WorldWideScience

Sample records for stomatitis virus glycoprotein

  1. Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant

    Whitt, M.A.; Chong, L.; Rose, J.K.

    1989-01-01

    The authors have used transient expression of the wild-type vesicular stomatitis virus (VSV) glycoprotein (G protein) from cloned cDNA to rescue a temperature-sensitive G protein mutant of VSV in cells at the nonpermissive temperature. Using cDNAs encoding G proteins with deletions in the normal 29-amino-acid cytoplasmic domain, they determined that the presence of either the membrane-proximal 9 amino acids or the membrane-distal 12 amino acids was sufficient for rescue of the temperature-sensitive mutant. G proteins with cytoplasmic domains derived from other cellular or viral G proteins did not rescue the mutant, nor did G proteins with one or three amino acids of the normal cytoplasmic domain. Rescue correlated directly with the ability of the G proteins to be incorporated into virus particles. This was shown by analysis of radiolabeled particles separated on sucrose gradients as well as by electron microscopy of rescued virus after immunogold labeling. Quantitation of surface expression showed that all of the mutated G proteins were expressed less efficiently on the cell surface than was wild-type G protein. However, they were able to correct for differences in rescue efficiency resulting from differences in the level of surface expression by reducing wild-type G protein expression to levels equivalent to those observed for the mutated G proteins. The results provide evidence that at least a portion of the cytoplasmic domain is required for efficient assembly of the VSV G protein into virions during virus budding

  2. Characterization of Vesicular Stomatitis Virus Recombinants That Express and Incorporate High Levels of Hepatitis C Virus Glycoproteins

    Buonocore, Linda; Blight, Keril J.; Rice, Charles M.; Rose, John K.

    2002-01-01

    We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein...

  3. Enhanced Gene Transfer with Fusogenic Liposomes Containing Vesicular Stomatitis Virus G Glycoprotein

    Abe, Akihiro; Miyanohara, Atsushi; Friedmann, Theodore

    1998-01-01

    Exposure of Lipofectin-DNA complexes to the partially purified G glycoprotein of the vesicular stomatitis virus envelope (VSV-G) results in loss of serum-mediated inhibition and in enhanced efficiency of gene transfer. Sucrose density gradient sedimentation analysis indicated that the VSV-G associates physically with the DNA-lipid complex to produce a VSV-G liposome. The ability to incorporate surrogate viral or cellular envelope components such as VSV-G into liposomes may allow more-efficient and possibly targeted gene delivery by lipofection, both in vitro and in vivo. PMID:9621082

  4. Conditional expression of the vesicular stomatitis virus glycoprotein gene in Escherichia coli.

    Rose, J K; Shafferman, A

    1981-01-01

    Bacterial plasmids that directed expression of the vesicular stomatitis virus glycoprotein (G-protein) gene under control of the tryptophan operon regulatory region were constructed. A plasmid directing the synthesis of a G-protein-like protein (containing the NH2-terminal segment of seven amino acids encoded by the trpE gene fused to the complete G-protein sequence lacking only its NH2-terminal methionine) could be transformed into trpR+ (repressed) but not into trpR- (derepressed) cells. Th...

  5. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  6. Leucine-rich repeat-containing G protein-coupled receptor 4 facilitates vesicular stomatitis virus infection by binding vesicular stomatitis virus glycoprotein.

    Zhang, Na; Huang, Hongjun; Tan, Binghe; Wei, Yinglei; Xiong, Qingqing; Yan, Yan; Hou, Lili; Wu, Nannan; Siwko, Stefan; Cimarelli, Andrea; Xu, Jianrong; Han, Honghui; Qian, Min; Liu, Mingyao; Du, Bing

    2017-10-06

    Vesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear. Here, we demonstrate that the host protein leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is essential for VSV and VSV-G pseudotyped lentivirus (VSVG-LV) to infect susceptible cells. Accordingly, Lgr4-deficient mice had dramatically decreased VSV levels in the olfactory bulb. Furthermore, Lgr4 knockdown in RAW 264.7 cells also significantly suppressed VSV infection, and Lgr4 overexpression in RAW 264.7 cells enhanced VSV infection. Interestingly, only VSV infection relied on Lgr4, whereas infections with Newcastle disease virus, influenza A virus (A/WSN/33), and herpes simplex virus were unaffected by Lgr4 status. Of note, assays of virus entry, cell ELISA, immunoprecipitation, and surface plasmon resonance indicated that VSV bound susceptible cells via the Lgr4 extracellular domain. Pretreating cells with an Lgr4 antibody, soluble LGR4 extracellular domain, or R-spondin 1 blocked VSV infection by competitively inhibiting VSV binding to Lgr4. Taken together, the identification of Lgr4 as a VSV-specific host factor provides important insights into understanding VSV entry and its pathogenesis and lays the foundation for VSV-based gene therapy and viral oncolytic therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Vesicular stomatitis virus expressing a chimeric Sindbis glycoprotein containing an Fc antibody binding domain targets to Her2/neu overexpressing breast cancer cells

    Bergman, Ira; Whitaker-Dowling, Patricia; Gao Yanhua; Griffin, Judith A.; Watkins, Simon C.

    2003-01-01

    Vesicular stomatitis virus (VSV) is a candidate for development for cancer therapy. It is an oncolytic virus that is safe in humans. Recombinant virus can be made directly from plasmid components. We attempted to create a virus that targeted specifically to breast cancer cells. Nonreplicating and replicating pseudotype VSV were created whose only surface glycoprotein (gp) was a Sindbis gp, called Sindbis-ZZ, modified to severely reduce its native binding function and to contain the Fc-binding domain of Staphylococcus aureus protein A. When titered on Her2/neu overexpressing SKBR3 human breast cancer cells, pseudotype VSV coated with Sindbis-ZZ had 5 /ml. This work demonstrates the ability to easily create, directly from plasmid components, an oncolytic replicating VSV with a restricted host cell range

  8. Characterization of pH-sensitive molecular switches that trigger the structural transition of vesicular stomatitis virus glycoprotein from the postfusion state toward the prefusion state.

    Ferlin, Anna; Raux, Hélène; Baquero, Eduard; Lepault, Jean; Gaudin, Yves

    2014-11-01

    Vesicular stomatitis virus (VSV; the prototype rhabdovirus) fusion is triggered at low pH and mediated by glycoprotein G, which undergoes a low-pH-induced structural transition. A unique feature of rhabdovirus G is that its conformational change is reversible. This allows G to recover its native prefusion state at the viral surface after its transport through the acidic Golgi compartments. The crystal structures of G pre- and postfusion states have been elucidated, leading to the identification of several acidic amino acid residues, clustered in the postfusion trimer, as potential pH-sensitive switches controlling the transition back toward the prefusion state. We mutated these residues and produced a panel of single and double mutants whose fusion properties, conformational change characteristics, and ability to pseudotype a virus lacking the glycoprotein gene were assayed. Some of these mutations were also introduced in the genome of recombinant viruses which were further characterized. We show that D268, located in the segment consisting of residues 264 to 273, which refolds into postfusion helix F during G structural transition, is the major pH sensor while D274, D395, and D393 have additional contributions. Furthermore, a single passage of recombinant virus bearing the mutation D268L (which was demonstrated to stabilize the G postfusion state) resulted in a pseudorevertant with a compensatory second mutation, L271P. This revealed that the propensity of the segment of residues 264 to 273 to refold into helix F has to be finely tuned since either an increase (mutation D268L alone) or a decrease (mutation L271P alone) of this propensity is detrimental to the virus. Vesicular stomatitis virus enters cells via endocytosis. Endosome acidification induces a structural transition of its unique glycoprotein (G), which mediates fusion between viral and endosomal membranes. G conformational change is reversible upon increases in pH. This allows G to recover its native

  9. Membrane fusion activity of vesicular stomatitis virus glycoprotein G is induced by low pH but not by heat or denaturant

    Yao Yi; Ghosh, Kakoli; Epand, Raquel F.; Epand, Richard M.; Ghosh, Hara P.

    2003-01-01

    The fusogenic envelope glycoprotein G of the rhabdovirus vesicular stomatitis virus (VSV) induces membrane fusion at acidic pH. At acidic pH the G protein undergoes a major structural reorganization leading to the fusogenic conformation. However, unlike other viral fusion proteins, the low-pH-induced conformational change of VSV G is completely reversible. As well, the presence of an α-helical coiled-coil motif required for fusion by a number of viral and cellular fusion proteins was not predicted in VSV G protein by using a number of algorithms. Results of pH dependence of the thermal stability of G protein as determined by intrinsic Trp fluorescence and circular dichroism (CD) spectroscopy show that the G protein is equally stable at neutral or acidic pH. Destabilization of G structure at neutral pH with either heat or urea did not induce membrane fusion or conformational change(s) leading to membrane fusion. Taken together, these data suggest that the mechanism of VSV G-induced fusion is distinct from the fusion mechanism of fusion proteins that involve a coiled-coil motif

  10. Reconstitution of the fusogenic activity of vesicular stomatitis virus

    Metsikkö, K.; van Meer, G.; Simons, K.

    1986-01-01

    Enveloped virus glycoproteins exhibit membrane fusion activity. We have analysed whether the G protein of vesicular stomatitis virus, reconstituted into liposomes, is able to fuse nucleated cells in a pH-dependent fashion. Proteoliposomes produced by octylglucoside dialysis did not exhibit cell

  11. A novel method for analysis of membrane microdomains: vesicular stomatitis virus glycoprotein microdomains change in size during infection, and those outside of budding sites resemble sites of virus budding

    Brown, Erica L.; Lyles, Douglas S.

    2003-01-01

    Membrane proteins, including viral envelope glycoproteins, may be organized into areas of locally high concentration, commonly referred to as membrane microdomains. Some viruses bud from detergent-resistant microdomains referred to as lipid rafts. However, vesicular stomatitis virus (VSV) serves as a prototype for viruses that bud from areas of plasma membrane that are not detergent resistant. We developed a new analytical method for immunoelectron microscopy data to determine whether the VSV envelope glycoprotein (G protein) is organized into plasma membrane microdomains. This method was used to quantify the distribution of the G protein in microdomains in areas of plasma membrane that did not contain budding sites. These microdomains were compared to budding virus envelopes to address the question of whether G protein-containing microdomains were formed only at the sites of budding. At early times postinfection, most of the G protein was organized into membrane microdomains outside of virus budding sites that were approximately 100-150 nm, with smaller amounts distributed into larger microdomains. In contrast to early times postinfection, the increased level of G protein in the host plasma membrane at later times postinfection led to distribution of G protein among membrane microdomains of a wider variety of sizes, rather than a higher G protein concentration in the 100- to 150-nm microdomains. VSV budding occurred in G protein-containing microdomains with a range of sizes, some of which were smaller than the virus envelope. These microdomains extended in size to a maximum of 300-400 nm from the tip of the budding virion. The data support a model for virus assembly in which G protein organizes into membrane microdomains that resemble virus envelopes prior to formation of budding sites, and these microdomains serve as the sites of assembly of internal virion components

  12. Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Highly Protective, Non-infectious Vaccine Against Ebola Virus Challenge

    2016-07-01

    Single-Injection Trivalent Filovirus 428 Vaccine: Proof of Concept Study in Outbred Guinea Pigs . J Infect Dis. 429 29. Murin, C. D., M. L. Fusco, Z...Jahrling, and J. F. Smith. 2000. Recombinant RNA replicons derived from attenuated 442 Venezuelan equine encephalitis virus protect guinea pigs and...platform, 65 including ease of production and characterization, absence of virus replication concerns and the 66 robust immune stimulatory activity

  13. Transmission and pathogenesis of vesicular stomatitis viruses

    Vesicular Stomatitis (VS) is caused by the Vesicular Stomatitis Virus (VSV), a negative single stranded RNA arthropod-borne virus member of the Family Rhabdoviridae. The virion is composed of the host derived plasma membrane, the envelope, and an internal ribonucleoprotein core. The envelope contain...

  14. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine.

    Regules, Jason A; Beigel, John H; Paolino, Kristopher M; Voell, Jocelyn; Castellano, Amy R; Hu, Zonghui; Muñoz, Paula; Moon, James E; Ruck, Richard C; Bennett, Jason W; Twomey, Patrick S; Gutiérrez, Ramiro L; Remich, Shon A; Hack, Holly R; Wisniewski, Meagan L; Josleyn, Matthew D; Kwilas, Steven A; Van Deusen, Nicole; Mbaya, Olivier Tshiani; Zhou, Yan; Stanley, Daphne A; Jing, Wang; Smith, Kirsten S; Shi, Meng; Ledgerwood, Julie E; Graham, Barney S; Sullivan, Nancy J; Jagodzinski, Linda L; Peel, Sheila A; Alimonti, Judie B; Hooper, Jay W; Silvera, Peter M; Martin, Brian K; Monath, Thomas P; Ramsey, W Jay; Link, Charles J; Lane, H Clifford; Michael, Nelson L; Davey, Richard T; Thomas, Stephen J

    2017-01-26

    The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses

  15. Solubilization of glycoproteins of envelope viruses by detergents

    Berezin, V.E.; Zaides, V.M.; Artamsnov, A.F.; Isaeva, E.S.; Zhdanov, V.M.

    1986-01-01

    The action of a number of known ionic and nonionic detergents, as well as the new nonionic detergent MESK, on envelope viruses was investigated. It was shown that the nonionic detergents MESK, Triton X-100, and octyl-β-D-glucopyranoside selectively solubilize the outer glycoproteins of the virus particles. The nonionic detergent MESK has the mildest action. Using MESK, purified glycoproteins of influenza, parainfluenza, Venezuelan equine encephalomyelitis, vesicular stomatitis, rabies, and herpes viruses were obtained. The procedure for obtaining glycoproteins includes incubation of the virus suspension with the detergent MESK, removal of subvirus structures by centrifuging, and purification of glycoproteins from detergents by dialysis. Isolated glycoproteins retain a native structure and biological activity and possess high immunogenicity. The detergent MESK is promising for laboratory tests and with respect to the production of subunit vaccines

  16. The glycoprotein of measles virus

    Anttonen, O.; Jokinen, M.; Salmi, A.; Vainionpaeae, R.; Gahmberg, C.G.

    1980-01-01

    Measles virus was propagated in VERO cells and purified from the culture supernatants by two successive tartrate-density-gradient centrifugations. Surface carbohydrates were labelled both in vitro and in vivo with 3 H after treatment with galactose oxidase/NaB 3 H 4 or with [ 3 H]glucosamine. The major labelled glycoprotein in measles virions had a mol.wt. of 79000. After labelling with periodate/NaB 3 H 4 , which would result in specific labelling of sialic acid residues, the 79000-mol.wt. glycoprotein was very weakly labelled. This suggested that there is no or a very low amount of sialic acid in the virions. Further analysis of the glycoprotein showed that galactose is the terminal carbohydrate unit in the oligosaccharide, and the molecular weight of the glycopeptide obtained after Pronase digestion is about 3000. The oligosaccharide is attached to the polypeptide through an alkali-stable bond, indicating a N-glycosidic asparagine linkage. (author)

  17. Quantification of Lyssavirus-Neutralizing Antibodies Using Vesicular Stomatitis Virus Pseudotype Particles

    Sarah Moeschler

    2016-09-01

    Full Text Available Rabies is a highly fatal zoonotic disease which is primarily caused by rabies virus (RABV although other members of the genus Lyssavirus can cause rabies as well. As yet, 14 serologically and genetically diverse lyssaviruses have been identified, mostly in bats. To assess the quality of rabies vaccines and immunoglobulin preparations, virus neutralization tests with live RABV are performed in accordance with enhanced biosafety standards. In the present work, a novel neutralization test is presented which takes advantage of a modified vesicular stomatitis virus (VSV from which the glycoprotein G gene has been deleted and replaced by reporter genes. This single-cycle virus was trans-complemented with RABV envelope glycoprotein. Neutralization of this pseudotype virus with RABV reference serum or immune sera from vaccinated mice showed a strong correlation with the rapid fluorescent focus inhibition test (RFFIT. Importantly, pseudotype viruses containing the envelope glycoproteins of other lyssaviruses were neutralized by reference serum to a significantly lesser extent or were not neutralized at all. Taken together, a pseudotype virus system has been successfully developed which allows the safe, fast, and sensitive detection of neutralizing antibodies directed against different lyssaviruses.

  18. Quantification of Lyssavirus-Neutralizing Antibodies Using Vesicular Stomatitis Virus Pseudotype Particles.

    Moeschler, Sarah; Locher, Samira; Conzelmann, Karl-Klaus; Krämer, Beate; Zimmer, Gert

    2016-09-16

    Rabies is a highly fatal zoonotic disease which is primarily caused by rabies virus (RABV) although other members of the genus Lyssavirus can cause rabies as well. As yet, 14 serologically and genetically diverse lyssaviruses have been identified, mostly in bats. To assess the quality of rabies vaccines and immunoglobulin preparations, virus neutralization tests with live RABV are performed in accordance with enhanced biosafety standards. In the present work, a novel neutralization test is presented which takes advantage of a modified vesicular stomatitis virus (VSV) from which the glycoprotein G gene has been deleted and replaced by reporter genes. This single-cycle virus was trans-complemented with RABV envelope glycoprotein. Neutralization of this pseudotype virus with RABV reference serum or immune sera from vaccinated mice showed a strong correlation with the rapid fluorescent focus inhibition test (RFFIT). Importantly, pseudotype viruses containing the envelope glycoproteins of other lyssaviruses were neutralized by reference serum to a significantly lesser extent or were not neutralized at all. Taken together, a pseudotype virus system has been successfully developed which allows the safe, fast, and sensitive detection of neutralizing antibodies directed against different lyssaviruses.

  19. [Research progress on ebola virus glycoprotein].

    Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa

    2013-03-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.

  20. Live Attenuated Recombinant Vaccine Protects Nonhuman Primates Against Ebola and Marburg Viruses

    Jones, Steven M; Feldmann, Heinz; Stroher, Ute; Geisbert, Joan B; Fernando, Lisa; Grolla, Allen; Klenk, Hans-Dieter; Sullivan, Nancy J; Volchkov, Viktor E; Fritz, Elizabeth A; Daddario, Kathleen M; Hensley, Lisa E; Jahrling, Peter B; Geisbert, Thomas W

    2005-01-01

    ...). Here, we developed replication-competent vaccines against EBOV and MARV based on attenuated recombinant vesicular stomatitis virus vectors expressing either the EBOV glycoprotein or MARV glycoprotein...

  1. Anterograde or Retrograde Transsynaptic Circuit Tracing in Vertebrates with Vesicular Stomatitis Virus Vectors.

    Beier, Kevin T; Mundell, Nathan A; Pan, Y Albert; Cepko, Constance L

    2016-01-04

    Viruses have been used as transsynaptic tracers, allowing one to map the inputs and outputs of neuronal populations, due to their ability to replicate in neurons and transmit in vivo only across synaptically connected cells. To date, their use has been largely restricted to mammals. In order to explore the use of such viruses in an expanded host range, we tested the transsynaptic tracing ability of recombinant vesicular stomatitis virus (rVSV) vectors in a variety of organisms. Successful infection and gene expression were achieved in a wide range of organisms, including vertebrate and invertebrate model organisms. Moreover, rVSV enabled transsynaptic tracing of neural circuitry in predictable directions dictated by the viral envelope glycoprotein (G), derived from either VSV or rabies virus (RABV). Anterograde and retrograde labeling, from initial infection and/or viral replication and transmission, was observed in Old and New World monkeys, seahorses, jellyfish, zebrafish, chickens, and mice. These vectors are widely applicable for gene delivery, afferent tract tracing, and/or directional connectivity mapping. Here, we detail the use of these vectors and provide protocols for propagating virus, changing the surface glycoprotein, and infecting multiple organisms using several injection strategies. Copyright © 2016 John Wiley & Sons, Inc.

  2. Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms.

    Mundell, Nathan A; Beier, Kevin T; Pan, Y Albert; Lapan, Sylvain W; Göz Aytürk, Didem; Berezovskii, Vladimir K; Wark, Abigail R; Drokhlyansky, Eugene; Bielecki, Jan; Born, Richard T; Schier, Alexander F; Cepko, Constance L

    2015-08-01

    Current limitations in technology have prevented an extensive analysis of the connections among neurons, particularly within nonmammalian organisms. We developed a transsynaptic viral tracer originally for use in mice, and then tested its utility in a broader range of organisms. By engineering the vesicular stomatitis virus (VSV) to encode a fluorophore and either the rabies virus glycoprotein (RABV-G) or its own glycoprotein (VSV-G), we created viruses that can transsynaptically label neuronal circuits in either the retrograde or anterograde direction, respectively. The vectors were investigated for their utility as polysynaptic tracers of chicken and zebrafish visual pathways. They showed patterns of connectivity consistent with previously characterized visual system connections, and revealed several potentially novel connections. Further, these vectors were shown to infect neurons in several other vertebrates, including Old and New World monkeys, seahorses, axolotls, and Xenopus. They were also shown to infect two invertebrates, Drosophila melanogaster, and the box jellyfish, Tripedalia cystophora, a species previously intractable for gene transfer, although no clear evidence of transsynaptic spread was observed in these species. These vectors provide a starting point for transsynaptic tracing in most vertebrates, and are also excellent candidates for gene transfer in organisms that have been refractory to other methods. © 2015 Wiley Periodicals, Inc.

  3. Long-Term Single-Dose Efficacy of a Vesicular Stomatitis Virus-Based Andes Virus Vaccine in Syrian Hamsters

    Joseph Prescott

    2014-01-01

    Full Text Available Andes virus (ANDV is highly pathogenic in humans and is the primary etiologic agent of hantavirus cardiopulmonary syndrome (HCPS in South America. Case-fatality rates are as high as 50% and there are no approved vaccines or specific therapies for infection. Our laboratory has recently developed a replication-competent recombinant vesicular stomatitis virus (VSV-based vaccine that expressed the glycoproteins of Andes virus in place of the native VSV glycoprotein (G. This vaccine is highly efficacious in the Syrian hamster model of HCPS when given 28 days before challenge with ANDV, or when given around the time of challenge (peri-exposure, and even protects when administered post-exposure. Herein, we sought to test the durability of the immune response to a single dose of this vaccine in Syrian hamsters. This vaccine was efficacious in hamsters challenged intranasally with ANDV 6 months after vaccination (p = 0.025, but animals were not significantly protected following 1 year of vaccination (p = 0.090. The decrease in protection correlated with a reduction of measurable neutralizing antibody responses, and suggests that a more robust vaccination schedule might be required to provide long-term immunity.

  4. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.

    Chad E Mire

    Full Text Available Ebola virus (EBOV causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs. Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV or Zaire ebolavirus (ZEBOV challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV, or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine

  5. Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B

    Backovic, Marija [Northwestern Univ., Evanston, IL (United States); Longnecker, Richard [Northwestern Univ., Chicago, IL (United States); Jardetzky, Theodore S [Northwestern Univ., Evanston, IL (United States)

    2009-03-16

    Epstein-Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the structure of gB from Herpes simplex virus 1 (HSV-1) is available. Here, we report the crystal structure of the secreted EBV gB ectodomain, which forms 16-nm long spike-like trimers, structurally homologous to the postfusion trimers of the fusion protein G of vesicular stomatitis virus (VSV). Comparative structural analyses of EBV gB and VSV G, which has been solved in its pre and postfusion states, shed light on gB residues that may be involved in conformational changes and membrane fusion. Also, the EBV gB structure reveals that, despite the high sequence conservation of gB in herpesviruses, the relative orientations of individual domains, the surface charge distributions, and the structural details of EBV gB differ from the HSV-1 protein, indicating regions and residues that may have important roles in virus-specific entry.

  6. Crystallization and preliminary X-ray analysis of Chandipura virus glycoprotein G

    Baquero, Eduard; Buonocore, Linda; Rose, John K.; Bressanelli, Stéphane; Gaudin, Yves; Albertini, Aurélie A.

    2012-01-01

    Chandipura virus glycoprotein ectodomain (Gth) was purified and crystallized at pH 7.5. X-ray diffraction data set was collected to a resolution of 3.1 Å. Fusion in members of the Rhabdoviridae virus family is mediated by the G glycoprotein. At low pH, the G glycoprotein catalyzes fusion between viral and endosomal membranes by undergoing a major conformational change from a pre-fusion trimer to a post-fusion trimer. The structure of the G glycoprotein from vesicular stomatitis virus (VSV G), the prototype of Vesiculovirus, has recently been solved in its trimeric pre-fusion and post-fusion conformations; however, little is known about the structural details of the transition. In this work, a soluble form of the ectodomain of Chandipura virus G glycoprotein (CHAV G th ) was purified using limited proteolysis of purified virus; this soluble ectodomain was also crystallized. This protein shares 41% amino-acid identity with VSV G and thus its structure could provide further clues about the structural transition of rhabdoviral glycoproteins induced by low pH. Crystals of CHAV G th obtained at pH 7.5 diffracted X-rays to 3.1 Å resolution. These crystals belonged to the orthorhombic space group P2 1 2 1 2, with unit-cell parameters a = 150.3, b = 228.2, c = 78.8 Å. Preliminary analysis of the data based on the space group and the self-rotation function indicated that there was no trimeric association of the protomers. This unusual oligomeric status could result from the presence of fusion intermediates in the crystal

  7. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates.

    Thomas W Geisbert

    2008-11-01

    Full Text Available Ebola virus (EBOV is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVDeltaG/ZEBOVGP in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV. All six animals showed no evidence of illness associated with the VSVDeltaG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV.

  8. Oncotargeting by Vesicular Stomatitis Virus (VSV: Advances in Cancer Therapy

    Suman Bishnoi

    2018-02-01

    Full Text Available Modern oncotherapy approaches are based on inducing controlled apoptosis in tumor cells. Although a number of apoptosis-induction approaches are available, site-specific delivery of therapeutic agents still remain the biggest hurdle in achieving the desired cancer treatment benefit. Additionally, systemic treatment-induced toxicity remains a major limiting factor in chemotherapy. To specifically address drug-accessibility and chemotherapy side effects, oncolytic virotherapy (OV has emerged as a novel cancer treatment alternative. In OV, recombinant viruses with higher replication capacity and stronger lytic properties are being considered for tumor cell-targeting and subsequent cell lysing. Successful application of OVs lies in achieving strict tumor-specific tropism called oncotropism, which is contingent upon the biophysical interactions of tumor cell surface receptors with viral receptors and subsequent replication of oncolytic viruses in cancer cells. In this direction, few viral vector platforms have been developed and some of these have entered pre-clinical/clinical trials. Among these, the Vesicular stomatitis virus (VSV-based platform shows high promise, as it is not pathogenic to humans. Further, modern molecular biology techniques such as reverse genetics tools have favorably advanced this field by creating efficient recombinant VSVs for OV; some have entered into clinical trials. In this review, we discuss the current status of VSV based oncotherapy, challenges, and future perspectives regarding its therapeutic applications in the cancer treatment.

  9. Oncotargeting by Vesicular Stomatitis Virus (VSV): Advances in Cancer Therapy.

    Bishnoi, Suman; Tiwari, Ritudhwaj; Gupta, Sharad; Byrareddy, Siddappa N; Nayak, Debasis

    2018-02-23

    Modern oncotherapy approaches are based on inducing controlled apoptosis in tumor cells. Although a number of apoptosis-induction approaches are available, site-specific delivery of therapeutic agents still remain the biggest hurdle in achieving the desired cancer treatment benefit. Additionally, systemic treatment-induced toxicity remains a major limiting factor in chemotherapy. To specifically address drug-accessibility and chemotherapy side effects, oncolytic virotherapy (OV) has emerged as a novel cancer treatment alternative. In OV, recombinant viruses with higher replication capacity and stronger lytic properties are being considered for tumor cell-targeting and subsequent cell lysing. Successful application of OVs lies in achieving strict tumor-specific tropism called oncotropism, which is contingent upon the biophysical interactions of tumor cell surface receptors with viral receptors and subsequent replication of oncolytic viruses in cancer cells. In this direction, few viral vector platforms have been developed and some of these have entered pre-clinical/clinical trials. Among these, the Vesicular stomatitis virus (VSV)-based platform shows high promise, as it is not pathogenic to humans. Further, modern molecular biology techniques such as reverse genetics tools have favorably advanced this field by creating efficient recombinant VSVs for OV; some have entered into clinical trials. In this review, we discuss the current status of VSV based oncotherapy, challenges, and future perspectives regarding its therapeutic applications in the cancer treatment.

  10. Transmission of vesicular stomatitis New Jersey virus to cattle by the biting midge Culicoides sonorensis (Diptera: Ceratopogonidae).

    Perez de Leon, Adalberto A; Tabachnick, Walter J

    2006-03-01

    Laboratory-reared Culicoides sonorensis Wirth & Jones were infected with vesicular stomatitis virus serotype New Jersey (family Rhabdoviridae, genus Vesiculovirus, VSNJV) through intrathoracic inoculation. After 10-d incubation at 25 degrees C, these insects were allowed to blood feed on four steers. Two other steers were exposed to VSNJV through intralingual inoculation with 10(8) tissue culture infective dose50 VSNJV. All six steers became seropositive for VSNJV. The results demonstrate the ability of C. sonorensis to transmit VSNJV to livestock. Only the animals intralingually inoculated with VSNJV showed clinical signs in the form of vesicles at the site of inoculation. Uninfected C. sonorensis allowed to feed on the exposed animals did not become infected with VSNJV. Animals infected by C. sonorensis showed a slower antibody response compared with intralingually inoculated animals. This is probably because of different amounts of virus received via insect transmission and syringe inoculation. A significant difference was found in the serum acute-phase protein alpha-1-acid glycoprotein in animals that received VSNJV through C. sonorensis transmission. These animals had previously been exposed to insect attack in the field compared with intralingually inoculated animals and C. sonorensis-infected animals that had been protected from insect attack. The failure to observe clinical signs of vesicular stomatitis through transmission of VSNJV by C. sonorensis may explain widespread subclinical infections during vesicular stomatitis epidemics.

  11. Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1-antitrypsin variants.

    Anna Maisa

    2009-06-01

    Full Text Available Proteolytic processing of the Lassa virus envelope glycoprotein precursor GP-C by the host proprotein convertase site 1 protease (S1P is a prerequisite for the incorporation of the subunits GP-1 and GP-2 into viral particles and, hence, essential for infectivity and virus spread. Therefore, we tested in this study the concept of using S1P as a target to block efficient virus replication.We demonstrate that stable cell lines inducibly expressing S1P-adapted alpha(1-antitrypsin variants inhibit the proteolytic maturation of GP-C. Introduction of the S1P recognition motifs RRIL and RRLL into the reactive center loop of alpha(1-antitrypsin resulted in abrogation of GP-C processing by endogenous S1P to a similar level observed in S1P-deficient cells. Moreover, S1P-specific alpha(1-antitrypsins significantly inhibited replication and spread of a replication-competent recombinant vesicular stomatitis virus expressing the Lassa virus glycoprotein GP as well as authentic Lassa virus. Inhibition of viral replication correlated with the ability of the different alpha(1-antitrypsin variants to inhibit the processing of the Lassa virus glycoprotein precursor.Our data suggest that glycoprotein cleavage by S1P is a promising target for the development of novel anti-arenaviral strategies.

  12. The lipidomes of vesicular stomatitis virus, semliki forest virus, and the host plasma membrane analyzed by quantitative shotgun mass spectrometry

    Kalvodova, Lucie; Sampaio, Julio L; Cordo, Sandra

    2009-01-01

    kidney cells can be infected by two different viruses, namely, vesicular stomatitis virus and Semliki Forest virus, from the Rhabdoviridae and Togaviridae families, respectively. We purified the host plasma membrane and the two different viruses after exit from the host cells and analyzed the lipid...

  13. The glycoprotein genes and gene junctions of the fish rhabdoviruses spring viremia of carp virus and hirame rhabdovirus: Analysis of relationships with other rhabdoviruses

    Bjorklund, H.V.; Higman, K.H.; Kurath, G.

    1996-01-01

    The nucleotide sequences of the glycoprotein genes and all of the internal gene junctions of the fish pathogenic rhabdoviruses spring viremia of carp virus (SVCV) and hirame rhabdovirus (HIRRV) have been determined from cDNA clones generated from viral genomic RNA. The SVCV glycoprotein gene sequence is 1588 nucleotides (nt) long and encodes a 509 amino acid (aa) protein. The HIRRV glycoprotein gene sequence comprises 1612 nt, coding for a 508 aa protein. In sequence comparisons of 15 rhabdovirus glycoproteins, the SVCV glycoprotein gene showed the highest amino acid sequence identity (31.2–33.2%) with vesicular stomatitis New Jersey virus (VSNJV), Chandipura virus (CHPV) and vesicular stomatitis Indiana virus (VSIV). The HIRRV glycoprotein gene showed a very high amino acid sequence identity (74.3%) with the glycoprotein gene of another fish pathogenic rhabdovirus, infectious hematopoietic necrosis virus (IHNV), but no significant similarity with glycoproteins of VSIV or rabies virus (RABV). In phylogenetic analyses SVCV was grouped consistently with VSIV, VSNJV and CHPV in the Vesiculovirus genus of Rhabdoviridae. The fish rhabdoviruses HIRRV, IHNV and viral hemorrhagic septicemia virus (VHSV) showed close relationships with each other, but only very distant relationships with mammalian rhabdoviruses. The gene junctions are highly conserved between SVCV and VSIV, well conserved between IHNV and HIRRV, but not conserved between HIRRV/IHNV and RABV. Based on the combined results we suggest that the fish lyssa-type rhabdoviruses HIRRV, IHNV and VHSV may be grouped in their own genus within the family Rhabdoviridae. Aquarhabdovirus has been proposed for the name of this new genus.

  14. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.

    Shrivastava-Ranjan, Punya; Flint, Mike; Bergeron, Éric; McElroy, Anita K; Chatterjee, Payel; Albariño, César G; Nichol, Stuart T; Spiropoulou, Christina F

    2018-05-01

    Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD. IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune

  15. New baculovirus recombinants expressing Pseudorabies virus (PRV) glycoproteins protect mice against lethal challenge infection.

    Grabowska, Agnieszka K; Lipińska, Andrea D; Rohde, Jörg; Szewczyk, Boguslaw; Bienkowska-Szewczyk, Krystyna; Rziha, Hanns-Joachim

    2009-06-02

    The present study demonstrates the protective potential of novel baculovirus recombinants, which express the glycoproteins gB, gC, or gD of Pseudorabies virus (PRV; Alphaherpesvirus of swine) and additionally contain the glycoprotein G of Vesicular Stomatitis Virus (VSV-G) in the virion (Bac-G-PRV). To evaluate the protective capacity, mixtures of equal amounts of the PRV gB-, gC-, and gD-expressing baculoviruses were used for immunization. Three intramuscular immunizations with that Bac-G-PRV mixture could protect mice against a lethal PRV challenge infection. To achieve complete protection high titers of Bac-G-PRV and three immunizations were necessary. This immunization with Bac-G-PRV resulted in the induction of high titers of PRV-specific serum antibodies of the IgG2a subclass and of interferon (IFN)-gamma, indicating a Th1-type immune response. Moreover, splenocytes of immunized mice exhibited natural killer cell activity accompanied by the production of IFN-alpha and IFN-gamma. Collectively, the presented data demonstrate for the first time that co-expression of VSV-G in baculovirus recombinant vaccines can improve the induction of a protective immune response against foreign antigens.

  16. Infection of guinea pigs with vesicular stomatitis New Jersey virus Transmitted by Culicoides sonorensis (Diptera: Ceratopogonidae).

    Pérez De León, Adalberto A; O'Toole, Donal; Tabachnick, Walter J

    2006-05-01

    Intrathoracically inoculated Culicoides sonorensis Wirth & Jones were capable of transmitting vesicular stomatitis New Jersey virus (family Rhabdoviridae, genus Vesiculovirus, VSNJV) during blood feeding on the abdomen of six guinea pigs. None of the guinea pigs infected in this manner developed clinical signs of vesicular stomatitis despite seroconversion for VSNJV. Guinea pigs infected by intradermal inoculations of VSNJV in the abdomen also failed to develop clinical signs of vesicular stomatitis. Three guinea pigs given intradermal inoculations of VSNJV in the foot pad developed lesions typical of vesicular stomatitis. Transmission by the bite of C. sonorensis may have facilitated guinea pig infection with VSNJV because a single infected C. sonorensis caused seroconversion and all guinea pigs infected by insect bite seroconverted compared with 50% of the guinea pigs infected by intradermal inoculation with a higher titer VSNJV inoculum. The role of C. sonorensis in the transmission of VSNJV is discussed.

  17. Determinants of foamy virus envelope glycoprotein mediated resistance to superinfection

    Berg, Angelika; Pietschmann, Thomas; Rethwilm, Axel; Lindemann, Dirk

    2003-01-01

    Little is known about the nature of foamy virus (FV) receptor molecules on target cells and their interaction with the viral glycoproteins. Similar to other viruses, cellular expression of the FV Env protein is sufficient to induce resistance to exogenous FV, a phenomenon called superinfection resistance (SIR). In this study we define determinants of the FV Env protein essential for mediating SIR. FV Env requires the extracellular domains of the SU and the TM subunits as well as membrane anchorage, efficient cell surface transport, and most probably correct subunit processing. This is in contrast to murine leukemia virus where secreted proteins comprising the receptor-binding domain in SU are sufficient to induce SIR. Furthermore, we demonstrate that cellular expression of the prototype FV envelope proteins induces SIR against pseudotypes with glycoproteins of other FV species, including of simian, feline, bovine, and equine origin. This implies that all of them use the same receptor molecules for viral entry

  18. Vesicular Stomatitis Virus Infection Promotes Immune Evasion by Preventing NKG2D-Ligand Surface Expression

    Jensen, Helle; Andresen, Lars; Nielsen, Jens

    2011-01-01

    Vesicular stomatitis virus (VSV) has recently gained attention for its oncolytic ability in cancer treatment. Initially, we hypothesized that VSV infection could increase immune recognition of cancer cells through induction of the immune stimulatory NKG2D-ligands. Here we show that VSV infection ...

  19. Prediction of conserved sites and domains in glycoproteins B, C and D of herpes viruses.

    Rasheed, Muhammad Asif; Ansari, Abdur Rahman; Ihsan, Awais; Navid, Muhammad Tariq; Ur-Rehman, Shahid; Raza, Sohail

    2018-03-01

    Glycoprotein B (gB), C (gC) and D (gD) of herpes simplex virus are implicated in virus adsorption and penetration. The gB, gC and gD are glycoproteins for different processes of virus binding and attachment to the host cells. Moreover, their expression is necessary and sufficient to induce cell fusion in the absence of other glycoproteins. Egress of herpes simplex virus (HSV) and other herpes viruses from cells involves extensive modification of cellular membranes and sequential envelopment, de-envelopment and re-envelopment steps. Viral glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Hence, we target the 3 important glycoproteins (B, C and D) of eight different herpes viruses of different species. These species include human (HSV1 and 2), bovine (BHV1), equine (EHV1 and 4), chicken (ILT1 and MDV2) and pig (PRV1). By applying different bioinformatics tools, we highlighted the conserved sites in these glycoproteins which might be most significant regarding attachment and infection of the viruses. Moreover the conserved domains in these glycoproteins are also highlighted. From this study, we will able to analyze the role of different viral glycoproteins of different species during herpes virus adsorption and penetration. Moreover, this study will help to construct the antivirals that target the glycoproteins of different herpes viruses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Monoclonal antibodies directed to E1 glycoprotein of rubella virus

    Umino, Y.; Sato, A.; Katow, S.; Matsuno, T.; Sugiura, A.

    1985-01-01

    We have prepared four monoclonal antibodies to rubella virus E1 glycoprotein. Three nonoverlapping antigenic sites were delineated on E1 protein by competitive binding assays. Antibodies binding to one site were characterized by high hemagglutination inhibition (HI) titer but poor neutralizing activity. The addition of antiglobulin conferred neutralizing activity. Antibodies directed to two other antigenic sites had modest hemolysis inhibition but little or no HI and neutralizing activities. The addition of antiglobulin markedly augmented HI activity but had little effect on neutralizing activity. Epitopes defined by three antibodies were conserved among four rubella virus strains examined. (Author)

  1. Tumor Necrosis Factor-Mediated Survival of CD169+ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection

    Shinde, Prashant V; Xu, Haifeng C; Maney, Sathish Kumar

    2018-01-01

    Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169(+) cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169(+) cells during viral infections remain...... stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF) which signals via TNFR1 and promote "enforced virus replication" in CD169(+) macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance....

  2. The Role of Conserved N-Linked Glycans on Ebola Virus Glycoprotein 2.

    Lennemann, Nicholas J; Walkner, Madeline; Berkebile, Abigail R; Patel, Neil; Maury, Wendy

    2015-10-01

    N-linked glycosylation is a common posttranslational modification found on viral glycoproteins (GPs) and involved in promoting expression, cellular attachment, protection from proteases, and antibody evasion. The GP subunit GP2 of filoviruses contains 2 completely conserved N-linked glycosylation sites (NGSs) at N563 and N618, suggesting that they have been maintained through selective pressures. We assessed mutants lacking these glycans for expression and function to understand the role of these sites during Ebola virus entry. Elimination of either GP2 glycan individually had a modest effect on GP expression and no impact on antibody neutralization of vesicular stomatitis virus pseudotyped with Ebola virus GP. However, loss of the N563 glycan enhanced entry by 2-fold and eliminated GP detection by a well-characterized monoclonal antibody KZ52. Loss of both sites dramatically decreased GP expression and abolished entry. Surprisingly, a GP that retained a single NGS at N563, eliminating the remaining 16 NGSs from GP1 and GP2, had detectable expression, a modest increase in entry, and pronounced sensitivity to antibody neutralization. Our findings support the importance of the GP2 glycans in GP expression/structure, transduction efficiency, and antibody neutralization, particularly when N-linked glycans are also removed from GP1. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Nipah virus infection and glycoprotein targeting in endothelial cells

    Maisner Andrea

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic Nipah virus (NiV causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. Results As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar, not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. Conclusion We conclude that the NiV glycoprotein distribution is responsible for

  4. Two transcription products of the vesicular stomatitis virus genome may control L-cell protein synthesis

    Dunigan, D.D.; Lucas-Lenard, J.M.

    1983-01-01

    When mouse L-cells are infected with vesicular stomatitis virus, there is a decrease in the rate of protein synthesis ranging from 20 to 85% of that in mock-infected cells. Vesicular stomatitis virus, irradiated with increasing doses of UV light, eventually loses this capacity to inhibit protein synthesis. The UV inactivation curve was biphasic, suggesting that transcription of two regions of the viral genome is necessary for the virus to become inactivated in this capacity. The first transcription produced corresponded to about 373 nucleotides, and the second corresponded to about 42 nucleotides. Inhibition of transcription of the larger product by irradiating the virus with low doses of UV light left a residual inhibition of protein synthesis consisting of approximately 60 to 65% of the total inhibition. This residual inhibition could be obviated by irradiating the virus with a UV dose of greater than 20,000 ergs/mm 2 and was thus considered to represent the effect of the smaller transcription product. In the R1 mutant of another author, the inhibition of transcription of the larger product sufficed to restore protein synthesis to the mock-infected level, suggesting that the smaller transcription product is nonfunctional with respect to protein synthesis inhibition. Extracts from cells infected with virus irradiated with low doses of UV light showed a protein synthesis capacity quite similar to that of their in vivo counterparts, indicating that these extracts closely reflect the in vivo effects of virus infection

  5. Mechanism of feline immunodeficiency virus envelope glycoprotein-mediated fusion

    Garg, Himanshu; Fuller, Frederick J.; Tompkins, Wayne A.F.

    2004-01-01

    Feline immunodeficiency virus (FIV) shares remarkable homology to primate lentiviruses, human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). The process of lentiviral env glycoprotein-mediated fusion of membranes is essential for viral entry and syncytia formation. A detailed understanding of this phenomenon has helped identify new targets for antiviral drug development. Using a model based on syncytia formation between FIV env-expressing cells and a feline CD4+ T cell line we have studied the mechanism of FIV env-mediated fusion. Using this model we show that FIV env-mediated fusion mechanism and kinetics are similar to HIV env. Syncytia formation could be blocked by CXCR4 antagonist AMD3100, establishing the importance of this receptor in FIV gp120 binding. Interestingly, CXCR4 alone was not sufficient to allow fusion by a primary isolate of FIV, as env glycoprotein from FIV-NCSU 1 failed to induce syncytia in several feline cell lines expressing CXCR4. Syncytia formation could be inhibited at a post-CXCR4 binding step by synthetic peptide T1971, which inhibits interaction of heptad repeat regions of gp41 and formation of the hairpin structure. Finally, using site-directed mutagenesis, we also show that a conserved tryptophan-rich region in the membrane proximal ectodomain of gp41 is critical for fusion, possibly at steps post hairpin structure formation

  6. JST Thesaurus Headwords and Synonyms: vesicular stomatitis virus [MeCab user dictionary for science technology term[Archive

    Full Text Available MeCab user dictionary for science technology term vesicular stomatitis virus 名詞 一般 ...* * * * 水疱性口内炎ウイルス スイホウセイコウナイエンウイルス スイホーセイコーナイエンウイルス Thesaurus2015 200906056003651861 C LS07 UNKNOWN_2 vesicular stomatitis virus

  7. In silico-based vaccine design against Ebola virus glycoprotein

    Dash R

    2017-03-01

    Full Text Available Raju Dash,1 Rasel Das,2 Md Junaid,3 Md Forhad Chowdhury Akash,4 Ashekul Islam,5 SM Zahid Hosen1 1Molecular Modeling and Drug Design Laboratory (MMDDL, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR, Chittagong, Bangladesh; 2Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur, Malaysia; 3Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; 4Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh; 5Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh Abstract: Ebola virus (EBOV is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154–162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV. Keywords: Ebola virus, epitope, glycoprotein, vaccine design

  8. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice.

    Li, Zhili; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Sun, Jiazeng; Yi, Bao; Hou, Qiang; Mao, Yaping; Liu, Weiquan

    2015-06-01

    Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals.

  9. A Polyamide Inhibits Replication of Vesicular Stomatitis Virus by Targeting RNA in the Nucleocapsid

    Gumpper, Ryan H.; Li, Weike; Castañeda, Carlos H.; Scuderi, M. José; Bashkin, James K.; Luo, Ming; Dutch, Rebecca Ellis

    2018-02-07

    Polyamides have been shown to bind double-stranded DNA by complementing the curvature of the minor groove and forming various hydrogen bonds with DNA. Several polyamide molecules have been found to have potent antiviral activities against papillomavirus, a double-stranded DNA virus. By analogy, we reason that polyamides may also interact with the structured RNA bound in the nucleocapsid of a negative-strand RNA virus. Vesicular stomatitis virus (VSV) was selected as a prototype virus to test this possibility since its genomic RNA encapsidated in the nucleocapsid forms a structure resembling one strand of an A-form RNA duplex. One polyamide molecule, UMSL1011, was found to inhibit infection of VSV. To confirm that the polyamide targeted the nucleocapsid, a nucleocapsid-like particle (NLP) was incubated with UMSL1011. The encapsidated RNA in the polyamide-treated NLP was protected from thermo-release and digestion by RNase A. UMSL1011 also inhibits viral RNA synthesis in the intracellular activity assay for the viral RNA-dependent RNA polymerase. The crystal structure revealed that UMSL1011 binds the structured RNA in the nucleocapsid. The conclusion of our studies is that the RNA in the nucleocapsid is a viable antiviral target of polyamides. Since the RNA structure in the nucleocapsid is similar in all negative-strand RNA viruses, polyamides may be optimized to target the specific RNA genome of a negative-strand RNA virus, such as respiratory syncytial virus and Ebola virus.

    IMPORTANCENegative-strand RNA viruses (NSVs) include several life-threatening pathogens, such as rabies virus, respiratory syncytial virus, and Ebola virus. There are no effective antiviral drugs against these viruses. Polyamides offer an exceptional opportunity because they may be optimized to target each NSV. Our studies on vesicular stomatitis virus, an NSV, demonstrated that a polyamide molecule could specifically target the viral RNA in the nucleocapsid and inhibit

  10. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  11. Glycoprotein H of herpes simplex virus type 1 requires glycoprotein L for transport to the surfaces of insect cells

    Westra, DF; Glazenburg, KL; Harmsen, MC; Tiran, A; Scheffer, AJ; Welling, GW; The, TH; WellingWester, S

    In mammalian cells, formation of heterooligomers consisting of the glycoproteins H and L (gH and gL) of herpes simplex virus type 1 is essential for the cell-to-cell spread of virions and for the penetration of virions into cells. We examined whether formation of gH1/gL1 heterooligomers and cell

  12. Hepatitis C Virus E2 Envelope Glycoprotein Core Structure

    Kong, Leopold; Giang, Erick; Nieusma, Travis; Kadam, Rameshwar U.; Cogburn, Kristin E.; Hua, Yuanzi; Dai, Xiaoping; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.; Law, Mansun

    2014-08-26

    Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.

  13. Analysis of the RNA species isolated from defective particles of vesicular stomatitis virus.

    Adler, R; Banerjee, A K

    1976-10-01

    Serial high multiplicity passage of a cloned stock of vesicular stomatitis virus was found to generate defective interfering particles containing three size classes of RNA, with sedimentaiton coefficients of 31 S, 23 S and 19 S. The 31 S and 23 S RNA species were found to be complementary to both the 12 to 18 S and 31 S size classes of VSV mRNAs. The 19 S class of RNA was found to be partially base-paired. All three RNA species were found to contain ppAp at their 5' termini.

  14. Efficacy of Vesicular Stomatitis Virus-Ebola Virus Postexposure Treatment in Rhesus Macaques Infected With Ebola Virus Makona.

    Marzi, Andrea; Hanley, Patrick W; Haddock, Elaine; Martellaro, Cynthia; Kobinger, Gary; Feldmann, Heinz

    2016-10-15

    The Ebola virus (EBOV) epidemic in West Africa increased the focus on vaccine development against this hemorrhagic fever-causing pathogen, and as a consequence human clinical trials for a few selected platforms were accelerated. One of these vaccines is vesicular stomatitis virus (VSV)-EBOV, also known as rVSV-ZEBOV, a fast-acting vaccine against EBOV and so far the only vaccine with reported efficacy against EBOV infections in humans in phase III clinical trials. In this study, we analyzed the potential of VSV-EBOV for postexposure treatment of rhesus macaques infected with EBOV-Makona. We treated groups of animals with 1 dose of VSV-EBOV either in a single injection at 1 or 24 hours after EBOV exposure or with 2 injections, half the dose at each time point; 1 control group received the same dose of the VSV-based Marburg virus vaccine at both time points; another group remained untreated. Although all untreated animals succumbed to EBOV infection, 33%-67% of the animals in each treatment group survived the infection, including the group treated with the VSV-based Marburg virus vaccine. This result suggests that protection from postexposure vaccination may be antigen unspecific and due rather to an early activation of the innate immune system. In conclusion, VSV-EBOV remains a potent and fast-acting prophylactic vaccine but demonstrates only limited efficacy in postexposure treatment. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein.

    Luis Mario Rodríguez-Martínez

    Full Text Available Current Ebola virus (EBOV detection methods are costly and impractical for epidemic scenarios. Different immune-based assays have been reported for the detection and quantification of Ebola virus (EBOV proteins. In particular, several monoclonal antibodies (mAbs have been described that bind the capsid glycoprotein (GP of EBOV GP. However, the currently available platforms for the design and production of full-length mAbs are cumbersome and costly. The use of antibody fragments, rather than full-length antibodies, might represent a cost-effective alternative for the development of diagnostic and possibly even therapeutic alternatives for EBOV.We report the design and expression of three recombinant anti-GP mAb fragments in Escherichia coli cultures. These fragments contained the heavy and light variable portions of the three well-studied anti-GP full-length mAbs 13C6, 13F6, and KZ52, and are consequently named scFv-13C6, scFv-13F6, and Fab-KZ52, respectively. All three fragments exhibited specific anti-GP binding activity in ELISA experiments comparable to that of full-length anti-GP antibodies (i.e., the same order of magnitude and they are easily and economically produced in bacterial cultures.Antibody fragments might represent a useful, effective, and low cost alternative to full-length antibodies in Ebola related capture and diagnostics applications.

  16. Immunogenicity and efficacy of immunodeficiency virus-like particles pseudotyped with the G protein of vesicular stomatitis virus

    Kuate, Seraphin; Stahl-Hennig, Christiane; Stoiber, Heribert; Nchinda, Godwin; Floto, Anja; Franz, Monika; Sauermann, Ulrike; Bredl, Simon; Deml, Ludwig; Ignatius, Ralf; Norley, Steve; Racz, Paul; Tenner-Racz, Klara; Steinman, Ralph M.; Wagner, Ralf; Uberla, Klaus

    2006-01-01

    Vaccination with exogenous antigens such as recombinant viral proteins, immunodeficiency virus-derived whole inactivated virus particles, or virus-like particles (VLP) has generally failed to provide sufficient protection in animal models for AIDS. Pseudotyping VLPs with the vesicular stomatitis virus G protein (VSV-G), which is known to mediate entry into dendritic cells, might allow more efficient stimulation of immune responses. Therefore, we pseudotyped noninfectious immunodeficiency virus-like particles with VSV-G and carried out a preliminary screen of their immunogenicity and vaccination efficacy. Incorporation of VSV-G into HIV-1 VLPs led to hundred-fold higher antibody titers to HIV-1 Gag and enhancement of T cell responses in mice. Repeated vaccination of rhesus monkeys for 65 weeks with VSV-G pseudotyped simian immunodeficiency virus (SIV)-like particles (VLP[G]) provided initial evidence for efficient suppression of viral load after mucosal challenge with the SIVmac239 virus. Challenge of monkeys after a 28 week vaccination regimen with VLP[G] led to a reduction in peak viremia, but persistent suppression of viral load was not achieved. Due to limitations in the number of animals available for this study, improved efficacy of VSV-G pseudotyped VLPs in nonhuman primates could not be demonstrated. However, mouse experiments revealed that pseudotyping of VLPs with fusion-competent VSV-G clearly improves their immunogenicity. Additional strategies, particularly adjuvants, should be considered to provide greater protection against a challenge with pathogenic immunodeficiency virus

  17. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  18. Black fly involvement in the epidemic transmission of vesicular stomatitis New Jersey virus (Rhabdoviridae: Vesiculovirus).

    Mead, Daniel G; Howerth, Elizabeth W; Murphy, Molly D; Gray, Elmer W; Noblet, Raymond; Stallknecht, David E

    2004-01-01

    The transmission routes of Vesicular stomatitis New Jersey virus (VSNJV), a causative agent of vesicular stomatitis, an Office International des Epizooties List-A disease, are not completely understood. Epidemiological and entomological studies conducted during the sporadic epidemics in the western United States have identified potential virus transmission routes involving insect vectors and animal-to-animal contact. In the present study we experimentally tested the previously proposed transmission routes which were primarily based on field observations. Results obtained provide strong evidence for the following: (1) hematophagous insects acquire VSNJV by unconventional routes while blood feeding on livestock, (2) clinical course of VSNJV infection in livestock following transmission by an infected insect is related to insect bite site, (3) infection of livestock via insect bite can result in multiple transmission possibilities, including animal-to-animal contact. Taken together, these data significantly add to our understanding of the transmission routes of a causative agent of one of the oldest known infectious diseases of livestock, for which the details have remained largely unknown despite decades of research.

  19. Interactions of macrophages with probiotic bacteria lead to increased antiviral response against vesicular stomatitis virus

    Ivec, Martin; Botic, Tanja; Koren, Srecko

    2007-01-01

    and by producing chemokines and immunoregulatory cytokines that enable the adaptive immune response to recognize infected cells and perform antiviral effector functions. Probiotics, as a part of the normal gut intestinal flora, are important in supporting a functional yet balanced immune system. Improving our...... understanding of their role in the activation of macrophages and their stimulation of proinflammatory cytokine production in early viral infection was the main goal of this study. Our in vitro model study showed that probiotic bacteria, either from the species Lactobacillus or Bifidobacteria have the ability...... dehydrogenases activity could be implied as the first indicator of potential inhibitory effects of the probiotics on virus replication. The interactions between probiotic bacteria, macrophages and vesicular stomatitis virus (VSV), markedly depended on the bacterial strain studied....

  20. Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the presence of antiviral antibodies

    Laura Evgin

    2016-01-01

    Full Text Available The systemic delivery of therapeutic viruses, such as oncolytic viruses or vaccines, is limited by the generation of neutralizing antibodies. While pseudotyping of rhabdoviruses with the lymphocytic choriomeningitis virus glycoprotein has previously allowed for multiple rounds of delivery in mice, this strategy has not translated to other animal models. For the first time, we provide experimental evidence that antibodies generated against the lymphocytic choriomeningitis virus glycoprotein mediate robust complement-dependent viral neutralization via activation of the classical pathway. We show that this phenotype can be capitalized upon to deliver maraba virus pseudotyped with the lymphocytic choriomeningitis virus glycoprotein in a Fischer rat model in the face of neutralizing antibody through the use of complement modulators. This finding changes the understanding of the humoral immune response to arenaviruses, and also describes methodology to deliver viral vectors to their therapeutic sites of action without the interference of neutralizing antibody.

  1. The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis.

    Feldmann, H; Volchkov, V E; Volchkova, V A; Klenk, H D

    1999-01-01

    Filoviruses cause systemic infections that can lead to severe hemorrhagic fever in human and non-human primates. The primary target of the virus appears to be the mononuclear phagocytic system. As the virus spreads through the organism, the spectrum of target cells increases to include endothelial cells, fibroblasts, hepatocytes, and many other cells. There is evidence that the filovirus glycoprotein plays an important role in cell tropism, spread of infection, and pathogenicity. Biosynthesis of the glycoprotein forming the spikes on the virion surface involves cleavage by the host cell protease furin into two disulfide linked subunits GP1 and GP2. GP1 is also shed in soluble form from infected cells. Different strains of Ebola virus show variations in the cleavability of the glycoprotein, that may account for differences in pathogenicity, as has been observed with influenza viruses and paramyxoviruses. Expression of the spike glycoprotein of Ebola virus, but not of Marburg virus, requires transcriptional editing. Unedited GP mRNA yields the nonstructural glycoprotein sGP, which is secreted extensively from infected cells. Whether the soluble glycoproteins GP1 and sGP interfere with the humoral immune response and other defense mechanisms remains to be determined.

  2. Use of λgt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins

    Petrovskis, E.A.; Timmins, J.G.; Post, L.E.

    1986-01-01

    A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector λgt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the λgt11 vector, the cloned proteins were expressed in Escherichia coli as β-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of [ 14 C]glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX; gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved

  3. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus

    Beuy Joob

    2014-12-01

    Full Text Available The drug searching for combating the present outbreak of Ebola virus infection is the urgent activity at present. Finding the new effective drug at present must base on the molecular analysis of the pathogenic virus. The in-depth analysis of the viral protein to find the binding site, active pocket is needed. Here, the authors analyzed the envelope glycoprotein GP2 from Ebola virus. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus was done. According to this assessment, 7 active pockets with varied druggability could be identified.

  4. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge.

    Misako Yoneda

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G. Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi. Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.

  5. Enhanced immunosurveillance for animal morbilliviruses using vesicular stomatitis virus (VSV) pseudotypes.

    Logan, Nicola; Dundon, William G; Diallo, Adama; Baron, Michael D; James Nyarobi, M; Cleaveland, Sarah; Keyyu, Julius; Fyumagwa, Robert; Hosie, Margaret J; Willett, Brian J

    2016-11-11

    The measurement of virus-specific neutralising antibodies represents the "gold-standard" for diagnostic serology. For animal morbilliviruses, such as peste des petits ruminants (PPRV) or rinderpest virus (RPV), live virus-based neutralisation tests require high-level biocontainment to prevent the accidental escape of the infectious agents. In this study, we describe the adaptation of a replication-defective vesicular stomatitis virus (VSVΔG) based pseudotyping system for the measurement of neutralising antibodies against animal morbilliviruses. By expressing the haemagglutinin (H) and fusion (F) proteins of PPRV on VSVΔG pseudotypes bearing a luciferase marker gene, neutralising antibody titres could be measured rapidly and with high sensitivity. Serological responses against the four distinct lineages of PPRV could be measured simultaneously and cross-neutralising responses against other morbilliviruses compared. Using this approach, we observed that titres of neutralising antibodies induced by vaccination with live attenuated PPRV were lower than those induced by wild type virus infection and the level of cross-lineage neutralisation varied between vaccinates. By comparing neutralising responses from animals infected with either PPRV or RPV, we found that responses were highest against the homologous virus, indicating that retrospective analyses of serum samples could be used to confirm the nature of the original pathogen to which an animal had been exposed. Accordingly, when screening sera from domestic livestock and wild ruminants in Tanzania, we detected evidence of cross-species infection with PPRV, canine distemper virus (CDV) and a RPV-related bovine morbillivirus, suggesting that exposure to animal morbilliviruses may be more widespread than indicated previously using existing diagnostic techniques. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Infection of Melanoplus sanguinipes grasshoppers following ingestion of rangeland plant species harboring vesicular stomatitis virus.

    Drolet, Barbara S; Stuart, Melissa A; Derner, Justin D

    2009-05-01

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV.

  7. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    Smith, Mary Ellen; Koser, Martin; Xiao Sa; Siler, Catherine; McGettigan, James P.; Calkins, Catherine; Pomerantz, Roger J.; Dietzschold, Bernhard; Schnell, Matthias J.

    2006-01-01

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems

  8. Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines.

    C.H.J. Siebelink (Kees); E.J. Tijhaar (Edwin); R.C. Huisman (Robin); W. Huisman (Willem); A. de Ronde; I.H. Darby; M.J. Francis; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractCats were immunized three times with different recombinant feline immunodeficiency virus (FIV) candidate vaccines. Recombinant vaccinia virus (rVV)-expressed envelope glycoprotein with (vGR657) or without (vGR657 x 15) the cleavage site and an FIV envelope bacterial fusion protein

  9. Lack of correlation between virus barosensitivity and the presence of a viral envelope during inactivation of human rotavirus, vesicular stomatitis virus, and avian metapneumovirus by high-pressure processing.

    Lou, Fangfei; Neetoo, Hudaa; Li, Junan; Chen, Haiqiang; Li, Jianrong

    2011-12-01

    High-pressure processing (HPP) is a nonthermal technology that has been shown to effectively inactivate a wide range of microorganisms. However, the effectiveness of HPP on inactivation of viruses is relatively less well understood. We systematically investigated the effects of intrinsic (pH) and processing (pressure, time, and temperature) parameters on the pressure inactivation of a nonenveloped virus (human rotavirus [HRV]) and two enveloped viruses (vesicular stomatitis virus [VSV] and avian metapneumovirus [aMPV]). We demonstrated that HPP can efficiently inactivate all tested viruses under optimal conditions, although the pressure susceptibilities and the roles of temperature and pH substantially varied among these viruses regardless of the presence of a viral envelope. We found that VSV was much more stable than most food-borne viruses, whereas aMPV was highly susceptible to HPP. When viruses were held for 2 min under 350 MPa at 4°C, 1.1-log, 3.9-log, and 5.0-log virus reductions were achieved for VSV, HRV, and aMPV, respectively. Both VSV and aMPV were more susceptible to HPP at higher temperature and lower pH. In contrast, HRV was more easily inactivated at higher pH, although temperature did not have a significant impact on inactivation. Furthermore, we demonstrated that the damage of virion structure by disruption of the viral envelope and/or capsid is the primary mechanism underlying HPP-induced viral inactivation. In addition, VSV glycoprotein remained antigenic although VSV was completely inactivated. Taken together, our findings suggest that HPP is a promising technology to eliminate viral contaminants in high-risk foods, water, and other fomites.

  10. A plasma membrane localization signal in the HIV-1 envelope cytoplasmic domain prevents localization at sites of vesicular stomatitis virus budding and incorporation into VSV virions.

    Johnson, J E; Rodgers, W; Rose, J K

    1998-11-25

    Previous studies showed that the HIV-1 envelope (Env) protein was not incorporated into vesicular stomatitis virus (VSV) virions unless its cytoplasmic tail was replaced with that of the VSV glycoprotein (G). To determine whether the G tail provided a positive incorporation signal for Env, or if sequences in the Env tail prevented incorporation, we generated mutants of Env with its 150-amino-acid tail shortened to 29, 10, or 3 amino acids (Envtr mutants). Cells infected with VSV recombinants expressing these proteins or an Env-G tail hybrid showed similar amounts of Env protein at the surface. The Env-G tail hybrid or the Envtr3 mutant were incorporated at the highest levels into budding VSV virions. In contrast, the Envtr29 or Envtr10 mutants were incorporated poorly. These results defined a signal preventing incorporation within the 10 membrane-proximal amino acids of the Env tail. Confocal microscopy revealed that this signal functioned by causing localization of human immunodeficiency virus type 1 Env to plasma membrane domains distinct from the VSV budding sites, where VSV proteins were concentrated. Copyright 1998 Academic Press.

  11. Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro.

    von Rhein, Christine; Weidner, Tatjana; Henß, Lisa; Martin, Judith; Weber, Christopher; Sliva, Katja; Schnierle, Barbara S

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes chikungunya fever and has infected millions of people mainly in developing countries. The associated disease is characterized by rash, high fever, and severe arthritis that can persist for years. CHIKV has adapted to Aedes albopictus, which also inhabits temperate regions including Europe and the United States of America. CHIKV has recently caused large outbreaks in Latin America. No treatment or licensed CHIKV vaccine exists. Traditional medicines are known to have anti-viral effects; therefore, we examined whether curcumin or Boswellia serrata gum resin extract have antiviral activity against CHIKV. Both compounds blocked entry of CHIKV Env-pseudotyped lentiviral vectors and inhibited CHIKV infection in vitro. In addition, vesicular stomatitis virus vector particles and viral infections were also inhibited to the same extent, indicating a broad antiviral activity. Although the bioavailability of these compounds is rather poor, they might be used as a lead structure to develop more effective antiviral drugs or might be used topically to prevent CHIKV spread in the skin after mosquito bites. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Spatial localization of the Ebola virus glycoprotein mucin-like domain determined by cryo-electron tomography.

    Tran, Erin E H; Simmons, James A; Bartesaghi, Alberto; Shoemaker, Charles J; Nelson, Elizabeth; White, Judith M; Subramaniam, Sriram

    2014-09-01

    The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Spatial Localization of the Ebola Virus Glycoprotein Mucin-Like Domain Determined by Cryo-Electron Tomography

    Tran, Erin E. H.; Simmons, James A.; Bartesaghi, Alberto; Shoemaker, Charles J.; Nelson, Elizabeth; White, Judith M.; Subramaniam, Sriram

    2014-01-01

    The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function.

  14. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants.

    Rose, N F; Marx, P A; Luckay, A; Nixon, D F; Moretto, W J; Donahoe, S M; Montefiori, D; Roberts, A; Buonocore, L; Rose, J K

    2001-09-07

    We developed an AIDS vaccine based on attenuated VSV vectors expressing env and gag genes and tested it in rhesus monkeys. Boosting was accomplished using vectors with glycoproteins from different VSV serotypes. Animals were challenged with a pathogenic AIDS virus (SHIV89.6P). Control monkeys showed a severe loss of CD4+ T cells and high viral loads, and 7/8 progressed to AIDS with an average time of 148 days. All seven vaccinees were initially infected with SHIV89.6P but have remained healthy for up to 14 months after challenge with low or undetectable viral loads. Protection from AIDS was highly significant (p = 0.001). VSV vectors are promising candidates for human AIDS vaccine trials because they propagate to high titers and can be delivered without injection.

  15. Enhancement of Ebola Virus Infection via Ficolin-1 Interaction with the Mucin Domain of GP Glycoprotein.

    Favier, Anne-Laure; Gout, Evelyne; Reynard, Olivier; Ferraris, Olivier; Kleman, Jean-Philippe; Volchkov, Viktor; Peyrefitte, Christophe; Thielens, Nicole M

    2016-06-01

    Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the

  16. Antibodies against vesicular stomatitis virus in horses from southern, midwestern and northeastern Brazilian States

    Vinícius Leobet Lunkes

    2016-08-01

    Full Text Available ABSTRACT: Vesicular stomatitis virus (VSV is the agent of a vesicular disease that affects many animal species and may be clinically confounded with foot-and-mouth disease in ruminant and swine. Horses are especially susceptible to VSV and may serve as sentinels for virus circulation. The present study investigated the presence of neutralizing antibodies against VSV Indiana III (VSIV-3 in serum samples of 3,626 horses from six states in three Brazilian regions: Southern (RS, n = 1,011, Midwest (GO/DF, n = 1,767 and Northeast (PB, PE, RN and CE, n = 848 collected between 2013 and 2014. Neutralizing antibodies against VSIV-3 (titers ≥40 were detected in 641 samples (positivity of 17.7%; CI95%:16.5-19.0%, being 317 samples from CE (87.3%; CI95%: 83.4-90.5 %; 109 from RN (65.7%; CI95%: 57.8 -72.7%; 124 from PB (45.4%; CI95%: 39.4-51.5%; 78 from GO/DF (4.4%; CI95%: 3.5-5.5% and nine samples of RS (0.9%; CI95%: 0.4-1.7%. Several samples from the Northeast and Midwest harbored high neutralizing titers, indicating a recent exposure to the virus. In contrast, samples from RS had low titers, possibly due to a past remote exposure. Several positive samples presented neutralizing activity against other VSV serotypes (Indiana I and New Jersey, yet in lower titers, indicating the specificity of the response to VSIV-3. These results demonstrated a relatively recent circulation of VSIV-3 in northeastern Brazilian States, confirming clinical findings and demonstrating the sanitary importance of this infection.

  17. Replacement of the cytoplasmic domain alters sorting of a viral glycoprotein in polarized cells.

    Puddington, L; Woodgett, C; Rose, J K

    1987-01-01

    The envelope glycoprotein (G protein) of vesicular stomatitis virus (VSV) is transported to the basolateral plasma membrane of polarized epithelial cells, whereas the hemagglutinin glycoprotein (HA protein) of influenza virus is transported to the apical plasma membrane. To determine if the cytoplasmic domain of VSV G protein might be important in directing G protein to the basolateral membrane, we derived polarized Madin-Darby canine kidney cell lines expressing G protein or G protein with i...

  18. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-01-01

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RVΔG-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RVΔG-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RVΔG-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RVΔG-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  19. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    Papaneri, Amy B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Wirblich, Christoph [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Cann, Jennifer A.; Cooper, Kurt [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Jahrling, Peter B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Schnell, Matthias J., E-mail: matthias.schnell@jefferson.edu [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Blaney, Joseph E., E-mail: jblaney@niaid.nih.gov [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States)

    2012-12-05

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  20. [Antitumor effects of matrix protein of vesicular stomatic virus on EL4 lymphoma mice].

    Lin, Shi-jia; Yu, Qin-mei; Meng, Wen-tong; Wen, Yan-jun; Chen, Li-juan; Niu, Ting

    2011-03-01

    To explore antitumor effects of plasmid pcDNA3. 1-MP encoding matrix protein of vesicular stomatitis virus (VSV) complexed with cationic liposome (DOTAP:CHOL) in mice with EL4 lymphoma. C57BL/6 mouse model with EL4 lymphoma was established. Sixty mice bearing EL4 lymphoma were divided randomly into five groups including Lip-MP, Lip-pVAX, Lip, ADM and NS groups, which were intravenously injected with liposome-pcDNA 3. 1-MP complex, liposome-pVAX complex, empty liposome, Adriamycin and normal saline respectively every three days. Tumor volumes and survival time were monitored. Microvessel density and tumor proliferative index in tumor tissues were determined by CD31, Ki-67 immunohistochemistry staining, meanwhile the tumor apoptosis index was measured by TUNEL method. From 6 days after treatments on, the tumor volume in Lip-MP group was much smaller than that in Lip-pVAX, Lip and NS group (P EL4 tumor cells in vivo (P EL4 lymphoma, which may be related to the induction of tumor cell apoptosis, inhibition of tumor angiogenesis, and suppression of tumor cell proliferation.

  1. Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models

    Fabrice Le Boeuf

    2017-09-01

    Full Text Available The reovirus fusion-associated small transmembrane (FAST proteins are the smallest known viral fusogens (∼100–150 amino acids and efficiently induce cell-cell fusion and syncytium formation in multiple cell types. Syncytium formation enhances cell-cell virus transmission and may also induce immunogenic cell death, a form of apoptosis that stimulates immune recognition of tumor cells. These properties suggest that FAST proteins might serve to enhance oncolytic virotherapy. The oncolytic activity of recombinant VSVΔM51 (an interferon-sensitive vesicular stomatitis virus [VSV] mutant encoding the p14 FAST protein (VSV-p14 was compared with a similar construct encoding GFP (VSV-GFP in cell culture and syngeneic BALB/c tumor models. Compared with VSV-GFP, VSV-p14 exhibited increased oncolytic activity against MCF-7 and 4T1 breast cancer spheroids in culture and reduced primary 4T1 breast tumor growth in vivo. VSV-p14 prolonged survival in both primary and metastatic 4T1 breast cancer models, and in a CT26 metastatic colon cancer model. As with VSV-GFP, VSV-p14 preferentially replicated in vivo in tumors and was cleared rapidly from other sites. Furthermore, VSV-p14 increased the numbers of activated splenic CD4, CD8, natural killer (NK, and natural killer T (NKT cells, and increased the number of activated CD4 and CD8 cells in tumors. FAST proteins may therefore provide a multi-pronged approach to improving oncolytic virotherapy via syncytium formation and enhanced immune stimulation.

  2. Virulence determinants within the E2 glycoprotein of Classical Swine Fever Virus

    Johnston, Camille Melissa; Fahnøe, Ulrik; Lohse, Louise

    Classical Swine Fever is a highly contagious disease of pigs caused by Classical Swine Fever Virus (CSFV), a member of the pestivirus genus within the family Flaviviridae. The E2 glycoprotein of CSFV has been shown to be an important factor for the virulence of the virus. In a recent study, we have......Kos (with the SL motif). The results indicate that the E2 residues 763-64 play an important role in CSFV virulence....

  3. Characterization of glycoprotein C of HSZP strain of herpes simplex virus 1

    Oravcova, [No Value; Kudelova, M; Mlcuchova, J; Matis, J; Bystricka, M; Westra, DF; Welling-Wester, S; Rajcani, J

    Sequences of UL44 genes of strains HSZP, KOS and 17 of herpes simplex virus 1 (HSV-1) were determined and the amino acid sequences of corresponding glycoproteins (gC) were deduced. In comparison with the 17 strain, the HSZP strain showed specific changes in 3 nucleotides and in 2 amino acids (aa 139

  4. Functional Interplay Between Murine Leukemia Virus Glycogag, Serinc5, and Surface Glycoprotein Governs Virus Entry, with Opposite Effects on Gammaretroviral and Ebolavirus Glycoproteins

    Yadvinder S. Ahi

    2016-11-01

    Full Text Available Gammaretroviruses, such as murine leukemia viruses (MLVs, encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called “glycogag” (glycosylated Gag. MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes.

  5. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  6. Understanding the Process of Envelope Glycoprotein Incorporation into Virions in Simian and Feline Immunodeficiency Viruses

    José L. Affranchino

    2014-01-01

    Full Text Available The lentiviral envelope glycoproteins (Env mediate virus entry by interacting with specific receptors present at the cell surface, thereby determining viral tropism and pathogenesis. Therefore, Env incorporation into the virions formed by assembly of the viral Gag polyprotein at the plasma membrane of the infected cells is a key step in the replication cycle of lentiviruses. Besides being useful models of human immunodeficiency virus (HIV infections in humans and valuable tools for developing AIDS therapies and vaccines, simian and feline immunodeficiency viruses (SIV and FIV, respectively are relevant animal retroviruses; the study of which provides important information on how lentiviral replication strategies have evolved. In this review, we discuss the molecular mechanisms underlying the incorporation of the SIV and FIV Env glycoproteins into viral particles.

  7. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.; Langlois, A.J.; Lyerly, H.K.; Carson, H.; Krohn, K.; Ranki, A.; Gallo, R.C.; Bolognesi, D.P.; Putney, S.D.

    1987-10-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120.

  8. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.

    1987-01-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120

  9. Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins.

    Vinca Icard

    Full Text Available The density of circulating hepatitis C virus (HCV particles in the blood of chronically infected patients is very heterogeneous. The very low density of some particles has been attributed to an association of the virus with apolipoprotein B (apoB positive and triglyceride rich lipoproteins (TRL likely resulting in hybrid lipoproteins known as lipo-viro-particles (LVP containing the viral envelope glycoproteins E1 and E2, capsid and viral RNA. The specific infectivity of these particles has been shown to be higher than the infectivity of particles of higher density. The nature of the association of HCV particles with lipoproteins remains elusive and the role of apolipoproteins in the synthesis and assembly of the viral particles is unknown. The human intestinal Caco-2 cell line differentiates in vitro into polarized and apoB secreting cells during asymmetric culture on porous filters. By using this cell culture system, cells stably expressing E1 and E2 secreted the glycoproteins into the basal culture medium after one week of differentiation concomitantly with TRL secretion. Secreted glycoproteins were only detected in apoB containing density fractions. The E1-E2 and apoB containing particles were unique complexes bearing the envelope glycoproteins at their surface since apoB could be co-immunoprecipitated with E2-specific antibodies. Envelope protein secretion was reduced by inhibiting the lipidation of apoB with an inhibitor of the microsomal triglyceride transfer protein. HCV glycoproteins were similarly secreted in association with TRL from the human liver cell line HepG2 but not by Huh-7 and Huh-7.5 hepatoma cells that proved deficient for lipoprotein assembly. These data indicate that HCV envelope glycoproteins have the intrinsic capacity to utilize apoB synthesis and lipoprotein assembly machinery even in the absence of the other HCV proteins. A model for LVP assembly is proposed.

  10. Carbohydrates of influenza virus. I. Glycopeptides derived from viral glycoproteins after labeling with radioactive sugars

    Schwarz, R.T.; Schmidt, M.F.G.; Anwer, U.; Klenk, H.D.

    1977-01-01

    The carbohydrate moiety of the influenza glycoproteins NA, HA 1 , and HA 2 were analyzed by labeling with radioactive sugars. Analysis of glycopeptides obtained after digestion with Pronase indicated that there are at least two different types of carbohydrate side chains. The side chain of type I is composed of glucosamine, mannose, galactose, and fucose. It is found on NA, HA 1 , and HA 2 . The side chain of type II contains a high amount of mannose and is found only on NA and HA 2 . The molecular weights of the corresponding glycopeptides obtained from virus grown in chicken ambryo cells are 2,600 for type I and 2,000 for type II. The glycoproteins of virus grown in MDBK cells have a higher molecular weight than those of virus grown in chicken embryo cells, and there is a corresponding difference in the molecular weights of the glycopeptides. Under conditions of partial inhibition of glycosylation, virus particles were isolated that contained hemagglutinin with reduced carbohydrate content. Glycopeptide analysis indicated that this reduction is due to the lack of whole carbohydrate side chains and not to the incorporation of incomplete ones. This observation suggests that glycosylation of the viral glycoproteins involves en bloc transfer of the core sugars to the polypeptide chains

  11. Expression of infectious bovine rhinotracheitis virus glycoprotein D ...

    USER

    2010-06-14

    Jun 14, 2010 ... Bovine Herpesvirus 1 (BHV-1) belongs to the genus of ... through vaccination with recombinant vaccines of thymidine kinase, manufacturing and applying ..... Resistance to bovine respiratory syncytial virus (BRSV) induced in.

  12. A single mutation in the E2 glycoprotein important for neurovirulence influences binding of Sindbis virus to neuroblastoma cells

    Lee, PY; Knight, R; Smit, JM; Wilschut, J; Griffin, DE

    The amino acid at position 55 of the E2 glycoprotein (E2(55)) of Sindbis virus (SV) is a critical determinant of SV neurovirulence in mice. Recombinant virus strain TE (E2(55) = histidine) differs only at this position from virus strain 633 (E2(55) = glutamine), yet TE is considerably more

  13. Expression of infectious bovine rhinotracheitis virus glycoprotein D ...

    Bovine Herpesvirus 1 (BHV-1) belongs to the genus of Varicellovirus and the family of Herpesviridae which contains three main gB, gC and gD genes. In order to cloning of the coding region of gD gene of IBR virus , PCR product of the open reading frame of the gene from IBR virus isolated in Iran was amplified by PCR.

  14. Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions

    Kunz, Stefan; Edelmann, Kurt H.; Torre, Juan-Carlos de la; Gorney, Robert; Oldstone, Michael B.A.

    2003-01-01

    The glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV) serves as virus attachment protein to its receptor on host cells and is a key determinant for cell tropism, pathogenesis, and epidemiology of the virus. The GP of LCMV is posttranslationally cleaved by the subtilase SKI-1/S1P into two subunits, the peripheral GP1, which is implicated in receptor binding, and the transmembrane GP2 that is structurally similar to the fusion active membrane proximal portions of the glycoproteins of other enveloped viruses. The present study shows that cleavage by SKI-1/S1P is not required for cell surface expression of LCMVGP on infected cells but is essential for its incorporation into virions and for the production of infectious virus particles. In absence of SKI-1/S1P cleavage, cell-to-cell propagation of the virus was markedly reduced. Further, proteolytic processing of LCMVGP depends on the presence of a cluster of basic amino acids at the C-terminus of the cytoplasmic domain of GP2, a structural motif that is conserved in Old World arenaviruses. The effect of the truncation of the cytoplasmic tail on cleavage suggests a structural interdependence between the cytoplasmic domain and the ectodomains of LCMVGP

  15. Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus

    Martin-Acebes, Miguel A.; Gonzalez-Magaldi, Monica; Rosas, Maria F.; Borrego, Belen; Brocchi, Emiliana; Armas-Portela, Rosario; Sobrino, Francisco

    2008-01-01

    The intracellular distribution of swine vesicular disease virus (SVDV) proteins and the induced reorganization of endomembranes in IBRS-2 cells were analyzed. Fluorescence to new SVDV capsids appeared first upon infection, concentrated in perinuclear circular structures and colocalized to dsRNA. As in foot-and-mouth disease virus (FMDV)-infected cells, a vesicular pattern was predominantly found in later stages of SVDV capsid morphogenesis that colocalized with those of non-structural proteins 2C, 2BC and 3A. These results suggest that assembly of capsid proteins is associated to the replication complex. Confocal microscopy showed a decreased fluorescence to ER markers (calreticulin and protein disulfide isomerase), and disorganization of cis-Golgi gp74 and trans-Golgi caveolin-1 markers in SVDV- and FMDV-, but not in vesicular stomatitis virus (VSV)-infected cells. Electron microscopy of SVDV-infected cells at an early stage of infection revealed fragmented ER cisternae with expanded lumen and accumulation of large Golgi vesicles, suggesting alterations of vesicle traffic through Golgi compartments. At this early stage, FMDV induced different patterns of ER fragmentation and Golgi alterations. At later stages of SVDV cytopathology, cells showed a completely vacuolated cytoplasm containing vesicles of different sizes. Cell treatment with brefeldin A, which disrupts the Golgi complex, reduced SVDV (∼ 5 log) and VSV (∼ 4 log) titers, but did not affect FMDV growth. Thus, three viruses, which share target tissues and clinical signs in natural hosts, induce different intracellular effects in cultured cells

  16. Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles.

    Acuña, Rodrigo; Cifuentes-Muñoz, Nicolás; Márquez, Chantal L; Bulling, Manuela; Klingström, Jonas; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D

    2014-02-01

    How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.

  17. Mechanism of Binding to Ebola Virus Glycoprotein by the ZMapp, ZMAb, and MB-003 Cocktail Antibodies

    Davidson, Edgar; Bryan, Christopher; Fong, Rachel H.; Barnes, Trevor; Pfaff, Jennifer M.; Mabila, Manu; Rucker, Joseph B.; Doranz, Benjamin J.

    2015-01-01

    Cocktails of monoclonal antibodies (MAbs) that target the surface glycoprotein (GP) of Ebola virus (EBOV) are effective in nonhuman primate models and have been used under emergency compassionate-treatment protocols in human patients. However, the amino acids that form the detailed binding epitopes for the MAbs in the ZMapp, ZMAb, and the related MB-003 cocktails have yet to be identified. Other binding properties that define how each MAb functionally interacts with GP—such as affinity, epito...

  18. Epitope Dampening Monotypic Measles Virus Hemagglutinin Glycoprotein Results in Resistance to Cocktail of Monoclonal Antibodies

    Lech, Patrycja J.; Tobin, Gregory J.; Bushnell, Ruth; Gutschenritter, Emily; Pham, Linh D.; Nace, Rebecca; Verhoeyen, Els; Cosset, François-Loïc; Muller, Claude P.; Russell, Stephen J.; Nara, Peter L.

    2013-01-01

    The measles virus (MV) is serologically monotypic. Life-long immunity is conferred by a single attack of measles or following vaccination with the MV vaccine. This is contrary to viruses such as influenza, which readily develop resistance to the immune system and recur. A better understanding of factors that restrain MV to one serotype may allow us to predict if MV will remain monotypic in the future and influence the design of novel MV vaccines and therapeutics. MV hemagglutinin (H) glycoprotein, binds to cellular receptors and subsequently triggers the fusion (F) glycoprotein to fuse the virus into the cell. H is also the major target for neutralizing antibodies. To explore if MV remains monotypic due to a lack of plasticity of the H glycoprotein, we used the technology of Immune Dampening to generate viruses with rationally designed N-linked glycosylation sites and mutations in different epitopes and screened for viruses that escaped monoclonal antibodies (mAbs). We then combined rationally designed mutations with naturally selected mutations to generate a virus resistant to a cocktail of neutralizing mAbs targeting four different epitopes simultaneously. Two epitopes were protected by engineered N-linked glycosylations and two epitopes acquired escape mutations via two consecutive rounds of artificial selection in the presence of mAbs. Three of these epitopes were targeted by mAbs known to interfere with receptor binding. Results demonstrate that, within the epitopes analyzed, H can tolerate mutations in different residues and additional N-linked glycosylations to escape mAbs. Understanding the degree of change that H can tolerate is important as we follow its evolution in a host whose immunity is vaccine induced by genotype A strains instead of multiple genetically distinct wild-type MVs. PMID:23300970

  19. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a “Hammer” and “Anvil”

    Michael Karl Melzer

    2017-02-01

    Full Text Available Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV, a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.

  20. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.; Wendell, Steven K.; Ozuer, Ali; Kapacee, Zoher; Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C.

    2007-01-01

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry and gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection

  1. Dynamics of melanoma tumor therapy with vesicular stomatitis virus: explaining the variability in outcomes using mathematical modeling.

    Rommelfanger, D M; Offord, C P; Dev, J; Bajzer, Z; Vile, R G; Dingli, D

    2012-05-01

    Tumor selective, replication competent viruses are being tested for cancer gene therapy. This approach introduces a new therapeutic paradigm due to potential replication of the therapeutic agent and induction of a tumor-specific immune response. However, the experimental outcomes are quite variable, even when studies utilize highly inbred strains of mice and the same cell line and virus. Recognizing that virotherapy is an exercise in population dynamics, we utilize mathematical modeling to understand the variable outcomes observed when B16ova malignant melanoma tumors are treated with vesicular stomatitis virus in syngeneic, fully immunocompetent mice. We show how variability in the initial tumor size and the actual amount of virus delivered to the tumor have critical roles on the outcome of therapy. Virotherapy works best when tumors are small, and a robust innate immune response can lead to superior tumor control. Strategies that reduce tumor burden without suppressing the immune response and methods that maximize the amount of virus delivered to the tumor should optimize tumor control in this model system.

  2. Chimeric rabies viruses for trans-species comparison of lyssavirus glycoprotein ectodomain functions in virus replication and pathogenesis.

    Genz, Berit; Nolden, Tobias; Negatsch, Alexandra; Teifke, Jens-Peter; Conzelmann, Karl-Klaus; Finke, Stefan

    2012-01-01

    The glycoprotein G of lyssaviruses is the major determinant of virus pathogenicity and serves as a target for immunological responses to virus infections. However, assessment of the exact contribution of lyssavirus G proteins to observed differences in the pathogenicity of lyssavirus species is challenging, since the direct comparison of natural lyssaviruses does not allow specific ascription to individual virus proteins or domains. Here we describe the generation and characterization of recombinant rabies viruses (RABV) that express chimeric G proteins comprising of a RABV cytoplasma domain fused to transmembrane and ectodomain G sequences of a virulent RABV (challenge virus standard; CVS-11) or two European bat lyssaviruses (EBLV- and EBLV-2). These "envelope-switched" recombinant viruses were recovered from cDNAs. Similar growth kinetics and protein expression in neuroblastoma cell cultures and successful targeting of primary neurons showed that the chimeric G proteins were able to replace the authentic G protein in a RABV based virus vector. Inoculation of six week old CD-1 mice by the intracranial (i. c.) route of infection further demonstrated that all recombinant viruses were able to spread in the brain and to induce disease. The "envelope-switched" RABV therefore represent an important tool to further investigate the influence of lyssavirus ectodomains on virus tropism, and pathogenicity.

  3. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  4. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways.

    Margaret A Scull

    2009-05-01

    Full Text Available Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE, we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C, avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C. These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C, rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2 or A/PR/8/34 (H1N1 genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA and neuraminidase (NA from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and

  5. The Ebola Virus Glycoprotein Contributes to but Is Not Sufficient for Virulence In Vivo

    Groseth, Allison; Marzi, Andrea; Hoenen, Thomas; Herwig, Astrid; Gardner, Don; Becker, Stephan; Ebihara, Hideki; Feldmann, Heinz

    2012-01-01

    Among the Ebola viruses most species cause severe hemorrhagic fever in humans; however, Reston ebolavirus (REBOV) has not been associated with human disease despite numerous documented infections. While the molecular basis for this difference remains unclear, in vitro evidence has suggested a role for the glycoprotein (GP) as a major filovirus pathogenicity factor, but direct evidence for such a role in the context of virus infection has been notably lacking. In order to assess the role of GP in EBOV virulence, we have developed a novel reverse genetics system for REBOV, which we report here. Together with a previously published full-length clone for Zaire ebolavirus (ZEBOV), this provides a unique possibility to directly investigate the role of an entire filovirus protein in pathogenesis. To this end we have generated recombinant ZEBOV (rZEBOV) and REBOV (rREBOV), as well as chimeric viruses in which the glycoproteins from these two virus species have been exchanged (rZEBOV-RGP and rREBOV-ZGP). All of these viruses could be rescued and the chimeras replicated with kinetics similar to their parent virus in tissue culture, indicating that the exchange of GP in these chimeric viruses is well tolerated. However, in a mouse model of infection rZEBOV-RGP demonstrated markedly decreased lethality and prolonged time to death when compared to rZEBOV, confirming that GP does indeed contribute to the full expression of virulence by ZEBOV. In contrast, rREBOV-ZGP did not show any signs of virulence, and was in fact slightly attenuated compared to rREBOV, demonstrating that GP alone is not sufficient to confer a lethal phenotype or exacerbate disease in this model. Thus, while these findings provide direct evidence that GP contributes to filovirus virulence in vivo, they also clearly indicate that other factors are needed for the acquisition of full virulence. PMID:22876185

  6. The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo.

    Allison Groseth

    Full Text Available Among the Ebola viruses most species cause severe hemorrhagic fever in humans; however, Reston ebolavirus (REBOV has not been associated with human disease despite numerous documented infections. While the molecular basis for this difference remains unclear, in vitro evidence has suggested a role for the glycoprotein (GP as a major filovirus pathogenicity factor, but direct evidence for such a role in the context of virus infection has been notably lacking. In order to assess the role of GP in EBOV virulence, we have developed a novel reverse genetics system for REBOV, which we report here. Together with a previously published full-length clone for Zaire ebolavirus (ZEBOV, this provides a unique possibility to directly investigate the role of an entire filovirus protein in pathogenesis. To this end we have generated recombinant ZEBOV (rZEBOV and REBOV (rREBOV, as well as chimeric viruses in which the glycoproteins from these two virus species have been exchanged (rZEBOV-RGP and rREBOV-ZGP. All of these viruses could be rescued and the chimeras replicated with kinetics similar to their parent virus in tissue culture, indicating that the exchange of GP in these chimeric viruses is well tolerated. However, in a mouse model of infection rZEBOV-RGP demonstrated markedly decreased lethality and prolonged time to death when compared to rZEBOV, confirming that GP does indeed contribute to the full expression of virulence by ZEBOV. In contrast, rREBOV-ZGP did not show any signs of virulence, and was in fact slightly attenuated compared to rREBOV, demonstrating that GP alone is not sufficient to confer a lethal phenotype or exacerbate disease in this model. Thus, while these findings provide direct evidence that GP contributes to filovirus virulence in vivo, they also clearly indicate that other factors are needed for the acquisition of full virulence.

  7. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1

    Sanders, Rogier W.; Vesanen, Mika; Schuelke, Norbert; Master, Aditi; Schiffner, Linnea; Kalyanaraman, Roopa; Paluch, Maciej; Berkhout, Ben; Maddon, Paul J.; Olson, William C.; Lu, Min; Moore, John P.

    2002-01-01

    The envelope glycoprotein (Env) complex of human immunodeficiency virus type I has evolved a structure that is minimally immunogenic while retaining its natural function of receptor-mediated virus-cell fusion. The Env complex is trimeric; its six individual subunits (three gp120 and three gp41

  8. Chemoenzymatic site-specific labeling of influenza glycoproteins as a tool to observe virus budding in real time.

    Maximilian Wei-Lin Popp

    Full Text Available The influenza virus uses the hemagglutinin (HA and neuraminidase (NA glycoproteins to interact with and infect host cells. While biochemical and microscopic methods allow examination of the early steps in flu infection, the genesis of progeny virions has been more difficult to follow, mainly because of difficulties inherent in fluorescent labeling of flu proteins in a manner compatible with live cell imaging. We here apply sortagging as a chemoenzymatic approach to label genetically modified but infectious flu and track the flu glycoproteins during the course of infection. This method cleanly distinguishes influenza glycoproteins from host glycoproteins and so can be used to assess the behavior of HA or NA biochemically and to observe the flu glycoproteins directly by live cell imaging.

  9. Structural and Antigenic Definition of Hepatitis C Virus E2 Glycoprotein Epitopes Targeted by Monoclonal Antibodies

    Giuseppe Sautto

    2013-01-01

    Full Text Available Hepatitis C virus (HCV is the major cause of chronic liver disease as well as the major indication for liver transplantation worldwide. Current standard of care is not completely effective, not administrable in grafted patients, and burdened by several side effects. This incomplete effectiveness is mainly due to the high propensity of the virus to continually mutate under the selective pressure exerted by the host immune response as well as currently administered antiviral drugs. The E2 envelope surface glycoprotein of HCV (HCV/E2 is the main target of the host humoral immune response and for this reason one of the major variable viral proteins. However, broadly cross-neutralizing monoclonal antibodies (mAbs directed against HCV/E2 represent a promising tool for the study of virus-host interplay as well as for the development of effective prophylactic and therapeutic approaches. In the last few years many anti-HCV/E2 mAbs have been evaluated in preclinical and clinical trials as possible candidate antivirals, particularly for administration in pre- and post-transplant settings. In this review we summarize the antigenic and structural characteristics of HCV/E2 determined through the use of anti-HCV/E2 mAbs, which, given the absence of a crystal structure of this glycoprotein, represent currently the best tool available.

  10. Quantitative multiplex assay for simultaneous detection and identification of Indiana and New Jersey serotypes of vesicular stomatitis virus

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Fernandez, Jovita

    2005-01-01

    In order to establish a rapid and reliable system for the detection of vesicular stomatitis virus (VSV), we developed a quantitative reverse transcription-PCR assay for the detection, quantification, and differentiation of the major serotypes, VSV Indiana and VSV New Jersey, using a closed......-tube multiplex format. The detection system is based on the recently invented primer-probe energy transfer (PriProET) system. A region of the gene encoding the RNA-dependent RNA polymerase was amplified by using VSV-specific primers in the presence of two serotype-specific fluorescent probes. By incorporating...... probes. The limits of detection ware found to be less than 10 50% tissue culture infective doses/ml for both serotypes. The diagnostic value of the new method was tested with clinical materials from experimentally infected pigs, and it is concluded that the method is a powerful tool for the rapid...

  11. Resting lymphocyte transduction with measles virus glycoprotein pseudotyped lentiviral vectors relies on CD46 and SLAM

    Zhou Qi; Schneider, Irene C.; Gallet, Manuela; Kneissl, Sabrina; Buchholz, Christian J.

    2011-01-01

    The measles virus (MV) glycoproteins hemagglutinin (H) and fusion (F) were recently shown to mediate transduction of resting lymphocytes by lentiviral vectors. MV vaccine strains use CD46 or signaling lymphocyte activation molecule (SLAM) as receptor for cell entry. A panel of H protein mutants derived from vaccine strain or wild-type MVs that lost or gained CD46 or SLAM receptor usage were investigated for their ability to mediate gene transfer into unstimulated T lymphocytes. The results demonstrate that CD46 is sufficient for efficient vector particle association with unstimulated lymphocytes. For stable gene transfer into these cells, however, both MV receptors were found to be essential.

  12. The Neutralizing Linear Epitope of Human Herpesvirus 6A Glycoprotein B Does Not Affect Virus Infectivity.

    Wakata, Aika; Kanemoto, Satoshi; Tang, Huamin; Kawabata, Akiko; Nishimura, Mitsuhiro; Jasirwan, Chyntia; Mahmoud, Nora Fahmy; Mori, Yasuko

    2018-03-01

    Human herpesvirus 6A (HHV-6A) glycoprotein B (gB) is a glycoprotein consisting of 830 amino acids and is essential for the growth of the virus. Previously, we reported that a neutralizing monoclonal antibody (MAb) called 87-y-13 specifically reacts with HHV-6A gB, and we identified its epitope residue at asparagine (Asn) 347 on gB. In this study, we examined whether the epitope recognized by the neutralizing MAb is essential for HHV-6A infection. We constructed HHV-6A bacterial artificial chromosome (BAC) genomes harboring substitutions at Asn347, namely, HHV-6A BACgB(N347K) and HHV-6A BACgB(N347A). These mutant viruses could be reconstituted and propagated in the same manner as the wild type and their revertants, and MAb 87-y-13 could not inhibit infection by either mutant. In a cell-cell fusion assay, Asn at position 347 on gB was found to be nonessential for cell-cell fusion. In addition, in building an HHV-6A gB homology model, we found that the epitope of the neutralizing MAb is located on domain II of gB and is accessible to solvents. These results indicate that Asn at position 347, the linear epitope of the neutralizing MAb, does not affect HHV-6A infectivity. IMPORTANCE Glycoprotein B (gB) is one of the most conserved glycoproteins among all herpesviruses and is a key factor for virus entry. Therefore, antibodies targeted to gB may neutralize virus entry. Human herpesvirus 6A (HHV-6A) encodes gB, which is translated to a protein of about 830 amino acids (aa). Using a monoclonal antibody (MAb) for HHV-6A gB, which has a neutralizing linear epitope, we analyzed the role of its epitope residue, N347, in HHV-6A infectivity. Interestingly, this gB linear epitope residue, N347, was not essential for HHV-6A growth. By constructing a homology model of HHV-6A gB, we found that N347 was located in the region corresponding to domain II. Therefore, with regard to its neutralizing activity against HHV-6A infection, the epitope on gB might be exposed to solvents

  13. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  14. Interaction of E2 glycoprotein with heparan sulfate is crucial for cellular infection of Sindbis virus.

    Wuyang Zhu

    Full Text Available Cell culture-adapted strains of Sindbis virus (SINV initially attach to cells by the ability to interact with heparan sulfate (HS through selective mutation for positively charged amino acid (aa scattered in E2 glycoprotein (W. B. Klimstra, K. D. Ryman, and R. E. Johnston, J. Virol. 72: 7357-7366, 1998. Here we have further confirmed that interaction of E2 protein with HS is crucial for cellular infection of SINV based on the reverse genetic system of XJ-160 virus, a Sindbis-like virus (SINLV. Both SINV YN87448 and SINLV XJ-160 displayed similar infectivity on BHK-21, Vero, or C6/36 cells, but XJ-160 failed to infect mouse embryonic fibroblast (MEF cells. The molecular mechanisms underlying the selective infectivity of XJ-160 were approached by substituting the E1, E2, or both genes of XJ-160 with that of YN87448, and the chimeric virus was denominated as XJ-160/E1, XJ-160/E2, or XJ-160/E1E2, respectively. In contrast to the parental XJ-160, all chimeric viruses became infectious to wild-type MEF cells (MEF-wt. While MEF-Ext(-/- cells, producing shortened HS chains, were resistant not only to XJ-160, but also to YN87448 as well as the chimeric viruses, indicating that the inability of XJ-160 to infect MEF-wt cells likely due to its incompetent discrimination of cellular HS. Treatment with heparin or HS-degrading enzyme resulted in a substantial decrease in plaque formation by YN87448, XJ-160/E2, and XJ-160/E1E2, but had marginal effect on XJ-160 and XJ-160/E1, suggesting that E2 glycoprotein from YN87448 plays a more important role than does E1 in mediating cellular HS-related cell infection. In addition, the peptide containing 145-150 aa from E2 gene of YN87448 specifically bound to heparin, while the corresponding peptide from the E2 gene of XJ-160 essentially showed no binding to heparin. As a new dataset, these results clearly confirm an essential role of E2 glycoprotein, especially the domain of 145-150 aa, in SINV cellular infection

  15. Immunogenicity in African Green Monkeys of M Protein Mutant Vesicular Stomatitis Virus Vectors and Contribution of Vector-Encoded Flagellin

    Marlena M. Westcott

    2018-03-01

    Full Text Available Recombinant vesicular stomatitis virus (VSV is a promising platform for vaccine development. M51R VSV, an attenuated, M protein mutant strain, is an effective inducer of Type I interferon and dendritic cell (DC maturation, which are desirable properties to exploit for vaccine design. We have previously evaluated M51R VSV (M51R and M51R VSV that produces flagellin (M51R-F as vaccine vectors using murine models, and found that flagellin enhanced DC activation and VSV-specific antibody production after low-dose vaccination. In this report, the immunogenicity of M51R vectors and the adjuvant effect of virus-produced flagellin were evaluated in nonhuman primates following high-dose (108 pfu and low-dose (105 pfu vaccination. A single intramuscular vaccination of African green monkeys with M51R or M51R-F induced VSV-specific, dose-dependent humoral immune responses. Flagellin induced a significant increase in antibody production (IgM, IgG and neutralizing antibody at the low vaccination dose. A VSV-specific cellular response was detected at 6 weeks post-vaccination, but was neither dose-dependent nor enhanced by flagellin; similar numbers of VSV-specific, IFNγ-producing cells were detected in lymph node and spleen of all animals. These results indicate that virus-directed, intracellular flagellin production may improve VSV-based vaccines encoding heterologous antigens by lowering the dose required to achieve humoral immunity.

  16. Importance of the short cytoplasmic domain of the feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions

    Celma, Cristina C.P.; Paladino, Monica G.; Gonzalez, Silvia A.; Affranchino, Jose L.

    2007-01-01

    The mature form of the envelope (Env) glycoprotein of lentiviruses is a heterodimer composed of the surface (SU) and transmembrane (TM) subunits. Feline immunodeficiency virus (FIV) possesses a TM glycoprotein with a cytoplasmic tail of approximately 53 amino acids which is unusually short compared with that of the other lentiviral glycoproteins (more than 100 residues). To investigate the relevance of the FIV TM cytoplasmic domain to Env-mediated viral functions, we characterized the biological properties of a series of Env glycoproteins progressively shortened from the carboxyl terminus. All the mutant Env proteins were efficiently expressed in feline cells and processed into the SU and TM subunits. Deletion of 5 or 11 amino acids from the TM C-terminus did not significantly affect Env surface expression, fusogenic activity or Env incorporation into virions, whereas removal of 17 or 23 residues impaired Env-mediated cell-to-cell fusion. Further truncation of the FIV TM by 29 residues resulted in an Env glycoprotein that was poorly expressed at the cell surface, exhibited only 20% of the wild-type Env fusogenic capacity and was inefficiently incorporated into virions. Remarkably, deletion of the TM C-terminal 35 or 41 amino acids restored or even enhanced Env biological functions. Indeed, these mutant Env glycoproteins bearing cytoplasmic domains of 18 or 12 amino acids were found to be significantly more fusogenic than the wild-type Env and were efficiently incorporated into virions. Interestingly, truncation of the TM cytoplasmic domain to only 6 amino acids did not affect Env incorporation into virions but abrogated Env fusogenicity. Finally, removal of the entire TM cytoplasmic tail or deletion of as many as 6 amino acids into the membrane-spanning domain led to a complete loss of Env functions. Our results demonstrate that despite its relatively short length, the FIV TM cytoplasmic domain plays an important role in modulating Env-mediated viral functions

  17. Mutational analysis of the hepatitis C virus E1 glycoprotein in retroviral pseudoparticles and cell-culture-derived H77/JFH1 chimeric infectious virus particles

    Russell, R S; Kawaguchi, K; Meunier, J-C

    2009-01-01

    Cell entry by enveloped viruses is mediated by viral glycoproteins, and generally involves a short hydrophobic peptide (fusion peptide) that inserts into the cellular membrane. An internal hydrophobic domain within E1 (aa262-290) of hepatitis C virus (HCV) may function as a fusion peptide. Retrov...

  18. Alteration of a second putative fusion peptide of structural glycoprotein E2 of Classical Swine Fever Virus alters virus replication and virulence in swine

    E2, the major envelope glycoprotein of Classical Swine Fever Virus (CSFV), is involved in several critical virus functions including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on Wimley-White interfacial hydrophobicity dis...

  19. Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects

    Momoh Mambu

    2010-11-01

    Full Text Available Abstract Background Lassa hemorrhagic fever (LHF is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV GP1 (sGP1 in vitro resulting from the expression of the glycoprotein complex (GPC gene 12. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV, a filovirus that also causes hemorrhagic fever with nearly 90% fatality rates 345. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH Lassa Fever Ward (LFW, in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. Results It is reasonable to expect that a narrow window exists for

  20. Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects.

    Branco, Luis M; Grove, Jessica N; Moses, Lina M; Goba, Augustine; Fullah, Mohammed; Momoh, Mambu; Schoepp, Randal J; Bausch, Daniel G; Garry, Robert F

    2010-11-09

    Lassa hemorrhagic fever (LHF) is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV) GP1 (sGP1) in vitro resulting from the expression of the glycoprotein complex (GPC) gene [1, 2]. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV), a filovirus that also causes hemorrhagic fever with nearly 90 percent fatality rates [3 - 5]. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH) Lassa Fever Ward (LFW), in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. It is reasonable to expect that a narrow window exists for detection of sGP1 as the sole

  1. Feline immunodeficiency virus envelope glycoproteins antagonize tetherin through a distinctive mechanism that requires virion incorporation.

    Morrison, James H; Guevara, Rebekah B; Marcano, Adriana C; Saenz, Dyana T; Fadel, Hind J; Rogstad, Daniel K; Poeschla, Eric M

    2014-03-01

    BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env(-) particles do not. HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV tetherin antagonist is

  2. The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway

    Mulherkar, Nirupama; Raaben, Matthijs; Torre, Juan Carlos de la; Whelan, Sean P.; Chandran, Kartik

    2011-01-01

    Ebola virus (EBOV) has been reported to enter cultured cell lines via a dynamin-2-independent macropinocytic pathway or clathrin-mediated endocytosis. The route(s) of productive EBOV internalization into physiologically relevant cell types remain unexplored, and viral-host requirements for this process are incompletely understood. Here, we use electron microscopy and complementary chemical and genetic approaches to demonstrate that the viral glycoprotein, GP, induces macropinocytic uptake of viral particles into cells. GP's highly-glycosylated mucin domain is dispensable for virus-induced macropinocytosis, arguing that interactions between other sequences in GP and the host cell surface are responsible. Unexpectedly, we also found a requirement for the large GTPase dynamin-2, which is proposed to be dispensable for several types of macropinocytosis. Our results provide evidence that EBOV uses an atypical dynamin-dependent macropinocytosis-like entry pathway to enter Vero cells, adherent human peripheral blood-derived monocytes, and a mouse dendritic cell line.

  3. A Polymorphism within the Internal Fusion Loop of the Ebola Virus Glycoprotein Modulates Host Cell Entry.

    Hoffmann, Markus; Crone, Lisa; Dietzel, Erik; Paijo, Jennifer; González-Hernández, Mariana; Nehlmeier, Inga; Kalinke, Ulrich; Becker, Stephan; Pöhlmann, Stefan

    2017-05-01

    The large scale of the Ebola virus disease (EVD) outbreak in West Africa in 2013-2016 raised the question whether the host cell interactions of the responsible Ebola virus (EBOV) strain differed from those of other ebolaviruses. We previously reported that the glycoprotein (GP) of the virus circulating in West Africa in 2014 (EBOV2014) exhibited reduced ability to mediate entry into two nonhuman primate (NHP)-derived cell lines relative to the GP of EBOV1976. Here, we investigated the molecular determinants underlying the differential entry efficiency. We found that EBOV2014-GP-driven entry into diverse NHP-derived cell lines, as well as human monocyte-derived macrophages and dendritic cells, was reduced compared to EBOV1976-GP, although entry into most human- and all bat-derived cell lines tested was comparable. Moreover, EBOV2014 replication in NHP but not human cells was diminished relative to EBOV1976, suggesting that reduced cell entry translated into reduced viral spread. Mutagenic analysis of EBOV2014-GP and EBOV1976-GP revealed that an amino acid polymorphism in the receptor-binding domain, A82V, modulated entry efficiency in a cell line-independent manner and did not account for the reduced EBOV2014-GP-driven entry into NHP cells. In contrast, polymorphism T544I, located in the internal fusion loop in the GP2 subunit, was found to be responsible for the entry phenotype. These results suggest that position 544 is an important determinant of EBOV infectivity for both NHP and certain human target cells. IMPORTANCE The Ebola virus disease outbreak in West Africa in 2013 entailed more than 10,000 deaths. The scale of the outbreak and its dramatic impact on human health raised the question whether the responsible virus was particularly adept at infecting human cells. Our study shows that an amino acid exchange, A82V, that was acquired during the epidemic and that was not observed in previously circulating viruses, increases viral entry into diverse target cells

  4. Prediction and identification of mouse cytotoxic T lymphocyte epitopes in Ebola virus glycoproteins

    Wu Shipo

    2012-06-01

    Full Text Available Abstract Background Ebola viruses (EBOVs cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs. Results Computer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV, GPCAGDFAF and LYDRLASTV (Zaire EBOV could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma. Conclusion Three peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.

  5. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus

    Giang, Erick; Dorner, Marcus; Prentoe, Jannick C

    2012-01-01

    , and an effective vaccine should target conserved T- and B-cell epitopes of the virus. Conserved B-cell epitopes overlapping the CD81 receptor-binding site (CD81bs) on the E2 viral envelope glycoprotein have been reported previously and provide promising vaccine targets. In this study, we isolated 73 human m......Abs recognizing five distinct antigenic regions on the virus envelope glycoprotein complex E1E2 from an HCV-immune phage-display antibody library by using an exhaustive-panning strategy. Many of these mAbs were broadly neutralizing. In particular, the mAb AR4A, recognizing a discontinuous epitope outside the CD81......bs on the E1E2 complex, has an exceptionally broad neutralizing activity toward diverse HCV genotypes and protects against heterologous HCV challenge in a small animal model. The mAb panel will be useful for the design and development of vaccine candidates to elicit broadly neutralizing antibodies...

  6. Improving immunogenicity and efficacy of vaccines for genital herpes containing herpes simplex virus glycoprotein D.

    Awasthi, Sita; Shaw, Carolyn; Friedman, Harvey

    2014-12-01

    No vaccines are approved for prevention or treatment of genital herpes. The focus of genital herpes vaccine trials has been on prevention using herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) alone or combined with glycoprotein B. These prevention trials did not achieve their primary end points. However, subset analyses reported some positive outcomes in each study. The most recent trial was the Herpevac Trial for Women that used gD2 with monophosphoryl lipid A and alum as adjuvants in herpes simplex virus type 1 (HSV-1) and HSV-2 seronegative women. Unexpectedly, the vaccine prevented genital disease by HSV-1 but not HSV-2. Currently, HSV-1 causes more first episodes of genital herpes than HSV-2, highlighting the importance of protecting against HSV-1. The scientific community is conflicted between abandoning vaccine efforts that include gD2 and building upon the partial successes of previous trials. We favor building upon success and present approaches to improve outcomes of gD2-based subunit antigen vaccines.

  7. Serological responses in chimpanzees inoculated with human immunodeficiency virus glycoprotein (gp120) subunit vaccine

    Arthur, L.O.; Pyle, S.W.; Nara, P.L.

    1987-01-01

    The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4 + and T8 + cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4 + cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo

  8. Activation of Nrf2 Signaling Augments Vesicular Stomatitis Virus Oncolysis via Autophagy-Driven Suppression of Antiviral Immunity.

    Olagnier, David; Lababidi, Rassin R; Hadj, Samar Bel; Sze, Alexandre; Liu, Yiliu; Naidu, Sharadha Dayalan; Ferrari, Matteo; Jiang, Yuan; Chiang, Cindy; Beljanski, Vladimir; Goulet, Marie-Line; Knatko, Elena V; Dinkova-Kostova, Albena T; Hiscott, John; Lin, Rongtuan

    2017-08-02

    Oncolytic viruses (OVs) offer a promising therapeutic approach to treat multiple types of cancer. In this study, we show that the manipulation of the antioxidant network via transcription factor Nrf2 augments vesicular stomatitis virus Δ51 (VSVΔ51) replication and sensitizes cancer cells to viral oncolysis. Activation of Nrf2 signaling by the antioxidant compound sulforaphane (SFN) leads to enhanced VSVΔ51 spread in OV-resistant cancer cells and improves the therapeutic outcome in different murine syngeneic and xenograft tumor models. Chemoresistant A549 lung cancer cells that display constitutive dominant hyperactivation of Nrf2 signaling are particularly vulnerable to VSVΔ51 oncolysis. Mechanistically, enhanced Nrf2 signaling stimulated viral replication in cancer cells and disrupted the type I IFN response via increased autophagy. This study reveals a previously unappreciated role for Nrf2 in the regulation of autophagy and the innate antiviral response that complements the therapeutic potential of VSV-directed oncolysis against multiple types of OV-resistant or chemoresistant cancer. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Positive evolution of the glycoprotein (GP) gene is related to transmission of the Ebola virus.

    Jing, Y X; Wang, L N; Wu, X M; Song, C X

    2016-03-28

    Ebola hemorrhagic fever is a fatal disease caused by the negative-strand RNA of the Ebola virus. A high-intensity outbreak of this fever was reported in West Africa last year; however, there is currently no definitive treatment strategy available for this disease. In this study, we analyzed the molecular evolutionary history and attempted to determine the positive selection sites in the Ebola genes using multiple-genomic sequences of the various Ebola virus subtypes, in order to gain greater clarity into the evolution of the virus and its various subtypes. Only the glycoprotein (GP) gene was positively selected among the 8 Ebola genes, with the other genes remaining in the purification stage. The positive selection sites in the GP gene were identified by a random-site model; these sites were found to be located in the mucin-like region, which is associated with transmembrane protein binding. Additionally, different branches of the phylogenetic tree displayed different positive sites, which in turn was responsible for differences in the cell adhesion ability of the virus. In conclusion, the pattern of positive sites in the GP gene is associated with the epidemiology and prevalence of Ebola in different areas.

  10. Restoration of glycoprotein Erns dimerization via pseudoreversion partially restores virulence of classical swine fever virus.

    Tucakov, Anna Katharina; Yavuz, Sabine; Schürmann, Eva-Maria; Mischler, Manjula; Klingebeil, Anne; Meyers, Gregor

    2018-01-01

    The classical swine fever virus (CSFV) represents one of the most important pathogens of swine. The CSFV glycoprotein E rns is an essential structural protein and an important virulence factor. The latter is dependent on the RNase activity of this envelope protein and, most likely, its secretion from the infected cell. A further important feature with regard to its function as a virulence factor is the formation of disulfide-linked E rns homodimers that are found in virus-infected cells and virions. Mutant CSFV lacking cysteine (Cys) 171, the residue responsible for intermolecular disulfide bond formation, were found to be attenuated in pigs (Tews BA, Schürmann EM, Meyers G. J Virol 2009;83:4823-4834). In the course of an animal experiment with such a dimerization-negative CSFV mutant, viruses were reisolated from pigs that contained a mutation of serine (Ser) 209 to Cys. This mutation restored the ability to form disulphide-linked E rns homodimers. In transient expression studies E rns mutants carrying the S209C change were found to form homodimers with about wt efficiency. Also the secretion level of the mutated proteins was equivalent to that of wt E rns . Virus mutants containing the Cys171Ser/Ser209Cys configuration exhibited wt growth rates and increased virulence when compared with the Cys171Ser mutant. These results provide further support for the connection between CSFV virulence and E rns dimerization.

  11. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.; Cohen, G.H.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar. For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells

  12. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus

    Meunier, Jean-Christophe; Russell, Rodney S.; Goossens, Vera

    2008-01-01

    The relative importance of humoral and cellular immunity in the prevention or clearance of hepatitis C virus (HCV) infection is poorly understood. However, there is considerable evidence that neutralizing antibodies are involved in disease control. Here we describe the detailed analysis of human...... monoclonal antibodies (MAbs) directed against HCV glycoprotein E1, which may have the potential to control HCV infection. We have identified two MAbs that can strongly neutralize HCV-pseudotyped particles (HCVpp) bearing the envelope glycoproteins of genotypes 1a, 1b, 4a, 5a, and 6a and less strongly...... neutralize HCVpp bearing the envelope glycoproteins of genotype 2a. Genotype 3a was not neutralized. The epitopes for both MAbs were mapped to the region encompassing amino acids 313 to 327. In addition, robust neutralization was also observed against cell culture-adapted viruses of genotypes 1a and 2a...

  13. Host cell virus entry mediated by Australian bat lyssavirus G envelope glycoprotein occurs through a clathrin-mediated endocytic pathway that requires actin and Rab5.

    Weir, Dawn L; Laing, Eric D; Smith, Ina L; Wang, Lin-Fa; Broder, Christopher C

    2014-02-27

    Australian bat lyssavirus (ABLV), a rhabdovirus of the genus Lyssavirus which circulates in both pteropid fruit bats and insectivorous bats in mainland Australia, has caused three fatal human infections, the most recent in February 2013, manifested as acute neurological disease indistinguishable from clinical rabies. Rhabdoviruses infect host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion mediated by their single envelope glycoprotein (G), but the specific host factors and pathways involved in ABLV entry have not been determined. ABLV internalization into HEK293T cells was examined using maxGFP-encoding recombinant vesicular stomatitis viruses (rVSV) that express ABLV G glycoproteins. A combination of chemical and molecular approaches was used to investigate the contribution of different endocytic pathways to ABLV entry. Dominant negative Rab GTPases were used to identify the endosomal compartment utilized by ABLV to gain entry into the host cell cytosol. Here we show that ABLV G-mediated entry into HEK293T cells was significantly inhibited by the dynamin-specific inhibitor dynasore, chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and the actin depolymerizing drug latrunculin B. Over expression of dominant negative mutants of Eps15 and Rab5 also significantly reduced ABLV G-mediated entry into HEK293T cells. Chemical inhibitors of caveolae-dependent endocytosis and macropinocytosis and dominant negative mutants of Rab7 and Rab11 had no effect on ABLV entry. The predominant pathway utilized by ABLV for internalization into HEK293T cells is clathrin-and actin-dependent. The requirement of Rab5 for productive infection indicates that ABLV G-mediated fusion occurs within the early endosome compartment.

  14. Safety studies on intravenous administration of oncolytic recombinant vesicular stomatitis virus in purpose-bred beagle dogs.

    LeBlanc, Amy K; Naik, Shruthi; Galyon, Gina D; Jenks, Nathan; Steele, Mike; Peng, Kah-Whye; Federspiel, Mark J; Donnell, Robert; Russell, Stephen J

    2013-12-01

    VSV-IFNβ-NIS is a novel recombinant oncolytic vesicular stomatitis virus (VSV) with documented efficacy and safety in preclinical murine models of cancer. To facilitate clinical translation of this promising oncolytic therapy in patients with disseminated cancer, we are utilizing a comparative oncology approach to gather data describing the safety and efficacy of systemic VSV-IFNβ-NIS administration in dogs with naturally occurring cancer. In support of this, we executed a dose-escalation study in purpose-bred dogs to determine the maximum tolerated dose (MTD) of systemic VSV-hIFNβ-NIS, characterize the adverse event profile, and describe routes and duration of viral shedding in healthy, immune-competent dogs. The data indicate that an intravenous dose of 10(10) TCID50 is well tolerated in dogs. Expected adverse events were mild to moderate fever, self-limiting nausea and vomiting, lymphopenia, and oral mucosal lesions. Unexpected adverse events included prolongation of partial thromboplastin time, development of bacterial urinary tract infection, and scrotal dermatitis, and in one dog receiving 10(11) TCID50 (10 × the MTD), the development of severe hepatotoxicity and symptoms of shock leading to euthanasia. Viral shedding data indicate that detectable viral genome in blood diminishes rapidly with anti-VSV neutralizing antibodies detectable in blood as early as day 5 postintravenous virus administration. While low levels of viral genome copies were detectable in plasma, urine, and buccal swabs of dogs treated at the MTD, no infectious virus was detectable in plasma, urine, or buccal swabs at any of the doses tested. These studies confirm that VSV can be safely administered systemically in dogs, justifying the use of oncolytic VSV as a novel therapy for the treatment of canine cancer.

  15. Adult T-cell leukemia-associated antigen (ATLA): detection of a glycoprotein in cell- and virus-free supernatant.

    Yamamoto, N; Schneider, J; Hinuma, Y; Hunsmann, G

    1982-01-01

    A glycoprotein of an apparent molecular mass of 46,000, gp 46, was enriched by affinity chromatography from the virus- and cell-free culture medium of adult T-cell leukemia virus (ATLV) infected cells. gp 46 was specifically precipitated with sera from patients with adult T-cell leukemia associated antigen (ATLA). Thus, gp 46 is a novel component of the ATLA antigen complex.

  16. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys.

    Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin

    2017-05-15

    The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect

  17. In Vivo Replication and Pathogenesis of Vesicular Stomatitis Virus Recombinant M40 Containing Ebola Virus L-Domain Sequences

    Takashi Irie

    2012-01-01

    Full Text Available The M40 VSV recombinant was engineered to contain overlapping PTAP and PPxY L-domain motifs and flanking residues from the VP40 protein of Ebola virus. Replication of M40 in cell culture is virtually indistinguishable from that of control viruses. However, the presence of the Ebola PTAP motif in the M40 recombinant enabled this virus to interact with and recruit host Tsg101, which was packaged into M40 virions. In this brief report, we compared replication and the pathogenic profiles of M40 and the parental virus M51R in mice to determine whether the presence of the Ebola L-domains and flanking residues altered in vivo characteristics of the virus. Overall, the in vivo characteristics of M40 were similar to those of the parental M51R virus, indicating that the Ebola sequences did not alter pathogenesis of VSV in this small animal model of infection.

  18. Chicken galectin-1B inhibits Newcastle disease virus adsorption and replication through binding to hemagglutinin-neuraminidase (HN) glycoprotein.

    Sun, Junfeng; Han, Zongxi; Qi, Tianming; Zhao, Ran; Liu, Shengwang

    2017-12-08

    Galectin-1 is an important immunoregulatory factor and can mediate the host-pathogen interaction via binding glycans on the surface of various viruses. We previously reported that avian respiratory viruses, including lentogenic Newcastle disease virus (NDV), can induce up-regulation of chicken galectin (CG)-1B in the primary target organ. In this study, we investigated whether CG-1B participated in the infectious process of NDV in chickens. We demonstrated that velogenic NDV induced up-regulation of CG-1B in target organs. We also found that CG-1B directly bound to NDV virions and inhibited their hemagglutination activity in vitro We confirmed that CG-1B interacted with NDV hemagglutinin-neuraminidase (HN) glycoprotein, in which the specific G4 N -glycans significantly contributed to the interaction between CG-1B and HN glycoprotein. The presence of extracellular CG-1B, rather than the internalization process, inhibited adsorption of NDV. The interaction between intracellular CG-1B and NDV HN glycoproteins inhibited cell-surface expression of HN glycoprotein and reduced the titer of progeny virus in NDV-infected DF-1 cells. Significantly, the replication of parental and HN glycosylation mutant viruses in CG-1B knockdown and overexpression cells demonstrated that the replication of NDV was correlated with the expression of CG-1B in a specific glycan-dependent manner. Collectively, our results indicate that CG-1B has anti-NDV activity by binding to N -glycans on HN glycoprotein. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Immunogenicity of ORFV-based vectors expressing the rabies virus glycoprotein in livestock species.

    Martins, Mathias; Joshi, Lok R; Rodrigues, Fernando S; Anziliero, Deniz; Frandoloso, Rafael; Kutish, Gerald F; Rock, Daniel L; Weiblen, Rudi; Flores, Eduardo F; Diel, Diego G

    2017-11-01

    The parapoxvirus Orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host-innate and pro-inflammatory responses and has been proposed as a vaccine delivery vector for use in animal species. Here we describe the construction and characterization of two recombinant ORFV vectors expressing the rabies virus (RABV) glycoprotein (G). The RABV-G gene was inserted in the ORFV024 or ORFV121 gene loci, which encode for IMPs that are unique to parapoxviruses and inhibit activation of the NF-κB signaling pathway. The immunogenicity of the resultant recombinant viruses (ORFV ∆024 RABV-G or ORFV ∆121 RABV-G, respectively) was evaluated in pigs and cattle. Immunization of the target species with ORFV ∆024 RABV-G and ORFV ∆121 RABV-G elicited robust neutralizing antibody responses against RABV. Notably, neutralizing antibody titers induced in ORFV ∆121 RABV-G-immunized pigs and cattle were significantly higher than those detected in ORFV ∆024 RABV-G-immunized animals, indicating a higher immunogenicity of ORFV Δ121 -based vectors in these animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Generation of a non-transmissive Borna disease virus vector lacking both matrix and glycoprotein genes.

    Fujino, Kan; Yamamoto, Yusuke; Daito, Takuji; Makino, Akiko; Honda, Tomoyuki; Tomonaga, Keizo

    2017-09-01

    Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non-segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non-cytopathically in the cell nucleus, leading to establishment of long-lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non-transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M) and G genes in the genome, is reported. rBoDV-ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG-GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG-GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG-GFP was also demonstrated. These findings indicate that the rBoDV ΔMG-based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  1. New insights into the Hendra virus attachment and entry process from structures of the virus G glycoprotein and its complex with Ephrin-B2.

    Kai Xu

    Full Text Available Hendra virus and Nipah virus, comprising the genus Henipavirus, are recently emerged, highly pathogenic and often lethal zoonotic agents against which there are no approved therapeutics. Two surface glycoproteins, the attachment (G and fusion (F, mediate host cell entry. The crystal structures of the Hendra G glycoprotein alone and in complex with the ephrin-B2 receptor reveal that henipavirus uses Tryptophan 122 on ephrin-B2/B3 as a "latch" to facilitate the G-receptor association. Structural-based mutagenesis of residues in the Hendra G glycoprotein at the receptor binding interface document their importance for viral attachments and entry, and suggest that the stability of the Hendra-G-ephrin attachment complex does not strongly correlate with the efficiency of viral entry. In addition, our data indicates that conformational rearrangements of the G glycoprotein head domain upon receptor binding may be the trigger leading to the activation of the viral F fusion glycoprotein during virus infection.

  2. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    Goldbach Rob W

    2011-07-01

    Full Text Available Abstract Background Chikungunya virus (CHIKV is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of envelope proteins E1 and E2 and to develop a CHIKV subunit vaccine, C-terminally his-tagged E1 and E2 envelope glycoproteins were produced at high levels in insect cells with baculovirus vectors using their native signal peptides located in CHIKV 6K and E3, respectively. Results Expression in the presence of either tunicamycin or furin inhibitor showed that a substantial portion of recombinant intracellular E1 and precursor E3E2 was glycosylated, but that a smaller fraction of E3E2 was processed by furin into mature E3 and E2. Deletion of the C-terminal transmembrane domains of E1 and E2 enabled secretion of furin-cleaved, fully processed E1 and E2 subunits, which could then be efficiently purified from cell culture fluid via metal affinity chromatography. Confocal laser scanning microscopy on living baculovirus-infected Sf21 cells revealed that full-length E1 and E2 translocated to the plasma membrane, suggesting similar posttranslational processing of E1 and E2, as in a natural CHIKV infection. Baculovirus-directed expression of E1 displayed fusogenic activity as concluded from syncytia formation. CHIKV-E2 was able to induce neutralizing antibodies in rabbits. Conclusions Chikungunya virus glycoproteins could be functionally expressed at high levels in insect cells and are properly glycosylated and cleaved by furin. The ability of purified, secreted CHIKV-E2 to induce neutralizing antibodies in rabbits underscores the potential use of E2 in a subunit vaccine to prevent CHIKV infections.

  3. A recombinant chimeric La Crosse virus expressing the surface glycoproteins of Jamestown Canyon virus is immunogenic and protective against challenge with either parental virus in mice or monkeys.

    Bennett, R S; Gresko, A K; Nelson, J T; Murphy, B R; Whitehead, S S

    2012-01-01

    La Crosse virus (LACV) and Jamestown Canyon virus (JCV), family Bunyaviridae, are mosquito-borne viruses that are endemic in North America and recognized as etiologic agents of encephalitis in humans. Both viruses belong to the California encephalitis virus serogroup, which causes 70 to 100 cases of encephalitis a year. As a first step in creating live attenuated viral vaccine candidates for this serogroup, we have generated a recombinant LACV expressing the attachment/fusion glycoproteins of JCV. The JCV/LACV chimeric virus contains full-length S and L segments derived from LACV. For the M segment, the open reading frame (ORF) of LACV is replaced with that derived from JCV and is flanked by the untranslated regions of LACV. The resulting chimeric virus retained the same robust growth kinetics in tissue culture as observed for either parent virus, and the virus remains highly infectious and immunogenic in mice. Although both LACV and JCV are highly neurovirulent in 21 day-old mice, with 50% lethal dose (LD₅₀) values of 0.1 and 0.5 log₁₀ PFU, respectively, chimeric JCV/LACV is highly attenuated and does not cause disease even after intracerebral inoculation of 10³ PFU. Parenteral vaccination of mice with 10¹ or 10³ PFU of JCV/LACV protected against lethal challenge with LACV, JCV, and Tahyna virus (TAHV). The chimeric virus was infectious and immunogenic in rhesus monkeys and induced neutralizing antibodies to JCV, LACV, and TAHV. When vaccinated monkeys were challenged with JCV, they were protected against the development of viremia. Generation of highly attenuated yet immunogenic chimeric bunyaviruses could be an efficient general method for development of vaccines effective against these pathogenic viruses.

  4. Matrix protein of vesicular stomatitis virus: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation.

    Zhou, Y; Wen, F; Zhang, P; Tang, R; Li, Q

    2013-03-01

    Malignant ascites is common in various types of cancers and is difficult to manage. Vascular endothelial growth factor (VEGF) has a pivotal role in malignant ascites. The matrix protein of vesicular stomatitis virus (VSVMP) has been shown to inhibit host gene expression and induce the apoptosis of cancer cells. The present study was designed to determine whether VSVMP suppresses the formation of ascites in ascites-producing peritoneal carcinomatosis. BALB/c female mice, 6-8 weeks old, bearing peritoneal tumors of H22 or MethA cells received an intraperitoneal administration of 50 μg VSVMP/250 μg liposome complexes, 50 μg empty plasmid/250 μg liposome complexes or 0.9% NaCl solution, respectively, every 2 days for 3 weeks. Administration of VSVMP resulted in a significant inhibition in ascites formation, improvement in health condition and prolonged survival of the treated mice. Decreased peritoneum osmolarity and reduced tumor vascularity coincided with dramatic reductions in the VEGF level in ascites fluid and plasma. Examination of floating tumor cells collected from the peritoneal wash revealed an apparently increased number of apoptotic cells and profound downregulation of VEGF mRNA in the VSVMP-treated mice. Our data indicate for the first time that in BALB/c mice bearing H22 or MethA cell peritoneal tumors, VSVMP may inhibit VEGF production and suppress angiogenesis, consequently abolishing ascites formation.

  5. Heat Shock Protein 70 Enhances Mucosal Immunity against Human Norovirus When Coexpressed from a Vesicular Stomatitis Virus Vector

    Ma, Yuanmei; Duan, Yue; Wei, Yongwei; Liang, Xueya; Niewiesk, Stefan; Oglesbee, Michael

    2014-01-01

    ABSTRACT Human norovirus (NoV) accounts for 95% of nonbacterial gastroenteritis worldwide. Currently, there is no vaccine available to combat human NoV as it is not cultivable and lacks a small-animal model. Recently, we demonstrated that recombinant vesicular stomatitis virus (rVSV) expressing human NoV capsid protein (rVSV-VP1) induced strong immunities in mice (Y. Ma and J. Li, J. Virol. 85:2942–2952, 2011). To further improve the safety and efficacy of the vaccine candidate, heat shock protein 70 (HSP70) was inserted into the rVSV-VP1 backbone vector. A second construct was generated in which the firefly luciferase (Luc) gene was inserted in place of HSP70 as a control for the double insertion. The resultant recombinant viruses (rVSV-HSP70-VP1 and rVSV-Luc-VP1) were significantly more attenuated in cell culture and viral spread in mice than rVSV-VP1. At the inoculation dose of 1.0 × 106 PFU, rVSV-HSP70-VP1 triggered significantly higher vaginal IgA than rVSV-VP1 and significantly higher fecal and vaginal IgA responses than rVSV-Luc-VP1, although serum IgG and T cell responses were similar. At the inoculation dose of 5.0 × 106 PFU, rVSV-HSP70-VP1 stimulated significantly higher T cell, fecal, and vaginal IgA responses than rVSV-VP1. Fecal and vaginal IgA responses were also significantly increased when combined vaccination of rVSV-VP1 and rVSV-HSP70 was used. Collectively, these data indicate that (i) insertion of an additional gene (HSP70 or Luc) into the rVSV-VP1 backbone further attenuates the VSV-based vaccine in vitro and in vivo, thus improving the safety of the vaccine candidate, and (ii) HSP70 enhances the human NoV-specific mucosal and T cell immunities triggered by a VSV-based human NoV vaccine. IMPORTANCE Human norovirus (NoV) is responsible for more than 95% of acute nonbacterial gastroenteritis worldwide. Currently, there is no vaccine for this virus. Development of a live attenuated vaccine for human NoV has not been possible because it is

  6. Herpes Simplex Virus-2 Glycoprotein Interaction with HVEM Influences Virus-Specific Recall Cellular Responses at the Mucosa

    Sarah J. Kopp

    2012-01-01

    Full Text Available Infection of susceptible cells by herpes simplex virus (HSV requires the interaction of the HSV gD glycoprotein with one of two principal entry receptors, herpes virus entry mediator (HVEM or nectins. HVEM naturally functions in immune signaling, and the gD-HVEM interaction alters innate signaling early after mucosal infection. We investigated whether the gD-HVEM interaction during priming changes lymphocyte recall responses in the murine intravaginal model. Mice were primed with attenuated HSV-2 expressing wild-type gD or mutant gD unable to engage HVEM and challenged 32 days later with virulent HSV-2 expressing wild-type gD. HSV-specific CD8+ T cells were decreased at the genital mucosa during the recall response after priming with virus unable to engage HVEM but did not differ in draining lymph nodes. CD4+ T cells, which are critical for entry of HSV-specific CD8+ T cells into mucosa in acute infection, did not differ between the two groups in either tissue. An inverse association between Foxp3+ CD4+ regulatory T cells and CD8+ infiltration into the mucosa was not statistically significant. CXCR3 surface expression was not significantly different among different lymphocyte subsets. We conclude that engagement of HVEM during the acute phase of HSV infection influences the antiviral CD8+ recall response by an unexplained mechanism.

  7. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Li-Li Dong; Ru Tang; Yu-Jia Zhai; Tejsu Malla; Kai Hu

    2017-01-01

    AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice w...

  8. A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal Hendra virus challenge.

    Pallister, Jackie; Middleton, Deborah; Wang, Lin-Fa; Klein, Reuben; Haining, Jessica; Robinson, Rachel; Yamada, Manabu; White, John; Payne, Jean; Feng, Yan-Ru; Chan, Yee-Peng; Broder, Christopher C

    2011-08-05

    The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are two deadly zoonotic viruses for which no vaccines or therapeutics have yet been approved for human or livestock use. In 14 outbreaks since 1994 HeV has been responsible for multiple fatalities in horses and humans, with all known human infections resulting from close contact with infected horses. A vaccine that prevents virus shedding in infected horses could interrupt the chain of transmission to humans and therefore prevent HeV disease in both. Here we characterise HeV infection in a ferret model and show that it closely mirrors the disease seen in humans and horses with induction of systemic vasculitis, including involvement of the pulmonary and central nervous systems. This model of HeV infection in the ferret was used to assess the immunogenicity and protective efficacy of a subunit vaccine based on a recombinant soluble version of the HeV attachment glycoprotein G (HeVsG), adjuvanted with CpG. We report that ferrets vaccinated with a 100 μg, 20 μg or 4 μg dose of HeVsG remained free of clinical signs of HeV infection following a challenge with 5000 TCID₅₀ of HeV. In addition, and of considerable importance, no evidence of virus or viral genome was detected in any tissues or body fluids in any ferret in the 100 and 20 μg groups, while genome was detected in the nasal washes only of one animal in the 4 μg group. Together, our findings indicate that 100 μg or 20 μg doses of HeVsG vaccine can completely prevent a productive HeV infection in the ferret, suggesting that vaccination to prevent the infection and shedding of HeV is possible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. 5'-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping.

    Ogino, Minako; Ogino, Tomoaki

    2017-03-15

    The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5'-phospho-RNA (pRNA) from 5'-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5'-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m 7 G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m 7 GpppA (cap 0), respectively. Furthermore, either the 2'- or 3'-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5'-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups of GDP as

  10. 5′-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping

    Ogino, Minako

    2017-01-01

    ABSTRACT The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5′-phospho-RNA (pRNA) from 5′-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5′-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m7G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m7GpppA (cap 0), respectively. Furthermore, either the 2′- or 3′-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5′-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups

  11. Use of a fragment of glycoprotein G-2 produced in the baculovirus expression system for detecting herpes simplex virus type 2-specific antibodies

    Ikoma, M; Liljeqvist, JA; Glazenburg, KL; The, TH; Welling-Wester, S; Groen, J.

    Fragments of glycoprotein G (gG-2(281-594His)), comprising residues 281 to 594 of herpes simplex virus type 2 (HSV-2), glycoprotein G of HSV-1 (gG-1(t26-189His)), and glycoprotein D of HSV-1 (gD-1(1-313)), were expressed in the baculovirus expression system to develop an assay for the detection of

  12. Generation of Newcastle Disease Virus (NDV) Recombinants Expressing the Infectious Laryngotracheitis Virus (ILTV) Glycoprotein gB or gD as Dual Vaccines.

    Zhao, Wei; Spatz, Stephen; Zsak, Laszlo; Yu, Qingzhong

    2016-01-01

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infection with infectious laryngotracheitis virus (ILTV), a member of the family Herpesviridae. The current commercial ILT vaccines are either unsafe or ineffective. Therefore, there is a pressing need to develop safer and more efficacious vaccines. Newcastle disease (ND), caused by infection with Newcastle disease virus (NDV), a member of the family Paramyxoviridae, is one of the most serious infectious diseases of poultry. The NDV LaSota strain, a naturally occurring low-virulence NDV strain, has been routinely used as a live vaccine throughout the world. This chapter describes the generation of Newcastle disease virus (NDV) LaSota vaccine strain-based recombinant viruses expressing glycoprotein B (gB) or glycoprotein D (gD) of ILTV as dual vaccines against ND and ILT using reverse genetics technology.

  13. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike; Zhang Liqun; Yang Lijuan; Ward, Jerrold M.; Dorward, David W.; Pickles, Raymond J.; Murphy, Brian R.; Feldmann, Heinz; Collins, Peter L.

    2009-01-01

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/ΔF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/ΔF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/ΔF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV

  14. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J.; von Messling, Veronika

    2017-01-01

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant ...

  15. Retention and topology of the bovine viral diarrhea virus glycoprotein E2.

    Radtke, Christina; Tews, Birke Andrea

    2017-10-01

    Pestiviruses are enveloped viruses that bud intracellularly. They have three envelope glycoproteins, E rns , E1, and E2. E2 is the receptor binding protein and the main target for neutralizing antibodies. Both E rns and E2 are retained intracellularly. Here, E2 of the bovine viral diarrhea virus (BVDV) strain CP7 was used to study the membrane topology and intracellular localization of the protein. E2 is localized in the ER and there was no difference between E2 expressed alone or in the context of the viral polyprotein. The mature E2 protein was found to possess a single span transmembrane anchor. For the mapping of a retention signal CD72-E2 fusion proteins, as well as E2 alone were analysed. This confirmed the importance of the transmembrane domain and arginine 355 for intracellular retention, but also revealed a modulating effect on retention through the cytoplasmic tail of the E2 protein, especially through glutamine 370. Mutants with a strong impact on retention were tested in the viral context and we were able to rescue BVDV with certain mutations that in E2 alone impaired intracellular retention and lead to export of E2 to the cells surface.

  16. Biological and immunogenic properties of rabies virus glycoprotein expressed by canine herpesvirus vector.

    Xuan, X; Tuchiya, K; Sato, I; Nishikawa, Y; Onoderaz, Y; Takashima, Y; Yamamoto, A; Katsumata, A; Iwata, A; Ueda, S; Mikami, T; Otsuka, H

    1998-01-01

    In order to evaluate whether canine herpesvirus (CHV) could be used as a live vector for the expression of heterologous immunogenes, we constructed a recombinant canine herpesvirus (CHV) expressing glycoprotein (G protein) of rabies virus (RV). The gene of G protein was inserted within the thymidine kinase gene of CHV YP11mu strain under the control of the human cytomegalovirus immediate early promoter. The G protein expressed by the recombinant CHV was processed and transported to the cell surface as in RV infected cells, and showed the same biological activities such as low pH dependent cell fusion and hemadsorption. The antigenic authenticity of the recombinant G protein was confirmed by a panel of monoclonal antibodies specific for G protein. Dogs inoculated intransally with the recombinant CHV produced higher titres of virus neutralizing antibodies against RV than those inoculated with a commercial, inactivated rabies vaccine. These results suggest that the CHV recombinant expressing G protein can be used as a vaccine to control canine rabies and that CHV may be useful as a vector to develop live recombinant against other infectious diseases in dogs.

  17. A new strategy for full-length Ebola virus glycoprotein expression in E.coli.

    Zai, Junjie; Yi, Yinhua; Xia, Han; Zhang, Bo; Yuan, Zhiming

    2016-12-01

    Ebola virus (EBOV) causes severe hemorrhagic fever in humans and non-human primates with high rates of fatality. Glycoprotein (GP) is the only envelope protein of EBOV, which may play a critical role in virus attachment and entry as well as stimulating host protective immune responses. However, the lack of expression of full-length GP in Escherichia coli hinders the further study of its function in viral pathogenesis. In this study, the vp40 gene was fused to the full-length gp gene and cloned into a prokaryotic expression vector. We showed that the VP40-GP and GP-VP40 fusion proteins could be expressed in E.coli at 16 °C. In addition, it was shown that the position of vp40 in the fusion proteins affected the yields of the fusion proteins, with a higher level of production of the fusion protein when vp40 was upstream of gp compared to when it was downstream. The results provide a strategy for the expression of a large quantity of EBOV full-length GP, which is of importance for further analyzing the relationship between the structure and function of GP and developing an antibody for the treatment of EBOV infection.

  18. Dissection of seroreactivity against the tryptophan-rich motif of the feline immunodeficiency virus transmembrane glycoprotein

    Freer, Giulia; Giannecchini, Simone; Tissot, Alain; Bachmann, Martin F.; Rovero, Paolo; Serres, Pierre Francoise; Bendinelli, Mauro

    2004-01-01

    Immunogenicity of the tryptophan-rich motif (TrpM) in the membrane-proximal ectodomain of the transmembrane (TM) glycoprotein of feline immunodeficiency virus (FIV) was investigated. Peptide 59, a peptide containing the TrpM of the TM of FIV, was covalently coupled to Qβ phage virus-like particles (Qβ-59) in the attempt to induce potent anti-TrpM B cell responses in cats. All Qβ-59 immunized cats, but not cats that received a mixture of uncoupled Qβ and peptide 59, developed antibodies that reacted with a same epitope in extensive binding and binding competition assays. The epitope recognized was composed of three amino acids, two of which are adjacent. However, Qβ-59-immune sera failed to recognize whole FIV in all binding and neutralization assays performed. Furthermore, no reactivity against the TrpM was detected by screening sera from FIV-infected cats that had reacted with TM peptides, confirming that this epitope does not seem to be serologically functional in the FIV virion. The data suggest that TrpM may not be a suitable target for antiviral vaccine design

  19. Acute reactogenicity after intramuscular immunization with recombinant vesicular stomatitis virus is linked to production of IL-1β.

    Kathleen Athearn

    Full Text Available Vaccines based on live viruses are attractive because they are immunogenic, cost-effective, and can be delivered by multiple routes. However, live virus vaccines also cause reactogenic side effects such as fever, myalgia, and injection site pain that have reduced their acceptance in the clinic. Several recent studies have linked vaccine-induced reactogenic side effects to production of the pro-inflammatory cytokine interleukin-1β (IL-1β in humans. Our objective was therefore to determine whether IL-1β contributed to pathology after immunization with recombinant vesicular stomatitis virus (rVSV vaccine vectors, and if so, to identify strategies by which IL-1β mediated pathology might be reduced without compromising immunogenicity. We found that an rVSV vaccine induced local and systemic production of IL-1β in vivo, and that accumulation of IL-1β correlated with acute pathology after rVSV immunization. rVSV-induced pathology was reduced in mice deficient in the IL-1 receptor Type I, but the IL-1R-/- mice were fully protected from lethal rechallenge with a high dose of VSV. This result demonstrated that IL-1 contributed to reactogenicity of the rVSV, but was dispensable for induction of protective immunity. The amount of IL-1β detected in mice deficient in either caspase-1 or the inflammasome adaptor molecule ASC after rVSV immunization was not significantly different than that produced by wild type animals, and caspase-1-/- and ASC-/- mice were only partially protected from rVSV-induced pathology. Those data support the idea that some of the IL-1β expressed in vivo in response to VSV may be activated by a caspase-1 and ASC-independent mechanism. Together these results suggest that rVSV vectors engineered to suppress the induction of IL-1β, or signaling through the IL-1R would be less reactogenic in vivo, but would retain their immunogenicity and protective capacity. Such rVSV would be highly desirable as either vaccine vectors or

  20. Generation of recombinant newcastle disease viruses, expressing the glycoprotein (G) of avian metapneumovirus, subtype A, or B, for use as bivalent vaccines

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, or B, as bivalent vaccines. These recombinant viruses, rLS/aMPV-A G and rLS/aMPV-B G, were slightly att...

  1. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-01-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [γ- 32 P]ATP. The same glycoprotein was phosphorylated when [ 32 P]GTP was substituted for [ 32 P]ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein

  2. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  3. Structure-Based Design of Head-Only Fusion Glycoprotein Immunogens for Respiratory Syncytial Virus.

    Jeffrey C Boyington

    Full Text Available Respiratory syncytial virus (RSV is a significant cause of severe respiratory illness worldwide, particularly in infants, young children, and the elderly. Although no licensed vaccine is currently available, an engineered version of the metastable RSV fusion (F surface glycoprotein-stabilized in the pre-fusion (pre-F conformation by "DS-Cav1" mutations-elicits high titer RSV-neutralizing responses. Moreover, pre-F-specific antibodies, often against the neutralization-sensitive antigenic site Ø in the membrane-distal head region of trimeric F glycoprotein, comprise a substantial portion of the human response to natural RSV infection. To focus the vaccine-elicited response to antigenic site Ø, we designed a series of RSV F immunogens that comprised the membrane-distal head of the F glycoprotein in its pre-F conformation. These "head-only" immunogens formed monomers, dimers, and trimers. Antigenic analysis revealed that a majority of the 70 engineered head-only immunogens displayed reactivity to site Ø-targeting antibodies, which was similar to that of the parent RSV F DS-Cav1 trimers, often with increased thermostability. We evaluated four of these head-only immunogens in detail, probing their recognition by antibodies, their physical stability, structure, and immunogenicity. When tested in naïve mice, a head-only trimer, half the size of the parent RSV F trimer, induced RSV titers, which were statistically comparable to those induced by DS-Cav1. When used to boost DS-Cav1-primed mice, two head-only RSV F immunogens, a dimer and a trimer, boosted RSV-neutralizing titers to levels that were comparable to those boosted by DS-Cav1, although with higher site Ø-directed responses. Our results provide proof-of-concept for the ability of the smaller head-only RSV F immunogens to focus the vaccine-elicited response to antigenic site Ø. Decent primary immunogenicity, enhanced physical stability, potential ease of manufacture, and potent

  4. Functional Role of N-Linked Glycosylation in Pseudorabies Virus Glycoprotein gH.

    Vallbracht, Melina; Rehwaldt, Sascha; Klupp, Barbara G; Mettenleiter, Thomas C; Fuchs, Walter

    2018-05-01

    Many viral envelope proteins are modified by asparagine (N)-linked glycosylation, which can influence their structure, physicochemical properties, intracellular transport, and function. Here, we systematically analyzed the functional relevance of N-linked glycans in the alphaherpesvirus pseudorabies virus (PrV) glycoprotein H (gH), which is an essential component of the conserved core herpesvirus fusion machinery. Upon gD-mediated receptor binding, the heterodimeric complex of gH and gL activates gB to mediate fusion of the viral envelope with the host cell membrane for viral entry. gH contains five potential N-linked glycosylation sites at positions 77, 162, 542, 604, and 627, which were inactivated by conservative mutations (asparagine to glutamine) singly or in combination. The mutated proteins were tested for correct expression and fusion activity. Additionally, the mutated gH genes were inserted into the PrV genome for analysis of function during virus infection. Our results demonstrate that all five sites are glycosylated. Inactivation of the PrV-specific N77 or the conserved N627 resulted in significantly reduced in vitro fusion activity, delayed penetration kinetics, and smaller virus plaques. Moreover, substitution of N627 greatly affected transport of gH in transfected cells, resulting in endoplasmic reticulum (ER) retention and reduced surface expression. In contrast, mutation of N604, which is conserved in the Varicellovirus genus, resulted in enhanced in vitro fusion activity and viral cell-to-cell spread. These results demonstrate a role of the N-glycans in proper localization and function of PrV gH. However, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles. IMPORTANCE Herpesvirus infection requires fusion of the viral envelope with cellular membranes, which involves the conserved fusion machinery consisting of gB and the heterodimeric gH/gL complex. The bona fide

  5. Plasma membrane phosphatidylinositol 4,5 bisphosphate is required for internalization of foot-and-mouth disease virus and vesicular stomatitis virus.

    Angela Vázquez-Calvo

    Full Text Available Phosphatidylinositol-4,5-bisphosphate, PI(4,5P(2, is a phospholipid which plays important roles in clathrin-mediated endocytosis. To investigate the possible role of this lipid on viral entry, two viruses important for animal health were selected: the enveloped vesicular stomatitis virus (VSV - which uses a well characterized clathrin mediated endocytic route - and two different variants of the non-enveloped foot-and-mouth disease virus (FMDV with distinct receptor specificities. The expression of a dominant negative dynamin, a PI(4,5P(2 effector protein, inhibited the internalization and infection of VSV and both FMDV isolates. Depletion of PI(4,5P(2 from plasma membrane using ionomycin or an inducible system, and inhibition of its de novo synthesis with 1-butanol revealed that VSV as well as FMDV C-S8c1, which uses integrins as receptor, displayed a high dependence on PI(4,5P(2 for internalization. Expression of a kinase dead mutant (KD of phosphatidylinositol-4-phosphate-5-kinase Iα (PIP5K-Iα, an enzyme responsible for PI(4,5P(2 synthesis that regulates clathrin-dependent endocytosis, also impaired entry and infection of VSV and FMDV C-S8c1. Interestingly FMDV MARLS variant that uses receptors other than integrins for cell entry was less sensitive to PI(4,5P(2 depletion, and was not inhibited by the expression of the KD PIP5K-Iα mutant suggesting the involvement of endocytic routes other than the clathrin-mediated on its entry. These results highlight the role of PI(4,5P(2 and PIP5K-Iα on clathrin-mediated viral entry.

  6. Alanine scanning of the rabies virus glycoprotein antigenic site III using recombinant rabies virus: implication for post-exposure treatment.

    Papaneri, Amy B; Wirblich, Christoph; Marissen, Wilfred E; Schnell, Matthias J

    2013-12-02

    The safety and availability of the human polyclonal sera that is currently utilized for post-exposure treatment (PET) of rabies virus (RABV) infection remain a concern. Recombinant monoclonal antibodies have been postulated as suitable alternatives by WHO. To this extent, CL184, the RABV human antibody combination comprising monoclonal antibodies (mAbs) CR57 and CR4098, has been developed and has delivered promising clinical data to support its use for RABV PET. For this fully human IgG1 cocktail, mAbs CR57 and CR4098 are produced in the PER.C6 human cell line and combined in equal amounts in the final product. During preclinical evaluation, CR57 was shown to bind to antigenic site I whereas CR4098 neutralization was influenced by a mutation of position 336 (N336) located within antigenic site III. Here, alanine scanning was used to analyze the influence of mutations within the potential binding site for CR4098, antigenic site III, in order to evaluate the possibility of mutated rabies viruses escaping neutralization. For this approach, twenty flanking amino acids (10 upstream and 10 downstream) of the RABV glycoprotein (G) asparagine (N336) were exchanged to alanine (or serine, if already alanine) by site-directed mutagenesis. Analysis of G expression revealed four of the twenty mutant Gs to be non-functional, as shown by their lack of cell surface expression, which is a requirement for the production of infectious RABV. Therefore, these mutants were excluded from further study. The remaining sixteen mutants were introduced in an infectious clone of RABV, and recombinant RABVs (rRABVs) were recovered and utilized for in vitro neutralization assays. All of the viruses were effectively neutralized by CR4098 as well as by CR57, indicating that single amino acid exchanges in this region does not affect the broad neutralizing capability of the CL184 mAb combination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Humoral immune response to hypervariable region 1 of the putative envelope glycoprotein (gp70) of hepatitis C virus.

    Kato, N; Sekiya, H; Ootsuyama, Y; Nakazawa, T; Hijikata, M; Ohkoshi, S; Shimotohno, K

    1993-01-01

    We recently found that alterations of amino acids in hypervariable region 1 (HVR1) of the putative envelope glycoprotein (gp70) of hepatitis C virus (HCV) occurred sequentially in the chronic phase of hepatitis at intervals of several months. This finding suggests that mutations in HVR1 are involved in the mechanism of persistent chronic HCV infection involving escape from the immunosurveillance system. To explore this possibility, we examined the humoral immune response to HVR1 with our assa...

  8. The Role of the MHV Receptor and Related Glycoproteins in Murine Hepatitis Virus Infection of Murine Cell Lines

    1995-04-13

    vaccinia virus-T7 RNA polymerase s y stem for e xpression of target genes . Mol . Cell . BioI . 7 : 2538-2544 . Gagneten , S ., Gout , 0 ., Dubois-Dalcq...glycoprotein. These results showed f or the first time that two murine CEA- related genes can be co-expressed in some cell lines from inbred mice...49 Southern Hybridization ................ . ............ 50 Subcloning of PCR Products and Gene Cloning ........ 51 Growth

  9. Mouse hepatitis virus neurovirulence: evidence of a linkage between S glycoprotein expression and immunopathology

    Rempel, Julia D.; Murray, Shannon J.; Meisner, Jeffrey; Buchmeier, Michael J.

    2004-01-01

    Differences in disease outcome between the highly neurovirulent MHV-JHM and mildly neurovirulent MHV-A59 have been attributed to variations within the spike (S) glycoprotein. Previously, we found that MHV-JHM neurovirulence was marked by diminished expression of interferon-γ (IFN-γ) mRNA and a reduced presence of CD8 T cells in the CNS concomitant with heightened macrophage inflammatory protein (MIP)-1 transcript levels and greater macrophage infiltration relative to MHV-A59 infection. Here, the ability of the S and non-spike genes to regulate these immune responses was evaluated using chimeric viruses. Chimeric viruses WTR13 and S4R22 were made on MHV-A59 variant backgrounds and, respectively, contained the S gene of MHV-A59 and MHV-JHM. Unexpectedly, genes other than S appeared to modulate events critical to viral replication and survival. Unlike unresolving MHV-JHM infections, the clearance of WTR13 and S4R22 infections coincided with strong IFN-γ transcription and an increase in the number of CD8 T cells infiltrating into the CNS. However, despite the absence of detectable viral titers, approximately 40% of S4R22-infected mice succumbed within 3 weeks, indicating that the enhanced mortality following S4R22 infection was not associated with high viral titers. Instead, similar to the MHV-JHM infection, reduced survival following S4R22 infection was observed in the presence of elevated MIP-1α and MIP-1β mRNA accumulation and enhanced macrophage numbers within infected brains. These observations suggest that the S protein of MHV-JHM influences neurovirulence through the induction of MIP-1α- and MIP-1β-driven macrophage immunopathology

  10. Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells

    Ray, Ratna B.; Basu, Arnab; Steele, Robert; Beyene, Aster; McHowat, Jane; Meyer, Keith; Ghosh, Asish K.; Ray, Ranjit

    2004-01-01

    Ebola virus glycoprotein (EGP) has been implicated for the induction of cytotoxicity and injury in vascular cells. On the other hand, EGP has also been suggested to induce massive cell rounding and detachment from the plastic surface by downregulating cell adhesion molecules without causing cytotoxicity. In this study, we have examined the cytotoxic role of EGP in primary endothelial cells by transduction with a replication-deficient recombinant adenovirus expressing EGP (Ad-EGP). Primary human cardiac microvascular endothelial cells (HCMECs) transduced with Ad-EGP displayed loss of cell adhesion from the plastic surface followed by cell death. Transfer of conditioned medium from EGP-transduced HCMEC into naive cells did not induce loss of adhesion or cell death, suggesting that EGP needs to be expressed intracellularly to exert its cytotoxic effect. Subsequent studies suggested that HCMEC death occurred through apoptosis. Results from this study shed light on the EGP-induced anoikis in primary human cardiac endothelial cells, which may have significant pathological consequences

  11. Herpes simplex virus glycoprotein D relocates nectin-1 from intercellular contacts.

    Bhargava, Arjun K; Rothlauf, Paul W; Krummenacher, Claude

    2016-12-01

    Herpes simplex virus (HSV) uses the cell adhesion molecule nectin-1 as a receptor to enter neurons and epithelial cells. The viral glycoprotein D (gD) is used as a non-canonical ligand for nectin-1. The gD binding site on nectin-1 overlaps with a functional adhesive site involved in nectin-nectin homophilic trans-interaction. Consequently, when nectin-1 is engaged with a cellular ligand at cell junctions, the gD binding site is occupied. Here we report that HSV gD is able to disrupt intercellular homophilic trans-interaction of nectin-1 and induce a rapid redistribution of nectin-1 from cell junctions. This movement does not require the receptor's interaction with the actin-binding adaptor afadin. Interaction of nectin-1 with afadin is also dispensable for virion surfing along nectin-1-rich filopodia. Cells seeded on gD-coated surfaces also fail to accumulate nectin-1 at cell contact. These data indicate that HSV gD affects nectin-1 locally through direct interaction and more globally through signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function.

    Wang, Bin; Wang, Yujie; Frabutt, Dylan A; Zhang, Xihe; Yao, Xiaoyu; Hu, Dan; Zhang, Zhuo; Liu, Chaonan; Zheng, Shimin; Xiang, Shi-Hua; Zheng, Yong-Hui

    2017-04-07

    The Ebola virus (EBOV) trimeric envelope glycoprotein (GP) precursors are cleaved into the receptor-binding GP 1 and the fusion-mediating GP 2 subunits and incorporated into virions to initiate infection. GP 1 and GP 2 form heterodimers that have 15 or two N -glycosylation sites (NGSs), respectively. Here we investigated the mechanism of how N -glycosylation contributes to GP expression, maturation, and function. As reported before, we found that, although GP 1 NGSs are not critical, the two GP 2 NGSs, Asn 563 and Asn 618 , are essential for GP function. Further analysis uncovered that Asn 563 and Asn 618 regulate GP processing, demannosylation, oligomerization, and conformation. Consequently, these two NGSs are required for GP incorporation into EBOV-like particles and HIV type 1 (HIV-1) pseudovirions and determine viral transduction efficiency. Using CRISPR/Cas9 technology, we knocked out the two classical endoplasmic reticulum chaperones calnexin (CNX) and/or calreticulin (CRT) and found that both CNX and CRT increase GP expression. Nevertheless, NGSs are not required for the GP interaction with CNX or CRT. Together, we conclude that, although Asn 563 and Asn 618 are not required for EBOV GP expression, they synergistically regulate its maturation, which determines its functionality. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    Tong Tiezhu; Fan Huiying; Tan Yadi; Xiao Shaobo; Ling Jieyu; Chen Huanchun; Guo Aizhen

    2006-01-01

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28 4 were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d 3 DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD 5 ) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d 3 DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response

  14. BoHV-4-based vector delivering Ebola virus surface glycoprotein

    Alfonso Rosamilia

    2016-11-01

    Full Text Available Abstract Background Ebola virus (EBOV is a Category A pathogen that is a member of Filoviridae family that causes hemorrhagic fever in humans and non-human primates. Unpredictable and devastating outbreaks of disease have recently occurred in Africa and current immunoprophylaxis and therapies are limited. The main limitation of working with pathogens like EBOV is the need for costly containment. To potentiate further and wider opportunity for EBOV prophylactics and therapies development, innovative approaches are necessary. Methods In the present study, an antigen delivery platform based on a recombinant bovine herpesvirus 4 (BoHV-4, delivering a synthetic EBOV glycoprotein (GP gene sequence, BoHV-4-syEBOVgD106ΔTK, was generated. Results EBOV GP was abundantly expressed by BoHV-4-syEBOVgD106ΔTK transduced cells without decreasing viral replication. BoHV-4-syEBOVgD106ΔTK immunized goats produced high titers of anti-EBOV GP antibodies and conferred a long lasting (up to 6 months, detectable antibody response. Furthermore, no evidence of BoHV-4-syEBOVgD106ΔTK viremia and secondary localization was detected in any of the immunized animals. Conclusions The BoHV-4-based vector approach described here, represents: an alternative antigen delivery system for vaccination and a proof of principle study for anti-EBOV antibodies generation in goats for potential immunotherapy applications.

  15. Functionality of Chimeric E2 Glycoproteins of BVDV and CSFV in Virus Replication

    H.G.P. van Gennip

    2008-01-01

    Full Text Available An intriguing difference between the E2 glycoprotein of CSFV and the other groups of pestiviruses (nonCSFV is a lack of two cysteine residues on positions cysteine 751 and 798. Other groups of pestivirus are not restricted to one species as swine, whereas CSFV is restricted to swine and wild boar. We constructed chimeric CSFV/BVDV E2 genes based on a 2D model of E2 proposed by van Rijn et al. (van Rijn et al. 1994, J Virol 68, 3934–42 and confirmed their expression by immunostaining of plasmid-transfected SK6 cells. No equivalents for the antigenic units B/C and A were found on E2 of BVDVII. This indicates major structural differences in E2. However, the immunodominant BVDVII domain A, containing epitopes with essential amino acids between position 760–764, showed to be dependent on the presence of the region defined by amino acids 684 to 796. As for the A domain of CSFV, the BVDVII A-like domain seemed to function as a separate unit. These combined domains in E2 proved to be the only combination which was functional in viral background of CSFV C-strain. The fitness of this virus (vfl c36BVDVII 684–796 seemed to be reduced compared to vfl c9 (with the complete antigenic region of BVDVII.

  16. Functionality of Chimeric E2 Glycoproteins of BVDV and CSFV in Virus Replication

    H.G.P. Van Gennip

    2008-01-01

    Full Text Available An intriguing difference between the E2 glycoprotein of CSFV and the other groups of pestiviruses (nonCSFV is a lack of two cysteine residues on positions cysteine 751 and 798. Other groups of pestivirus are not restricted to one species as swine, whereas CSFV is restricted to swine and wild boar. We constructed chimeric CSFV/BVDV E2 genes based on a 2D model of E2 proposed by van Rijn et al. (van Rijn et al. 1994, J Virol 68, 3934–42 and confirmed their expression by immunostaining of plasmid-transfected SK6 cells. No equivalents for the antigenic units B/C and A were found on E2 of BVDVII. This indicates major structural differences in E2. However, the immunodominant BVDVII domain A, containing epitopes with essential amino acids between position 760–764, showed to be dependent on the presence of the region defined by amino acids 684 to 796. As for the A domain of CSFV, the BVDVII A-like domain seemed to function as a separate unit. These combined domains in E2 proved to be the only combination which was functional in viral background of CSFV C-strain. The fitness of this virus (vflc36 BVDVII 684–796 seemed to be reduced compared to vflc9 (with the complete antigenic region of BVDVII.

  17. Interaction between Ebola Virus Glycoprotein and Host Toll-Like Receptor 4 Leads to Induction of Proinflammatory Cytokines and SOCS1 ▿ †

    Okumura, Atsushi; Pitha, Paula M.; Yoshimura, Akihiko; Harty, Ronald N.

    2009-01-01

    Ebola virus initially targets monocytes and macrophages, which can lead to the release of proinflammatory cytokines and chemokines. These inflammatory cytokines are thought to contribute to the development of circulatory shock seen in fatal Ebola virus infections. Here we report that host Toll-like receptor 4 (TLR4) is a sensor for Ebola virus glycoprotein (GP) on virus-like particles (VLPs) and that resultant TLR4 signaling pathways lead to the production of proinflammatory cytokines and sup...

  18. Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry

    Kirschner, Austin N.; Sorem, Jessica; Longnecker, Richard; Jardetzky, Theodore S.; (NWU); (Stanford-MED)

    2009-05-26

    Epstein-Barr virus requires glycoproteins gH/gL, gB, and gp42 to fuse its lipid envelope with B cells. Gp42 is a type II membrane protein consisting of a flexible N-terminal region, which binds gH/gL, and a C-terminal lectin-like domain that binds to the B-cell entry receptor human leukocyte antigen (HLA) class II. Gp42 triggers membrane fusion after HLA binding, a process that requires simultaneous binding to gH/gL and a functional hydrophobic pocket in the lectin domain adjacent to the HLA binding site. Here we present the structure of gp42 in its unbound form. Comparisons to the previously determined structure of a gp42:HLA complex reveals additional N-terminal residues forming part of the gH/gL binding site and structural changes in the receptor binding domain. Although the core of the lectin domain remains similar, significant shifts in two loops and an {alpha} helix bordering the essential hydrophobic pocket suggest a structural mechanism for triggering fusion.

  19. Interaction and interdependent packaging of tegument protein UL11 and glycoprotein e of herpes simplex virus.

    Han, Jun; Chadha, Pooja; Meckes, David G; Baird, Nicholas L; Wills, John W

    2011-09-01

    The UL11 tegument protein of herpes simplex virus plays a critical role in the secondary envelopment; however, the mechanistic details remain elusive. Here, we report a new function of UL11 in the budding process in which it directs efficient acquisition of glycoprotein E (gE) via a direct interaction. In vitro binding assays showed that the interaction required only the first 28, membrane-proximal residues of the cytoplasmic tail of gE, and the C-terminal 26 residues of UL11. A second, weaker binding site was also found in the N-terminal half of UL11. The significance of the gE-UL11 interaction was subsequently investigated with viral deletion mutants. In the absence of the gE tail, virion packaging of UL11, but not other tegument proteins such as VP22 and VP16, was reduced by at least 80%. Reciprocally, wild-type gE packaging was also drastically reduced by about 87% in the absence of UL11, and this defect could be rescued in trans by expressing U(L)11 at the U(L)35 locus. Surprisingly, a mutant that lacks the C-terminal gE-binding site of UL11 packaged nearly normal amounts of gE despite its strong interaction with the gE tail in vitro, indicating that the interaction with the UL11 N terminus may be important. Mutagenesis studies of the UL11 N terminus revealed that the association of UL11 with membrane was not required for this function. In contrast, the UL11 acidic cluster motif was found to be critical for gE packaging and was not replaceable with foreign acidic clusters. Together, these results highlight an important role of UL11 in the acquisition of glycoprotein-enriched lipid bilayers, and the findings may also have important implications for the role of UL11 in gE-mediated cell-to-cell spread.

  20. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae

    Sasnauskas Kęstutis

    2011-05-01

    Full Text Available Abstract Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN and measles hemagglutinin (MeH in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A and is closely associated with small heat shock proteins (sHsps that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of

  1. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    Chih-Yun Lai

    2017-08-01

    Full Text Available Ebola virus (EBOV, a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD is currently available, Ebola virus glycoprotein (GP is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs. Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4

  2. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    ), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...... carbohydrate structures expressed by the viral envelope glycoprotein gp120, indicating that glycans of the viral envelope are possible targets for immunotherapy or vaccine development or both....

  3. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    Changotra, Harish; Turk, Susan M.; Artigues, Antonio; Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I.; Hutt-Fletcher, Lindsey M.

    2016-01-01

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  4. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    Changotra, Harish; Turk, Susan M. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Artigues, Antonio [Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS (United States); Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Hutt-Fletcher, Lindsey M., E-mail: lhuttf@lsuhsc.edu [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States)

    2016-02-15

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  5. A Diverse Panel of Hepatitis C Virus Glycoproteins for Use in Vaccine Research Reveals Extremes of Monoclonal Antibody Neutralization Resistance.

    Urbanowicz, Richard A; McClure, C Patrick; Brown, Richard J P; Tsoleridis, Theocharis; Persson, Mats A A; Krey, Thomas; Irving, William L; Ball, Jonathan K; Tarr, Alexander W

    2015-12-23

    Despite significant advances in the treatment of hepatitis C virus (HCV) infection, the need to develop preventative vaccines remains. Identification of the best vaccine candidates and evaluation of their performance in preclinical and clinical development will require appropriate neutralization assays utilizing diverse HCV isolates. We aimed to generate and characterize a panel of HCV E1E2 glycoproteins suitable for subsequent use in vaccine and therapeutic antibody testing. Full-length E1E2 clones were PCR amplified from patient-derived serum samples, cloned into an expression vector, and used to generate viral pseudoparticles (HCVpp). In addition, some of these clones were used to generate cell culture infectious (HCVcc) clones. The infectivity and neutralization sensitivity of these viruses were then determined. Bioinformatic and HCVpp infectivity screening of approximately 900 E1E2 clones resulted in the assembly of a panel of 78 functional E1E2 proteins representing distinct HCV genotypes and different stages of infection. These HCV glycoproteins differed markedly in their sensitivity to neutralizing antibodies. We used this panel to predict antibody efficacy against circulating HCV strains, highlighting the likely reason why some monoclonal antibodies failed in previous clinical trials. This study provides the first objective categorization of cross-genotype patient-derived HCV E1E2 clones according to their sensitivity to antibody neutralization. It has shown that HCV isolates have clearly distinguishable neutralization-sensitive, -resistant, or -intermediate phenotypes, which are independent of genotype. The panel provides a systematic means for characterization of the neutralizing response elicited by candidate vaccines and for defining the therapeutic potential of monoclonal antibodies. Hepatitis C virus (HCV) has a global burden of more than 170 million people, many of whom cannot attain the new, expensive, direct-acting antiviral therapies. A safe and

  6. High level expression and secretion of truncated forms of herpes simplex virus type I and type 2 glycoprotein D by the methylotrophic yeast Pichia pastoris

    van Kooij, A; Middel, J; Jakab, F; Elfferich, P; Koedijk, DGAM; Feijlbrief, M; Scheffer, AJ; Degener, JE; The, TH; Scheek, RM; Welling, GW; Welling-Wester, S

    Herpes simplex virus type I and 2 (HSV-1 and -2) glycoproteins D (gD-1 and gD-2) play a role in the entry of the virus into the host cell. Availability of substantial amounts of these proteins, or large fragments thereof. will he needed to allow studies at the molecular level. We studied the potency

  7. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus

    Ghiasi, Seyed Mojtaba; Salmanian, A H; Chinikar, S

    2011-01-01

    in their serum and feces, respectively. The mice in the fed/boosted group showed a significant rise in specific IgG antibodies after a single boost. Our results imply that oral immunization of animals with edible materials from transgenic plants is feasible, and further assessments are under way. In addition......While Crimean-Congo hemorrhagic fever (CCHF) has a high mortality rate in humans, the associated virus (CCHFV) does not induce clinical symptoms in animals, but animals play an important role in disease transmission to humans. Our aim in this study was to examine the immunogenicity of the CCHFV...... glycoprotein when expressed in the root and leaf of transgenic plants via hairy roots and stable transformation of tobacco plants, respectively. After confirmatory analyses of transgenic plant lines and quantification of the expressed glycoprotein, mice were either fed with the transgenic leaves or roots, fed...

  8. Characterisation of the epitope for a herpes simplex virus glycoprotein B-specific monoclonal antibody with high protective capacity.

    Däumer, Martin P; Schneider, Beate; Giesen, Doris M; Aziz, Sheriff; Kaiser, Rolf; Kupfer, Bernd; Schneweis, Karl E; Schneider-Mergener, Jens; Reineke, Ulrich; Matz, Bertfried; Eis-Hübinger, Anna M

    2011-05-01

    Monoclonal antibody (MAb) 2c, specific for glycoprotein B of herpes simplex virus (HSV), had been shown to mediate clearance of infection from the mucous membranes of mice, thereby completely inhibiting mucocutaneous inflammation and lethality, even in mice depleted of both CD4(+) and CD8(+) cells. Additionally, ganglionic infection was highly restricted. In vitro, MAb 2c exhibits a potent complement-independent neutralising activity against HSV type 1 and 2, completely inhibits the viral cell-to-cell spread as well as the syncytium formation induced by syncytial HSV strains (Eis-Hübinger et al. in Intervirology 32:351-360, 1991; Eis-Hübinger et al. in J Gen Virol 74:379-385, 1993). Here, we describe the mapping of the epitope for MAb 2c. The antibody was found to recognise a discontinuous epitope comprised of the HSV type 1 glycoprotein B residues 299 to 305 and one or more additional discontinuous regions that can be mimicked by the sequence FEDF. Identification of the epitope was confirmed by loss of antibody binding to mutated glycoprotein B with replacement of the epitopic key residues, expressed in COS-1 cells. Similarly, MAb 2c was not able to neutralise HSV mutants with altered key residues, and MAb 2c was ineffective in mice inoculated with such mutants. Interestingly, identification and fine-mapping of the discontinuous epitope was not achieved by binding studies with truncated glycoprotein B variants expressed in COS cells but by peptide scanning with synthetic overlapping peptides and peptide key motif analysis. Reactivity of MAb 2c was immensely increased towards a peptide composed of the glycoprotein B residues 299 to 305, a glycine linker, and a C-terminal FEDF motif. If it could be demonstrated that antibodies of the specificity and bioactivity of MAb 2c can be induced by the epitope or a peptide mimicking the epitope, strategies for active immunisation might be conceivable.

  9. Phylogeographic characteristics of vesicular stomatitis New Jersey viruses circulating in Mexico from 2005 to 2011 and their relationship to epidemics in the United States.

    Velazquez-Salinas, Lauro; Pauszek, Steven J; Zarate, Selene; Basurto-Alcantara, Francisco J; Verdugo-Rodriguez, Antonio; Perez, Andres M; Rodriguez, Luis L

    2014-01-20

    We analyzed the phylogenetic and time-space relationships (phylodynamics) of 181 isolates of vesicular stomatitis New Jersey virus (VSNJV) causing disease in Mexico and the United States (US) from 2005 through 2012. We detail the emergence of a genetic lineage in southern Mexico causing outbreaks in central Mexico spreading into northern Mexico and eventually into the US. That emerging lineage showed higher nucleotide sequence identity (99.5%) than that observed for multiple lineages circulating concurrently in southern Mexico (96.8%). Additionally, we identified 58 isolates from Mexico that, unlike previous isolates from Mexico, grouped with northern Central America clade II viruses. This study provides the first direct evidence for the emergence and northward migration of a specific VSNJV genetic lineage from endemic areas in Mexico causing VS outbreaks in the US. In addition we document the emergence of a Central American VSNJV genetic lineage moving northward and causing outbreaks in central Mexico. © 2013 Published by Elsevier Inc.

  10. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection.

    Iampietro, Mathieu; Younan, Patrick; Nishida, Andrew; Dutta, Mukta; Lubaki, Ndongala Michel; Santos, Rodrigo I; Koup, Richard A; Katze, Michael G; Bukreyev, Alexander

    2017-05-01

    Fatal outcomes of Ebola virus (EBOV) infections are typically preceded by a 'sepsis-like' syndrome and lymphopenia despite T cells being resistant to Ebola infection. The mechanisms that lead to T lymphocytes death remain largely unknown; however, the degree of lymphopenia is highly correlative with fatalities. Here we investigated whether the addition of EBOV or its envelope glycoprotein (GP) to isolated primary human CD4+ T cells induced cell death. We observed a significant decrease in cell viability in a GP-dependent manner, which is suggestive of a direct role of GP in T cell death. Using immunoprecipitation assays and flow cytometry, we demonstrate that EBOV directly binds to CD4+ T cells through interaction of GP with TLR4. Transcriptome analysis revealed that the addition of EBOV to CD4+ T cells results in the significant upregulation of pathways associated with interferon signaling, pattern recognition receptors and intracellular activation of NFκB signaling pathway. Both transcriptome analysis and specific inhibitors allowed identification of apoptosis and necrosis as mechanisms associated with the observed T cell death following exposure to EBOV. The addition of the TLR4 inhibitor CLI-095 significantly reduced CD4+ T cell death induced by GP. EBOV stimulation of primary CD4+ T cells resulted in a significant increase in secreted TNFα; inhibition of TNFα-mediated signaling events significantly reduced T cell death while inhibitors of both necrosis and apoptosis similarly reduced EBOV-induced T cell death. Lastly, we show that stimulation with EBOV or GP augments monocyte maturation as determined by an overall increase in expression levels of markers of differentiation. Subsequently, the increased rates of cellular differentiation resulted in higher rates of infection further contributing to T cell death. These results demonstrate that GP directly subverts the host's immune response by increasing the susceptibility of monocytes to EBOV infection and

  11. Genetic diversity and phylogenetic analysis of the attachment glycoprotein of phocine distemper viruses of the 2002 and 1988 epizootics

    Nielsen, L; Arctander, P; Jensen, T H

    2009-01-01

    To investigate the possible origin and spread of the dramatic re-emergent 2002 distemper epizootic observed among seals in Danish Waters, we have sequenced wild-type genes of the attachment (H) glycoproteins of viruses from both the 2002 and 1988 epizootics. Phylogenetic analysis of the H genes...... of phocine distemper virus (PDV) together with other morbilliviruses, suggests that the re-emergent 2002 PDV is more closely related to a putative recent ancestral PDV than the 1988 PDV isolates. Moreover, upsurges of distemper disease in land-living carnivores linked in time and locality to the 2002 seal...... epizootic in Danish Waters was investigated and determined to be caused by canine distemper virus, the closest relative of PDV, revealing no direct epidemiological link to the seal epizootics. (C) 2009 Elsevier B.V. All rights reserved....

  12. Structural and Functional Studies on the Fusion and Attachment Envelope Glycoproteins of Nipah Virus and Hendra Virus

    2003-01-01

    including measles virus (MeV), mumps virus, Sendai virus (SeV), Newcastle disease virus (NDV), rinderpest virus, canine distemper virus (CDV), human...Institute of Health, Bethesda, MD. Hut 102, MT2, MT4, and CEM human T cell lines were provided by Chou-Zen Giam, USUHS, Bethesda, MD. The human osteosarcoma

  13. Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges.

    Zhao, Wei; Spatz, Stephen; Zhang, Zhenyu; Wen, Guoyuan; Garcia, Maricarmen; Zsak, Laszlo; Yu, Qingzhong

    2014-08-01

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is controlled mainly through biosecurity and vaccination with live attenuated strains of ILTV and vectored vaccines based on turkey herpesvirus (HVT) and fowlpox virus (FPV). The current live attenuated vaccines (chicken embryo origin [CEO] and tissue culture origin [TCO]), although effective, can regain virulence, whereas HVT- and FPV-vectored ILTV vaccines are less efficacious than live attenuated vaccines. Therefore, there is a pressing need to develop safer and more efficacious ILTV vaccines. In the present study, we generated Newcastle disease virus (NDV) recombinants, based on the LaSota vaccine strain, expressing glycoproteins B (gB) and D (gD) of ILTV using reverse genetics technology. These recombinant viruses, rLS/ILTV-gB and rLS/ILTV-gD, were slightly attenuated in vivo yet retained growth dynamics, stability, and virus titers in vitro that were similar to those of the parental LaSota virus. Expression of ILTV gB and gD proteins in the recombinant virus-infected cells was detected by immunofluorescence assay. Vaccination of specific-pathogen-free chickens with these recombinant viruses conferred significant protection against virulent ILTV and velogenic NDV challenges. Immunization of commercial broilers with rLS/ILTV-gB provided a level of protection against clinical disease similar to that provided by the live attenuated commercial vaccines, with no decrease in body weight gains. The results of the study suggested that the rLS/ILTV-gB and -gD viruses are safe, stable, and effective bivalent vaccines that can be mass administered via aerosol or drinking water to large chicken populations. This paper describes the development and evaluation of novel bivalent vaccines against chicken infectious laryngotracheitis (ILT) and Newcastle disease (ND), two of the most economically important infectious

  14. Feline immunodeficiency virus envelope glycoprotein mediates apoptosis in activated PBMC by a mechanism dependent on gp41 function

    Garg, Himanshu; Joshi, Anjali; Tompkins, Wayne A.

    2004-01-01

    Feline Immunodeficiency Virus (FIV) is a lentivirus that causes immunodeficiency in cats, which parallels HIV-1-induced immunodeficiency in humans. It has been established that HIV envelope (Env) glycoprotein mediates T cell loss via a mechanism that requires CXCR4 binding. The Env glycoprotein of FIV, similar to HIV, requires CXCR4 binding for viral entry, as well as inducing membrane fusion leading to syncytia formation. However, the role of FIV Env in T cell loss and the molecular mechanisms governing this process have not been elucidated. We studied the role of Env glycoprotein in FIV-mediated T cell apoptosis in an in vitro model. Our studies demonstrate that membrane-expressed FIV Env induces apoptosis in activated feline peripheral blood mononuclear cells (PBMC) by a mechanism that requires CXCR4 binding, as the process was inhibited by CXCR4 antagonist AMD3100 in a dose-dependent manner. Interestingly, studies regarding the role of CD134, the recently identified primary receptor of FIV, suggest that binding to CD134 may not be important for induction of apoptosis in PBMC. However, inhibiting Env-mediated fusion post CXCR4 binding by FIV gp41-specific fusion inhibitor also inhibited apoptosis. Under similar conditions, a fusion-defective gp41 mutant was unable to induce apoptosis in activated PBMC. Our findings are the first report suggesting the potential of FIV Env to mediate apoptosis in bystander cells by a process that is dependent on gp41 function

  15. Evidence that maturation of the N-linked glycans of the respiratory syncytial virus (RSV) glycoproteins is required for virus-mediated cell fusion: The effect of α-mannosidase inhibitors on RSV infectivity

    McDonald, Terence P.; Jeffree, Chris E.; Li, Ping; Rixon, Helen W. McL.; Brown, Gaie; Aitken, James D.; MacLellan, Kirsty; Sugrue, Richard J.

    2006-01-01

    Glycan heterogeneity of the respiratory syncytial virus (RSV) fusion (F) protein was demonstrated by proteomics. The effect of maturation of the virus glycoproteins-associated glycans on virus infectivity was therefore examined using the α-mannosidase inhibitors deoxymannojirimycin (DMJ) and swainsonine (SW). In the presence of SW the N-linked glycans on the F protein appeared in a partially mature form, whereas in the presence of DMJ no maturation of the glycans was observed. Neither inhibitor had a significant effect on G protein processing or on the formation of progeny virus. Although the level of infectious virus and syncytia formation was not significantly affected by SW-treatment, DMJ-treatment correlated with a one hundred-fold reduction in virus infectivity. Our data suggest that glycan maturation of the RSV glycoproteins, in particular those on the F protein, is an important step in virus maturation and is required for virus infectivity

  16. Enhanced vesicular stomatitis virus (VSVΔ51 targeting of head and neck cancer in combination with radiation therapy or ZD6126 vascular disrupting agent

    Alajez Nehad M

    2012-06-01

    Full Text Available Abstract Background Head and neck squamous cell carcinoma (HNSCC is the 5th most common cancer worldwide. Locally advanced HNSCC are treated with either radiation or chemo-radiotherapy, but still associated with high mortality rate, underscoring the need to develop novel therapies. Oncolytic viruses have been garnering increasing interest as anti-cancer agents due to their preferential killing of transformed cells. In this study, we evaluated the therapeutic potential of mutant vesicular stomatitis virus (VSVΔ51 against the human hypopharyngeal FaDu tumour model in vitro and in vivo. Results Our data demonstrated high toxicity of the virus against FaDu cells in vitro, which was associated with induction of apoptosis. In vivo, systemic injection of 1 × 109 pfu had minimal effect on tumour growth; however, when combined with two doses of ionizing radiation (IR; 5 Gy each or a single injection of the vascular disrupting agent (ZD6126, the virus exhibited profound suppression of tumour growth, which translated to a prolonged survival in the treated mice. Concordantly, VSVΔ51 combined with ZD6126 led to a significant increase in viral replication in these tumours. Conclusions Our data suggest that the combinations of VSVΔ51 with either IR or ZD6126 are potentially novel therapeutic opportunities for HNSCC.

  17. Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein

    Keck, Zhenyong; Wang, Wenyan; Wang, Yong

    2013-01-01

    A challenge for hepatitis C virus (HCV) vaccine development is defining conserved epitopes that induce protective antibodies against this highly diverse virus. An envelope glycoprotein (E2) segment located at amino acids (aa) 412 to 423 contains highly conserved neutralizing epitopes. While...... at higher concentrations. However, the overall effect was additive neutralization. A similar pattern was observed when these antibodies were combined to block E2 binding to the HCV coreceptor, CD81. These findings demonstrate that both of these E2 regions participate in epitopes mediating virus...... (HCVcc) with various activities. Although nonneutralizing HC33 HMAbs were isolated, they had lower binding affinities than neutralizing HC33 HMAbs. These antibodies could be converted to neutralizing antibodies by affinity maturation. Unidirectional competition for binding to E2 was observed between HC33...

  18. Virus neutralizing antibody response in mice and dogs with a bicistronic DNA vaccine encoding rabies virus glycoprotein and canine parvovirus VP2.

    Patial, Sonika; Chaturvedi, V K; Rai, A; Saini, M; Chandra, Rajesh; Saini, Y; Gupta, Praveen K

    2007-05-16

    A bicistronic DNA vaccine against rabies and parvovirus infection of dogs was developed by subcloning rabies glycoprotein and canine parvovirus (CPV) VP2 genes into a bicistronic vector. After characterizing the expression of both the proteins in vitro, the bicistronic DNA vaccine was injected in mice and induced immune response was compared with monocistronic DNA vaccines. There was no significant difference in ELISA and virus neutralizing (VN) antibody responses against rabies and CPV in mice immunized with either bicistronic or monocistronic DNA vaccine. Further, there was significantly similar protection in mice immunized with either bicistronic or monocistronic rabies DNA vaccine on rabies virus challenge. Similarly, dogs immunized with monocistronic and bicistronic DNA vaccines developed comparable VN antibodies against rabies and CPV. This study indicated that bicistronic DNA vaccine can be used in dogs to induce virus neutralizing immune responses against both rabies and CPV.

  19. Expression, purification and crystallization of the ectodomain of the envelope glycoprotein E2 from Bovine viral diarrhoea virus

    Iourin, Oleg; Harlos, Karl; El Omari, Kamel; Lu, Weixian; Kadlec, Jan; Iqbal, Munir; Meier, Christoph; Palmer, Andrew; Jones, Ian; Thomas, Carole; Brownlie, Joe; Grimes, Jonathan M.; Stuart, David I.

    2012-01-01

    The cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the ectodomain of BVDV E2 are described. Bovine viral diarrhoea virus (BVDV) is an economically important animal pathogen which is closely related to Hepatitis C virus. Of the structural proteins, the envelope glycoprotein E2 of BVDV is the major antigen which induces neutralizing antibodies; thus, BVDV E2 is considered as an ideal target for use in subunit vaccines. Here, the expression, purification of wild-type and mutant forms of the ectodomain of BVDV E2 and subsequent crystallization and data collection of two crystal forms grown at low and neutral pH are reported. Native and multiple-wavelength anomalous dispersion (MAD) data sets have been collected and structure determination is in progress

  20. Glycoprotein I of herpes simplex virus type 1 contains a unique polymorphic tandem-repeated mucin region

    Norberg, Peter; Olofsson, Sigvard; Tarp, Mads Agervig

    2007-01-01

    Glycoprotein I (gI) of herpes simplex virus type 1 (HSV-1) contains a tandem repeat (TR) region including the amino acids serine and threonine, residues that can be utilized for O-glycosylation. The length of this TR region was determined for 82 clinical HSV-1 isolates and the results revealed......-glycosylation not only for the two most commonly expressed N-acetyl-d-galactosamine (GalNAc)-T1 and -T2 transferases, but also for the GalNAc-T3, -T4 and -T11 transferases. Immunoblotting of virus-infected cells showed that gI was exclusively O-glycosylated with GalNAc monosaccharides (Tn antigen). A polymorphic mucin...

  1. Design of Fusion Proteins for Efficient and Soluble Production of Immunogenic Ebola Virus Glycoprotein in Escherichia coli.

    Ji, Yang; Lu, Yuan; Yan, Yishu; Liu, Xinxin; Su, Nan; Zhang, Chong; Bi, Shengli; Xing, Xin-Hui

    2018-03-03

    The Ebola hemorrhagic fever caused by Ebola virus is an extremely dangerous disease, and effective therapeutic agents are still lacking. Platforms for the efficient production of vaccines are crucial to ensure quick response against an Ebola virus outbreak. Ebola virus glycoprotein (EbolaGP) on the virion surface is responsible for membrane binding and virus entry, thus becoming the key target for vaccine development. However, heterologous expression of this protein still faces engineering challenges such as low production levels and insoluble aggregation. Here, the authors design and compare various fusion strategies, attaching great importance to the solubility-enhancing effect, and tag removal process. It is found that a C-terminal intein-based tag greatly enhances the solubility of EbolaGP and allows one-step chromatographic purification of the untagged EbolaGP through thiol-catalyzed self-cleavage. The purified untagged EbolaGP alone or with Freund's adjuvant are highly immunogenic, as confirmed in a mouse model. Consequently, the present study puts forward a new strategy for the efficient and soluble expression of untagged immunogenic EbolaGP. The intein-based protein fusion approach may be of importance for the large-scale production of Ebola virus subunit vaccine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  3. Equine herpesvirus type 1 (EHV-1) glycoprotein K is required for efficient cell-to-cell spread and virus egress

    Neubauer, Antonie; Osterrieder, Nikolaus

    2004-01-01

    The function of the equine herpesvirus type 1 (EHV-1) glycoprotein K (gK) homologue was investigated. Deletion of 88% of the UL53-homologous open reading frame in EHV-1 strain RacH resulted in a severe growth defect of the gK-negative virus (HΔgK) as reflected by a significant decrease in the production of infectious virus progeny on RK13 cells. The HΔgK virus induced only minute plaques, was unable to form syncytia, and its penetration efficiency into RK13 cells was reduced by approximately 40%. To further analyze gK function and intracellular trafficking, gK of strain RacH was replaced by a C-terminally truncated gK-green fluorescent protein fusion protein (gK-GFP). The generated recombinant virus was shown to replicate well on non-complementing cells, and virus penetration and syncytium formation were comparable to parental RacH. A reduction in plaque size and slightly decreased intra- and extracellular virus titers, however, were observed. The gK-GFP fusion protein was expressed with early-late kinetics, and multiple forms of the protein exhibiting M r s between 50,000 and 85,000 were detected by Western blot analysis. The various gK-GFP forms were shown to be N-glycosylated, associated with membranes of the Golgi apparatus, and were incorporated into extracellular virions. Complete processing of gK-GFP was only observed within the context of viral infection. From the results, we concluded that EHV-1 gK is required for efficient virus growth in vitro and that the carboxy-terminal amino acids are not required for its function, because the gK-GFP fusion protein was able to complement for EHV-1 growth in the absence of authentic gK

  4. The viral transmembrane superfamily: possible divergence of Arenavirus and Filovirus glycoproteins from a common RNA virus ancestor

    Buchmeier Michael J

    2001-02-01

    Full Text Available Abstract Background Recent studies of viral entry proteins from influenza, measles, human immunodeficiency virus, type 1 (HIV-1, and Ebola virus have shown, first with molecular modeling, and then X-ray crystallographic or other biophysical studies, that these disparate viruses share a coiled-coil type of entry protein. Results Structural models of the transmembrane glycoproteins (GP-2 of the Arenaviruses, lymphochoriomeningitis virus (LCMV and Lassa fever virus, are presented, based on consistent structural propensities despite variation in the amino acid sequence. The principal features of the model, a hydrophobic amino terminus, and two antiparallel helices separated by a glycosylated, antigenic apex, are common to a number of otherwise disparate families of enveloped RNA viruses. Within the first amphipathic helix, demonstrable by circular dichroism of a peptide fragment, there is a highly conserved heptad repeat pattern proposed to mediate multimerization by coiled-coil interactions. The amino terminal 18 amino acids are 28% identical and 50% highly similar to the corresponding region of Ebola, a member of the Filovirus family. Within the second, charged helix just prior to membrane insertion there is also high similarity over the central 18 amino acids in corresponding regions of Lassa and Ebola, which may be further related to the similar region of HIV-1 defining a potent antiviral peptide analogue. Conclusions These findings indicate a common pattern of structure and function among viral transmembrane fusion proteins from a number of virus families. Such a pattern may define a viral transmembrane superfamily that evolved from a common precursor eons ago.

  5. Cleavage of a Neuroinvasive Human Respiratory Virus Spike Glycoprotein by Proprotein Convertases Modulates Neurovirulence and Virus Spread within the Central Nervous System.

    Alain Le Coupanec

    Full Text Available Human coronaviruses (HCoV are respiratory pathogens that may be associated with the development of neurological diseases, in view of their neuroinvasive and neurotropic properties. The viral spike (S glycoprotein is a major virulence factor for several coronavirus species, including the OC43 strain of HCoV (HCoV-OC43. In an attempt to study the role of this protein in virus spread within the central nervous system (CNS and neurovirulence, as well as to identify amino acid residues important for such functions, we compared the sequence of the S gene found in the laboratory reference strain HCoV-OC43 ATCC VR-759 to S sequences of viruses detected in clinical isolates from the human respiratory tract. We identified one predominant mutation at amino acid 758 (from RRSR↓ G758 to RRSR↓R758, which introduces a putative furin-like cleavage (↓ site. Using a molecular cDNA infectious clone to generate a corresponding recombinant virus, we show for the first time that such point mutation in the HCoV-OC43 S glycoprotein creates a functional cleavage site between the S1 and S2 portions of the S protein. While the corresponding recombinant virus retained its neuroinvasive properties, this mutation led to decreased neurovirulence while potentially modifying the mode of virus spread, likely leading to a limited dissemination within the CNS. Taken together, these results are consistent with the adaptation of HCoV-OC43 to the CNS environment, resulting from the selection of quasi-species harboring mutations that lead to amino acid changes in viral genes, like the S gene in HCoV-OC43, which may contribute to a more efficient establishment of a less pathogenic but persistent CNS infection. This adaptative mechanism could potentially be associated with human encephalitis or other neurological degenerative pathologies.

  6. Herpes Simplex Virus Type 1 Glycoprotein B Requires a Cysteine Residue at Position 633 for Folding, Processing, and Incorporation into Mature Infectious Virus Particles

    Laquerre, Sylvie; Anderson, Dina B.; Argnani, Rafaela; Glorioso, Joseph C.

    1998-01-01

    Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) resides in the virus envelope in an oligomeric form and plays an essential role in virus entry into susceptible host cells. The oligomerizing domain is a movable element consisting of amino acids 626 to 653 in the gB external domain. This domain contains a single cysteine residue at position 633 (Cys-633) that is predicted to form an intramolecular disulfide bridge with Cys-596. In this study, we examined gB oligomerization, processing, and incorporation into mature virus during infection by two mutant viruses in which either the gB Cys-633 [KgB(C633S)] or both Cys-633 and Cys-596 [KgB(C596S/C633S)] residues were mutated to serine. The result of immunofluorescence studies and analyses of released virus particles showed that the mutant gB molecules were not transported to the cell surface or incorporated into mature virus envelopes and thus infectious virus was not produced. Immunoprecipitation studies revealed that the mutant gB molecules were in an oligomeric configuration and that these mutants produced hetero-oligomers with a truncated form of gB consisting of residues 1 to 43 and 595 to 904, the latter containing the oligomerization domain. Pulse-chase experiments in combination with endoglycosidase H treatment determined that the mutant molecules were improperly processed, having been retained in the endoplasmic reticulum (ER). Coimmunoprecipitation experiments revealed that the cysteine mutations resulted in gB misfolding and retention by the molecular chaperones calnexin, calreticulin, and Grp78 in the ER. The altered conformation of the gB mutant glycoproteins was directly detected by a reduction in monoclonal antibody recognition of two previously defined distinct antigenic sites located within residues 381 to 441 and 595 to 737. The misfolded molecules were not transported to the cell surface as hetero-oligomers with wild-type gB, suggesting that the conformational change could not be corrected by

  7. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks.

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.

  8. Characterization of a 105-kDa plasma membrane associated glycoprotein that is involved in West Nile virus binding and infection

    Chu, J.J.H.; Ng, M.L.

    2003-01-01

    This study attempts to isolate and characterize West Nile virus-binding molecules on the plasma membrane of Vero and murine neuroblastoma cells that is responsible for virus entry. Pretreatment of Vero cells with proteases, glycosidases (endoglycosidase H, α-mannosidase), and sodium periodate strongly inhibited West Nile virus infection, whereas treatments with phospholipases and heparinases had no effect. The virus overlay protein blot detected a 105-kDa molecule on the plasma membrane extract of Vero and murine neuroblastoma cells that bind to WN virus. Treatment of the 105-kDa molecules with β-mercaptoethanol resulted in the virus binding to a series of lower molecular weight bands ranging from 30 to 40 kDa. The disruption of disulfide-linked subunits did not affect virus binding. N-linked sugars with mannose residues on the 105-kDa membrane proteins were found to be important in virus binding. Specific antibodies against the 105-kDa glycoprotein were highly effective in blocking virus entry. These results strongly supported the possibility that the 105-kDa protease-sensitive glycoprotein with complex N-linked sugars could be the putative receptor for WN virus

  9. Detergent extraction of herpes simplex virus type 1 glycoprotein D by zwitterionic and non-ionic detergents and purification by ion-exchange high-performance liquid chromatography

    Welling-Wester, S; Feijlbrief, M; Koedijk, DGAM; Welling, GW

    1998-01-01

    Detergents (surfactants) are the key reagents in the extraction and purification of integral membrane proteins. Zwitterionic and non-ionic detergents were used for the extraction of recombinant glycoprotein D (gD-1) of herpes simplex virus type 1 (HSV-1) from insect cells infected with recombinant

  10. T-CELL RESPONSES TO SYNTHETIC PEPTIDES OF HERPES-SIMPLEX VIRUS TYPE-1 GLYCOPROTEIN-D IN NATURALLY INFECTED INDIVIDUALS

    DAMHOF, RA; DRIJFHOUT, JW; SCHEFFER, AJ; WILTERDINK, JB; WELLING, GW; WELLINGWESTER, S

    1993-01-01

    To locate T cell determinants of glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1), proliferation assays of lymphocytes obtained from 10 healthy HSV-seropositive individuals were performed using 34 overlapping gD peptides as antigens. Despite large differences between individual responses

  11. A Single Amino Acid Change in the Marburg Virus Glycoprotein Arises during Serial Cell Culture Passages and Attenuates the Virus in a Macaque Model of Disease.

    Alfson, Kendra J; Avena, Laura E; Delgado, Jenny; Beadles, Michael W; Patterson, Jean L; Carrion, Ricardo; Griffiths, Anthony

    2018-01-01

    Marburg virus (MARV) causes disease with high case fatality rates, and there are no approved vaccines or therapies. Licensing of MARV countermeasures will likely require approval via the FDA's Animal Efficacy Rule, which requires well-characterized animal models that recapitulate human disease. This includes selection of the virus used for exposure and ensuring that it retains the properties of the original isolate. The consequences of amplification of MARV for challenge studies are unknown. Here, we serially passaged and characterized MARV through 13 passes from the original isolate. Surprisingly, the viral genome was very stable, except for a single nucleotide change that resulted in an amino acid substitution in the hydrophobic region of the signal peptide of the glycoprotein (GP). The particle/PFU ratio also decreased following passages, suggesting a role for the amino acid in viral infectivity. To determine if amplification introduces a phenotype in an animal model, cynomolgus macaques were exposed to either 100 or 0.01 PFU of low- and high-passage-number MARV. All animals succumbed when exposed to 100 PFU of either passage 3 or 13 viruses, although animals exposed to the high-passage-number virus survived longer. However, none of the passage 13 MARV-exposed animals succumbed to 0.01-PFU exposure compared to 75% of passage 3-exposed animals. This is consistent with other filovirus studies that show some particles that are unable to yield a plaque in cell culture can cause lethal disease in vivo . These results have important consequences for the design of experiments that investigate MARV pathogenesis and that test the efficacy of MARV countermeasures. IMPORTANCE Marburg virus (MARV) causes disease with a high case fatality rate, and there are no approved vaccines or therapies. Serial amplification of viruses in cell culture often results in accumulation of mutations, but the effect of such cell culture passage on MARV is unclear. Serial passages of MARV

  12. Generation of Arctic-like Rabies Viruses Containing Chimeric Glycoproteins Enables Serological Potency Studies.

    Bentley, Emma; Ali, Ruqiyo; Horton, Daniel; Corti, Davide; Banyard, Ashley; Fooks, Anthony; Wright, Edward

    2017-01-01

    Rabies viruses have the highest case fatality rate of any known virus and are responsible for an estimated 60,000 deaths each year. This is despite the fact that there are highly efficacious vaccines and post-exposure prophylaxis available. However, while it is assumed these biologics provide protection against all rabies virus isolates, there are certain subdivisions of RABV lineages, such as within the Arctic-like RABV (AL rabies virus lineage, where data is limited and thus the potency of ...

  13. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Kai Xu

    Full Text Available The henipaviruses, represented by Hendra (HeV and Nipah (NiV viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4 was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  14. Palmitoylation of the feline immunodeficiency virus envelope glycoprotein and its effect on fusion activity and envelope incorporation into virions

    Gonzalez, Silvia A.; Paladino, Monica G. [Laboratorio de Virologia, CONICET-Universidad de Belgrano (UB), Villanueva 1324 (C1426BMJ), Buenos Aires (Argentina); Affranchino, Jose L., E-mail: jose.affranchino@comunidad.ub.edu.ar [Laboratorio de Virologia, CONICET-Universidad de Belgrano (UB), Villanueva 1324 (C1426BMJ), Buenos Aires (Argentina)

    2012-06-20

    The feline immunodeficiency virus (FIV) envelope glycoprotein (Env) possesses a short cytoplasmic domain of 53 amino acids containing four highly conserved cysteines at Env positions 804, 811, 815 and 848. Since palmitoylation of transmembrane proteins occurs at or near the membrane anchor, we investigated whether cysteines 804, 811 and 815 are acylated and analyzed the relevance of these residues for Env functions. Replacement of cysteines 804, 811 and 815 individually or in combination by serine residues resulted in Env glycoproteins that were efficiently expressed and processed. However, mutations C804S and C811S reduced Env fusogenicity by 93% and 84%, respectively, compared with wild-type Env. By contrast, mutant C815S exhibited a fusogenic capacity representing 50% of the wild-type value. Remarkably, the double mutation C804S/C811S abrogated both Env fusion activity and Env incorporation into virions. Finally, by means of Click chemistry assays we demonstrated that the four FIV Env cytoplasmic cysteines are palmitoylated.

  15. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design

    Alexander W. Tarr

    2015-07-01

    Full Text Available In the 26 years since the discovery of Hepatitis C virus (HCV a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.

  16. Can mutational GC-pressure create new linear B-cell epitopes in herpes simplex virus type 1 glycoprotein B?

    Khrustalev, Vladislav Victorovich

    2009-01-01

    We showed that GC-content of nucleotide sequences coding for linear B-cell epitopes of herpes simplex virus type 1 (HSV1) glycoprotein B (gB) is higher than GC-content of sequences coding for epitope-free regions of this glycoprotein (G + C = 73 and 64%, respectively). Linear B-cell epitopes have been predicted in HSV1 gB by BepiPred algorithm ( www.cbs.dtu.dk/services/BepiPred ). Proline is an acrophilic amino acid residue (it is usually situated on the surface of protein globules, and so included in linear B-cell epitopes). Indeed, the level of proline is much higher in predicted epitopes of gB than in epitope-free regions (17.8% versus 1.8%). This amino acid is coded by GC-rich codons (CCX) that can be produced due to nucleotide substitutions caused by mutational GC-pressure. GC-pressure will also lead to disappearance of acrophobic phenylalanine, isoleucine, methionine and tyrosine coded by GC-poor codons. Results of our "in-silico directed mutagenesis" showed that single nonsynonymous substitutions in AT to GC direction in two long epitope-free regions of gB will cause formation of new linear epitopes or elongation of previously existing epitopes flanking these regions in 25% of 539 possible cases. The calculations of GC-content and amino acid content have been performed by CodonChanges algorithm ( www.barkovsky.hotmail.ru ).

  17. Palmitoylation of the feline immunodeficiency virus envelope glycoprotein and its effect on fusion activity and envelope incorporation into virions

    González, Silvia A.; Paladino, Mónica G.; Affranchino, José L.

    2012-01-01

    The feline immunodeficiency virus (FIV) envelope glycoprotein (Env) possesses a short cytoplasmic domain of 53 amino acids containing four highly conserved cysteines at Env positions 804, 811, 815 and 848. Since palmitoylation of transmembrane proteins occurs at or near the membrane anchor, we investigated whether cysteines 804, 811 and 815 are acylated and analyzed the relevance of these residues for Env functions. Replacement of cysteines 804, 811 and 815 individually or in combination by serine residues resulted in Env glycoproteins that were efficiently expressed and processed. However, mutations C804S and C811S reduced Env fusogenicity by 93% and 84%, respectively, compared with wild-type Env. By contrast, mutant C815S exhibited a fusogenic capacity representing 50% of the wild-type value. Remarkably, the double mutation C804S/C811S abrogated both Env fusion activity and Env incorporation into virions. Finally, by means of Click chemistry assays we demonstrated that the four FIV Env cytoplasmic cysteines are palmitoylated.

  18. Structural and Functional Studies on the Fusion and Attachment Envelope Glycoproteins of Nipah Virus and Hendra Virus

    Bossart, Katharine

    2003-01-01

    Nipah virus (NiV) and Hendra (HeV) virus are emerging, biosafety level 4 paramyxoviruses responsible for fatal zoonotic infections of humans from pigs and horses, respectively, and are the prototypic members of a new Paramyxovirinae...

  19. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human p...

  20. Sleep and behavior during vesicular stomatitis virus induced encephalitis in BALB/cJ and C57BL/6J mice

    Machida, Mayumi; Ambrozewicz, Marta A.; Breving, Kimberly; Wellman, Laurie L.; Yang, Linghui; Ciavarra, Richard P.; Sanford, Larry D.

    2013-01-01

    Intranasal application of vesicular stomatitis virus (VSV) produces a well-characterized model of viral encephalitis in mice. Within one day post-infection (PI), VSV travels to the olfactory bulb and, over the course of 7 days, it infects regions and tracts extending into the brainstem followed by clearance and recovery in most mice by PI day 14 (PI 14). Infectious diseases are commonly accompanied by excessive sleepiness; thus, sleep is considered a component of the acute phase response to infection. In this project, we studied the relationship between sleep and VSV infection using C57BL/6 (B6) and BALB/c mice. Mice were implanted with transmitters for recording EEG, activity and temperature by telemetry. After uninterrupted baseline recordings were collected for 2 days, each animal was infected intranasally with a single low dose of VSV (5 × 104 PFU). Sleep was recorded for 15 consecutive days and analyzed on PI 0, 1, 3, 5, 7, 10, and 14. Compared to baseline, amounts of non-rapid eye movement sleep (NREM) were increased in B6 mice during the dark period of PI 1–5, whereas rapid eye movement sleep (REM) was significantly reduced during the light periods of PI 0–14. In contrast, BALB/c mice showed significantly fewer changes in NREM and REM. These data demonstrate sleep architecture is differentially altered in these mouse strains and suggests that, in B6 mice, VSV can alter sleep before virus progresses into brain regions that control sleep. PMID:24055862

  1. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor

    Mische, Claudia C.; Yuan Wen; Strack, Bettina; Craig, Stewart; Farzan, Michael; Sodroski, Joseph

    2005-01-01

    The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate

  2. Phylogenetic relationships of Iranian infectious hematopoietic necrosis virus of rainbow trout (Oncorhynchus mykiss) based on the glycoprotein gene

    Adel, Milad; Amiri, Alireza Babaalian; Dada, Maryam; Kurath, Gael; Laktarashi, Bahram; Ghajari, Amrolah; Breyta, Rachel

    2016-01-01

    Infectious hematopoietic necrosis virus (IHNV), a member of family Rhabdoviridae and genus Novirhabdoviridae, causes a highly lethal disease of salmon and trout. In Iran IHNV was first detected in 2001 on farms rearing rainbow trout (Oncorhynchus mykiss). To evaluate the genetic relationships of IHNV from northern and western Iran, the sequences of a 651-nt region of the glycoprotein gene were determined for two Iranian isolates. These sequences were analyzed to evaluate their genetic relatedness to worldwide isolates representing the five known genogroups of IHNV. Iranian isolates were most closely related to European isolates within the genogroup E rather than those of North American genogroups U, M and L, or the Asian genogroup J. It appears that Iranian IHNV was most likely introduced to Iran from a source in Europe by the movement of contaminated fish eggs.

  3. Virulence of a chimeric recombinant infectious haematopoietic necrosis virus expressing the spring viraemia of carp virus glycoprotein in salmonid and cyprinid fish

    Emmenegger, Eveline; Biacchesi, Stéphane; Mérour, Emilie; Glenn, Jolene. A; Palmer, Alexander D.; Brémont, Michel; Kurath, Gael

    2018-01-01

    Infectious haematopoietic necrosis virus (IHNV) and spring viraemia of carp virus (SVCV) are both rhabdoviruses of fish, listed as notifiable disease agents by the World Organization for Animal Health. Recombinant rhabdoviruses with heterologous gene substitutions have been engineered to study genetic determinants and assess the potential of these recombinant viruses for vaccine development. A recombinant IHNV (rIHNV), containing the full-length genome of a European IHNV strain, was modified by deleting the glycoprotein (G) gene and replacing it with a European SVCV G-gene to make the rIHNV-Gsvcv. The chimeric rIHNV-Gsvcv level of virulence in rainbow trout, common carp and koi was assessed, and its ability to induce a protective immune response in surviving koi against wild-type SVCV infection was tested. The rIHNV-Gsvcv infection of trout led to high mortality, ranging from 78% to 92.5%, after immersion. In contrast, no deaths occurred in juvenile common carp after infection with rIHNV-Gsvcv by either immersion or intraperitoneal (IP) injection. Similarly, koi infected with rIHNV-Gsvcv via IP injection had little to no mortality (≤9%). Koi that survived initial infection with a high dose of recombinant virus rIHNV-Gsvcv were protected against a virulent SVCV challenge resulting in a high relative per cent survival of 82.5%.

  4. The Role of the Hendra Virus and Nipah Virus Attachment Glycoproteins in Receptor Binding and Antibody Neutralization

    2014-01-31

    of important human (measles (MeV), mumps, human parainfluenza and respiratory syncytial virus (RSV)) and animal ( canine distemper virus (CDV...occurrence of a natural canine infection (6; 7). Since the emergence of HeV there have been a total of 86 horse fatalities, 2 canine infections and 7...Infectious Diseases 6. Anonymous. 2011. HENDRA VIRUS, EQUINE - AUSTRALIA (21): (QUEENSLAND) CANINE . Pro-Med-mail, Archive No. 20110802.2324

  5. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans.

    Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C; Warfield, Kelly L; Aman, M Javad; Holtsberg, Frederick W

    2016-02-01

    The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Bovine herpesvirus type-1 glycoprotein K (gK) interacts with UL20 and is required for infectious virus production

    Haque, Muzammel; Stanfield, Brent; Kousoulas, Konstantin G.

    2016-12-15

    We have previously shown that the HSV-1 gK and UL20 proteins interact and function in virion envelopment, membrane fusion, and neuronal entry. Alignment of the predicted secondary structures of gKs encoded by BoHV-1, HSV-1, HSV-2, EHV-1 and VZV indicated a high degree of domain conservation. Two BoHV-1 gK-null mutant viruses were created by either gK gene deletion or stop codon insertion. In addition, a V5 epitope-tag was inserted at the carboxyl terminus of gK gene to detect gK. The engineered gK-null mutant viruses failed to replicate and produce viral plaques. Co-immunoprecipitation of gK and UL20 expressed via different methods revealed that gK and UL20 physically interacted in the presence or absence of other viral proteins. Confocal microscopy showed that gK and UL20 colocalized in infected cells. These results indicate that BoHV-1 gK and UL20 may function in a similar manner to other alphaherpesvirus orthologues specified by HSV-1, PRV and EHV-1. -- Highlights: •Glycoprotein K(gK) is conserved among alphaherpesviruses and serves similar functions. •The bovine herpesvirus-1 gK and UL20 proteins physically interact in a similar manner to herpes simplex virus type 1 and equine herpesvirus-1. •The bovine herpesvirus-1 (BoHV-1) gK interacts with UL20 and is essential for virus replication and spread.

  7. Bovine herpesvirus type-1 glycoprotein K (gK) interacts with UL20 and is required for infectious virus production

    Haque, Muzammel; Stanfield, Brent; Kousoulas, Konstantin G.

    2016-01-01

    We have previously shown that the HSV-1 gK and UL20 proteins interact and function in virion envelopment, membrane fusion, and neuronal entry. Alignment of the predicted secondary structures of gKs encoded by BoHV-1, HSV-1, HSV-2, EHV-1 and VZV indicated a high degree of domain conservation. Two BoHV-1 gK-null mutant viruses were created by either gK gene deletion or stop codon insertion. In addition, a V5 epitope-tag was inserted at the carboxyl terminus of gK gene to detect gK. The engineered gK-null mutant viruses failed to replicate and produce viral plaques. Co-immunoprecipitation of gK and UL20 expressed via different methods revealed that gK and UL20 physically interacted in the presence or absence of other viral proteins. Confocal microscopy showed that gK and UL20 colocalized in infected cells. These results indicate that BoHV-1 gK and UL20 may function in a similar manner to other alphaherpesvirus orthologues specified by HSV-1, PRV and EHV-1. -- Highlights: •Glycoprotein K(gK) is conserved among alphaherpesviruses and serves similar functions. •The bovine herpesvirus-1 gK and UL20 proteins physically interact in a similar manner to herpes simplex virus type 1 and equine herpesvirus-1. •The bovine herpesvirus-1 (BoHV-1) gK interacts with UL20 and is essential for virus replication and spread.

  8. Comprehensive analysis of the codon usage patterns in the envelope glycoprotein E2 gene of the classical swine fever virus.

    Ye Chen

    Full Text Available The classical swine fever virus (CSFV, circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA and translational selection-correlation analysis between the general average hydropathicity (Gravy and aromaticity (Aroma, and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s. Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV.

  9. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats.

    Gale Smith

    Full Text Available Respiratory Syncytial Virus (RSV is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.

  10. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D

    Stiles, Katie M.; Milne, Richard S.B.; Cohen, Gary H.; Eisenberg, Roselyn J.; Krummenacher, Claude

    2008-01-01

    During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated. Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry

  11. Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein

    York, Joanne; Nunberg, Jack H.

    2007-01-01

    The arenavirus envelope glycoprotein (GP-C) retains a cleaved and stable signal peptide (SSP) as an essential subunit of the mature complex. This 58-amino-acid residue peptide serves as a signal sequence and is additionally required to enable transit of the assembled GP-C complex to the Golgi, and for pH-dependent membrane fusion activity. We have investigated the C-terminal region of the Junin virus SSP to study the role of the cellular signal peptidase (SPase) in generating SSP. Site-directed mutagenesis at the cleavage site (positions - 1 and - 3) reveals a pattern of side-chain preferences consistent with those of SPase. Although position - 2 is degenerate for SPase cleavage, this residue in the arenavirus SSP is invariably a cysteine. In the Junin virus, this cysteine is not involved in disulfide bonding. We show that replacement with alanine or serine is tolerated for SPase cleavage but prevents the mutant SSP from associating with GP-C and enabling transport to the cell surface. Conversely, an arginine mutation at position - 1 that prevents SPase cleavage is fully compatible with GP-C-mediated membrane fusion activity when the mutant SSP is provided in trans. These results point to distinct roles of SSP sequences in SPase cleavage and GP-C biogenesis. Further studies of the unique structural organization of the GP-C complex will be important in identifying novel opportunities for antiviral intervention against arenaviral hemorrhagic disease

  12. Marburg Virus Glycoprotein GP2: pH-Dependent Stability of the Ectodomain α-Helical Bundle†

    Harrison, Joseph S.; Koellhoffer, Jayne F.; Chandran, Kartik; Lai, Jonathan R.

    2012-01-01

    Marburg virus (MARV) and Ebola virus (EBOV) constitute the family Filoviridae of enveloped viruses (filoviruses) that cause severe hemorrhagic fever. Infection by MARV is required for fusion between the host cell and viral membranes, a process that is mediated by the two subunits of the envelope glycoprotein GP1 (surface subunit) and GP2 (transmembrane subunit). Upon viral attachment and uptake, it is believed that the MARV viral fusion machinery is triggered by host factors and environmental conditions found in the endosome. Next, conformational rearrangements in the GP2 ectodomain result in the formation of a highly stable six-helix bundle; this refolding event provides the energetic driving force for membrane fusion. Both GP1 and GP2 from EBOV have been extensively studied, but there is little information available for the MARV glycoproteins. Here we have expressed two variants of the MARV GP2 ectodomain in Escherichia coli and analyzed their biophysical properties. Circular dichroism indicates that the MARV GP2 ectodomain adopts an α-helical conformation, and one variant sediments as a trimer by equilibrium analytical ultracentrifugation. Denaturation studies indicate the α-helical structure is highly stable at pH 5.3 (unfolding energy, ΔGunf H2O, of 33.4 ± 2.5 kcal/mol and melting temperature, Tm, of 75.3 ± 2.1 °C for one variant). Furthermore, we found the α-helical stability to be strongly dependent on pH with higher stability under lower pH conditions (Tm values ranging from ~92 °C at pH 4.0 to ~38 °C at pH 8.0). Mutational analysis suggests two glutamic acid residues (E579 and E580) are partially responsible for this pH-dependent behavior. Based on these results, we hypothesize that pH-dependent folding stability of the MARV GP2 ectodomain provides a mechanism to control conformational preferences such that the six-helix bundle ‘post-fusion’ state is preferred under conditions of appropriately matured endosomes. PMID:22369502

  13. Development and evaluation of recombinant MVA viruses expressing bohv-1 glycoprotein D

    Ferrer, María Florencia

    2010-01-01

    El virus vaccinia Ankara modificado (MVA) es un virus altamente atenuado que se utiliza eficientemente como vector viral no replicativo para el desarrollo de nuevas vacunas. En este trabajo de Tesis se desarrolló un nuevo inmunógeno basado en MVA que expresa como antígeno de interés la glicoproteína D (versión secretada, gDs) del virus herpes bovino tipo I (BoHV-1), un agente infeccioso ampliamente distribuido en Argentina. Primeramente, se diseñó y construyó el vector de transferencia para o...

  14. Herpes simplex type 2 virus deleted in glycoprotein D protects against vaginal, skin and neural disease

    Petro, Christopher; Gonz?lez, Pablo A; Cheshenko, Natalia; Jandl, Thomas; Khajoueinejad, Nazanin; B?nard, Ang?le; Sengupta, Mayami; Herold, Betsy C; Jacobs, William R

    2015-01-01

    eLife digest Herpes simplex virus 2 (or HSV-2) infects millions of people worldwide and is the leading cause of genital diseases. The virus initially infects skin cells, but then spreads to nerve cells where it persists for life. Often, the virus remains in a dormant state for long periods of time and does not cause any symptoms. However, HSV-2 can periodically re-activate, leading to repeated infections; this can be life-threatening in patients who suffer from a weak immune system. There is ...

  15. Recoding structural glycoprotein E2 in classical swine fever virus (CSFV) produces complete virus attenuation in swine and protects infected animals against disease.

    Velazquez-Salinas, Lauro; Risatti, Guillermo R; Holinka, Lauren G; O'Donnell, Vivian; Carlson, Jolene; Alfano, Marialexia; Rodriguez, Luis L; Carrillo, Consuelo; Gladue, Douglas P; Borca, Manuel V

    2016-07-01

    Controlling classical swine fever (CSF) mainly involves vaccination with live attenuated vaccines (LAV). Experimental CSFV LAVs has been lately developed through reverse genetics using several different approaches. Here we present that codon de-optimization in the major CSFV structural glycoprotein E2 coding region, causes virus attenuation in swine. Four different mutated constructs (pCSFm1-pCSFm4) were designed using various mutational approaches based on the genetic background of the highly virulent strain Brescia (BICv). Three of these constructs produced infectious viruses (CSFm2v, CSFm3v, and CSFm4v). Animals infected with CSFm2v presented a reduced and extended viremia but did not display any CSF-related clinical signs. Animals that were infected with CSFm2v were protected against challenge with virulent parental BICv. This is the first report describing the development of an attenuated CSFV experimental vaccine by codon usage de-optimization, and one of the few examples of virus attenuation using this methodology that is assessed in a natural host. Published by Elsevier Inc.

  16. Location of the binding domains for the RNA polymerase L and the ribonucleocapsid template within different halves of the NS phosphoprotein of vesicular stomatitis virus

    Emerson, S.U.; Schubert, M.

    1987-01-01

    Recombinant DNA techniques were used to delete regions of a cDNA clone of the phosphoprotein NS gene of vesicular stomatitis virus. The complete NS gene and four mutant genes containing internal or terminal deletions were inserted into a modified pGem4 vector under the transcriptional control of the page T7 promoter. Run-off transcripts were synthesized and translated in vitro to provide [ 35 S]methionine-labeled complete NS or deletion mutant NS proteins. Immune coprecipitation assays involving these proteins were developed to map the regions of the NS protein responsible for binding to the structural viral nucleocapsid protein N and the catalytic RNA polymerase protein L. The data indicate the NS protein is a bivalent protein consisting of two discrete functional domains. Contrary to previous suggestions, the negatively charged amino-terminal half of NS protein binds to L protein, while the carboxyl-terminal half of NS protein binds to both soluble recombinant nucleocapsid protein N and viral ribonucleocapsid template

  17. Herpes simplex virus (HSV)-specific proliferative and cytotoxic T-cell responses in humans immunized with an HSF type 2 glycoprotein subunit vaccine

    Zarling, J.M.; Moran, P.A.; Brewer, L.; Ashley, R.; Corey, L.

    1988-12-01

    Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccinees studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccinees proliferated following stimulation with gD-2, whereas stimulation with Gd-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine.

  18. Production and immunogenicity of chimeric virus-like particles containing the spike glycoprotein of infectious bronchitis virus.

    Lv, Lishan; Li, Xiaoming; Liu, Genmei; Li, Ran; Liu, Qiliang; Shen, Huifang; Wang, Wei; Xue, Chunyi; Cao, Yongchang

    2014-01-01

    Infectious bronchitis virus (IBV) poses a severe threat to the poultry industry and causes heavy economic losses worldwide. Vaccination is the most effective method of preventing infection and controlling the spread of IBV, but currently available inactivated and attenuated virus vaccines have some disadvantages. We developed a chimeric virus-like particle (VLP)-based candidate vaccine for IBV protection. The chimeric VLP was composed of matrix 1 protein from avian influenza H5N1 virus and a fusion protein neuraminidase (NA)/spike 1 (S1) that was generated by fusing IBV S1 protein to the cytoplasmic and transmembrane domains of NA protein of avian influenza H5N1 virus. The chimeric VLPs elicited significantly higher S1-specific antibody responses in intramuscularly immunized mice and chickens than inactivated IBV viruses. Furthermore, the chimeric VLPs induced significantly higher neutralization antibody levels than inactivated H120 virus in SPF chickens. Finally, the chimeric VLPs induced significantly higher IL-4 production in mice. These results demonstrate that chimeric VLPs have the potential for use in vaccines against IBV infection.

  19. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Li-Li Dong

    2017-11-01

    Full Text Available AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1 glycoprotein C (gC and glycoprotein D (gD will achieve better protective effect against herpes simplex keratitis (HSK than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS: Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK, when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION: gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future.

  20. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Dong, Li-Li; Tang, Ru; Zhai, Yu-Jia; Malla, Tejsu; Hu, Kai

    2017-01-01

    AIM To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK), when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future. PMID:29181304

  1. Identification of continuous human B-cell epitopes in the VP35, VP40, nucleoprotein and glycoprotein of Ebola virus.

    Pierre Becquart

    Full Text Available Ebola virus (EBOV is a highly virulent human pathogen. Recovery of infected patients is associated with efficient EBOV-specific immunoglobulin G (IgG responses, whereas fatal outcome is associated with defective humoral immunity. As B-cell epitopes on EBOV are poorly defined, we sought to identify specific epitopes in four EBOV proteins (Glycoprotein (GP, Nucleoprotein (NP, and matrix Viral Protein (VP40 and VP35. For the first time, we tested EBOV IgG+ sera from asymptomatic individuals and symptomatic Gabonese survivors, collected during the early humoral response (seven days after the end of symptoms and the late memory phase (7-12 years post-infection. We also tested sera from EBOV-seropositive patients who had never had clinical signs of hemorrhagic fever or who lived in non-epidemic areas (asymptomatic subjects. We found that serum from asymptomatic individuals was more strongly reactive to VP40 peptides than to GP, NP or VP35. Interestingly, anti-EBOV IgG from asymptomatic patients targeted three immunodominant regions of VP40 reported to play a crucial role in virus assembly and budding. In contrast, serum from most survivors of the three outbreaks, collected a few days after the end of symptoms, reacted mainly with GP peptides. However, in asymptomatic subjects the longest immunodominant domains were identified in GP, and analysis of the GP crystal structure revealed that these domains covered a larger surface area of the chalice bowl formed by three GP1 subunits. The B-cell epitopes we identified in the EBOV VP35, VP40, NP and GP proteins may represent important tools for understanding the humoral response to this virus and for developing new antibody-based therapeutics or detection methods.

  2. Identification of continuous human B-cell epitopes in the VP35, VP40, nucleoprotein and glycoprotein of Ebola virus.

    Becquart, Pierre; Mahlakõiv, Tanel; Nkoghe, Dieudonné; Leroy, Eric M

    2014-01-01

    Ebola virus (EBOV) is a highly virulent human pathogen. Recovery of infected patients is associated with efficient EBOV-specific immunoglobulin G (IgG) responses, whereas fatal outcome is associated with defective humoral immunity. As B-cell epitopes on EBOV are poorly defined, we sought to identify specific epitopes in four EBOV proteins (Glycoprotein (GP), Nucleoprotein (NP), and matrix Viral Protein (VP)40 and VP35). For the first time, we tested EBOV IgG+ sera from asymptomatic individuals and symptomatic Gabonese survivors, collected during the early humoral response (seven days after the end of symptoms) and the late memory phase (7-12 years post-infection). We also tested sera from EBOV-seropositive patients who had never had clinical signs of hemorrhagic fever or who lived in non-epidemic areas (asymptomatic subjects). We found that serum from asymptomatic individuals was more strongly reactive to VP40 peptides than to GP, NP or VP35. Interestingly, anti-EBOV IgG from asymptomatic patients targeted three immunodominant regions of VP40 reported to play a crucial role in virus assembly and budding. In contrast, serum from most survivors of the three outbreaks, collected a few days after the end of symptoms, reacted mainly with GP peptides. However, in asymptomatic subjects the longest immunodominant domains were identified in GP, and analysis of the GP crystal structure revealed that these domains covered a larger surface area of the chalice bowl formed by three GP1 subunits. The B-cell epitopes we identified in the EBOV VP35, VP40, NP and GP proteins may represent important tools for understanding the humoral response to this virus and for developing new antibody-based therapeutics or detection methods.

  3. Selective interaction of heparin with the variable region 3 within surface glycoprotein of laboratory-adapted feline immunodeficiency virus.

    Qiong-Ying Hu

    Full Text Available Heparan sulfate proteoglycans (HSPG can act as binding receptors for certain laboratory-adapted (TCA strains of feline immunodeficiency virus (FIV and human immunodeficiency virus (HIV. Heparin, a soluble heparin sulfate (HS, can inhibit TCA HIV and FIV entry mediated by HSPG interaction in vitro. In the present study, we further determined the selective interaction of heparin with the V3 loop of TCA of FIV. Our current results indicate that heparin selectively inhibits infection by TCA strains, but not for field isolates (FS. Heparin also specifically interferes with TCA surface glycoprotein (SU binding to CXCR4, by interactions with HSPG binding sites on the V3 loop of the FIV envelope protein. Peptides representing either the N- or C-terminal side of the V3 loop and containing HSPG binding sites were able to compete away the heparin block of TCA SU binding to CXCR4. Heparin does not interfere with the interaction of SU with anti-V3 antibodies that target the CXCR4 binding region or with the interaction between FS FIV and anti-V3 antibodies since FS SU has no HSPG binding sites within the HSPG binding region. Our data show that heparin blocks TCA FIV infection or entry not only through its competition of HSPG on the cell surface interaction with SU, but also by its interference with CXCR4 binding to SU. These studies aid in the design and development of heparin derivatives or analogues that can inhibit steps in virus infection and are informative regarding the HSPG/SU interaction.

  4. Shedding of Ebola Virus Surface Glycoprotein Is a Mechanism of Self-regulation of Cellular Cytotoxicity and Has a Direct Effect on Virus Infectivity.

    Dolnik, Olga; Volchkova, Valentina A; Escudero-Perez, Beatriz; Lawrence, Philip; Klenk, Hans-Dieter; Volchkov, Viktor E

    2015-10-01

    The surface glycoprotein (GP) is responsible for Ebola virus (EBOV) attachment and membrane fusion during virus entry. Surface expression of highly glycosylated GP causes marked cytotoxicity via masking of a wide range of cellular surface molecules, including integrins. Considerable amounts of surface GP are shed from virus-infected cells in a soluble truncated form by tumor necrosis factor α-converting enzyme. In this study, the role of GP shedding was investigated using a reverse genetics approach by comparing recombinant viruses possessing amino acid substitutions at the GP shedding site. Virus with an L635V substitution showed a substantial decrease in shedding, whereas a D637V substitution resulted in a striking increase in the release of shed GP. Variations in shedding efficacy correlated with observed differences in the amounts of shed GP in the medium, GP present in virus-infected cells, and GP present on virions. An increase in shedding appeared to be associated with a reduction in viral cytotoxicity, and, vice versa, the virus that shed less was more cytotoxic. An increase in shedding also resulted in a reduction in viral infectivity, whereas a decrease in shedding efficacy enhanced viral growth characteristics in vitro. Differences in shedding efficacy and, as a result, differences in the amount of mature GP available for incorporation into budding virions did not equate to differences in overall release of viral particles. Likewise, data suggest that the resulting differences in the amount of mature GP on the cell surface led to variations in the GP content of released particles and, as a consequence, in infectivity. In conclusion, fine-tuning of the levels of EBOV GP expressed at the surface of virus-infected cells via GP shedding plays an important role in EBOV replication by orchestrating the balance between optimal virion GP content and cytotoxicity caused by GP. © The Author 2015. Published by Oxford University Press on behalf of the Infectious

  5. Oral vaccination of wildlife using a vaccinia-rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review.

    Maki, Joanne; Guiot, Anne-Laure; Aubert, Michel; Brochier, Bernard; Cliquet, Florence; Hanlon, Cathleen A; King, Roni; Oertli, Ernest H; Rupprecht, Charles E; Schumacher, Caroline; Slate, Dennis; Yakobson, Boris; Wohlers, Anne; Lankau, Emily W

    2017-09-22

    RABORAL V-RG ® is an oral rabies vaccine bait that contains an attenuated ("modified-live") recombinant vaccinia virus vector vaccine expressing the rabies virus glycoprotein gene (V-RG). Approximately 250 million doses have been distributed globally since 1987 without any reports of adverse reactions in wildlife or domestic animals since the first licensed recombinant oral rabies vaccine (ORV) was released into the environment to immunize wildlife populations against rabies. V-RG is genetically stable, is not detected in the oral cavity beyond 48 h after ingestion, is not shed by vaccinates into the environment, and has been tested for thermostability under a range of laboratory and field conditions. Safety of V-RG has been evaluated in over 50 vertebrate species, including non-human primates, with no adverse effects observed regardless of route or dose. Immunogenicity and efficacy have been demonstrated under laboratory and field conditions in multiple target species (including fox, raccoon, coyote, skunk, raccoon dog, and jackal). The liquid vaccine is packaged inside edible baits (i.e., RABORAL V-RG, the vaccine-bait product) which are distributed into wildlife habitats for consumption by target species. Field application of RABORAL V-RG has contributed to the elimination of wildlife rabies from three European countries (Belgium, France and Luxembourg) and of the dog/coyote rabies virus variant from the United States of America (USA). An oral rabies vaccination program in west-central Texas has essentially eliminated the gray fox rabies virus variant from Texas with the last case reported in a cow during 2009. A long-term ORV barrier program in the USA using RABORAL V-RG is preventing substantial geographic expansion of the raccoon rabies virus variant. RABORAL V-RG has also been used to control wildlife rabies in Israel for more than a decade. This paper: (1) reviews the development and historical use of RABORAL V-RG; (2) highlights wildlife rabies control

  6. A single site for N-linked glycosylation in the envelope glycoprotein of feline immunodeficiency virus modulates the virus-receptor interaction

    Samman Ayman

    2008-08-01

    Full Text Available Abstract Feline immunodeficiency virus (FIV targets helper T cells by attachment of the envelope glycoprotein (Env to CD134, a subsequent interaction with CXCR4 then facilitating the process of viral entry. As the CXCR4 binding site is not exposed until CD134-binding has occurred then the virus is protected from neutralising antibodies targeting the CXCR4-binding site on Env. Prototypic FIV vaccines based on the FL4 strain of FIV contain a cell culture-adapted strain of FIV Petaluma, a CD134-independent strain of FIV that interacts directly with CXCR4. In addition to a characteristic increase in charge in the V3 loop homologue of FIVFL4, we identified two mutations in potential sites for N-linked glycosylation in the region of FIV Env analogous to the V1–V2 region of HIV and SIV Env, T271I and N342Y. When these mutations were introduced into the primary GL8 and CPG41 strains of FIV, the T271I mutation was found to alter the nature of the virus-CD134 interaction; primary viruses carrying the T271I mutation no longer required determinants in cysteine-rich domain (CRD 2 of CD134 for viral entry. The T271I mutation did not confer CD134-independent infection upon GL8 or CPG41, nor did it increase the affinity of the CXCR4 interaction, suggesting that the principal effect was targeted at reducing the complexity of the Env-CD134 interaction.

  7. Vesicular stomatitis virus modified with single chain IL-23 exhibits oncolytic activity against tumor cells in vitro and in vivo

    Reiss, Carol Shoshkes

    2010-01-01

    James M Miller1, Sarah McNulty Bidula1,5, Troels Mygind Jensen1,6, Carol Shoshkes Reiss1,2,3,41Department of Biology, New York University, New York, NY, USA; 2Center for Neural Science, NYU; 3NYU Cancer Institute; 4Departments of Microbiology, NYU School of Medicine and Mt Sinai School of Medicine, New York, NY, USA; 5Present address Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA,USA 6Present address: Univercity of Copenhagen, Copenhagen, DenmarkAbstract: Viruse...

  8. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs.

    Jiang, Xiaohong; Dalebout, Tim J; Bredenbeek, Peter J; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S; Lukashevich, Igor S

    2011-02-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV-GP1 and -GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and -GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF proteins and LASV GP antigens in infected cells. YF17D/LASV-GP1 and -GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1 and -GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs

    Jiang, Xiaohong; Dalebout, Tim J.; Bredenbeek, Peter J.; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S.; Lukashevich, Igor S.

    2010-01-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV GP1 and GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and –GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF and LASV GP proteins in infected cells. YF17D/LASV-GP1&GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1&GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. PMID:21145373

  10. Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration

    González-Motos, Víctor; Jürgens, Carina; Ritter, Birgit

    2017-01-01

    Varicella zoster virus (VZV) is a highly prevalent human pathogen that establishes latency in neurons of the peripheral nervous system. Primary infection causes varicella whereas reactivation results in zoster, which is often followed by chronic pain in adults. Following infection of epithelial c...

  11. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    Metz, S.W.H.; Geertsema, C.; Martina, Byron E.; Andrade, Paulina; Heldens, J.; Oers, van M.M.; Goldbach, R.W.; Vlak, J.M.; Pijlman, G.P.

    2011-01-01

    Background - Chikungunya virus (CHIKV) is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of

  12. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    S.W. Metz (Stefan); C. Geertsema (Corinne); B.E.E. Martina (Byron); P. Andrade (Paulina); J.G.M. Heldens; M.M. van Oers (Monique); J.M. Vlak (Just); G.P. Pijlman (Gorben)

    2011-01-01

    textabstractBackground: Chikungunya virus (CHIKV) is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the

  13. Expression of variable viruses as herpes simplex glycoprotein D and varicella zoster gE glycoprotein using a novel plasmid based expression system in insect cell

    A.M. Al-Sulaiman

    2017-11-01

    Full Text Available Several prokaryotic and eukaryotic expression systems have been used for in vitro production of viruses’ proteins. However eukaryotic expression system was always the first choice for production of proteins that undergo post-translational modification such as glycosylation. Recombinant baculoviruses have been widely used as safe vectors to express heterologous genes in the culture of insect cells, but the manipulation involved in creating, titrating, and amplifying viral stocks make it time consuming and laborious. Therefore, to facilitate rapid expression in insect cell, a plasmid based expression system was used to express herpes simplex type 1 glycoprotein D (HSV-1 gD and varicella zoster glycoprotein E (VZV gE. Recombinant plasmids were generated, transfected into insect cells (SF9, and both glycoproteins were expressed 48 h post-infection. A protein with approximately molecular weight of 64-kDa and 98-kDa for HSV-1 gD and VZV gE respectively was expressed and confirmed by SDS. Proteins were detected in insect cells cytoplasm and outer membrane by immunofluorescence. The antigenicity and immunoreactivity of each protein were confirmed by immunoblot and ELISA. Results suggest that this system can be an alternative to the traditional baculovirus expression for small scale expression system in insect cells.

  14. Mutations in the Schmallenberg Virus Gc Glycoprotein Facilitate Cellular Protein Synthesis Shutoff and Restore Pathogenicity of NSs Deletion Mutants in Mice.

    Varela, Mariana; Pinto, Rute Maria; Caporale, Marco; Piras, Ilaria M; Taggart, Aislynn; Seehusen, Frauke; Hahn, Kerstin; Janowicz, Anna; de Souza, William Marciel; Baumgärtner, Wolfgang; Shi, Xiaohong; Palmarini, Massimo

    2016-06-01

    Serial passage of viruses in cell culture has been traditionally used to attenuate virulence and identify determinants of viral pathogenesis. In a previous study, we found that a strain of Schmallenberg virus (SBV) serially passaged in tissue culture (termed SBVp32) unexpectedly displayed increased pathogenicity in suckling mice compared to wild-type SBV. In this study, we mapped the determinants of SBVp32 virulence to the viral genome M segment. SBVp32 virulence is associated with the capacity of this virus to reach high titers in the brains of experimentally infected suckling mice. We also found that the Gc glycoprotein, encoded by the M segment of SBVp32, facilitates host cell protein shutoff in vitro Interestingly, while the M segment of SBVp32 is a virulence factor, we found that the S segment of the same virus confers by itself an attenuated phenotype to wild-type SBV, as it has lost the ability to block the innate immune system of the host. Single mutations present in the Gc glycoprotein of SBVp32 are sufficient to compensate for both the attenuated phenotype of the SBVp32 S segment and the attenuated phenotype of NSs deletion mutants. Our data also indicate that the SBVp32 M segment does not act as an interferon (IFN) antagonist. Therefore, SBV mutants can retain pathogenicity even when they are unable to fully control the production of IFN by infected cells. Overall, this study suggests that the viral glycoprotein of orthobunyaviruses can compensate, at least in part, for the function of NSs. In addition, we also provide evidence that the induction of total cellular protein shutoff by SBV is determined by multiple viral proteins, while the ability to control the production of IFN maps to the NSs protein. The identification of viral determinants of pathogenesis is key to the development of prophylactic and intervention measures. In this study, we found that the bunyavirus Gc glycoprotein is a virulence factor. Importantly, we show that mutations in the Gc

  15. CD4(+) T cell-mediated protection against a lethal outcome of systemic infection with vesicular stomatitis virus requires CD40 ligand expression, but not IFN-gamma or IL-4

    Andersen, C; Jensen, T; Nansen, A

    1999-01-01

    experiments using B cell- and T cell-deficient recipients revealed that no protection could be obtained in the absence of B cells, whereas treatment with virus-specific immune (IgG) serum controlled viral spreading to the central nervous system (CNS), but did not necessarily accomplish virus elimination......To investigate the mechanism(s) whereby T cells protect against a lethal outcome of systemic infection with vesicular stomatitis virus, mice with targeted defects in genes central to T cell function were tested for resistance to i.v. infection with this virus. Our results show that mice lacking...... the capacity to secrete both IFN-gamma and perforin completely resisted disease. Similar results were obtained using IL-4 knockout mice, indicating that neither cell-mediated nor T(h)2-dependent effector systems were required. In contrast, mice deficient in expression of CD40 ligand were more susceptible than...

  16. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    Ruben R Bender

    2016-06-01

    Full Text Available Receptor-targeted lentiviral vectors (LVs can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance. Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4 was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.

  17. Cross linkage studies with the membranes of the vesicular stomatitis virus using radioactive 4-acido and 5-acido palmitic acid

    Verfondern, M.

    1983-01-01

    In the study described here the spatial arrangement of lipids and proteins in the VS virus was investigated on the basis of the covalent cross linkage technique. The formation of such cross linkages is brought about by the action of photosensitive acidosubstituted lipids, which permit acido functions to be introduced into a membrane in a previously defined position. Subsequently, photolysis helps to trigger the generation of radioactive nitrenes that react with the proteins and lipids in their immediate vicinity in a direct and non-selective way. The findings revealed by this study have raised questions as to the possibility of lipid-protein and lipid-lipid interactions, which is also discussed. (orig./MG) [de

  18. EXPRESSION OF GLYCOPROTEIN gD AND EVALUATION OF IMMUNE RESPONSE OF BOVINE HERPES VIRUS TYPE-1 IN BUFFALO

    Sumit Chowdhury

    2012-12-01

    Full Text Available Bovine Herpes Virus type-1 (BoHV-1 causes a multitude of clinical symptoms in cattle, buffaloes and small ruminants. No effective live attenuated or killed vaccine is currently available and extensive research work in progress towards the development of the subunit and genetically engineered vaccine. Since DNA vaccine is currently regarded as most important breakthrough in vaccinology, the present work was aimed at construction of DNA vaccine using most immunogenic glycoprotein gD and studying its immune response and protection in buffalo. gD specific DIG labelled probe was used to screen gD specific clones from cDNA library. The gD specific cloned plasmid was purified for eukaryotic expression. The SDS-PAGE & Western blot analysis showed the transient expression of the expected 71 kDa gD following transfection in COS-7 cells. Four seronegative buffalo calves were immunized at 0, 30 and 60 days with recombinant purified plasmid and two calves were kept as control. The result of SNT, ELISA and MTT indicate gene specific seroconversion and CMI response following immunization with plasmid. At 86 days of post first vaccination, animals were challenged with virulent BoHV-1 (216/IBR. Hematological picture of the control animals showed leucopenia and that was due to destruction of lymphocytes shown by TLC and apoptosis study. Vaccinated animals showed reduced virus shedding in terms of days post challenge as well as titers compared to the controls. Based on the above findings, we concluded that DNA based vaccine induces specific and protective immune responses to the buffalo.

  19. Safety and vaccine efficacy of a glycoprotein G deficient strain of infectious laryngotracheitis virus delivered in ovo.

    Legione, Alistair R; Coppo, Mauricio J C; Lee, Sang-Won; Noormohammadi, Amir H; Hartley, Carol A; Browning, Glenn F; Gilkerson, James R; O'Rourke, Denise; Devlin, Joanne M

    2012-11-26

    Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes respiratory disease in chickens and is commonly controlled by vaccination with conventionally attenuated vaccines. Glycoprotein G (gG) is a virulence factor in ILTV and a gG deficient strain of ILTV (ΔgG-ILTV) has shown potential for use as a vaccine. In the poultry industry vaccination via drinking water is common, but technology is now available to allow quicker and more accurate in ovo vaccination of embryos at 18 days of incubation. In this study ΔgG-ILTV was delivered to chicken embryos at three different doses (10(2), 10(3) and 10(4) plaque forming units per egg) using manual in ovo vaccination. At 20 days after hatching, birds were challenged intra-tracheally with wild type ILTV and protection was measured. In ovo vaccination was shown to be safe, as there were no developmental differences between birds from hatching up to 20 days of age, as measured by weight gain. The highest dose of vaccine was the most efficacious, resulting in a weight gain not significantly different from unvaccinated/unchallenged birds seven days after challenge. In contrast, birds vaccinated with the lowest dose showed weight gains not significantly different from unvaccinated/challenged birds. Gross pathology and histopathology of the trachea reflected these observations, with birds vaccinated with the highest dose having less severe lesions. However, qPCR results suggested the vaccine did not prevent the challenge virus replicating in the trachea. This study is the first to assess in ovo delivery of a live attenuated ILTV vaccine and shows that in ovo vaccination with ΔgG-ILTV can be both safe and efficacious. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type I virus.

    Annarita Falanga

    Full Text Available The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes.

  1. The Myeloid LSECtin Is a DAP12-Coupled Receptor That Is Crucial for Inflammatory Response Induced by Ebola Virus Glycoprotein.

    Dianyuan Zhao

    2016-03-01

    Full Text Available Fatal Ebola virus infection is characterized by a systemic inflammatory response similar to septic shock. Ebola glycoprotein (GP is involved in this process through activating dendritic cells (DCs and macrophages. However, the mechanism is unclear. Here, we showed that LSECtin (also known as CLEC4G plays an important role in GP-mediated inflammatory responses in human DCs. Anti-LSECtin mAb engagement induced TNF-α and IL-6 production in DCs, whereas silencing of LSECtin abrogated this effect. Intriguingly, as a pathogen-derived ligand, Ebola GP could trigger TNF-α and IL-6 release by DCs through LSECtin. Mechanistic investigations revealed that LSECtin initiated signaling via association with a 12-kDa DNAX-activating protein (DAP12 and induced Syk activation. Mutation of key tyrosines in the DAP12 immunoreceptor tyrosine-based activation motif abrogated LSECtin-mediated signaling. Furthermore, Syk inhibitors significantly reduced the GP-triggered cytokine production in DCs. Therefore, our results demonstrate that LSECtin is required for the GP-induced inflammatory response, providing new insights into the EBOV-mediated inflammatory response.

  2. Vaccination with the Secreted Glycoprotein G of Herpes Simplex Virus 2 Induces Protective Immunity after Genital Infection.

    Önnheim, Karin; Ekblad, Maria; Görander, Staffan; Bergström, Tomas; Liljeqvist, Jan-Åke

    2016-04-22

    Herpes simplex virus 2 (HSV-2) infects the genital mucosa and establishes a life-long infection in sensory ganglia. After primary infection HSV-2 may reactivate causing recurrent genital ulcerations. HSV-2 infection is prevalent, and globally more than 400 million individuals are infected. As clinical trials have failed to show protection against HSV-2 infection, new vaccine candidates are warranted. The secreted glycoprotein G (sgG-2) of HSV-2 was evaluated as a prophylactic vaccine in mice using two different immunization and adjuvant protocols. The protocol with three intramuscular immunizations combining sgG-2 with cytosine-phosphate-guanine dinucleotide (CpG) motifs and alum induced almost complete protection from genital and systemic disease after intra-vaginal challenge with HSV-2. Robust immunoglobulin G (IgG) antibody titers were detected with no neutralization activity. Purified splenic CD4+ T cells proliferated and produced interferon-γ (IFN-γ) when re-stimulated with the antigen in vitro. sgG-2 + adjuvant intra-muscularly immunized mice showed a significant reduction of infectious HSV-2 and increased IFN-γ levels in vaginal washes. The HSV-2 DNA copy numbers were significantly reduced in dorsal root ganglia, spinal cord, and in serum at day six or day 21 post challenge. We show that a sgG-2 based vaccine is highly effective and can be considered as a novel candidate in the development of a prophylactic vaccine against HSV-2 infection.

  3. Investigating the effect of carbon source on rabies virus glycoprotein production in Pichia pastoris by a transcriptomic approach.

    Ben Azoun, Safa; Kallel, Héla

    2017-08-01

    Several factors affect protein expression in Pichia pastoris, one among them is the carbon source. In this work, we studied the effect of this factor on the expression level of rabies virus glycoprotein (RABV-G) in two recombinant clones harboring seven copies of the gene of interest. The expression was driven either by the constitutive glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter or the inducible alcohol oxidase1 (AOX1) promoter. Clones were compared in terms of cell physiology and carbon source metabolism. The transcription levels of 16 key genes involved in the central metabolic pathway, the methanol catabolism, and the oxidative stress were investigated in both clones. Cell size, as a parameter reflecting cell physiological changes, was also monitored. Our results showed that when glucose was used as the sole carbon source, large cells were obtained. Transcript levels of the genes of the central metabolic pathway were also upregulated, whereas antioxidative gene transcript levels were low. By contrast, the use of methanol as a carbon source generated small cells and a shift in carbon metabolism toward the dissimilatory pathway by the upregulation of formaldehyde dehydrogenase gene and the downregulation of those of the central metabolic. These observations are in favor of the use of glucose to enhance the expression of RABV-G in P. pastoris. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry.

    Yan Li

    Full Text Available The importance of the fourth variable (V4 region of the human immunodeficiency virus 1 (HIV-1 envelope glycoprotein (Env in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS. In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS, greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.

  5. Distinctive receptor binding properties of the surface glycoprotein of a natural Feline Leukemia Virus isolate with unusual disease spectrum

    Albritton Lorraine M

    2011-05-01

    Full Text Available Abstract Background Feline leukemia virus (FeLV-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor. Results Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect. Conclusions The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.

  6. Prediction and identification of potential immunodominant epitopes in glycoproteins B, C, E, G, and I of herpes simplex virus type 2.

    Pan, Mingjie; Wang, Xingsheng; Liao, Jianmin; Yin, Dengke; Li, Suqin; Pan, Ying; Wang, Yao; Xie, Guangyan; Zhang, Shumin; Li, Yuexi

    2012-01-01

    Twenty B candidate epitopes of glycoproteins B (gB2), C (gC2), E (gE2), G (gG2), and I (gI2) of herpes simplex virus type 2 (HSV-2) were predicted using DNAstar, Biosun, and Antheprot methods combined with the polynomial method. Subsequently, the biological functions of the peptides were tested via experiments in vitro. Among the 20 epitope peptides, 17 could react with the antisera to the corresponding parent proteins in the EIA tests. In particular, five peptides, namely, gB2(466-473) (EQDRKPRN), gC2(216-223) (GRTDRPSA), gE2(483-491) (DPPERPDSP), gG2(572-579) (EPPDDDDS), and gI2(286-295) (CRRRYRRPRG) had strong reaction with the antisera. All conjugates of the five peptides with the carrier protein BSA could stimulate mice into producing antibodies. The antisera to these peptides reacted strongly with the corresponding parent glycoproteins during the Western Blot tests, and the peptides reacted strongly with the antibodies against the parent glycoproteins during the EIA tests. The antisera against the five peptides could neutralize HSV-2 infection in vitro, which has not been reported until now. These results suggest that the immunodominant epitopes screened using software algorithms may be used for virus diagnosis and vaccine design against HSV-2.

  7. Prediction and Identification of Potential Immunodominant Epitopes in Glycoproteins B, C, E, G, and I of Herpes Simplex Virus Type 2

    Mingjie Pan

    2012-01-01

    Full Text Available Twenty B candidate epitopes of glycoproteins B (gB2, C (gC2, E (gE2, G (gG2, and I (gI2 of herpes simplex virus type 2 (HSV-2 were predicted using DNAstar, Biosun, and Antheprot methods combined with the polynomial method. Subsequently, the biological functions of the peptides were tested via experiments in vitro. Among the 20 epitope peptides, 17 could react with the antisera to the corresponding parent proteins in the EIA tests. In particular, five peptides, namely, gB2466–473 (EQDRKPRN, gC2216–223 (GRTDRPSA, gE2483–491 (DPPERPDSP, gG2572–579 (EPPDDDDS, and gI2286-295 (CRRRYRRPRG had strong reaction with the antisera. All conjugates of the five peptides with the carrier protein BSA could stimulate mice into producing antibodies. The antisera to these peptides reacted strongly with the corresponding parent glycoproteins during the Western Blot tests, and the peptides reacted strongly with the antibodies against the parent glycoproteins during the EIA tests. The antisera against the five peptides could neutralize HSV-2 infection in vitro, which has not been reported until now. These results suggest that the immunodominant epitopes screened using software algorithms may be used for virus diagnosis and vaccine design against HSV-2.

  8. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus

    Meunier, Jean-Christophe; Russell, Rodney S; Goossens, Vera

    2008-01-01

    monoclonal antibodies (MAbs) directed against HCV glycoprotein E1, which may have the potential to control HCV infection. We have identified two MAbs that can strongly neutralize HCV-pseudotyped particles (HCVpp) bearing the envelope glycoproteins of genotypes 1a, 1b, 4a, 5a, and 6a and less strongly...

  9. Feline tetherin is characterized by a short N-terminal region and is counteracted by the feline immunodeficiency virus envelope glycoprotein.

    Celestino, Michele; Calistri, Arianna; Del Vecchio, Claudia; Salata, Cristiano; Chiuppesi, Flavia; Pistello, Mauro; Borsetti, Alessandra; Palù, Giorgio; Parolin, Cristina

    2012-06-01

    Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.

  10. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

    Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

    2008-12-01

    Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

  11. Sequence variation and phylogenetic analysis of envelope glycoprotein of hepatitis G virus.

    Lim, M Y; Fry, K; Yun, A; Chong, S; Linnen, J; Fung, K; Kim, J P

    1997-11-01

    A transfusion-transmissible agent provisionally designated hepatitis G virus (HGV) was recently identified. In this study, we examined the variability of the HGV genome by analysing sequences in the putative envelope region from 72 isolates obtained from diverse geographical sources. The 1561 nucleotide sequence of the E1/E2/NS2a region of HGV was determined from 12 isolates, and compared with three published sequences. The most variability was observed in 400 nucleotides at the N terminus of E2. We next analysed this 400 nucleotide envelope variable region (EV) from an additional 60 HGV isolates. This sequence varied considerably among the 75 isolates, with overall identity ranging from 79.3% to 99.5% at the nucleotide level, and from 83.5% to 100% at the amino acid level. However, hypervariable regions were not identified. Phylogenetic analyses indicated that the 75 HGV isolates belong to a single genotype. A single-tier distribution of evolutionary distances was observed among the 15 E1/E2/NS2a sequences and the 75 EV sequences. In contrast, 11 isolates of HCV were analysed and showed a three-tiered distribution, representing genotypes, subtypes, and isolates. The 75 isolates of HGV fell into four clusters on the phylogenetic tree. Tight geographical clustering was observed among the HGV isolates from Japan and Korea.

  12. Ebola Virus Infections in Nonhuman Primates Are Temporally Influenced by Glycoprotein Poly-U Editing Site Populations in the Exposure Material

    Trefry, John C.; Wollen, Suzanne E.; Nasar, Farooq; Shamblin, Joshua D.; Kern, Steven J.; Bearss, Jeremy J.; Jefferson, Michelle A.; Chance, Taylor B.; Kugelman, Jeffery R.; Ladner, Jason T.; Honko, Anna N.; Kobs, Dean J.; Wending, Morgan Q.S.; Sabourin, Carol L.; Pratt, William D.; Palacios, Gustavo F.; Pitt, M. Louise M.

    2015-01-01

    Recent experimentation with the variants of the Ebola virus that differ in the glycoprotein’s poly-uridine site, which dictates the form of glycoprotein produced through a transcriptional stutter, has resulted in questions regarding the pathogenicity and lethality of the stocks used to develop products currently undergoing human clinical trials to combat the disease. In order to address these concerns and prevent the delay of these critical research programs, we designed an experiment that permitted us to intramuscularly challenge statistically significant numbers of naïve and vaccinated cynomolgus macaques with either a 7U or 8U variant of the Ebola virus, Kikwit isolate. In naïve animals, no difference in survivorship was observed; however, there was a significant delay in the disease course between the two groups. Significant differences were also observed in time-of-fever, serum chemistry, and hematology. In vaccinated animals, there was no statistical difference in survivorship between either challenge groups, with two succumbing in the 7U group compared to 1 in the 8U challenge group. In summary, survivorship was not affected, but the Ebola virus disease course in nonhuman primates is temporally influenced by glycoprotein poly-U editing site populations. PMID:26703716

  13. Ebola Virus Infections in Nonhuman Primates Are Temporally Influenced by Glycoprotein Poly-U Editing Site Populations in the Exposure Material

    John C. Trefry

    2015-12-01

    Full Text Available Recent experimentation with the variants of the Ebola virus that differ in the glycoprotein’s poly-uridine site, which dictates the form of glycoprotein produced through a transcriptional stutter, has resulted in questions regarding the pathogenicity and lethality of the stocks used to develop products currently undergoing human clinical trials to combat the disease. In order to address these concerns and prevent the delay of these critical research programs, we designed an experiment that permitted us to intramuscularly challenge statistically significant numbers of naïve and vaccinated cynomolgus macaques with either a 7U or 8U variant of the Ebola virus, Kikwit isolate. In naïve animals, no difference in survivorship was observed; however, there was a significant delay in the disease course between the two groups. Significant differences were also observed in time-of-fever, serum chemistry, and hematology. In vaccinated animals, there was no statistical difference in survivorship between either challenge groups, with two succumbing in the 7U group compared to 1 in the 8U challenge group. In summary, survivorship was not affected, but the Ebola virus disease course in nonhuman primates is temporally influenced by glycoprotein poly-U editing site populations.

  14. N-terminal substitutions in HIV-1 gp41 reduce the expression of non-trimeric envelope glycoproteins on the virus

    Dey, Antu K.; David, Kathryn B.; Ray, Neelanjana; Ketas, Thomas J.; Klasse, Per J.; Doms, Robert W.; Moore, John P.

    2008-01-01

    The native, functional HIV-1 envelope glycoprotein (Env) complex is a trimer of two non-covalently associated subunits: the gp120 surface glycoprotein and the gp41 transmembrane glycoprotein. However, various non-functional forms of Env are present on virus particles and HIV-1-infected cells, some of which probably arise as the native complex decays. The aberrant forms include gp120-gp41 monomers and oligomers, as well as gp41 subunits from which gp120 has dissociated. The presence of non-functional Env creates binding sites for antibodies that do not recognize native Env complexes and that are, therefore, non-neutralizing. Non-native Env forms (monomers, dimers, tetramers and aggregates) can also arise when soluble gp140 proteins, lacking the cytoplasmic and transmembrane domains of gp41, are expressed for vaccine studies. We recently identified five amino acids in the gp41 N-terminal region (I535, Q543, S553, K567 and R588) that promote gp140 trimerization. We have now studied their influence on the function and antigenic properties of JR-FL Env expressed on the surfaces of pseudoviruses and Env-transfected cells. The 5 substitutions in gp41 reduce the expression of non-trimeric gp160s, without affecting trimer levels. Pseudovirions bearing the mutant Env are fully infectious with similar kinetics of Env-mediated fusion. Various non-neutralizing antibodies bind less strongly to the Env mutant, but neutralizing antibody binding is unaffected. Hence the gp41 substitutions do not adversely affect Env structure, supporting their use for making new Env-based vaccines. The mutant Env might also help in studies intended to correlate antibody binding to virus neutralization. Of note is that the 5 residues are much more frequent, individually or collectively, in viruses from subtypes other than B

  15. Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels.

    Yu, Gui Mei; Zu, Shu Long; Zhou, Wei Wei; Wang, Xi Jun; Shuai, Lei; Wang, Xue Lian; Ge, Jin Ying; Bu, Zhi Gao

    2017-08-31

    Rabies remains an important worldwide health problem. Newcastle disease virus (NDV) was developed as a vaccine vector in animals by using a reverse genetics approach. Previously, our group generated a recombinant NDV (LaSota strain) expressing the complete rabies virus G protein (RVG), named rL-RVG. In this study, we constructed the variant rL-RVGTM, which expresses a chimeric rabies virus G protein (RVGTM) containing the ectodomain of RVG and the transmembrane domain (TM) and a cytoplasmic tail (CT) from the NDV fusion glycoprotein to study the function of RVG's TM and CT. The RVGTM did not detectably incorporate into NDV virions, though it was abundantly expressed at the surface of infected BHK-21 cells. Both rL-RVG and rL-RVGTM induced similar levels of NDV virus-neutralizing antibody (VNA) after initial and secondary vaccination in mice, whereas rabies VNA induction by rL-RVGTM was markedly lower than that induced by rL-RVG. Though rL-RVG could spread from cell to cell like that in rabies virus, rL-RVGTM lost this ability and spread in a manner similar to the parental NDV. Our data suggest that the TM and CT of RVG are essential for its incorporation into NDV virions and for spreading of the recombinant virus from the initially infected cells to surrounding cells.

  16. The fusion loops and membrane proximal region of Epstein-Barr virus glycoprotein B (gB) can function in the context of herpes simplex virus 1 gB when substituted individually but not in combination.

    Zago, Anna; Connolly, Sarah A; Spear, Patricia G; Longnecker, Richard

    2013-01-01

    Among the herpesvirus glycoprotein B (gB) fusion proteins, the hydrophobic content of fusion loops and membrane proximal regions (MPRs) are inversely correlated with each other. We examined the functional importance of the hydrophobicity of these regions by replacing them in herpes simplex virus type 1 gB with corresponding regions from Epstein-Barr virus gB. We show that fusion activity is dependent on the structural context in which the specific loops and MPR sequences exist, rather than a simple hydrophobic relationship. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Characterization of monomeric intermediates during VSV glycoprotein structural transition.

    Aurélie A Albertini

    2012-02-01

    Full Text Available Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV glycoprotein G ectodomain (G(th, aa residues 1-422, the fragment that was previously crystallized. While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, G(th is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition.

  18. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses

    Gzyl, Jaroslaw; Bolesta, Elizabeth; Wierzbicki, Andrew; Kmieciak, Dariusz; Naito, Toshio; Honda, Mitsuo; Komuro, Katsutoshi; Kaneko, Yutaro; Kozbor, Danuta

    2004-01-01

    Induction of cross-reactive cellular and humoral responses to the HIV-1 envelope (env) glycoprotein was examined after DNA immunization of BALB/c mice with gp140 89.6 -derived constructs exhibiting partial or complete deletions of the V1, V2, and V3 domains. It was demonstrated that specific modification of the V3 loop (mV3) in combination with the V2-modified (mV2) or V1/V2-deleted (ΔV1/V2) region elicited increased levels of cross-reactive CD8 + T cell responses. Mice immunized with the mV2/mV3 or ΔV1/V2/mV3 gp140 89.6 plasmid DNA were greater than 50-fold more resistant to challenge with recombinant vaccinia virus (rVV) expressing heterologous env gene products than animals immunized with the wild-type (WT) counterpart. Sera from mV2/mV3- and ΔV1/V2/mV3-immunized mice exhibited the highest cross-neutralizing activity and displayed intermediate antibody avidity values which were further enhanced by challenge with rVV expressing the homologous gp160 glycoprotein. In contrast, complete deletion of the variable regions had little or no effect on the cross-reactive antibody responses. The results of these experiments indicate that the breadth of antibody responses to the HIV-1 env glycoprotein may not be increased by removal of the variable domains. Instead, partial deletions within these regions may redirect specific responses toward conserved epitopes and facilitate approaches for boosting cross-reactive cellular and antibody responses to the env glycoprotein

  19. Both Epistasis and Diversifying Selection Drive the Structural Evolution of the Ebola Virus Glycoprotein Mucin-Like Domain.

    Ibeh, Neke; Nshogozabahizi, Jean Claude; Aris-Brosou, Stéphane

    2016-06-01

    Throughout the last 3 decades, Ebola virus (EBOV) outbreaks have been confined to isolated areas within Central Africa; however, the 2014 variant reached unprecedented transmission and mortality rates. While the outbreak was still under way, it was reported that the variant leading up to this outbreak evolved faster than previous EBOV variants, but evidence for diversifying selection was undetermined. Here, we test this selection hypothesis and show that while previous EBOV outbreaks were preceded by bursts of diversification, evidence for site-specific diversifying selection during the emergence of the 2014 EBOV clade is weak. However, we show strong evidence supporting an interplay between selection and correlated evolution (epistasis), particularly in the mucin-like domain (MLD) of the EBOV glycoprotein. By reconstructing ancestral structures of the MLD, we further propose a structural mechanism explaining how the substitutions that accumulated between 1918 and 1969 distorted the MLD, while more recent epistatic substitutions restored part of the structure, with the most recent substitution being adaptive. We suggest that it is this complex interplay between weak selection, epistasis, and structural constraints that has shaped the evolution of the 2014 EBOV variant. The role that selection plays in the emergence of viral epidemics remains debated, particularly in the context of the 2014 EBOV outbreak. Most critically, should such evidence exist, it is generally unclear how this relates to function and increased virulence. Here, we show that the viral lineage leading up to the 2014 outbreak underwent a complex interplay between selection and correlated evolution (epistasis) in a protein region that is critical for immune evasion. We then reconstructed the three-dimensional structure of this domain and showed that the initial mutations in this lineage deformed the structure, while subsequent mutations restored part of the structure. Along this mutational path, the

  20. A Herpes Simplex Virus Type 2 Deleted for Glycoprotein D Enables Dendritic Cells to Activate CD4+ and CD8+ T Cells

    Retamal-Díaz, Angello R.; Kalergis, Alexis M.; Bueno, Susan M.; González, Pablo A.

    2017-01-01

    Herpes simplex virus type 2 (HSV-2) is highly prevalent in the human population producing significant morbidity, mainly because of the generation of genital ulcers and neonatal encephalitis. Additionally, HSV-2 infection significantly increases the susceptibility of the host to acquire HIV and promotes the shedding of the latter in the coinfected. Despite numerous efforts to create a vaccine against HSV-2, no licensed vaccines are currently available. A long-standing strategy, based on few viral glycoproteins combined with adjuvants, recently displayed poor results in a Phase III clinical study fueling exploration on the development of mutant HSV viruses that are attenuated in vivo and elicit protective adaptive immune components, such as antiviral antibodies and T cells. Importantly, such specialized antiviral immune components are likely induced and modulated by dendritic cells, professional antigen presenting cells that process viral antigens and present them to T cells. However, HSV interferes with several functions of DCs and ultimately induces their death. Here, we propose that for an attenuated mutant virus to confer protective immunity against HSV in vivo based on adaptive immune components, such virus should also be attenuated in dendritic cells to promote a robust and effective antiviral response. We provide a background framework for this idea, considerations, as well as the means to assess this hypothesis. Addressing this hypothesis may provide valuable insights for the development of novel, safe, and effective vaccines against herpes simplex viruses. PMID:28848543

  1. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.; Fletcher, P.; O’Donnell, V.; Holinka, L.G.; Carey, L.B.; Lu, X.; Nieva, J.L.; Borca, M.V.

    2014-01-01

    E2, along with E rns and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, 818 CPIGWTGVIEC 828 , containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP 818 CPIGWTGVIEC 828 indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion

  2. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    Fernández-Sainz, I.J. [Plum Island Animal Disease Center, ARS, USDA (United States); Largo, E. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Gladue, D.P.; Fletcher, P. [Plum Island Animal Disease Center, ARS, USDA (United States); O’Donnell, V. [Plum Island Animal Disease Center, ARS, USDA (United States); Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Holinka, L.G. [Plum Island Animal Disease Center, ARS, USDA (United States); Carey, L.B. [Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), E-08003 Barcelona (Spain); Lu, X. [Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Nieva, J.L. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Borca, M.V., E-mail: manuel.borca@ars.usda.gov [Plum Island Animal Disease Center, ARS, USDA (United States)

    2014-05-15

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.

  3. A Herpes Simplex Virus Type 2 Deleted for Glycoprotein D Enables Dendritic Cells to Activate CD4+ and CD8+ T Cells

    Angello R. Retamal-Díaz

    2017-08-01

    Full Text Available Herpes simplex virus type 2 (HSV-2 is highly prevalent in the human population producing significant morbidity, mainly because of the generation of genital ulcers and neonatal encephalitis. Additionally, HSV-2 infection significantly increases the susceptibility of the host to acquire HIV and promotes the shedding of the latter in the coinfected. Despite numerous efforts to create a vaccine against HSV-2, no licensed vaccines are currently available. A long-standing strategy, based on few viral glycoproteins combined with adjuvants, recently displayed poor results in a Phase III clinical study fueling exploration on the development of mutant HSV viruses that are attenuated in vivo and elicit protective adaptive immune components, such as antiviral antibodies and T cells. Importantly, such specialized antiviral immune components are likely induced and modulated by dendritic cells, professional antigen presenting cells that process viral antigens and present them to T cells. However, HSV interferes with several functions of DCs and ultimately induces their death. Here, we propose that for an attenuated mutant virus to confer protective immunity against HSV in vivo based on adaptive immune components, such virus should also be attenuated in dendritic cells to promote a robust and effective antiviral response. We provide a background framework for this idea, considerations, as well as the means to assess this hypothesis. Addressing this hypothesis may provide valuable insights for the development of novel, safe, and effective vaccines against herpes simplex viruses.

  4. Induction of ebolavirus cross-species immunity using retrovirus-like particles bearing the Ebola virus glycoprotein lacking the mucin-like domain.

    Ou, Wu; Delisle, Josie; Jacques, Jerome; Shih, Joanna; Price, Graeme; Kuhn, Jens H; Wang, Vivian; Verthelyi, Daniela; Kaplan, Gerardo; Wilson, Carolyn A

    2012-01-25

    The genus Ebolavirus includes five distinct viruses. Four of these viruses cause hemorrhagic fever in humans. Currently there are no licensed vaccines for any of them; however, several vaccines are under development. Ebola virus envelope glycoprotein (GP1,2) is highly immunogenic, but antibodies frequently arise against its least conserved mucin-like domain (MLD). We hypothesized that immunization with MLD-deleted GP1,2 (GPΔMLD) would induce cross-species immunity by making more conserved regions accessible to the immune system. To test this hypothesis, mice were immunized with retrovirus-like particles (retroVLPs) bearing Ebola virus GPΔMLD, DNA plasmids (plasmo-retroVLP) that can produce such retroVLPs in vivo, or plasmo-retroVLP followed by retroVLPs. Cross-species neutralizing antibody and GP1,2-specific cellular immune responses were successfully induced. Our findings suggest that GPΔMLD presented through retroVLPs may provide a strategy for development of a vaccine against multiple ebolaviruses. Similar vaccination strategies may be adopted for other viruses whose envelope proteins contain highly variable regions that may mask more conserved domains from the immune system.

  5. Induction of ebolavirus cross-species immunity using retrovirus-like particles bearing the Ebola virus glycoprotein lacking the mucin-like domain

    Ou Wu

    2012-01-01

    Full Text Available Abstract Background The genus Ebolavirus includes five distinct viruses. Four of these viruses cause hemorrhagic fever in humans. Currently there are no licensed vaccines for any of them; however, several vaccines are under development. Ebola virus envelope glycoprotein (GP1,2 is highly immunogenic, but antibodies frequently arise against its least conserved mucin-like domain (MLD. We hypothesized that immunization with MLD-deleted GP1,2 (GPΔMLD would induce cross-species immunity by making more conserved regions accessible to the immune system. Methods To test this hypothesis, mice were immunized with retrovirus-like particles (retroVLPs bearing Ebola virus GPΔMLD, DNA plasmids (plasmo-retroVLP that can produce such retroVLPs in vivo, or plasmo-retroVLP followed by retroVLPs. Results Cross-species neutralizing antibody and GP1,2-specific cellular immune responses were successfully induced. Conclusion Our findings suggest that GPΔMLD presented through retroVLPs may provide a strategy for development of a vaccine against multiple ebolaviruses. Similar vaccination strategies may be adopted for other viruses whose envelope proteins contain highly variable regions that may mask more conserved domains from the immune system.

  6. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV in cattle

    Loy John Dustin

    2013-01-01

    Full Text Available Abstract Background Bovine viral diarrhea virus is one of the most significant and costly viral pathogens of cattle worldwide. Alphavirus-derived replicon particles have been shown to be safe and highly effective vaccine vectors against a variety of human and veterinary pathogens. Replicon particles are non-propagating, DIVA compatible, and can induce both humoral and cell mediated immune responses. This is the first experiment to demonstrate that Alphavirus-based replicon particles can be utilized in a standard prime/boost vaccination strategy in calves against a commercially significant bovine pathogen. Findings Replicon particles that express bovine viral diarrhea virus sub-genotype 1b E2 glycoprotein were generated and expression was confirmed in vitro using polyclonal and monoclonal antibodies specific to E2. Vaccine made from particles was generated in Vero cells and administered to BVDV free calves in a prime/boost regimen at two dosage levels. Vaccination resulted in neutralizing antibody titers that cross-neutralized both type 1 and type 2 BVD genotypes following booster vaccination. Additionally, high dose vaccine administration demonstrated some protection from clinical disease and significantly reduced the degree of leukopenia caused by viral infection. Conclusions Replicon particle vaccines administered in a prime/boost regimen expressing BVDV E2 glycoprotein can induce cross-neutralizing titers, reduce leukopenia post challenge, and mitigate clinical disease in calves. This strategy holds promise for a safe and effective vaccine to BVDV.

  7. Herpes simplex virus type 2 glycoprotein H interacts with integrin αvβ3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells.

    Cheshenko, Natalia; Trepanier, Janie B; González, Pablo A; Eugenin, Eliseo A; Jacobs, William R; Herold, Betsy C

    2014-09-01

    Herpes simplex virus (HSV) entry requires multiple interactions at the cell surface and activation of a complex calcium signaling cascade. Previous studies demonstrated that integrins participate in this process, but their precise role has not been determined. These studies were designed to test the hypothesis that integrin αvβ3 signaling promotes the release of intracellular calcium (Ca2+) stores and contributes to viral entry and cell-to-cell spread. Transfection of cells with small interfering RNA (siRNA) targeting integrin αvβ3, but not other integrin subunits, or treatment with cilengitide, an Arg-Gly-Asp (RGD) mimetic, impaired HSV-induced Ca2+ release, viral entry, plaque formation, and cell-to-cell spread of HSV-1 and HSV-2 in human cervical and primary genital tract epithelial cells. Coimmunoprecipitation studies and proximity ligation assays indicated that integrin αvβ3 interacts with glycoprotein H (gH). An HSV-2 gH-null virus was engineered to further assess the role of gH in the virus-induced signaling cascade. The gH-2-null virus bound to cells and activated Akt to induce a small Ca2+ response at the plasma membrane, but it failed to trigger the release of cytoplasmic Ca2+ stores and was impaired for entry and cell-to-cell spread. Silencing of integrin αvβ3 and deletion of gH prevented phosphorylation of focal adhesion kinase (FAK) and the transport of viral capsids to the nuclear pore. Together, these findings demonstrate that integrin signaling is activated downstream of virus-induced Akt signaling and facilitates viral entry through interactions with gH by activating the release of intracellular Ca2+ and FAK phosphorylation. These findings suggest a new target for HSV treatment and suppression. Herpes simplex viruses are the leading cause of genital disease worldwide, the most common infection associated with neonatal encephalitis, and a major cofactor for HIV acquisition and transmission. There is no effective vaccine. These

  8. A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine.

    William P Halford

    2011-03-01

    Full Text Available Glycoprotein D (gD-2 is the entry receptor of herpes simplex virus 2 (HSV-2, and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0⁻ virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain. In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0⁻ virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein.

  9. Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys.

    Hu, Haixia; Roth, Jason P; Estevez, Carlos N; Zsak, Laszlo; Liu, Bo; Yu, Qingzhong

    2011-11-03

    Virulent strains of Newcastle disease virus (NDV) and avian metapneumovirus (aMPV) can cause serious respiratory diseases in poultry. Vaccination combined with strict biosecurity practices has been the recommendation for controlling both NDV and aMPV diseases in the field. In the present study, an NDV based, LaSota strain recombinant vaccine virus expressing the glycoprotein (G) of aMPV subgroup C (aMPV-C) was generated as a bivalent vaccine using a reverse genetics approach. The recombinant virus, rLS/aMPV-C G was slightly attenuated in vivo, yet maintained similar growth dynamics, cytopathic effects, and virus titers in vitro when compared to the parental LaSota virus. Expression of the aMPV G protein in rLS/aMPV-C G-infected cells was detected by immunofluorescence assay. Vaccination of turkeys with one dose of rLS/aMPV-C G induced moderate aMPV-C-specific immune responses and comparable NDV-specific serum antibody responses to a LaSota vaccination control. Partial protection against pathogenic aMPV-C challenge and complete protection against velogenic NDV challenge was conferred. These results suggest that the LaSota recombinant virus is a safe and effective vaccine vector and that expression of the aMPV-C G protein alone is not sufficient to provide full protection against an aMPV-C infection. Expression of other immunogenic protein(s) of the aMPV-C virus alone or in conjunction with the G protein may be needed to induce a stronger protective immunity against the aMPV-C disease. Published by Elsevier Ltd.

  10. Strains of Lentinula edodes suppress growth of phytopathogenic fungi and inhibit Alagoas serotype of vesicular stomatitis virus Linhagens de Lentinula edodes inibem fungos fitopatogênicos e o vírus da estomatite vesicular, sorotipo Alagoas

    Selma H. Sasaki

    2001-03-01

    Full Text Available Four Lentinula edodes strains (Le10, 46, K2, Assai were assessed for their antagonistic effect on four filamentous fungus species of agricultural importance (Helminthosporium euphorbiae, Helminthosporium sp, Fusarium solani and Phomopsis sojae and on Alagoas serotype of Vesicular Stomatitis Virus (VSA. The L. edodes strains studied had variable effects on the filamentous fungi and on VSA. The K2 and Le10 strains were antagonistic on the fungi assessed and the 46 and K2 strains were efficient on the Vesicular Stomatitis Virus. The results widened the list of beneficial effects of L. edodes on the control and prevention of animal pathogenic virus and filamentous fungi.Quatro linhagens de Lentinula edodes (Le10, 46, K2, ASSAI foram avaliadas quanto ao seu efeito inibitório sobre quatro espécies de fungos filamentosos de importância agrícola (Helminthosporium euphorbiae, Helminthosporium sp., Fusarium solani, Phomopsis sojae e sobre o sorotipo Alagoas vírus da estomatite vesicular (VSA. Foi observado que as linhagens de L. edodes estudadas apresentaram variabilidade quanto ao seu efeito, tanto sobre os fungos filamentosos quanto sobre o vírus VSA. As linhagens K2 e Le10 apresentaram-se antagônicas sobre os fungos e as linhagens 46 e K2 foram eficientes na inibição do vírus VSA. Os resultados obtidos permitem ampliar a lista de efeitos benéficos de algumas linhagens de L. edodes no controle e prevenção de vírus patogênicos animais e de fungos filamentosos.

  11. Expression of the Surface Glycoproteins of Human Parainfluenza Virus Type 3 by Bovine Parainfluenza Virus Type 3, a Novel Attenuated Virus Vaccine Vector

    Haller, Aurelia A.; Miller, Tessa; Mitiku, Misrach; Coelingh, Kathleen

    2000-01-01

    Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive...

  12. Glycoprotein from street rabies virus BD06 induces early and robust immune responses when expressed from a non-replicative adenovirus recombinant.

    Wang, Shuchao; Sun, Chenglong; Zhang, Shoufeng; Zhang, Xiaozhuo; Liu, Ye; Wang, Ying; Zhang, Fei; Wu, Xianfu; Hu, Rongliang

    2015-09-01

    The rabies virus (RABV) glycoprotein (G) is responsible for inducing neutralizing antibodies against rabies virus. Development of recombinant vaccines using the G genes from attenuated strains rather than street viruses is a regular practice. In contrast to this scenario, we generated three human adenovirus type 5 recombinants using the G genes from the vaccine strains SRV9 and Flury-LEP, and the street RABV strain BD06 (nrAd5-SRV9-G, nrAd5-Flury-LEP-G, and nrAd5-BD06-G). These recombinants were non-replicative, but could grow up to ~10(8) TCID50/ml in helper HEK293AD cells. Expression of the G protein was verified by immunostaining, quantitative PCR and cytometry. Animal experiments revealed that immunization with nrAd5-BD06-G can induce a higher seroconversion rate, a higher neutralizing antibody level, and a longer survival time after rabies virus challenge in mice when compared with the other two recombinants. Moreover, the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly higher in mice immunized with nrAd5-BD06-G, which might also contribute to the increased protection. These results show that the use of street RABV G for non-replicative systems may be an alternative for developing effective recombinant rabies vaccines.

  13. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120

    Nara, P.L.; Robey, W.G.; Gonda, M.A.; Carter, S.G.; Fischinger, P.J.

    1987-01-01

    The presence of antibody-dependent complement-mediated cytotoxicity (ACC) was assessed in humans and chimpanzees, which are capable of infection with human immunodeficiency virus isolate HTLV-IIIb, and examined in the goat after immunization with the major viral glycoprotein (gp120) of HTLV-IIIb. In infected humans no antibody mediating ACC was observed regardless of the status of disease. Even healthy individuals with high-titer, broadly reactive, neutralizing antibodies has no ACC. In contrast, chimpanzees infected with HTLV-IIIb, from whom virus could be isolated, not only had neutralizing antibody but also antibodies broadly reactive in ACC, even against distantly related human immunodeficiency virus isolates, as well as against their own reisolated virus. In the goat, the gp120 of HTLV-IIIb induced a highly type-specific response as measured by both ACC and flow cytofluorometry of live infected H9 cells. Normal human cells were not subject to ACC by animal anti-HTLV-III gp120-specific sera. Induction of ACC and neutralizing antibody were closely correlated in the animal experimental models but not in humans. The presence of ACC in gp120-inoculated goats and HTLV-III-infected chimpanzees represent a qualitative difference that may be important in the quest for the elicitation of a protective immunity in humans

  14. The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies.

    Brinkmann, Constantin; Nehlmeier, Inga; Walendy-Gnirß, Kerstin; Nehls, Julia; González Hernández, Mariana; Hoffmann, Markus; Qiu, Xiangguo; Takada, Ayato; Schindler, Michael; Pöhlmann, Stefan

    2016-12-15

    The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The

  15. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI

    Johnson, D.C.; Ligas, M.W.; Frame, M.C.; Cross, A.M.; Stow, N.D.

    1988-01-01

    Evidence was recently presented that herpes simplex virus type 1 (HSV-1) immunoglobulin G (IgG) Fc receptors are composed of a complex containing a previously described glycoprotein, gE, and a novel virus-induced polypeptide, provisionally named g70. Using a monoclonal antibody designated 3104, which recognizes g70, in conjunction with antipeptide sera and virus mutants unable to express g70 or gE, the authors have mapped the gene encoding g70 to the US7 open reading frame of HSV-1 adjacent to the gE gene. Therefore, g70 appears to be identical to a recently described polypeptide which was named gI. Under mildly denaturing conditions, monoclonal antibody 3104 precipitated both gI and gE from extracts of HSV-1-infected cells. In addition, rabbit IgG precipitated the gE-gI complex from extracts of cells transfected with a fragment of HSV-1 DNA containing the gI, gE, and US9 genes. Cells infected with mutant viruses which were unable to express gE or gI did not bind radiolabeled IgG; however, cells coinfected with two viruses, one unable to express gE and the other unable to express gI, bound levels of IgG approaching those observed with wild-type viruses. These results further support the hypothesis that gE and gI form a complex which binds IgG by the Fc domain and that neither polypeptide alone can bind IgG

  16. Glycoprotein-G-gene-based molecular and phylogenetic analysis of rabies viruses associated with a large outbreak of bovine rabies in southern Brazil.

    Cargnelutti, Juliana F; de Quadros, João M; Martins, Mathias; Batista, Helena B C R; Weiblen, Rudi; Flores, Eduardo F

    2017-12-01

    A large outbreak of hematophagous-bat-associated bovine rabies has been occurring in Rio Grande do Sul (RS), the southernmost Brazilian state, since 2011, with official estimates exceeding 50,000 cattle deaths. The present article describes a genetic characterization of rabies virus (RABV) recovered from 59 affected cattle and two sheep, from 56 herds in 16 municipalities (2012-2016). Molecular analysis was performed using the nucleotide (nt) and predicted amino acid (aa) sequences of RABV glycoprotein G (G). A high level of nt and aa sequence identity was observed among the examined G sequences, ranging from 98.4 to 100%, and from 97.3 to 100%, respectively. Likewise, high levels of nt and aa sequence identity were observed with bovine (nt, 99.8%; aa, 99.8%) and hematophagous bat (nt, 99.5%; aa, 99.4%) RABV sequences from GenBank, and lower levels were observed with carnivore RABV sequences (nt, 92.8%; aa, 88.1%). Some random mutations were observed in the analyzed sequences, and a few consistent mutations were observed in some sequences belonging to cluster 2, subcluster 2b. The clustering of the sequences was observed in a phylogenetic tree, where two distinct clusters were evident. Cluster 1 comprised RABV sequences covering the entire study period (2012 to 2016), but subclusters corresponding to different years could be identified, indicating virus evolution and/or introduction of new viruses into the population. In some cases, viruses from the same location obtained within a short period grouped into different subclusters, suggesting co-circulation of viruses of different origins. Subcluster segregation was also observed in sequences obtained in the same region during different periods, indicating the involvement of different viruses in the cases at different times. In summary, our results indicate that the outbreaks occurring in RS (2012 to 2016) probably involved RABV of different origins, in addition to a possible evolution of RABV isolates within this

  17. Evaluation of a LaSota strain-based recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subgroup A or B as a bivalent vaccine in turkeys

    To develop a bivalent vaccine candidate, a LaSota strain-based recombinant Newcastle disease virus (NDV) clone expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subgroup A or B was generated using reverse genetics. Vaccination of turkeys with the NDV/aMPV-A G or NDV/aMPV-B G recombinan...

  18. HLA-A*0201-restricted CD8+ cytotoxic T lymphocyte epitopes identified from herpes simplex virus glycoprotein D

    Chentoufi, Aziz Alami; Zhang, Xiuli; Lamberth, Kasper

    2008-01-01

    Evidence obtained from both animal models and humans suggests that T cells specific for HSV-1 and HSV-2 glycoprotein D (gD) contribute to protective immunity against herpes infection. However, knowledge of gD-specific human T cell responses is limited to CD4+ T cell epitopes, with no CD8+ T cell ...... following ocular or genital infection with either HSV-1 or HSV-2. The functional gD CD8+ T cell epitopes described herein are potentially important components of clinical immunotherapeutic and immunoprophylactic herpes vaccines.......Evidence obtained from both animal models and humans suggests that T cells specific for HSV-1 and HSV-2 glycoprotein D (gD) contribute to protective immunity against herpes infection. However, knowledge of gD-specific human T cell responses is limited to CD4+ T cell epitopes, with no CD8+ T cell...

  19. Diagnosis of Herpes Simplex Encephalitis by ELISA Using Antipeptide Antibodies Against Type-Common Epitopes of Glycoprotein B of Herpes Simplex Viruses.

    Bhullar, Shradha S; Chandak, Nitin H; Baheti, Neeraj N; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-01-01

    Herpes simplex encephalitis (HSE) represents one of the most severe infectious diseases of the central nervous system (CNS). As effective antiviral drugs are available, an early, rapid, and reliable diagnosis has become important. The objective of this article was to develop a sensitive ELISA protocol for herpes simplex viruses (HSV) antigen detection and quantitation by assessing the usefulness of antipeptide antibodies against potential peptides of HSV glycoprotein B (gB). A total of 180 cerebrospinal fluid (CSF) samples of HSE and non-HSE patients were analyzed using a panel of antipeptide antibodies against synthetic peptides of HSV glycoprotein gB. The cases of confirmed and suspected HSE showed 80% and 51% positivity for antipeptide against synthetic peptide QLHDLRF and 77% and 53% positivity for antipeptide against synthetic peptide MKALYPLTT, respectively for the detection of HSV antigen in CSF. The concentration of HSV antigen was found to be higher in confirmed HSE as compared to suspected HSE group and the viral load correlated well with antigen concentration obtained using the two antipeptides in CSF of confirmed HSE group. This is the first article describing the use of antibodies obtained against synthetic peptides derived from HSV in diagnostics of HSE using patients' CSF samples.

  20. Mapping regions of Epstein-Barr virus (EBV) glycoprotein B (gB) important for fusion function with gH/gL

    Plate, Aileen E.; Reimer, Jessica J.; Jardetzky, Theodore S.; Longnecker, Richard

    2011-01-01

    Glycoproteins gB and gH/gL are required for entry of Epstein-Barr virus (EBV) into cells, but the role of each glycoprotein and how they function together to mediate fusion is unclear. Analysis of the functional homology of gB from the closely related primate gammaherpesvirus, rhesus lymphocryptovirus (Rh-LCV), showed that EBV gB could not complement Rh gB due to a species-specific dependence between gB and gL. To map domains of gB required for this interaction, we constructed a panel of EBV/Rh gB chimeric proteins. Analysis showed that insertion of Rh gB from residues 456 to 807 restored fusion function of EBV gB with Rh gH/gL, suggesting this region of gB is important for interaction with gH/gL. Split YFP bimolecular complementation (BiFC) provided evidence of an interaction between EBV gB and gH/gL. Together, our results suggest the importance of a gB-gH/gL interaction in EBV-mediated fusion with B cells requiring the region of EBV gB from 456 to 807.

  1. The membrane-proximal tryptophan-rich region in the transmembrane glycoprotein ectodomain of feline immunodeficiency virus is important for cell entry

    Giannecchini, Simone; Bonci, Francesca; Pistello, Mauro; Matteucci, Donatella; Sichi, Olimpia; Rovero, Paolo; Bendinelli, Mauro

    2004-01-01

    The mechanisms whereby feline immunodeficiency virus (FIV) adsorbs and enters into susceptible cells are poorly understood. Here, we investigated the role exerted in such functions by the tryptophan (Trp)-rich motif present membrane-proximally in the ectodomain of the FIV transmembrane glycoprotein. Starting from p34TF10, which encodes the entire genome of FIV Petaluma, we produced 11 mutated clones having the Trp-rich motif scrambled or variously deleted or substituted. All mutated progenies adsorbed normally to cells, but the ones with severe disruptions of the motif failed to generate proviral DNA. In the latter mutants, proviral DNA formation was restored by providing an independent source of intact FIV envelope glycoproteins or by addition of the fusing agent polyethylene glycol, thus clearly indicating that their defect resided primarily at the level of cell entry. In addition, the replication-competent mutants exhibited a generally enhanced susceptibility to selected entry inhibitory synthetic peptides, suggestive of a reduced efficiency of the entry step

  2. Identification of broadly reactive epitopes targeting major glycoproteins of Herpes simplex virus (HSV) 1 and 2 - An immunoinformatics analysis.

    Chauhan, Varun; Goyal, Kapil; Singh, Mini P

    2018-07-01

    Infections due to both HSV-1 and HSV-2 constitute an enormous health burden worldwide. Development of vaccine against herpes infections is a WHO supported public health priority. The viral glycoproteins have always been the major hotspots for vaccine designing. The present study was aimed to identify the conserved T and B cell epitopes in the major glycoproteins of both HSV-1 and HSV-2 via rigorous computational approaches. Identification of promiscuous T cell epitopes is of utmost importance in vaccine designing as such epitopes are capable of binding to several allelic forms of HLA and could generate effective immune response in the host. The criteria designed for identification of T and B cell epitopes was that it should be conserved in both HSV-1 and 2, promiscuous, have high affinity towards HLA alleles, should be located on the surface of glycoproteins and not be present in the glycosylation sites. This study led to the identification of 17 HLA Class II and 26 HLA Class I T cell epitopes, 9 linear and some conformational B cell epitopes. The identified T cell epitopes were further subjected to molecular docking analysis to analyze their binding patterns. Altogether we have identified 4 most promising regions in glycoproteins (2-gB, 1-gD, 1-gH) of HSV-1 and 2 which are promiscuous to HLA Class II alleles and have overlapping HLA Class I and B cell epitopes, which could be very useful in generating both arms of immune response in the host i.e. adaptive as well as humoral immunity. Further the authors propose the cross-validation of the identified epitopes in experimental settings for confirming their immunogenicity to support the present findings. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Secreted herpes simplex virus-2 glycoprotein G modifies NGF-TrkA signaling to attract free nerve endings to the site of infection.

    Jorge Rubén Cabrera

    2015-01-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 and HSV-2 are highly prevalent viruses that cause a variety of diseases, from cold sores to encephalitis. Both viruses establish latency in peripheral neurons but the molecular mechanisms facilitating the infection of neurons are not fully understood. Using surface plasmon resonance and crosslinking assays, we show that glycoprotein G (gG from HSV-2, known to modulate immune mediators (chemokines, also interacts with neurotrophic factors, with high affinity. In our experimental model, HSV-2 secreted gG (SgG2 increases nerve growth factor (NGF-dependent axonal growth of sympathetic neurons ex vivo, and modifies tropomyosin related kinase (TrkA-mediated signaling. SgG2 alters TrkA recruitment to lipid rafts and decreases TrkA internalization. We could show, with microfluidic devices, that SgG2 reduced NGF-induced TrkA retrograde transport. In vivo, both HSV-2 infection and SgG2 expression in mouse hindpaw epidermis enhance axonal growth modifying the termination zone of the NGF-dependent peptidergic free nerve endings. This constitutes, to our knowledge, the discovery of the first viral protein that modulates neurotrophins, an activity that may facilitate HSV-2 infection of neurons. This dual function of the chemokine-binding protein SgG2 uncovers a novel strategy developed by HSV-2 to modulate factors from both the immune and nervous systems.

  4. The impact of envelope glycoprotein cleavage on the antigenicity, infectivity, and neutralization sensitivity of Env-pseudotyped human immunodeficiency virus type 1 particles

    Herrera, Carolina; Klasse, Per Johan; Michael, Elizabeth; Kake, Shivani; Barnes, Kelly; Kibler, Christopher W.; Campbell-Gardener, Lila; Si, Zhihai; Sodroski, Joseph; Moore, John P.; Beddows, Simon

    2005-01-01

    Endoproteolytic processing of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoproteins is an obligate part of the biosynthetic pathway that generates functional, fusion-competent Env complexes, which are then incorporated into infectious virions. We have examined the influence of cleavage on Env-specific antibody reactivity, Env incorporation into pseudovirions, and the infectivity and neutralization sensitivity of Env-pseudotyped viruses. To do so, we have used both incompletely processed wild-type (Wt) Env and engineered, cleavage-defective Env mutants. We find that there is no simple association between antibody reactivity to cell surface-expressed Env, and the ability of the same antibody to neutralize virus pseudotyped with the same Env proteins. One explanation for the absence of such an association is the diverse array of Env species present on the surface of transiently transfected cells. We also confirm that cleavage-defective mutants are antigenically different from Wt Env. These findings have implications for the use of Env binding assays as predictors of neutralizing activity, and for the development of cleavage-defective Env trimers for use as subunit immunogens

  5. Highly efficient retrograde gene transfer into motor neurons by a lentiviral vector pseudotyped with fusion glycoprotein.

    Miyabi Hirano

    Full Text Available The development of gene therapy techniques to introduce transgenes that promote neuronal survival and protection provides effective therapeutic approaches for neurological and neurodegenerative diseases. Intramuscular injection of adenoviral and adeno-associated viral vectors, as well as lentiviral vectors pseudotyped with rabies virus glycoprotein (RV-G, permits gene delivery into motor neurons in animal models for motor neuron diseases. Recently, we developed a vector with highly efficient retrograde gene transfer (HiRet by pseudotyping a human immunodeficiency virus type 1 (HIV-1-based vector with fusion glycoprotein B type (FuG-B or a variant of FuG-B (FuG-B2, in which the cytoplasmic domain of RV-G was replaced by the corresponding part of vesicular stomatitis virus glycoprotein (VSV-G. We have also developed another vector showing neuron-specific retrograde gene transfer (NeuRet with fusion glycoprotein C type, in which the short C-terminal segment of the extracellular domain and transmembrane/cytoplasmic domains of RV-G was substituted with the corresponding regions of VSV-G. These two vectors afford the high efficiency of retrograde gene transfer into different neuronal populations in the brain. Here we investigated the efficiency of the HiRet (with FuG-B2 and NeuRet vectors for retrograde gene transfer into motor neurons in the spinal cord and hindbrain in mice after intramuscular injection and compared it with the efficiency of the RV-G pseudotype of the HIV-1-based vector. The main highlight of our results is that the HiRet vector shows the most efficient retrograde gene transfer into both spinal cord and hindbrain motor neurons, offering its promising use as a gene therapeutic approach for the treatment of motor neuron diseases.

  6. Identification of B- and T-cell epitopes from glycoprotein B of herpes simplex virus 2 and evaluation of their immunogenicity and protection efficacy.

    Liu, Kun; Jiang, Deyu; Zhang, Liangyan; Yao, Zhidong; Chen, Zhongwei; Yu, Sanke; Wang, Xiliang

    2012-04-19

    Herpes simplex virus (HSV) infection is a major health concern worldwide. Evidence obtained from animals and humans indicates that B- and T-cell responses contribute to protective immunity against herpes virus infection. Glycoprotein B is a transmembrane envelope component of HSV-1 and HSV-2, which plays an important role in virion morphogenesis and penetration into host cells, and can induce neutralizing antibodies and protective T-cell response when it is used to immunize humans and animals. However, little is known about gB epitopes that are involved in B- and T-cell activities in vitro and in vivo. Thus, the HSV-2 gB sequence was screened using B- and T-cell epitope prediction systems, and the B-cell regions and the HLA-A*0201-restricted epitopes were identified. These B-cell epitopes elicited high IgG antibody titers in Balb/C mice, with a predominantly IgG1 subclass distribution, which indicated a Th2 bias. Specific IgGs induced by these two epitopes were evaluated as the neutralizing antibodies for virus neutralization. The predicted T-cell epitopes stabilized the HLA-A*0201 molecules on T(2) cells, and stimulate interferon-γ-secreting and cytotoxic CD8(+) T cells. Immunization with the predicted peptides reduced virus shedding and protected against lethal viral challenge in mice. The functional epitopes described herein, both B- and T-cell epitopes, are potentially implicated in vaccine development. Copyright © 2012. Published by Elsevier Ltd.

  7. Comparative efficacy and immunogenicity of replication-defective, recombinant glycoprotein, and DNA vaccines for herpes simplex virus 2 infections in mice and guinea pigs.

    Hoshino, Yo; Dalai, Sarat K; Wang, Kening; Pesnicak, Lesley; Lau, Tsz Y; Knipe, David M; Cohen, Jeffrey I; Straus, Stephen E

    2005-01-01

    Many candidate vaccines are effective in animal models of genital herpes simplex virus type 2 (HSV-2) infection. Among them, clinical trials showed moderate protection from genital disease with recombinant HSV-2 glycoprotein D (gD2) in alum-monophosphoryl lipid A adjuvant only in HSV women seronegative for both HSV-1 and HSV-2, encouraging development of additional vaccine options. Therefore, we undertook direct comparative studies of the prophylactic and therapeutic efficacies and immunogenicities of three different classes of candidate vaccines given in four regimens to two species of animals: recombinant gD2, a plasmid expressing gD2, and dl5-29, a replication-defective strain of HSV-2 with the essential genes UL5 and UL29 deleted. Both dl5-29 and gD2 were highly effective in attenuating acute and recurrent disease and reducing latent viral load, and both were superior to the plasmid vaccine alone or the plasmid vaccine followed by one dose of dl5-29. dl5-29 was also effective in treating established infections. Moreover, latent dl5-29 virus could not be detected by PCR in sacral ganglia from guinea pigs vaccinated intravaginally. Finally, dl5-29 was superior to gD2 in inducing higher neutralizing antibody titers and the more rapid accumulation of HSV-2-specific CD8+ T cells in trigeminal ganglia after challenge with wild-type virus. Given its efficacy, its defectiveness for latency, and its ability to induce rapid, virus-specific CD8(+)-T-cell responses, the dl5-29 vaccine may be a good candidate for early-phase human trials.

  8. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes.

    Awasthi, Sita; Huang, Jialing; Shaw, Carolyn; Friedman, Harvey M

    2014-08-01

    Herpes simplex virus 2 (HSV-2) subunit antigen vaccines targeting virus entry molecules have failed to prevent genital herpes in human trials. Our approach is to include a virus entry molecule and add antigens that block HSV-2 immune evasion. HSV-2 glycoprotein C (gC2) is an immune evasion molecule that inhibits complement. We previously reported that adding gC2 to gD2 improved vaccine efficacy compared to the efficacy of either antigen alone in mice and guinea pigs. Here we demonstrate that HSV-2 glycoprotein E (gE2) functions as an immune evasion molecule by binding the IgG Fc domain. HSV-2 gE2 is synergistic with gC2 in protecting the virus from antibody and complement neutralization. Antibodies produced by immunization with gE2 blocked gE2-mediated IgG Fc binding and cell-to-cell spread. Mice immunized with gE2 were only partially protected against HSV-2 vaginal challenge in mice; however, when gE2 was added to gC2/gD2 to form a trivalent vaccine, neutralizing antibody titers with and without complement were significantly higher than those produced by gD2 alone. Importantly, the trivalent vaccine protected the dorsal root ganglia (DRG) of 32/33 (97%) mice between days 2 and 7 postchallenge, compared with 27/33 (82%) in the gD2 group. The HSV-2 DNA copy number was significantly lower in mice immunized with the trivalent vaccine than in those immunized with gD2 alone. The extent of DRG protection using the trivalent vaccine was better than what we previously reported for gC2/gD2 immunization. Therefore, gE2 is a candidate antigen for inclusion in a multivalent subunit vaccine that attempts to block HSV-2 immune evasion. Herpes simplex virus is the most common cause of genital ulcer disease worldwide. Infection results in emotional distress for infected individuals and their partners, is life threatening for infants exposed to herpes during childbirth, and greatly increases the risk of individuals acquiring and transmitting HIV infection. A vaccine that prevents

  9. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean.

    Takuya Ogata

    Full Text Available Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA and drought tolerance. We therefore used virus-induced gene silencing (VIGS to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B, as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.

  10. A prime-boost approach to HIV preventive vaccine using a recombinant canarypox virus expressing glycoprotein 160 (MN) followed by a recombinant glycoprotein 160 (MN/LAI). The AGIS Group, and l'Agence Nationale de Recherche sur le SIDA.

    Pialoux, G; Excler, J L; Rivière, Y; Gonzalez-Canali, G; Feuillie, V; Coulaud, P; Gluckman, J C; Matthews, T J; Meignier, B; Kieny, M P

    1995-03-01

    The safety and the immunogenicity of a recombinant canarypox live vector expressing the human immunodeficiency virus type 1 (HIV-1) gp160 gene from the MN isolate, ALVAC-HIV (vCP125), followed by booster injections of a soluble recombinant hybrid envelope glycoprotein MN/LAI (rgp160), were evaluated in vaccinia-immune, healthy adults at low risk for acquiring HIV-1 infection. Volunteers (n = 20) received vCP125 (10(6) TCID50) at 0 and 1 month, followed randomly by rgp160 formulated in alum or in Freund's incomplete adjuvant (FIA) at 3 and 6 months. Local and systemic reactions were mild or moderate and resolved within the first 72 hr after immunization. No significant biological changes in routine tests were observed in any volunteer. Two injections of vCP125 did not elicit antibodies. Neutralizing antibodies (NA) against the HIV-1 MN isolate were detected in 65 and 90% of the subjects after the first and the second rgp 160 booster injections, respectively. Six months after the last boost, only 55% were still positive. Seven of 14 sera with the highest NA titers against MN weakly cross-neutralized the HIV-1 SF2 isolate; none had NA against the HIV-1 LAI or against a North American primary isolate. Specific lymphocyte T cell proliferation to rgp 160 was detected in 25% of the subjects after vCP125 and in all subjects after the first booster injection and 12 months after the first injection. An envelope-specific cytotoxic lymphocyte activity was found in 39% of the volunteers and characterized for some of them as CD3+, CD8+, MHC class I restricted. The adjuvant formulation did not influence significantly the immune responses.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga; Luque, Daniel; Terrón, María C.; Calder, Lesley J.; Melero, José A.

    2014-01-01

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV F occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV F , we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV F at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy

  12. Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation

    Niranjan Y. Sardesai

    2013-07-01

    Full Text Available Lassa virus (LASV causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC that expressed the LASV glycoprotein precursor gene (GPC. This plasmid was used to vaccinate guinea pigs (GPs using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected from lethal infection (5/6 with LASV compared to the controls. However, vaccinated GPs experienced transient viremia after challenge, although lower than the mock-vaccinated controls. In a follow-on study, we developed a new device that allowed for both the vaccine and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not detected until after virus challenge, modest neutralizing titers were detected in guinea pigs before challenge, with escalating titers detected after challenge. The vaccinated GPs were never ill and were not viremic at any timepoint. The combination of the codon-optimized vaccine and dermal electroporation delivery is a worthy candidate for further development.

  13. Immune responses of chickens inoculated with a recombinant fowlpox vaccine coexpressing glycoprotein B of infectious laryngotracheitis virus and chicken IL-18.

    Chen, Hong-Ying; Cui, Pei; Cui, Bao-An; Li, He-Ping; Jiao, Xian-Qin; Zheng, Lan-Lan; Cheng, Guo; Chao, An-Jun

    2011-11-01

    Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes severe and economically significant respiratory disease in poultry worldwide. Herein, the immunogenicity of two recombinant fowlpox viruses (rFPV-gB and rFPV-gB/IL18) containing ILTV glycoprotein B (gB) and chicken interleukin-18 (IL-18) were investigated in a challenge model. One-day-old specific-pathogen-free chickens were vaccinated by wing-web puncture with the two rFPVs and challenged with the virulent ILTV CG strain. There were differences in antibody levels elicited by either rFPV-gB/IL18 or rFPV-gB as determined using ELISA. The ratios of CD4(+) to CD8(+) in chickens immunized with rFPV-gB/IL18 were higher (P chickens immunized with rFPV-gB/IL18 were protected (10/10), whereas only eight of 10 of the chickens immunized with the rFPV-gB were protected. The results showed that the protective efficacy of the rFPV-gB vaccine could be enhanced by simultaneous expression of chicken IL-18. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga [Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid (Spain); CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain); Luque, Daniel; Terrón, María C. [Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain); Calder, Lesley J. [National Institute for Medical Research, MRC, Mill Hill, London NW7 1AA (United Kingdom); Melero, José A., E-mail: jmelero@isciii.es [Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid (Spain); CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain)

    2014-07-15

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV{sub F} occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV{sub F}, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV{sub F} at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy.

  15. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......- and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4...

  16. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    - and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4......), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...

  17. Phage-Displayed Peptides Selected to Bind Envelope Glycoprotein Show Antiviral Activity against Dengue Virus Serotype 2

    Carolina de la Guardia

    2017-01-01

    Full Text Available Dengue virus is a growing public health threat that affects hundreds of million peoples every year and leave huge economic and social damage. The virus is transmitted by mosquitoes and the incidence of the disease is increasing, among other causes, due to the geographical expansion of the vector’s range and the lack of effectiveness in public health interventions in most prevalent countries. So far, no highly effective vaccine or antiviral has been developed for this virus. Here we employed phage display technology to identify peptides able to block the DENV2. A random peptide library presented in M13 phages was screened with recombinant dengue envelope and its fragment domain III. After four rounds of panning, several binding peptides were identified, synthesized, and tested against the virus. Three peptides were able to block the infectivity of the virus while not being toxic to the target cells. Blind docking simulations were done to investigate the possible mode of binding, showing that all peptides appear to bind domain III of the protein and may be mostly stabilized by hydrophobic interactions. These results are relevant to the development of novel therapeutics against this important virus.

  18. N-Glycans on the Rift Valley Fever Virus Envelope Glycoproteins Gn and Gc Redundantly Support Viral Infection via DC-SIGN

    Phoenix, Inaia; Nishiyama, Shoko; Lokugamage, Nandadeva; Hill, Terence E.; Huante, Matthew B.; Slack, Olga A.L.; Carpio, Victor H.; Freiberg, Alexander N.; Ikegami, Tetsuro

    2016-01-01

    Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV) glycoproteins (Gn/Gc) encode five putative N-glycan sequons (asparagine (N)–any amino acid (X)–serine (S)/threonine (T)) at positions: N438 (Gn), and N794, N829, N1035, and N1077 (Gc). The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N) to glutamine (Q) mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: “Gc-large” and “Gc-small”, and N1077 was responsible for “Gc-large” band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN. PMID:27223297

  19. Sequence variation of the glycoprotein gene identifies three distinct lineages within field isolates of viral hemorrhagic septicemia virus, a fish rhabdovirus

    Benmansour, A.; Bascuro, B.; Monnier, A.F.; Vende, P.; Winton, J.R.; de Kinkelin, P.

    1997-01-01

    To evaluate the genetic diversity of viral haemorrhagic septicaemia virus (VHSV), the sequence of the glycoprotein genes (G) of 11 North American and European isolates were determined. Comparison with the G protein of representative members of the family Rhabdoviridae suggested that VHSV was a different virus species from infectious haemorrhagic necrosis virus (IHNV) and Hirame rhabdovirus (HIRRV). At a higher taxonomic level, VHSV, IHNV and HIRRV formed a group which was genetically closest to the genus Lyssavirus. Compared with each other, the G genes of VHSV displayed a dissimilar overall genetic diversity which correlated with differences in geographical origin. The multiple sequence alignment of the complete G protein, showed that the divergent positions were not uniformly distributed along the sequence. A central region (amino acid position 245-300) accumulated substitutions and appeared to be highly variable. The genetic heterogeneity within a single isolate was high, with an apparent internal mutation frequency of 1.2 x 10(-3) per nucleotide site, attesting the quasispecies nature of the viral population. The phylogeny separated VHSV strains according to the major geographical area of isolation: genotype I for continental Europe, genotype II for the British Isles, and genotype III for North America. Isolates from continental Europe exhibited the highest genetic variability, with sub-groups correlated partially with the serological classification. Neither neutralizing polyclonal sera, nor monoclonal antibodies, were able to discriminate between the genotypes. The overall structure of the phylogenetic tree suggests that VHSV genetic diversity and evolution fit within the model of random change and positive selection operating on quasispecies.

  20. Host cell tropism mediated by Australian bat lyssavirus envelope glycoproteins.

    Weir, Dawn L; Smith, Ina L; Bossart, Katharine N; Wang, Lin-Fa; Broder, Christopher C

    2013-09-01

    Australian bat lyssavirus (ABLV) is a rhabdovirus of the lyssavirus genus capable of causing fatal rabies-like encephalitis in humans. There are two variants of ABLV, one circulating in pteropid fruit bats and another in insectivorous bats. Three fatal human cases of ABLV infection have been reported with the third case in 2013. Importantly, two equine cases also arose in 2013; the first occurrence of ABLV in a species other than bats or humans. We examined the host cell entry of ABLV, characterizing its tropism and exploring its cross-species transmission potential using maxGFP-encoding recombinant vesicular stomatitis viruses that express ABLV G glycoproteins. Results indicate that the ABLV receptor(s) is conserved but not ubiquitous among mammalian cell lines and that the two ABLV variants can utilize alternate receptors for entry. Proposed rabies virus receptors were not sufficient to permit ABLV entry into resistant cells, suggesting that ABLV utilizes an unknown alternative receptor(s). Published by Elsevier Inc.

  1. Fine definition of the CXCR4-binding region on the V3 loop of feline immunodeficiency virus surface glycoprotein.

    Qiong-Ying Hu

    2010-05-01

    Full Text Available The chemokine receptor CXCR4 is shared by primary and laboratory-adapted strains of feline immunodeficiency virus (FIV for viral entry. Our previous studies implicated a contiguous nine-amino-acid region of the V3 loop of the FIV envelope surface as important in CXCR4 binding and virus entry. The binding is specific for CXCR4 since it can be inhibited by AMD3100, a selective CXCR4 inhibitor. Additional site-directed mutagenesis was used to further reveal the key residues. Binding studies indicated that basic residues R395, K397, R399 as well as N398 are critical for CXCR4 binding. The effect of other amino acid residues on receptor binding depends on the type of amino acid residue substituted. The binding study results were confirmed on human CXCR4-expressing SupT1 cells and correlated with entry efficiency using a virus entry assay. Amino acid residues critical for CXCR4 are not critical for interactions with the primary binding receptor CD134, which has an equivalent role as CD4 for HIV-1 binding. The ELISA results show that W394 and W400 are crucial for the recognition by neutralizing anti-V3 antibodies. Since certain strains of HIV-1 also use CXCR4 as the entry receptor, the findings make the feline model attractive for development of broad-based entry antagonists and for study of the molecular mechanism of receptor/virus interactions.

  2. Effect of monoclonal antibodies on limited proteolysis of native glycoprotein gD of herpes simplex virus type 1

    Eisenberg, R.J.; Long, D.; Pereira, L.; Hampar, B.; Zweig, M.; Cohen, G.H.

    1982-01-01

    We examined the properties of 17 monoclonal antibodies to glycoprotein gD of herpes simplex type 1 (HSV-1) (gD-1) and HSV-2 (gD-2). The antibodies recognized eight separate determinants of gD, based on differences in radioimmuno-precipitation and neutralization assays. The determinants were distributed as follows: three were gD-1 specific, one was gD-2 specific, and four were type common. Several type-specific and type-common determinants appeared to be involved in neutralization. We developed a procedure for examining the effect that binding of monoclonal antibody has on proteolysis of native gD-1 by Staphylococcus aureus protease V8. We showed that several different patterns of protease V8 cleavage were obtained, depending on the monoclonal antibody used. The proteolysis patterns were generally consistent with the immunological groupings. With four groups of antibodies, we found that fragments of gD-1 remained bound to antibody after V8 treatment. A 38,000-dalton fragment remained bound to antibodies in three different groups of monoclonal antibodies. This fragment appeared to contain one type-common and two type-specific determinants. A 12,000-dalton fragment remained bound to antibodies belonging to one type-common group of monoclonal antibodies. Tryptic peptide analysis revealed that the 12,000-dalton fragment represented a portion of the 38,000-dalton fragment and was enriched in a type-common arginine tryptic peptide

  3. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle

    Argaw, Takele; Wilson, Carolyn A., E-mail: carolyn.wilson@fda.hhs.gov

    2015-01-15

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor.

  4. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response

    Wei Jian-Chao

    2011-07-01

    Full Text Available Abstract Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV. Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865 and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716, were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine than that of mono-epitope peptide(rE2-a or rE2-b. Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  5. Participation of 3-O-sulfated heparan sulfates in the protection of macrophages by herpes simplex virus-1 glycoprotein D and cyclophilin B against apoptosis.

    Delos, Maxime; Hellec, Charles; Foulquier, François; Carpentier, Mathieu; Allain, Fabrice; Denys, Agnès

    2017-02-01

    Heparan sulfates (HS) are involved in numerous biological processes, which rely on their ability to interact with a large panel of proteins. Although the reaction of 3-O-sulfation can be catalysed by the largest family of HS sulfotransferases, very few mechanisms have been associated with this modification and to date, only glycoprotein D (gD) of herpes simplex virus-1 (HSV-1 gD) and cyclophilin B (CyPB) have been well-described as ligands for 3- O -sulfated HS. Here, we hypothesized that both ligands could induce the same responses via a mechanism dependent on 3- O -sulfated HS. First, we checked that HSV-1 gD was as efficient as CyPB to induce the activation of the same signalling events in primary macrophages. We then demonstrated that both ligands efficiently reduced staurosporin-induced apoptosis and modulated the expression of apoptotic genes. In addition to 3- O -sulfated HS, HSV-1 gD was reported to interact with other receptors, including herpes virus entry mediator (HVEM), nectin-1 and -2. Thus, we decided to identify the contribution of each binding site in the responses triggered by HSV-1 gD and CyPB. We found that knock-down of 3- O -sulfotransferase 2, which is the main 3- O -sulfated HS-generating enzyme in macrophages, strongly reduced the responses induced by both ligands. Moreover, silencing the expression of HVEM rendered macrophages unresponsive to either HSV-1 gD and CyPB, thus indicating that both proteins induced the same responses by interacting with a complex formed by 3- O -sulfated HS and HVEM. Collectively, our results suggest that HSV-1 might hijack the binding sites for CyPB in order to protect macrophages against apoptosis for efficient infection.

  6. A deletion within glycoprotein L of Marek's disease virus (MDV) field isolates correlates with a decrease in bivalent MDV vaccine efficacy in contact-exposed chickens.

    Tavlarides-Hontz, Phaedra; Kumar, Pankaj M; Amortegui, Juliana Rojas; Osterrieder, Nikolaus; Parcells, Mark S

    2009-06-01

    We examined the functional role of a naturally occurring deletion within the glycoprotein L (gL) gene of Marek's disease virus (MDV) field isolates. We previously showed that this mutation incrementally increased the virulence of an MDV in contact-exposed SPF leghorn chickens, when chickens shedding this virus were co-infected with herpesvirus of turkeys (HVT). In our present study, we examined this mutation using two stocks of the very virulent plus (vv+)MDV strain TK, one of which harbored this deletion (TK1a) while the other did not (TK2a). We report that TK1a replicating in vaccinated chickens overcame bivalent (HVT/SB1) vaccine protection in contact-exposed chickens. Treatment groups exposed to vaccinated chickens inoculated with a 1:1 mix of TK1a and TK2a showed decreased bivalent vaccine efficacy, and this decrease correlated with the prevalence of the gL deletion indicative of TK1a. These results were also found using quadruplicate treatment groups and bivalently vaccinated chickens obtained from a commercial hatchery. As this deletion was found in 25 out of 25 recent field isolates from Delaware, Maryland, North Carolina, Pennsylvania, and Virginia, we concluded that there is a strong selection for this mutation, which appears to have evolved in HVT or bivalently vaccinated chickens. This is the first report of a mutation in a vv+MDV field strain for which a putative biological phenotype has been discerned. Moreover, this mutation in gL has apparently been selected in MDV field isolates through Marek's disease vaccination.

  7. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins.

    Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina

    2015-11-15

    Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Human MHC-II with Shared Epitope Motifs Are Optimal Epstein-Barr Virus Glycoprotein 42 Ligands—Relation to Rheumatoid Arthritis

    Trier, Nicole; Izarzugaza, Jose; Chailyan, Anna; Marcatili, Paolo; Houen, Gunnar

    2018-01-01

    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder of unknown etiology, which is characterized by inflammation in the synovium and joint damage. Although the pathogenesis of RA remains to be determined, a combination of environmental (e.g., viral infections) and genetic factors influence disease onset. Especially genetic factors play a vital role in the onset of disease, as the heritability of RA is 50–60%, with the human leukocyte antigen (HLA) alleles accounting for at least 30% of the overall genetic risk. Some HLA-DR alleles encode a conserved sequence of amino acids, referred to as the shared epitope (SE) structure. By analyzing the structure of a HLA-DR molecule in complex with Epstein-Barr virus (EBV), the SE motif is suggested to play a vital role in the interaction of MHC II with the viral glycoprotein (gp) 42, an essential entry factor for EBV. EBV has been repeatedly linked to RA by several lines of evidence and, based on several findings, we suggest that EBV is able to induce the onset of RA in predisposed SE-positive individuals, by promoting entry of B-cells through direct contact between SE and gp42 in the entry complex. PMID:29361739

  9. Investigation of the function of the putative self-association site of Epstein-Barr virus (EBV) glycoprotein 42 (gp42)

    Rowe, Cynthia L.; Matsuura, Hisae; Jardetzky, Theodore S.; Longnecker, Richard

    2011-01-01

    The Epstein-Barr virus (EBV) glycoprotein 42 (gp42) is a type II membrane protein essential for entry into B cells but inhibits entry into epithelial cells. X-ray crystallography suggests that gp42 may form dimers when bound to human leukocyte antigen (HLA) class II receptor (Mullen et al., 2002) or multimerize when not bound to HLA class II (Kirschner et al., 2009). We investigated this self-association of gp42 using several different approaches. We generated soluble mutants of gp42 containing mutations within the self-association site and found that these mutants have a defect in fusion. The gp42 mutants bound to gH/gL and HLA class II, but were unable to bind wild-type gp42 or a cleavage mutant of gp42. Using purified gp42, gH/gL, and HLA, we found these proteins associate 1:1:1 by gel filtration suggesting that gp42 dimerization or multimerization does not occur or is a transient event undetectable by our methods.

  10. Molecular determinants of the V3 loop of human immunodeficiency virus type 1 glycoprotein gp120 responsible for controlling cell tropism.

    Chavda, S C; Griffin, P; Han-Liu, Z; Keys, B; Vekony, M A; Cann, A J

    1994-11-01

    We and others have identified the major determinant of cell tropism in human immunodeficiency virus type 1 (HIV-1) as the V3 loop of glycoprotein gp120. We have conducted a detailed study of two molecularly cloned isolates of HIV-1, HIVJR-CSF and HIVNL4-3, that differ in their tropism for immortalized CD4+ cell lines, by constructing a series of site-directed mutations within the V3 loop of HIVJR-CSF based on the sequence of HIVNL4-3. The phenotypes of these mutants fall into two classes, those which are viable and those which are not. A spontaneous mutant with significantly altered growth properties was also recovered and found to have an additional single amino acid change in the V3 loop sequence. The carboxy-terminal beta-strand part of the V3 loop is the major determinant of cell tropism. However, the results presented here indicate that the functional role of the V3 loop sequences can only be interpreted properly in the context of the original gp120 backbone from which they were derived. These findings show that over-simplistic interpretation of sequence data derived from unknown mixtures of HIV variants in infected persons may be highly misleading.

  11. Identification of glycosylation sites in the SU component of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A) by mass spectrometry

    Kvaratskhelia, Mamuka; Clark, Patrick K.; Hess, Sonja; Melder, Deborah C.; Federspiel, Mark J.; Hughes, Stephen H.

    2004-01-01

    We used enzymatic digestion and mass spectrometry to identify the sites of glycosylation on the SU component of the Avian Sarcoma/Leukosis virus (ASLV) Envelope Glycoprotein (Subgroup A). The analysis was done with an SU(A)-rIgG fusion protein that binds the cognate receptor (Tva) specifically. PNGase F removed all the carbohydrate from the SU(A)-rIgG fusion. PNGase F is specific for N-linked carbohydrates; this shows that all the carbohydrate on SU(A) is N-linked. There are 10 modified aspargines in SU(A) (N17, N59, N80, N97, N117, N196, N230, N246, N254, and N330). All conform to the consensus site for N-linked glycosylation NXS/T. There is one potential glycosylation site (N236) that is not modified. Removing most of the carbohydrate from the mature SU(A)-rIgG by PNGase F treatment greatly reduces the ability of the protein to bind Tva, suggesting that carbohydrate may play a direct role in receptor binding

  12. Phylogenetic relationships of the glycoprotein gene of bovine ephemeral fever virus isolated from mainland China, Taiwan, Japan, Turkey, Israel and Australia

    Zheng Fuying

    2012-11-01

    Full Text Available Abstract Background The glycoprotein (G gene sequences of bovine ephemeral fever virus (BEFV strains derived from mainland China have not been compared with those of the isolates from other countries or areas. Therefore, the G genes of four BEFV isolates obtained from mainland China were amplified and sequenced. A phylogenetic tree was constructed in order to compare and analyze the genetic relationships of the BEFV isolates derived from mainland China and different countries and areas. Results The complete BEFV G gene was successfully amplified and sequenced from four isolates that originated from mainland China. A total of fifty-one BEFV strains were analyzed based on the G gene sequence and were found to be highly conserved. A phylogenetic tree showed that the isolates were grouped into three distinct lineages depending on their source of origin. The antigenic sites of G1, G2 and G3 are conserved among the isolates, except for several substitutions in a few strains. Conclusions The phylogenetic relationships of the BEFV isolates that originated from mainland China, Taiwan, Japan, Turkey, Israel and Australia were closely related to their source of origin, while the antigenic sites G1, G2 and G3 are conserved among the BEFV isolates used in this work.

  13. Ninety-five- and 25-kDa fragments of the human immunodeficiency virus envelope glycoprotein gp120 bind to the CD4 receptor

    Nygren, A.; Bergman, T.; Matthews, T.; Joernvall, H.; Wigzell, H.

    1988-01-01

    Iodine-125-labeled gp120 (120-kDa envelope glycoprotein) from the BH10 isolate of human immunodeficiency virus is cleaved to a limited extend with the glutamate-specific protease from Staphylococcus aureus. After disulfide bond reduction, fragments with approximate molecular masses of 95, 60, 50, and 25 kDa are produced. Tests for binding to CD4-positive cells show that only two fragments, the 95- and 25- kDa peptides, are observed in cleavage products that retain the selective binding capacity of gp120. Radiosequence analysis of the fragments after sodium dodecyl sulfate/polyacrylamide gel electrophoresis and electroblotting demonstrates that the 95-kDa fragment lacks the N-terminal region of gp120 and starts at position 143 of the mature envelope protein. The 50-kDa fragment starts at the same position. The 25-kDa binding fragment was similarly deduced to be generated as a small fragment from a cleavage site in the C-terminal part of gp120. The identifications of these fragments demonstrate that radiosequence analysis utilizing 125 I-labeled tyrosine residues can function as a useful and reliable method for small-scale determination of cleavage sites in proteins. Combined, the data suggest domain-like subdivisions of gp120, define at least two intervening segments especially sensitive to proteolytic cleavage, and demonstrate the presence of a functional region for receptor binding in the C-terminal part of the molecule

  14. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  15. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes.

    Konstantin A Tsetsarkin

    2009-08-01

    Full Text Available Between 2005 and 2007 Chikungunya virus (CHIKV caused its largest outbreak/epidemic in documented history. An unusual feature of this epidemic is the involvement of Ae. albopictus as a principal vector. Previously we have demonstrated that a single mutation E1-A226V significantly changed the ability of the virus to infect and be transmitted by this vector when expressed in the background of well characterized CHIKV strains LR2006 OPY1 and 37997. However, in the current study we demonstrate that introduction of the E1-A226V mutation into the background of an infectious clone derived from the Ag41855 strain (isolated in Uganda in 1982 does not significantly increase infectivity for Ae. albopictus. In order to elucidate the genetic determinants that affect CHIKV sensitivity to the E1-A226V mutation in Ae. albopictus, the genomes of the LR2006 OPY1 and Ag41855 strains were used for construction of chimeric viruses and viruses with a specific combination of point mutations at selected positions. Based upon the midgut infection rates of the derived viruses in Ae. albopictus and Ae. aegypti mosquitoes, a critical role of the mutations at positions E2-60 and E2-211 on vector infection was revealed. The E2-G60D mutation was an important determinant of CHIKV infectivity for both Ae. albopictus and Ae. aegypti, but only moderately modulated the effect of the E1-A226V mutation in Ae. albopictus. However, the effect of the E2-I211T mutation with respect to mosquito infections was much more specific, strongly modifying the effect of the E1-A226V mutation in Ae. albopictus. In contrast, CHIKV infectivity for Ae. aegypti was not influenced by the E2-1211T mutation. The occurrence of the E2-60G and E2-211I residues among CHIKV isolates was analyzed, revealing a high prevalence of E2-211I among strains belonging to the Eastern/Central/South African (ECSA clade. This suggests that the E2-211I might be important for adaptation of CHIKV to some particular conditions

  16. Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses

    Hu, H.-P.; Hsieh, S.-C.; King, C.-C.; Wang, W.-K.

    2007-01-01

    In this study, we successfully established retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope (PrM/E) proteins of each of the four serotypes of dengue viruses, which caused the most important arboviral diseases in this century. Co-sedimentation of the dengue E protein and HIV-1 core proteins by sucrose gradient analysis of the pseudotype reporter virus of dengue virus type 2, D2(HIVluc), and detection of HIV-1 core proteins by immunoprecipitation with anti-E monoclonal antibody suggested that dengue viral proteins were incorporated into the pseudotype viral particles. The infectivity in target cells, as assessed by the luciferase activity, can be inhibited by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry. Amino acid substitutions of the leucine at position 107, a critical residue at the fusion loop of E protein, with lysine resulted in severe impairment in infectivity, suggesting that entry of the pseudotype reporter virus is mediated through the fusogenic properties of E protein. With more and more dengue viral sequences available from different outbreaks worldwide, this sensitive and convenient tool has the potential to facilitate molecular characterization of the PrM/E proteins of dengue field isolates

  17. Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein (γ penetrene

    Garry Robert F

    2009-09-01

    Full Text Available Abstract Background Borna disease virus (BDV is the type member of the Bornaviridae, a family of viruses that induce often fatal neurological diseases in horses, sheep and other animals, and have been proposed to have roles in certain psychiatric diseases of humans. The BDV glycoprotein (G is an extensively glycosylated protein that migrates with an apparent molecular mass of 84,000 to 94,000 kilodaltons (kDa. BDV G is post-translationally cleaved by the cellular subtilisin-like protease furin into two subunits, a 41 kDa amino terminal protein GP1 and a 43 kDa carboxyl terminal protein GP2. Results Class III viral fusion proteins (VFP encoded by members of the Rhabdoviridae, Herpesviridae and Baculoviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Proteomics computational analyses suggest that the structural/functional motifs that characterize class III VFP are located collinearly in BDV G. Structural models were established for BDV G based on the post-fusion structure of a prototypic class III VFP, vesicular stomatitis virus glycoprotein (VSV G. Conclusion These results suggest that G encoded by members of the Bornavirdae are class III VFPs (gamma-penetrenes.

  18. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells.

    Meron Mengistu

    2015-03-01

    Full Text Available The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step

  19. Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering

    Egorov, V. V.; Gorshkov, A. N.; Murugova, T. N.; Vasin, A. V.; Lebedev, D. V.; Isaev-Ivanov, V. V.; Kiselev, O. I.

    2016-01-01

    Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551–560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are able to influence the protein oligomerization are discussed

  20. Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering

    Egorov, V. V., E-mail: vlaegur@omrb.pnpi.spb.ru [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Gorshkov, A. N. [Ministry of Health of the Russian Federation, Research Institute of Influenza (Russian Federation); Murugova, T. N. [Joint Institute for Nuclear Research (Russian Federation); Vasin, A. V. [Ministry of Health of the Russian Federation, Research Institute of Influenza (Russian Federation); Lebedev, D. V.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kiselev, O. I. [Ministry of Health of the Russian Federation, Research Institute of Influenza (Russian Federation)

    2016-01-15

    Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551–560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are able to influence the protein oligomerization are discussed.

  1. Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering

    Egorov, V. V.; Gorshkov, A. N.; Murugova, T. N.; Vasin, A. V.; Lebedev, D. V.; Isaev-Ivanov, V. V.; Kiselev, O. I.

    2016-01-01

    Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551-560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are able to influence the protein oligomerization are discussed.

  2. Development and immunogenicity of recombinant GapA(+) Mycoplasma gallisepticum vaccine strain ts-11 expressing infectious bronchitis virus-S1 glycoprotein and chicken interleukin-6.

    Shil, Pollob K; Kanci, Anna; Browning, Glenn F; Markham, Philip F

    2011-04-12

    Mycoplasma gallisepticum (MG) is a major pathogen of poultry that causes chronic respiratory disease in chickens and infectious sinusitis in turkeys. A live attenuated vaccine, ts-11, has been used for the control of MG in several countries. The efficacy of this vaccine is highly dose dependent and the flock antibody response is weak. To improve the functionality of the vaccine and investigate its potential as a delivery vector for foreign antigens and immunomodulatory proteins, we developed a derivative of ts-11 expressing infectious bronchitis virus-S1 glycoprotein (IBV-S1) and releasing chicken interleukin-6 into the extracellular milieu (MG ts-11 C3 (+CS)) using a transposon-based delivery vector. Following administration of MG ts-11 C3 (+CS) to chickens by eye-drop, an antibody response to MG and IBV-S1, as determined by the rapid serum agglutination test (RSA) and Western blotting, respectively, could be detected. Birds inoculated with the recombinant vaccine had significantly enhanced weight gain and were partially protected against damage by pathogenic IBV. These results indicate that the ChIL-6 released by MG ts-11 C3 (+CS) may have had a non-specific effect on growth rate. They also suggest that ts-11 is a promising vaccine vector, capable of delivering heterologous protective antigens, and may also provide non-specific benefits when engineered to express immunomodulatory proteins. With some improvements in the expression system, it could be used to induce a targeted immune response against specific mucosal pathogens, and co-expression of several antigens would allow development of a novel multivalent vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Dominant-negative effect of hetero-oligomerization on the function of the human immunodeficiency virus type 1 envelope glycoprotein complex

    Herrera, Carolina; Klasse, Per Johan; Kibler, Christopher W.; Michael, Elizabeth; Moore, John P.; Beddows, Simon

    2006-01-01

    The human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein forms trimers that mediate interactions with the CD4 receptor and a co-receptor on the target cell surface, thereby triggering viral fusion with the cell membrane. Cleavage of Env into its surface, gp120, and transmembrane, gp41, moieties is necessary for activation of its fusogenicity. Here, we produced pseudoviruses with phenotypically mixed wild-type (Wt) and mutant, cleavage-incompetent Env in order to quantify the effects of incorporating uncleaved Env on virion infectivity, antigenicity and neutralization sensitivity. We modeled the relative infectivity of three such phenotypically mixed viral strains, JR-FL, HXBc2 and a derivative of the latter, 3.2P, as a function of the relative amount of Wt Env. The data were fit very closely (R 2 > 0.99) by models which assumed that only Wt homotrimers were functional, with different approximate thresholds of critical numbers of functional trimers per virion for the three strains. We also produced 3.2P pseudoviruses containing both a cleavage-competent Env that is defective for binding the neutralizing monoclonal antibody (NAb) 2G12, and a cleavage-incompetent Env that binds 2G12. The 2G12 NAb was not able to reduce the infectivity of these pseudoviruses detectably. Their neutralization by the CD4-binding site-directed agents CD4-IgG2 and NAb b12 was also unaffected by 2G12 binding to uncleaved Env. These results further strengthen the conclusion that only homotrimers consisting of cleaved Env are functional. They also imply that the function of a trimer is unaffected sterically by the binding of an antibody to an adjacent trimer

  4. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.

    Ruben M Markosyan

    2016-01-01

    Full Text Available Ebola virus (EBOV is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.

  5. Adjuvants and the vaccine response to the DS-Cav1-stabilized fusion glycoprotein of respiratory syncytial virus.

    Mallika Sastry

    Full Text Available Appropriate adjuvant selection may be essential to optimize the potency and to tailor the immune response of subunit vaccines. To induce protective responses against respiratory syncytial virus (RSV-a highly prevalent childhood pathogen without a licensed vaccine-we previously engineered a pre-fusion-stabilized trimeric RSV F (pre-F "DS-Cav1" immunogen, which induced high titer RSV-neutralizing antibodies, in mice and non-human primates, when formulated with adjuvants Poly (I:C and Poly (IC:LC, respectively. To assess the impact of different adjuvants, here we formulated RSV F DS-Cav1 with multiple adjuvants and assessed immune responses. Very high RSV-neutralizing antibody responses (19,006 EC50 were observed in naïve mice immunized with 2 doses of DS-Cav1 adjuvanted with Sigma adjuvant system (SAS, an oil-in-water adjuvant, plus Carbopol; high responses (3658-7108 were observed with DS-Cav1 adjuvanted with Alum, SAS alone, Adjuplex, Poly (I:C and Poly (IC:LC; and moderate responses (1251-2129 were observed with DS-Cav1 adjuvanted with the TLR4 agonist MPLA, Alum plus MPLA or AddaVax. In contrast, DS-Cav1 without adjuvant induced low-level responses (6. A balanced IgG1 and IgG2a (Th2/Th1 immune response was elicited in most of the high to very high response groups (all but Alum and Adjuplex. We also tested the immune response induced by DS-Cav1 in elderly mice with pre-existing DS-Cav1 immunity; we observed that DS-Cav1 adjuvanted with SAS plus Carbopol boosted the response 2-3-fold, whereas DS-Cav1 adjuvanted with alum boosted the response 5-fold. Finally, we tested whether a mixture of ISA 71 VG and Carbopol would enhanced the antibody response in DS-Cav1 immunized calves. While pre-F-stabilized bovine RSV F induced very high titers in mice when adjuvanted with SAS plus Carbopol, the addition of Carbopol to ISA 71 VG did not enhance immune responses in calves. The vaccine response to pre-F-stabilized RSV F is augmented by adjuvant, but the

  6. O-linked glycosylation of the mucin domain of the herpes simplex virus type 1-specific glycoprotein gC-1 is temporally regulated in a seed-and-spread manner

    Nordén, Rickard; Halim, Adnan; Nyström, Kristina

    2015-01-01

    The herpes simplex virus type 1 (HSV-1) glycoprotein gC-1, participating in viral receptor interactions and immunity interference, harbors a mucin-like domain with multiple clustered O-linked glycans. Using HSV-1-infected diploid human fibroblasts, an authentic target for HSV-1 infection...... of in all 11 GalNAc residues to selected Ser and Thr residues of the Thr-76-Lys-107 stretch of the mucin domain. The expression patterns of GalNAc transferases in the infected cells suggested that initial additions of GalNAc were carried out by initiating GalNAc transferases, in particular GalNAc-T2...

  7. Vesicular stomatitis virus (indiana 2 serotype as experimental model to study acute encephalitis – morphological features Vírus da estomatite vesicular (sorotipo indiana 2 como modelo experimental para o estudo de encefalite aguda – aspectos morfológicos

    Florêncio Figueiredo Cavalcanti Neto

    2003-10-01

    Full Text Available The Vesicular Stomatitis Virus (VSV is a Vesiculovirus of the Rhabdoviridae family that infects mammals and causes vesicular lesions similar to those of foot-and-mouth disease. VSV experimental encephalitis can be induced in rodents and the symptoms are similar to those observed in rabies. However, the lesions observed in the animals´ encephalon are different. Inclusion bodies are not observed. There is necrosis, particularly in the region of the olfactory bulb, and, in some cases, ventriculitis. It was observed that the time pattern of VSV dissemination and the morphological aspects of the lesions are similar to those described in literature. The virus seems to be disseminated through the brain ventricles, being multiplied in the ependyma cells and in the neurons, besides using retrograde and anterograde transport. It was noticed that, due to the facility of virus manipulation, this experimental model has been used in innumerable research studies in several fields. If, on the one hand there are plenty of reports on the infection pathogenesis, on the other hand there are many gaps involving, for instance, aspects about virus transmission, recovery of infected animals and participation of glial cells in the acute as well as in the recovery phases.   O vírus da estomatite vesicular (VEV é um Vesiculovírus da família Rhabdoviridae que infecta mamíferos e causa lesões vesiculares semelhantes às observadas na febre aftosa. A encefalite experimental pode ser induzida em roedores e os sintomas são semelhantes aos observados na raiva; entretanto, as lesões observadas no encéfalo dos animais são diferentes. Corpúsculos de inclusão não são observados, há necrose especialmente da região do bulbo olfatório e em alguns casos, ventriculite. Observamos que o padrão temporal de disseminação do VEV e os aspectos morfológicos das lesões são similares aos descritos na literatura. O vírus parece se disseminar através dos ventr

  8. Vaccine-induced antibodies to herpes simplex virus glycoprotein D epitopes involved in virus entry and cell-to-cell spread correlate with protection against genital disease in guinea pigs.

    Hook, Lauren M; Cairns, Tina M; Awasthi, Sita; Brooks, Benjamin D; Ditto, Noah T; Eisenberg, Roselyn J; Cohen, Gary H; Friedman, Harvey M

    2018-05-01

    Herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit antigen is included in many preclinical candidate vaccines. The rationale for including gD2 is to produce antibodies that block crucial gD2 epitopes involved in virus entry and cell-to-cell spread. HSV-2 gD2 was the only antigen in the Herpevac Trial for Women that protected against HSV-1 genital infection but not HSV-2. In that trial, a correlation was detected between gD2 ELISA titers and protection against HSV-1, supporting the importance of antibodies. A possible explanation for the lack of protection against HSV-2 was that HSV-2 neutralization titers were low, four-fold lower than to HSV-1. Here, we evaluated neutralization titers and epitope-specific antibody responses to crucial gD2 epitopes involved in virus entry and cell-to-cell spread as correlates of immune protection against genital lesions in immunized guinea pigs. We detected a strong correlation between neutralizing antibodies and protection against genital disease. We used a high throughput biosensor competition assay to measure epitope-specific responses to seven crucial gD2 linear and conformational epitopes involved in virus entry and spread. Some animals produced antibodies to most crucial epitopes while others produced antibodies to few. The number of epitopes recognized by guinea pig immune serum correlated with protection against genital lesions. We confirmed the importance of antibodies to each crucial epitope using monoclonal antibody passive transfer that improved survival and reduced genital disease in mice after HSV-2 genital challenge. We re-evaluated our prior study of epitope-specific antibody responses in women in the Herpevac Trial. Humans produced antibodies that blocked significantly fewer crucial gD2 epitopes than guinea pigs, and antibody responses in humans to some linear epitopes were virtually absent. Neutralizing antibody titers and epitope-specific antibody responses are important immune parameters to

  9. The surface glycoprotein of a natural feline leukemia virus subgroup A variant, FeLV-945, as a determinant of disease outcome.

    Bolin, Lisa L; Ahmad, Shamim; Levy, Laura S

    2011-10-15

    Feline leukemia virus (FeLV) is a natural retrovirus of domestic cats associated with degenerative, proliferative and malignant diseases. Studies of FeLV infection in a cohort of naturally infected cats were undertaken to examine FeLV variation, the selective pressures operative in FeLV infection that lead to predominance of natural variants, and the consequences for infection and disease progression. A unique variant, designated FeLV-945, was identified as the predominant isolate in the cohort and was associated with non-T-cell diseases including multicentric lymphoma. FeLV-945 was assigned to the FeLV-A subgroup based on sequence analysis and receptor utilization, but was shown to differ in sequence from a prototype member of FeLV-A, designated FeLV-A/61E, in the long terminal repeat (LTR) and the surface glycoprotein gene (SU). A unique sequence motif in the FeLV-945 LTR was shown to function as a transcriptional enhancer and to confer a replicative advantage. The FeLV-945 SU protein was observed to differ in sequence as compared to FeLV-A/61E within functional domains known to determine receptor selection and binding. Experimental infection of newborn cats was performed using wild type FeLV-A/61E or recombinant FeLV-A/61E in which the LTR (61E/945L) or LTR and SU (61E/945SL) were exchanged for that of FeLV-945. Infection with either FeLV-A/61E or 61E/945L resulted in T-cell lymphoma of the thymus, although 61E/945L caused disease significantly more rapidly. In contrast, infection with 61E/945SL resulted in the rapid induction of a multicentric lymphoma of B-cell origin, thus recapitulating the outcome of natural infection and implicating FeLV-945 SU as a determinant of disease outcome. Recombinant FeLV-B was detected infrequently and at low levels in multicentric lymphomas, and was thereby not implicated in disease induction. Preliminary studies of receptor interaction indicated that virus particles bearing FeLV-945 SU bind to the FeLV-A receptor more

  10. Comparison of the antiviral potential among soluble forms of herpes simplex virus type-2 glycoprotein D receptors, herpes virus entry mediator A, nectin-1 and nectin-2, in transgenic mice.

    Fujimoto, Yoshikazu; Tomioka, Yukiko; Ozaki, Kinuyo; Takeda, Keiko; Suyama, Haruka; Yamamoto, Sayo; Takakuwa, Hiroki; Morimatsu, Masami; Uede, Toshimitsu; Ono, Etsuro

    2017-07-01

    Herpesvirus entry mediator A (HVEM), nectin-1 and nectin-2 are cellular receptors of glycoprotein D (gD) of herpes simplex virus type-2 (HSV-2). It has been shown that soluble forms of HSV gD receptors have the antiviral potential in cultured cells and transgenic mice. Here, to compare antiviral potential of soluble forms of HVEM, nectin-1 and nectin-2 against HSV-2 infections in vivo, transgenic mice expressing fusion proteins consisting of the entire ectodomain of HVEM, nectin-1 or nectin-2 and the Fc portion of human IgG (HVEMIg, nectin-1Ig and nectin-2Ig, respectively) were intraperitoneally infected with HSV-2. In the infection with 3 MLD50 (50 % mouse lethal dose), effective resistance was not observed in transgenic mice expressing nectin-2Ig. In a transgenic mouse line with high expression of nectin-1Ig, significant protection from the infection with 30 and 300 MLD50 was observed (survival rate of 100 and 71 %, respectively). On the other hand, transgenic mice expressing HVEMIg showed a complete resistance to the lethal infection even with 300 MLD50 (survival rate of 100 %). These results demonstrated that HVEMIg could exert effective antiviral activities against HSV-2 infections in vivo as compared with other soluble forms of HSV gD receptors.

  11. Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb.

    Wu, Bing-Jie; Chow, Wah Soon; Liu, Yu-Jun; Shi, Lei; Jiang, Chuang-Dao

    2014-12-01

    During leaf development, the increase in stomatal conductance cannot meet photosynthetic demand for CO2, thus leading to stomatal limitation of photosynthesis (Ls). Considering the crucial influences of stomatal development on stomatal conductance, we speculated whether stomatal development limits photosynthesis to some extent. To test this hypothesis, stomatal development, stomatal conductance and photosynthesis were carefully studied in both Syringa oblata (normal greening species) and Euonymus japonicus Thunb (delayed greening species). Our results show that the size of stomata increased gradually with leaf expansion, resulting in increased stomatal conductance up to the time of full leaf expansion. During this process, photosynthesis also increased steadily. Compared to that in S. oblata, the development of chloroplasts in E. japonicus Thunb was obviously delayed, leading to a delay in the improvement of photosynthetic capacity. Further analysis revealed that before full leaf expansion, stomatal limitation increased rapidly in both S. oblata and E. japonicus Thunb; after full leaf expansion, stomatal limitation continually increased in E. japonicus Thunb. Accordingly, we suggested that the enhancement of photosynthetic capacity is the main factor leading to stomatal limitation during leaf development but that stomatal development can alleviate stomatal limitation with the increase of photosynthesis by controlling gas exchange. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses.

    Jeffrey W Koehler

    Full Text Available For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III based on the protein sequence and structure. For Rift Valley fever virus (RVFV, the glycoprotein Gc (Class II fusion protein mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus, Class II (Andes virus, or Class III (vesicular stomatitis virus fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.

  13. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    Du, Yijun [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan (China); Pattnaik, Asit K. [School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900 (United States); Song, Cheng [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Yoo, Dongwan, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Li, Gang, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing (China)

    2012-03-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 ({omega} - 2, where {omega} is the GPI moiety at E160), P159 ({omega} - 1), and M162 ({omega} + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide-anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  14. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    Du, Yijun; Pattnaik, Asit K.; Song, Cheng; Yoo, Dongwan; Li, Gang

    2012-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 (ω − 2, where ω is the GPI moiety at E160), P159 (ω − 1), and M162 (ω + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide–anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  15. Replacement of glycoprotein B gene in the Herpes simplex virus type 1 strain ANGpath DNA that originating from non-pathogenic strain KOS reduces the pathogenicity of recombinant virus

    Kostal, M.; Bacik, I.; Rajcani, J.; Kaerner, H.C.

    1994-01-01

    Herpes simplex virus type-1 (HSV-1) strain ANGpath and its recombinants, in which the 8.1 kbp BamHI G restriction fragment (0.345-0.399) containing the glycoprotein B (gB path ) gene (UL27) or its sub-fragments-coding either for cytoplasmic or surface domain of gB-had been replaced with the corresponding fragments from non-pathogenic KOS virus DNA (gB KOS ), were tested for their pathogenicity for DBA/2 mice and rabbits. The recombinant ANGpath/B6 KOS prepared by transferring the 2.7 kbp SstI-SstI sub-fragment (0.351-0.368) of the BamHI G KOS fragment still had the original sequence of ANGpath DNA coding for the syn 3 marker in the cytoplasmic domain of gB and was pathogenic for mice as well as for rabbits. Virological and immuno-histological studies in DBA/2 mice infected with the latter pathogenic recombinant and with ANGpath showed the presence of infectious virus and viral antigen at inoculation site (epidermis, subcutaneous connective tissue and striated muscle in the area of right lip), in homo-lateral trigeminal nerve and ganglion, brain stem, midbrain, thalamic and hypothalamic nuclei. In contrast, non-pathogenic recombinants ANGpath/syn + B6 KOS (prepared by transferring the whole BamHI G KOS fragment) and ANGpath/syn +KOS (prepared by transferring the 0.8 kbp BamHI-SstI sub-fragment of the BamHI G KOS fragment) showed limited hematogenous and neural spread, but no evidence of replication in CNS; thus, their behaviour resembled that of the wild type strain KOS. The recombinant ANGpath/syn +KOS , which was not pathogenic for mice, still remained pathogenic for rabbits, a phenomenon indicating the presence of an additional locus in the gB molecule participating on virulence. Sequencing the 1478 bp SstI-SstI sub-fragment of the BamHI G path fragment (nt 53,348 - 54,826 of UL segment) showed the presence of at least 3 mutations as compared to the KOS sequence, from which the change of cytosine at nt 54,2251 altered the codon for arginine to that histidine

  16. Bioinformatics Analysis of Envelope Glycoprotein E epitopes of ...

    The E glycoprotein of dengue virus is responsible for the viral binding to the receptor. The crystal structure of envelope glycoprotein has already been determined. However, where the well-defined Bcell and T-cell epitopes are located is still a question. Because of the large variations among the four dengue genotypes, it is ...

  17. MicroRNA expression in rainbow trout (Oncorhynchus mykiss) vaccinated with a DNA vaccine encoding the glycoprotein gene of Viral hemorrhagic septicemia virus

    Bela-Ong, Dennis; Schyth, Brian Dall; Lorenzen, Niels

    particularly to sea-farmed rainbow trout and thus necessitates strategies to mitigate potential disease outbreaks. A DNA vaccine encoding the glycoprotein gene of VHSV has been developed and shown to elicit protective immune responses in laboratory trials. It is important to identify key factors as biomarkers...

  18. Phenotypic and Functional Characterization of Herpes Simplex Virus Glycoprotein B Epitope-Specific Effector and Memory CD8+ T Cells from Symptomatic and Asymptomatic Individuals with Ocular Herpes

    Khan, Arif A.; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P.; Pham, Thanh T.; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M.; Nesburn, Anthony B.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8+ T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8+ T cells play a key role in the “natural” protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8+ T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow). In contrast, SYMP patients had frequent less-differentiated central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8+ T cells which responded mainly to gB342–350 and gB561–569 “ASYMP” epitopes, and simultaneously produced IFN-γ, CD107a/b, granzyme B, and perforin. In contrast, effector CD8+ T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17–25 and gB183–191 “SYMP” epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong CD8+ T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8+ TEM cells in protection against herpes and should be considered in the development of an effective vaccine. IMPORTANCE A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8+ T cells (TEM

  19. Neutralization of feline immunodeficiency virus by polyclonal cat antibody: Simultaneous involvement of hypervariable regions 4 and 5 of the surface glycoprotein.

    C.H.J. Siebelink (Kees); W. Huisman (Willem); J.A. Karlas (Jos); G.F. Rimmelzwaan (Guus); M.L. Bosch (Marnix); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractSites involved in antibody-mediated neutralization of feline immunodeficiency virus were mapped by reciprocal exchange of envelope fragments or amino acids between molecular clones of feline immunodeficiency virus with different susceptibilities to neutralization by a polyclonal cat

  20. Epstein-Barr virus-negative aggressive natural killer-cell leukaemia with high P-glycoprotein activity and phosphorylated extracellular signal-regulated protein kinases 1 and 2

    Sanja Perkovic

    2012-09-01

    Full Text Available Aggressive natural killer-cell leukaemia (ANKL is a rare type of disease with fulminant course and poor outcome. The disease is more prevalent among Asians than in other ethnic groups and shows strong association with Epstein-Barr virus (EBV and P-glycoprotein (P-gp expression associated with multidrug resistance. Here we present a case of a 47 year old Caucasian female with a prior medical history of azathioprine treated ulcerative colitis who developed EBV-negative form of ANKL. The patient presented with hepatosplenomegaly, fever and nausea with peripheral blood and bone marrow infiltration with up to 70% of atypical lymphoid cells positive for cCD3, CD2, CD7, CD56, CD38, CD45, TIA1 and granzyme B, and negative for sCD3, CD4, CD5, CD8, CD34 and CD123 indicative of ANKL. Neoplastic CD56+ NK-cells showed high level of P-glycoprotein expression and activity, but also strong expression of phosphorylated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2 MAP kinase. The patient was treated with an intensive polychemotherapy regimen designed for treatment of acute lymphoblastic leukaemia, but one month after admission developed sepsis, coma and died of cardiorespiratory arrest. We present additional evidence that, except for the immunophenotype, leukaemic NK-cells resemble normal NK-cells in terms of P-gp functional capacity and expression of phosphorylated ERK1/2 signalling molecule. In that sense drugs that block P-glycoprotein activity and activated signalling pathways might represent new means for targeted therapy.

  1. Preliminary mapping of non-conserved epitopes on envelope glycoprotein E2 of bovine viral diarrhea virus type 1 and 2

    Jelsma, H.; Loeffen, W.L.A.; Beuningen, van A.R.; Rijn, van P.A.

    2013-01-01

    Bovine viral diarrhea virus (BVDV) belongs together with Classical swine fever virus (CSFV) and Border disease virus (BDV) to the genus Pestivirus in the Flaviviridae family. BVDV has been subdivided into two different species, BVDV1 and BVDV2 based on phylogenetic analysis. Subsequent

  2. Processing, fusogenicity, virion incorporation and CXCR4-binding activity of a feline immunodeficiency virus envelope glycoprotein lacking the two conserved N-glycosylation sites at the C-terminus of the V3 domain.

    González, Silvia A; Affranchino, José L

    2016-07-01

    The process of feline immunodeficiency virus (FIV) entry into its target cells is initiated by the association of the surface (SU) subunit of the viral envelope glycoprotein (Env) with the cellular receptors CD134 and CXCR4. This event is followed by the fusion of the viral and cellular membranes, which is mediated by the transmembrane (TM) subunit of Env. We and others have previously demonstrated that the V3 domain of the SU subunit of Env is essential for CXCR4 binding. Of note, there are two contiguous and highly conserved potential N-glycosylation sites ((418)NST(420) and (422)NLT(424)) located at the C-terminal side of the V3 domain. We therefore decided to study the relevance for Env functions of these N-glycosylation motifs and found that disruption of both of them by introducing the N418Q/N422Q double amino acid substitution drastically impairs Env processing into the SU and TM subunits. Moreover, the simultaneous mutation of these N-glycosylation sites prevents Env incorporation into virions and Env-mediated cell-to-cell fusion. Notably, a recombinant soluble version of the SU glycoprotein carrying the double amino acid replacement N418Q/N422Q at the V3 C-terminal side binds to CXCR4 with an efficiency similar to that of wild-type SU.

  3. Old and New World arenaviruses share a highly conserved epitope in the fusion domain of the glycoprotein 2, which is recognized by Lassa virus-specific human CD4+ T-cell clones

    Meulen, Jan ter; Badusche, Marlis; Satoguina, Judith; Strecker, Thomas; Lenz, Oliver; Loeliger, Cornelius; Sakho, Mohamed; Koulemou, Kekoura; Koivogui, Lamine; Hoerauf, Achim

    2004-01-01

    Data from human studies and animal experiments indicate a dominant role of T-cells over antibodies in controlling acute Lassa virus infection and providing immunity to reinfection. Knowledge of the epitopes recognized by T-cells may therefore be crucial to the development of a recombinant Lassa virus vaccine. In order to study human T-cell reactivity to the most conserved structural protein of Lassa virus, the glycoprotein 2 (GP2), seven GP2-specific CD4+ T-cell clones (TCCs) were generated from the lymphocytes of a Lassa antibody positive individual. All TCC displayed high specific proliferation, showed DR-restriction, and produced IFN-γ upon stimulation with recombinant GP2. The epitope of four of the clones was localized to a short stretch of 13 amino acids located in the N-terminal part of GP2 (aa 289-301, numbering according to sequence of GPC). This epitope is conserved in all strains of Lassa virus and lymphocytic choriomeningitis virus (LCMV), shows >90% similarity in all New World arenaviruses of clade B, and overlaps with the proposed fusion domain of GP2. Peptides with conservative aa exchanges, as they naturally occur in the epitope 289-301 of the Old World arenavirus Mopeia and some New World arenaviruses, continued to effectively stimulate the Lassa-GP2-specific T-cell clones tested. The finding of a human T-helper cell epitope, which is highly conserved between Old and New World arenaviruses, is of importance for the design of arenavirus vaccines

  4. The herpes simplex virus 1-encoded envelope glycoprotein B activates NF-κB through the Toll-like receptor 2 and MyD88/TRAF6-dependent signaling pathway.

    Mingsheng Cai

    Full Text Available The innate immune response plays a critical role in the host defense against invading pathogens, and TLR2, a member of the Toll-like receptor (TLR family, has been implicated in the immune response and initiation of inflammatory cytokine secretion against several human viruses. Previous studies have demonstrated that infectious and ultraviolet-inactivated herpes simplex virus 1 (HSV-1 virions lead to the activation of nuclear factor kappa B (NF-κB and secretion of proinflammatory cytokines via TLR2. However, except for the envelope glycoprotein gH and gL, whether there are other determinants of HSV-1 responsible for TLR2 mediated biological effects is not known yet. Here, we demonstrated that the HSV-1-encoded envelope glycoprotein gB displays as molecular target recognized by TLR2. gB coimmunoprecipitated with TLR2, TLR1 and TLR6 in transfected and infected human embryonic kidney (HEK 293T cells. Treatment of TLR2-transfected HEK293T (HEK293T-TLR2 cells with purified gB results in the activation of NF-κB reporter, and this activation requires the recruitment of the adaptor molecules myeloid differentiation primary-response protein 88 (MyD88 and tumor necrosis factor receptor-associated factor 6 (TRAF6 but not CD14. Furthermore, activation of NF-κB was abrogated by anti-gB and anti-TLR2 blocking antibodies. In addition, the expression of interleukin-8 induced by gB was abrogated by the treatment of the human monocytic cell line THP-1 with anti-TLR2 blocking antibody or by the incubation of gB with anti-gB antibody. Taken together, these results indicate the importance and potency of HSV-1 gB as one of pathogen-associated molecular patterns (PAMPs molecule recognized by TLR2 with immediate kinetics.

  5. De novo design of peptide immunogens that mimic the coiled coil region of human T-cell leukemia virus type-1 glycoprotein 21 transmembrane subunit for induction of native protein reactive neutralizing antibodies.

    Sundaram, Roshni; Lynch, Marcus P; Rawale, Sharad V; Sun, Yiping; Kazanji, Mirdad; Kaumaya, Pravin T P

    2004-06-04

    Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.

  6. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4.

    González, Silvia A; Falcón, Juan I; Affranchino, José L

    2014-03-01

    Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.

  7. Homologous and heterologous antibody responses of mice immunized with purified feline herpesvirus type 1 and canine herpesvirus glycoproteins.

    Limcumpao, J A; Horimoto, T; Xuan, X N; Tohya, Y; Azetaka, M; Takahashi, E; Mikami, T

    1991-06-01

    The three glycoproteins each of feline herpesvirus type 1 (FHV-1) and canine herpesvirus (CHV) were purified by affinity chromatography using glycoprotein-specific monoclonal antibodies and used individually or in combination in immunizing mice to determine their relative immunogenicity. All the glycoproteins induced detectable virus neutralizing antibodies to the homologous virus but FHV-1 gp143/108 and its cross-reacting counterpart, CHV gp145/112, elicited the highest titers not only to the homologous virus but to the heterologous virus as well. The production of ELISA antibodies after glycoprotein immunization was variable, while hemagglutination-inhibiting antibodies were produced by only 1 out of 10 FHV-1 gp60-inoculated mice. In general, the antibody titers induced by CHV glycoproteins were lower than those by FHV-1 glycoproteins. These results indicate that these glycoproteins may be useful as subunit vaccines against FHV-1 and CHV infections.

  8. Glycoprotein on cell surfaces

    Muramatsu, T.

    1975-01-01

    There are conjugated polysaccharides in cell membranes and outside of animal cells, and they play important role in the control of cell behavior. In this paper, the studies on the glycoprotein on cell surfaces are reported. It was found that the glycoprotein on cell surfaces have both N-glycoside type and O-glycoside type saccharic chains. Therefore it can be concluded that the basic structure of the saccharic chains in the glycoprotein on cell surfaces is similar to that of blood serum and body fluid. The main glycoprotein in the membranes of red blood corpuscles has been studied most in detail, and it also has both types of saccharic chains. The glycoprotein in liver cell membranes was found to have only the saccharic chains of acid type and to be in different pattern from that in endoplasmic reticula and nuclear membranes, which also has the saccharic chains of neutral type. The structure of the saccharic chains of H-2 antigen, i.e. the peculiar glycoprotein on the surfaces of lymph system cells, has been studied, and it is similar to the saccharic chains of glycoprotein in blood serum. The saccharic chain structures of H-2 antigen and TL antigen are different. TL, H-2 (D), Lna and H-2 (K) are the glycoprotein on cell surfaces, and are independent molecules. The analysis of the saccharic chain patterns on cell surfaces was carried out, and it was shown that the acid type saccharic chains were similar to those of ordinary glycoprotein, because the enzyme of pneumococci hydrolyzed most of the acid type saccharic chains. The change of the saccharic chain patterns of glycoprotein on cell surfaces owing to canceration and multiplication is complex matter. (Kako, I.)

  9. Computational identification of epitopes in the glycoproteins of novel bunyavirus (SFTS virus) recognized by a human monoclonal antibody (MAb 4-5)

    Zhang, Wenshuai; Zeng, Xiaoyan; Zhang, Li; Peng, Haiyan; Jiao, Yongjun; Zeng, Jun; Treutlein, Herbert R.

    2013-06-01

    In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the "multiple copy simultaneous search" (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen-antibody recognition based on the distributions of MCSS minima of different functional groups.

  10. Synthetically derived bat influenza A-like viruses reveal a cell type- but not species-specific tropism.

    Moreira, Étori Aguiar; Locher, Samira; Kolesnikova, Larissa; Bolte, Hardin; Aydillo, Teresa; García-Sastre, Adolfo; Schwemmle, Martin; Zimmer, Gert

    2016-10-24

    Two novel influenza A-like viral genome sequences have recently been identified in Central and South American fruit bats and provisionally designated "HL17NL10" and "HL18NL11." All efforts to isolate infectious virus from bats or to generate these viruses by reverse genetics have failed to date. Recombinant vesicular stomatitis virus (VSV) encoding the hemagglutinin-like envelope glycoproteins HL17 or HL18 in place of the VSV glycoprotein were generated to identify cell lines that are susceptible to bat influenza A-like virus entry. More than 30 cell lines derived from various species were screened but only a few cell lines were found to be susceptible, including Madin-Darby canine kidney type II (MDCK II) cells. The identification of cell lines susceptible to VSV chimeras allowed us to recover recombinant HL17NL10 and HL18NL11 viruses from synthetic DNA. Both influenza A-like viruses established a productive infection in MDCK II cells; however, HL18NL11 replicated more efficiently than HL17NL10 in this cell line. Unlike conventional influenza A viruses, bat influenza A-like viruses started the infection preferentially at the basolateral membrane of polarized MDCK II cells; however, similar to conventional influenza A viruses, bat influenza A-like viruses were released primarily from the apical site. The ability of HL18NL11 or HL17NL10 viruses to infect canine and human cells might reflect a zoonotic potential of these recently identified bat viruses.

  11. Identification of an immunodominant epitope in glycoproteins B and G of herpes simplex viruses (HSVs) using synthetic peptides as antigens in assay of antibodies to HSV in herpes simplex encephalitis patients.

    Bhullar, S S; Chandak, N H; Baheti, N N; Purohit, H J; Taori, G M; Daginawala, H F; Kashyap, R S

    2014-01-01

    Herpes simplex encephalitis (HSE) is a severe viral infection of the central nervous system (CNS). Assay of antibody response is widely used in diagnostics of HSE. The aim of this study was to identify an immunodominant epitope determining the antibody response to herpes simplex viruses (HSVs) in cerebrospinal fluid (CSF) of HSE patients. The synthetic peptides that resembled type-common as well as type-specific domains of glycoproteins B (gB) and G (gG) of these viruses were evaluated for binding with IgM and IgG antibodies in CSF samples from HSE and non-HSE patients in ELISA. The QLHDLRF peptide, derived from gB of HSV was found to be an immunodominant epitope in the IgM and IgG antibody response. The patients with confirmed and suspected HSE showed in ELISA against this peptide 26% and 23% positivities for IgM, 43% and 37% positivities for IgG and 17% and 15% for both IgM and IgG antibodies, respectively. The total positivities of 86% and 75% for both IgM and IgG antibodies were obtained in the patients with confirmed and suspected HSE, respectively. These results demonstrate that a synthetic peptide-based diagnostics of HSE can be an efficient and easily accessible alternative. This is the first report describing the use of synthetic peptides derived from HSVs in diagnostics of HSE using patientsʹ CSF samples.

  12. Optimal stomatal behaviour around the world

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.

    2015-01-01

    , a globalscale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here,we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour diers among...

  13. The amino-terminus of the hepatitis C virus (HCV p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types.

    Solène Denolly

    2017-12-01

    Full Text Available Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP. HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.

  14. Monoclonal Antibodies Directed toward the Hepatitis C Virus Glycoprotein E2 Detect Antigenic Differences Modulated by the N-Terminal Hypervariable Region 1 (HVR1), HVR2, and Intergenotypic Variable Region.

    Alhammad, Yousef; Gu, Jun; Boo, Irene; Harrison, David; McCaffrey, Kathleen; Vietheer, Patricia T; Edwards, Stirling; Quinn, Charles; Coulibaly, Fásseli; Poumbourios, Pantelis; Drummer, Heidi E

    2015-12-01

    Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a heterodimer and mediate receptor interactions and viral fusion. Both E1 and E2 are targets of the neutralizing antibody (NAb) response and are candidates for the production of vaccines that generate humoral immunity. Previous studies demonstrated that N-terminal hypervariable region 1 (HVR1) can modulate the neutralization potential of monoclonal antibodies (MAbs), but no information is available on the influence of HVR2 or the intergenotypic variable region (igVR) on antigenicity. In this study, we examined how the variable regions influence the antigenicity of the receptor binding domain of E2 spanning HCV polyprotein residues 384 to 661 (E2661) using a panel of MAbs raised against E2661 and E2661 lacking HVR1, HVR2, and the igVR (Δ123) and well-characterized MAbs isolated from infected humans. We show for a subset of both neutralizing and nonneutralizing MAbs that all three variable regions decrease the ability of MAbs to bind E2661 and reduce the ability of MAbs to inhibit E2-CD81 interactions. In addition, we describe a new MAb directed toward the region spanning residues 411 to 428 of E2 (MAb24) that demonstrates broad neutralization against all 7 genotypes of HCV. The ability of MAb24 to inhibit E2-CD81 interactions is strongly influenced by the three variable regions. Our data suggest that HVR1, HVR2, and the igVR modulate exposure of epitopes on the core domain of E2 and their ability to prevent E2-CD81 interactions. These studies suggest that the function of HVR2 and the igVR is to modulate antibody recognition of glycoprotein E2 and may contribute to immune evasion. This study reveals conformational and antigenic differences between the Δ123 and intact E2661 glycoproteins and provides new structural and functional data about the three variable regions and their role in occluding neutralizing and nonneutralizing epitopes on the E2 core domain. The variable regions may therefore function to

  15. Amino-terminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences

    Wheeler, E.F.; Roussel, M.F.; Hampe, A.; Walker, M.H.; Fried, V.A.; Look, A.T.; Rettenmier, C.W.; Sherr, C.J.

    1986-01-01

    The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180/sup gag-fms/ encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180/sup gag-fms/) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence of the resulting v-fms-coded glycoprotein, gp120/sup v-fms/, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. The authors conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180/gag-fms/ is mediated by signal peptidase and that the amino termini of gp140/sup v-fms/ and the c-fms gene product are identical

  16. Amino-terminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences

    Wheeler, E.F.; Roussel, M.F.; Hampe, A.; Walker, M.H.; Fried, V.A.; Look, A.T.; Rettenmier, C.W.; Sherr, C.J.

    1986-08-01

    The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180/sup gag-fms/ encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180/sup gag-fms/) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence of the resulting v-fms-coded glycoprotein, gp120/sup v-fms/, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. The authors conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180/gag-fms/ is mediated by signal peptidase and that the amino termini of gp140/sup v-fms/ and the c-fms gene product are identical.

  17. Orthobunyavirus ultrastructure and the curious tripodal glycoprotein spike.

    Thomas A Bowden

    Full Text Available The genus Orthobunyavirus within the family Bunyaviridae constitutes an expanding group of emerging viruses, which threaten human and animal health. Despite the medical importance, little is known about orthobunyavirus structure, a prerequisite for understanding virus assembly and entry. Here, using electron cryo-tomography, we report the ultrastructure of Bunyamwera virus, the prototypic member of this genus. Whilst Bunyamwera virions are pleomorphic in shape, they display a locally ordered lattice of glycoprotein spikes. Each spike protrudes 18 nm from the viral membrane and becomes disordered upon introduction to an acidic environment. Using sub-tomogram averaging, we derived a three-dimensional model of the trimeric pre-fusion glycoprotein spike to 3-nm resolution. The glycoprotein spike consists mainly of the putative class-II fusion glycoprotein and exhibits a unique tripod-like arrangement. Protein-protein contacts between neighbouring spikes occur at membrane-proximal regions and intra-spike contacts at membrane-distal regions. This trimeric assembly deviates from previously observed fusion glycoprotein arrangements, suggesting a greater than anticipated repertoire of viral fusion glycoprotein oligomerization. Our study provides evidence of a pH-dependent conformational change that occurs during orthobunyaviral entry into host cells and a blueprint for the structure of this group of emerging pathogens.

  18. Kinetic analysis of synthetic analogues of linear-epitope peptides of glycoprotein D of herpes simplex virus type 1 by surface plasmon resonance

    Lasonder, E; Schellekens, GA; Koedijk, DGAM; Damhof, RA; WellingWester, S; Feijlbrief, M; Scheffer, AJ; Welling, GW

    1996-01-01

    The interaction between mAb A16 and glycoprorein D (gD) of herpes simplex virus type 1 was analyzed by studying the kinetics of binding with a surface-plasmon-resonance biosensor. mAb A16 belongs to group VII antibodies, which recognize residues 11-19 of gD. In a previous study, three critical

  19. Comparison of the protective efficacy between single and combination of recombinant adenoviruses expressing complete and truncated glycoprotein, and nucleoprotein of the pathogenic street rabies virus in mice.

    Kim, Ha-Hyun; Yang, Dong-Kun; Nah, Jin-Ju; Song, Jae-Young; Cho, In-Soo

    2017-06-24

    Rabies is an important viral zoonosis that causes acute encephalitis and death in mammals. To date, several recombinant vaccines have been developed based on G protein, which is considered to be the main antigen, and these vaccines are used for rabies control in many countries. Most recombinant viruses expressing RABV G protein retain the G gene from attenuated RABV. Not enough is currently known about the protective effect against RABV of a combination of recombinant adenoviruses expressing the G and N proteins of pathogenic street RABV. We constructed a recombinant adenovirus (Ad-0910Gsped) expressing the signal peptide and ectodomain (sped) of G protein of the Korean street strain, and evaluated the immunological protection conferred by a single and combination of three kinds of recombinant adenoviruses (Ad-0910Gsped and Ad-0910G with or without Ad-0910 N) in mice. A combination of Ad-0910G and Ad-0910 N conferred improved immunity against intracranial challenge compared to single administration of Ad-0910G. The Ad-0910G virus, expressing the complete G protein, was more immunogenic than Ad-0910Gsped, which expressed a truncated G protein with the transmembrane and cytoplasmic domains removed. Additionally, oral vaccination using a combination of viruses led to complete protection. Our results suggest that this combination of viruses is a viable new intramuscular and oral vaccine candidate.

  20. Rabies virus-specific human T cell clones provide help for an in vitro antibody response against neutralizing antibody-inducing determinants of the viral glycoprotein.

    H. Bunschoten; R.J. Klapmuts; I.J.Th.M. Claassen (Ivo); S.D. Reijneveld; A.D.M.E. Osterhaus (Albert); F.G.C.M. Uytdehaag (Fons)

    1989-01-01

    textabstractHuman T cell clones were prepared from peripheral blood mononuclear cells from a vaccinated human donor and kept in culture in the presence of rabies virus antigen and growth factors. Phenotypic analysis of the T cell clones revealed expression of the CD3 and CD4 cell surface markers,

  1. Genetic organisation of iris yellow spot virus MRNA: implications for functional homology between the Gc glycoproteins of tospoviruses and animal-infecting bunyaviruses

    Cortez, I.; Aires, A.; Pereira, A.M.; Goldbach, R.

    2002-01-01

    Summary. The complete nucleotide sequence (4838 nucleotides) of Iris yellow spot virus (IYSV) M RNA indicates, typical for tospoviruses, the presence of two genes in ambisense arrangement. The vRNA ORF codes for the potential cell-to-cell movement (NSm) protein (34.8 kDa) and the vcRNA ORF for the

  2. Chikungunya virus-like particles are more immunogenic in a lethal AG129 mouse model compared to glycoprotein El or E2 subunits

    Metz, S.W.H.; Martina, B.E.; Doel, van den P.; Geertsema, C.; Osterhaus, A.D.; Vlak, J.M.; Pijlman, G.P.

    2013-01-01

    Chikungunya virus (CHIKV) causes acute illness characterized by fever and long-lasting arthritic symptoms. The need for a safe and effective vaccine against CHM/infections is on the rise due to on-going vector spread and increasing severity of clinical complications. Here we report the results of a

  3. Functional and structural analysis of GP64, the major envelope glycoprotein of the Budded Virus phenotype of Autographa californica and Orgyia pseudotsugata Multicapsid Nucleopolyhedroviruses

    Oomens, A.G.P.

    1999-01-01

    The Baculoviridae are a family of large, enveloped, double-stranded DNA viruses, that cause severe disease in the larvae of mostly lepidopteran insects. Baculoviruses have been studied with the aim of developing alternatives to chemical pest control, and later for their potential as systems

  4. Characterization of the Fusion and Attachment Glycoproteins of Human Metapneumovirus and Human Serosurvey to Determine Reinfection Rates

    2007-06-27

    Metapneumovirus genus. The Paramyxoviridae are in the taxonomical order Mononegavirales which includes Bornaviridae, Rhabdoviridae and Filoviridae which... Rhabdoviridae plant virus, replicate in the cytoplasm (66). The Paramyxoviridae are enveloped viruses and have been defined by the fusion glycoprotein

  5. Influence of the incubation temperature and the batch components on the sensitivity of an enzyme-linked immunosorbent assay to detect Aujeszky's disease virus glycoprotein E (gE).

    Cay, A B; Van der Stede, Y

    2010-12-01

    Although licensed batches of an enzyme-linked immunosorbent assay (ELISA) for Aujeszky's disease virus (ADV) were used, and the assays were performed within an ISO/IEC 17025 accredited quality control system, certain routine runs of the ADV ELISA were not validated using the quality system criteria, even when all technical parameters were controlled. Incubation at different temperatures and batch composition were identified as parameters that could result in non-validated assays/runs. Therefore, the effect of incubation temperature and batch composition on the analytical sensitivity of the ELISA was investigated. The World Organisation for Animal Health (OIE) standard reference serum ADV1 was diluted 1:8 and tested in 94 different glycoprotein E ELISA runs performed with different batches and different incubation temperatures. The incubation temperature and batch components had a significant influence on the qualitative result for the OIE standard reference serum. An incubation temperature of at least 22 degrees C was recommended, based on the results of this analysis. Which of the batch components caused these differences in sensitivity was not investigated further.

  6. Evaluation of envelope glycoprotein E(rns) of an atypical bovine pestivirus as antigen in a microsphere immunoassay for the detection of antibodies against bovine viral diarrhea virus 1 and atypical bovine pestivirus.

    Vijayaraghavan, Balaje; Xia, Hongyan; Harimoorthy, Rajiv; Liu, Lihong; Belák, Sándor

    2012-11-01

    Atypical bovine pestiviruses are related antigenically and phylogenetically to bovine viral diarrhea viruses (BVDV-1 and BVDV-2), and may cause the same clinical manifestations in animals. Glycoprotein E(rns) of an atypical bovine pestivirus Th/04_KhonKaen was produced in a baculovirus expression system and was purified by affinity chromatography. The recombinant E(rns) protein was used as an antigen in a microsphere immunoassay for the detection of antibodies against BVDV-1 and atypical bovine pestivirus. The diagnostic performance of the new method was evaluated by testing a total of 596 serum samples, and the assay was compared with enzyme-linked immunosorbent assay (ELISA). Based on the negative/positive cut-off median fluorescence intensity (MFI) value of 2800, the microsphere immunoassay had a sensitivity of 100% and specificity of 100% compared to ELISA. The immunoassay was able to detect antibodies against both BVDV-1 and the atypical pestivirus. This novel microsphere immunoassay has the potential to be multiplexed for simultaneous detection of antibodies against different bovine pathogens in a high-throughput and economical way. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Development of a Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS) Method for the Quantitation of Viral Envelope Glycoprotein in Ebola Virus-Like Particle Vaccine Preparations

    2016-09-05

    distribution is unlimited. UNCLASSIFIED Background: 92 Ebola is an extremely pathogenic virus that causes hemorrhagic fever and can result in 93... animals . 155 156 Materials and Methods: 157 Generation and Characterization of eVLPs. 158 TR-16-141 DISTRIBUTION STATEMENT A...measuring the optical density (OD) at 280 nm in 186 a spectrophotometer and assuming an extinction coefficient at 1% equal to 10 (under this 187

  8. A Functional Henipavirus Envelope Glycoprotein Pseudotyped Lentivirus Assay System

    Broder Christopher C

    2010-11-01

    Full Text Available Abstract Background Hendra virus (HeV and Nipah virus (NiV are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4 containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP gene encoding human immunodeficiency virus type-1 (HIV-1 genome in conjunction with the HeV and NiV fusion (F and attachment (G glycoproteins. Results Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2 peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F

  9. Relating Stomatal Conductance to Leaf Functional Traits.

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  10. Ecology of Candida-associated Denture Stomatitis

    Budtz-Jørgensen, Ejvind

    2011-01-01

    Introduction of a prosthesis into the oral cavity results in profound alterations of the environmental conditions as the prosthesis and the underlying mucosa become colonized with oral microorganisms, including Candida spp. This may lead to denture stomatitis, a non-specific inflammatory reaction against microbial antigens, toxins and enzymes produced by the colonizing microorganisms. The role of Candida in the etiology of denture stomatitis is indicated by an increased number of yeasts on th...

  11. A recombinant novirhabdovirus presenting at the surface the E Glycoprotein from West Nile Virus (WNV is immunogenic and provides partial protection against lethal WNV challenge in BALB/c mice.

    Angella Nzonza

    Full Text Available West Nile Virus (WNV is a zoonotic mosquito-transmitted flavivirus that can infect and cause disease in mammals including humans. Our study aimed at developing a WNV vectored vaccine based on a fish Novirhabdovirus, the Viral Hemorrhagic Septicemia virus (VHSV. VHSV replicates at temperatures lower than 20°C and is naturally inactivated at higher temperatures. A reverse genetics system has recently been developed in our laboratory for VHSV allowing the addition of genes in the viral genome and the recovery of the respective recombinant viruses (rVHSV. In this study, we have generated rVHSV vectors bearing the complete WNV envelope gene (EWNV (rVHSV-EWNV or fragments encoding E subdomains (either domain III alone or domain III fused to domain II (rVHSV-DIIIWNV and rVHSV-DII-DIIIWNV, respectively in the VHSV genome between the N and P cistrons. With the objective to enhance the targeting of the EWNV protein or EWNV-derived domains to the surface of VHSV virions, Novirhadovirus G-derived signal peptide and transmembrane domain (SPG and TMG were fused to EWNV at its amino and carboxy termini, respectively. By Western-blot analysis, electron microscopy observations or inoculation experiments in mice, we demonstrated that both the EWNV and the DIIIWNV could be expressed at the viral surface of rVHSV upon addition of SPG. Every constructs expressing EWNV fused to SPG protected 40 to 50% of BALB/cJ mice against WNV lethal challenge and specifically rVHSV-SPGEWNV induced a neutralizing antibody response that correlated with protection. Surprisingly, rVHSV expressing EWNV-derived domain III or II and III were unable to protect mice against WNV challenge, although these domains were highly incorporated in the virion and expressed at the viral surface. In this study we demonstrated that a heterologous glycoprotein and non membrane-anchored protein, can be efficiently expressed at the surface of rVHSV making this approach attractive to develop new vaccines

  12. Intramuscular Immunization of Mice with the Live-Attenuated Herpes Simplex Virus 1 Vaccine Strain VC2 Expressing Equine Herpesvirus 1 (EHV-1) Glycoprotein D Generates Anti-EHV-1 Immune Responses in Mice.

    Liu, Shiliang A; Stanfield, Brent A; Chouljenko, Vladimir N; Naidu, Shan; Langohr, Ingeborg; Del Piero, Fabio; Ferracone, Jacqueline; Roy, Alma A; Kousoulas, Konstantin G

    2017-06-15

    Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHV XP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals ( P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations ( P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge ( P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4 + T cells and CD8 + T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals. IMPORTANCE A novel virus

  13. Immunization of rabbits with highly purified, soluble, trimeric human immunodeficiency virus type 1 envelope glycoprotein induces a vigorous B cell response and broadly cross-reactive neutralization.

    Gerald V Quinnan

    Full Text Available Previously we described induction of cross-reactive HIV-1 neutralizing antibody responses in rabbits using a soluble HIV-1 gp140 envelope glycoprotein (Env in an adjuvant containing monophosphoryl lipid A (MPL and QS21 (AS02A. Here, we compared different forms of the same HIV-1 strain R2 Env for antigenic and biophysical characteristics, and in rabbits characterized the extent of B cell induction for specific antibody expression and secretion and neutralizing responses. The forms of this Env that were produced in and purified from stably transformed 293T cells included a primarily dimeric gp140, a trimeric gp140 appended to a GCN4 trimerization domain (gp140-GCN4, gp140-GCN4 with a 15 amino acid flexible linker between the gp120 and gp41 ectodomain (gp140-GCN4-L, also trimeric, and a gp140 with the flexible linker purified from cell culture supernatants as either dimer (gp140-L(D or monomer (gp140-L(M. Multimeric states of the Env proteins were assessed by native gel electrophoresis and analytical ultracentrifugation. The different forms of gp140 bound broadly cross-reactive neutralizing (BCN human monoclonal antibodies (mAbs similarly in ELISA and immunoprecipitation assays. All Envs bound CD4i mAbs in the presence and absence of sCD4, as reported for the R2 Env. Weak neutralization of some strains of HIV-1 was seen after two additional doses in AS02A. Rabbits that were given a seventh dose of gp140-GCN4-L developed BCN responses that were weak to moderate, similar to our previous report. The specificity of these responses did not appear similar to that of any of the known BCN human mAbs. Induction of spleen B cell and plasma cells producing immunoglobulins that bound trimeric gp140-GCN4-L was vigorous, based on ELISpot and flow cytometry analyses. The results demonstrate that highly purified gp140-GCN4-L trimer in adjuvant elicits BCN responses in rabbits accompanied by vigorous B cell induction.

  14. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Fun-In Wang

    2015-06-01

    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  15. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters.

    Wang, Fun-In; Deng, Ming-Chung; Huang, Yu-Liang; Chang, Chia-Yi

    2015-06-29

    Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  16. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens.

    Awasthi, Sita; Mahairas, Gregory G; Shaw, Carolyn E; Huang, Meei-Li; Koelle, David M; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M

    2015-08-01

    We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4(+) and CD8(+) T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of transmission and

  17. HIV-1 envelope glycoprotein

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  18. Glycoprotein and proteoglycan techniques

    Beeley, J.G.

    1985-01-01

    The aim of this book is to describe techniques which can be used to answer some of the basic questions about glycosylated proteins. Methods are discussed for isolation, compositional analysis, and for determination of the primary structure of carbohydrate units and the nature of protein-carbohydrate linkages of glycoproteins and proteoglycans. High resolution NMR is considered, as well as radioactive labelling techniques. (Auth.)

  19. Separating active and passive influences on stomatal control of transpiration.

    McAdam, Scott A M; Brodribb, Timothy J

    2014-04-01

    Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior.

  20. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  1. Overlapping CD8+ and CD4+ T-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach.

    Adhikari, Utpal Kumar; Rahman, M Mizanur

    2017-12-01

    Rift Valley fever virus (RVFV) is an emergent arthropod-borne zoonotic infectious viral pathogen which causes fatal diseases in the humans and ruminants. Currently, no effective and licensed vaccine is available for the prevention of RVFV infection in endemic as well as in non-endemic regions. So, an immunoinformatics-driven genome-wide screening approach was performed for the identification of overlapping CD8+ and CD4+ T-cell epitopes and also linear B-cell epitopes from the conserved sequences of the nucleocapsid (N) and glycoprotein (G) of RVFV. We identified overlapping 99.39% conserved 1 CD8+ T-cell epitope (MMHPSFAGM) from N protein and 100% conserved 7 epitopes (AVFALAPVV, LAVFALAPV, FALAPVVFA, VFALAPVVF, IAMTVLPAL, FFDWFSGLM, and FLLIYLGRT) from G protein and also identified IL-4 and IFN-γ induced (99.39% conserved) 1 N protein CD4+ T-cell epitope (HMMHPSFAGMVDPSL) and 100% conserved 5 G protein CD4+ T-cell epitopes (LPALAVFALAPVVFA, PALAVFALAPVVFAE, GIAMTVLPALAVFAL, GSWNFFDWFSGLMSW, and FFLLIYLGRTGLSKM). The overlapping CD8+ and CD4+ T-cell epitopes were bound with most conserved HLA-C*12:03 and HLA-DRB1*01:01, respectively with the high binding affinity (kcal/mol). The combined population coverage analysis revealed that the allele frequencies of these epitopes are high in endemic and non-endemic regions. Besides, we found 100% conserved and non-allergenic 2 decamer B-cell epitopes, GVCEVGVQAL and RVFNCIDWVH of G protein had the sequence similarity with the nonamer CD8+ T-cell epitopes, VCEVGVQAL and RVFNCIDWV, respectively. Consequently, these epitopes may be used for the development of epitope-based peptide vaccine against emerging RVFV. However, in vivo and in vitro experiments are required for their efficient use as a vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  3. Anti-Glycoprotein G Antibodies of Herpes Simplex Virus 2 Contribute to Complete Protection after Vaccination in Mice and Induce Antibody-Dependent Cellular Cytotoxicity and Complement-Mediated Cytolysis

    Staffan Görander

    2014-11-01

    Full Text Available We investigated the role of antibodies against the mature portion of glycoprotein G (mgG-2 of herpes simplex virus 2 (HSV-2 in protective immunity after vaccination. Mice were immunized intramuscularly with mgG-2 and oligodeoxynucleotides containing two CpG motifs plus alum as adjuvant. All C57BL/6 mice survived and presented no genital or systemic disease. High levels of immunoglobulin G subclass 1 (IgG1 and IgG2 antibodies were detected and re-stimulated splenic CD4+ T cells proliferated and produced IFN-γ. None of the sera from immunized mice exhibited neutralization, while all sera exerted antibody-dependent cellular cytotoxicity (ADCC and complement-mediated cytolysis (ACMC activity. Passive transfer of anti-mgG-2 monoclonal antibodies, or immune serum, to naive C57BL/6 mice did not limit disease progression. Immunized B‑cell KO mice presented lower survival rate and higher vaginal viral titers, as compared with vaccinated B-cell KO mice after passive transfer of immune serum and vaccinated C57BL/6 mice. Sera from mice that were vaccinated subcutaneously and intranasally with mgG-2 presented significantly lower titers of IgG antibodies and lower ADCC and ACMC activity. We conclude that anti-mgG-2 antibodies were of importance to limit genital HSV‑2 infection. ADCC and ACMC activity are potentially important mechanisms in protective immunity, and could tentatively be evaluated in future animal vaccine studies and in clinical trials.

  4. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus this a...

  5. Molecular cloning of S1 glycoprotein gene of infectious bronchitis ...

    In vitro protein expression is an important method of obtaining large amounts of viral proteins to investigate their biological properties. The S1 glycoprotein of infectious bronchitis virus, due to its effective immune-dominant role is an appropriate candidate for production of recombinant vaccine against infectious bronchitis ...

  6. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells

    Andrea Pecora

    2015-03-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2 was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 µg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.

  7. Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai virus): possible implication in the fusion reaction

    Asano, K.; Asano, A.

    1988-01-01

    Specificity of the binding of sterols and related compounds with purified F-protein (fusion protein) of the HVJ (Sendai virus) was studied by binding competition with [ 3 H] cholesterol. Requirement for cholesterol or the A/B ring trans structure and nonrequirement for the 3-hydroxyl group were found in this binding. Binding of 125 I-labeled Z-Phe-Tyr, an inhibitory peptide of viral membrane-cell membrane fusion, was studied by using purified proteins and virions. F-Protein and virions showed a specific binding with the peptide, whereas the result was negative with hemagglutinin and neuraminidase protein. Thermolysin-truncated F-protein (an F-protein derivative deprived of a 2.5-kDa fragment from the N-terminal of the F 1 subunit and without fusogenic activity) exhibited a considerably diminished binding ability both to cholesterol and to inhibitory peptides. Therefore, the N-terminal hydrophobic sequence that was previously assigned as fusogenic seems to be the binding site of these molecules. In support of this, the binding of cholesterol with F-protein was inhibited by Z-Phe-Tyr and other fusion inhibitory peptides, whereas it was not affected with non-fusion-inhibitory Z-Gly-Phe. These results are discussed in relation to the notion that the binding of the N-terminal portion of the F 1 subunit of F-protein with cholesterol in the target cell membranes facilitiates the fusion reaction

  8. Engineering of a novel zipFv using leucine zipper motif against rabies virus glycoprotein G with improved protection potency in vivo.

    Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Li, Zhuang; Cheng, Yue; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2017-06-01

    Rabies is an acute zoonotic infectious disease with a high fatality rate but is preventable with vaccination and rabies immunoglobulin (RIG). The single-chain Fv fragment (scFv), a small engineered antigen-binding protein derived from antibody variable heavy (V H ) and light (V L ) chains connected by a peptide linker, can potentially be used to replace RIG. Here, we produced two peptides V H -JUN-HIS and V L -FOS-HA separately in Escherichia coli and assembled them to form zipFv successfully in vitro. The new zipFv utilizes FOS and JUN leucine zippers to form an antibody structure similar to the IgG counterpart with two free N-terminal ends of V H and V L . The zipFv protein showed notable improvement in binding ability and affinity over its corresponding scFv. The zipFv also demonstrated greater stability in serum and the same protective rate as RIG against challenge with a standard rabies virus (CVS-24) in mice. Our results indicated zipFv as a novel and efficient antibody form with enhanced neutralizing potency. Copyright © 2017. Published by Elsevier B.V.

  9. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Requirements within the Ebola Viral Glycoprotein for Tetherin Antagonism

    Nathan H. Vande Burgt

    2015-10-01

    Full Text Available Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of numerous viruses, including Ebola virus, from infected cells. As with many viruses targeted by host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP, to counteract restriction and promote virus release. Unlike other tetherin antagonists such as HIV-1 Vpu or KSHV K5, the features within EboGP needed to overcome tetherin are not well characterized. Here, we describe sequences within the EboGP ectodomain and membrane spanning domain (msd as necessary to relieve tetherin restriction of viral particle budding. Fusing the EboGP msd to a normally secreted form of the glycoprotein effectively promotes Ebola virus particle release. Cellular protein or lipid anchors could not substitute for the EboGP msd. The requirement for the EboGP msd was not specific for filovirus budding, as similar results were seen with HIV particles. Furthermore trafficking of chimeric proteins to budding sites did not correlate with an ability to counter tetherin. Additionally, we find that a glycoprotein construct, which mimics the cathepsin-activated species by proteolytic removal of the EboGP glycan cap and mucin domains, is unable to counteract tetherin. Combining these results suggests an important role for the EboGP glycan cap and msd in tetherin antagonism.

  11. Stomatal and Non-Stomatal Turbulent Deposition Flux of Ozone to a Managed Peatland

    Tarek S. El-Madany

    2017-09-01

    Full Text Available Ozone is a key trace gas in the troposphere; because it is a greenhouse gas, it is very reactive, and it is potentially toxic to humans, fauna, and vegetation. The main sink processes for ozone are chemical reactions and the turbulent deposition flux to the earth’s surface. The deposition process itself is rather complex: The interactions between co-varying drivers such as the tropospheric ozone concentration, turbulence, and chemical reactions are not well understood. In the case of ozone deposition to vegetation, another aspect that must be studied is the role of stomatal regulation for a wide range of conditions. Therefore, we measured turbulent deposition fluxes of ozone with the eddy covariance technique during the peak of the growing season in 2014 over a managed, rewetted peatland in NW Germany. The deposition flux was large during the day (up to −15 nmol m−2 s−1 and relatively small during the night (between −1 and −2 nmol m−2 s−1. Flux partitioning by applying the surface resistance analogy and further analysis showed that the stomatal uptake was smaller than non-stomatal deposition. The correction of stomatal conductance with the gross primary production (GPP improved the estimation of day- and nighttime stomatal deposition fluxes. Statistical analysis confirmed that the friction velocity (u* was the single most important driver of non-stomatal ozone deposition and that relationships with other environmental drivers are not linear and highly variable. Further research is needed to develop a better process understanding of non-stomatal ozone deposition, to quantify the role of surface deposition to the ozone budget of the atmospheric boundary layer, and to estimate uncertainties associated with the partitioning of ozone deposition into stomatal and non-stomatal fluxes.

  12. Reversible conformational change in herpes simplex virus glycoprotein B with fusion-from-without activity is triggered by mildly acidic pH

    Nicola Anthony V

    2010-12-01

    Full Text Available Abstract Background The pre-fusion form of the herpes simplex virus (HSV fusion protein gB undergoes pH-triggered conformational change in vitro and during viral entry (Dollery et al., J. Virol. 84:3759-3766, 2010. The antigenic structure of gB from the fusion-from-without (FFWO strain of HSV-1, ANG path, resembles wild type gB that has undergone pH-triggered changes. Together, changes in the antigenic and oligomeric conformation of gB correlate with fusion activity. We tested whether the pre-fusion form of FFWO gB undergoes altered conformational change in response to low pH. Results A pH of 5.5 - 6.0 altered the conformation of Domains I and V of FFWO gB, which together comprise the functional region containing the hydrophobic fusion loops. The ANG path gB oligomer was altered at a similar pH. All changes were reversible. In wild type HSV lacking the UL45 protein, which has been implicated in gB-mediated fusion, gB still underwent pH-triggered changes. ANG path entry was inactivated by pretreatment of virions with low pH. Conclusion The pre-fusion conformation of gB with enhanced fusion activity undergoes alteration in antigenic structure and oligomeric conformation in response to acidic pH. We propose that endosomal pH triggers conformational change in mutant gB with FFWO activity in a manner similar to wild type. Differences apart from this trigger may account for the increased fusion activity of FFWO gB.

  13. Rapid diagnosis of vesicular stomatitis virus in Ecuador by the use of polymerase chain reaction Diagnóstico rápido do vírus da estomatite vesicular no Equador mediante o uso da reação em cadeia da polimerase

    Lya Madureira Sepúlveda

    2007-09-01

    Full Text Available Vesicular Stomatitis (VS is a viral disease that has a great impact in animal health, as infected animals present marked decrease in meat and milk production. Its presence is a limiting factor for international animal trade. Besides the damage in the livestock productivity, such disease assumes an important role in animal health programs since it is clinically indistinguishable from Foot-and-Mouth Disease. The diagnosis of the VS has been made, mainly, through Complement Fixation, ELISA and Virus Neutralization tests, assays that allow not only for viral detection but also for differentiation of the two serotypes described for Vesicular Stomatitis Virus (VSV: New Jersey (NJ and Indiana (Ind. In this work, a molecular diagnostic approach, the polymerase chain reaction performed after reverse transcription (RT - PCR, based on the specific partial amplification of NS gene of VSV was used, as an alternative method for the detection of the virus. A total of 10 VSV reference samples and 12 specimens collected from animals with clinical signs of vesicular disease obtained from field episodes in Ecuador were tested. The method allowed for the specific partial amplification of the region coding for protein P, both for VSV serotypes New Jersey (642 bp and Indiana 1 (614 bp. The results were compatible with data obtained by Complement Fixation test and the identity of the amplified products was confirmed by nucleotide sequencing.A Estomatite Vesicular (EV é uma enfermidade viral de grande impacto na saúde animal. O animal enfermo apresenta queda na produtividade em rebanho de carne e na produção leiteira, sendo um fator limitante para o comércio internacional de animais. Além dos danos à produtividade essa enfermidade assume importante papel nos programas de saúde animal por ser indistinguível clinicamente da Febre Aftosa. As técnicas para o diagnóstico da EV são, principalmente, a Fixação de Complemento, a ELISA e a Virusneutraliza

  14. mechanisms of drought resistance in grain ii:.stomatal regulation

    Preferred Customer

    STOMATAL REGULATION AND ROOT GROWTH ... maintenance of high plant water potential in common bean under stress was the function of stomatal regulation and/or root ... disadvantage since it will reduce CO2 fixation and hence may ...

  15. Stomatal and non-stomatal factors regulated the photosynthesis of soybean seedlings in the present of exogenous bisphenol A.

    Jiao, Liya; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2017-11-01

    Bisphenol A (BPA) is an emerging environmental endocrine disruptor that has toxic effects on plants growth. Photosynthesis supplies the substances and energy required for plant growth, and regulated by stomatal and non-stomatal factors. Therefore, in this study, to reveal how BPA affects photosynthesis in soybean seedlings (Glycine max L.) from the perspective of stomatal and non-stomatal factors, the stomatal factors (stomatal conductance and behaviours) and non-stomatal factors (Hill reaction, apparent quantum efficiency, Rubisco activity, carboxylation efficiency, the maximum Rubisco carboxylation velocity, ribulose-1,5-bisphospate regeneration capacities mediated by maximum electron transport rates, and triose phosphate utilization rate) were investigated using a portable photosynthesis system. Moreover, the pollution of BPA in the environment was simulated. The results indicate that low-dose BPA enhanced net photosynthetic rate (P n ) primarily by promoting stomatal factors, resulting in increased relative growth rates and accelerated soybean seedling growth. High-dose BPA decreases the P n by simultaneously inhibiting stomatal and non-stomatal factors, and this inhibition decreases the relative growth rates further reducing soybean seedling growth. Following the withdrawal of BPA, all of the indices were restored to varying degrees. In conclusion, low-dose BPA increased the P n by promoting stomatal factors while high-dose BPA decreased the P n by simultaneously inhibiting stomatal and non-stomatal factors. These findings provide a model (or, hypothesis) for the effects of BPA on plant photosynthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Epizootic vesicular stomatitis in Colorado, 1982: epidemiologic and entomologic studies.

    Walton, T E; Webb, P A; Kramer, W L; Smith, G C; Davis, T; Holbrook, F R; Moore, C G; Schiefer, T J; Jones, R H; Janney, G C

    1987-01-01

    An epizootic of vesicular stomatitis (VS) caused by the New Jersey serotype of VS virus affected livestock and humans in 14 western states in 1982-1983. Epidemiological observations were made on at least 10% of the cattle in 4 dairy herds that were located in the vicinity of Grand Junction, Colorado. High rates of neutralizing antibody to the New Jersey serotype were seen in all cattle regardless of whether livestock in the dairy had clinical VS or a decrease in mild production. Antibody titers remained high in these cattle for as long as 2 years after the epizootic. No virus isolations were made from 32 humans with clinical signs compatible with viral disease. Entomological information was obtained during the epizootic from 23 premises in northwestern Colorado. Insect collections yielded 4 isolates from Culicoides spp. midges, 2 from C. variipennis, and 1 each from C. stellifer and C. (Selfia) spp. This is the first report of VS virus isolations from field-collected Culicoides.

  17. Widely Used Herpes Simplex Virus 1 ICP0 Deletion Mutant Strain dl1403 and Its Derivative Viruses Do Not Express Glycoprotein C Due to a Secondary Mutation in the gC Gene.

    Cristina W Cunha

    Full Text Available Herpes simplex virus 1 (HSV-1 ICP0 is a multi-functional phosphoprotein expressed with immediate early kinetics. An ICP0 deletion mutant, HSV-1 dl1403, has been widely used to study the roles of ICP0 in the HSV-1 replication cycle including gene expression, latency, entry and assembly. We show that HSV-1 dl1403 virions lack detectable levels of envelope protein gC, and that gC is not synthesized in infected cells. Sequencing of the gC gene from HSV-1 dl1403 revealed a single amino acid deletion that results in a frameshift mutation. The HSV-1 dl1403 gC gene is predicted to encode a polypeptide consisting of the original 62 N-terminal amino acids of the gC protein followed by 112 irrelevant, non-gC residues. The mutation was also present in a rescuant virus and in two dl1403-derived viruses, D8 and FXE, but absent from the parental 17+, suggesting that the mutation was introduced during the construction of the dl1403 virus, and not as a result of passage in culture.

  18. Stomatal characteristics of Eucalyptus grandis clonal hybrids in ...

    This study describes the stomatal response occurring during water stress and subsequent recovery of three Eucalyptus grandis clonal hybrids. The aim was to investigate the degree to which stomatal conductance (gs) and stomatal density differ between the clonal hybrids across seasons and in response to water stress.

  19. Optimal stomatal behaviour around the world

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-Stpaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; de Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa

    2015-05-01

    Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.

  20. Characterization of Ebola Virus Entry by Using Pseudotyped Viruses: Identification of Receptor-Deficient Cell Lines

    Wool-Lewis, Rouven J.; Bates, Paul

    1998-01-01

    Studies analyzing Ebola virus replication have been severely hampered by the extreme pathogenicity of this virus. To permit analysis of the host range and function of the Ebola virus glycoprotein (Ebo-GP), we have developed a system for pseudotyping these glycoproteins into murine leukemia virus (MLV). This pseudotyped virus, MLV(Ebola), can be readily concentrated to titers which exceed 5 × 106 infectious units/ml and is effectively neutralized by antibodies specific for Ebo-GP. Analysis of ...

  1. Rapid Titration of Measles and Other Viruses: Optimization with Determination of Replication Cycle Length

    Grigorov, Boyan; Rabilloud, Jessica; Lawrence, Philip; Gerlier, Denis

    2011-01-01

    Background Measles virus (MV) is a member of the Paramyxoviridae family and an important human pathogen causing strong immunosuppression in affected individuals and a considerable number of deaths worldwide. Currently, measles is a re-emerging disease in developed countries. MV is usually quantified in infectious units as determined by limiting dilution and counting of plaque forming unit either directly (PFU method) or indirectly from random distribution in microwells (TCID50 method). Both methods are time-consuming (up to several days), cumbersome and, in the case of the PFU assay, possibly operator dependent. Methods/Findings A rapid, optimized, accurate, and reliable technique for titration of measles virus was developed based on the detection of virus infected cells by flow cytometry, single round of infection and titer calculation according to the Poisson's law. The kinetics follow up of the number of infected cells after infection with serial dilutions of a virus allowed estimation of the duration of the replication cycle, and consequently, the optimal infection time. The assay was set up to quantify measles virus, vesicular stomatitis virus (VSV), and human immunodeficiency virus type 1 (HIV-1) using antibody labeling of viral glycoprotein, virus encoded fluorescent reporter protein and an inducible fluorescent-reporter cell line, respectively. Conclusion Overall, performing the assay takes only 24–30 hours for MV strains, 12 hours for VSV, and 52 hours for HIV-1. The step-by-step procedure we have set up can be, in principle, applicable to accurately quantify any virus including lentiviral vectors, provided that a virus encoded gene product can be detected by flow cytometry. PMID:21915289

  2. Inactivation of RNA Viruses by Gamma Irradiation: A Study on Mitigating Factors

    Adam J. Hume

    2016-07-01

    Full Text Available Effective inactivation of biosafety level 4 (BSL-4 pathogens is vital in order to study these agents safely. Gamma irradiation is a commonly used method for the inactivation of BSL-4 viruses, which among other advantages, facilitates the study of inactivated yet morphologically intact virions. The reported values for susceptibility of viruses to inactivation by gamma irradiation are sometimes inconsistent, likely due to differences in experimental protocols. We analyzed the effects of common sample attributes on the inactivation of a recombinant vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein and green fluorescent protein. Using this surrogate virus, we found that sample volume and protein content of the sample modulated viral inactivation by gamma irradiation but that air volume within the sample container and the addition of external disinfectant surrounding the sample did not. These data identify several factors which alter viral susceptibility to inactivation and highlight the usefulness of lower biosafety level surrogate viruses for such studies. Our results underscore the need to validate inactivation protocols of BSL-4 pathogens using “worst-case scenario” procedures to ensure complete sample inactivation.

  3. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains.

    Lusso, Paolo; Earl, Patricia L; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A; Burastero, Samuele E

    2005-06-01

    The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on

  4. Efficacy of the Herpes Simplex Virus 2 (HSV-2) Glycoprotein D/AS04 Vaccine against Genital HSV-2 and HSV-1 Infection and Disease in the Cotton Rat Sigmodon hispidus Model.

    Boukhvalova, Marina; McKay, Jamall; Mbaye, Aissatou; Sanford-Crane, Hannah; Blanco, Jorge C G; Huber, Ashley; Herold, Betsy C

    2015-10-01

    Subunit vaccines based on the herpes simplex virus 2 (HSV-2) glycoprotein D (gD-2) have been the major focus of HSV-2 vaccine development for the past 2 decades. Based on the promising data generated in the guinea pig model, a formulation containing truncated gD-2, aluminum salt, and MPL (gD/AS04) advanced to clinical trials. The results of these trials, however, were unexpected, as the vaccine protected against HSV-1 infection but not against HSV-2. To address this discrepancy, we developed a Depot medroxyprogesterone acetate (DMPA)-treated cotton rat Sigmodon hispidus model of HSV-2 and HSV-1 genital infection. The severity of HSV-1 genital herpes was less than that of HSV-2 genital herpes in cotton rats, and yet the model allowed for comparative evaluation of gD/AS04 immunogenicity and efficacy. Cotton rats were intramuscularly vaccinated using a prime boost strategy with gD/AS04 (Simplirix vaccine) or control vaccine formulation (hepatitis B vaccine FENDrix) and subsequently challenged intravaginally with HSV-2 or HSV-1. The gD/AS04 vaccine was immunogenic in cotton rats and induced serum IgG directed against gD-2 and serum HSV-2 neutralizing antibodies but failed to efficiently protect against HSV-2 disease or to decrease the HSV-2 viral load. However, gD/AS04 significantly reduced vaginal titers of HSV-1 and better protected animals against HSV-1 compared to HSV-2 genital disease. The latter finding is generally consistent with the clinical outcome of the Herpevac trial of Simplirix. Passive transfer of serum from gD/AS04-immunized cotton rats conferred stronger protection against HSV-1 genital disease. These findings suggest the need for alternative vaccine strategies and the identification of new correlates of protection. In spite of the high health burden of genital herpes, there is still no effective intervention against the disease. The significant gap in knowledge on genital herpes pathogenesis has been further highlighted by the recent failure of GSK

  5. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development......The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...

  6. Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge

    Konduru, Krishnamurthy; Shurtleff, Amy C.; Bradfute, Steven B.; Nakamura, Siham; Bavari, Sina; Kaplan, Gerardo

    2016-01-01

    Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105−106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data further support

  7. Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge.

    Konduru, Krishnamurthy; Shurtleff, Amy C; Bradfute, Steven B; Nakamura, Siham; Bavari, Sina; Kaplan, Gerardo

    2016-01-01

    Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105-106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data further support

  8. Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge.

    Krishnamurthy Konduru

    Full Text Available Ebola virus (EBOV, a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105-106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data

  9. Vesicular stomatitis forecasting based on Google Trends.

    Wang, JianYing; Zhang, Tong; Lu, Yi; Zhou, GuangYa; Chen, Qin; Niu, Bing

    2018-01-01

    Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast.

  10. Vesicular stomatitis forecasting based on Google Trends

    Lu, Yi; Zhou, GuangYa; Chen, Qin

    2018-01-01

    Background Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. Methods American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. Results For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. Conclusion This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast. PMID:29385198

  11. Vesicular stomatitis forecasting based on Google Trends.

    JianYing Wang

    Full Text Available Vesicular stomatitis (VS is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends.American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression.For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity, SP (specificity and ACC (prediction accuracy values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively.This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast.

  12. Variations in Spike Glycoprotein Gene of MERS-CoV, South Korea, 2015.

    Kim, Dae-Won; Kim, You-Jin; Park, Sung Han; Yun, Mi-Ran; Yang, Jeong-Sun; Kang, Hae Ji; Han, Young Woo; Lee, Han Saem; Kim, Heui Man; Kim, Hak; Kim, A-Reum; Heo, Deok Rim; Kim, Su Jin; Jeon, Jun Ho; Park, Deokbum; Kim, Joo Ae; Cheong, Hyang-Min; Nam, Jeong-Gu; Kim, Kisoon; Kim, Sung Soon

    2016-01-01

    An outbreak of nosocomial infections with Middle East respiratory syndrome coronavirus occurred in South Korea in May 2015. Spike glycoprotein genes of virus strains from South Korea were closely related to those of strains from Riyadh, Saudi Arabia. However, virus strains from South Korea showed strain-specific variations.

  13. Amino acid differences in glycoproteins B (gB, C (gC, H (gH and L(gL are associated with enhanced herpes simplex virus type-1 (McKrae entry via the paired immunoglobulin-like type-2 receptor α

    Chowdhury Sona

    2012-06-01

    Full Text Available Abstract Background Herpes simplex virus type-1 (HSV-1 enters into cells via membrane fusion of the viral envelope with plasma or endosomal membranes mediated by viral glycoproteins. HSV-1 virions attach to cell surfaces by binding of viral glycoproteins gC, gD and gB to specific cellular receptors. Here we show that the human ocular and highly neurovirulent HSV-1 strain McKrae enters substantially more efficiently into cells via the gB-specific human paired immunoglobulin-like type-2 receptor-α (hPILR-α. Comparison of the predicted amino acid sequences between HSV-1(F and McKrae strains indicates that amino acid changes within gB, gC, gH and gL may cause increased entry via the hPILR- α receptor. Results HSV-1 (McKrae entered substantially more efficiently than viral strain F in Chinese hamster ovary (CHO cells expressing hPIRL-α but not within CHO-human nectin-1, -(CHO-hNectin-1, CHO-human HVEM (CHO-hHVEM or Vero cells. The McKrae genes encoding viral glycoproteins gB, gC, gD, gH, gL, gK and the membrane protein UL20 were sequenced and their predicted amino acid (aa sequences were compared with virulent strains F, H129, and the attenuated laboratory strain KOS. Most aa differences between McKrae and F were located at their gB amino termini known to bind with the PILRα receptor. These aa changes included a C10R change, also seen in the neurovirulent strain ANG, as well as redistribution and increase of proline residues. Comparison of gC aa sequences revealed multiple aa changes including an L132P change within the 129-247 aa region known to bind to heparan sulfate (HS receptors. Two aa changes were located within the H1 domain of gH that binds gL. Multiple aa changes were located within the McKrae gL sequence, which were preserved in the H129 isolate, but differed for the F strain. Viral glycoproteins gD and gK and the membrane protein UL20 were conserved between McKrae and F strains. Conclusions The results indicate that the observed

  14. Incorporation of Viral Glycoprotein VSV-G Improves the Delivery of DNA by Erythrocyte Ghost into Cells Refractory to Conventional Transfection.

    Liu, Xin; Li, Yun-Pan; Zhong, Zhen-Min; Tan, Hui-Qi; Lin, Hao-Peng; Chen, Shao-Jun; Fu, Yu-Cai; Xu, Wen-Can; Wei, Chi-Ju

    2017-02-01

    The objective of this study was to formulate a novel gene delivery system based on the erythrocyte ghost (EG) integrated with fusogenic viral glycoprotein vesicular stomatitis virus glycoprotein G (VSV-G). VSV-G proteins were harvested as condition medium of Ad293 cells carrying a VSV-G transgene and then incorporated into EG. Plasmid DNA was condensed by various transfection reagents. A luciferase expression construct (pGL3-control) and a DsRed expression cassette (pCMV-DsRed) were used to evaluate the delivery efficiency of DNA/EG/VSV-G complexes. VSV-G proteins could be incorporated into EG in static incubation under acidic conditions as evidenced by the Western blot analysis. Condensed plasmid DNA was bound mostly to the outer surface of EG, which could be detected by electromicroscopy and measured by electrophoresis. EG/VSV-G complexes stimulated the delivery of pGL3-control into Ad293 cells significantly with the luciferase activity increased about 4-fold as compared to that of the control. The delivery of pCMV-DsRed was also enhanced with the percentage of DsRed-positive Ad293 cells increased from 55 % to about 80 %. Moreover, the transfection efficiency in 3T3, HeLa, INS-1, and bone marrow stem cell (BMSC) cells increased about 2-3-fold. Finally, confocal microscopy analysis showed that incorporation of VSV-G significantly enhanced the endocytosis of EG into target cells. In the present study, a novel type of non-viral DNA delivery vehicle consisting of EG and fusogenic VSV-G proteins was formulated, which showed superior transfection efficiency even in cells resistant to classical transfection.

  15. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry.

    Henß, Lisa; Beck, Simon; Weidner, Tatjana; Biedenkopf, Nadine; Sliva, Katja; Weber, Christopher; Becker, Stephan; Schnierle, Barbara S

    2016-08-31

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity. We tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus. Suramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection. Suramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.

  16. Plant water potential improves prediction of empirical stomatal models.

    William R L Anderegg

    Full Text Available Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.

  17. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways

    Felemban, Abrar

    2016-05-01

    Stomata are cellular valves in plants that play an essential role in the regulation of gas exchange and are distributed in the epidermis of aerial organs. In Arabidopsis thaliana, stomatal production and development are coordinated by the mitogen-activated protein kinase (MAPK) signalling pathway, which modulates a variety of other processes, including cell proliferation, regulation of cytokinesis, programed cell death, and response to abiotic and biotic stress. The environment also plays a role in stomatal development, by influencing the frequency at which stomata develop in leaves. This thesis presents an analysis of stomatal development in Arabidopsis mutants in two MAPK pathways: MEKK1-MKK1/MKK2-MPK4, and MAP3K17/18-MKK3. Obtained results demonstrate the effect of stress conditions on stomatal development and specify the involvement of analysed MAPK in stomatal patterning. First, both analysed pathways modulate stomatal patterning in Arabidopsis cotyledons. Second, plant growth-promoting bacteria tested enhance stomatal density and affect guard cell morphology. Third, the sucrose or mannitol treatment increases defects in stomatal patterning. Finally, salt stress or high temperature can suppress stomatal defects in mutants of the MEKK1-MKK1/MKK2-MPK4 pathway.

  19. Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1.

    Wang, Kening; Tomaras, Georgia D; Jegaskanda, Sinthujan; Moody, M Anthony; Liao, Hua-Xin; Goodman, Kyle N; Berman, Phillip W; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Kaewkungwal, Jaranit; Haynes, Barton F; Cohen, Jeffrey I

    2017-10-01

    The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice. IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were

  20. Chimeric Lyssavirus Glycoproteins with Increased Immunological Potential

    Jallet, Corinne; Jacob, Yves; Bahloul, Chokri; Drings, Astrid; Desmezieres, Emmanuel; Tordo, Noël; Perrin, Pierre

    1999-01-01

    The rabies virus glycoprotein molecule (G) can be divided into two parts separated by a flexible hinge: the NH2 half (site II part) containing antigenic site II up to the linear region (amino acids [aa] 253 to 275 encompassing epitope VI [aa 264]) and the COOH half (site III part) containing antigenic site III and the transmembrane and cytoplasmic domains. The structural and immunological roles of each part were investigated by cell transfection and mouse DNA-based immunization with homogeneous and chimeric G genes formed by fusion of the site II part of one genotype (GT) with the site III part of the same or another GT. Various site II-site III combinations between G genes of PV (Pasteur virus strain) rabies (GT1), Mokola (GT3), and EBL1 (European bat lyssavirus 1 [GT5]) viruses were tested. Plasmids pGPV-PV, pGMok-Mok, pGMok-PV, and pGEBL1-PV induced transient expression of correctly transported and folded antigens in neuroblastoma cells and virus-neutralizing antibodies against parental viruses in mice, whereas, pG-PVIII (site III part only) and pGPV-Mok did not. The site III part of PV (GT1) was a strong inducer of T helper cells and was very effective at presenting the site II part of various GTs. Both parts are required for correct folding and transport of chimeric G proteins which have a strong potential value for immunological studies and development of multivalent vaccines. Chimeric plasmid pGEBL1-PV broadens the spectrum of protection against European lyssavirus genotypes (GT1, GT5, and GT6). PMID:9847325

  1. Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates

    Se Chang Park

    2013-01-01

    Full Text Available Cyprinid herpes virus 3 (CyHV-3 diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio. Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116 of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116. In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies.

  2. Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates

    Han, Jee Eun; Kim, Ji Hyung; Renault, Tristan; Choresca, Casiano; Shin, Sang Phil; Jun, Jin Woo; Park, Se Chang

    2013-01-01

    Cyprinid herpes virus 3 (CyHV-3) diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio). Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116) of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116). In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies. PMID:23435236

  3. Salivary Mucin 19 Glycoproteins

    Culp, David J.; Robinson, Bently; Cash, Melanie N.; Bhattacharyya, Indraneel; Stewart, Carol; Cuadra-Saenz, Giancarlo

    2015-01-01

    Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19−/− mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19−/− mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19−/− mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19−/− mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed. PMID:25512380

  4. Positive and negative peptide signals control stomatal density.

    Shimada, Tomoo; Sugano, Shigeo S; Hara-Nishimura, Ikuko

    2011-06-01

    The stoma is a micro valve found on aerial plant organs that promotes gas exchange between the atmosphere and the plant body. Each stoma is formed by a strict cell lineage during the early stages of leaf development. Molecular genetics research using the model plant Arabidopsis has revealed the genes involved in stomatal differentiation. Cysteine-rich secretory peptides of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play crucial roles as extracellular signaling factors. Stomatal development is orchestrated by the positive factor STOMAGEN/EPFL9 and the negative factors EPF1, EPF2, and CHALLAH/EPFL6 in combination with multiple receptors. EPF1 and EPF2 are produced in the stomatal lineage cells of the epidermis, whereas STOMAGEN and CHALLAH are derived from the inner tissues. These findings highlight the complex cell-to-cell and intertissue communications that regulate stomatal development. To optimize gas exchange, particularly the balance between the uptake of carbon dioxide (CO(2)) and loss of water, plants control stomatal activity in response to environmental conditions. The CO(2) level and light intensity influence stomatal density. Plants sense environmental cues in mature leaves and adjust the stomatal density of newly forming leaves, indicating the involvement of long-distance systemic signaling. This review summarizes recent research progress in the peptide signaling of stomatal development and discusses the evolutionary model of the signaling machinery.

  5. Selective elimination of HIV-1-infected cells by Env-directed, HIV-1-based virus-like particles

    Peretti, Silvia; Schiavoni, Ilaria; Pugliese, Katherina; Federico, Maurizio

    2006-01-01

    We recently showed that both replicating and resting cells cultivated with ganciclovir (GCV) were killed when challenged with vesicular stomatitis virus G glycoprotein pseudotyped HIV-1-based virus-like particles (VLPs) carrying the Nef7 (i.e., an HIV-1 Nef mutant incorporating in virions at high levels)/herpes simplex virus-1 thymidine kinase (HSV-TK) fusion product. On this basis, a novel anti-HIV therapeutic approach based on Nef7/TK VLPs expressing X4 or R5 HIV cell receptor complexes has been attempted. We here report that (CD4-CXCR4) and (CD4-CCR5) Nef7-based VLPs efficiently enter cells infected by X4- or R5-tropic HIV-1 strains, respectively. Importantly, the delivery of the VLP-associated Nef7/TK led to cell death upon GCV treatment. Of interest, VLPs were effective also against non-replicating, HIV-1-infected primary human monocyte-derived macrophages. HIV-targeted VLPs represent a promising candidate for the treatment of persistently HIV-1-infected cells that are part of virus reservoirs resistant to HAART therapies

  6. Glycoproteins and sialyl transferase of human B lymphoblastoid cell lines

    Lui, S.W.L.; Ng, M.H.

    1980-01-01

    We used two radiolabeling methods to study glycoproteins on the surface of lymphoblastoid cells. One of the methods affects tritiation of residues which are oxidized with galactose oxidase and the other causes tritiation of neuraminic acid residues. This approach was shown to allow a better resolution of cell surface glycoproteins than if either method were used alone. Glycoproteins of B 1 - 19 cells which harbor the Epstein-Barr virus genomes were compared with those of its parental cell line, BJAB, which does not harbor the viral genomes. These studies did not reveal a unique viral protein. A 28,000 mol. wt. glycoprotein was found to be the most prominent neuraminic acidlabeled product of B 1 - 19 cells and also of the two other cell lines, Raji and Ly38, which harbor the EBV genomes. A similar molecular weight species from BJAB cells identified by galactose oxidase labeling might be deficient in neuraminic acid residues as it was poorly labeled by the periodate oxidation method. The neuraminic acid content and level of sialyl transferase of BJAB cells were found to be lower than those of the other cell lines studied. (auth.)

  7. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  8. Generation and evaluation of a LaSota strain-based recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of avian metapneumovirus subgroup C (aMPV-C) as a bivalent vaccine

    To develop a bivalent vaccine, a recombinant Newcastle disease virus was generated by using the NDV LaSota strain with insertion of the G gene of aMPV-C. The biological assessments of the recombinant virus, rLS/aMPV-CG, by conducting the mean death time, intracerebral pathogenicity index, and growth...

  9. Sodium Lauryl Sulfate Abrogates Human Immunodeficiency Virus Infectivity by Affecting Viral Attachment

    Bestman-Smith, Julie; Piret, Jocelyne; Désormeaux, André; Tremblay, Michel J.; Omar, Rabeea F.; Bergeron, Michel G.

    2001-01-01

    The microbicidal activity of sodium lauryl sulfate (SLS) against human immunodeficiency virus type 1 (HIV-1) was studied in cultured cells. Pretreatment of HIV-1NL4-3 with SLS decreased, in a concentration-dependent manner, its infectivity when using 1G5 as target cells. In the absence of a viral pretreatment period or when 1G5 cells were pretreated with SLS, the surfactant-induced inactivation of viral infectivity was less pronounced, especially at concentrations between 375 and 550 μM. SLS had no effect on HIV-1 when the virus was adsorbed to 1G5 cells by a 2-h incubation period. SLS almost completely inhibited the fusion process by decreasing the attachment of HIV-1 to target cells. SLS also inhibited the infectivity of HIV-1-based luciferase reporter viruses pseudotyped with the amphotropic murine leukemia virus envelope (which enters cells in a CD4-, CCR5-, and CXCR4-independent manner), indicating that SLS may inactivate other envelope viruses. In contrast, no effect was seen with vesicular stomatitis virus envelope glycoprotein G (which enters cells through receptor-mediated endocytosis) pretreated with up to 700 μM SLS. SLS also decreased, in a dose-dependent manner, the HIV-1-dependent syncytium formation between 1G5 and J1.1 cells after a 24-h incubation. The reduction of luciferase activity was more pronounced when J1.1 cells (which express HIV-1 proteins on their surface) were pretreated with SLS rather than 1G5 cells. Taken together, our results suggest that SLS could represent a candidate of choice for use in vaginal microbicides to prevent the sexual transmission of HIV and possibly other pathogens causing sexually transmitted diseases. PMID:11451679

  10. P-glycoprotein in autoimmune rheumatic diseases.

    García-Carrasco, M; Mendoza-Pinto, C; Macias Díaz, S; Vera-Recabarren, M; Vázquez de Lara, L; Méndez Martínez, S; Soto-Santillán, P; González-Ramírez, R; Ruiz-Arguelles, A

    2015-07-01

    P-glycoprotein (Pgp) is a transmembrane protein of 170 kD encoded by the multidrug resistance 1 (MDR-1) gene, localized on chromosome 7. More than 50 polymorphisms of the MDR-1 gene have been described; a subset of these has been shown to play a pathophysiological role in the development of inflammatory bowel disease, femoral head osteonecrosis induced by steroids, lung cancer and renal epithelial tumors. Polymorphisms that have a protective effect on the development of conditions such as Parkinson disease have also been identified. P-glycoprotein belongs to the adenosine triphosphate binding cassette transporter superfamily and its structure comprises a chain of approximately 1280 aminoacid residues with an N-C terminal structure, arranged as 2 homologous halves, each of which has 6 transmembrane segments, with a total of 12 segments with 2 cytoplasmic nucleotide binding domains. Many cytokines like interleukin 2 and tumor necrosis factor alpha increase Pgp expression and activity. Pgp functions as an efflux pump for a variety of toxins in order to protect particular organs and tissues as the central nervous system. Pgp transports a variety of substrates including glucocorticoids while other drugs such as tacrolimus and cyclosporine A act as modulators of this protein. The most widely used method to measure Pgp activity is flow cytometry using naturally fluorescent substrates such as anthracyclines or rhodamine 123. The study of drug resistance and its association to Pgp began with the study of resistance to chemotherapy in the treatment of cancer and antiretroviral therapy for human immunodeficiency virus; however, the role of Pgp in the treatment of systemic lupus erythematosus, rheumatoid arthritis and psoriatic arthritis has been a focus of study lately and has emerged as an important mechanism by which treatment failure occurs. The present review analyzes the role of Pgp in these autoimmune diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Molecular characterisation of the nucleocapsid protein gene, glycoprotein gene and gene junctions of rhabdovirus 903/87, a novel fish pathogenic rhabdovirus

    Johansson, Tove; Nylund, S.; Olesen, Niels Jørgen

    2001-01-01

    , M, G and L genes it was determined that transcription start and stop codons were conserved between virus 903/87 and the vesiculo viruses. Virus 903/87 has no open reading frame coding for a non-virion gene between the glycoprotein and the polymerase gene. Phylogenetic studies based on rhabdovirus...

  12. High virulence differences among phylogenetically distinct isolates of the fish rhabdovirus viral hemorrhagic septicaemia virus are not explained by variability of the surface glycoprotein G or the non-virion protein Nv

    Einer-Jensen, Katja; Harmache, Abdallah; Biacchesi, Stéphane

    2014-01-01

    -related novirhabdovirus [infectious hematopoietic necrosis virus (IHNV)], four chimaeric IHNV–VHSV recombinant viruses were generated. These chimaeric viruses included substitution of the IHNV glyco- (G) or non-structural (Nv) protein with their counterparts from either a trout-derived or a marine VHSV strain....... Comparative challenge experiments in rainbow trout fingerlings revealed similar levels of survival induced by the recombinant (r)IHNV–VHSV chimaeric viruses regardless of whether the G or Nv genes originated from VHSV isolated from a marine fish species or from rainbow trout. Interestingly, recombinant IHNV...... gained higher virulence following substitution of the G gene with those of the VHSV strains, whilst the opposite was the case following substitution of the Nv genes....

  13. Contribution of the attachment G glycoprotein to pathogenicity and immunogenicity of avian metapneumovirus subgroup C.

    Govindarajan, Dhanasekaran; Kim, Shin-Hee; Samal, Siba K

    2010-03-01

    Avian metapneumovirus (AMPV) causes an upper respiratory tract infection in turkeys leading to serious economic losses to the turkey industry. The G glycoprotein of AMPV is known to be associated with viral attachment and pathogenesis. In this study, we determined the role of the G glycoprotein in the pathogenicity and immunogenicity of AMPV strain Colorado (AMPV/CO). Recombinant AMPV/CO lacking the G protein (rAMPV/CO-deltaG) was generated using a reverse-genetics system. The recovered rAMPV/CO-deltaG replicated slightly better than did wild-type AMPV in Vero cells. However, deletion of the G gene in AMPV resulted in attenuation of the virus in turkeys. The mutant virus induced less-severe clinical signs and a weaker immune response in turkeys than did the wild-type AMPV. Our results suggest that the G glycoprotein is an important determinant for the pathogenicity and immunogenicity of AMPV.

  14. Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways

    Felemban, Abrar

    2016-01-01

    -activated protein kinase (MAPK) signalling pathway, which modulates a variety of other processes, including cell proliferation, regulation of cytokinesis, programed cell death, and response to abiotic and biotic stress. The environment also plays a role in stomatal

  15. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  16. Isolation of a virus with rhabdovirus morphology from a white-beaked dolphin (Lagenorhynchus albirostris).

    A.D.M.E. Osterhaus (Albert); H.W.J. Broeders; K.S. Teppema; T. Kuiken (Thijs); J.A. House; H.W. Vos (Helma); I.K.G. Visser (Ilona)

    1993-01-01

    textabstractA virus with rhabdovirus morphology which proved to be antigenically distinct from rabies virus and vesicular stomatitis virus was isolated from a dolphin that had beached on the Dutch coast. Neutralizing antibodies to this virus were found in several European marine mammal species.

  17. Recombinant pestivirus E2 glycoproteins prevent viral attachment to permissive and non permissive cells with different efficiency.

    Asfor, A S; Wakeley, P R; Drew, T W; Paton, D J

    2014-08-30

    Bovine viral diarrhoea virus (BVDV) is an economically important animal pathogen, which like other pestiviruses has similar molecular biological features to hepaciviruses, including human Hepatitis C virus. The pestivirus E2 glycoproteins are the major target for virus-neutralising antibodies, as well as playing a role in receptor binding and host range restriction. In this study, recombinant E2 glycoproteins (rE2) derived from three different pestivirus species were examined for their inhibitory effects on pestivirus infectivity in cell culture. Histidine-tagged rE2 glycoproteins of BVDV type 2 strain 178003, BVDV type 1 strain Oregon C24V and CSFV strain Alfort 187 were produced in Spodoptera frugiperda insect cells and purified under native conditions. The ability of rE2 glycoprotein to inhibit the infection of permissive cells by both homologous and heterologous virus was compared, revealing that the inhibitory effects of rE2 glycoproteins correlated with the predicted similarity of the E2 structures in the recombinant protein and the test virus. This result suggests that the sequence and structure of E2 are likely to be involved in the host specificity of pestiviruses at their point of uptake into cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Recurrent aphthous stomatitis: a case report

    Xiomara Serpa-Romero

    2016-07-01

    Full Text Available Recurrent aphthosus stomatitis is an alteration of the oral mucosa in some cases associated with depression of the immune system that affects the tissue response at the level of the epithelium, triggering repetitive clinical picture of small and medium ulcers (3-5 mm which necrotic presented erythematous background and lasting no more than 15 days. The picture becomes recurrent, symptomatic, compromising the health of the patient who consults again with the same characteristics in oral cavity. The literature associates the process with hormonal changes, trauma, prolonged intake of medications, and stress. A case of female patient 53, who attends the service of dentistry to present multiple oral thrush that hard to swallow, drooling and feverish marked presents in Santa Marta, at the Center for Implantology and Oral Rehabilitation. According to the interrogation and clinical examination it is associated with a reactive inflammatory process caused by the intake of drugs to treat infectious or viral process, which is given the presumptive diagnosis of erythema drug. Any medication intake was suspended and additional tests are ordered antinuclear antibodies

  19. Haematological parameters and recurrent aphthous stomatitis

    Khan, N. F.; Saeed, M.; Chaudhary, S.

    2013-01-01

    Objective: To find out the relationship between recurrent aphthous stomatitis (RAS) with deficiencies of haemoglobin, haematocrit, serum vitamin B12, serum Ferritin and red blood cells (RBC) Folate level. Study Design: An analytical cross-sectional study. Place and Duration of Study: Department of Oral Health Sciences, Shaikh Zayed Federal Postgraduate Medical Complex, Lahore, from February to July 2008. Methodology: Sixty consecutive subjects with active RAS were taken as the aphthous group; 60 age and gender matched subjects without RAS were as the Non-Aphthous group. Five milliliter blood was taken from both groups to evaluate the levels of serum B12, and RBC Folate through radio immuno assay and serum ferritin with enzyme linked immuno-sorbent assay tests. Complete blood count was carried out to determine the level of haemoglobin and haematocrit in both groups. Proportion of subjects with lower values was compared using 2 text of proportions with significance at p < 0.05. Results: Serum Ferritin (p = 0.001), haematocrit (p < 0.001), RBC Folate (p < 0.001) and serum B12 (p < 0.001) were significantly lower in the RAS group. Combined deficiency state (haemoglobin, serum Ferritin, haematocrit, RBC Folate and serum B12) was identified in 13% (n = 8) RAS patients. Conclusion: Frequency of haematinic deficiencies was high in RAS patients. Serum B12 and RBC Folate were significantly low in aphthous group. (author)

  20. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages.

    Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo

    2014-01-01

    Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.

  1. Analysis of Determinants in Filovirus Glycoproteins Required for Tetherin Antagonism

    Kerstin Gnirß

    2014-04-01

    Full Text Available The host cell protein tetherin can restrict the release of enveloped viruses from infected cells. The HIV-1 protein Vpu counteracts tetherin by removing it from the site of viral budding, the plasma membrane, and this process depends on specific interactions between the transmembrane domains of Vpu and tetherin. In contrast, the glycoproteins (GPs of two filoviruses, Ebola and Marburg virus, antagonize tetherin without reducing surface expression, and the domains in GP required for tetherin counteraction are unknown. Here, we show that filovirus GPs depend on the presence of their authentic transmembrane domains for virus-cell fusion and tetherin antagonism. However, conserved residues within the transmembrane domain were dispensable for membrane fusion and tetherin counteraction. Moreover, the insertion of the transmembrane domain into a heterologous viral GP, Lassa virus GPC, was not sufficient to confer tetherin antagonism to the recipient. Finally, mutation of conserved residues within the fusion peptide of Ebola virus GP inhibited virus-cell fusion but did not ablate tetherin counteraction, indicating that the fusion peptide and the ability of GP to drive host cell entry are not required for tetherin counteraction. These results suggest that the transmembrane domains of filoviral GPs contribute to tetherin antagonism but are not the sole determinants.

  2. A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans

    Law, John Lok Man; Chen, Chao; Wong, Jason

    2013-01-01

    of genotype 1a). Cross neutralization was tested in Huh-7.5 human hepatoma cell cultures using infectious recombinant HCV (HCVcc) expressing structural proteins of heterologous HCV strains from all known major genotypes, 1-7. Vaccination induced significant neutralizing antibodies against heterologous HCV...... genotype 1a virus which represents the most common genotype in North America. Of the 16 vaccinees tested, 3 were selected on the basis of strong 1a virus neutralization for testing of broad cross-neutralizing responses. At least 1 vaccinee was shown to elicit broad cross-neutralization against all HCV...

  3. Antibodies specific for hypervariable regions 3 to 5 of the feline immunodeficiency virus envelope glycoprotein are not solely responsible for vaccine-induced acceleration of challenge infection in cats

    W. Huisman (Willem); E.J.A. Schrauwen (Eefje); S.D. Pas (Suzan); J.A. Karlas (Jos); G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    2004-01-01

    textabstractIn a previous vaccination study in cats, the authors reported on accelerated feline immunodeficiency virus (FIV) replication upon challenge in animals vaccinated with a candidate envelope subunit vaccine. Plasma transfer studies as well as antibody profiles in vaccinated cats indicated a

  4. Protection by recombinant Newcastle disease viruses (NDV) expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subtype A or B against challenge with virulent NDV and aMPV

    Avian metapneumovirus (aMPV) and Newcastle disease virus (NDV) are threatening avian pathogens that cause sporadic but serious respiratory diseases in poultry worldwide. Although, vaccination, combined with strict biosecurity practices, has been the recommendation for controlling these diseases in t...

  5. Chronic gingivitis and aphthous stomatitis relationship hypothesis: A neuroimmunobiological approach

    Chiquita Prahasanti

    2009-03-01

    Full Text Available Background: Traumatic injuries to the oral mucosa in fixed orthodontic patients are common, especially in the first week of bracket placement, and occasionally lead to the development of aphthous stomatitis or ulcers. Nevertheless, these lesions are selflimiting. Purpose: The objective of this study is to reveal the connection between chronic gingivitis and aphthous stomatitis which is still unclear. Case: A patient with a persistent lesion for more than six months. Case Management: RAS was treated with scaling procedure, the gingival inflammation was healed. However, in this case report, despite the appropriate management procedures had been done, the lesion still worsen and became more painful. Moreover, the symptoms did not heal for more than two weeks. Actually, they had been undergone orthodontic treatment more than six months and rarely suffered from aphthous stomatitis. Coincidentally, at that time they also suffered from chronic gingivitis. It was interesting that after scaling procedures, the ulcer subsides in two days. Conclusion: Recently, the neuroimmunobiological researches which involved neurotransmitters and cytokines on cell-nerve signaling, and heat shock proteins in gingivitis and stomatitis are in progress. Nevertheless, they were done separately, thus do not explain the interrelationship. This proposed new concept which based on an integrated neuroimmunobiological approach could explain the benefit of periodontal treatment, especially scaling procedures, for avoiding prolonged painful episodes and unnecessary medications in aphthous stomatitis. However, for widely acceptance of the chronic gingivitis and aphthous stomatitis relationship, further clinical and laboratory study should be done. Regarding to the relatively fast healing after scaling procedures in this case report; it was concluded that the connection between chronic gingivitis and aphthous stomatitis is possible.

  6. Infection of Melanoplus sanguinipes Grasshoppers following Ingestion of Rangeland Plant Species Harboring Vesicular Stomatitis Virus▿

    Drolet, Barbara S.; Stuart, Melissa A.; Derner, Justin D.

    2009-01-01

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV. PMID:19286779

  7. 1995 epizootic of vesicular stomatitis (New Jersey serotype) in the western United States: an entomologic perspective.

    Schmidtmann, E T; Tabachnick, W J; Hunt, G J; Thompson, L H; Hurd, H S

    1999-01-01

    Entomologic and epizootic data are reviewed concerning the potential for transmission of vesicular stomatitis (VS) virus by insects, including field data from case-positive premises in New Mexico and Colorado during the 1995 outbreak of the New Jersey serotype (VSNJ). As with previous outbreaks of VSNJ in the western United States, the 1995 epizootic illustrated that risk of exposure is seasonal, increasing during warm weather and decreasing with onset of cool weather; virus activity spread from south to north along river valleys of the southwestern and Rocky Mountain states; clinical disease was detected most commonly in horses, but also occurred in cattle and 1 llama; and most infections were subclinical. Overall, 367 case-positive premises were identified during the 1995 outbreak, with foci of virus activity along the Rio Grande River south of Albuquerque, NM, in southwestern Colorado, and along the Colorado River near Grand Junction, CO. The establishment of a 16-km (10-mile) radius zone of restricted animal movement around confirmed positive premises, along with imposition of state and international embargoes, created economic hardship for livestock owners and producers. The importance of defining the role of blood-feeding insects as biological vectors of VSNJ virus relative to risk factors that promote high levels of insect transmission, such as the presence of livestock along western river valleys, blood feeding activity, and frequent transport of animals for recreational purposes, is emphasized as a basis for developing effective disease management.

  8. First case report of vesicular stomatitis in the State of Paraíba, Brazil

    Inácio José Clementino

    2014-10-01

    Full Text Available The present report describes the first case of vesicular stomatitis in the State of Paraíba, Brazil. Records from the Official Veterinary Services of the State of Paraíba were analyzed while responding to a suspected case of vesicular disease at a property (property I in the municipality of Pombal in which the cattle showed clinical signs and lesions of vesicular disease. Surveillance in the surrounding area revealed similar lesions in cattle at two other properties (II and III. Based on these events, the suspicion was considered well founded, and samples were collected for evaluation at the National Agricultural Laboratory of the State of Pará. The property was interdicted, and those located within a 3 km radius (perifocal from the focus were inspected. At property I, 42.86% (6/14 of the cattle showed vesicular disease lesions characterized by intense sialorrhea, ruptured oral vesicles, epithelial detachment of the tongue and muzzle, and vesicular lesions in the udder and interdigital space. Similar lesions were detected in cattle at properties II and III, affecting 80.95% (34/42 and 11.54% (3/26 of the animals, respectively. Tissue samples collected from the three properties were positive for the vesicular stomatitis virus (Indiana 3 subtype. The properties were monitored for 21 days after the last infected animal was cured, and afterwards, the three properties were released.

  9. Improving stomatal functioning at elevated growth air humidity: A review.

    Fanourakis, Dimitrios; Bouranis, Dimitrios; Giday, Habtamu; Carvalho, Dália R A; Rezaei Nejad, Abdolhossein; Ottosen, Carl-Otto

    2016-12-01

    Plants grown at high relative air humidity (RH≥85%) are prone to lethal wilting upon transfer to conditions of high evaporative demand. The reduced survival of these plants is related to (i) increased cuticular permeability, (ii) changed anatomical features (i.e., longer pore length and higher stomatal density), (iii) reduced rehydration ability, (iv) impaired water potential sensitivity to leaf dehydration and, most importantly, (v) compromised stomatal closing ability. This review presents a critical analysis of the strategies which stimulate stomatal functioning during plant development at high RH. These include (a) breeding for tolerant cultivars, (b) interventions with respect to the belowground environment (i.e., water deficit, increased salinity, nutrient culture and grafting) as well as (c) manipulation of the aerial environment [i.e., increased proportion of blue light, increased air movement, temporal temperature rise, and spraying with abscisic acid (ABA)]. Root hypoxia, mechanical disturbance, as well as spraying with compounds mimicking ABA, lessening its inactivation or stimulating its within-leaf redistribution are also expected to improve stomatal functioning of leaves expanded in humid air. Available evidence leaves little doubt that genotypic and phenotypic differences in stomatal functioning following cultivation at high RH are realized through the intermediacy of ABA. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Plant twitter: ligands under 140 amino acids enforcing stomatal patterning.

    Rychel, Amanda L; Peterson, Kylee M; Torii, Keiko U

    2010-05-01

    Stomata are an essential land plant innovation whose patterning and density are under genetic and environmental control. Recently, several putative ligands have been discovered that influence stomatal density, and they all belong to the epidermal patterning factor-like family of secreted cysteine-rich peptides. Two of these putative ligands, EPF1 and EPF2, are expressed exclusively in the stomatal lineage cells and negatively regulate stomatal density. A third, EPFL6 or CHALLAH, is also a negative regulator of density, but is expressed subepidermally in the hypocotyl. A fourth, EPFL9 or STOMAGEN, is expressed in the mesophyll tissues and is a positive regulator of density. Genetic evidence suggests that these ligands may compete for the same receptor complex. Proper stomatal patterning is likely to be an intricate process involving ligand competition, regional specificity, and communication between tissue layers. EPFL-family genes exist in the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, and rice, Oryza sativa, and their sequence analysis yields several genes some of which are related to EPF1, EPF2, EPFL6, and EPFL9. Presence of these EPFL family members in the basal land plants suggests an exciting hypothesis that the genetic components for stomatal patterning originated early in land plant evolution.

  11. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Kamel El Omari

    2013-01-01

    Full Text Available Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1 at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed.

  12. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    El Omari, Kamel; Iourin, Oleg; Harlos, Karl; Grimes, Jonathan M.; Stuart, David I.

    2013-01-01

    Summary Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1) at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed. PMID:23273918

  13. Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant Vaccine

    Daddario-DiCaprio, Kathleen M; Geisbert, Thomas W; Geisbert, Joan B; Stroeher, Ute; Hensley, Lisa E; Grolla, Allen; Fritz, Elizabeth A; Feldmann, Friederike; Feldmann, Heinz; Jones, Steven M

    2006-01-01

    .... MARV is also considered to have potential as a biological weapon. Recently, we reported the development of a promising attenuated, replication-competent vaccine against MARV based on recombinant vesicular stomatitis virus (VSV...

  14. [CORRELATION MATRIX OF CHARACTERISTICS OF CHRONIC RECURRENT APHTHOUS STOMATITIS].

    Koridze, Kh; Aladashvili, L; Taboridze, I

    2015-09-01

    The purpose of the present work is to study the correlation between the risk factors of chronic recurrent aphthous stomatitis. The research was conducted on 62 patients between ages of 40 and 70 years at Tbilisi Hospital for Veterans of War. The analysis was carried out by Spearman's Rank Correlation method using the statistical package SPSS 11.5. We investigated: harmful habits, professional factors, background and accompanying illnesses, pathology of teeth, focal infection, emotional stress, genetic factors. Correlation matrix between the significant risk factors of chronic recurrent aphthous stomatitis is defined. Multiple correlations have the following factors: industrial dust, focal infections, emotional stress, anemia. Correlation diagram of etiological factors of chronic recurrent aphthous stomatitis is helpful for providing professional and expert services.

  15. Induction of antigen-specific immune responses in mice by recombinant baculovirus expressing premembrane and envelope proteins of West Nile virus

    Zhu Bibo

    2012-07-01

    Full Text Available Abstract Background West Nile Virus (WNV is an emerging arthropod-born flavivirus with increasing distribution worldwide that is responsible for a large proportion of viral encephalitis in humans and horses. Given that there are no effective antiviral drugs available for treatment of the disease, efforts have been directed to develop vaccines to prevent WNV infection. Recently baculovirus has emerged as a novel and attractive gene delivery vehicle for mammalian cells. Results In the present study, recombinant baculoviruses expressing WNV premembrane (prM and envelope (E proteins under the cytomegalovirus (CMV promoter with or without vesicular stomatitis virus glycoprotein (VSV/G were constructed. The recombinant baculoviruses designated Bac-G-prM/E and Bac-prM/E, efficiently express E protein in mammalian cells. Intramuscular injection of the two recombinant baculoviruses (at doses of 108 or 109 PFU/mouse induced the production of WNV-specific antibodies, neutralizing antibodies as well as gamma interferon (IFN-γ in a dose-dependent pattern. Interestingly, the recombinant baculovirus Bac-G-prM/E was found to be a more efficient immunogen than Bac-prM/E to elicit a robust immune response upon intramuscular injection. In addition, inoculation of baculovirus resulted in the secretion of inflammatory cytokines, such as TNF-α, IL-2 and IL-6. Conclusions These recombinant baculoviruses are capable of eliciting robust humoral and cellular immune responses in mice, and may be considered as novel vaccine candidates for West Nile Virus.

  16. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment.

    Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L

    2011-04-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.

  17. The Lyssavirus glycoprotein: A key to cross-immunity.

    Buthelezi, Sindisiwe G; Dirr, Heini W; Chakauya, Ereck; Chikwamba, Rachel; Martens, Lennart; Tsekoa, Tsepo L; Stoychev, Stoyan H; Vandermarliere, Elien

    2016-11-01

    Rabies is an acute viral encephalomyelitis in warm-blooded vertebrates, caused by viruses belonging to Rhabdovirus family and genus Lyssavirus. Although rabies is categorised as a neglected disease, the rabies virus (RABV) is the most studied amongst Lyssaviruses which show nearly identical infection patterns. In efforts to improving post-exposure prophylaxis, several anti-rabies monoclonal antibodies (mAbs) targeting the glycoprotein (G protein) sites I, II, III and G5 have been characterized. To explore cross-neutralization capacity of available mAbs and discover new possible B-cell epitopes, we have analyzed all available glycoprotein sequences from Lyssaviruses with a focus on sequence variation and conservation. This information was mapped on the structure of a representative G protein. We proposed several possible cross-neutralizing B-cell epitopes (GUVTTTF, WLRTV, REECLD and EHLVVEEL) in complement to the already well-characterized antigenic sites. The research could facilitate development of novel cross-reactive mAbs against RABV and even more broad, against possibly all Lyssavirus members. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Lyssavirus glycoprotein: A key to cross-immunity

    Buthelezi, Sindisiwe G.; Dirr, Heini W.; Chakauya, Ereck; Chikwamba, Rachel; Martens, Lennart; Tsekoa, Tsepo L.; Stoychev, Stoyan H.; Vandermarliere, Elien

    2016-01-01

    Rabies is an acute viral encephalomyelitis in warm-blooded vertebrates, caused by viruses belonging to Rhabdovirus family and genus Lyssavirus. Although rabies is categorised as a neglected disease, the rabies virus (RABV) is the most studied amongst Lyssaviruses which show nearly identical infection patterns. In efforts to improving post-exposure prophylaxis, several anti-rabies monoclonal antibodies (mAbs) targeting the glycoprotein (G protein) sites I, II, III and G5 have been characterized. To explore cross-neutralization capacity of available mAbs and discover new possible B-cell epitopes, we have analyzed all available glycoprotein sequences from Lyssaviruses with a focus on sequence variation and conservation. This information was mapped on the structure of a representative G protein. We proposed several possible cross-neutralizing B-cell epitopes (GUVTTTF, WLRTV, REECLD and EHLVVEEL) in complement to the already well-characterized antigenic sites. The research could facilitate development of novel cross-reactive mAbs against RABV and even more broad, against possibly all Lyssavirus members. -- Highlights: •The current PEP has raised safety and availability concerns. •Cocktails of mAbs have been proposed as alternative treatment. •Amino acid conservation amongst Lyssavirus G proteins was studied. •Possible cross-neutralizing B-cell epitopes were proposed.

  19. The Lyssavirus glycoprotein: A key to cross-immunity

    Buthelezi, Sindisiwe G. [Council for Scientific and Industrial Research, Biosciences Unit, Pretoria (South Africa); Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg (South Africa); Dirr, Heini W. [Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg (South Africa); Chakauya, Ereck; Chikwamba, Rachel [Council for Scientific and Industrial Research, Biosciences Unit, Pretoria (South Africa); Martens, Lennart [Unit for Computational Omics and Systems Biology, Medical Biotechnology Center, VIB, Ghent (Belgium); Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent (Belgium); Tsekoa, Tsepo L. [Council for Scientific and Industrial Research, Biosciences Unit, Pretoria (South Africa); Stoychev, Stoyan H., E-mail: Sstoychev@csir.co.za [Council for Scientific and Industrial Research, Biosciences Unit, Pretoria (South Africa); Vandermarliere, Elien [Unit for Computational Omics and Systems Biology, Medical Biotechnology Center, VIB, Ghent (Belgium); Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent (Belgium); Bioinformatics Institute Gent, Ghent University, Ghent (Belgium)

    2016-11-15

    Rabies is an acute viral encephalomyelitis in warm-blooded vertebrates, caused by viruses belonging to Rhabdovirus family and genus Lyssavirus. Although rabies is categorised as a neglected disease, the rabies virus (RABV) is the most studied amongst Lyssaviruses which show nearly identical infection patterns. In efforts to improving post-exposure prophylaxis, several anti-rabies monoclonal antibodies (mAbs) targeting the glycoprotein (G protein) sites I, II, III and G5 have been characterized. To explore cross-neutralization capacity of available mAbs and discover new possible B-cell epitopes, we have analyzed all available glycoprotein sequences from Lyssaviruses with a focus on sequence variation and conservation. This information was mapped on the structure of a representative G protein. We proposed several possible cross-neutralizing B-cell epitopes (GUVTTTF, WLRTV, REECLD and EHLVVEEL) in complement to the already well-characterized antigenic sites. The research could facilitate development of novel cross-reactive mAbs against RABV and even more broad, against possibly all Lyssavirus members. -- Highlights: •The current PEP has raised safety and availability concerns. •Cocktails of mAbs have been proposed as alternative treatment. •Amino acid conservation amongst Lyssavirus G proteins was studied. •Possible cross-neutralizing B-cell epitopes were proposed.