-invasive measurement of Ht levels with a combination of PLSR analysis.

  15. Vertical-type chiroptical spectrophotometer (I): instrumentation and application to diffuse reflectance circular dichroism measurement.

    Science.gov (United States)

    Harada, Takunori; Hayakawa, Hiroshi; Kuroda, Reiko

    2008-07-01

    We have designed and built a novel universal chiroptical spectrophotometer (UCS-2: J-800KCMF), which can carry out in situ chirality measurement of solid samples without any pretreatment, in the UV-vis region and with high relative efficiency. The instrument was designed to carry out transmittance and diffuse reflectance (DR) circular dichroism (CD) measurements simultaneously, thus housing two photomultipliers. It has a unique feature that light impinges on samples vertically so that loose powders can be measured by placing them on a flat sample holder in an integrating sphere. As is our first universal chiroptical spectrophotometer, UCS-1, two lock-in amplifiers are installed to remove artifact signals arising from macroscopic anisotropies which are unique to solid samples. High performance was achieved by theoretically analyzing and experimentally proven the effect of the photoelastic modulator position on the CD base line shifts, and by selecting high-quality optical and electric components. Measurement of microcrystallines of both enantiomers of ammonium camphorsulfonate by the DRCD mode gave reasonable results.

  16. Laser-plasma sourced, temperature dependent, VUV spectrophotometer using dispersive analysis

    International Nuclear Information System (INIS)

    French, R.H.

    1990-01-01

    We have developed a vacuum ultraviolet spectrophotometer with wide energy and temperature range coverage, utilizing a laser-plasma light source (LPLS), CO 2 -laser sample heating and time-resolved dispersive analysis. Reflection and transmission spectra can be taken from 1.7 to 40 eV (31-700 nm) on samples at 15-1800 K with a time resolution of 20-400 ns. These capabilities permit the study of the temperature dependence of the electronic structure, encompassing the effects of thermal lattice expansion and electron-phonon interaction, and changes in the electronic structure associated with equilibrium and metastable phase transitions and stress relaxation. The LPLS utilizes a samarium laser-plasma created by a Q-switched Nd:YAG laser (500 mJ/pulse) to produce high brightness, stable, continuum radiation. The spectrophotometer is of a single beam design using calibrated iridium reference mirrors. White light is imaged off the sample in to the entrance slit of a 1-m polychromator. The resolution is 0.1 to 0.3 nm. The dispersed light is incident on a focal plane phosphor, fiber-optic-coupled to an image-intensified reticon detector. For spectroscopy between 300 and 1800 K, the samples are heated in situ with a 150 Watt CO 2 laser. The signal to noise ratio in the VUV, for samples at 1800 K, is excellent. From 300 K to 15 K samples are cooled using a He cryostat. (orig.)

  17. [Design of flat field holographic concave grating for near-infrared spectrophotometer].

    Science.gov (United States)

    Xiang, Xian-Yi; Wen, Zhi-Yu

    2008-07-01

    Near-infrared spectrum analysis can be used to determine the nature or test quantitatively some chemical compositions by detecting molecular double frequency and multiple frequency absorption. It has been used in agriculture, biology, petrifaction, foodstuff, medicament, spinning and other fields. Near-infrared spectrophotometer is the main apparatus for near-infrared spectrum analysis, and the grating is the most important part of the apparatus. Based on holographic concave grating theory and optic design software CODE V, a flat field holographic concave grating for near-infrared spectrophotometer was designed from primary structure, which relied on global optimization of the software. The contradiction between wide spectrum bound and limited spectrum extension was resolved, aberrations were reduced successfully, spectrum information was utilized fully, and the optic structure of spectrometer was highly efficient. Using CODE V software, complex high-order aberration equations need not be solved, the result can be evaluated quickly, flat field and resolving power can be kept in balance, and the work efficiency is also enhanced. A paradigm of flat field holographic concave grating is given, it works between 900 nm to 1 700 nm, the diameter of the concave grating is 25 mm, and F/ # is 1. 5. The design result was analyzed and evaluated. It was showed that if the slit source, whose width is 50 microm, is used to reconstruction, the theoretic resolution capacity is better than 6.3 nm.

  18. Objectification of facial color inspection to differentiate obstructive/nonobstructive jaundice in neonates by spectrophotometer.

    Science.gov (United States)

    Shen, Zhen; Zheng, Shan; Dong, Rui; Chen, Gong

    2017-12-01

    The purpose of this study was to study whether color difference in facial color truly exists between neonates with obstructive and nonobstructive jaundice, and whether the color difference could be objectified by spectrophotometer. Twelve biliary atresia patients were enrolled in an obstructive jaundice group and 15 neonates admitted for non-conjugated hyperbilirubinemia in a nonobstructive group. Nine patients with syphilis (n=6) and sacrococcygeal teratoma (n=3) were studied as control. Transcutaneous total bilirubin (TB) and hemoglobin were recorded. Face color was measured by spectrophotometer. Spectral reflection curve and L*a*b* model parameters were studied. Facial color of jaundiced neonates were characteristic in waveform that reflectivity at wavelength of 550nm was significantly decreased compared with control by 16.4±3.4%, while not significantly different between obstructive and nonobstructive jaundice (p=0.124). At 650nm, reflection in nonobstructive jaundice was decreased by 8.4±2.3% (pobstructive jaundice (58.09±1.25%)>nonobstructive jaundice (54.25±7.27%). Value b* was higher in jaundiced patients compared to normal control (11.88±2.16, pspectrophotometer. Study of Diagnostic Test. Level II. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Comparison of color reappearance between metal-ceram restoration and foundry-ceram restoration using crystaleye spectrophotometer].

    Science.gov (United States)

    Shi, Tao; Zhang, Ning; Kong, Fan-wen; Zhan, De-song

    2010-10-01

    To study the color reappearance effect of metal-ceram restoration and foundry-ceram restoration using Crystaleye spectrophotometer. 58 metal-ceram restorations and 58 foundry-ceram restorations according to the result of the Crystaleye spectrophotometer were made respectively. The deltaE between restorations and natural teeth as referenced were analyzed. And satisfaction of dentists and patients were evaluated. The deltaE between metal-ceram restorations and natural teeth was 7.13 +/- 0.74. The deltaE between foundry-ceram restorations and teeth was 1.47 +/- 0.84. There were statistical differences between the deltaE (P spectrophotometer can provide accurate reference for foundry-ceram restoration, but for metal-ceram restoration it is not accurate.

  20. [Precision and accuracy of a dental spectrophotometer in gingival color measurement of maxillary anterior gingival].

    Science.gov (United States)

    Du, Yang; Tan, Jian-guo; Chen, Li; Wang, Fang-ping; Tan, Yao; Zhou, Jian-feng

    2012-08-18

    To explore a gingival shade matching method and to evaluate the precision and accuracy of a dental spectrophotometer modified to be used in gingival color measurement. Crystaleye, a dental spectrophotometer (Olympus, Tokyo, Japan) with a custom shading cover was tested. For precision assessment, two experienced experimenters measured anterior maxillary incisors five times for each tooth. A total of 20 healthy gingival sites (attached gingiva, free gingiva and medial gingival papilla in anterior maxillary region) were measured,the Commission Internationale de I' Eclairage (CIE) color parameters (CIE L*a*b*) of which were analyzed using the supporting software. For accuracy assessment, a rectangular area of approximately 3 mm×3 mm was chosen in the attached gingival portion for spectral analysis. PR715 (SpectraScan;Photo Research Inc.,California, USA), a spectroradiometer, was utilized as standard control. Average color differences (ΔE) between the values from PR715 and Crystaleye were calculated. In precision assessment,ΔL* between the values in all the test sites and average values were from(0.28±0.16)to(0.78±0.57), with Δa*and Δb* from(0.28±0.15)to (0.87±0.65),from(0.19±0.09)to( 0.58±0.78), respectively. Average ΔE between values in all test sites and average values were from (0.62 ± 0.17) to (1.25 ± 0.98) CIELAB units, with a total average ΔE(0.90 ± 0.18). In accuracy assessment, ΔL* with control device were from(0.58±0.50)to(2.22±1.89),with Δa*and Δb* from(1.03±0.67)to(2.99±1.32),from(0.68±0.78)to(1.26±0.83), respectively. Average ΔE with the control device were from (2.44±0.82) to (3.51±1.03) CIELAB units, with a total average ΔE (2.96 ± 1.08). With appropriate modification, Crystaleye, the spectrophotometer, has demonstrated relative minor color variations that can be useful in gingival color measurement.

  1. Repeatability in Color Measurements of a Spectrophotometer using Different Positioning Devices.

    Science.gov (United States)

    Hemming, Michael; Kwon, So Ran; Qian, Fang

    2015-12-01

    This study aimed to evaluate the repeatability of color measurements of an intraoral spectrophotometer with the use of three different methods by two operators. A total of 60 teeth were obtained, comprising 30 human maxillary teeth [central incisors (n = 10); canines (n = 10); molars (n = 10)] and 30 artificial teeth [lateral incisors (n = 10); premolar (n = 20)]. Multiple repeated color measurements were obtained from each tooth using three measuring methods by each of the two operators. Five typodonts with alternating artificial and human teeth were made. Measurements were taken by two operators with the Vita EasyShade spectrophotometer using the custom tray (CT), custom jig (CJ) and free hand (FH) method, twice, at an interval of 2 to 7 days. Friedman test was used to detect difference among the three color measuring methods. Post hoc Wilcoxon signed-rank test with Bonferroni correction applied was used for pair-wise comparison of color measurements among the three methods. Additionally, a paired-sample t-test was used to assess a significant difference between the two duplicated measurements made on the same tooth by the same operator for each color parameter and measuring method. For operator A, mean (SD) overall color change-ΔE* (SD) perceived for FH, CT and CJ were 2.21(2.00), 2.39 (1.58) and 2.86 (1.92), respectively. There was statistically significant difference in perceived ΔE* in FH vs CJ (p = 0.0107). However, there were no significant differences between FH and CT (p = 0.2829) or between CT and CJ (p = 0.1159). For operator B mean ΔE* (SD) for FH, CT and CJ were 3.24 (3.46), 1.95 (1.19) and 2.45 (1.56), respectively. There was a significant difference between FH and CT (p = 0.0031). However, there were no statistically significant differences in ΔE* in FH vs CJ (p = 0.3696) or CT vs CJ (p = 0.0809). The repeatability of color measurements was different among the three measuring methods by operators. Overall, the CT method worked well for both

  2. Comparing predictive abilities of three visible-near infrared spectrophotometers for soil organic carbon and clay determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Stenberg, Bo; Deng, Fan

    2013-01-01

    carbon (SOC) and clay calibrations for 194 Danish top soils. Scanning procedures for the three spectrophotometers where done according to uniform laboratory protocols. SOC and clay calibrations were performed using PLS regression. One third of the data was used as an independent test set. A range...... of spectral preprocessing methods was applied in search for model improvement. Validation for SOC content using an independent data set derived from all three spectrophotometers provided values of RMSEP between 0.45 and 0.52 %, R2=0.44-0.58 and RPD=1.3-1.5. Clay content was predicted with a higher precision...

  3. Vulcan - A low-resolution spectrophotometer for measuring the integrated colors of galaxies

    International Nuclear Information System (INIS)

    Rakos, K.D.; Weiss, W.W.; Mueller, S.; Pressberger, R.; Wachtler, P.

    1990-01-01

    Recent advances in fiber optics, holographic gratings, and blue CCD sensitivity have been combined to develop a low-resolution spectrophotometer. Combining the principles of aperture photometry and spectroscopy, this device is designed specifically to measure the light from galaxies with low contrast to the sky brightness (i.e., low surface brightness galaxies). The instrument consists of two large apertures (up to several arcmin) with fast-field lens for imaging the entrance pupil onto a fiber-optics cable. The circular configuration for the input end of the fiber cable is modified to a rectangular slit at the output end. The output is then imaged onto a concave holographic grating producing a spectrum from 3200 A to 7600 A with a resolution of 140 A. The main purpose of this instrument is to obtain narrow-band optical colors for low surface brightness galaxies, which can then be applied to the study of stellar populations in these galaxies. 11 refs

  4. Results of laboratory tests of the information-measurement system of the five-channel spectrophotometer

    International Nuclear Information System (INIS)

    Bukach, A.B.

    1979-01-01

    The study of technical characteristics of the five-channel spectrophotometer detecting star spectra in the 3125-8570 A range was carried out. The optimal conditions of photomultipliers and amplifiers allow to count statistically distributed pulses with the time resolution up to 50 ns. Detection, with printing and perforation, of the pulses rate has the absolute error of about +- 1 pulse, when the counting rate changes from 100 to 10 4 s -1 . The step-motor system and the scanning mechanism give the spectral line position with an accuracy of +- 0.2 step (+- 2 Mcm, i.e. 0.03 A for the first order of grating). Instrumental profile effect on the line position is investigated and the dispersion curves are obtained

  5. Calibration of a laboratory spectrophotometer for specular light by means of stacked glass plates.

    Science.gov (United States)

    Allen, W. A.; Richardson, A. J.

    1971-01-01

    Stacked glass plates have been used to calibrate a laboratory spectrophotometer, over the spectral range 0.5-2.5 microns, for specular light. The uncalibrated instrument was characterized by systematic errors when used to measure the reflectance and transmittance of stacked glass plates. Calibration included first, a determination of the reflectance of a standard composed of barium sulfate paint deposited on an aluminum plate; second, the approximation of the reflectance and transmittance residuals between observed and computed values by means of cubic equations; and, finally, the removal of the systematic errors by a computer. The instrument, after calibration, was accurate to 1% when used to measure the reflectance and transmittance of stacked glass plates.

  6. Evaluation of the LASL automated spectrophotometer for uranium determination at submilligram levels

    International Nuclear Information System (INIS)

    Hollen, R.M.; Jackson, D.D.; Rein, J.E.

    1977-07-01

    The LASL automated spectrophotometer, designed for determination of 1 to 14 mg of uranium and 0.5 to 14 mg of plutonium, has been evaluated for determination of lower levels of uranium to 0.12 mg. The essentially linear response of absorbance is maintained and the standard deviation for a single measurement is constant at about 0.013 mg of uranium, corresponding to a maximum uncertainty of about 10 percent at the 0.12-mg limit. The instrument was applied to the analysis of a series of low-level-concentration, 0.07- to 0.8-mg/ml uranium samples. The results were not statistically different from those obtained by a manual spectrophotometric method

  7. A Study of UV Spectral Transmission Through Different Transparent Media with Spectrophotometer

    Directory of Open Access Journals (Sweden)

    R B Gadgil

    1981-01-01

    Full Text Available This experiment was carried out with the help of spectrophotometer using an artificial UV light source to find -out the percentage transmission of UVA and UVB regions of the UV spectrum. The aim of the experiment was to select the transparent medium which would block mum UVB at the same time allowing mammum UVA to pass through thus reducing the unwanted side effects of UVB light and reducing the efficacy of PUVASOL. It was observed that an ordinary plain 3.3 mm colorless glass was the best transparent medium and with its use a simple solarium could be constructed to treat patients on PUVASOL with sunlight as the source of UV light.

  8. Total ozone trends over the USA during 1979-1991 from Dobson spectrophotometer observations

    Science.gov (United States)

    Komhyr, Walter D.; Grass, Robert D.; Koenig, Gloria L.; Quincy, Dorothy M.; Evans, Robert D.; Leonard, R. Kent

    1994-01-01

    Ozone trends for 1979-1991, determined from Dobson spectrophotometer observations made at eight stations in the United States, are augmented with trend data from four foreign cooperative stations operated by NOAA/CMDL. Results are based on provisional data archived routinely throughout the years at the World Ozone Data Center in Toronto, Canada, with calibration corrections applied to some of the data. Trends through 1990 exhibit values of minus 0.3 percent to minus 0.5 percent yr(exp -1) at mid-to-high latitudes in the northern hemisphere. With the addition of 1991 data, however, the trends become less negative, indicating that ozone increased in many parts of the world during 1991. Stations located within the plus or minus 20 deg N-S latitude band exhibit no ozone trends. Early 1992 data show decreased ozone values at some of the stations. At South Pole, Antarctica, October ozone values have remained low during the past 3 years.

  9. Design and evaluation of an imaging spectrophotometer incorporating a uniform light source.

    Science.gov (United States)

    Noble, S D; Brown, R B; Crowe, T G

    2012-03-01

    Accounting for light that is diffusely scattered from a surface is one of the practical challenges in reflectance measurement. Integrating spheres are commonly used for this purpose in point measurements of reflectance and transmittance. This solution is not directly applicable to a spectral imaging application for which diffuse reflectance measurements are desired. In this paper, an imaging spectrophotometer design is presented that employs a uniform light source to provide diffuse illumination. This creates the inverse measurement geometry to the directional illumination/diffuse reflectance mode typically used for point measurements. The final system had a spectral range between 400 and 1000 nm with a 5.2 nm resolution, a field of view of approximately 0.5 m by 0.5 m, and millimeter spatial resolution. Testing results indicate illumination uniformity typically exceeding 95% and reflectance precision better than 1.7%.

  10. Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer.

    Science.gov (United States)

    Desjardins, Philippe; Hansen, Joel B; Allen, Michael

    2009-11-04

    Traditional spectrophotometry requires placing samples into cuvettes or capillaries. This is often impractical due to the limited sample volumes often used for protein analysis. The Thermo Scientific NanoDrop 2000c Spectrophotometer solves this issue with an innovative sample retention system that holds microvolume samples between two measurement surfaces using the surface tension properties of liquids, enabling the quantification of samples in volumes as low as 0.5-2 microL. The elimination of cuvettes or capillaries allows real time changes in path length, which reduces the measurement time while greatly increasing the dynamic range of protein concentrations that can be measured. The need for dilutions is also eliminated, and preparations for sample quantification are relatively easy as the measurement surfaces can be simply wiped with laboratory wipe. This video article presents modifications to traditional protein concentration determination methods for quantification of microvolume amounts of protein using A280 absorbance readings or the BCA colorimetric assay.

  11. Lightness, chroma, and hue distributions in natural teeth measured by a spectrophotometer.

    Science.gov (United States)

    Pustina-Krasniqi, Teuta; Shala, Kujtim; Staka, Gloria; Bicaj, Teuta; Ahmedi, Enis; Dula, Linda

    2017-01-01

    The aim of the study was to analyze the distribution of color parameters, lightness (L*), chroma (C), hue (H), a* and b*, in the intercanine sector in maxilla. Patients' tooth color measurements were performed using an intraoral spectrophotometer VITA Easyshade ® (VITA Zahnfabrik H. Rauter GmbH and Co. KG, Bad Sackingen, Germany). The measurements were made in 255 subjects in the intercanine sector in maxilla. The mean values for the group of 255 subjects were as follows: L*, a*, b*, C, and H as 81.6, 0.67, 21.6, 21.7, and 92.7, respectively. For F=206.27 and P < 0.001 between L*, a*, b*, C, H, and central incisor/lateral incisor/canines, there were statistically significant differences. With the statistical analysis, it was determined that there are significant color differences between the teeth of the intercanine sector, which differences are clinically significant also.

  12. SphinX soft X-ray spectrophotometer: Science objectives, design and performance

    Science.gov (United States)

    Gburek, S.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Kordylewski, Z.; Podgorski, P.; Plocieniak, S.; Siarkowski, M.; Sylwester, B.; Trzebinski, W.; Kuzin, S. V.; Pertsov, A. A.; Kotov, Yu. D.; Farnik, F.; Reale, F.; Phillips, K. J. H.

    2011-06-01

    The goals and construction details of a new design Polish-led X-ray spectrophotometer are described. The instrument is aimed to observe emission from entire solar corona and is placed as a separate block within the Russian TESIS X- and EUV complex aboard the CORONAS-PHOTON solar orbiting observatory. SphinX uses silicon PIN diode detectors for high time resolution measurements of the solar spectra in the range 0.8-15 keV. Its spectral resolution allows for discerning more than hundred separate energy bands in this range. The instrument dynamic range extends two orders of magnitude below and above these representative for GOES. The relative and absolute accuracy of spectral measurements is expected to be better than few percent, as follows from extensive ground laboratory calibrations.

  13. Converting a fluorescence spectrophotometer into a three-channel colorimeter for color vision research

    International Nuclear Information System (INIS)

    Pardo, P.J.; Perez, A.L.; Suero, M.I.

    2004-01-01

    An old fluorescence spectrophotometer was recycled to make a three-channel colorimeter. The various modifications involved in its design and implementation are described. An optical system was added that allows the fusion of two visual stimuli coming from the two monochromators of the spectrofluorimeter. Each of these stimuli has a wavelength and bandwidth control, and a third visual stimulus may be taken from a monochromator, a cathode ray tube, a thin film transistor screen, or any other light source. This freedom in the choice of source of the third chromatic channel, together with the characteristics of the visual stimuli from the spectrofluorimeter, give this design a great versatility in its application to novel visual experiments on color vision

  14. Converting a fluorescence spectrophotometer into a three-channel colorimeter for color vision research

    Science.gov (United States)

    Pardo, P. J.; Pérez, A. L.; Suero, M. I.

    2004-01-01

    An old fluorescence spectrophotometer was recycled to make a three-channel colorimeter. The various modifications involved in its design and implementation are described. An optical system was added that allows the fusion of two visual stimuli coming from the two monochromators of the spectrofluorimeter. Each of these stimuli has a wavelength and bandwidth control, and a third visual stimulus may be taken from a monochromator, a cathode ray tube, a thin film transistor screen, or any other light source. This freedom in the choice of source of the third chromatic channel, together with the characteristics of the visual stimuli from the spectrofluorimeter, give this design a great versatility in its application to novel visual experiments on color vision.

  15. Elemental investigation of momordica charantia linn. and syzigium jambolana linn. using atomic absorption spectrophotometer

    International Nuclear Information System (INIS)

    Kazi, T.G.

    2002-01-01

    Elemental investigation of very important medicinal plant i.e. momordica charantia linn and syzigium jambolana linn, and its decoction has been carried out using flame atomic absorption spectrophotometer. In present study fifteen essential, trace and toxic elements such as Zn, Cr, K, Mg, Ca, Na, Cu, Fe, Pb, Al, Ba, Mn, Co, Ni and Cd were determined in different parts of both plants and in its decoction. The level of essential elements was found high as compared to the level of toxic elements. Both plants are useful in the treatment of diabetes. The validation of the method was checked by employing NBS- 1570 (Spanish) as a standard reference material . The measured values of elements are in close agreement with certified values. (author)

  16. A comparison between a tristimulus colorimeter (Minolta ChromaMeter CR-200) and two spectrophotometers (Minolta Spectrophotometer CM-508i and CM-2002). Quantification of UV-B induced erythema in a hairless guinea pig model.

    Science.gov (United States)

    Fullerton, A; Keiding, J

    1997-11-01

    A comparison was made between a tristimulus colorimeter (Minolta ChromaMeter CR 200) and two spectrophotometers (Minolta CM-508i and CM-2002). The object was to compare skin colour data in the CIE 1976 L*a*d*colour space system obtained with the different instruments after UV-B exposure. Guinea pigs were exposed on their dorsal trunk with UV-B light for different time periods. Skin colour in the L*a*b* system was measured 6 and 24 h after exposure. Reproducible and objective measurements expressed in the CIE system were obtained with all three instruments. A strong correlation was found between the Minolta Chromameter CR200 and each of the two spectrophotometers. However, absolute values found with the Minolta ChromaMeter CR 200, especially for b*, differed from values obtained with the two spectrophotometers. The instruments were, despite minor inter-instrumental variation, suited for objective evaluation of erythema. The spectrophotometers were somewhat cumbersome to use due to their heavy weight and difficulties in positioning within the test sites; the Minolta CromaMeter CR200 (or later versions) is thus preferable for simple routine measurements. Use of the spectophotometers appears only indicated where specific information about skin pigments or photoactive substances relative to wavelength is needed.

  17. Water excretion mechanisms of the kidney studied in the rabbit using tritiated water during the stop-flow assay; Les mecanismes d'excretion de l'eau par le rein etudies a l'aide d'eau tritiee chez le lapin au cours de l'epreuve de diurese interrompue

    Energy Technology Data Exchange (ETDEWEB)

    Morel, F.; Amiel, CI.; Falbriard, A. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Service de Biologie (France)

    1960-07-01

    The pattern of water turnover in the kidney and the mechanisms of water transfer into the urine have been studied in the rabbit using tritiated water as a tracer and the stop-flow technique. The experiments have given the following results: a) During the interruption of the diuresis, the injected tritiated water is completely exchanged with the water of the renal cortex, but the tracer does not reach the deep regions of the kidney, despite the fact that the blood circulation is maintained in these regions; this suggests that the vascular loops of the vasa recta function as a mechanism of water exchange by countercurrent. b) During the osmotic polyuria following the stop-flow period, the concentration gradient of tritiated water inside the kidney diminishes progressively. The concentration of the tracer in the urine is at all time similar to that existing in the deep medulla and the renal papilla and markedly different from that of the cortex or arterial blood. This fact shows that the molecules of water in the urine excreted do not come from either the glomerular filtrate or the convoluted tubules but from the water contained in the deep regions of the kidney. Also these results indicate that the walls of the collecting ducts have a very high permeability to water diffusion. Reprint of a paper published in Revue francaise d'etudes cliniques et biologiques, Vol. IV, no. 8, p. 773-779, 1959 [French] Les modalites du renouvellement de l'eau dans le rein et les mecanismes de son passage dans l'urine ont ete etudies chez le lapin a l'aide d'eau tritiee, employee comme indicateur au cours de l'epreuve de 'diurese interrompue' (stop flow). Les experiences effectuees montrent que: a) pendant l'interruption de la diurese, l'eau tritiee injectee s'echange completement avec l'eau contenue dans le cortex renal, mais elle n'atteint pratiquement pas les regions profondes du rein, bien que la circulation sanguine y soit maintenue; cette observation suggere que les anses

  18. Assessing the Engagement, Learning, and Overall Experience of Students Operating an Atomic Absorption Spectrophotometer with Remote Access Technology

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of…

  19. Development of a low-cost NIR instrument for minced meat analysis: Part 1 - Spectrophotometer and sample presentations

    Science.gov (United States)

    The feasibility of using a compact, low-cost NIR spectrophotometer to predict moisture (MC) and total fat content of minced pork was demonstrated. Results were compared with those obtained using two research type instruments with high signal to noise ratio (S/N). The NIR measuring head of the compac...

  20. Photochemical induced growth and aggregation of metal nanoparticles in diode-array spectrophotometer via excited dimethyl-sulfoxide.

    Science.gov (United States)

    Zidki, Tomer; Cohen, Haim; Meyerstein, Dan

    2010-10-21

    Ag(0) and Au(0) nanoparticles suspended in dilute aqueous solutions containing (CH(3))(2)SO are photochemically unstable. The light source of a diode-array spectrophotometer induces, within less than a minute, particle growth and aggregation. The results indicate that this process is triggered by UV light absorption by the (CH(3))(2)SO.

  1. A low cost short wave near infrared spectrophotometer: application for determination of quality parameters of diesel fuel.

    Science.gov (United States)

    Gonzaga, Fabiano Barbieri; Pasquini, Celio

    2010-06-18

    A low cost absorption spectrophotometer for the short wave near infrared spectral region (850-1050 nm) is described. The spectrophotometer is basically composed of a conventional dichroic lamp, a long-pass filter, a sample cell and a Czerny-Turner type polychromator coupled to a 1024 pixel non-cooled photodiode array. A preliminary evaluation of the spectrophotometer showed good repeatability of the first derivative of the spectra at a constant room temperature and the possibility of assigning some spectral regions to different C-H stretching third overtones. Finally, the spectrophotometer was successfully applied for the analysis of diesel samples and the determination of some of their quality parameters using partial least squares calibration models. The values found for the root mean square error of prediction using external validation were 0.5 for the cetane index and from 2.5 to 5.0 degrees C for the temperatures achieved during distillation when obtaining 10, 50, 85, and 90% (v/v) of the distilled sample, respectively. 2010 Elsevier B.V. All rights reserved.

  2. Demonstrating Principles of Spectrophotometry by Constructing a Simple, Low-Cost, Functional Spectrophotometer Utilizing the Light Sensor on a Smartphone

    Science.gov (United States)

    Hosker, Bill S.

    2018-01-01

    A highly simplified variation on the do-it-yourself spectrophotometer using a smartphone's light sensor as a detector and an app to calculate and display absorbance values was constructed and tested. This simple version requires no need for electronic components or postmeasurement spectral analysis. Calibration graphs constructed from two…

  3. A study of a sector spectrophotometer and auroral O+(2P-2D) emissions

    Science.gov (United States)

    Swenson, G. R.

    1976-01-01

    The metastable O+(2P-2D) auroral emission was investigated. The neighboring OH contaminants and low intensity levels of the emission itself necessitated the evolution of an instrument capable of separating the emission from the contaminants and having a high sensitivity in the wavelength region of interest. A new type of scanning photometer was developed and its properties are discussed. The theoretical aspects of auroral electron interaction with atomic oxygen and the resultant O+(2P-2D) emissions were examined in conjunction with N2(+)1NEG emissions. Ground based measurements of O+(2P-2D) auroral emission intensities were made using the spatial scanning photometer (sector spectrophotometer). Simultaneous measurements of N2(+)1NEG sub 1,0 emission intensity were made in the same field of view using a tilting photometer. Time histories of the ratio of these two emissions made in the magnetic zenith during auroral breakup periods are given. Theories of I sub 7319/I sub 4278 of previous investigators were presented. A rocket measurement of N2(+)1NEG sub 0,0 and O+(2P-2D) emission in aurora was examined in detail and was found to agree with the ground based measurements. Theoretical examination resulted in the deduction of the electron impact efficiency generating O+(2P) and also suggests a large source of O+(2P) at low altitude. A possible source is charge exchange of N+(1S) with OI(3P).

  4. Outdoor solar UVA dose assessment with EBT2 radiochromic film using spectrophotometer and densitometer measurements

    International Nuclear Information System (INIS)

    Abukassem, I.; Bero, M.A.

    2015-01-01

    Direct measurements of solar ultraviolet radiations (UVRs) have an important role in the protection of humans against UVR hazard. This work presents simple technique based on the application of EBT2 GAFCHROMIC R film for direct solar UVA dose assessment. It demonstrates the effects of different parts of the solar spectrum (UVB, visible and infrared) on performed UVA field measurements and presents the measurement uncertainty budget. The gradient of sunlight exposure level permitted the authors to establish the mathematical relationships between the measured solar UVA dose and two measured quantities: the first was the changes in spectral absorbance at the wavelength 633 nm (A 633 ) and the second was the optical density (OD). The established standard relations were also applied to calculate the solar UVA dose variations during the whole day; 15 min of exposure each hour between 8:00 and 17:00 was recorded. Results show that both applied experimental methods, spectrophotometer absorbance and densitometer OD, deliver comparable figures for EBT2 solar UVA dose assessment with relative uncertainty of 11 % for spectral absorbance measurements and 15 % for OD measurements. (authors)

  5. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions.

    Science.gov (United States)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-29

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  6. Determination of nanomolar chromate in drinking water with solid phase extraction and a portable spectrophotometer.

    Science.gov (United States)

    Ma, Jian; Yang, Bo; Byrne, Robert H

    2012-06-15

    Determination of chromate at low concentration levels in drinking water is an important analytical objective for both human health and environmental science. Here we report the use of solid phase extraction (SPE) in combination with a custom-made portable light-emitting diode (LED) spectrophotometer to achieve detection of chromate in the field at nanomolar levels. The measurement chemistry is based on a highly selective reaction between 1,5-diphenylcarbazide (DPC) and chromate under acidic conditions. The Cr-DPC complex formed in the reaction can be extracted on a commercial C18 SPE cartridge. Concentrated Cr-DPC is subsequently eluted with methanol and detected by spectrophotometry. Optimization of analytical conditions involved investigation of reagent compositions and concentrations, eluent type, flow rate (sample loading), sample volume, and stability of the SPE cartridge. Under optimized conditions, detection limits are on the order of 3 nM. Only 50 mL of sample is required for an analysis, and total analysis time is around 10 min. The targeted analytical range of 0-500 nM can be easily extended by changing the sample volume. Compared to previous SPE-based spectrophotometric methods, this analytical procedure offers the benefits of improved sensitivity, reduced sample consumption, shorter analysis time, greater operational convenience, and lower cost. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. [Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate].

    Science.gov (United States)

    Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong

    2012-08-01

    A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands.

  8. Outdoor solar UVA dose assessment with EBT2 radiochromic film using spectrophotometer and densitometer measurements.

    Science.gov (United States)

    Abukassem, I; Bero, M A

    2015-04-01

    Direct measurements of solar ultraviolet radiations (UVRs) have an important role in the protection of humans against UVR hazard. This work presents simple technique based on the application of EBT2 GAFCHROMIC(®) film for direct solar UVA dose assessment. It demonstrates the effects of different parts of the solar spectrum (UVB, visible and infrared) on performed UVA field measurements and presents the measurement uncertainty budget. The gradient of sunlight exposure level permitted the authors to establish the mathematical relationships between the measured solar UVA dose and two measured quantities: the first was the changes in spectral absorbance at the wavelength 633 nm (A633) and the second was the optical density (OD). The established standard relations were also applied to calculate the solar UVA dose variations during the whole day; 15 min of exposure each hour between 8:00 and 17:00 was recorded. Results show that both applied experimental methods, spectrophotometer absorbance and densitometer OD, deliver comparable figures for EBT2 solar UVA dose assessment with relative uncertainty of 11% for spectral absorbance measurements and 15% for OD measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Sensitive determination of mercury by a miniaturized spectrophotometer after in situ single-drop microextraction.

    Science.gov (United States)

    Yang, Fangwen; Liu, Rui; Tan, Zhiqiang; Wen, Xiaodong; Zheng, Chengbin; Lv, Yi

    2010-11-15

    An in situ single-drop microextraction (SDME) method was developed for trace mercury determination by a miniaturized spectrophotometer, in which a simple and cheap light-emitting diode (LED) was employed as the light source, and a handheld charge coupled device (CCD) was served as the detector. A droplet of 0.006% dithizone-CCl(4) (m/v) was used as extraction phase and hanged on a rolled PTFE tube. LED light was adjusted carefully to pass through the centre of the droplet and the entrance slit of the CCD detector. The radiation intensities of 475 nm before and after SDME (I(0) and I(i)) were recorded for quantification. Under the optimum conditions, the system provided a linear range of 2-50 μg L(-1), with a correlation coefficient of 0.9983 and a limit of detection (3σ) of 0.2 μg L(-1). The enrichment factor was about 69. The present method showed the merits of high sensitivity, simplicity, rapidity, low reagent consumption and field analysis potential. Finally, this method was successfully applied for the determination of the total mercury in spiked tap water sample, spiked river water sample and certified reference material (GBW (E) 080393, simulated water). Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Sensitive determination of mercury by a miniaturized spectrophotometer after in situ single-drop microextraction

    International Nuclear Information System (INIS)

    Yang Fangwen; Liu Rui; Tan Zhiqiang; Wen Xiaodong; Zheng Chengbin; Lv Yi

    2010-01-01

    An in situ single-drop microextraction (SDME) method was developed for trace mercury determination by a miniaturized spectrophotometer, in which a simple and cheap light-emitting diode (LED) was employed as the light source, and a handheld charge coupled device (CCD) was served as the detector. A droplet of 0.006% dithizone-CCl 4 (m/v) was used as extraction phase and hanged on a rolled PTFE tube. LED light was adjusted carefully to pass through the centre of the droplet and the entrance slit of the CCD detector. The radiation intensities of 475 nm before and after SDME (I 0 and I i ) were recorded for quantification. Under the optimum conditions, the system provided a linear range of 2-50 μg L -1 , with a correlation coefficient of 0.9983 and a limit of detection (3σ) of 0.2 μg L -1 . The enrichment factor was about 69. The present method showed the merits of high sensitivity, simplicity, rapidity, low reagent consumption and field analysis potential. Finally, this method was successfully applied for the determination of the total mercury in spiked tap water sample, spiked river water sample and certified reference material (GBW (E) 080393, simulated water).

  11. The Soft X-ray Spectrophotometer SphinX for the CORONAS-Photon Mission

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Miroslaw; Szymon, Gburek; Bakala, Jaroslaw; Kuzin, Sergey; Kotov, Yury; Farnik, Frantisek; Reale, Fabio

    The purpose, construction details and calibration results of the new design, Polish-led solar X-ray spectrophotometer SphinX will be presented. The instrument constitutes a part of the Russian TESIS X-ray and EUV complex aboard the forthcoming CORONAS-Photon solar mission to be launched later in 2008. SphinX uses Si-PIN detectors for high time resolution (down to 0.01 s) measurements of solar spectra in the energy range between 0.5 keV and 15 keV. The spectral resolution allows separating 256 individual energy channels in this range with particular groups of lines clearly distinguishable. Unprecedented accuracy of the instrument calibration at the XACT (Palermo) and BESSY (Berlin) synchrotron will allow for establishing the solar soft X-ray photometric reference system. The cross-comparison between SphinX and the other instruments presently in orbit like XRT on Hinode, RHESSI and GOES X-ray monitor, will allow for a precise determination of the coronal emission measure and temperature during both very low and very high activity periods. Examples of the detectors' ground calibration results as well as the calculated synthetic spectra will be presented. The operation of the instrument while in orbit will be discussed allowing for suggestions from other groups to be still included in mission planning.

  12. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    Science.gov (United States)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  13. Validation of the method spectrophotometer in the histamine determination in fresh tuna (Thunnus Tunna)

    International Nuclear Information System (INIS)

    Chacon Silva, F.

    1998-01-01

    The objective of this study was to validate the spectrophotometer method described by Bateman et al. (1994) for the histamine determination in fresh tuna (Thunnus Tunna) and to evaluate the histamine concentration in samples of fresh tuna. To fulfill the recently exposed objectives, the figures of merit were determined like they are it: recovery limits of detection, sensibility and repetitive of the method spectrophotometry and applied the analysis at twenty samples of fresh tuna for copy of the Metropolitan area and three sample like reference of fresh tuna stored 4 degree centigrade by 15 days. The histamine recovery you determines enriching seven ours of fresh tuna with histamine to two levels different 0.613 mg/L and 2.21 mg/L. three samples were left without enriching and you subtract the average to the native histamine. You determines the one it limits of detection using the standard deviation to three levels of concentration of histamine 1.37 mg/L, 2.22 mg/L and 3.22 mg/L, the minimum quantity of hi stamina that you can determine for the method spectrophotometry settling down. The repetitive you determines using the standard deviation for 100 among the average of the histamine values, in seven you replies independent of the same sample. You determines the histamine content, in the fresh tuna Thunnus Tunna of the expends of the Metropolitan Area and in samples of reference stored 4 degrees centigrade by 15 days [es

  14. Spectrophotometer as a tool for analysis of various species in radioactive liquid wastes (Preprint No. RA-27)

    International Nuclear Information System (INIS)

    Yeotikar, R.G.; Kaushik, C.P.; Raj, Kanwar

    1988-02-01

    For the immobilisation of high level radioactive liquid waste in a glass matrix, the analysis of different species in the waste is the primary requirement for fixing the base composition of glass. The commercially available spectrophotometer has been remotised to facilitate the analysis of different radioactive streams. Methods for analysis of constituents such as Fe, Mo, Cr, U, total lanthanides, Zr and PO4 have been established. (author)

  15. Roughened glass slides and a spectrophotometer for the detection of the wavelength-dependent refractive index of transparent liquids.

    Science.gov (United States)

    Niskanen, Ilpo; Räty, Jukka; Myllylä, Risto; Sutinen, Veijo; Matsuda, Kiyofumi; Homma, Kazuhiro; Silfsten, Pertti; Peiponen, Kai-Erik

    2012-07-01

    We describe a method to determine the wavelength-dependent refractive index of liquids by measurement of light transmittance with a spectrophotometer. The method is based on using roughened glass slides with different a priori known refractive indices and immersing the slides into the transparent liquid with unknown refractive index. Using the dispersion data on the glass material it is possible to find the index match between the liquid and the glass slide, and hence the refractive index of the liquid.

  16. Near-IR laser-based spectrophotometer for comparative analysis of isotope content of CO2 in exhale air samples

    International Nuclear Information System (INIS)

    Stepanov, E V; Glushko, A N; Kasoev, S G; Koval', A V; Lapshin, D A

    2011-01-01

    We present a laser spectrophotometer aimed at high-accuracy comparative analysis of content of 12 CO 2 and 13 CO 2 isotope modifications in the exhale air samples and based on a tunable near-IR diode laser (2.05 μm). The two-channel optical scheme of the spectrophotometer and the special digital system for its control are described. An algorithm of spectral data processing aimed at determining the difference in the isotope composition of gas mixtures is proposed. A few spectral regions (near 4880 cm -1 ) are determined to be optimal for analysis of relative content of 12 CO 2 and 13 CO 2 in the exhale air. The use of the proposed spectrophotometer scheme and the developed algorithm makes the results of the analysis less susceptible to the influence of the interference in optical elements, to the absorption in the open atmosphere, to the slow drift of the laser pulse envelope, and to the offset of optical channels. The sensitivity of the comparative analysis of the isotope content of CO 2 in exhale air samples, achieved using the proposed scheme, is estimated to be nearly 0.1‰.

  17. Study of the influence of substrate and spectrophotometer characteristics on the in vitro measurement of sunscreens efficiency.

    Science.gov (United States)

    Couteau, C; Philippe, A; Vibet, M-A; Paparis, E; Coiffard, L

    2018-05-16

    All the methods used for the in vitro measurement of the SPF, the universal indicator of sunscreens efficiency, rely on a spectrophotometric analysis. What can vary about the experimental protocol used is mainly the substrate and the type of spectrophotometer chosen. We decided to work with polymethylmetacrylate plates that we analyzed using two spectrophotometers equipped with integrating spheres, the UV1000S and the UV2000 apparatus. Two marketed products were such tested, after spreading 2 mg/cm 2 on the plates, using one apparatus after another. We applied a non-parametric Wilcoxon test for paired data to the measures realized on 10 plates (as we systematically used the 2 apparatus), in order to compare the series of measures obtained with the two machines. This way, we were able to show a significant difference between the SPF values respectively obtained with the UV1000S and the UV2000 spectrophotometers. This difference could be explained by the decrease of the stray light in the case of the UV2000 apparatus. Copyright © 2017. Published by Elsevier B.V.

  18. Low-cost, digital lock-in module with external reference for coating glass transmission/reflection spectrophotometer

    Science.gov (United States)

    Alonso, R.; Villuendas, F.; Borja, J.; Barragán, L. A.; Salinas, I.

    2003-05-01

    A versatile, low-cost, digital signal processor (DSP) based lock-in module with external reference is described. This module is used to implement an industrial spectrophotometer for measuring spectral transmission and reflection of automotive and architectonic coating glasses over the ultraviolet, visible and near-infrared wavelength range. The light beams are modulated with an optical chopper. A digital phase-locked loop (DPLL) is used to lock the lock-in to the chop frequency. The lock-in rejects the ambient radiation and permits the spectrophotometer to work in the presence of ambient light. The algorithm that implements the dual lock-in and the DPLL in the DSP56002 evaluation module from Motorola is described. The use of a DSP allows implementation of the lock-in and DPLL by software, which gives flexibility and programmability to the system. Lock-in module cost, under 300 euro, is an important parameter taking into account that two modules are used in the system. Besides, the algorithms implemented in this DSP can be directly implemented in the latest DSP generations. The DPLL performance and the spectrophotometer are characterized. Capture and lock DPLL ranges have been measured and checked to be greater than the chop frequency drifts. The lock-in measured frequency response shows that the lock-in performs as theoretically predicted.

  19. PHASES: a concept for a satellite-borne ultra-precise spectrophotometer

    International Nuclear Information System (INIS)

    Burgo, C del; Prieto, C Allende; Peacocke, T

    2010-01-01

    The Planet Hunting and Asteroseismology Explorer Spectrophotometer, PHASES, is a concept for a space-borne instrument to obtain flux calibrated spectra and measure micro-magnitude photometric variations of nearby stars. The science drivers are the determination of the physical properties of stars and the characterisation of planets orbiting them, to very high precision. PHASES, intended to be housed in a micro-satellite, consists of a 20 cm aperture modified Baker telescope feeding two detectors: the tracking detector, with a field of 1 degree square, and the science detector for performing spectrophotometry. The optical design has been developed with the primary goal of avoiding stray light on the science detector, while providing spectra in the wavelength range 370-960 nm with a resolving power that ranges from ∼ 900 at 370 nm to ∼ 200 at 960 nm. The signal to noise per resolution element obtained for a V = 10 magnitude star in a 1 minute integration varies between ∼ 35 and 140. An analysis of the light curve constrains the radii of the planets relative to their parent stars' radii, which are, in turn, tightly constrained by the combination of absolute spectrophotometry and trigonometric parallaxes. The provisional optical design satisfies all the scientific requirements, including a ∼ 1% rms flux calibration strategy based on observations of bright A-type stars and model atmospheres, allowing the determination of stellar angular diameters for nearby solar-like stars to 0.5%. This level of accuracy will be propagated to the stellar radii for the nearest stars, with highly reliable Hipparcos parallaxes, and more significantly, to the planetary radii.

  20. Comparison of Ozone Retrievals from the Pandora Spectrometer System and Dobson Spectrophotometer in Boulder, Colorado

    Science.gov (United States)

    Herman, J.; Evans, R.; Cede, A.; Abuhassan, N.; Petropavlovskikh, I.; McConville, G.

    2015-01-01

    A comparison of retrieved total column ozone (TCO) amounts between the Pandora #34 spectrometer system and the Dobson #061 spectrophotometer from direct-sun observations was performed on the roof of the Boulder, Colorado, NOAA building. This paper, part of an ongoing study, covers a 1-year period starting on 17 December 2013. Both the standard Dobson and Pandora TCO retrievals required a correction, TCO(sub corr) = TCO (1 + C(T)), using a monthly varying effective ozone temperature, T(sub E), derived from a temperature and ozone profile climatology. The correction is used to remove a seasonal difference caused by using a fixed temperature in each retrieval algorithm. The respective corrections C(T(sub E)) are C(sub Pandora) = 0.00333(T(sub E) - 225) and C(sub Dobson) = -0.0013(T(sub E) - 226.7) per degree K. After the applied corrections removed most of the seasonal retrieval dependence on ozone temperature, TCO agreement between the instruments was within 1% for clear-sky conditions. For clear-sky observations, both co-located instruments tracked the day-to-day variation in total column ozone amounts with a correlation of r(exp 2) = 0.97 and an average offset of 1.1 +/- 5.8 DU. In addition, the Pandora TCO data showed 0.3% annual average agreement with satellite overpass data from AURA/OMI (Ozone Monitoring Instrument) and 1% annual average offset with Suomi-NPP/OMPS (Suomi National Polar-orbiting Partnership, the nadir viewing portion of the Ozone Mapper Profiler Suite).

  1. Comparison between Brewer spectrometer, M 124 filter ozonometer and Dobson spectrophotometer

    Science.gov (United States)

    Feister, U.

    1994-01-01

    Concurrent measurements were taken using the Brewer spectrometer no. 30, the filter ozonometer M 124 no. 200 and the Dobson spectrophotometer no. 71 from September 1987 to December 1988 at Potsdam. The performance of the instrument types and the compatibility of ozone data was checked under the conditions of a field measuring station. Total ozone values derived from Dobson AD direct sun measurements were considered as standard. The Dobson instrument had been calibrated at intercomparisons with the World Standard Dobson instrument no. 83 (Boulder) and with the Regional Standard instrument no. 64 (Potsdam), while the Brewer instrument was calibrated several times with the Travelling Standard Brewer no. 17 (Canada). The differences between individual Brewer DS (direct sun) ozone data and Dobson ADDS are within plus or minus 3 percent with half of all differences within plus or minus 1 percent. Less than 0.7 percent of the systematic difference can be due to atmospheric SO2. Due to inadequate regression coefficients Brewer ZB (zenith blue) ozone measurements are by (3...4) percent higher than Dobson ADDS ozone values. M124 DS ozone data are systematically by (1...2) percent higher than Dobson ADDS ozone with 50 percent of the differences within plus or minus 4 percent, but with extreme differences up to plus or minus (20...25) percent. M124 ZB ozone values are by (3...5) percent higher than Dobson ADDS with all the differences within plus or minus 10 percent, i.e. the scatter of differences is smaller for ZB than for M 124 DS measurements, Results for differences in the daily mean ozone values are also addressed. The differences include the uncertainties in the ozone values derived from both types of measurements. They provide an indication of the uncertainty in ozone data and the comparability of ozone values derived from different types of instruments.

  2. Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer.

    Science.gov (United States)

    Tardaguila, Javier; Fernández-Novales, Juan; Gutiérrez, Salvador; Diago, Maria Paz

    2017-08-01

    Until now, the majority of methods employed to assess grapevine water status have been destructive, time-intensive, costly and provide information of a limited number of samples, thus the ability of revealing within-field water status variability is reduced. The goal of this work was to evaluate the capability of non-invasive, portable near infrared (NIR) spectroscopy acquired in the field, to assess the grapevine water status in diverse varieties, grown under different environmental conditions, in a fast and reliable way. The research was conducted 2 weeks before harvest in 2012, in two commercial vineyards, planted with eight different varieties. Spectral measurements were acquired in the field on the adaxial and abaxial sides of 160 individual leaves (20 leaves per variety) using a commercially available handheld spectrophotometer (1600-2400 nm). Principal component analysis (PCA) and modified partial least squares (MPLS) were used to interpret the spectra and to develop reliable prediction models for stem water potential (Ψ s ) (cross-validation correlation coefficient (r cv ) ranged from 0.77 to 0.93, and standard error of cross validation (SECV) ranged from 0.10 to 0.23), and leaf relative water content (RWC) (r cv ranged from 0.66 to 0.81, and SECV between 1.93 and 3.20). The performance differences between models built from abaxial and adaxial-acquired spectra is also discussed. The capability of non-invasive NIR spectroscopy to reliably assess the grapevine water status under field conditions was proved. This technique can be a suitable and promising tool to appraise within-field variability of plant water status, helpful to define optimised irrigation strategies in the wine industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Comparison of Shade of Ceramic with Three Different Zirconia Substructures using Spectrophotometer.

    Science.gov (United States)

    Habib, Syed Rashid; Shiddi, Ibraheem F Al

    2015-02-01

    This study assessed how changing the Zirconia (Zr) substructure affected the color samples after they have been overlaid by the same shade of veneering ceramic. Three commercial Zr materials were tested in this study: Prettau(®) Zirconia (ZirKonZahn, Italy), Cercon (Dentsply, Germany) and InCoris ZI (Sirona, Germany). For each system, 15 disk-shaped specimens (10 × 1 mm) were fabricated. Three shades of A1, A2 and A3.5 of porcelain (IPS e.MaxCeram, IvoclarVivadent, USA) were used for layering the specimens. Five specimens from each type of Zr were layered with same shade of ceramic. Color measurements were recorderd by a spectrophotometer Color-Eye(®) 7000A (X-Rite, Grand Rapids, MI). Mean values of L, a, b color coordinates and ΔE were recorded and comparisons were made. Differences in the ΔE were recorded for the same porcelain shade with different Zr substructures and affected the color of the specimens (p < 0.01, ANOVA). The maximum difference between the ΔE values for the A1, A2 and A3.5 shades with three types of Zr substructures was found to be 1.59, 1.69 and 1.45 respectively. Multiple comparisons of the ΔE with PostHoc Tukey test revealed a statistically significant difference (p < 0.05) between the three types of Zr, except between Type 2 Zr and Type 3 Zr for the Shade A1. The mean values of L, a, b and ΔE for the Prettau(®) Zirconia substructure were found to be the least among the three types. The brand of Zr used influences the final color of the all ceramic Zr based restorations and this has clinical significance.

  4. Measurement of breast milk intake using deuterium oxide and fourier transformed infrared spectrophotometer - a pilot study

    International Nuclear Information System (INIS)

    Adom, T.; Bansa, D.; Boatin, R.; Vuore, T.; Datohe, D.; Timpo, S.; Asamoa-Tutu, P.

    2011-01-01

    The measurement of breast milk intake of infants is essential to the estimation of nutrient requirements during infancy and lactation. The conventional method, test-weighing procedure for measuring breast milk is time consuming, most often inaccurate and may interfere with the mother's normal activities. A more practical and accurate method is isotope dilution using stable isotope-labelled water. The accuracy and ready availability of deuterium oxide (D 2 O) have led to its extensive use in measuring body composition and breast milk intake of infants. The D 2 O turnover method was field-tested in 13 lactating Ghanaian mother-baby pairs. Maternal and baby anthropometric measurements were made. Baby milk intake and maternal body composition were measured with the dose-to-mother method. Pre-dose samples of saliva were taken from each mother-baby pair. A measured D 2 O dose (30g) was administered orally to the mother. Post-dose saliva samples were collected from mother and baby on days 1, 2, 3, 4, 13, and 14. Samples were analysed using Fourier Transformed Infrared Spectrophotometer (FTIR). The mean ± SD maternal age was 24 ± 5 years. Babies were aged 3.5 months on the average and weighed 6.7 ± 0.7 kg. Mean milk intake of babies was 828 ± 132 ml/day with a range of 610 to 1040 ml/day. Maternal fat free mass and % body fat were 44.8 ± 5.3 kg, 23.1 ± 5.1 respectively. This non-invasive and convenient method has been used successfully to measure breast milk intake of Ghanaian infants. (au)

  5. Stopped-Flow Spectrophotometric Study of the Kinetics and Mechanism of CO2 Uptake by cis-[Cr(C2O4(BaraNH2(OH22]+ Cation and the Acid-Catalyzed Decomposition of cis-[Cr(C2O4(BaraNH2OCO2]− Anion in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Lech Chmurzyński

    2011-09-01

    Full Text Available The kinetics of CO2 uptake by the cis-[Cr(C2O4(BaraNH2(OH22]+ complex cation and the acid hydrolysis of the cis-[Cr(C2O4(BaraNH2OCO2]− complex anion (where BaraNH2 denotes methyl 3-amino-2,3-dideoxy-b-D-arabino-hexopyranoside were studied using the stopped-flow technique. The reactions under study were investigated in aqueous solution in the 288–308 K temperature range. In the case of the reaction between CO2 and cis-[Cr(C2O4(BaraNH2(OH22]+ cation variable pH values (6.82–8.91 and the constant ionic strength of solution (H+, Na+, ClO4− = 1.0 were used. Carbon dioxide was generated by the reaction between sodium pyruvate and hydrogen peroxide. The acid hydrolysis of cis-[Cr(C2O4(BaraNH2OCO2]− was investigated for varying concentrations of H+ ions (0.01–2.7 M. The obtained results enabled the determination of the number of steps of the studied reactions. Based on the kinetic equations, rate constants were determined for each step. Finally, mechanisms for both reactions were proposed and discussed. Based on the obtained results it was concluded that the carboxylation (CO2 uptake reactions of cis-[Cr(C2O4(BaraNH2(OH22]+ and the decarboxylation (acid hydrolysis of the cis-[Cr(C2O4(BaraNH2OCO2]− are the opposite of each other.

  6. Sensitivity of digital dental photo CIE L*a*b* analysis compared to spectrophotometer clinical assessments over 6 months.

    Science.gov (United States)

    Sluzker, Ariel; Knösel, Michael; Athanasiou, Athanasios E

    2011-10-01

    To assess the sensitivity of digital dental photo CIE L*a*b* analysis compared to clinical spectrophotometer assessments over 6 months. CIE L*a*b* values for the upper right central incisors of 14 predoctoral dental students subjected to certain color-relevant exclusion criteria were recorded at baseline (T0), after 6 months (T1), and 1 week later (T2), using (Method 1) a spectrophotometer and (Method 2) a method of digital photo analysis. Statistical analysis of color and lightness data between both methods and time points were assessed using the Shapiro-Wilk test, Pearson's correlation coefficient (r), Dahlberg's formula for method error calculation, and paired samples t-tests, adopting a level of significance alpha = 0.05. Between T0 - T1, the spectrophotometer recorded significant changes in lightness (75.51 > 77.75) and color values (a*: 3.25 > 2.38; b*: 18.47 > 17.31), whereas significant changes with Method 2 were only seen for b* (21.51 > 20.57). No significant changes for overall color and lightness changes deltaE to deltaE2 were found for either of the methods. The error of the method (T1-T2) and corresponding correlation coefficients r for values L*a*b* were found to be 1.44 / 0.43 / 0.62 (r: 0.69; P = 0.007/0.64; P = 0.14/0.9; P < 0.001) for Method 1 and 0.97/0.67/1.25 (r : 0.87; P < 0.001/0.63; P = 0.17/0.57, P = 0.04) for Method 2, respectively.

  7. Interexaminer reliability in clinical measurement of L*C*h* values of anterior teeth using a spectrophotometer.

    Science.gov (United States)

    Hassel, Alexander J; Grossmann, Anne-christiane; Schmitter, Marc; Balke, Zibandeh; Buzello, Anja M

    2007-01-01

    The objective of this study was to investigate interexaminer reliability in the clinical measurement of the L*C*h* (lightness/value, chroma, hue) values of anterior teeth using a spectrophotometer (Vita Easyshade). The basic color of the maxillary right central incisors and canines of 23 subjects was spectrophotometrically determined by 4 clinicians and an experienced user (development manager) of the spectrophotometer. Also, to analyze the effect of different training with the instrument on interexaminer reliability, 2 of the clinicians were instructed in the use of the spectrophotometer by the experienced examiner, whereas the others instructed themselves by studying the operating manual. Agreement between all examiners was acceptable to excellent (intraclass coefficient > 0.4). The mean value of the measured differences for the central incisors of all subjects for L* values was 5 (for C* = 3.8, h* = 2.7 degrees) and for canines, the mean L* was 4.5 (C* = 3, h* = 1.6 degrees). Results from comparison of the 2 different training methods were inconsistent. Agreement with the experienced examiner ranged from not acceptable (C* values for incisors of self-instructed examiners) to excellent. The distribution of the measurements of 1 subject could lead to deviations in color, probably with clinical impact. For canines, the measurements were at least equally reproducible (in some cases significantly more reproducible) compared to central incisors. Because of the small number of examiners and the inconsistent results, it was not possible to reach a definite conclusion about the effect of different training methods on interexaminer reliability.

  8. Assessing the engagement, learning, and overall experience of students operating an atomic absorption spectrophotometer with remote access technology.

    Science.gov (United States)

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of engagement, learning, and overall experience. Feedback from students suggests that the use of remote access technology is effective in teaching students the principles of chemical analysis by atomic absorption spectroscopy. © 2014 The International Union of Biochemistry and Molecular Biology.

  9. Cross-validity of a portable glucose capillary monitors in relation to enzymatic spectrophotometer methods

    Directory of Open Access Journals (Sweden)

    William Alves Lima

    2006-09-01

    Full Text Available The glucose is an important substrate utilizaded during exercise. Accurate measurement of glucose is vital to obtain trustworthy results. The enzymatic spectrophotometer methods are generally considered the “goldstandard” laboratory procedure for measuring of glucose (GEnz, is time consuming, costly, and inappropriate for large scale field testing. Compact and portable glucose monitors (GAccu are quick and easy methods to assess glucose on large numbers of subjects. So, this study aimed to test the cross-validity of GAccu. The sample was composed of 107 men (aged= 35.4±10.7 years; stature= 168.4±6.9 cm; body mass= 73.4±11.2 kg; %fat= 20.9±8.3% – by dual energy x-ray absorptiometry. Blood for measuring fasting glucose was taken in basilar vein (Genz, Bioplus: Bio-2000 and in ring finger (GAccu: Accu-Chek© Advantage©, after a 12-hour overnight fast. GEnz was used as the criterion for cross-validity. Paired t-test shown differences (p RESUMO A glicose é um substrato importante utilizado durante o exercício físico. Medidas acuradas da glicose são fundamentais para a obtenção de resultados confiáveis. O método laboratorial de espectrofotometria enzimática geralmente é considerado o procedimento “padrão ouro” para medir a glicose (GEnz, o qual requer tempo, custo e é inapropriado para o uso em larga escala. Monitores portáteis de glicose (GAccu são rápidos e fáceis para medir a glicose em um grande número de sujeitos. Então, este estudo teve por objetivo testar a validade concorrente do GAccu. A amostra foi composta por 107 homens (idade= 35,4±10,7 anos; estatura= 168,4±6,9 cm; massa corporal= 73,4±11,2 kg; %gordura= 20,9±8,3% – por absortometria de raio-x de dupla energia. O sangue para mensurar a glicose em jejum foi tirado na veia basilar (Genz, Bioplus: Bio-2000 e no dedo anular (GAccu - Accu- Chek© Advantage©, depois de 12h de jejum noturno. O GEnz foi usado como critério para testar a validade

  10. An in vitro comparison of quantitative light-induced fluorescence-digital and spectrophotometer on monitoring artificial white spot lesions.

    Science.gov (United States)

    Kim, Hee Eun; Kim, Baek-Il

    2015-09-01

    The aim of this study was to evaluate the efficacy of quantitative light-induced fluorescence-digital (QLF-D) compared to a spectrophotometer in monitoring progression of enamel lesions. To generate artificial caries with various severities of lesion depths, twenty bovine specimens were immersed in demineralizing solution for 40 days. During the production of the lesions, repeat measurements of fluorescence loss (ΔF) and color change (ΔE) were performed in six distinct stages after the demineralization of the specimens: after 3, 5, 10, 20, 30, and 40 days of exposure to the demineralizing solution. Changes in the ΔF values in the lesions were analyzed using the QLF-D, and changes in the ΔE values in lesions were analyzed using a spectrophotometer. The repeated measures ANOVA of ΔF and ΔE values were used to determine whether there are significant differences at different exposure times in the demineralizing solution. Spearman's rank correlation coefficient was analyzed between ΔF and ΔE. The ΔF values significantly decreased based on the demineralizing period (pmonitoring color changes. Our findings demonstrate that QLF-D are a more efficient and stable tool for early caries detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Quantification of dsDNA using the Hitachi F-7000 Fluorescence Spectrophotometer and PicoGreen dye.

    Science.gov (United States)

    Moreno, Luis A; Cox, Kendra L

    2010-11-05

    Quantification of DNA, especially in small concentrations, is an important task with a wide range of biological applications including standard molecular biology assays such as synthesis and purification of DNA, diagnostic applications such as quantification of DNA amplification products, and detection of DNA molecules in drug preparations. During this video we will demonstrate the capability of the Hitachi F-7000 Fluorescence Spectrophotometer equipped with a Micro Plate Reader accessory to perform dsDNA quantification using Molecular Probes Quant-it PicoGreen dye reagent kit. The F-7000 Fluorescence Spectrophotometer offers high sensitivity and high speed measurements. It is a highly flexible system capable of measuring fluorescence, luminescence, and phosphorescence. Several measuring modes are available, including wavelength scan, time scan, photometry and 3-D scan measurement. The spectrophotometer has sensitivity in the range of 50 picomoles of fluorescein when using a 300 μL sample volume in the microplate, and is capable of measuring scan speeds of 60,000 nm/minute. It also has a wide dynamic range of up to 5 orders of magnitude which allows for the use of calibration curves over a wide range of concentrations. The optical system uses all reflective optics for maximum energy and sensitivity. The standard wavelength range is 200 to 750 nm, and can be extended to 900 nm when using one of the optional near infrared photomultipliers. The system allows optional temperature control for the plate reader from 5 to 60 degrees Celsius using an optional external temperature controlled liquid circulator. The microplate reader allows for the use of 96 well microplates, and the measuring speed for 96 wells is less than 60 seconds when using the kinetics mode. Software controls for the F-7000 and Microplate Reader are also highly flexible. Samples may be set in either column or row formats, and any combination of wells may be chosen for sample measurements. This allows

  12. Total ozone derived from UV spectrophotometer measurements on the NASA CV-990 aircraft for the fall 1976 latitude survey flights

    Science.gov (United States)

    Hanser, F. A.

    1977-01-01

    An ultraviolet interference filter spectrophotometer was modified to use a photodiode and was flown on latitude survey flights in the fall of 1976. Comparison with Dobson station total ozone values shows agreement between UVS and Dobson total ozone of + or - 2 percent. The procedure used to convert UVS measured ozone above the aircraft altitude to total ozone above ground level introduces an additional 2 percent deviation for very high altitude UVS ozone data. Under stable aircraft operating conditions, the UVS derived ozone values have a variability, or reproducibility, of better than + or -1 percent. The UVS data from the latitude survey flights yield a detailed latitude profile of total ozone over the Pacific Ocean during November 1976. Significant latitudinal structure in total ozone is found at the middle latitudes (30 deg to 40 deg N and S).

  13. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    Science.gov (United States)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  14. Signal-to-noise optimization and evaluation of a home-made visible diode-array spectrophotometer

    Science.gov (United States)

    Raimundo, Jr., Ivo M.; Pasquini, Celio

    1993-01-01

    This paper describes a simple low-cost multichannel visible spectrophotometer built with an RL512G EGG-Reticon photodiode array. A symmetric Czerny-Turner optical design was employed; instrument control was via a single-board microcomputer based on the 8085 Intel microprocessor. Spectral intensity data are stored in the single-board's RAM and then transferred to an IBM-AT 3865X compatible microcomputer through a RS-232C interface. This external microcomputer processes the data to recover transmittance, absorbance or relative intensity of the spectra. The signal-to-noise ratio and dynamic range were improved by using variable integration times, which increase during the same scan; and by the use of either weighted or unweighted sliding average of consecutive diodes. The instrument is suitable for automatic methods requiring quasi-simultaneous multiwavelength detections, such as multivariative calibration and flow-injection gradient scan techniques. PMID:18924979

  15. A New High-sensitivity solar X-ray Spectrophotometer SphinX:early operations and databases

    Science.gov (United States)

    Gburek, Szymon; Sylwester, Janusz; Kowalinski, Miroslaw; Siarkowski, Marek; Bakala, Jaroslaw; Podgorski, Piotr; Trzebinski, Witold; Plocieniak, Stefan; Kordylewski, Zbigniew; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio

    The Solar Photometer in X-rays (SphinX) is an instrument operating aboard Russian CORONAS-Photon satellite. A short description of this unique instrument will be presented and its unique capabilities discussed. SphinX is presently the most sensitive solar X-ray spectrophotometer measuring solar spectra in the energy range above 1 keV. A large archive of SphinX mea-surements has already been collected. General access to these measurements is possible. The SphinX data repositories contain lightcurves, spectra, and photon arrival time measurements. The SphinX data cover nearly continuously the period since the satellite launch on January 30, 2009 up to the end-of November 2009. Present instrument status, data formats and data access methods will be shown. An overview of possible new science coming from SphinX data analysis will be discussed.

  16. Use of Fourier transformed infrared spectrophotometer (FTIR) for determination of breastmilk output by the deuterium dilution method among Senegalese women

    International Nuclear Information System (INIS)

    Sarr Cisse, Aita; Diaham, Babou; Dossou, Nicole; Guiro, Amadou Tidiane; Wade, Salimata; Bluck, Leslie

    2002-01-01

    Breastmilk output can be estimated from the mother's total body water and water turnover rates after oral administration of deuterium oxide. Usually the deuterium enrichments are determined using a isotope ratio mass spectrometer, which is expensive and requires a specialist for operation and maintenance. Such equipment is dfficult to set up in developing countries. A less expensive method was developed which uses a Fourier transform infrared spectrophotometer (FTIR) for deuterium enrichment analysis. This study evaluated the constraints of using FTIR to study lactating women in Senegal. The deuterium isotope method was found to be adequate for free living subjects and presented few constraints except for the duration of the saliva sampling (14 days). The method offers the opportunity to determine simultaneously breastmilk output, mother's body composition, and breastfeeding practices. Deuterium sample enrichments measured with FTIR were fast and easy, but for spectrum quality some environmental control is required to optimize the results. (Authors)

  17. infrared spectrophotometer for simultaneous detection of traces of heavy water and indocyanine green in flowing blood. In vivo experimentation

    International Nuclear Information System (INIS)

    Capitini, R.; Roveyaz, P.

    1981-07-01

    We have developed an infrared absorption method for the pulmonary extravascular water and cardiac output determination by the multiple indicator technique. This led us to construct an original double differential spectrophotometer (DUPLEX) for simultaneous detection of traces of heavy water (D 2 O) and indocyanine green (ICG) in circulating blood in a single absorption cell. This DUPLEX is connected to a computer and results are treated on line. D 2 O and ICG are used as non toxic diffusible and vascular tracers respectively. Performances of the DUPLEX are given and show a high accuracy with D 2 O (x 10) and ICG (x 2) compared with the commercial optical analysers. We show the validity of the method for determining the cardiac output and the pulmonary extravascular water in the course of numerous experiments on human and rats subjects. Preliminary results concerning the measurement of global water on rats are also given [fr

  18. Method for improving the use of PASCO brand spectrophotometer using DataStudio program applied to radiometric surveys for LAFTLA

    International Nuclear Information System (INIS)

    Bolanos Rodriguez, Gary

    2008-01-01

    Escuela de Ingenieria Electrica at the Universidad de Costa Rica has developed a procedure for the improved use of a PASCO brand Spectrophotometer of the Laboratorio de Fotonica y Tecnologia Laser Aplicada. The program has used DataStudio for the application in radiometric surveys in LAFTLA. Important conclusions have been obtained by the assembly of optical experiments, software and data collection and analysis, such as the behavior of a emitting source radiation known as black body and its relation to the temperature, wavelength and intensity of light. The user guide has been detailed exposing calibrations of the sensors, the definition of constants needed for obtaining parameters and assembly and commissioning of the equipment. (author) [es

  19. Concentration determination of nucleic acids and proteins using the micro-volume BioSpec-nano-spectrophotometer.

    Science.gov (United States)

    Sukumaran, Suja

    2011-02-17

    Nucleic acid quantitation procedures have advanced significantly in the last three decades. More and more, molecular biologists require consistent small-volume analysis of nucleic acid samples for their experiments. The BioSpec-nano provides a potential solution to the problems of inaccurate, non-reproducible results, inherent in current DNA quantitation methods, via specialized optics and a sensitive PDA detector. The BioSpec-nano also has automated functionality such that mounting, measurement, and cleaning are done by the instrument, thereby eliminating tedious, repetitive, and inconsistent placement of the fiber optic element and manual cleaning. In this study, data is presented on the quantification of DNA and protein, as well as on measurement reproducibility and accuracy. Automated sample contact and rapid scanning allows measurement in three seconds, resulting in excellent throughput. Data analysis is carried out using the built-in features of the software. The formula used for calculating DNA concentration is: Sample Concentration = DF · (OD260-OD320)· NACF (1) Where DF = sample dilution factor and NACF = nucleic acid concentration factor. The Nucleic Acid concentration factor is set in accordance with the analyte selected. Protein concentration results can be expressed as μg/mL or as moles/L by entering e280 and molecular weight values respectively. When residue values for Tyr, Trp and Cysteine (S-S bond) are entered in the e280Calc tab, the extinction coefficient values are calculated as e280 = 5500 x (Trp residues) + 1490 x (Tyr residues) + 125 x (cysteine S-S bond). The e280 value is used by the software for concentration calculation. In addition to concentration determination of nucleic acids and protein, the BioSpec-nano can be used as an ultra micro-volume spectrophotometer for many other analytes or as a standard spectrophotometer using 5 mm pathlength cells.

  20. Analysis of Shade Matching in Natural Dentitions Using Intraoral Digital Spectrophotometer in LED and Filtered LED Light Sources.

    Science.gov (United States)

    Chitrarsu, Vijai Krishnan; Chidambaranathan, Ahila Singaravel; Balasubramaniam, Muthukumar

    2017-10-31

    To evaluate the shade matching capabilities in natural dentitions using Vita Toothguide 3D-Master and an intraoral digital spectrophotometer (Vita Easyshade Advance 4.0) in various light sources. Participants between 20 and 40 years old with natural, unrestored right maxillary central incisors, no history of bleaching, orthodontic treatment, or malocclusion and no rotations were included. According to their shades, subjects were randomly selected and grouped into A1, A2, and A3. A total of 100 participants (50 male and 50 female) in each group were chosen for this study. Shade selection was made between 10 am and 2 pm for all light sources. The same examiner selected the shade of natural teeth with Vita Toothguide 3D-Master under natural light within 2 minutes. Once the Vita Toothguide 3D-Masterwas matched with the maxillary right central incisor, the L*, a*, and b* values, chroma, and hue were recorded with Vita Easyshade Advance 4.0 by placing it on the shade tab under the same light source. The values were statistically analyzed using one-way ANOVA and Tukey's HSD post hoc test with SPSS v22.0 software. The mean ∆E* ab values for shades A1, A2, and A3 for groups 1, 2, and 3 were statistically significantly different from each other (p spectrophotometer showed statistically significant differences in shade matching compared to Vita Toothguide 3D-Master. Incandescent light showed more accurate shade matching than the filtered LED, LED, and daylight. © 2017 by the American College of Prosthodontists.

  1. Spectrophotometer is useful for assessing vitiligo and chemical leukoderma severity by quantifying color difference with surrounding normally pigmented skin.

    Science.gov (United States)

    Hayashi, M; Okamura, K; Araki, Y; Suzuki, M; Tanaka, T; Abe, Y; Nakano, S; Yoshizawa, J; Hozumi, Y; Inoie, M; Suzuki, T

    2018-05-01

    Acquired skin hypopigmentation has many etiologies, including autoimmune melanocyte destruction, skin aging, inflammation, and chemical exposure. Distinguishing lesions from normally pigmented skin is clinically important to precisely assess disease severity. However, no gold standard assessment method has been reported. We aimed to investigate whether spectrophotometers are useful for assessing vitiligo and rhododendrol (4-(4-hydroxyphenol)-2-butanol) (Rhododenol ® )-induced leukoderma disease severity by quantifying skin color. Mexameter ® MX18 and CM-700d spectrophotometer were used for assessing vitiligo/leukoderma by measuring melanin index, L*a*b* color space, and ΔE*ab value, which represents the color difference between two subjects and is calculated by the values of L*a*b*. MX18 and CM-700d can quantitatively distinguish vitiligo/leukoderma from normally pigmented skin based on melanin index. CM-700d consistently quantified the color of vitiligo/leukoderma lesions and surrounding normally pigmented skin in L*a*b* color spaces and ΔE*ab. ΔE*ab is well correlated with melanin index and clinical appearance. ΔE*ab has been frequently used in aesthetic dentistry; however, current study is the first to use it in the measurement of skin color. ΔE*ab seems to be a useful parameter to evaluate the color contrast between vitiligo/leukoderma and surrounding normally pigmented skin and can be used to evaluate disease severity and patient's quality of life. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Concentration Determination of Nucleic Acids and Proteins Using the Micro-volume Bio-spec Nano Spectrophotometer

    Science.gov (United States)

    Sukumaran, Suja

    2011-01-01

    Nucleic Acid quantitation procedures have advanced significantly in the last three decades. More and more, molecular biologists require consistent small-volume analysis of nucleic acid samples for their experiments. The BioSpec-nano provides a potential solution to the problems of inaccurate, non-reproducible results, inherent in current DNA quantitation methods, via specialized optics and a sensitive PDA detector. The BioSpec-nano also has automated functionality such that mounting, measurement, and cleaning are done by the instrument, thereby eliminating tedious, repetitive, and inconsistent placement of the fiber optic element and manual cleaning. In this study, data is presented on the quantification of DNA and protein, as well as on measurement reproducibility and accuracy. Automated sample contact and rapid scanning allows measurement in three seconds, resulting in excellent throughput. Data analysis is carried out using the built-in features of the software. The formula used for calculating DNA concentration is: Sample Concentration = DF · (OD260-OD320)· NACF (1) Where DF = sample dilution factor and NACF = nucleic acid concentration factor. The Nucleic Acid concentration factor is set in accordance with the analyte selected1. Protein concentration results can be expressed as μg/ mL or as moles/L by entering e280 and molecular weight values respectively. When residue values for Tyr, Trp and Cysteine (S-S bond) are entered in the e280Calc tab, the extinction coefficient values are calculated as e280 = 5500 x (Trp residues) + 1490 x (Tyr residues) + 125 x (cysteine S-S bond). The e280 value is used by the software for concentration calculation. In addition to concentration determination of nucleic acids and protein, the BioSpec-nano can be used as an ultra micro-volume spectrophotometer for many other analytes or as a standard spectrophotometer using 5 mm pathlength cells. PMID:21372788

  3. Measurements in interplanetary space and in the Martian upper atmosphere with a hydrogen absorption-cell spectrophotometer for Lα-radiation on-board Mars 4 - 7 spaceprobes

    International Nuclear Information System (INIS)

    Babichenko, S.I.; Deregusov, E.V.; Kurt, V.G.; Romanova, N.N.; Skljankin, V.A.; Smirnov, A.S.; Bertaux, J.J.; Blamont, J.

    1977-01-01

    An ultraviolet spectrophotometer UFS-2, designed to measure radiation of atomic hydrogen in the Lα-line, was installed onboard the interplanetary Mars 4 - 7 spaceprobes launched in August 1973. The absorption cell which was used for the first time outside the hydrogen geocorona allowed direct temperature measurements of neutral interstellar hydrogen near the Sun and in the upper Martian atmosphere. (Auth.)

  4. X-ray spectrophotometer SphinX and particle spectrometer STEP-F of the satellite experiment CORONAS-PHOTON. Preliminary results of the joint data analysis

    Science.gov (United States)

    Dudnik, O. V.; Podgorski, P.; Sylwester, J.; Gburek, S.; Kowalinski, M.; Siarkowski, M.; Plocieniak, S.; Bakala, J.

    2012-04-01

    A joint analysis is carried out of data obtained with the help of the solar X-ray SphinX spectrophotometer and the electron and proton satellite telescope STEP-F in May 2009 in the course of the scientific space experiment CORONAS-PHOTON. In order to determine the energies and particle types, in the analysis of spectrophotometer records data are used on the intensities of electrons, protons, and secondary γ-radiation, obtained by the STEP-F telescope, which was located in close proximity to the SphinX spectrophotometer. The identical reaction of both instruments is noted at the intersection of regions of the Brazilian magnetic anomaly and the Earth's radiation belts. It is shown that large area photodiodes, serving as sensors of the X-ray spectrometer, reliably record electron fluxes of low and intermediate energies, as well as fluxes of the secondary gamma radiation from construction materials of detector modules, the TESIS instrument complex, and the spacecraft itself. The dynamics of electron fluxes, recorded by the SphinX spectrophotometer in the vicinity of a weak geomagnetic storm, supplements the information about the processes of radial diffusion of electrons, which was studied using the STEP-F telescope.

  5. Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer.

    Science.gov (United States)

    Klughammer, Christof; Schreiber, Ulrich

    2016-05-01

    A newly developed compact measuring system for assessment of transmittance changes in the near-infrared spectral region is described; it allows deconvolution of redox changes due to ferredoxin (Fd), P700, and plastocyanin (PC) in intact leaves. In addition, it can also simultaneously measure chlorophyll fluorescence. The major opto-electronic components as well as the principles of data acquisition and signal deconvolution are outlined. Four original pulse-modulated dual-wavelength difference signals are measured (785-840 nm, 810-870 nm, 870-970 nm, and 795-970 nm). Deconvolution is based on specific spectral information presented graphically in the form of 'Differential Model Plots' (DMP) of Fd, P700, and PC that are derived empirically from selective changes of these three components under appropriately chosen physiological conditions. Whereas information on maximal changes of Fd is obtained upon illumination after dark-acclimation, maximal changes of P700 and PC can be readily induced by saturating light pulses in the presence of far-red light. Using the information of DMP and maximal changes, the new measuring system enables on-line deconvolution of Fd, P700, and PC. The performance of the new device is demonstrated by some examples of practical applications, including fast measurements of flash relaxation kinetics and of the Fd, P700, and PC changes paralleling the polyphasic fluorescence rise upon application of a 300-ms pulse of saturating light.

  6. Random laser emission at dual wavelengths in a donor-acceptor dye mixture solution

    Directory of Open Access Journals (Sweden)

    Sunita Kedia

    Full Text Available The work was aimed to generate random laser emissions simultaneously at two wavelengths in a weakly scattering system containing mixture of binary dyes, rhodamine-B (Rh-B and oxazine-170 (O-170 dispersed with ZnO nano-particles serving as scattering centres. Random lasing performances for individual Rh-B dye were extensively studied for varying small signal gain/scatterer density and we found lasing threshold to significantly depend upon number density of dispersed nano-particles. In spite of inefficient pumping, we demonstrated possibility of random lasing in O-170 dye solution on account of resonance energy transfer from Rh-B dye which served as donor. At optimum concentrations of fluorophores and scatterer in dye mixture solution, incoherent random lasing was effectively attained simultaneously at two wavelengths centered 90 nm apart. Dual-emission intensities, lasing thresholds and rate of amplifications could be controlled and made equivalent for both donor and acceptor in dye mixture solution by appropriate choice of concentrations of dyes and scatterers. Keywords: Random lasing, Energy transfer, Rhodamine-B, Oxazine-170, Zinc oxide

  7. Dual-wavelength millimeter-wave radar measurements of cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-04-01

    In April 1994, the University of Massachusetts` 33-GHz/95-GHz Cloud Profiling Radar System (CPRS) participated in the multi-sensor Remote Cloud Sensing (RCS) Intensive Operation Period (IOP), which was conducted at the Southern Great Plains Cloud and Radiation Testbed (CART). During the 3-week experiment, CPRS measured a variety of cloud types and severe weather. In the context of global warming, the most significant measurements are dual-frequency observations of cirrus clouds, which may eventually be used to estimate ice crystal size and shape. Much of the cirrus data collected with CPRS show differences between 33-GHz and 95-GHz reflectivity measurements that are correlated with Doppler estimates of fall velocity. Because of the small range of reflectivity differences, a precise calibration of the radar is required and differential attenuation must also be removed from the data. Depolarization, which is an indicator of crystal shape, was also observed in several clouds. In this abstract we present examples of Mie scattering from cirrus and estimates of differential attenuation due to water vapor and oxygen that were derived from CART radiosonde measurements.

  8. Dual-wavelength differential spectroscopic imaging for diagnostics of laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V., E-mail: vincent.motto-ros@univ-lyon1.fr [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Ma, Q.L. [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Gregoire, S. [CRITT Matriaux Alsace, 19 rue de St Junien, 67300 Schiltigheim (France); Lei, W.Q.; Wang, X.C. [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Pelascini, F.; Surma, F. [CRITT Matriaux Alsace, 19 rue de St Junien, 67300 Schiltigheim (France); Detalle, V. [Laboratoire de Recherche des Monuments Historiques, 29 rue de Paris, 77420 Champs-sur-Marne (France); Yu, J. [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France)

    2012-08-15

    A specific configuration for plasma fast spectroscopic imaging was developed, where a pair of narrowband filters, one fitting an emission line of a species to be studied and the other out of its emission line, allowed double images to be taken for a laser-induced plasma. A dedicated software was developed for the subtraction between the double images. The result represents therefore the monochromatic emission image of the species in the plasma. We have shown in this work that such configuration is especially efficient for the monitoring of a plasma generated under the atmospheric pressure at very short delays after the impact of the laser pulse on the target, when a strong continuum emission is observed. The efficiency of the technique has been particularly demonstrated in the study of laser-induced plasma on a polymer target. Molecular species, such as C{sub 2} and CN, as well as atomic species, such as C and N, were imaged starting from 50 ns after the laser impact. Moreover space segregation of different species, atomic or molecular, inside of the plasma was clearly observed. - Highlights: Black-Right-Pointing-Pointer Imaging to study species with time and space resolution in laser induced plasma. Black-Right-Pointing-Pointer Image display of multiple species is proposed based on RGB color model. Black-Right-Pointing-Pointer Molecular emission (CN and C{sub 2}) is observed at very short delays (50 ns). Black-Right-Pointing-Pointer Segregation of different species inside the plasma is clearly established.

  9. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy

    Science.gov (United States)

    This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research in...

  10. A Novel Low-Cost Dual-Wavelength Precipitation Radar Sensor Network, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote Sensing Solutions, Inc. (RSS) has developed a novel, practical design that will produce a low-cost precipitation radar / radiometer sensor. Operating in a...

  11. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model

    Science.gov (United States)

    Liu, Ling; Onck, Patrick R.

    2017-08-01

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015)., 10.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  12. Dual-Modulation, Dual-Wavelength, Optical Polarimetry System for Glucose Monitoring

    Science.gov (United States)

    2016-08-26

    bandwidth transimpedance amplifier (CVI Melles Griot, Albuquerque, NM, USA) and fed into two lock-in amplifiers (Stanford Research Systems, Sunnyvale...were modulated using synchronous sinusoidal signals and linear amplifiers (carrier frequencies: 1 2=45 82c cf kHz f kHz, ). The sinusoidal signals...ferrite core was powered with an audio amplifier (Radio Shack, Fort Worth, TX, USA) connected in series with a 0.18 µF capacitor in order to achieve

  13. Single-shot dual-wavelength in-line and off-axis hybrid digital holography

    Science.gov (United States)

    Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie

    2018-02-01

    We propose an in-line and off-axis hybrid holographic real-time imaging technique. The in-line and off-axis digital holograms are generated simultaneously by two lasers with different wavelengths, and they are recorded using a color camera with a single shot. The reconstruction is carried using an iterative algorithm in which the initial input is designed to include the intensity of the in-line hologram and the approximate phase distributions obtained from the off-axis hologram. In this way, the complex field in the object plane and the output by the iterative procedure can produce higher quality amplitude and phase images compared to traditional iterative phase retrieval. The performance of the technique has been demonstrated by acquiring the amplitude and phase images of a green lacewing's wing and a living moon jellyfish.

  14. Eye safety report 1 (dual wavelength). Human risk analysis simulator for space lidars

    International Nuclear Information System (INIS)

    Schulmeister, K.; Mellerio, J.; Sonneck, G.

    2001-09-01

    This report contains the results of a risk study for a satellite based lidar mission that uses two different laser wavelengths to measure atmospheric properties. A lidar can be considered as a laser radar and is an acronym for light detection and ranging. The lidar measures properties of the atmosphere by analysis of laser radiation that is directed back to the lidar. As only part of the laser radiation is scattered ir absorbed by the atmosphere, the remaining laser radiation emitted from the spacecraft is incident on the earth's surface, where it might lead to injuries, especially to the eye, if biological thresholds are exceeded. For the analysed mission there is no hazard to the skin, only a potential one to the eye. Because the footprint of the satellite's laser beam on the surface of the earth is so small and it moves so fast, the chance of the naked eye being exposed to the laser is small. Because of the magnification provided by an optical instrument, and the concomitant reduction in the field of view, the probability of exposure of an eye that is using such an instrument decreases with increasing optical power. However, because an increased optical power implies increased diameter of the light gathering optics, the laser energy delivered to an eye increases with instrument size so that if exposure did occur, the probability of delivering energy to the eye that exceeds the threshold for damage increases. There are thus two conflicting processes at work for viewing with optical instruments: an increase in diameter increases the energy delivered but reduces the probability of lidar beam interception. Energy delivered to the eye is such that damage thresholds will not be exceeded for naked eye viewing or for the use of small optical instruments. Exposure via telescopes with diameter larger than 12 cm could result in retinal damage of the exposed eye. (author)

  15. Simultaneous dual wavelength eye-tracked ultrahigh resolution retinal and choroidal optical coherence tomography

    DEFF Research Database (Denmark)

    Unterhuber, A.; Povaay, B.; Müller, André

    2013-01-01

    We demonstrate an optical coherence tomography device that simultaneously combines different novel ultrabroad bandwidth light sources centered in the 800 and 1060 nm regions, operating at 66 kHz depth scan rate, and a confocal laser scanning ophthalmoscope-based eye tracker to permit motion......-artifact-free, ultrahigh resolution and high contrast retinal and choroidal imaging. The two wavelengths of the device provide the complementary information needed for diagnosis of subtle retinal changes, while also increasing visibility of deeper-lying layers to image pathologies that include opaque media in the anterior...... eye segment or eyes with increased choroidal thickness....

  16. Intersstellar absorption lines between 2000 and 3000 A in nearby stars observed with BUSS. [Balloon Borne Ultraviolet Spectrophotometer

    Science.gov (United States)

    De Boer, K. S.; Lenhart, H.; Van Der Hucht, K. A.; Kamperman, T. M.; Kondo, Y.

    1986-01-01

    Spectra obtained between 2000 and 3000 A with the Balloon Borne Ultraviolet Spectrophotometer (BUSS) payload were examined for interstellar absorption lines. In bright stars, with spectral types between O9V and F5V, such lines were measured of Mg I, Mg II, Cr II, Mn II, Fe II and Zn II, with Cr II and Zn II data of especially high quality. Column densities were derived and interstellar abundances were determined for the above species. It was found that metal depletion increases with increasing E(B-V); Fe was most affected and Zn showed a small depletion for E(B-V) greater than 0.3 towards Sco-Oph. The metal column densities, derived for Alpha-And, Kappa-Dra, Alpha-Com, Alpha-Aql, and 29 Cyg were used to infer N(H I). It was shown that the ratio of Mg I to Na I is instrumental in determining the ionization structure along each line of sight. The spectra of Aql stars confirms the presence of large gas densities near Alpha-Oph. Moreover, data indicated that the Rho-Oph N(H I) value needs to be altered to 35 x 10 to the 20th/sq cm, based on observed ion ratios and analysis of the Copernicus L-alpha profile.

  17. Influence of surface layer removal of shade guide tabs on the measured color by spectrophotometer and spectroradiometer.

    Science.gov (United States)

    Kim, Jin-Cheol; Yu, Bin; Lee, Yong-Keun

    2008-12-01

    To determine the changes in color parameters of Vitapan 3D-Master shade guide tabs by a spectrophotometer (SP) or a spectroradiometer (SR), and by the removal of the surface layer of the tabs that was performed to make a flat measuring surface for the SP color measurement. Color of the shade tabs was measured before and after removing the surface layer of the tabs using SP and SR. Correlations between the color parameters between the original (OR) and the surface layer removed (RM) tabs and between the SP and the SR measurements were determined (alpha=0.05). Based on SP, the lightness, chroma, CIE a* and b* values measured after the surface layer removal were higher than those of the original tabs except a few cases. Based on SR, the chroma and CIE a* and b* values measured after surface layer removal were higher than those of the original tabs except a few cases; however, in case of the lightness, the changes varied by the shade designation. Type of instrument influenced the changes in color parameters based on paired t-test (pspectrophotometer or a spectroradiometer, measurement protocols should be specified because color difference by the surface layer removal and the instrument was high.

  18. Direct measurement of the fluorescence characteristics of aquatic humic substances by a three-dimensional fluorescence spectrophotometer

    International Nuclear Information System (INIS)

    Nagao, Seiya; Senoo, Muneaki; Suzuki, Yasuhiro; Nakaguchi, Yuzuru; Hiraki, Keizo.

    1997-01-01

    Humic substances play an important role in the transport of trace metals and insoluble organic materials. They are also considered to be precursors of trihalomethane in aquatic environments. The direct measurement of humic substances was carried out with a three-dimensional fluorescence spectrophotometer after filtering natural-water samples through a GF/F glass fiber filter. Because the influence of the humic concentration, pH and ionic strength on the three-dimensional excitation emission matrix spectra is negligible, the proposed method can be directly applied to the characterization of humic substances in freshwater samples (humic concentration 0.5-10 mg 1 -1 , pH6-9 and ionic strength <0.04 M) and sea-water samples (ionic strength 0.75 M). Humic substances in river, lake and pore water samples exhibit 2-3 peaks at excitation 305-340 nm/emission 415-440 nm and excitation 250-270 nm/emission 440-450 nm. These peak positions correspond to those of fulvic acids isolated from soil. (author)

  19. Influence of Iatrogenic Gaps, Cement Type, and Time on Microleakage of Cast Posts Using Spectrophotometer and Glucose Filtration Measurements.

    Science.gov (United States)

    Al-Madi, Ebtissam M; Al-Saleh, Samar A; Al-Khudairy, Reem I; Aba-Hussein, Taibah W

    2018-04-06

    To determine the influence of iatrogenic gaps, type of cement, and time on microleakage of cast posts using spectrophotometer and glucose filtration measurements. Forty-eight single-rooted teeth were divided into eight groups of six teeth each. Teeth were instrumented and obturated, and a cast post was fabricated. In addition to two control groups (positive and negative), a total of six groups were prepared: In four groups, an artificial 2- to 3-mm gap was created between post and residual gutta percha (GP), and two groups were prepared with intimate contact between post and residual GP. Posts were cemented with either zinc phosphate cement or resin cement. Leakage through the post after 1, 8, 14, and 20 days was measured using a glucose penetration model with two different reading methods. Mixed analysis of variance tests were performed to analyze the data. The presence of a gap between the apical end of the post and the most coronal portion of the GP remaining in the root canal after post space preparation increased microleakage significantly. However, microleakage was significantly less when the gap was refilled with GP compared to no gap. There was no difference in leakage between luting cements used. It was concluded that none of the cements were able to prevent microleakage. However, the addition of GP to residual GP did increase the sealing ability.

  20. Loop system for creating jet fuel vapor standards used in the calibration of infrared spectrophotometers and gas chromatographs.

    Science.gov (United States)

    Reboulet, James; Cunningham, Robert; Gunasekar, Palur G; Chapman, Gail D; Stevens, Sean C

    2009-02-01

    A whole body inhalation study of mixed jet fuel vapor and its aerosol necessitated the development of a method for preparing vapor only standards from the neat fuel. Jet fuel is a complex mixture of components which partitions between aerosol and vapor when aspirated based on relative volatility of the individual compounds. A method was desired which could separate the vapor portion from the aerosol component to prepare standards for the calibration of infrared spectrophotometers and a head space gas chromatography system. A re-circulating loop system was developed which provided vapor only standards whose composition matched those seen in an exposure system. Comparisons of nominal concentrations in the exposure system to those determined by infrared spectrophotometry were in 92-95% agreement. Comparison of jet fuel vapor concentrations determined by infrared spectrophotometry compared to head space gas chromatography yielded a 93% overall agreement in trial runs. These levels of agreement show the loop system to be a viable method for creating jet fuel vapor standards for calibrating instruments.

  1. A new colorimetric DPPH• scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs.

    Science.gov (United States)

    Akar, Zeynep; Küçük, Murat; Doğan, Hacer

    2017-12-01

    2,2-Diphenyl-1-picrylhydrazyl (DPPH • ) radical scavenging, the most commonly used antioxidant method with more than seventeen thousand articles cited, is very practical; however, as with most assays, it has the major disadvantage of dependence on a spectrophotometer. To overcome this drawback, the colorimetric determination of the antioxidant activity using a scanner and freely available Image J software was developed. In this new method, the mixtures of solutions of DPPH • and standard antioxidants or extracts of common medicinal herbs were dropped onto TLC plates, after an incubation period. The spot images were evaluated with Image J software to determine CSC 50 values, the sample concentrations providing 50% colour reduction, which were very similar with the SC 50 values obtained with spectrophotometric method. The advantages of the new method are the use of lower amounts of reagents and solvents, no need for costly spectrophotometers, and thus significantly lowered costs, and convenient implementation in any environment and situation.

  2. Design of a Simple UV Double Beam Spectrophotometer Detector Based on a High Gain Trans Impedance Operational Amplifiers for RNA Measurement

    Directory of Open Access Journals (Sweden)

    Alakhib Ibrahim Abdelbary

    2016-07-01

    Full Text Available In this work a simple double beam spectrophotometer detector for the nucleic acid detection has been designed. The developed system contains photodiodes as a sensor, logarithamatic transimpedance amplifier circuit and filter circuit.The developed prototype design accuracy is validated by running a RNA sample and the result shows that our simplified developed setup detects the present of RNA in the sample.

  3. An in-line spectrophotometer on a centrifugal microfluidic platform for real-time protein determination and calibration.

    Science.gov (United States)

    Ding, Zhaoxiong; Zhang, Dongying; Wang, Guanghui; Tang, Minghui; Dong, Yumin; Zhang, Yixin; Ho, Ho-Pui; Zhang, Xuping

    2016-09-21

    In this paper, an in-line, low-cost, miniature and portable spectrophotometric detection system is presented and used for fast protein determination and calibration in centrifugal microfluidics. Our portable detection system is configured with paired emitter and detector diodes (PEDD), where the light beam between both LEDs is collimated with enhanced system tolerance. It is the first time that a physical model of PEDD is clearly presented, which could be modelled as a photosensitive RC oscillator. A portable centrifugal microfluidic system that contains a wireless port in real-time communication with a smartphone has been built to show that PEDD is an effective strategy for conducting rapid protein bioassays with detection performance comparable to that of a UV-vis spectrophotometer. The choice of centrifugal microfluidics offers the unique benefits of highly parallel fluidic actuation at high accuracy while there is no need for a pump, as inertial forces are present within the entire spinning disc and accurately controlled by varying the spinning speed. As a demonstration experiment, we have conducted the Bradford assay for bovine serum albumin (BSA) concentration calibration from 0 to 2 mg mL(-1). Moreover, a novel centrifugal disc with a spiral microchannel is proposed for automatic distribution and metering of the sample to all the parallel reactions at one time. The reported lab-on-a-disc scheme with PEDD detection may offer a solution for high-throughput assays, such as protein density calibration, drug screening and drug solubility measurement that require the handling of a large number of reactions in parallel.

  4. Image-based ELISA on an activated polypropylene microtest plate--a spectrophotometer-free low cost assay technique.

    Science.gov (United States)

    Parween, Shahila; Nahar, Pradip

    2013-10-15

    In this communication, we report ELISA technique on an activated polypropylene microtest plate (APPµTP) as an illustrative example of a low cost diagnostic assay. Activated test zone in APPµTP binds a capture biomolecule through covalent linkage thereby, eliminating non-specific binding often prevalent in absorption based techniques. Efficacy of APPµTP is demonstrated by detecting human immunoglobulin G (IgG), human immunoglobulin E (IgE) and Aspergillus fumigatus antibody in patient's sera. Detection is done by taking the image of the assay solution by a desktop scanner and analyzing the color of the image. Human IgE quantification by color saturation in the image-based assay shows excellent correlation with absorbance-based assay (Pearson correlation coefficient, r=0.992). Significance of the relationship is seen from its p value which is 4.087e-11. Performance of APPµTP is also checked with respect to microtiter plate and paper-based ELISA. APPµTP can quantify an analyte as precisely as in microtiter plate with insignificant non-specific binding, a necessary prerequisite for ELISA assay. In contrast, paper-ELISA shows high non-specific binding in control sera (false positive). Finally, we have carried out ELISA steps on APPµTP by ultrasound waves on a sonicator bath and the results show that even in 8 min, it can convincingly differentiate a test sample from a control sample. In short, spectrophotometer-free image-based miniaturized ELISA on APPµTP is precise, reliable, rapid, and sensitive and could be a good substitute for conventional immunoassay procedures widely used in clinical and research laboratories. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Improved fiberoptic spectrophotometer

    Science.gov (United States)

    Tans, P.P.; Lashof, D.A.

    1985-04-02

    The present invention allows for accurate spectrophotmetric comparison of the Raman scattering from a sample gas with the Raman scattering from a known gas via a novel fiber optic network. The need for complicated electronic of optical circuit balancing, control, or error compensation circuitry is eliminated. The laser cavity is split into two regions, one of which houses the plasma discharge and produces laser power, and the other of which is adapted to house tubes containing the gas samples. Light from the laser source is beamed simultaneously through samples of the reference gas and the unknown gas, and Raman-scattered light is emitted. The Raman-scattered light from the known and unknown mixtures is then alternately passed through a fiber optic network where the various wavelengths are spatially mixed. The mixed light is then passed into a system of light detectors, each of which are adapted to measure one of the wavelengths of light representing a constituent element of the gases. When the test is complete, each gas sample can be assigned a Raman-scattered profile from the data consisting of the ratios each of the constituent elements bear to each other. (LEW)

  6. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.

    Science.gov (United States)

    Gutiérrez, Salvador; Tardaguila, Javier; Fernández-Novales, Juan; Diago, María P

    2015-01-01

    The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network's modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years and leaves

  7. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.

    Directory of Open Access Journals (Sweden)

    Salvador Gutiérrez

    Full Text Available The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network's modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L. varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years

  8. Calibration Transfer Between a Bench Scanning and a Submersible Diode Array Spectrophotometer for In Situ Wastewater Quality Monitoring in Sewer Systems.

    Science.gov (United States)

    Brito, Rita S; Pinheiro, Helena M; Ferreira, Filipa; Matos, José S; Pinheiro, Alexandre; Lourenço, Nídia D

    2016-03-01

    Online monitoring programs based on spectroscopy have a high application potential for the detection of hazardous wastewater discharges in sewer systems. Wastewater hydraulics poses a challenge for in situ spectroscopy, especially when the system includes storm water connections leading to rapid changes in water depth, velocity, and in the water quality matrix. Thus, there is a need to optimize and fix the location of in situ instruments, limiting their availability for calibration. In this context, the development of calibration models on bench spectrophotometers to estimate wastewater quality parameters from spectra acquired with in situ instruments could be very useful. However, spectra contain information not only from the samples, but also from the spectrophotometer generally invalidating this approach. The use of calibration transfer methods is a promising solution to this problem. In this study, calibration models were developed using interval partial least squares (iPLS), for the estimation of total suspended solids (TSS) and chemical oxygen demand (COD) in sewage from Ultraviolet-visible spectra acquired in a bench scanning spectrophotometer. The feasibility of calibration transfer to a submersible, diode array equipment, to be subsequently operated in situ, was assessed using three procedures: slope and bias correction (SBC); single wavelength standardization (SWS) on mean spectra; and local centering (LC). The results showed that SBC was the most adequate for the available data, adding insignificant error to the base model estimates. Single wavelength standardization was a close second best, potentially more robust, and independent of the base iPLS model. Local centering was shown to be inadequate for the samples and instruments used. © The Author(s) 2016.

  9. In vitro kinetics of P700+ reduction of Thermosynechococcus elongatus trimeric Photosystem I complexes by recombinant cytochrome c 6 using a Joliot-type LED spectrophotometer.

    Science.gov (United States)

    Nguyen, Khoa; Vaughn, Michael; Frymier, Paul; Bruce, Barry D

    2017-01-01

    The reduction rate of photo-oxidized Photosystem I (PSI) with various natural and artificial electron donors have been well studied by transient absorption spectroscopy. The electron transfer rate from various donors to P 700 + has been measured for a wide range of photosynthetic organisms encompassing cyanobacteria, algae, and plants. PSI can be a limiting component due to tedious extraction and purification methods required for this membrane protein. In this report, we have determined the in vivo, intracellular cytochrome c 6 (cyt c 6 )/PSI ratio in Thermosynechococcus elongatus (T.e.) using quantitative Western blot analysis. This information permitted the determination of P 700 + reduction kinetics via recombinant cyt c 6 in a physiologically relevant ratio (cyt c 6 : PSI) with a Joliot-type, LED-driven, pump-probe spectrophotometer. Dilute PSI samples were tested under varying cyt c 6 concentration, temperature, pH, and ionic strength, each of which shows similar trends to the reported literature utilizing much higher PSI concentrations with laser-based spectrophotometer. Our results do however indicate kinetic differences between actinic light sources (laser vs. LED), and we have attempted to resolve these effects by varying our LED light intensity and duration. The standardized configuration of this spectrophotometer will also allow a more uniform kinetic analysis of samples in different laboratories. We can conclude that our findings from the LED-based system display an added total protein concentration effect due to multiple turnover events of P 700 + reduction by cyt c 6 during the longer illumination regime.

  10. Comparative Study of the Gross Interpretation of Phototesting and Objective Measurement with Using a Spectrophotometer for Patients with Psoriasis and Vitiligo Treated with Narrow-band UVB.

    Science.gov (United States)

    Choi, Kyu-Won; Kim, Ki-Ho; Kim, Young-Hun

    2009-05-01

    Determination of the minimal erythema dose (MED) is important for developing a phototherapy protocol and to diagnosis photosensitivity disorders. But obtaining a precise and reproducible MED is quite difficult because a phototest for erythema is based on subjective assessment. The objective of our study was to compare the gross interpretation of a phototest and the objective measurement using a spectrophotometer for determining the parameters of cutaneous narrow-band UVB (NBUVB) therapy. A total of 14 psoriasis and 10 vitiligo patients who receiving NBUVB phototherapy with skin types III and IV were selected for this study. To perform phototesting, ten sites on the skin of the back were vertically exposed to a series of 10 NBUVB doses among 14 doses between 340 and 1,400 mJ/cm(2). We interpreted the gross findings of erythema and measured the L*a*b* values with using a spectrophotometer at each phototest spot and at the control skin. Also, we evaluate the relationship between the gross presentation and the spectrophotometric analysis by delta E for the assessment of the minimal perceptible erythema (MPE) and MED. For all the subjects, the MEDs were measured in the 490~1,000 mJ/cm(2) range. The average of the colorimetric values for the control skin were L*: 64.8, a*: 7.9 and b*: 19.8. Among them, the L* value and MED value were shown to be inversely correlated, and as the L* value was decreased, the MED was increased. For the MPE, the delta E, which was the color difference of the normal skin and the phototest area, was within the range of 1.5~3.0 in 17 of the 21 patients, and 4 patients were within the range of 1.0~1.5. For the MED, among the 21 patients, the delta E of 17 patients was within the range of 3.0~6.0, and 4 patients were within the range of 6.0~12.0. A spectrophotometer enables UV erythema to be assessed objectively and quantitatively, and this can compensate for the disadvantages of subjective gross interpretation when determining the MED. Delta E is

  11. [The study of the colorimetric characteristics of the cobalt-chrome alloys abutments covered by four different all-ceramic crowns by using dental spectrophotometer].

    Science.gov (United States)

    Chen, Yifan; Liu, Hongchun; Meng, Yukun; Chao, Yonglie; Liu, Changhong

    2015-06-01

    This study aims to evaluate the optical data of the different sites of the cobalt-chrome (Co-Cr) alloy abutments covered by four different all-ceramic crowns and the color difference between the crowns and target tab using a digital dental spectrophotometer. Ten Co-Cr alloy abutments were made and tried in four different groups of all-ceramic crowns, namely, Procera aluminia, Procera zirconia, Lava zirconia (Lava-Zir), and IPS E.max glass-ceramic lithium disilicate-reinforced monolithic. The color data of the cervical, body, and incisal sites of the samples were recorded and analyzed by dental spectrophotometer. The CIE L*, a*, b* values were again measured after veneering. The color difference between the abutments covered by all-ceramic crowns and A2 dentine shade tab was evaluated. The L* and b* values of the abutments can be increased by all of the four groups of all-ceramic copings, but a* values were decreased in most groups. A statistical difference was observed among four groups. After being veneered, the L* values of all the copings declined slightly, and the values of a*, b* increased significantly. When compared with A2 dentine shade tab, the ΔE of the crowns was below 4. Four ceramic copings were demonstrated to promote the lightness and hue of the alloy abutments effecttively. Though the colorimetric baseline of these copings was uneven, veneer porcelain can efficiently decrease the color difference between the samples and thee target.

  12. Protoporphyrin IX induced by 5-aminolevulinic acid in bladder cancer cells in voided urine can be extracorporeally quantified using a spectrophotometer.

    Science.gov (United States)

    Nakai, Yasushi; Anai, Satoshi; Onishi, Sayuri; Masaomi, Kuwada; Tatsumi, Yoshihiro; Miyake, Makito; Chihara, Yoshitomo; Tanaka, Nobumichi; Hirao, Yoshihiko; Fujimoto, Kiyohide

    2015-06-01

    We evaluated the feasibility of photodynamic diagnosis of bladder cancer by spectrophotometric analysis of voided urine samples after extracorporeal treatment with 5-aminolevulinic acid (ALA). Sixty-one patients with bladder cancer, confirmed histologically after the transurethral resection of a bladder tumor, were recruited as the bladder cancer group, and 50 outpatients without history of urothelial carcinoma or cancer-related findings were recruited as the control group. Half of the voided urine sample was incubated with ALA (ALA-treated sample), and the rest was incubated without treatment (ALA-untreated sample). For detecting cellular protoporphyrin IX levels, intensity of the samples at the excitation wavelength of 405 nm was measured using a spectrophotometer. The difference between the intensity of the ALA-treated and ALA-untreated samples at 635 nm was calculated. The differences in the bladder cancer group were significantly greater than those in the control group (p spectrophotometer in patients with bladder cancer. Therefore, this cancer detection system has a potential for clinical use. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    International Nuclear Information System (INIS)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The new version MS2 of the in situ on-axis micro-spectrophotometer at the macromolecular crystallography beamline X10SA of the Swiss Light Source supports the concurrent acquisition of Raman, resonance Raman, fluorescence and UV/Vis absorption spectra along with diffraction data. The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years

  14. Characterization of near-infrared nonmetal atomic emission from an atmospheric helium microwave-induced plasma using a Fourier transform spectrophotometer

    International Nuclear Information System (INIS)

    Hubert, J.; Van Tra, H.; Chi Tran, K.; Baudais, F.L.

    1986-01-01

    A new approach for using Fourier transform spectroscopy (FTS) for the detection of atomic emission from an atmospheric helium plasma has been developed and the results obtained are described. Among the different types of plasma source available, the atmospheric pressure microwave helium plasma appears to be an efficient excitation source for the determination of nonmetal species. The more complete microwave plasma emission spectra of Cl, Br, I, S, O, P, C, N, and He in the near-infrared region were obtained and their corrected relative emission intensities are reported. This makes qualitative identification simple, and aids in the quantitative analysis of atomic species. The accuracy of the emission wavelengths obtained with the Fourier transform spectrophotometer was excellent and the resolution provided by the FTS allowed certain adjacent emission lines to be adequate for analytical applications

  15. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  16. Aqueous photochemical reactions of chloride, bromide, and iodide ions in a diode-array spectrophotometer. Autoinhibition in the photolysis of iodide ions.

    Science.gov (United States)

    Kalmár, József; Dóka, Éva; Lente, Gábor; Fábián, István

    2014-03-28

    The aqueous photoreactions of three halide ions (chloride, bromide and iodide) were studied using a diode array spectrophotometer to drive and detect the process at the same time. The concentration and pH dependences of the halogen formation rates were studied in detail. The experimental data were interpreted by improving earlier models where the cage complex of a halogen atom and an electron has a central role. The triiodide ion was shown to exert a strong inhibiting effect on the reaction sequence leading to its own formation. An assumed chemical reaction between the triiodide ion and the cage complex interpreted the strong autoinhibition effect. It is shown that there is a real danger of unwanted interference from the photoreactions of halide ions when halide salts are used as supporting electrolytes in spectrophotometric experiments using a relatively high intensity UV light source.

  17. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  18. The study of temperature and UV light effect in anthocyanin extract from dragon fruit (Hylocereus costaricensis) rind using UV-Visible spectrophotometer

    Science.gov (United States)

    Purbaningtias, Tri Esti; Aprilia, Anisa Cahyani; Fauzi'ah, Lina

    2017-12-01

    This study aimed to determine the total of anthocyanin content in ethanol extract from super red dragon fruit rind. The extraction was affected by temperature and light conditions. The determination of anthocyanin's total content was performed with a variation of pH and analyzed by UV-Visible spectrophotometer. The results showed that the average contained total anthocyanins obtained at room temperature, 40 and 60 °C were 4.6757, 5.6108, 21.9757 mg/L, respectively. In higher temperatures, it was observed the more anthocyanin extracted. The concentration of anthocyanin extract without UV light was 2.5716 mg/L, it was less than UV light assisted extract, i.e. 5.3770 mg / L.

  19. A spectrophotometer-based diffusivity assay reveals that diffusion hindrance of small molecules in extracellular matrix gels used in 3D cultures is dominated by viscous effects.

    Science.gov (United States)

    Galgoczy, Roland; Pastor, Isabel; Colom, Adai; Giménez, Alicia; Mas, Francesc; Alcaraz, Jordi

    2014-08-01

    The design of 3D culture studies remains challenging due to the limited understanding of extracellular matrix (ECM)-dependent hindered diffusion and the lack of simple diffusivity assays. To address these limitations, we set up a cost-effective diffusivity assay based on a Transwell plate and the spectrophotometer of a Microplate Reader, which are readily accessible to cell biology groups. The spectrophotometer-based assay was used to assess the apparent diffusivity D of FITC-dextrans with molecular weight (4-70kDa) spanning the physiological range of signaling factors in a panel of acellular ECM gels including Matrigel, fibrin and type I collagen. Despite their technical differences, D data exhibited ∼15% relative difference with respect to FRAP measurements. Our results revealed that diffusion hindrance of small particles is controlled by the enhanced viscosity of the ECM gel in conformance with the Stokes-Einstein equation rather than by geometrical factors. Moreover, we provided a strong rationale that the enhanced ECM viscosity is largely contributed to by unassembled ECM macromolecules. We also reported that gels with the lowest D exhibited diffusion hindrance closest to the large physiologic hindrance of brain tissue, which has a typical pore size much smaller than ECM gels. Conversely, sparse gels (≤1mg/ml), which are extensively used in 3D cultures, failed to reproduce the hindered diffusion of tissues, thereby supporting that dense (but not sparse) ECM gels are suitable tissue surrogates in terms of macromolecular transport. Finally, the consequences of reduced diffusivity in terms of optimizing the design of 3D culture experiments were addressed in detail. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Application of the correction's system of bottom by deuterium's lamp of a spectrophotometer of atomic absorption to the obtaining of ultraviolet spectrums

    International Nuclear Information System (INIS)

    Villalobos Chaves, Alberto Enrique

    2002-01-01

    The correction system of bottom by lamp of deuterium's arch of a spectrophotometer of atomic absorption has been utilized with sweep's capacity of wavelength to get spectrums of ultraviolet absorption of samples in gaseous phase, whether in presence as in absence of flame, in the region between 200 nm and 365 nm. The spectral information was obtained after of a process of electronic subtraction of the source's signal, except for the source's signal plus the sample and its subsequent analysis by a programmed data's processor to give a report in terms of wavelength. The spectrums obtained in absence of flame were practiced in samples contained in a gas's sell for infrared spectroscopy with polyethylene's windows, it is located of the burner and directly in front to the radiation's beam, comparable spectrums with the reported in the literature were obtained and with a bigger resolution than the measure with an conventional ultraviolet absorption's spectrophotometer utilized like reference. The spectrums in presence of flame have been of flame have been obtained from dissolved samples and directly suctioned, it achieves to obtain spectral information that is normally not detected conveniently when it performs qualitative analysis by emission of flame in elements such like zinc, lead, cobalt, mercury and nickel among other. The information obtained on this way has been utilized like an alternative method to the elemental analysis by humid way with a view to increase the reliability of the results that have been utilized like basis in the determination of the tariff classification of imported or exported products. (Author) [es

  1. Agreement between digital image analysis and clinical spectrophotometer in CIEL*C*h° coordinate differences and total color difference (ΔE) measurements of dental ceramic shade tabs.

    Science.gov (United States)

    Farah, Ra'fat I

    2016-01-01

    The objectives of this in vitro study were: 1) to test the agreement among color coordinate differences and total color difference (ΔL*, ΔC*, Δh°, and ΔE) measurements obtained by digital image analysis (DIA) and spectrophotometer, and 2) to test the reliability of each method for obtaining color differences. A digital camera was used to record standardized images of each of the 15 shade tabs from the IPS e.max shade guide placed edge-to-edge in a phantom head with a reference shade tab. The images were analyzed using image-editing software (Adobe Photoshop) to obtain the color differences between the middle area of each test shade tab and the corresponding area of the reference tab. The color differences for the same shade tab areas were also measured using a spectrophotometer. To assess the reliability, measurements for the 15 shade tabs were repeated twice using the two methods. The Intraclass Correlation Coefficient (ICC) and the Dahlberg index were used to calculate agreement and reliability. The total agreement of the two methods for measuring ΔL*, ΔC*, Δh°, and ΔE, according to the ICC, exceeded 0.82. The Dahlberg indices for ΔL* and ΔE were 2.18 and 2.98, respectively. For the reliability calculation, the ICCs for the DIA and the spectrophotometer ΔE were 0.91 and 0.94, respectively. High agreement was obtained between the DIA and spectrophotometer results for the ΔL*, ΔC*, Δh°, and ΔE measurements. Further, the reliability of the measurements for the spectrophotometer was slightly higher than the reliability of all measurements in the DIA.

  2. Field measurements of the global UV-B radiation: a comparison between a broad-band radiometer and a Brewer spectrophotometer

    International Nuclear Information System (INIS)

    Anav, A.; Moriconi, M.L.; Di Menno, M.; Giannoccolo, S.

    1996-01-01

    The spectral responsivity shape plays an important role in the prospect of a wide use of broad-band meters in the UV-B monitoring. As most UV-B broad-band meters have a responsivity approximating an erythemal action spectrum, a measurement campaign was planned to verify if such an instrument could be successfully used to measure the unfiltered global irradiance. A Yankee radiometer mod. UV-B 1 and a Brewer spectrophotometer, considered as a reference meter, were compared for this purpose. A short theoretical treatment of the Yankee radiometer response and some results of the comparison are shown. Only clear-sky days data are selected so that the UV-B radiation reaching the ground could be modelled as the sum of the direct and isotropic diffuse components. The comparison results show a good agreement between the two instruments and confirm the capability of a broad-band UV-B radiometer of correctly measuring the global irradiance

  3. Influence of Light Conditions and Light Sources on Clinical Measurement of Natural Teeth Color using VITA Easyshade Advance 4,0® Spectrophotometer. Pilot Study.

    Science.gov (United States)

    Posavec, Ivona; Prpić, Vladimir; Zlatarić, Dubravka Knezović

    2016-12-01

    The purpose of this study was to evaluate and compare lightness (L), chroma (C) and hue (h), green-red (a) and blue-yellow (b) character of the color of maxillary right central incisors in different light conditions and light sources. Two examiners who were well trained in digital color evaluation participated in the research. Intraclass correlation coefficients (ICCs) were used to analyze intra- and interobserver reliability. The LCh and L*a*b* values were determined at 08.15 and at 10.00 in the morning under three different light conditions. Tooth color was assessed in 10 subjects using intraoral spectrophotometer VITA Easyshade Advance 4.0 ® set at the central region of the vestibular surface of the measured tooth. Intra- and interobserver ICC values were high for both examiners and ranged from 0.57 to 0.99. Statistically significant differences in LCh and L*a*b* values measured in different time of the day and certain light condition were not found (p>0.05). Statistically significant differences in LCh and L*a*b* values measured under three different light conditions were not found, too (p>0.05). VITA Easyshade Advance 4.0 ® is reliable enough for daily clinical work in order to assess tooth color during the fabrication of esthtic appliances because it is not dependent on light conditions and light sources.

  4. [Variation in soil Mn fractions as affected by long-term manure amendment using atomic absorption spectrophotometer in a typical grassland of inner Mongolia].

    Science.gov (United States)

    Fu, Ming-ming; Jiang, Yong; Bai, Yong-fei; Zhang, Yu-ge; Xu, Zhu-wen; Li, Bo

    2012-08-01

    The effect of sheep manure amendment on soil manganese fractions was conducted in a 11 year experiment at inner Mongolia grassland, using sequential extraction procedure in modified Community Bureau of Reference, and determined by atomic absorption spectrophotometer. Five treatments with dry sheep manure addition rate 0, 50, 250, 750, and 1500 g x m(-2) x yr(-1), respectively, were carried out in this experiment. Results showed that the recovery rate for total Mn was 91.4%-105.9%, as the percentage recovered from the summation of the improved BCR results with aqua regia extractable contents, and it was 97.2%-102.9% from certified soil reference materials. Plant available exchangeable Mn could be enhanced by 47.89%, but reducible and total Mn contents decreased significantly under heavy application of manure at depth of 0-5 cm. The effect of manure amendment on Mn fractions was greater in 0-5 cm than in 5-10 cm soil layer. The results are benefit to micronutrient fractions determination and nutrient management in grassland soils.

  5. iHWG-μNIR: a miniaturised near-infrared gas sensor based on substrate-integrated hollow waveguides coupled to a micro-NIR-spectrophotometer.

    Science.gov (United States)

    Rohwedder, J J R; Pasquini, C; Fortes, P R; Raimundo, I M; Wilk, A; Mizaikoff, B

    2014-07-21

    A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.

  6. Effect of vital bleaching with solutions containing different concentrations of hydrogen peroxide and pineapple extract as an additive on human enamel using reflectance spectrophotometer: An in vitro study.

    Science.gov (United States)

    Vejai Vekaash, Chitra Janardhanan; Kumar Reddy, Tripuravaram Vinay; Venkatesh, Kondas Vijay

    2017-01-01

    This study aims to evaluate the color change in human enamel bleached with three different concentrations of hydrogen peroxide, containing pineapple extract as an additive in two different timings, using reflectance spectrophotometer. The study aimed to investigate the bleaching efficacy on natural teeth using natural enzymes. Baseline color values of 10 randomly selected artificially stained incisors were obtained. The specimens were divided into three groups of 20 teeth each: Group 1 - 30% hydrogen peroxide, Group II - 20% hydrogen peroxide, and Group III - 10% hydrogen peroxide. One half of the tooth was bleached with hydrogen peroxide, and other was bleached with hydrogen peroxide and pineapple extract for 20 min (Subgroup A) and 10 min (Subgroup B). The results were statistically analyzed using student's t -test. The mean ΔE values of Group IA (31.62 ± 0.9), Group IIA (29.85 ± 1.2), and Group IIIA (28.65 ± 1.2) showed statistically significant higher values when compared to the mean Δ E values of Group 1A (25.02 ± 1.2), Group IIA (22.86 ± 1.1), and Group IIIA (16.56 ± 1.1). Identical results were obtained in Subgroup B. The addition of pineapple extract to hydrogen peroxide resulted in effective bleaching.

  7. In situ analysis of proteins at high temperatures mediated by capillary-flow hydrothermal UV-vis spectrophotometer with a water-soluble chromogenic reagent.

    Science.gov (United States)

    Kawamura, Kunio; Nagayoshi, Hiroki; Yao, Toshio

    2010-05-14

    In situ monitoring of quantities, interactions, and conformations of proteins is essential for the study of biochemistry under hydrothermal environments and the analysis of hyperthermophilic organisms in natural hydrothermal systems on Earth. We have investigated the potential of a capillary-flow hydrothermal UV-vis spectrophotometer (CHUS) for performing in situ measurements of proteins and determining their behavior at extremely high temperatures, in combination with a chromogenic reagents probe, which interacts with the proteins. The spectral shift obtained using a combination of water-soluble porphyrin (TPPS) and bovine serum albumin (BSA) was the best among the spectral shifts obtained using different combinations of chromogenic reagents and proteins. The association behavior of TPPS with BSA was investigated in detail using CHUS at temperatures up to 175 degrees C and the association constant (K(ass)) of TPPS with BSA was successfully determined at temperatures up to 100 degrees C. The lnK(ass) values were inversely proportional to the T(-1) values in the temperature range 50-100 degrees C. These analyses showed for the first time that the decrease of association of TPPS with BSA is due to the conformational change, fragmentation, and/or denaturing of BSA rather than the decrease of the hydrophobic association between TPPS and BSA. This study conclusively demonstrates the usability of the CHUS system with a chromogenic reagent as an in situ detection and measurement system for thermostable proteins at extremely high temperatures. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Spectroscopic studies of model photo-receptors: validation of a nanosecond time-resolved micro-spectrophotometer design using photoactive yellow protein and α-phycoerythrocyanin.

    Science.gov (United States)

    Purwar, Namrta; Tenboer, Jason; Tripathi, Shailesh; Schmidt, Marius

    2013-09-13

    Time-resolved spectroscopic experiments have been performed with protein in solution and in crystalline form using a newly designed microspectrophotometer. The time-resolution of these experiments can be as good as two nanoseconds (ns), which is the minimal response time of the image intensifier used. With the current setup, the effective time-resolution is about seven ns, determined mainly by the pulse duration of the nanosecond laser. The amount of protein required is small, on the order of 100 nanograms. Bleaching, which is an undesirable effect common to photoreceptor proteins, is minimized by using a millisecond shutter to avoid extensive exposure to the probing light. We investigate two model photoreceptors, photoactive yellow protein (PYP), and α-phycoerythrocyanin (α-PEC), on different time scales and at different temperatures. Relaxation times obtained from kinetic time-series of difference absorption spectra collected from PYP are consistent with previous results. The comparison with these results validates the capability of this spectrophotometer to deliver high quality time-resolved absorption spectra.

  9. Determination of arsenic concentration in tiger tooth croaker (Otolithes ruber and indian halibut (Psettodes erumei using hydride generation atomic absorption spectrophotometer

    Directory of Open Access Journals (Sweden)

    E Rahimi

    2011-11-01

    Full Text Available Heavy metal contaminants in fish are of particular interest because of their potential risk to human. This study was undertaken to determine the levels of arsenic in two fish type including tiger tooth croaker and Indian halibut  in Esfahan. A total of 42 fish samples including 28 tiger tooth croaker (Otolithes ruber and 14 Indian halibut (Psettodes erumei were collected from retails of Esfahan from May 2010 to January 2011. For detection of arsenic contamination, the edible muscles of  fish samples were analyzed by hydride generation atomic absorption spectrophotometer. The arsenic contamination in fish samples were found to be in the range of 11 to 98 µg/kg. Concentration of arsenic in tiger tooth croaker and Indian halibut was 11-56 and 32-98 µg/kg, respectively. Arsenic concentrations were below the limit was acceptable to the World Health Organization. According to the results, the concentration of arsenic did not exceed the maximum acceptable intake limit.

  10. Laser Spot Welding of Copper-aluminum Joints Using a Pulsed Dual Wavelength Laser at 532 and 1064 nm

    Science.gov (United States)

    Stritt, Peter; Hagenlocher, Christian; Kizler, Christine; Weber, Rudolf; Rüttimann, Christoph; Graf, Thomas

    A modulated pulsed laser source emitting green and infrared laser light is used to join the dissimilar metals copper and aluminum. The resultant dynamic welding process is analyzed using the back reflected laser light and high speed video observations of the interaction zone. Different pulse shapes are applied to influence the melt pool dynamics and thereby the forming grain structure and intermetallic phases. The results of high-speed images and back-reflections prove that a modulation of the pulse shape is transferred to oscillations of the melt pool at the applied frequency. The outcome of the melt pool oscillation is shown by the metallurgically prepared cross-section, which indicates different solidification lines and grain shapes. An energy-dispersivex-ray analysis shows the mixture and the resultant distribution of the two metals, copper and aluminum, within the spot weld. It can be seen that the mixture is homogenized the observed melt pool oscillations.

  11. Portable dual field gradient force multichannel flow cytometer device with a dual wavelength low noise detection scheme

    Science.gov (United States)

    James, Conrad D; Galambos, Paul C; Derzon, Mark S; Graf, Darin C; Pohl, Kenneth R; Bourdon, Chris J

    2012-10-23

    Systems and methods for combining dielectrophoresis, magnetic forces, and hydrodynamic forces to manipulate particles in channels formed on top of an electrode substrate are discussed. A magnet placed in contact under the electrode substrate while particles are flowing within the channel above the electrode substrate allows these three forces to be balanced when the system is in operation. An optical detection scheme using near-confocal microscopy for simultaneously detecting two wavelengths of light emitted from the flowing particles is also discussed.

  12. Spectrophotometric estimation of ethamsylate and mefenamic Acid from a binary mixture by dual wavelength and simultaneous equation methods.

    Science.gov (United States)

    Goyal, Anju; Singhvi, I

    2008-01-01

    Two simple, accurate, economical and reproducible spectrophotometric methods for simultaneous estimation of two-component drug mixture of ethamsylate and mefenamic acid in combined tablet dosage form have been developed. The first developed method involves formation and solving of simultaneous equation using 287.6 nm and 313.2 nm as two wavelengths. Second developed method is based on two wavelength calculation. Two wavelengths selected for estimation of ethamsylate were 274.4 nm and 301.2 nm while that for mefenamic acid were 304.8 nm and 320.4 nm. Both the developed methods obey Beer's law in the concentration ranges employed for the respective methods. The results of analysis were validated statistically and by recovery studies.

  13. Spectrophotometric estimation of ethamsylate and mefenamic acid from a binary mixture by dual wavelength and simultaneous equation methods

    OpenAIRE

    Goyal Anju; Singhvi I

    2008-01-01

    Two simple, accurate, economical and reproducible spectrophotometric methods for simultaneous estimation of two-component drug mixture of ethamsylate and mefenamic acid in combined tablet dosage form have been developed. The first developed method involves formation and solving of simultaneous equation using 287.6 nm and 313.2 nm as two wavelengths. Second developed method is based on two wavelength calculation. Two wavelengths selected for estimation of ethamsylate were 274.4 nm and 301.2 nm...

  14. Multimodal label-free ex vivo imaging using a dual-wavelength microscope with axial chromatic aberration compensation.

    Science.gov (United States)

    Filippi, Andrea; Dal Sasso, Eleonora; Iop, Laura; Armani, Andrea; Gintoli, Michele; Sandri, Marco; Gerosa, Gino; Romanato, Filippo; Borile, Giulia

    2018-03-01

    Label-free microscopy is a very powerful technique that can be applied to study samples with no need for exogenous fluorescent probes, keeping the main benefits of multiphoton microscopy, such as longer penetration depths and intrinsic optical sectioning while enabling serial multitechniques examinations on the same specimen. Among the many label-free microscopy methods, harmonic generation (HG) is one of the most intriguing methods due to its generally low photo-toxicity and relative ease of implementation. Today, HG and common two-photon microscopy (TPM) are well-established techniques, and are routinely used in several research fields. However, they require a significant amount of fine-tuning to be fully exploited, making them quite difficult to perform in parallel. Here, we present our designed multimodal microscope, capable of performing simultaneously TPM and HG without any kind of compromise thanks to two, separate, individually optimized laser sources with axial chromatic aberration compensation. We also apply our setup to the examination of a plethora of ex vivo samples to prove its capabilities and the significant advantages of a multimodal approach. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Liquid level and temperature sensing by using dual-wavelength fiber laser based on multimode interferometer and FBG in parallel

    Science.gov (United States)

    Sun, Chunran; Dong, Yue; Wang, Muguang; Jian, Shuisheng

    2018-03-01

    The detection of liquid level and temperature based on a fiber ring cavity laser sensing configuration is presented and demonstrated experimentally. The sensing head contains a fiber Bragg grating (FBG) and a single-mode-cladding-less-single-mode multimode interferometer, which also functions as wavelength-selective components of the fiber laser. When the liquid level or temperature is applied on the sensing head, the pass-band peaks of both multimode interference (MMI) filter and FBG filter vary and the two output wavelengths of the laser shift correspondingly. In the experiment, the corresponding sensitivities of the liquid level with four different refractive indices (RI) in the deep range from 0 mm to 40 mm are obtained and the sensitivity enhances with the RI of the liquid being measured. The maximum sensitivity of interferometer is 106.3 pm/mm with the RI of 1.391. For the temperature measurement, a sensitivity of 10.3 pm/°C and 13.8 pm/°C are achieved with the temperature ranging from 0 °C to 90 °C corresponding to the two lasing wavelengths selective by the MMI filter and FBG, respectively. In addition, the average RI sensitivity of 155.77 pm/mm/RIU is also obtained in the RI range of 1.333-1.391.

  16. Safety and Efficacy of a 1550nm/1927nm Dual Wavelength Laser for the Treatment of Photodamaged Skin.

    Science.gov (United States)

    Narurkar, Vic A; Alster, Tina S; Bernstein, Eric F; Lin, Tina J; Loncaric, Anya

    2018-01-01

    BACKGROUND: Fractional photothermolysis (FP) is a popular treatment option for photodamaged skin and addresses shortcomings of ablative skin resurfacing and nonablative dermal remodeling. Previous studies have demonstrated that FP using the 1550nm wavelength has led to improvement of ultrastructural changes and clinical effects associated with photodamaged skin in the deeper dermal structures, while treatment with the 1927nm wavelength has shown clinical effects in the superficial dermis. Both wavelengths produce precise microscopic treatment zones (MTZs) in the skin. The two wavelengths used in combination may optimize the delivery of fractional nonablative resurfacing intended for dermal and epidermal coagulation of photodamage skin. OBJECTIVES: To evaluate the safety and efficacy of a 1550/1927 Laser System (Fraxel Dual, Solta), using both 1550nm and 1927nm wavelengths in combination for treatment of facial and non-facial photodamage. METHODS: Prospective, multi-center, post-market study in subjects with clinically identifiable photodamage (N=35) (Fitzpatrick skin types I-IV). Both 1550nm and 1927nm wavelengths were used at each treatment visit. Investigator assessment of the affected area(s) occurred at one week, one month and 3 months after a series of up to four treatments. Severity of adverse events (AEs) were assessed using a 4-point scale (where 0=none and 3=marked). Assessments included erythema, edema, hyperkeratosis, hyper- and hypo-pigmentation, scarring, itchiness, dryness, and flaking. Severity of photoaging, fine and coarse wrinkling, mottled hyperpigmentation, sallowness, and tactile roughness at baseline was assessed using the same scale. Investigators and subjects assessed overall appearance of photodamage and pigmentation based on a 5-point quartile improvement scale at all follow-up visits (where 0=no improvement and 4=very significant improvement [76%-100%]). RESULTS: There was a positive treatment effect at all study visits, with moderate improvement (average reduction in severity of 21%-43%) observed 3-months after final treatment. Greatest reduction in severity of other benefit areas was at the 3-month follow-up visit, with a 21% and 30% decrease in severity in fine wrinkling and tactile roughness. No AEs or serious AEs were reported. Pain sensation during treatment was tolerable. Anticipated moderate erythema (mean score 1.6±0.5) and mild edema (mean score 0.8±0.7) were transient and resolved within 7-10 days. Anticipated and transient mild dryness (52% of subjects) and flaking (30%) were reported at the 1-week follow-up. There were no incidences of hyperkeratosis, scarring, or itchiness. CONCLUSION: Treatments using both wavelengths associated with the combined 1550/1927 Laser System were well tolerated with limited, transient anticipated side effects and no serious AEs. Clinical efficacy in the appearance of photodamage and pigmentation was greatest following a series of up to 3 treatments. J Drugs Dermatol. 2018;17(1):41-46..

  17. Evaluation of a noninvasive, dual-wavelength laser-suction and massage device for the regional treatment of cellulite.

    Science.gov (United States)

    Kulick, Michael I

    2010-06-01

    Cellulite is a condition usually limited to women. The most common location for this surface irregularity is the thigh. Evaluation of treatment efficacy is difficult because of the reliance on patient satisfaction surveys and flash photography, which can "flatten" surface texture. Reproducibility of photographs is also difficult, as subtle changes in body position can affect appearance. Twenty women with mild to moderate cellulite of their lateral thighs were enrolled. Pretreatment and posttreatment assessment included patient weight, body mass index, percentage body fat, standard digital photographs, VECTRA three-dimensional images, and patient questionnaire. Patients received two treatments per week for 4 weeks. Treatment time was 15 minutes per thigh using the SmoothShapes device. Patients were evaluated 1, 3, and 6 months after their last treatment. To be considered improved after treatment, both thighs needed clear improvement in contour as determined by the "untextured" images obtained with the VECTRA camera system. This device depicts skin contour independent of incident lighting. There were no complications. Seventeen patients had complete data for analysis. Ninety-four percent of the patients felt their cellulite was improved. VECTRA analysis showed 82 percent improvement at 1 month, 76 percent improvement at 3 months, and 76 percent improvement at 6 months. Initial cellulite irregularities and improvement were more difficult to discern using standard digital photographs. There was an average increase in patient weight, body mass index, and percentage body fat at 6 months. The SmoothShapes device provided improvement in surface contour (cellulite) 6 months after the last treatment in the majority of the patients based on patient survey and VECTRA analysis.

  18. A novel dual-wavelength, Nd:YAG, picosecond-domain laser safely and effectively removes multicolor tattoos.

    Science.gov (United States)

    Bernstein, Eric F; Schomacker, Kevin T; Basilavecchio, Lisa D; Plugis, Jessica M; Bhawalkar, Jayant D

    2015-07-14

    Although nanosecond-domain lasers have been the mainstay of laser tattoo removal for decades, recent disruptive innovations in laser design have introduced a new class of commercial Q-switched lasers that generate picosecond-domain pulses. A picosecond-domain, Nd:YAG laser with a KTP frequency-doubling crystal was used to treat 31 decorative tattoos in 21 subjects. Safety and effectiveness were determined by blinded evaluation of digital images in this prospective clinical study. The average clearance overall as evaluated by blinded observers evaluating randomized digital photographs was 79 ± 0.9% (mean ± sem) after an average of 6.5 treatments. Of the 31 tattoos completing treatment, 6 had evidence of mild hyper- or hypo-pigmentation by evaluation of photographs. The 350 picosecond, 532 nm, and 450 picosecond 1,064 nm Nd:YAG laser is safe and effective for removing decorative tattoos. Lasers Surg. Med. © 2015 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. © 2015 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.

  19. Dual-wavelength recording, a simple algorithm to eliminate interferences due to UV-absorbing substances in capillary electrophoresis.

    Science.gov (United States)

    Seaux, Liesbeth; Van Houcke, Sofie; Dumoulin, Els; Fiers, Tom; Lecocq, Elke; Delanghe, Joris R

    2014-08-01

    Analytical interferences have been described due to the presence of various exogenous UV-absorbing substances in serum. Iodine-based X-ray contrast agents and various antibiotics have been reported to interfere with interpretation of serum protein pherograms, resulting in false diagnosis of paraproteinemia. In the present study, we have explored the possibility of measuring UV absorbance at two distinct wavelengths (210 and 246 nm) to distinguish between true and false paraproteins on a Helena V8 clinical electrophoresis instrument. This study demonstrates that most substances potentially interfering with serum protein electrophoresis show UV-absorption spectra that are distinct from those of serum proteins. Scanning at 246 nm allows detection of all described interfering agents. Comparing pherograms recorded at both wavelengths (210 and 246 nm) enables to distinguish paraproteins from UV-absorbing substances. In case of a true paraprotein, the peak with an electrophoretic mobility in the gamma-region decreases, whereas the X-ray contrast media and antibiotics show an increased absorption when compared to the basic setting (210 nm). The finding of iodine-containing contrast media interfering with serum protein electrophoresis is not uncommon. In a clinical series, interference induced by contrast media was reported in 54 cases (of 13 237 analyses), corresponding with a prevalence of 0.4%. In the same series, 1631 true paraproteins (12.3%) were detected. Implementation of the proposed algorithm may significantly improve the interpretation of routine electrophoresis results. However, attention should still be paid to possible interference due to presence of atypical proteins fractions (e.g., tumor markers, C3). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Growth of GaAs “nano ice cream cones” by dual wavelength pulsed laser ablation

    Science.gov (United States)

    Schamp, C. T.; Jesser, W. A.; Shivaram, B. S.

    2007-05-01

    Harmonic generation crystals inherently offer the possibility of using multiple wavelengths of light in a single laser pulse. In the present experiment, the fundamental (1064 nm) and second harmonic (532 nm) wavelengths from an Nd:YAG laser are focused together on GaAs and GaSb targets for ablation. Incident energy densities up to about 45 J/cm 2 at 10 Hz with substrate temperatures between 25 and 600 °C for durations of about 60 s have been used in an ambient gas pressure of about 10 -6 Torr. The ablated material was collected on electron-transparent amorphous carbon films for TEM analysis. Apart from a high density of isolated nanocrystals, the most common morphology observed consists of a crystalline GaAs cone-like structure in contact with a sphere of liquid Ga, resembling an "ice cream cone", typically 50-100 nm in length. For all of the heterostuctures of this type, the liquid/solid/vacuum triple junction is found to correspond to the widest point on the cone. These heterostructures likely form by preferential evaporation of As from molten GaAs drops ablated from the target. The resulting morphology minimizes the interfacial and surface energies of the liquid Ga and solid GaAs.

  1. Dual-wavelength optical-resolution photoacoustic microscopy for cells with gold nanoparticle bioconjugates in three-dimensional cultures

    Science.gov (United States)

    Lee, Po-Yi; Liu, Wei-Wen; Chen, Shu-Ching; Li, Pai-Chi

    2016-03-01

    Three-dimensional (3D) in vitro models bridge the gap between typical two-dimensional cultures and in vivo conditions. However, conventional optical imaging methods such as confocal microscopy and two-photon microscopy cannot accurately depict cellular processing in 3D models due to limited penetration of photons. We developed a dualwavelength optical-resolution photoacoustic microscopy (OR-PAM), which provides sufficient penetration depth and spatial resolution, for studying CD8+ cytotoxic T lymphocytes (CTLs) trafficking in an in vitro 3D tumor microenvironment. CTLs play a cardinal role in host defense against tumor. Efficient trafficking of CTLs to the tumor microenvironment is a critical step for cancer immunotherapy. For the proposed system, gold nanospheres and indocyanine green (ICG) have been remarkable choices for contrast agents for photoacoustic signals due to their excellent biocompatibility and high optical absorption. With distinct absorption spectrums, targeted cells with gold nanospheres and ICG respectively can be identified by switching 523-nm and 800-nm laser irradiation. Moreover, we use an x-y galvanometer scanner to obtain high scanning rate. In the developed system, lateral and axial resolutions were designed at 1.6 μm and 5 μm, respectively. We successfully showed that dual-spectral OR-PAM can map either the distribution of CTLs with gold nanospheres at a visible wavelength of 523 nm or the 3D structure of tumor spheres with ICG in an in vitro 3D microenvironment. Our OR-PAM can provide better biological relevant information in cellular interaction and is potential for preclinical screening of anti-cancer drugs.

  2. In situ determination of the reduction levels of cytochromes b and c in growing bacteria : a case study with N2-fixing Azorhizobium caulinodans

    NARCIS (Netherlands)

    Pronk, A.F.; Boogerd, F C; Stoof, C.; Oltmann, L F; Stouthamer, A.H.; van Verseveld, H W

    1993-01-01

    The determination of the in situ reduction levels of cytochromes b and c in growing bacteria is achieved by coupling a chemostat with a dual wavelength spectrophotometer. Visible light absorption spectra of cytochromes present in bacterial cells actively growing in a chemostat at a specific growth

  3. Novel absorptivity centering method utilizing normalized and factorized spectra for analysis of mixtures with overlapping spectra in different matrices using built-in spectrophotometer software.

    Science.gov (United States)

    Lotfy, Hayam Mahmoud; Omran, Yasmin Rostom

    2018-07-05

    A novel, simple, rapid, accurate, and economical spectrophotometric method, namely absorptivity centering (a-Centering) has been developed and validated for the simultaneous determination of mixtures with partially and completely overlapping spectra in different matrices using either normalized or factorized spectrum using built-in spectrophotometer software without a need of special purchased program. Mixture I (Mix I) composed of Simvastatin (SM) and Ezetimibe (EZ) is the one with partial overlapping spectra formulated as tablets, while mixture II (Mix II) formed by Chloramphenicol (CPL) and Prednisolone acetate (PA) is that with complete overlapping spectra formulated as eye drops. These procedures do not require any separation steps. Resolution of spectrally overlapping binary mixtures has been achieved getting recovered zero-order (D 0 ) spectrum of each drug, then absorbance was recorded at their maxima 238, 233.5, 273 and 242.5 nm for SM, EZ, CPL and PA, respectively. Calibration graphs were established with good correlation coefficients. The method shows significant advantages as simplicity, minimal data manipulation besides maximum reproducibility and robustness. Moreover, it was validated according to ICH guidelines. Selectivity was tested using laboratory-prepared mixtures. Accuracy, precision and repeatability were found to be within the acceptable limits. The proposed method is good enough to be applied to an assay of drugs in their combined formulations without any interference from excipients. The obtained results were statistically compared with those of the reported and official methods by applying t-test and F-test at 95% confidence level concluding that there is no significant difference with regard to accuracy and precision. Generally, this method could be used successfully for the routine quality control testing. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Online identification of the antioxidant constituents of traditional Chinese medicine formula Chaihu-Shu-Gan-San by LC-LTQ-Orbitrap mass spectrometry and microplate spectrophotometer.

    Science.gov (United States)

    Su, Zhi-Heng; Zou, Guo-An; Preiss, Alfred; Zhang, Hong-Wu; Zou, Zhong-Mei

    2010-11-02

    Chaihu-Shu-Gan-San (CSGS), a traditional Chinese medicine (TCM) formula containing seven herbal medicines, has been used in treatment of gastritis, peptic ulcer, irritable bowel syndrome and depression clinically. However, the chemical constituents in CSGS had not been studied so far. To quickly identify the chemical constituents of CSGS and to understand the chemical profiles related to antioxidant activity of CSGS, liquid chromatography coupled with electrospray ionization hybrid linear trap quadrupole orbitrap (LC-LTQ-Orbitrap) mass spectrometry has been applied for online identification of chemical constituents in complex system, meanwhile, antioxidant profile of CSGS was investigated by the fraction collecting and microplate reading system. As a result, 33 chemical constituents in CSGS were identified. Among them, 13 components could be detected both in positive and in negative ion modes, 20 constituents were determined only in positive ion mode and 2 components were only detected in negative ion mode. Meanwhile, the potential antioxidant profile of CSGS was also characterized by combination of 96-well plate collection of elutes from HPLC analysis and microplate spectrophotometer, in which the scavenging activities of free radical produced by DPPH of each fraction could be directly investigated by the analysis of microplate reader. This study quickly screened the contribution of CSGS fractions to the antioxidant activity and online identified the corresponding active constituents. The results indicated that the combination of LC-MS(n) and 96-well plate assay system established in this paper would be a useful strategy for correlating the chemical profile of TCMs with their bioactivities without isolation and purification. Crown Copyright (c) 2010. Published by Elsevier B.V. All rights reserved.

  5. Analysis of Photosystem I Donor and Acceptor Sides with a New Type of Online-Deconvoluting Kinetic LED-Array Spectrophotometer.

    Science.gov (United States)

    Schreiber, Ulrich; Klughammer, Christof

    2016-07-01

    The newly developed Dual/KLAS-NIR spectrophotometer, technical details of which were reported very recently, is used in measuring redox changes of P700, plastocyanin (PC) and ferredoxin (Fd) in intact leaves of Hedera helix, Taxus baccata and Brassica napus An overview of various light-/dark-induced changes of deconvoluted P700 + , PC + and Fd - signals is presented demonstrating the wealth of novel information and the consistency of the obtained results. Fd - changes are particularly large after dark adaptation. PC oxidation precedes P700 oxidation during dark-light induction and in steady-state light response curves. Fd reoxidation during induction correlates with the secondary decline of simultaneously measured fluorescence yield, both of which are eliminated by removal of O 2 By determination of 100% redox changes, relative contents of PC/P700 and Fd/P700 can be assessed, which show considerable variations between different leaves, with a trend to higher values in sun leaves. Based on deconvoluted P700 + signals, the complementary quantum yields of PSI, Y(I) (photochemical energy use), Y(ND) (non-photochemical loss due to oxidized primary donor) and Y(NA) (non-photochemical loss due to reduced acceptor) are determined as a function of light intensity and compared with the corresponding complementary quantum yields of PSII, Y(II) (photochemical energy use), Y(NPQ) (regulated non-photochemical loss) and Y(NO) (non-regulated non-photochemical loss). The ratio Y(I)/Y(II) increases with increasing intensities. In the low intensity range, a two-step increase of PC + is indicative of heterogeneous PC pools. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Method Performance of Total Mercury (Hg) Testing in the Biological Samples by Using Cold Vapour Atomic Absorption Spectrophotometer (CV-AAS)

    International Nuclear Information System (INIS)

    Susanna TS; Samin

    2007-01-01

    Method performance (validation) of total mercury (Hg) testing in the biological samples by using cold vapour atomic absorption spectrophotometer (CV-AAS) has been done. The objective of this research is to know the method performance of CV-AAS as one of points for the accreditation testing of laboratory according IS0/IEC 17025-2005. The method performance covering limit of detection (LOD), accuracy, precision and bias. As a standard material used SRM Oyster Tissue 15660 from Winopal Forshung Germany, whereas the biological samples were human hair. In principle of mercury testing for solid samples using CV-AAS is dissolving this sample and standard with 10 mL HNO 3 supra pure into a closed quartz tube and heating at 150 °C for 4 hours. The concentration of mercury in each samples was determined at the condition of operation were stirring time (T 1 ) 70 seconds, delay time (T 2 ) 15 seconds, heating time (T 3 ) 13 seconds and cooling time (T 4 ) of 25 seconds. Mercury ion in samples are reduced with SnCl 2 10 % in H 2 SO 4 20 %, and then the vapour of mercury from reduction is passed in NaOH 20 % solution and aquatridest. The result of method performance were: limit of detection (LOD) = 0.085 ng, accuracy 99.70 %, precision (RSD) = 1.64 % and bias = 0.30 %. From the validation result showed that the content of mercury total was in the range of certified values. The total mercury content (Hg) in human hair were varied from 406.93 - 699.07 ppb. (author)

  7. asan alternative to conventional spectrophotometers

    African Journals Online (AJOL)

    signal whi:h can be processd in a multitude of increasingly complex ways in order to cxtraet as much ehemical information as possible. Apart from the fact that the LEDs are cheap. copact and commercially available, equipment constructed from this system have smalt size. fight weight. low power consumption and negligible ...

  8. A Portable Diode Array Spectrophotometer.

    Science.gov (United States)

    Stephenson, David

    2016-05-01

    A cheap portable visible light spectrometer is presented. The spectrometer uses readily sourced items and could be constructed by anyone with a knowledge of electronics. The spectrometer covers the wavelength range 450-725 nm with a resolution better than 5 nm. The spectrometer uses a diffraction grating to separate wavelengths, which are detected using a 128-element diode array, the output of which is analyzed using a microprocessor. The spectrum is displayed on a small liquid crystal display screen and can be saved to a micro SD card for later analysis. Battery life (2 × AAA) is estimated to be 200 hours. The overall dimensions of the unit are 120 × 65 × 60 mm, and it weighs about 200 g. © The Author(s) 2016.

  9. Spectrophotometer-Based Color Measurements

    Science.gov (United States)

    2017-10-24

    equipment. There are several American Society for Testing and Materials ( ASTM ) chapters covering the use of spectrometers for color measurements (refs. 3...Perkin Elmer software and procedures described in ASTM chapter E308 (ref. 3). All spectral data was stored on the computer. A summary of the color...similarity, or lack thereof, between two colors (ref. 5). In this report, the Euclidean distance metric, E, is used and recommended in ASTM D2244

  10. [The content of mineral elements in Camellia olei fera ovary at pollination and fertilization stages determined by auto discrete analyzers and atomic absorption spectrophotometer].

    Science.gov (United States)

    Zou, Feng; Yuan, De-Yi; Gao, Chao; Liao, Ting; Chen, Wen-Tao; Han, Zhi-Qiang; Zhang, Lin

    2014-04-01

    In order to elucidate the nutrition of Camellia olei fera at pollination and fertilization stages, the contents of mineral elements were determined by auto discrete analyzers and atomic absorption spectrophotometer, and the change in the contents of mineral elements was studied and analysed under the condition of self- and cross-pollination. The results are showed that nine kinds of mineral elements contents were of "S" or "W" type curve changes at the pollination and fertilization stages of Camellia olei fera. N, K, Zn, Cu, Ca, Mn element content changes showed "S" curve under the self- and out-crossing, the content of N reaching the highest was 3.445 8 mg x g(-1) in self-pollination of 20 d; K content reaching the highest at the cross-pollination 20 d was 6.275 5 mg x g(-1); Zn content in self-pollination of 10 d reaching the highest was 0.070 5 mg x g(-1); Cu content in the cross-pollination of 5 d up to the highest was 0.061 0 mg x g(-1); Ca content in the cross-pollination of 15 d up to the highest was 3.714 5 mg x g(-1); the content of Mn reaching the highest in self-pollination 30 d was 2. 161 5 mg x g(-1). Fe, P, Mg element content changes was of "S" type curve in selfing and was of "W" type curve in outcrossing, Fe content in the self-pollination 10 d up to the highest was 0.453 0 mg x g(-1); P content in self-pollination of 20 d reaching the highest was 6.731 8 mg x g(-1); the content of Mg up to the highest in self-pollination 25 d was 2.724 0 mg x g(-1). The results can be used as a reference for spraying foliar fertilizer, and improving seed setting rate and yield in Camellia olei fera.

  11. Design of the detector to observe the energetic charged particles: a part of the solar X-ray spectrophotometer ChemiX onboard Interhelio-Probe mission

    Science.gov (United States)

    Dudnik, Oleksiy; Sylwester, Janusz; Kowalinski, Miroslaw; Bakala, Jaroslaw; Siarkowski, Marek; Evgen Kurbatov, mgr..

    2016-07-01

    -layer detector stack: first two layers consist of silicon detectors; the third one is based on the p-terphenyl scintillation detector coupled with pixelated silicon photomultiplier. Coincidence logic allows collecting systematic data on particle variety and their energy with 1 and/or 10 s time resolutions. Digital processing unit is constructed based on FPGA Actel ProAsic M1A3PE1500, and contains each event processing logic, forms telemetry data and housekeeping frames, communicates with ChemiX digital processing unit and executes received telecommands. In order to increase the reliability and time resource of the BPM its digital processing unit and secondary power supply unit has backup sets. Switching between backup sets is commanded by externally orders. The BPM is capable to sort out in situ abundances of individual particle constituents from electrons up to oxygen nuclei. 1. O.V.Dudnik, E.V.Kurbatov, V.O.Tarasov, L.A.Andryushenko, I.L.Zajtsevsky, J.Sylwester, J.Bąkala, M.Kowaliński. Background particle detector for the solar X-ray photometer ChemiX of space mission "Interhelioprobe": an adjustment of breadboard model modules (in Russian) / ISSN 1561-8889: Kosmichna Nauka I Tekhnologiya, 2015, Vol.21, No.2, P.3-14. 2. O.V.Dudnik, E.V.Kurbatov, J.Sylwester, M.Siarkowski, P.Podgórski, M.Kowaliński. Background Particle Monitor - a part of the solar X-ray spectrophotometer ChemiX: principles of the operation and construction / in: Abstracts of 15th Ukrainian conference on space research, Odesa, Ukraine, August 24-28, 2015, P.80, doi:10.13140/RG.2.1.2284.2649. 3. O.V.Dudnik, E.V.Kurbatov, M.Kowaliński, M.Siarkowski, P.Podgórski, J.Sylwester. Operational features of Background Particle Monitor, a vital part of the solar X-ray spectrophotometer ChemiX / in: Abstract book of the Conference "Progress on EUV&X-ray spectroscopy and imaging II", Wroclaw, Poland, November 17 19, 2015, P.9, doi:10.13140/RG.2.1.1184.3604.

  12. Simple and versatile turbidimetric monitoring of bacterial growth in liquid cultures using a customized 3D printed culture tube holder and a miniaturized spectrophotometer: application to facultative and strictly anaerobic bacteria

    Directory of Open Access Journals (Sweden)

    Margarida R. G. Maia

    2016-08-01

    Full Text Available Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213 and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897 anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256. For the strictly anaerobic species, a high precision (RSD < 3.5% was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells.

  13. Modified spectrophotometer for multi-dimensional circular dichroism/fluorescence data acquisition in titration experiments: application to the pH and guanidine-HCI induced unfolding of apomyoglobin.

    Science.gov (United States)

    Ramsay, G; Ionescu, R; Eftink, M R

    1995-01-01

    In a previous paper (Ramsay and Eftink, Biophys. J. 66:516-523) we reported the development of a modified spectrophotometer that can make nearly simultaneous circular dichroism (CD) and fluorescence measurements. This arrangement allows multiple data sets to be collected during a single experiment, resulting in a saving of time and material, and improved correlation between the different types of measurements. The usefulness of the instrument was shown by thermal melting experiments on several different protein systems. This CD/fluorometer spectrophotometer has been further modified by interfacing with a syringe pump and a pH meter. This arrangement allows ligand, pH, and chemical denaturation titration experiments to be performed while monitoring changes in the sample's CD, absorbance, fluorescence, and light scattering properties. Our data acquisition program also has an ability to check whether the signals have approached equilibrium before the data is recorded. For performing pH titrations we have developed a procedure which uses the signal from a pH meter in a feedback circuit in order to collect data at evenly spaced pH intervals. We demonstrate the use of this instrument with studies of the unfolding of sperm whale apomyoglobin, as induced by acid pH and by the addition of guanidine-HCI. Images FIGURE 2 PMID:8527683

  14. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria.

    Science.gov (United States)

    Maia, Margarida R G; Marques, Sara; Cabrita, Ana R J; Wallace, R John; Thompson, Gertrude; Fonseca, António J M; Oliveira, Hugo M

    2016-01-01

    Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells.

  15. Multicomponent kinetic determination of lanthanides with stopped-flow, diode array spectrophotometry and the extended Kalman filter

    International Nuclear Information System (INIS)

    Quencer, B.M.; Crouch, S.R.

    1994-01-01

    The application of the extended Kalman filter to multicomponent kinetic data is described. The method is based on obtaining data at multiple wavelengths over time using a linear photodiode array detector. The extended Kalman filter is used to process the data obtained. It is shown that accurate results can be obtained even if the estimated value of the rate constant is not completely accurate or reproducible. No pH, ionic strength, or temperature controls were used in testing the chemical system. A system of three lanthanides reacting with 4-(2-pyridylazo)resorcinol (PAR) was used. Accurate estimates of concentrations were obtained even though the relative rate constants for the reactions of La, Pr, and Nd with PAR were 1:1.7:1.9, and a high degree of spectral overlap is present. 23 refs., 4 figs., 4 tabs

  16. A Laboratory Application of Microcomputer Graphics.

    Science.gov (United States)

    Gehring, Kalle B.; Moore, John W.

    1983-01-01

    A PASCAL graphics and instrument interface program for a Z80/S-100 based microcomputer was developed. The computer interfaces to a stopped-flow spectrophotometer replacing a storage oscilloscope and polaroid camera. Applications of this system are discussed, indicating that graphics and analog-to-digital boards have transformed the computer into…

  17. An enzymatic method for the rapid measurement of the hemoglobin A1c by a flow-injection system comprised of an electrochemical detector with a specific enzyme-reactor and a spectrophotometer

    International Nuclear Information System (INIS)

    Nanjo, Yoko; Hayashi, Ryuzo; Yao, Toshio

    2007-01-01

    A flow-injection analytical (FIA) system, comprised of an electrochemical detector with a fructosyl-peptide oxidase (FPOX-CET) reactor and a flow-type spectrophotometer, was proposed for the simultaneous measurement of glycohemoglobin and total hemoglobin in blood cell. The blood cell samples were hemolyzed with a surfactant and then treated with protease. In the first stage of operation, total hemoglobin in digested sample was determined spectrophotometrically. In the second stage, fructosyl valyl histidine (FVH) released from glycohemoglobin by the selective proteolysis was determined specifically using the electrochemical detector with the FPOX-CET reactor. The FIA system could be automatically processed at an analytical speed of 40 samples per hour. The proposed assay method could determine selectively only the glycated N-terminal residue of β-chain in glycohemoglobin and total hemoglobin in blood cell. The enzymatic hemoglobin A 1c (HbA 1c ) value calculated by the concentration ratio of the FVH to total hemoglobin, was closely correlated with the HbA 1c values certified by the Japan Diabetic Society (JDS) and the International Federation of Clinical Chemistry (IFCC)

  18. OBSERVATIONS OF FIVE-MINUTE SOLAR OSCILLATIONS IN THE CORONA USING THE EXTREME ULTRAVIOLET SPECTROPHOTOMETER (ESP) ON BOARD THE SOLAR DYNAMICS OBSERVATORY EXTREME ULTRAVIOLET VARIABILITY EXPERIMENT (SDO/EVE)

    International Nuclear Information System (INIS)

    Didkovsky, L.; Judge, D.; Wieman, S.; Kosovichev, A. G.; Woods, T.

    2011-01-01

    We report on the detection of oscillations in the corona in the frequency range corresponding to five-minute acoustic modes of the Sun. The oscillations have been observed using soft X-ray measurements from the Extreme Ultraviolet Spectrophotometer (ESP) of the Extreme Ultraviolet Variability Experiment on board the Solar Dynamics Observatory. The ESP zeroth-order channel observes the Sun as a star without spatial resolution in the wavelength range of 0.1-7.0 nm (the energy range is 0.18-12.4 keV). The amplitude spectrum of the oscillations calculated from six-day time series shows a significant increase in the frequency range of 2-4 mHz. We interpret this increase as a response of the corona to solar acoustic (p) modes and attempt to identify p-mode frequencies among the strongest peaks. Due to strong variability of the amplitudes and frequencies of the five-minute oscillations in the corona, we study how the spectrum from two adjacent six-day time series combined together affects the number of peaks associated with the p-mode frequencies and their amplitudes. This study shows that five-minute oscillations of the Sun can be observed in the corona in variations of the soft X-ray emission. Further investigations of these oscillations may improve our understanding of the interaction of the oscillation modes with the solar atmosphere, and the interior-corona coupling, in general.

  19. Determination of fat, moisture, and protein in meat and meat products by using the FOSS FoodScan Near-Infrared Spectrophotometer with FOSS Artificial Neural Network Calibration Model and Associated Database: collaborative study.

    Science.gov (United States)

    Anderson, Shirley

    2007-01-01

    A collaborative study was conducted to evaluate the repeatability and reproducibility of the FOSS FoodScan near-infrared spectrophotometer with artificial neural network calibration model and database for the determination of fat, moisture, and protein in meat and meat products. Representative samples were homogenized by grinding according to AOAC Official Method 983.18. Approximately 180 g ground sample was placed in a 140 mm round sample dish, and the dish was placed in the FoodScan. The operator ID was entered, the meat product profile within the software was selected, and the scanning process was initiated by pressing the "start" button. Results were displayed for percent (g/100 g) fat, moisture, and protein. Ten blind duplicate samples were sent to 15 collaborators in the United States. The within-laboratory (repeatability) relative standard deviation (RSD(r)) ranged from 0.22 to 2.67% for fat, 0.23 to 0.92% for moisture, and 0.35 to 2.13% for protein. The between-laboratories (reproducibility) relative standard deviation (RSD(R)) ranged from 0.52 to 6.89% for fat, 0.39 to 1.55% for moisture, and 0.54 to 5.23% for protein. The method is recommended for Official First Action.

  20. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission

    Science.gov (United States)

    Sun, Xiangcheng; Brückner, Christian; Lei, Yu

    2015-10-01

    Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications.Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications. Electronic supplementary information (ESI) available: Detailed experimental section, XRD, FTIR, explosive sensing and the applications results. See DOI: 10.1039/c5nr05549k

  1. Pulsed hybrid dual wavelength Y-branch-DFB laser-tapered amplifier system suitable for water vapor detection at 965 nm with 16 W peak power

    Science.gov (United States)

    Vu, Thi N.; Klehr, Andreas; Sumpf, Bernd; Hoffmann, Thomas; Liero, Armin; Tränkle, Günther

    2016-03-01

    A master oscillator power amplifier system emitting alternatingly at two neighbored wavelengths around 965 nm is presented. As master oscillator (MO) a Y-branch DFB-laser is used. The two branches, which can be individually controlled, deliver the two wavelengths needed for a differential absorption measurement of water vapor. Adjusting the current through the DFB sections, the wavelength can be adjusted with respect to the targeted either "on" or "off" resonance, respectively wavelength λon or wavelength λoff. The emission of this laser is amplified in a tapered amplifier (TA). The ridge waveguide section of the TA acts as optical gate to generate short pulses with duration of 8 ns at a repetition rate of 25 kHz, the flared section is used for further amplification to reach peak powers up to 16 W suitable for micro-LIDAR (Light Detection and Ranging). The necessary pulse current supply user a GaN-transistor based driver electronics placed close to the power amplifier (PA). The spectral properties of the emission of the MO are preserved by the PA. A spectral line width smaller than 10 pm and a side mode suppression ratio (SMSR) of 37 dB are measured. These values meet the demands for water vapor absorption measurements under atmospheric conditions.

  2. Selective determination of thorium in water using dual-wavelength β-correction spectrophotometry and the reagent 4-(2-pyridylazo)-resorcinol

    International Nuclear Information System (INIS)

    Kadi, M.W.; El-Shahawi, M.S.

    2011-01-01

    A simple, fast, low cost, and precise direct β-correction spectrophotometric method was developed for thorium determination in water. The method is based on the reaction of Th(IV) with 4-(2-pyridylazo)-resorcinol (PAR) in aqueous solution of pH 5-6 and measuring the absorbance of the resulting red-colored complex at λ max 497 nm. The effective molar absorptivity of the Th(IV)-PAR complex was 2.52 x 10 4 L mol -1 cm -1 . Beer's law and Ringbom plots were obeyed in the concentration range 0.04-2.0 and 0.07-1.2 μg mL -1 of thorium ions using β-correction spectrophotometry, respectively. The limits of detection and quantification of Th(IV) were 0.02 and 0.066 μg mL -1 , respectively. The developed method was applied for the analysis of thorium in certified reference material (IAEA-soil-7), tap-, underground- and Red-sea water samples. The validation of the method was also tested by comparison with data obtained by ICP-MS. The method is convenient, less sensitive to common interfering species and less laborious than most of published methods. The statistical treatment of data in terms of Student t-tests and variance ratio f-tests has revealed no significance differences. The structure of the Th(IV)-PAR complex was determined with the aid of spectroscopic measurements (UV-Visible and Fourier Transform Infrared Spectroscopy). (author)

  3. Dual-wavelength photo-Hall effect spectroscopy of deep levels in high resistive CdZnTe with negative differential photoconductivity

    Science.gov (United States)

    Musiienko, A.; Grill, R.; Moravec, P.; Korcsmáros, G.; Rejhon, M.; Pekárek, J.; Elhadidy, H.; Šedivý, L.; Vasylchenko, I.

    2018-04-01

    Photo-Hall effect spectroscopy was used in the study of deep levels in high resistive CdZnTe. The monochromator excitation in the photon energy range 0.65-1.77 eV was complemented by a laser diode high-intensity excitation at selected photon energies. A single sample characterized by multiple unusual features like negative differential photoconductivity and anomalous depression of electron mobility was chosen for the detailed study involving measurements at both the steady and dynamic regimes. We revealed that the Hall mobility and photoconductivity can be both enhanced and suppressed by an additional illumination at certain photon energies. The anomalous mobility decrease was explained by an excitation of the inhomogeneously distributed deep level at the energy Ev + 1.0 eV, thus enhancing potential non-uniformities. The appearance of negative differential photoconductivity was interpreted by an intensified electron occupancy of that level by a direct valence band-to-level excitation. Modified Shockley-Read-Hall theory was used for fitting experimental results by a model comprising five deep levels. Properties of the deep levels and their impact on the device performance were deduced.

  4. F-band millimeter-wave signal generation for wireless link data transmission using on-chip photonic integrated dual-wavelength sources

    NARCIS (Netherlands)

    Guzman, Robinson; Carpintero, G.; Gordon Gallegos, Carlos; Lawniczuk, Katarzyna; Leijtens, Xaveer

    2015-01-01

    Millimeter-waves (30-300 GHz) have interest due to the wide bandwidths available for carrying information, enabling broadband wireless communications. Photonics is a key technology for millimeter wave signal generation, recently demonstrating the use of photonic integration to reduce size and cost.

  5. Optoelectronic cross-injection locking of a dual-wavelength photonic integrated circuit for low-phase-noise millimeter-wave generation.

    Science.gov (United States)

    Kervella, Gaël; Van Dijk, Frederic; Pillet, Grégoire; Lamponi, Marco; Chtioui, Mourad; Morvan, Loïc; Alouini, Mehdi

    2015-08-01

    We report on the stabilization of a 90-GHz millimeter-wave signal generated from a fully integrated photonic circuit. The chip consists of two DFB single-mode lasers whose optical signals are combined on a fast photodiode to generate a largely tunable heterodyne beat note. We generate an optical comb from each laser with a microwave synthesizer, and by self-injecting the resulting signal, we mutually correlate the phase noise of each DFB and stabilize the beatnote on a multiple of the frequency delivered by the synthesizer. The performances achieved beat note linewidth below 30 Hz.

  6. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2012-05-30

    Fluorine was determined via the rotational molecular absorption line of aluminum mono fluoride (AlF) generated in C(2)H(2)/N(2)O flame at 227.4613 nm using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS). The effects of AlF wavelength, burner height, fuel rate (C(2)H(2)/N(2)O) and amount of Al on the accuracy, precision and sensitivity were investigated and optimized. The Al-F absorption band at 227.4613 nm was found to be the most suitable analytical line with respect to sensitivity and spectral interferences. Maximum sensitivity and a good linearity were obtained in acetylene-nitrous oxide flame at a flow rate of 210 L h(-1) and a burner height of 8mm using 3000 mg L(-1) of Al for 10-1000 mg L(-1)of F. The accuracy and precision of the method were tested by analyzing spiked samples and waste water certified reference material. The results were in good agreement with the certified and spiked amounts as well as the precision of several days during this study was satisfactory (RSD<10%). The limit of detection and characteristic concentration of the method were 5.5 mg L(-1) and 72.8 mg L(-1), respectively. Finally, the fluorine concentrations in several toothpaste samples were determined. The results found and given by the producers were not significantly different. The method was simple, fast, accurate and sensitive. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. SphinX x-ray spectrophotometer

    Science.gov (United States)

    Kowaliński, Mirosław

    2012-05-01

    This paper presents assumptions to a PhD thesis. The thesis will be based on the construction of Solar Photometer in X-rays (SphinX). SphinX was an instrument developed to detect the soft X-rays from the Sun. It was flown on board the Russian CORONAS-Photon satellite from January 30, 2009 to the end of November, 2009. During 9 months in orbit SphinX provided an excellent and unique set of observations. It revealed about 750 flares and brightenings. The instrument observed in energy range 1.0 - 15.0 keV with resolution below ~0.5 keV. Here, the SphinX instrument objectives, design, performance and operation principle are described. Below results of mechanical and thermal - vacuum tests necessary to qualify the instrument to use in space environment are presented. Also the calibration results of the instrument are discussed. In particular detail it is described the Electrical Ground Support Equipment (EGSE) for SphinX. The EGSE was used for all tests of the instrument. At the end of the paper results obtained from the instrument during operation in orbit are discussed. These results are compared with the other similar measurements performed from the separate spacecraft instruments. It is suggested design changes in future versions of SphinX.

  8. Espectrofotometria de longo caminho óptico em espectrofotômetro de duplo-feixe convencional: uma alternativa simples para investigações de amostras com densidade óptica muito baixa Long optical path length spectrophotometry in conventional double-beam spectrophotometers: a simple alternative for investigating samples of very low optical density

    Directory of Open Access Journals (Sweden)

    André Luiz Galo

    2009-01-01

    Full Text Available We describe the design and tests of a set-up mounted in a conventional double beam spectrophotometer, which allows the determination of optical density of samples confined in a long liquid core waveguide (LCW capillary. Very long optical path length can be achieved with capillary cell, allowing measurements of samples with very low optical densities. The device uses a custom optical concentrator optically coupled to LCW (TEFLON® AF. Optical density measurements, carried out using a LCW of ~ 45 cm, were in accordance with the Beer-Lambert Law. Thus, it was possible to analyze quantitatively samples at concentrations 45 fold lower than that regularly used in spectrophotometric measurements.

  9. Reviews Book: The Babylonian Theorem Video Game: BrainBox360 (Physics Edition) Book: Teaching and Learning Science: Towards a Personalized Approach Book: Good Practice in Science Teaching: What Research Has to Say Equipment: PAPERSHOW Equipment: SEP Steady State Bottle Kit Equipment: Sciencescope Datalogging Balance Equipment: USB Robot Arm Equipment: Sciencescope Spectrophotometer Web Watch

    Science.gov (United States)

    2010-07-01

    WE RECOMMEND Good Practice in Science Teaching: What Research Has to Say Book explores and summarizes the research Steady State Bottle Kit Another gem from SEP Sciencescope Datalogging Balance Balance suits everyday use Sciencescope Spectrophotometer Device displays clear spectrum WORTH A LOOK The Babylonian Theorem Text explains ancient Egyptian mathematics BrainBox360 (Physics Edition) Video game tests your knowledge Teaching and Learning Science: Towards a Personalized Approach Book reveals how useful physics teachers really are PAPERSHOW Gadget kit is useful but has limitations Robotic Arm Kit with USB PC Interface Robot arm teaches programming WEB WATCH Simple applets teach complex topics

  10. Reviews Equipment: Vibration detector Equipment: SPARK Science Learning System PS-2008 Equipment: Pelton wheel water turbine Book: Atomic: The First War of Physics and the Secret History of the Atom Bomb 1939-49 Book: Outliers: The Story of Success Book: T-Minus: The Race to the Moon Equipment: Fridge Rover Equipment: Red Tide School Spectrophotometer Web Watch

    Science.gov (United States)

    2010-03-01

    WE RECOMMEND Vibration detector SEP equipment measures minor tremors in the classroom SPARK Science Learning System PS-2008 Datalogger is easy to use and has lots of added possibilities Atomic: The First War of Physics and the Secret History of the Atom Bomb 1939-49 Book is crammed with the latest on the atom bomb T-Minus: The Race to the Moon Graphic novel depicts the politics as well as the science Fridge Rover Toy car can teach magnetics and energy, and is great fun Red Tide School Spectrophotometer Professional standard equipment for the classroom WORTH A LOOK Pelton wheel water turbine Classroom-sized version of the classic has advantages Outliers: The Story of Success Study of why maths is unpopular is relevant to physics teaching WEB WATCH IOP webcasts are improving but are still not as impressive as Jodrell Bank's Chromoscope website

  11. Stopped-flow studies of the reaction of D-tartronate semialdehyde-2-phosphate with human neuronal enolase and yeast enolase 1.

    Science.gov (United States)

    Brewer, John M; McKinnon, Jared S; Phillips, Robert S

    2010-03-05

    We determined the kinetics of the reaction of human neuronal enolase and yeast enolase 1 with the slowly-reacting chromophoric substrate D-tartronate semialdehyde phosphate (TSP), each in tris (tris (hydroxymethyl) aminomethane) and another buffer at several Mg2+ concentrations, 50 or 100 microM, 1 mM and 30 mM. All data were biphasic, and could be satisfactorily fit, assuming either two successive first-order reactions or two independent first-order reactions. Higher Mg2+ concentrations reduce the relative magnitude of the slower reaction. The results are interpreted in terms of a catalytically significant interaction between the two subunits of these enzymes. Copyright (c) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Kinetics and Mechanistic Study of the Ruthenium(III Catalysed Oxidative Decarboxylation of L-Proline by Alkaline Heptavalent Manganese (Stopped flow technique

    Directory of Open Access Journals (Sweden)

    R. S. Shettar

    2005-01-01

    Full Text Available The kinetics of ruthenium(III catalysed oxidation of L-Proline by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically using a rapid kinetic accessory. The reaction between permanganate and L-Proline in alkaline medium exhibits 2:1 stoichiometry (KMnO4: L-Proline. The reaction shows first order dependence on [permanganate] and [ruthenium(III] and apparent less than unit order dependence each in L-Proline and alkali concentrations. Reaction rate increases with increase in ionic strength and decrease in solvent polarity of the medium. Initial addition of reaction products did not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The activation parameters were computed with respect to the slow step of the mechanism and discussed

  13. Release of Halide Ions from the Buried Active Site of the Haloalkane Dehalogenase LinB Revealed by Stopped-Flow Fluorescence Analysis and Free Energy Calculations

    Czech Academy of Sciences Publication Activity Database

    Hladílková, Jana; Prokop, Z.; Chaloupková, R.; Damborský, J.; Jungwirth, Pavel

    2013-01-01

    Roč. 117, č. 46 (2013), s. 14329-14335 ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016 Grant - others:GA ČR(CZ) GAP207/12/0775 Program:GA Institutional support: RVO:61388963 Keywords : access tunnel * buried active site * catalytic activity * enzyme mechanism * haloalkane dehalogenase * halide ions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  14. Preliminary assessments of portable color spectrophotometer measurements of cotton color

    Science.gov (United States)

    Cotton in the U.S. is classified for color with the Uster® High Volume Instrument (HVI), using the parameters Rd (diffuse reflectance) and +b (yellowness). It has been reported that some cotton bales, especially those transported overseas, appear to have changed significantly in color from their in...

  15. Minimization of operational impacts on spectrophotometer color measurements for cotton

    Science.gov (United States)

    A key cotton quality and processing property that is gaining increasing importance is the color of the cotton. Cotton fiber in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), using the parameters Rd and +b. Rd and +b are specific to cotton fiber and are not typical ...

  16. Fiber sample presentation system for spectrophotometer cotton fiber color measurements

    Science.gov (United States)

    The Uster® High Volume Instrument (HVI) is used to class U.S. cotton for fiber color, yielding the industry accepted, cotton-specific color parameters Rd and +b. The HVI examines a 9 square inch fiber sample, and it is also used to test large AMS standard cotton “biscuits” or rectangles. Much inte...

  17. At-line cotton color measurements by portable color spectrophotometers

    Science.gov (United States)

    As a result of reports of cotton bales that had significant color changes from their initial Uster® High Volume Instrument (HVI™) color measurements, a program was implemented to measure cotton fiber color (Rd, +b) at-line in remote locations (warehouse, mill, etc.). The measurement of cotton fiber...

  18. IMPROVED SPECTROPHOTOMETER FIBER SAMPLING SYSTEM FOR COTTON FIBER COLOR MEASUREMENTS

    Science.gov (United States)

    Cotton in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), and the parameters Rd and +b are used to designate color grades for cotton fiber. However, Rd and +b are cotton-specific color parameters, and the need existed to demonstrate the relationships of Rd and +b to...

  19. Effect of Temperature towards RNA Concentration: Quantitative Investigation with Spectrophotometer

    Directory of Open Access Journals (Sweden)

    Feby Fariska Savira

    2016-06-01

    Full Text Available Ribonucleic acid (RNA is a thermodynamically unstable molecule. The way RNA samples are preserved is critical to maintain maximum yield and quality, therefore it is useful for molecular analysis such as real time- PCR. There are many contradictions and variations regarding the temperature for RNA storage. The aim of this study is to find the ideal temperature to store RNA among -80o C, -20o C and 4oC by determining changes in RNA concentration over two weeks of storage time. The liver of eight rats was divided into three groups, weighing from 25-26 μg. Samples were homogenized, isolated and stored in -80oC, -20oC and 4oC freezers. Absorbance was measured with spectrophotometry at 260 and 280 nm to determine the concentration of RNA. There was no significant difference in the concentration of RNA samples stored in all temperatures after two weeks, both experimentally and statistically (Kruskal-Wallis, -80oC p=0.949; -20oC p=0.885; 4oC p=0.935. In conclusion, RNA can be stored in -80oC, -20oC and 4oC for two weeks without quantity reduction. Longer duration of study and RNA quality analysis is recommended to check for RNA degradation. Keywords: RNA, temperature, concentration, storage, spectrophotometry Efek Suhu terhadap Konsentrasi RNA: Investigasi Kuantitatif dengan Spektrofotometer Abstrak Ribonucleic acid (RNA adalah molekul yang tidak stabil secara termodinamik. Cara penyimpanan RNA sangat kritis untuk menjaga kuantitas dan kualitasnya agar dapat digunakan untuk analisis molekuler seperti real time-PCR. Tujuan penelitian ini adalah mengetahui suhu ideal penyimpanan RNA di antara -80oC, -20oC dan 4oC dengan melihat perubahan pada konsentrasi RNA selama dua minggu masa penyimpanan. Delapan hati tikus dibagi menjadi tiga kelompok dengan berat sampel 25-26 μg. Sampel hati dihomogenisasi dan diisolasi, lalu disimpan pada suhu -80oC, -20oC and 4oC. Absorbansi diukur dengan spektrofotometri pada gelombang cahaya 260 dan 280 nm untuk mendapatkan konsentrasi RNA. Tidak ditemukan perbedaan bermakna antara konsentrasi RNA dengan ketiga suhu penyimpanan selama dua minggu, baik secara eksperimental maupun secara statistik (Kruskal-Wallis, -80oC p=0,949; -20oC p=0,885; 4oC p=0,935. Disimpulkan bahwa RNA dapat disimpan pada suhu -80oC, -20oC dan 4oC selama dua minggu tanpa perubahan kuantitas. Durasi percobaan sebaiknya diperpanjang dan analisis kualitas RNA dapat dilakukan untuk melihat apablia ada degradasi terhadap RNA. Kata kunci: RNA, suhu, konsentrasi, penyimpanan, spektrofotometri Normal 0 false false false IN X-NONE X-NONE

  20. Data acquisition system for electronic paramagnetic resonance spectrophotometer

    International Nuclear Information System (INIS)

    Pena Eguiluz, R.

    1992-01-01

    In the Atomic and Molecular Physics Laboratory at the Physics Department of the Instituto Nacional de Investigaciones Nucleares (ININ), there is in operation an electronic paramagnetic resonance spectrometer (EPR). This equipment is utilized for determine, the distribution of the absorbed energy intensity for a sample of paramagnetic substance by means of the study and analysis of its emission lines spectrum. The useful information is provided as a graphic result showing the spectrum corresponding to the analyzed sample. In similar devices like this, the researchers problem, trying to get the important information, is a hard and imprecise work, thus, this process of find the ordinate magnitudes of a approximately two hundred points, equal spaced in the spectrum, is carried out completely by hand. After this, the information is captured and processed in a personal computer. As a solution for this problem, an interface in both aspects, hardware and software adaptable to a personal computer, was designed and constructed. This interface is able to: a) To get and digitized the analogical signal, that represents the corresponding spectrum curve. b) It stores the digitized information in files and c) It displays in graphic mode the stored data, and then these are normalized in order to be transferred to a statistics and analytical software packets (Author)

  1. Spectrophotometers for plutonium monitoring in HB-line

    Energy Technology Data Exchange (ETDEWEB)

    Lascola, R. J. [Savannah River Site (SRS), Aiken, SC (United States); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States); Kyser, E. A. [Savannah River Site (SRS), Aiken, SC (United States); Immel, D. M. [Savannah River Site (SRS), Aiken, SC (United States); Plummer, J. R. [Savannah River Site (SRS), Aiken, SC (United States); Evans, E. V. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-12

    This report describes the equipment, control software, calibrations for total plutonium and plutonium oxidation state, and qualification studies for the instrument. It also provides a detailed description of the uncertainty analysis, which includes source terms associated with plutonium calibration standards, instrument drift, and inter-instrument variability. Also included are work instructions for instrument, flow cell, and optical fiber setup, work instructions for routine maintenance, and drawings and schematic diagrams.

  2. Spec UV-Vis: An Ultraviolet-Visible Spectrophotometer Simulation

    Science.gov (United States)

    Papadopoulos, N.; Limniou, Maria; Koklamanis, Giannis; Tsarouxas, Apostolos; Roilidis, Mpampis; Bigger, Stephen W.

    2001-11-01

    The software and its accompanying manual can be used to illustrate the recording of an absorption spectrum and the Beer-Lambert law (5-7) as well as various aspects of acid-base indicators such as the spectrophotometric determination of pKa (8), the isosbestic point (6, 9), and distribution diagrams (10, 11). Literature Cited Shiowatana, J. J. Chem. Educ. 1997, 74, 730. Altemose, I. R. J. Chem. Educ. 1986, 63, A216, A262. Piepmeier, E. H. J. Chem. Educ. 1973, 50, 640. Lott, P. F. J. Chem. Educ. 1968, 45, A89, A169, A182, A273. Skoog, D. A.; West, D. M.; Holler, F. J. Fundamentals of Analytical Chemistry, 7th ed.; Saunders College Publishing: Fort Worth, TX, 1996, Chapters 22-24. Christian, G. D. Analytical Chemistry, 5th ed.; Wiley: New York, 1994; Chapter 14. Kennedy, J. H. Analytical Chemistry--Principles, 2nd ed.; Saunders College Publishing: New York, 1990; Chapters 11,12. Patterson, G. S. J. Chem. Educ. 1999, 76, 395. Harris, D. C. Quantitative Chemical Analysis, 5th ed.; Freeman: New York, 1997; Chapters 19, 20. Butler, J. N. Ionic Equilibrium--A Mathematical Approach; Addison-Wesley: Reading, MA, 1964; Chapter 5. Sawyer, C. A.; McCarty, P. L.; Parkin, G. F. Chemistry for Environmental Engineering, 4th ed.; McGraw-Hill: Singapore, 1994; Chapter 4.

  3. Dual-wavelength β-correction spectrophotometric determination of trace concentrations of cyanide ions based on the nucleophilic addition of cyanide to imine group of the new reagent 4-hydroxy-3-(2-oxoindolin-3-ylideneamino)-2-thioxo-2H-1,3-thiazin-6(3H)-one

    International Nuclear Information System (INIS)

    Hamza, A.; Bashammakh, A.S.; Al-Sibaai, A.A.; Al-Saidi, H.M.; El-Shahawi, M.S.

    2010-01-01

    A simple, fast, low cost and sensitive direct β-correction spectrophotometric assay of cyanide ions based on its reaction with the reagent 4-hydroxy-3-(2-oxoindolin-3-ylideneamino)-2-thioxo-2H-1, 3-thiazin-6(3H)-one, abbreviated as HOTT in aqueous media of pH 7-10 is described. The electronic spectrum of the produced brown-red colored species showed well defined and sharp peak at λ max = 466 nm. The effective molar absorptivity for the produced cyano compound was 2.5 x 10 4 L mol -1 cm -1 . Beer's law and Ringbom's plots were obeyed in the concentration range 0.05-2.0 and 0.30-1.5 μg mL -1 cyanide ions, respectively. The proposed method offers 16.0 and 50.3 μg L -1 lower limits of detection (LOD) and quantification (LOQ) of the cyanide ion, respectively. The analytical utility of the method for the analysis of cyanide ions in tap and drinking water samples was demonstrated and the results were compared successfully with the conventional cyanide ion selective electrode. The short time response and the detection by the naked eye make the method available for the detection and quantitative determination of cyanide in a variety of samples e.g. fresh and drinking water. Moreover, the structure of the produced colored species was determined with the aid of spectroscopic measurements (UV-Vis, IR, 1 H and 13 C NMR) and elemental analysis.

  4. Measurements of Nitrogen Dioxide Total Column Amounts using a Brewer Double Spectrophotometer in Direct Sun Mode

    Science.gov (United States)

    Cede, Alexander; Herman, Jay; Richter, Andreas; Krotkov, Nickolay; Burrows, John

    2006-01-01

    NO2 column amounts were measured for the past 2 years at Goddard Space Flight Center, Greenbelt, Maryland, using a Brewer spectrometer in direct Sun mode. A new bootstrap method to calibrate the instrument is introduced and described. This technique selects the cleanest days from the database to obtain the solar reference spectrum. The main advantage for direct Sun measurements is that the conversion uncertainty from slant column to vertical column is negligible compared to the standard scattered light observations where it is typically on the order of 100% (2sigma) at polluted sites. The total 2sigma errors of the direct Sun retrieved column amounts decrease with solar zenith angle and are estimated at 0.2 to 0.6 Dobson units (DU, 1 DU approx. equal to 2.7 10(exp 16) molecules cm(exp -2)), which is more accurate than scattered light measurements for high NO2 amounts. Measured NO2 column amounts, ranging from 0 to 3 DU with a mean of 0.7 DU, show a pronounced daily course and a strong variability from day to day. The NO2 concentration typically increases from sunrise to noon. In the afternoon it decreases in summer and stays constant in winter. As expected from the anthropogenic nature of its source, NO2 amounts on weekends are significantly reduced. The measurements were compared to satellite retrievals from Scanning Image Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Satellite data give the same average NO2 column and show a seasonal cycle that is similar to the ground data in the afternoon. We show that NO2 must be considered when retrieving aerosol absorption properties, especially for situations with low aerosol optical depth.

  5. Error analysis of Dobson spectrophotometer measurements of the total ozone content

    Science.gov (United States)

    Holland, A. C.; Thomas, R. W. L.

    1975-01-01

    A study of techniques for measuring atmospheric ozone is reported. This study represents the second phase of a program designed to improve techniques for the measurement of atmospheric ozone. This phase of the program studied the sensitivity of Dobson direct sun measurements and the ozone amounts inferred from those measurements to variation in the atmospheric temperature profile. The study used the plane - parallel Monte-Carlo model developed and tested under the initial phase of this program, and a series of standard model atmospheres.

  6. Coincident Observation of Lightning using Spaceborne Spectrophotometer and Ground-Level Electromagnetic Sensors

    Science.gov (United States)

    Adachi, Toru; Cohen, Morris; Li, Jingbo; Cummer, Steve; Blakeslee, Richard; Marshall, THomas; Stolzenberg, Maribeth; Karunarathne, Sumedhe; Hsu, Rue-Ron; Su, Han-Tzong; hide

    2012-01-01

    The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.

  7. Collection and processing of measurements from the atom absorption spectrophotometer AAS 1N

    International Nuclear Information System (INIS)

    Lorenz, G.; Bellmann, J.; Ehrhardt, H.

    1981-01-01

    The authors discuss the usage of the instrument in determining the concentrations of various substances as impurities in solids, and in solutions. Productivity can be aided substantially by using a mini-computer to analyse the measurements. In the installation described, paper tape is used as an intermediate data medium. (G.F.F.)

  8. Total ozone measurement: Intercomparison of prototype New Zealand filter instrument and Dobson spectrophotometer

    Science.gov (United States)

    Basher, R. E.

    1978-01-01

    A five month intercomparison showed that the total ozone amounts of a prototype narrowband interference filter instrument were 7% less than those of a Dobson instrument for an ozone range of 0.300 to 0.500 atm cm and for airmasses less than two. The 7% bias was within the intercomparison calibration uncertainty. An airmass dependence in the Dobson instrument made the bias relationship airmass-dependent but the filter instrument's ozone values were generally constant to 2% up to an airmass of four. Long term drift in the bias was negligible.

  9. Development of optimized detector/spectrophotometer technology for low background space astronomy missions

    Science.gov (United States)

    Jones, B.

    1985-01-01

    This program was directed towards a better understanding of some of the important factors in the performance of infrared detector arrays at low background conditions appropriate for space astronomy. The arrays were manufactured by Aerojet Electrosystems Corporation, Azusa. Two arrays, both bismuth doped silicon, were investigated: an AMCID 32x32 Engineering mosiac Si:Bi accumulation mode charge injection device detector array and a metal oxide semiconductor/field effect transistor (MOS-FET) switched array of 16x32 pixels.

  10. Two-channel cryostat for investigation of optical absorption on the UR-20 spectrophotometer

    International Nuclear Information System (INIS)

    Zhdanovich, N.S.; Kozlov, Yu.I.; Rodkin, E.A.

    1977-01-01

    A construction of two-channel cryostat for analysing absorption spectra in solids at 300 and 77 K is described. Measurements are made by the differential method. A specimen to be studied is placed in one of the channels and a reference specimen of the same thickness in the other. A spectral dependence of the absorption coefficient of Si alloyed with S has been obtained. Changes in the absorption are due to phototransitions of electrons from various levels of sulphur to the conduction band as the temperature is lowered from 300 to 77 K

  11. Evaluation of portable near infrared spectrophotometer to stage maturity in channel catfish

    Science.gov (United States)

    Gonadal maturity of channel catfish varies within the same cohort of fish. Female channel catfish with superior maturity need to be identified and staged for higher success to induce spawn wit ovulating hormones to produce channel x blue hybrid catfish fry in hatcheries. Maturation is not synchron...

  12. Measurement of Scattering Cross Section with a Spectrophotometer with an Integrating Sphere Detector.

    Science.gov (United States)

    Gaigalas, A K; Wang, Lili; Karpiak, V; Zhang, Yu-Zhong; Choquette, Steven

    2012-01-01

    A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm.

  13. A solid-state dedicated circularly polarized luminescence spectrophotometer: Development and application.

    Science.gov (United States)

    Harada, Takunori; Hayakawa, Hiroshi; Watanabe, Masayuki; Takamoto, Makoto

    2016-07-01

    A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample.

  14. Online in-tube microextractor coupled with UV-Vis spectrophotometer for bisphenol A detection.

    Science.gov (United States)

    Poorahong, Sujittra; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2013-01-01

    A simple and high extraction efficiency online in-tube microextractor (ITME) was developed for bisphenol A (BPA) detection in water samples. The ITME was fabricated by a stepwise electrodeposition of polyaniline, polyethylene glycol and polydimethylsiloxane composite (CPANI) inside a silico-steel tube. The obtained ITME coupled with UV-Vis detection at 278 nm was investigated. By this method, the extraction and pre-concentration of BPA in water were carried out in a single step. Under optimum conditions, the system provided a linear dynamic range of 0.1 to 100 μM with a limit of detection of 20 nM (S/N ≥3). A single in-tube microextractor had a good stability of more than 60 consecutive injections for 10.0 μM BPA with a relative standard deviation of less than 4%. Moreover, a good tube-to-tube reproducibility and precision were obtained. The system was applied to detect BPA in water samples from six brands of baby bottles and the results showed good agreement with those obtained from the conventional GC-MS method. Acceptable percentage recoveries from the spiked water samples were obtained, ranging from 83-102% for this new method compared with 73-107% for the GC-MS standard method. This new in-tube CPANI microextractor provided an excellent extraction efficiency and a good reproducibility. In addition, it can also be easily applied for the analysis of other polar organic compounds contaminated in water sample.

  15. Optimization of Maillard Reaction between Glucosamine and Other Precursors by Measuring Browning with a Spectrophotometer.

    Science.gov (United States)

    Ogutu, Benrick; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Hong, Dong-Lee; Lee, Yang-Bong

    2017-09-01

    The individual Maillard reactions of glucose, glucosamine, cyclohexylamine, and benzylamine were studied at a fixed temperature of 120°C under different durations by monitoring the absorbance of the final products at 425 nm. Glucosamine was the most individually reactive compound, whereas the reactions of glucose, cyclohexylamine, and benzylamine were not significantly different from each other. Maillard reactions of reaction mixtures consisting of glucosamine-cyclohexylamine, glucosamine-benzylamine, glucose-cyclohexylamine, and glucose-benzylamine were also studied using different concentration ratios under different durations at a fixed temperature of 120°C and pH 9. Maillard reactions in the pairs involving glucosamine were observed to be more intense than those of the pairs involving glucose. Finally, with respect to the concentration ratios, it was observed that in most instances, optimal activity was realized, when the reaction mixtures were in the ratio of 1:1.

  16. Validation of a spectrophotometer-based method for estimating daily sperm production and deferent duct transit.

    Science.gov (United States)

    Froman, D P; Rhoads, D D

    2012-10-01

    The objectives of the present work were 3-fold. First, a new method for estimating daily sperm production was validated. This method, in turn, was used to evaluate testis output as well as deferent duct throughput. Next, this analytical approach was evaluated in 2 experiments. The first experiment compared left and right reproductive tracts within roosters. The second experiment compared reproductive tract throughput in roosters from low and high sperm mobility lines. Standard curves were constructed from which unknown concentrations of sperm cells and sperm nuclei could be predicted from observed absorbance. In each case, the independent variable was based upon hemacytometer counts, and absorbance was a linear function of concentration. Reproductive tracts were excised, semen recovered from each duct, and the extragonadal sperm reserve determined by multiplying volume by sperm cell concentration. Testicular sperm nuclei were procured by homogenization of a whole testis, overlaying a 20-mL volume of homogenate upon 15% (wt/vol) Accudenz (Accurate Chemical and Scientific Corporation, Westbury, NY), and then washing nuclei by centrifugation through the Accudenz layer. Daily sperm production was determined by dividing the predicted number of sperm nuclei within the homogenate by 4.5 d (i.e., the time sperm with elongated nuclei spend within the testis). Sperm transit through the deferent duct was estimated by dividing the extragonadal reserve by daily sperm production. Neither the efficiency of sperm production (sperm per gram of testicular parenchyma per day) nor deferent duct transit differed between left and right reproductive tracts (P > 0.05). Whereas efficiency of sperm production did not differ (P > 0.05) between low and high sperm mobility lines, deferent duct transit differed between lines (P < 0.001). On average, this process required 2.2 and 1.0 d for low and high lines, respectively. In summary, we developed and then tested a method for quantifying male reproductive tract throughput. This method makes the study of semen production amenable to systems biology.

  17. Optical fiber-spectrophotometer coupling: when will the measurement be on line

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Ten years of research and development made at CEA in colorimetry and remote spectrometry by optical fibers allow to define more precisely the best conditions for on-line measurement in industrial process controls and in laboratory analysis in adverse environment. This article presents the new possibilities brought by this type of measurement. One of them is the simultaneous determination of many components; current studies concern the control ''in situ'' of uranium (IV) and (VI) and plutonium (III) and (IV) mixtures [fr

  18. Method development and validation of potent pyrimidine derivative by UV-VIS spectrophotometer.

    Science.gov (United States)

    Chaudhary, Anshu; Singh, Anoop; Verma, Prabhakar Kumar

    2014-12-01

    A rapid and sensitive ultraviolet-visible (UV-VIS) spectroscopic method was developed for the estimation of pyrimidine derivative 6-Bromo-3-(6-(2,6-dichlorophenyl)-2-(morpolinomethylamino) pyrimidine4-yl) -2H-chromen-2-one (BT10M) in bulk form. Pyrimidine derivative was monitored at 275 nm with UV detection, and there is no interference of diluents at 275 nm. The method was found to be linear in the range of 50 to 150 μg/ml. The accuracy and precision were determined and validated statistically. The method was validated as a guideline. The results showed that the proposed method is suitable for the accurate, precise, and rapid determination of pyrimidine derivative. Graphical Abstract Method development and validation of potent pyrimidine derivative by UV spectroscopy.

  19. S-Cam 3: Optical astronomy with a STJ-based imaging spectrophotometer

    International Nuclear Information System (INIS)

    Verhoeve, P.; Martin, D.D.E.; Hijmering, R.A.; Verveer, J.; Dordrecht, A. van; Sirbi, G.; Oosterbroek, T.; Peacock, A.

    2006-01-01

    S-Cam 3 is the third generation of a cryogenic camera, based on superconducting tunnel junctions (STJs), for ground-based optical astronomy, deployed at the 4.2 m William Herschel Telescope (WHT) at La Palma (Spain). It exploits a 10x12 pixel array of Ta/Al STJs, covering a field of view of ∼9''x11'' on the sky. The wavelength band extends from 330-750 nm, with a wavelength resolving power of ∼10 at 500 nm. The detectors are operated at ∼285 mK, achieved with a double stage 4 He- 3 He sorption cooler. Each pixel has its own electronic readout chain at room temperature, with a JFET-based charge sensitive preamplifier. The instrument has undergone extensive testing and calibration, followed by the first observation campaign at La Palma in July 2004. This campaign has focused on point sources with time variability, exploiting the instrument's unique combination of spectrophotometry with high time resolution

  20. Intercomparison of Aerosol Optical Depth from Brewer Ozone spectrophotometers and CIMEL sunphotometers measurements

    Directory of Open Access Journals (Sweden)

    A. Cheymol

    2009-01-01

    Full Text Available The Langley plot method applied on the Brewer Ozone measurements can provide accurate Aerosol Optical Depth (AOD in the UV-B. We present seven intercomparisons between AOD retrieved from Brewer Ozone measurements at 320 nm and AOD measured by CIMEL sunphotometer at 340 nm or 440 nm (shifted to 320 nm in using the Angström's law, which are stored in the international AERONET database. Only the intercomparisons between co-located instruments can be used to validate the Langley Plot Method applied to the Brewer measurements: in this case, all the correlation coefficients are above 0.82. If the instruments are not at the same site, the correlation between the AOD retrieved by both instruments is much lower. In applying the Angström's law the intercomparison is improved compared to previous study.

  1. Improvements in heavy water analysis using a ratio recording infrared spectrophotometer (Preprint No. CA-12)

    Energy Technology Data Exchange (ETDEWEB)

    Sutawane, U B; Alphonse, K P; Rathi, B N [Bhabha Atomic Research Centre, Bombay (India). Heavy Water Div.

    1989-04-01

    With a view to optimise existing analytical procedures for routine analyses of heavy water, studies were carried out using a ratio recording instrument with and without a reference beam attenuator in infrared spectrophotometric method. Absorbance difference as well as absorbance values with different path length cells were used for measurements. Due to various practical considerations, a method based on measurement of absorbance values rather than absorbance difference was found to be convenient for all routine work. However, scanning is essential since there is slight shifting of peak position. Measurements at fixed wave lengths should generally be avoided. Use of standards for calibration of instrument is essential and frequent check of calibration is recommended. Optimum conditions for analysis of heavy water in different ranges on the instrument used in this study are tabulated. (author). 6 refs., 1 tab.

  2. Improvements in heavy water analysis using a ratio recording infrared spectrophotometer (Preprint No. CA-12)

    International Nuclear Information System (INIS)

    Sutawane, U.B.; Alphonse, K.P.; Rathi, B.N.

    1989-04-01

    With a view to optimise existing analytical procedures for routine analyses of heavy water, studies were carried out using a ratio recording instrument with and without a reference beam attenuator in infrared spectrophotometric method. Absorbance difference as well as absorbance values with different path length cells were used for measurements. Due to various practical considerations, a method based on measurement of absorbance values rather than absorbance difference was found to be convenient for all routine work. However, scanning is essential since there is slight shifting of peak position. Measurements at fixed wave lengths should generally be avoided. Use of standards for calibration of instrument is essential and frequent check of calibration is recommended. Optimum conditions for analysis of heavy water in different ranges on the instrument used in this study are tabulated. (author). 6 refs., 1 tab

  3. HVI Colorimeter and Color Spectrophotometer Relationships and Their Impacts on Developing "Traceable" Cotton Color Standards

    Science.gov (United States)

    Color measurements of cotton fiber and cotton textile products are important quality parameters. The Uster® High Volume Instrument (HVI) is an instrument used globally to classify cotton quality, including cotton color. Cotton color by HVI is based on two cotton-specific color parameters—Rd (diffuse...

  4. A Colorimetric Analysis Experiment Not Requiring a Spectrophotometer: Quantitative Determination of Albumin in Powdered Egg White

    Science.gov (United States)

    Charlton, Amanda K.; Sevcik, Richard S.; Tucker, Dorie A.; Schultz, Linda D.

    2007-01-01

    A general science experiment for high school chemistry students might serve as an excellent review of the concepts of solution preparation, solubility, pH, and qualitative and quantitative analysis of a common food product. The students could learn to use safe laboratory techniques, collect and analyze data using proper scientific methodology and…

  5. Determination of Iron Content in Iron Deficiency Drugs by UV-Visible Spectrophotometer

    Directory of Open Access Journals (Sweden)

    Isam Eldin Hussein Elgailani

    2017-07-01

    Full Text Available The objective of this work was to validate a simple, precise and accurate spectrophotometric method for the determination of iron in the iron deficiency drugs, namely are Feroglobin B12, Ferose-F and Ferose. The proposed method is based on the reaction of iron with ammonium thiocyanate after the wet digestion of the drugs under study with HNO3 and H2O2.  Effects of pH, temperature, standing time and thiocyanate concentration on the determination of iron in drugs containing iron have been investigated. The λmax was 430 nm and the molar absorptivity of 0.0399 L mol-1 cm-1. The linear regression was in the range 0.5 - 60 μg/mL for iron content in hemoglobin. The detection limit and the limit of quantification were found to be 0.040 and 0.122 µg mL-1 for the iron respectively, and with a linear regression correlation coefficient of 0.998. Recovery measurements ranged from 99.63-100.20%. This method is simple and fast can be used for the determination of iron in the iron deficiency drugs in pharmaceutical laboratories. DOI: http://dx.doi.org/10.17807/orbital.v9i3.953

  6. Teaching UV-Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer

    Science.gov (United States)

    Grasse, Elise K.; Torcasio, Morgan H.; Smith, Adam W.

    2016-01-01

    Visible absorbance spectroscopy is a widely used tool in chemical, biochemical, and medical laboratories. The theory and methods of absorbance spectroscopy are typically introduced in upper division undergraduate chemistry courses, but could be introduced earlier with the right curriculum and instrumentation. A major challenge in teaching…

  7. The standard calibration instrument automation system for the atomic absorption spectrophotometer. Part 3: Program documentation

    Science.gov (United States)

    Ryan, D. P.; Roth, G. S.

    1982-04-01

    Complete documentation of the 15 programs and 11 data files of the EPA Atomic Absorption Instrument Automation System is presented. The system incorporates the following major features: (1) multipoint calibration using first, second, or third degree regression or linear interpolation, (2) timely quality control assessments for spiked samples, duplicates, laboratory control standards, reagent blanks, and instrument check standards, (3) reagent blank subtraction, and (4) plotting of calibration curves and raw data peaks. The programs of this system are written in Data General Extended BASIC, Revision 4.3, as enhanced for multi-user, real-time data acquisition. They run in a Data General Nova 840 minicomputer under the operating system RDOS, Revision 6.2. There is a functional description, a symbol definitions table, a functional flowchart, a program listing, and a symbol cross reference table for each program. The structure of every data file is also detailed.

  8. Reflection coefficients of permeant molecules in human red cell suspensions.

    Science.gov (United States)

    Owen, J D; Eyring, E M

    1975-08-01

    The Staverman reflection coefficient, sigma for several permeant molecules was determined in human red cell suspensions with a Durrum stopped-flow spectrophotometer. This procedure was first used with dog, cat, and beef red cells and with human red cells. The stopped-flow technique used was similar to the rapid-flow method used by those who originally reported sigma measurements in human red cells for molecules which rapidly penetrate the red cell membrane. The sigma values we obtained agreed with those previously reported for most of the slow penetrants, except malonamide, but disagreed with all the sigma values previously reported for the rapid penetrants. We were unable to calculate an "equivalent pore radius" with our sigma data. The advantages of our equipment and our experimental procedure are discussed. Our sigma data suggest that sigma is indirectly proportional to the log of the nonelectrolyte permeability coefficient, omega. Since a similar trend has been previously shown for log omega and molar volume of the permeant molecules, a correlatioo was shown between sigma and molar volume suggesting the membrane acts as a sieve.

  9. The kinetics of the cerium(IV)-uranium(IV) reaction at low sulfate concentrations

    International Nuclear Information System (INIS)

    Michaille, P.; Kikindai, T.

    1977-01-01

    The rate of oxidation of uranium(IV) by cerium(IV) was measured with a stopped-flow spectrophotometer at sulfuric acid concentrations of 2 x 10 -6 to 0.5 M. At a constant hydrogen ion concentration of 0.5 M, the maximum rate constant was observed for 2 x 10 -3 M sulfuric acid; at that concentration, two sulfate ions were involved in the activated complex. The dependence of the rate constant on the hydrogen ion concentration showed that the reaction paths involving one or two sulfate ions also involved one hydroxyl ion, whereas one hydrogen ion was involved in the five sulfate dependent path. Spectrophotometric measurements supported the existence of a hydrolyzed monosulfatocomplex of cerium(IV). (author)

  10. Instrument workstation for the EGSE of the Near Infrared Spectro-Photometer instrument (NISP) of the EUCLID mission

    Science.gov (United States)

    Trifoglio, M.; Gianotti, F.; Conforti, V.; Franceschi, E.; Stephen, J. B.; Bulgarelli, A.; Fioretti, V.; Maiorano, E.; Nicastro, L.; Valenziano, L.; Zoli, A.; Auricchio, N.; Balestra, A.; Bonino, D.; Bonoli, C.; Bortoletto, F.; Capobianco, V.; Chiarusi, T.; Corcione, L.; Debei, S.; De Rosa, A.; Dusini, S.; Fornari, F.; Giacomini, F.; Guizzo, G. P.; Ligori, S.; Margiotta, A.; Mauri, N.; Medinaceli, E.; Morgante, G.; Patrizii, L.; Sirignano, C.; Sirri, G.; Sortino, F.; Stanco, L.; Tenti, M.

    2016-07-01

    The NISP instrument on board the Euclid ESA mission will be developed and tested at different levels of integration using various test equipment which shall be designed and procured through a collaborative and coordinated effort. The NISP Instrument Workstation (NI-IWS) will be part of the EGSE configuration that will support the NISP AIV/AIT activities from the NISP Warm Electronics level up to the launch of Euclid. One workstation is required for the NISP EQM/AVM, and a second one for the NISP FM. Each workstation will follow the respective NISP model after delivery to ESA for Payload and Satellite AIV/AIT and launch. At these levels the NI-IWS shall be configured as part of the Payload EGSE, the System EGSE, and the Launch EGSE, respectively. After launch, the NI-IWS will be also re-used in the Euclid Ground Segment in order to support the Commissioning and Performance Verification (CPV) phase, and for troubleshooting purposes during the operational phase. The NI-IWS is mainly aimed at the local storage in a suitable format of the NISP instrument data and metadata, at local retrieval, processing and display of the stored data for on-line instrument assessment, and at the remote retrieval of the stored data for off-line analysis on other computers. We describe the design of the IWS software that will create a suitable interface to the external systems in each of the various configurations envisaged at the different levels, and provide the capabilities required to monitor and verify the instrument functionalities and performance throughout all phases of the NISP lifetime.

  11. Study of the reaction between Uranium(III) and Lanthanide oxide by using the UV-VIS spectrophotometer

    International Nuclear Information System (INIS)

    Kim, Tack-Jin; Cho, Young-Hwan; Choi, In-Kyu; Choi, Kwang-Soon; Jee, Kwang-Yong

    2006-01-01

    Recently, ionic melts have become attractive reaction media in many fields. Molten salt based electrochemical processes have been proposed as a promising method for future nuclear programs and more specifically for spent fuel processing. Molten alkaline chloride based melts are considered as a promising reaction media. For this, it is interesting to understand the chemical nature of the actinides and lanthanides in high-temperature melt. Some spectroscopy provides essential information on the exact nature of f-block elements LiCl-KCl melt system. The knowledge on the basic chemical properties of these lanthanide oxides and U(III) in molten salt media is essential for developing suitable processes. However, few studies have been reported until now on the interaction between U metal and lanthanide oxides in LiCl-KCl melt. So, we studied the interaction between U(III) and Ln(III) by using the UV-VIS spectra. UV-vis spectrometry is a strong analytical technique for characterizing chemical species and their behavior in molten salt

  12. Heavy metals in brick kiln located area using atomic absorption spectrophotometer: a case study from the city of Peshawar, Pakistan.

    Science.gov (United States)

    Ishaq, M; Khan, Murad Ali; Jan, F Akbar; Ahmad, I

    2010-07-01

    Environmental pollution is one of the burning issues of the world. In developed countries, there are lot of awareness about the environment and the impact of various industries on their life and surroundings. A little has been done in this direction in developing countries. In Pakistan, a big problem is the rapid conglomeration of the brick kilns in the outskirts of nearly all the urban centers to cope with the rapid construction work in big cities. A huge amount of low-grade coal or rubber tires is used as fuel in a very non-scientific manner. The purpose of the present study was to look into the impact of the brick kilns on the different aspects of environmental pollution caused by these kilns. Concentration of metals Cu, Co, Zn, Pb, Cr, Ni, Cd, and Mn were measured on 36 soil samples collected from the area and the same number of plant samples in order to establish the distribution of heavy metals in the area and to determine the effect of this distribution on the surrounding atmosphere and the possible effects on human life.

  13. What are we looking at when we say magenta? Quantitative measurements of RGB and CMYK colours with a homemade spectrophotometer

    International Nuclear Information System (INIS)

    Rosi, Tommaso; Onorato, Pasquale; Oss, Stefano; Malgieri, Massimiliano

    2016-01-01

    We address some issues in colour theory, which are of relevance from an educational perspective. Spectra of emitted RGB and of transmitted CMYK colours are quantitatively processed and analysed with quite inexpensive homemade instruments, making use of smartphones as affordable digital cameras. LCD monitors and paper sheets with pigments coming from a laser printer are used to point out the basic differences between additive and subtractive colour formation. As an especially relevant aspect, we point out how it is possible to construct a simple model to explain the subtractive mixing process in terms of convolution of primary colour filters. The analysis presented in this work is particularly suited for enhancing the need for a proper understanding of the physiology of human eye–brain action in light acquisition and perception of colours. (paper)

  14. IDENTIFICATION OF SOME CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS IN BANGLADESHI VEHICLES EXHAUST TAR BY GAS CHROMATOGRAPHY-MASS SPECTROPHOTOMETER

    Directory of Open Access Journals (Sweden)

    M. Amzad Hossain

    2010-06-01

    Full Text Available A more sensitive GC-MS method has been established for the determination of some carcinogenic polycyclic aromatic hydrocarbons (PAHs in vehicles exhaust tar samples. The tar samples were extracted using dichloromethane (DMC: n-hexane solvent mixture. A multi-layer clean-up (silica gel/sodium sulphate column was used, followed by glass fiber filter (GFF paper. The method was successfully applied to determine a number of PAHs present in exhaust tar sample of different vehicles of the Atomic Energy Centre, Dhaka, Bangladesh.   Keywords: Carcinogenic polycyclic aromatic hydrocarbons, vehicles tar samples, identification, GC-MS/MS

  15. Rapid Enzymatic Method for Pectin Methyl Esters Determination

    Directory of Open Access Journals (Sweden)

    Lucyna Łękawska-Andrinopoulou

    2013-01-01

    Full Text Available Pectin is a natural polysaccharide used in food and pharma industries. Pectin degree of methylation is an important parameter having significant influence on pectin applications. A rapid, fully automated, kinetic flow method for determination of pectin methyl esters has been developed. The method is based on a lab-made analyzer using the reverse flow-injection/stopped flow principle. Methanol is released from pectin by pectin methylesterase in the first mixing coil. Enzyme working solution is injected further downstream and it is mixed with pectin/pectin methylesterase stream in the second mixing coil. Methanol is oxidized by alcohol oxidase releasing formaldehyde and hydrogen peroxide. This reaction is coupled to horse radish peroxidase catalyzed reaction, which gives the colored product 4-N-(p-benzoquinoneimine-antipyrine. Reaction rate is proportional to methanol concentration and it is followed using Ocean Optics USB 2000+ spectrophotometer. The analyzer is fully regulated by a lab written LabVIEW program. The detection limit was 1.47 mM with an analysis rate of 7 samples h−1. A paired t-test with results from manual method showed that the automated method results are equivalent to the manual method at the 95% confidence interval. The developed method is rapid and sustainable and it is the first application of flow analysis in pectin analysis.

  16. A Sensitive Determination of Carbofuran by Spectrophotometer using 4, 4-azo-bis-3, 3′5, 5′-tetra bromoaniline in various Environmental Samples

    Directory of Open Access Journals (Sweden)

    O. Bhargavi

    2006-01-01

    Full Text Available A simple and sensitive spectrophotometric technique was developed for the determination of carbofuran in its formulations, water and grain samples. The method was based on the alkaline hydrolyzed product of carbofuran phenol interacted with diazonium salt of 4,4-azo-bis-3,3′5,5′-tetra bromo aniline. The maximum absorbance of the red coloured derivative was measured at 470 nm. The beer’s law was obeyed in the concentration range of 0.1-16.0 µg/mL. The interference of the non target species were studied on the determination of carbofuran which increases the selectivity of the method. The present method was successfully applied for the determination of carbofuran in its formulations, water and grain samples.

  17. Theoretically Guided Analytical Method Development and Validation for the Estimation of Rifampicin in a Mixture of Isoniazid and Pyrazinamide by UV Spectrophotometer.

    Science.gov (United States)

    Khan, Mohammad F; Rita, Shamima A; Kayser, Md Shahidulla; Islam, Md Shariful; Asad, Sharmeen; Bin Rashid, Ridwan; Bari, Md Abdul; Rahman, Muhammed M; Al Aman, D A Anwar; Setu, Nurul I; Banoo, Rebecca; Rashid, Mohammad A

    2017-01-01

    A simple, rapid, economic, accurate, and precise method for the estimation of rifampicin in a mixture of isoniazid and pyrazinamide by UV spectrophotometeric technique (guided by the theoretical investigation of physicochemical properties) was developed and validated. Theoretical investigations revealed that isoniazid and pyrazinamide both were freely soluble in water and slightly soluble in ethyl acetate whereas rifampicin was practically insoluble in water but freely soluble in ethyl acetate. This indicates that ethyl acetate is an effective solvent for the extraction of rifampicin from a water mixture of isoniazid and pyrazinamide. Computational study indicated that pH range of 6.0-8.0 would favor the extraction of rifampicin. Rifampicin is separated from isoniazid and pyrazinamide at pH 7.4 ± 0.1 by extracting with ethyl acetate. The ethyl acetate was then analyzed at λ max of 344.0 nm. The developed method was validated for linearity, accuracy and precision according to ICH guidelines. The proposed method exhibited good linearity over the concentration range of 2.5-35.0 μg/mL. The intraday and inter-day precision in terms of % RSD ranged from 1.09 to 1.70% and 1.63 to 2.99%, respectively. The accuracy (in terms of recovery) of the method varied from of 96.7 ± 0.9 to 101.1 ± 0.4%. The LOD and LOQ were found to be 0.83 and 2.52 μg/mL, respectively. In addition, the developed method was successfully applied to determine rifampicin combination (isoniazid and pyrazinamide) brands available in Bangladesh.

  18. Monitoring of trace amounts of heavy metals in different food and water samples by flame atomic absorption spectrophotometer after preconcentration by amine-functionalized graphene nanosheet.

    Science.gov (United States)

    Behbahani, Mohammad; Tapeh, Nasim Akbari Ghareh; Mahyari, Mojtaba; Pourali, Ali Reza; Amin, Bahareh Golrokh; Shaabani, Ahmad

    2014-11-01

    We are introducing graphene oxide modified with amine groups as a new solid phase for extraction of heavy metal ions including cadmium(II), copper(II), nickel(II), zinc(II), and lead(II). Effects of pH value, flow rates, type, concentration, and volume of the eluent, breakthrough volume, and the effect of potentially interfering ions were studied. Under optimized conditions, the extraction efficiency is >97 %, the limit of detections are 0.03, 0.05, 0.2, 0.1, and 1 μg L(-1) for the ions of cadmium, copper, nickel, zinc, and lead, respectively, and the adsorption capacities for these ions are 178, 142, 110, 125, and 210 mg g(-1). The amino-functionalized graphene oxide was characterized by thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The proposed method was successfully applied in the analysis of environmental water and food samples. Good spiked recoveries over the range of 95.8-100.0 % were obtained. This work not only proposes a useful method for sample preconcentration but also reveals the great potential of modified graphene as an excellent sorbent material in analytical processes.

  19. Validation of methods of atomic absorption with flame for the analysis of potasium, zinc and manganese, and a spectrophotometer for the analysis of phosphorus in samples of fertilizers

    International Nuclear Information System (INIS)

    Pineda Castro, L. E.

    1998-01-01

    This study validated the spectrophotometric method by atomic absorption for the analysis of potassium, manganese and zinc in samples of fertilizers. Likewise, it validated the spectrophotometric method for the analysis of phosphorus by generation of the fosfomolibdovanadate. species The limits of detection and quantification obtained to a level of confidence of the 95% were: 0,6 ppm and 1,1 ppm for the potassium, 1,1 ppm, and 2,2 ppm for the phosphorus, 0,3 ppm and 0,5 ppm for the zinc and 0,6 ppm and 1,1 ppm for the manganese respectively. It established the repetibility and reproducible of the method to a level of the 95% of confidence and it determined that the fertilizers tolerance norm is complied with adequately for the potassium and the manganese. On the other hand, for the concentrations of phosphorus higher than 20%, it presented smaller reproducibility. For the zinc, it presented problems of precision of the method, in the two samples analyzed. The accuracy of the methodologies were the adequate. In the case of the phosphorus, it recommended the employment of a composed digestive mixture of nitric and perchloric acid when be a matter of materials that possess organic matter. (S. Grainger) [es

  20. The combination of activated natural zeolite-bentonite to reduce Fe and Cu in refined bleached palm oil (RBPO) by using atomic absorption spectrophotometer method

    Science.gov (United States)

    Zakwan; Raja, PM; Giyanto

    2018-02-01

    Indonesia is one of the crude palm oil (CPO) production country in the world. As many products are derivated from the CPO, the quality must be increased continuously. One of the things that influence the quality of palm oil is the Fe and Cu content. The objective of this research was to reduce Fe and Cu content in Refined Bleached Palm Oil (RBPO). In processing CPO or Refined Bleachead Palm Oil (RBPO) may be contaminated by Fe and Cu from metal tank and pipe in the factory. The zeolite and bentonite was activated by maceration method using hydrochloric acid (0,1 N). Four batch reactions consisting of refined palm oil (RPO), activated natural zeolite-bentonite (ANZB) was bleached by heating and stirring them at about 105°C and 1200 rpm for 30 minutes. The results showed that all combinations of ANZB can reduce the Fe content. Thereafter, the optimal combination of ANZB was obtained in K1, K2 and K4 with Cu content 0.02 ppm. In the future, it is needed to study on the reduction of the Fe and Cu content in palm oil with the other adsorbent.

  1. A Revolutionary Wind and Precipitation Scanning Radar for Unmanned Aerial Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objectives for the proposed Phase I study are: 1.Develop a compact, dual-wavelength antenna system capable of electronically scanning or producing...

  2. Scanning Laser Ophthalmoscope Measurement of Local Fundus Reflectance and Autofluorescence Changes Arising from Rhodopsin Bleaching and Regeneration

    OpenAIRE

    Morgan, Jessica I. W.; Pugh, Edward N.

    2013-01-01

    Rhodopsin was measured locally in the retina with a widely available, dual wavelength scanning laser ophthalmoscope that does not require pupil dilation. Increased autofluorescence attendant bleaching arises largely from transient removal of rhodopsin's screening of autofluorescent fluorochromes.

  3. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Dual wavelength operation in diode-end-pumped hybrid vanadate laser ... Efficient and high-power green beam generation by frequency doubling of .... Linearly polarized intracavity passive Q-switched Yb-doped photonic crystal fibre laser.

  4. A comparative study on dual colour soft aperture cascaded second ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... second-order mode-locking with different nonlinear optical crystals ... delivers stable dual wavelength cw mode-locked pulse train with pulse ... Mode-locking; ultrafast processes; optical susceptibility; frequency conversion;.

  5. Influence of laser wavelength on the thermal responses of port wine stain lesions in light, moderate and heavy pigmented skin

    International Nuclear Information System (INIS)

    Li, D.; Chen, B.; Wu, W.J.; Ying, Z.X.

    2017-01-01

    Highlights: • Laser surgery for port wine stain (PWS) was studied by local non-equilibrium theory. • Wavelength selection in laser surgery under various skin pigmentation was explored. • High pigmented skin prefers to 585 nm rather then 595 nm. • Dual-wavelength laser (585/595 + 1064 nm) has better clinic effect than single one. • Deep buried blood vessels can be damaged by 595/1064 nm dual-wavelength laser. - Abstract: Pulsed dye laser (PDL) in visible band (e.g. 585 or 595 nm) together with cryogen spray cooling has become the golden standard for treatment of vascular malformation such as port wine stain (PWS). However, due to the limited energy penetration depth of the PDL, deeply buried blood vessels are likely to survive from the laser irradiation. Nd:YAG laser in near infrared (1064 nm) has great potential in the laser treatment of PWS due to its deeper penetration depth. In this study, the influence of laser wavelength in treating PWS lesions with various melanin concentrations in epidermis was theoretically investigated by a two-temperature model following the local thermal non-equilibrium theory of porous media. The results showed that deeply buried blood vessels can be coagulated by dual-wavelength laser combing 585 or 595 nm with 1064 nm laser. Furthermore, the therapeutic results by dual-wavelength laser were highly related to the melanin concentration in epidermis. In the light and moderate pigmented skin, the 595/1064 nm dual-wavelength laser showed better treatment effect in treating PWS with deeply-buried blood vessels than of 585/1064 nm dual-wavelength laser. For a high pigmented skin, the 585/1064 nm dual-wavelength laser showed better treatment effect than 595/1064 nm dual-wavelength laser.

  6. Design and Implementation of a Novel Quench Flow Reactor for the Study of Nascent Olefin Polymerisation

    NARCIS (Netherlands)

    Di Martino, Audrey; Broyer, Jean Pierre; Schweich, Daniel; de Bellefon, Claude; Weickert, G.; McKenna, Timothy F.L.

    2007-01-01

    A novel stopped flow reactor system is described in the current work, along with the underlying design philosophy. While the concept of stopped flow technology is not recent, this system is the first to be designed with the objective of studying particle morphology, and to work at extremely short

  7. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, Dawei

    1996-01-01

    This project seeks to advance the fundamental understanding of the physico-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. Central to this research is the use of synthetic microsize particles of pyrite as model microelectrodes to investigate the semiconductor electrochemistry of pyrite. The research focuses on: (a) the synthesis of microsize particles of pyrite in aqueous solution at room temperature, (b) the formation of iron sulfide complex, the precursor of FeS or FeS{sub 2}, and (c) the relationship between the semiconductor properties of pyrite and its interfacial electrochemical behavior in the dissolution process. In Chapter 2, 3 and 4, a suitable protocol for preparing microsize particles of pyrite in aqueous solution is given, and the essential roles of the precursors elemental sulfur and ``FeS`` in pyrite formation are investigated. In Chapter 5, the formation of iron sulfide complex prior to the precipitation of FeS or FeS{sub 2} is investigated using a fast kinetics technique based on a stopped-flow spectrophotometer. The stoichiometry of the iron sulfide complex is determined, and the rate and formation constants are also evaluated. Chapter 6 provides a summary of the semiconductor properties of pyrite relevant to the present study. In Chapters 7 and 8, the effects of the semiconductor properties on pyrite dissolution are investigated experimentally and the mechanism of pyrite dissolution in acidic aqueous solution is examined. Finally, a summary of the conclusions from this study and suggestions for future research are presented in Chapter 9.

  8. Analysis of major antioxidants from extracts of Myrmecodia pendans by UV/visible spectrophotometer, liquid chromatography/tandem mass spectrometry, and high-performance liquid chromatography/UV techniques.

    Science.gov (United States)

    Engida, Adam Mekonnen; Faika, Sitti; Nguyen-Thi, Bich Thuyen; Ju, Yi-Hsu

    2015-06-01

    In the present work, heat reflux extraction with ethanol/water (80:20; v/v) as the solvent was used to extract antioxidants from Myrmecodia pendans. The crude extract (CE) was fractionated using hexane and ethyl acetate. Ethyl acetate fraction (EAF) and aqueous fraction were collected. Antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl-radical radical and ferric reducing power of the CE, EAF, and aqueous fraction were evaluated. EAF showed comparable antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl-radical radical and ferric reducing power to those of the CE. UV/visible, liquid chromatography/electrospray ionization/tandem mass spectrometry, and high-performance liquid chromatography were employed for identifying the major antioxidant compounds in the EAF. Three major phenolic compounds (rosmarinic acid, procyanidin B1, and polymer of procyanidin B1) were identified. The first two compounds were confirmed and quantified by high-performance liquid chromatography using authentic standards, but confirmation of the third compound was hampered by a lack of commercial standard. Concentrations of rosmarinic acid and procyanidin B1 in the EAF were found to be 20.688 ± 1.573 mg/g dry sample and 3.236 ± 0.280 mg/g dry sample, respectively. All these three compounds are reported for the first time in sarang semut. Copyright © 2014. Published by Elsevier B.V.

  9. Analysis of major antioxidants from extracts of Myrmecodia pendans by UV/visible spectrophotometer, liquid chromatography/tandem mass spectrometry, and high-performance liquid chromatography/UV techniques

    Directory of Open Access Journals (Sweden)

    Adam Mekonnen Engida

    2015-06-01

    Full Text Available In the present work, heat reflux extraction with ethanol/water (80:20; v/v as the solvent was used to extract antioxidants from Myrmecodia pendans. The crude extract (CE was fractionated using hexane and ethyl acetate. Ethyl acetate fraction (EAF and aqueous fraction were collected. Antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl-radical radical and ferric reducing power of the CE, EAF, and aqueous fraction were evaluated. EAF showed comparable antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl-radical radical and ferric reducing power to those of the CE. UV/visible, liquid chromatography/electrospray ionization/tandem mass spectrometry, and high-performance liquid chromatography were employed for identifying the major antioxidant compounds in the EAF. Three major phenolic compounds (rosmarinic acid, procyanidin B1, and polymer of procyanidin B1 were identified. The first two compounds were confirmed and quantified by high-performance liquid chromatography using authentic standards, but confirmation of the third compound was hampered by a lack of commercial standard. Concentrations of rosmarinic acid and procyanidin B1 in the EAF were found to be 20.688 ± 1.573 mg/g dry sample and 3.236 ± 0.280 mg/g dry sample, respectively. All these three compounds are reported for the first time in sarang semut.

  10. Determination of water pH using absorption-based optical sensors: evaluation of different calculation methods

    Science.gov (United States)

    Wang, Hongliang; Liu, Baohua; Ding, Zhongjun; Wang, Xiangxin

    2017-02-01

    Absorption-based optical sensors have been developed for the determination of water pH. In this paper, based on the preparation of a transparent sol-gel thin film with a phenol red (PR) indicator, several calculation methods, including simple linear regression analysis, quadratic regression analysis and dual-wavelength absorbance ratio analysis, were used to calculate water pH. Results of MSSRR show that dual-wavelength absorbance ratio analysis can improve the calculation accuracy of water pH in long-term measurement.

  11. Spectrally resolved digital holography using a white light LED

    Science.gov (United States)

    Claus, D.; Pedrini, G.; Buchta, D.; Osten, W.

    2017-06-01

    This paper introduces the concept of spectrally resolved digital holography. The measurement principle and the analysis of the data will be discussed in detail. The usefulness of spectrally resolved digital holography is demonstrated for colour imaging and optical metrology with regards to the recovery of modulus information and phase information, respectively. The phase information will be used to measure the shape of an object via the application of the dual wavelength method. Based on the large degree of data available, multiple speckle de-correlated dual wavelength phase maps can be obtained, which when averaged result in a signal to noise ratio improvement.

  12. A Many-Atom Cavity QED System with Homogeneous Atom-Cavity Coupling

    OpenAIRE

    Lee, Jongmin; Vrijsen, Geert; Teper, Igor; Hosten, Onur; Kasevich, Mark A.

    2013-01-01

    We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.

  13. Non-Invasive Monitoring of Breast Tumor Oxygenation: A Key to Tumor Therapy Planning and Tumor Prognosis

    National Research Council Canada - National Science Library

    Liu, Hanli

    2004-01-01

    .... The aims have included (1) to evaluate a single-channel, dual wavelength, NIR, frequency-domain oximeter and the algorithms for obtaining tumor HbO2 against tumor PO2 measured by 19F magnetic resonance imaging (MRI), (2...

  14. Photonic integrated circuits for millimeter-wave wireless communications

    NARCIS (Netherlands)

    Carpintero, G.; Balakier, K.; Yang, Z.; Guzmán, R.C.; Corradi, A.; Jimenez, A.; Kervalla, G.; Fice, M.; Lamponi, M.; Chtioui, M.; Van Dijk, Frédéric; Renaud, C.C.; Wonfor, A.; Bente, E.A.J.M.; Penty, R.V.; White, I.H.; Seeds, A.J.

    2014-01-01

    This paper describes the advantages that the introduction of photonic integration technologies can bring to the development of photonic-enabled wireless communications systems operating in the millimeter wave frequency range. We present two approaches for the development of dual wavelength sources

  15. Development of a pulsed 9.5 micron lidar for regional scale O3 measurement

    Science.gov (United States)

    Stewart, R. W.

    1980-01-01

    A pulsed infrared lidar system designed for application to the remote sensing of atmospheric trace gases from an airborne platform is described. The system is also capable of measuring the infrared backscatter characteristics of the ocean surface, terrain, cloud, and aerosol targets. The lidar employed is based on dual wavelength pulse energy measurements in the 9-11 micrometer wavelength region.

  16. Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates.

    Science.gov (United States)

    Green, F; Clausen, C A; Highley, T L

    1989-11-01

    The Nelson-Somogyi assay for reducing sugars was adapted to microtiter plates. The primary advantages of this modified assay are (i) smaller sample and reagent volumes, (ii) elimination of boiling and filtration steps, (iii) automated measurement with a dual-wavelength scanning TLC densitometer, (iv) increased range and reproducibility, and (v) automated colorimetric readings by reflectance rather than absorbance.

  17. Near-infrared spectroscopy during peripheral vascular surgery

    DEFF Research Database (Denmark)

    Eiberg, J P; Schroeder, T V; Vogt, K C

    1997-01-01

    Near-infrared spectroscopy was performed perioperatively on the dorsum of the foot in 14 patients who underwent infrainguinal bypass surgery using a prosthesis or the greater saphenous vein. Dual-wavelength continuous light spectroscopy was used to assess changes in tissue saturation before, duri...

  18. Efficient yellow beam generation by intracavity sum frequency ...

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... We present our studies on dual wavelength operation using a single Nd:YVO4 crystal and its intracavity sum frequency generation by considering the influence of the thermal lensing effect on the performance of the laser. A KTP crystal cut for type-II phase matching was used for intracavity sum frequency ...

  19. System engineering approach to GPM retrieval algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rose, C. R. (Chris R.); Chandrasekar, V.

    2004-01-01

    System engineering principles and methods are very useful in large-scale complex systems for developing the engineering requirements from end-user needs. Integrating research into system engineering is a challenging task. The proposed Global Precipitation Mission (GPM) satellite will use a dual-wavelength precipitation radar to measure and map global precipitation with unprecedented accuracy, resolution and areal coverage. The satellite vehicle, precipitation radars, retrieval algorithms, and ground validation (GV) functions are all critical subsystems of the overall GPM system and each contributes to the success of the mission. Errors in the radar measurements and models can adversely affect the retrieved output values. Ground validation (GV) systems are intended to provide timely feedback to the satellite and retrieval algorithms based on measured data. These GV sites will consist of radars and DSD measurement systems and also have intrinsic constraints. One of the retrieval algorithms being studied for use with GPM is the dual-wavelength DSD algorithm that does not use the surface reference technique (SRT). The underlying microphysics of precipitation structures and drop-size distributions (DSDs) dictate the types of models and retrieval algorithms that can be used to estimate precipitation. Many types of dual-wavelength algorithms have been studied. Meneghini (2002) analyzed the performance of single-pass dual-wavelength surface-reference-technique (SRT) based algorithms. Mardiana (2003) demonstrated that a dual-wavelength retrieval algorithm could be successfully used without the use of the SRT. It uses an iterative approach based on measured reflectivities at both wavelengths and complex microphysical models to estimate both No and Do at each range bin. More recently, Liao (2004) proposed a solution to the Do ambiguity problem in rain within the dual-wavelength algorithm and showed a possible melting layer model based on stratified spheres. With the No and Do

  20. The inverted chevron plot measured by NMR relaxation reveals a native-like unfolding intermediate in acyl-CoA binding protein

    DEFF Research Database (Denmark)

    Teilum, Kaare; Poulsen, F. M.; Akke, M.

    2006-01-01

    those from stopped-flow kinetics and define an "inverted chevron" plot. The combination of NMR relaxation and stopped-flow kinetic measurements allowed determination of k f and k u in the range from 0.48 M GuHCl to 1.28 M GuHCl. Individually, the stopped-flow and NMR data fit two-state models...... for folding. However, although the values of k f determined by the two methods agree, the values of k u do not. As a result, a combined analysis of all data does not comply with a two-state model but indicates that an unfolding intermediate exists on the native side of the dominant energy barrier...

  1. Thermoacoustic Molecular Imaging of Small Animals

    Directory of Open Access Journals (Sweden)

    Robert A. Kruger

    2003-04-01

    Full Text Available We have designed, constructed, and tested a thermoacoustic computed tomography (TCT scanner for imaging optical absorption in small animals in three dimensions. The device utilizes pulsed laser irradiation (680–1064 nm and a unique, 128-element transducer array. We quantified the isotropic spatial resolution of this scanner to be 0.35 mm. We describe a dual-wavelength subtraction technique for isolating optical dyes with TCT. Phantom experiments demonstrate that we can detect 5 fmol of a near-infrared dye (indocyanine green, ICG in a 1-ML volume using dual-wavelength subtraction. Initial TCT imaging in phantoms and in two sacrificed mice suggests that three-dimensional, optical absorption patterns in small animals can be detected with an order of magnitude better spatial resolution and an order of magnitude better low-contrast detectability in small animals when compared to fluorescence imaging or diffusion optical tomography.

  2. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... The laser delivers stable dual wavelength cw mode-locked pulse train with pulse duration 10.3 ps and average power of 1.84 W and 255 mW at 1064 nm and 532 nm respectively for the optimum performance in type-II KTP crystal. The exceptional stability achieved with KTP is accounted by simulating the ...

  3. Simultaneous determination of rabeprazole sodium and itopride hydrochloride in capsule dosage form by spectrophotometry.

    Science.gov (United States)

    Sabnis, Shweta S; Gandhi, Santosh V; Madgulkar, A R; Bothara, K G

    Three methods viz. Absorbance Ratio Method (I), Dual Wavelength Method (II) and First Order Derivative Spectroscopic Method (III) for simultaneous estimation of Rabeprazole sodium and Itopride hydrochloride have been developed. The drugs obey Beer's law in the concentration range 2-20 microg/ml for RAB and 5-75 microg/ml for ITO. The results of analysis of drugs have been validated statistically and by recovery studies.

  4. Absolute transition probabilities of 5s-5p transitions of Kr I from interferometric measurements in LTE-plasmas

    International Nuclear Information System (INIS)

    Kaschek, K.; Ernst, G.K.; Boetticher, W.

    1984-01-01

    Absolute transition probabilities of nine 5s-5p transitions of Kr I have been evaluated by using the hook method. The plasma was produced in a shock tube. The population density of the 5s-levels was calculated, under the assumption of LTE, from the electron density and the ground state number measured by means of a dual wavelength interferometer. An evaluation is given which proves the validity of the LTE assumption. (orig.)

  5. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    OpenAIRE

    He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.; Yu, Guoqiang

    2013-01-01

    The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measure...

  6. In Vivo Investigation of Breast Cancer Progression by Use of an Internal Control1

    Science.gov (United States)

    Baeten, John; Haller, Jodi; Shih, Helen; Ntziachristos, Vasilis

    2009-01-01

    Optical imaging of breast cancer has been considered for detecting functional and molecular characteristics of diseases in clinical and preclinical settings. Applied to laboratory research, photonic investigations offer a highly versatile tool for preclinical imaging and drug discovery. A particular advantage of the optical method is the availability of multiple spectral bands for performing imaging. Herein, we capitalize on this feature to demonstrate how it is possible to use different wavelengths to offer internal controls and significantly improve the observation accuracy in molecular imaging applications. In particular, we show the independent in vivo detection of cysteine proteases along with tumor permeability and interstitial volume measurements using a dual-wavelength approach. To generate results with a view toward clinically geared studies, a transgenic Her2/neu mouse model that spontaneously developed mammary tumors was used. In vivo findings were validated against conventional ex vivo tests such as histology and Western blot analyses. By correcting for biodistribution parameters, the dual-wavelength method increases the accuracy of molecular observations by separating true molecular target from probe biodistribution. As such, the method is highly appropriate for molecular imaging studies where often probe delivery and target presence are not independently assessed. On the basis of these findings, we propose the dual-wavelength/normalization approach as an essential method for drug discovery and preclinical imaging studies. PMID:19242603

  7. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface discrete observations using spectrophotometer and other instruments from NOAA Ship Henry B. Bigelow off the Northeastern coast of the United States from 2014-09-10 to 2014-11-05 (NCEI Accession 0138983)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface measurements of dissolved inorganic, total alkalinity, pH measurements off the Northeastern coast of the United States....

  8. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Spectrophotometer for pH measurement and other instruments from the HESPERIDES in the North Atlantic Ocean from 2003-04-08 to 2003-04-24 (NODC Accession 0108098)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108098 includes chemical, discrete sample, physical and profile data collected from HESPERIDES in the North Atlantic Ocean from 2003-04-08 to...

  9. Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.

    Science.gov (United States)

    Jones, Dianna G.

    1985-01-01

    A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…

  10. Changes in myocardial fluid filtration are reflected in epicardial lymph pressure

    NARCIS (Netherlands)

    VanTeeffelen, J. W.; Merkus, D.; Vergroesen, I.; Spaan, J. A.

    1997-01-01

    The effect of increased fluid filtration on stopped-flow epicardial lymph pressure (P(lymph)), used as an indicator of myocardial interstitial volume, was investigated in the anesthetized open-chest dog. Histamine infusion resulted in an increased systolic peak in the P(lymph) signal together with

  11. A steady-state study on the formation of Compounds II and III of myeloperoxidase

    NARCIS (Netherlands)

    Hoogland, H.; Dekker, H. L.; van Riel, C.; van Kuilenburg, A.; Muijsers, A. O.; Wever, R.

    1988-01-01

    The reaction between native myeloperoxidase and hydrogen peroxide, yielding Compound II, was investigated using the stopped-flow technique. The pH dependence of the apparent second-order rate constant showed the existence of a protonatable group on the enzyme with a pKa of 4.9. This group is

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 1. Kinetic, mechanistic and spectral investigation of ruthenium (III)-catalysed oxidation of atenolol by alkaline permanganate (stopped-flow technique). Rahamatalla M Mulla Gurubasavaraj C Hiremath Sharanappa T Nandibewoor. Full Papers Volume 117 ...

  13. High pressure: a challenge for lab-on-a-chip technology

    NARCIS (Netherlands)

    Benito-Lopez, F.

    2007-01-01

    The realization of microreactors, in which chemical reactions can be carried out in continuous or stop flow mode under pressure conditions, is the main topic of this thesis. The advantages of microreactor technology for pressure chemistry are clearly demonstrated in this thesis. Organic reactions

  14. Use of Raman spectroscopy to study reduction state of mitochondrial cytochromes in an isolated heart under normoxic and hypoxic conditions

    DEFF Research Database (Denmark)

    Brazhe, N. A.; Treiman, M.; Faricelli, B.

    2013-01-01

    to 1606 cm-1). As expected from a decreased reduction of electron transport chain upon uncoupling, the presence of FCCP in the perfusion caused a decrease in the intensity of cytochromal peaks with no change of Mb peaks. Global stop-flow ischemia of 35 min elicited a progressive increase in the intensity...

  15. Interactions of plasminogen activator inhibitor-1 with vitronectin involve an extensive binding surface and induce mutual conformational rearrangements

    DEFF Research Database (Denmark)

    Blouse, Grant E; Dupont, Daniel Miotto; Schar, Christine R

    2009-01-01

    In order to explore early events during the association of plasminogen activator inhibitor-1 (PAI-1) with its cofactor vitronectin, we have applied a robust strategy that combines protein engineering, fluorescence spectroscopy, and rapid reaction kinetics. Fluorescence stopped-flow experiments de...

  16. Time-resolved SAXS measurements facilitated by online HPLC buffer exchange

    DEFF Research Database (Denmark)

    Jensen, Malene Hillerup; Toft, Katrine Nørgaard; David, Gabriel

    2010-01-01

    continuous or stopped flow. In this paper a method for obtaining TR-SAXS data from systems where the reaction is triggered by removal of a species is presented. This method is based on fast buffer exchange over a short desalting column facilitated by an online HPLC (high-performance liquid chromatography...

  17. sodium dodecyl sulphate (SDS)

    Indian Academy of Sciences (India)

    Unknown

    In contrast, much higher concentration of NaCl (2 M) is required for the salting-out effect of the dye–surfactant complex for conversion to the micellized form. Keywords. Cresyl violet; surfactant; salt effect; absorption; stopped-flow. 1. Introduction. Cresyl violet, a cationic dye (CV+, scheme 1) belonging to the phenoxazine ...

  18. Magnitude of TGF-initiated nephron-nephron interactions is increased in SHR

    DEFF Research Database (Denmark)

    Chen, Y M; Yip, K P; Marsh, D J

    1995-01-01

    We compared the tubuloglomerular feedback (TGF)-initiated nephron-nephron interaction in spontaneously hypertensive rats (SHR) and normotensive Sprague-Dawley (SD) rats. Interaction strength was assessed by measuring stop-flow pressure (delta SFP) responses in pairs of nephrons, where only one ne...

  19. evaluation of pawpaw leaves extract as anti-corrosion agent

    African Journals Online (AJOL)

    user

    2 DEPARTMENT OF CHEMICAL ENGINEERING, NNAMDI AZIKIWE UNIVERSITY, AWKA ... and corrosion product were analyzed using Fourier transform infrared spectrophotometer (FTIR). ... They are used as reaction vessels, pipes,.

  20. 7 CFR 353.9 - Standards for accreditation of non-government facilities to perform laboratory seed health...

    Science.gov (United States)

    2010-01-01

    ... seed requires a stereo microscope. Visual examination of tissue requires a compound light microscope... equipment; fluorescent microscopes; plate readers; spectrophotometers; and the appropriate assay materials...