WorldWideScience

Sample records for stoichiometry

  1. The stoichiometry of peatlands

    Science.gov (United States)

    Moore, Tim

    2017-04-01

    Stoichiometric principles have been developed and successfully applied to freshwater and marine ecosystems, which are characterized by short-lived, structurally simple organisms, simple food webs and an environment which allows rapid movement of water and elements. The application has been less successful in peatlands, and other terrestrial ecosystems: not surprising given their long-lived, structurally complex organisms, slow rates of organic matter decomposition, complex food webs and low hydraulic conductivities slowing water and element movement. I examine some aspects of what we know about stoichiometry in peatlands, especially involving nutrients such as C, N, P, K, Ca and Mg. I follow the cascade of stoichiometry from peatland plants through litter and into decomposing peat, drawing upon data from the Mer Bleue peatland and peatlands in Ontario. There are consistent patterns in stoichiometries, such as C:N, N:P and C:P across diverse peatlands, whereas patterns involving K, Ca and Mg show greater variability. Most of the changes in stoichiometry occur in the early stages of decomposition, from Von Post values 1 through 4. Peatlands are affected by disturbances, such as elevated atmospheric deposition of N and P, and I look at how these changes affect stoichiometric relationships. Finally, I present data on the changes in the stoichiometry of C, H and O, from plants through peat to coal beds. I conclude that while ecological stoichiometry in peatlands is not as 'simple' as in aquatic ecosystems, it offers contributions to our understanding of how peatlands function and respond to disturbance.

  2. Ecological Stoichiometry of Ocean Plankton

    Science.gov (United States)

    Moreno, Allison R.; Martiny, Adam C.

    2018-01-01

    Marine plankton elemental stoichiometric ratios can deviate from the Redfield ratio (106C:16N:1P); here, we examine physiological and biogeochemical mechanisms that lead to the observed variation across lineages, regions, and seasons. Many models of ecological stoichiometry blend together acclimative and adaptive responses to environmental conditions. These two pathways can have unique molecular mechanisms and stoichiometric outcomes, and we attempt to disentangle the two processes. We find that interactions between environmental conditions and cellular growth are key to understanding stoichiometric regulation, but the growth rates of most marine plankton populations are poorly constrained. We propose that specific physiological mechanisms have a strong impact on plankton and community stoichiometry in nutrient-rich environments, whereas biogeochemical interactions are important for the stoichiometry of the oligotrophic gyres. Finally, we outline key areas with missing information that is needed to advance understanding of the present and future ecological stoichiometry of ocean plankton.

  3. Quantifying chaos for ecological stoichiometry.

    Science.gov (United States)

    Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2010-09-01

    The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincaré return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing δ1. However, for higher values of δ1 the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter ζ) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.

  4. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Weinert, Brian Tate; Iesmantavicius, Vytautas; Moustafa, Tarek

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation...

  5. Ghanaian Teacher Trainees' Conceptual Understanding of Stoichiometry

    Science.gov (United States)

    Hanson, Ruby

    2016-01-01

    Chemical stoichiometry is a conceptual framework that encompasses other concepts such as the mole, writing of chemical equations in word and representative form, balancing of equations and the equilibrium concept. The underlying concepts enable students to understand relationships among entities of matter and required amounts for use when…

  6. Differential Stoichiometry among Core Ribosomal Proteins

    Directory of Open Access Journals (Sweden)

    Nikolai Slavov

    2015-11-01

    Full Text Available Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs, some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function.

  7. Subunit Stoichiometry of Human Muscle Chloride Channels

    OpenAIRE

    Fahlke, Christoph; Knittle, Timothy; Gurnett, Christina A.; Campbell, Kevin P.; George, Alfred L.

    1997-01-01

    Voltage-gated Cl? channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl? channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their ...

  8. Stoichiometry patterns in the androdioecious Acer tegmentosum.

    Science.gov (United States)

    Zhang, Xinna; Yao, Jie; Fan, Chunyu; Tan, Lingzhao; Zhang, Chunyu; Wang, Juan; Zhao, Xiuhai; von Gadow, Klaus

    2016-10-11

    This study evaluates stoichiometry patterns in the androdioecious Acer tegmentosum, a species characterized by a rare reproductive system where males and hermaphrodites coexist. Altogether 31 hermaphrodites and 29 male plants were harvested and samples of leaves, current-year shoots, branches and coarse roots were analyzed to explore gender differences in biomass, C, N and P concentrations of these four components. The nitrogen to phosphorus relationship of each component was examined using SMA estimates. Males had significantly greater amounts of leaf and coarse root dry matter content than hermaphrodites. C, N and P stoichiometry differed significantly between genders, especially in the newly emerging vegetative components (leaves and shoots). Males had higher C/N and C/P ratios in current-year shoots and lower C/P ratios in leaves and branches. Hermaphrodites had higher N/P ratios in the leaves and branches. Males had higher rates of increase in leaf P content than hermaphrodites. This study suggests that stoichiometry patterns may be significantly affected by gender.

  9. Polarographic determination of uranium dioxide stoichiometry

    International Nuclear Information System (INIS)

    Viguie, J.; Uny, G.

    1966-10-01

    The method described allows the determination of small deviations from stoichiometry for uranium dioxide. It was applied to the study of surface oxidation of bulk samples. The sample is dissolved in phosphoric acid under an argon atmosphere; U(VI) is determined by polarography in PO 4 H 3 4.5 N - H 2 SO 4 4 N. U(IV) is determined by potentiometry. The detection limit is UO 2,0002 . The accuracy for a single determination at the 95% confidence level is ±20 per cent for samples with composition included between UO 2,001 and UO 2,01 . (authors) [fr

  10. Unpacking students' atomistic uderstanding of stoichiometry

    Science.gov (United States)

    Baluyut, John Ysrael

    Despite the use by instructors of particulate nature of matter (PNOM) diagrams in the general chemistry classroom, misconceptions on stoichiometry continue to prevail among students tasked with conceptual problems on concepts of limiting and excess reagents, and reaction yields. This dissertation set out to explore students' understanding of stoichiometry at the microscopic level as they solved problems that using PNOM diagrams. In particular, the study investigated how students coordinated symbolic and microscopic representations to demonstrate their knowledge of stoichiometric concepts, quantified the prevalence and explained the nature of stoichiometric misconceptions in terms of dual processing and dual coding theories, and used eye tracking to identify visual behaviors that accompanied cognitive processes students used to solve conceptual stoichiometry problems with PNOM diagrams. Interviews with students asked to draw diagrams for specific stoichiometric situations showed dual processing systems were in play. Many students were found to have used these processing systems in a heuristic-analytic sequence. Heuristics, such as the factor-label method and the least amount misconception, were often used by students to select information for further processing in an attempt to reduce the cognitive load of the subsequent analytic stage of the solution process. Diagrams drawn by students were used then to develop an instrument administered over a much larger sample of the general chemistry student population. The robustness of the dual processing theory was manifested by response patterns observed with large proportions of the student samples. These response patterns suggest that many students seemed to rely on heuristics to respond to a specific item for one of two diagrams given for the same chemical context, and then used a more analytic approach in dealing with the same item for the other diagram. It was also found that many students incorrectly treated items

  11. Symbols and definitions of quantities and units in isotope stoichiometry

    International Nuclear Information System (INIS)

    Junghans, P.; Krumbiegel, P.; Faust, H.

    1982-01-01

    On the basis of the International System of Units and recent recommendations of the IUPAC on 'Symbols and Terminology for Physicochemical Quantities and Units' a system is proposed of uniform and unambiguous symbols and definitions of quantities and units used in the isotope dilution technique. The close relationship between isotope stoichiometry and common stoichiometry is demonstrated. (author)

  12. Structure, stoichiometry and spectroscopy of oxide superconductors

    Science.gov (United States)

    Rao, C. N. R.

    In the new oxide superconductors, structure and oxygen stoichiometry play the most crucial role. Thus, all the high-temperature oxide superconductors are orthorhombic perovskites with low-dimensional features. Oxygen stoichiometry in YBa2Cu3O7-δ has an important bearing on the structure as well as superconductivity. This is equally true in the La3-xBa3+xCu 6O14+δ system of which only the 123 oxide (x = 1) with the orthorhombic structure shows high Tc. Orthorhombicity though not essential, is generally found ; it is necessary for the formation of twins. The nature of oxygen and copper in the cuprates has been examined by electron spectroscopy. Copper in these cuprates is only in 1 + and 2 + states. It seems likely that oxygen holes are responsible for superconductivity of the cuprates as well as Ba(Bi, Pb)O3. High Tc superconductivity is also found in oxides of the Bi-(Ca, Sr)-Cu-O and related oxides possessing Cu-O sheets. Dans les nouveaux oxydes supraconducteurs, la structure et la stoechiométrie de l'oxygène jouent un rôle absolument crucial. Ainsi, tous les oxydes supraconducteurs à haute température critique sont des pérovskites orthorhombiques possédant des propriétés de basse dimensionnalité. La stoechiométrie de l'oxygène dans YBa2Cu3O7- δ a une influence importante tant sur la structure que sur la supraconductibilité. Ceci est également valable pour les composés du type La3 -xBa3 + xCu 6O14 + δ parmi lesquels seul l'oxyde 123 (x = 1) à structure orthorhombique présente un grand T. Bien que ce ne soit pas essentiel, cette orthorhombicité est fréquente ; elle est nécessaire à la formation de macles. La nature de l'oxygène et du cuivre a été observée par spectroscopie électronique... Dans ces cuprates, le cuivre est dans les seuls états de valence + 1 et + 2. Vraisemblablement, les trous logés sur l'oxygène sont responsables de la supraconductibilité des cuprates comme de Ba(Bi, Pb)O3. La supraconductibilité existe aussi

  13. Carbon and nitrogen stoichiometry across stream ecosystems

    Science.gov (United States)

    Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.

    2017-12-01

    Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio

  14. "Why not stoichiometry" versus "stoichiometry--why not?" Part I: General context.

    Science.gov (United States)

    Michałowska-Kaczmarczyk, Anna Maria; Asuero, Agustin G; Michałowski, Tadeusz

    2015-01-01

    The elementary concepts involved with stoichiometry are considered from different viewpoints. Some examples of approximate calculations made according to the stoichiometric scheme are indicated, and correct resolution of the problems involved is presented. The principles of balancing chemical equations, based on their apparent similarities with algebraic equations, are criticized. The review concerns some peculiarities inherent in chemical reaction notation and its use (and abuse) in stoichiometric calculations that provide inconsistent results for various reasons. This "conventional" approach to stoichiometry is put in context with the generalized approach to electrolytic systems (GATES) established by Michałowski. The article contains a number of proposals that could potentially be taken into account and included in the next edition of the Orange Book. Notation of ions used in this article is not, deliberately, in accordance with actual IUPAC requirements in this respect. This article is intended to be provocative with the hope that some critical debate around the important topics treated should be generated and creatively expanded in the scientific community.

  15. Influence of argon-hydrogen atmosphere on vitroceramics stoichiometry

    International Nuclear Information System (INIS)

    Beleuta, I.L.

    1977-01-01

    The stoichiometry of UO 2 in several vitroceramics obtained by melting in different Ar-H 2 mixtures at about 2300 deg C was determined. The measurements are in good agreement with the stoichiometry diagram UO 2 sub(+x)-SiO 2 calculated for the melts in pure hydrogen, by using Δ G 02 , as a function of melting conditions: pressure, composition of the melt, temperature. The SiO 2 losses by evaporation are lower, and the samples cast into fusible moulds have smoother surfaces. (Author)

  16. Calcite growth kinetics: Modeling the effect of solution stoichiometry

    NARCIS (Netherlands)

    Wolthers, M.; Nehrke, G.; Gustafsson, J.P.; Van Cappellen, P.

    2012-01-01

    Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth

  17. stoichiometry of pyrogallol/ammonium-nitrogen complex using ...

    African Journals Online (AJOL)

    BARTH EKWUEME

    2010-04-22

    Apr 22, 2010 ... calculations and so that analytical procedures can be properly defined. Since the complex is coloured (pale- yellow), its stoichiometry can be established using visible spectrometry to measure the absorbance of solutions of known composition. One method widely applicable is Job's method of continuous ...

  18. Stoichiometry of pyrogallol/ammonium-nitrogen complex using ...

    African Journals Online (AJOL)

    This complex, which we now refer to as P/NH4 +-N complex, can be the basis for the spectrophotometric determination of NH4 +-N in aqueous solution. Aqueous NH4 +-N is a very important pollution index. Therefore it is imperative that the stoichiometry of this complex be thoroughly understood. In this work, Job's method of ...

  19. Quantitative localization microscopy: effects of photophysics and labeling stoichiometry.

    Directory of Open Access Journals (Sweden)

    Robert P J Nieuwenhuizen

    Full Text Available Quantification in localization microscopy with reversibly switchable fluorophores is severely hampered by the unknown number of switching cycles a fluorophore undergoes and the unknown stoichiometry of fluorophores on a marker such as an antibody. We overcome this problem by measuring the average number of localizations per fluorophore, or generally per fluorescently labeled site from the build-up of spatial image correlation during acquisition. To this end we employ a model for the interplay between the statistics of activation, bleaching, and labeling stoichiometry. We validated our method using single fluorophore labeled DNA oligomers and multiple-labeled neutravidin tetramers where we find a counting error of less than 17% without any calibration of transition rates. Furthermore, we demonstrated our quantification method on nanobody- and antibody-labeled biological specimens.

  20. Flipped Classroom as an Alternative Strategy for Teaching Stoichiometry

    OpenAIRE

    Norrie E. Gayeta

    2017-01-01

    This study aimed to compare the effectiveness of flipped classroom and traditional classroom instruction in measuring conceptual change and to determine if flipped classroom instruction would be an alternative method of teaching to traditional lecture method. This study covered the level of conceptual understanding of students on stoichiometry and the type of conceptual change before and after exposure to flipped and traditional classroom environment. Qualitative and quantitative ...

  1. Learning stoichiometry: A comparison of text and multimedia instructional formats

    Science.gov (United States)

    Evans, Karen L.

    Even after multiple instructional opportunities, first year college chemistry students are often unable to apply stoichiometry knowledge in equilibrium and acid-base chemistry problem solving. Cognitive research findings suggest that for learning to be meaningful, learners need to actively construct their own knowledge by integrating new information into, and reorganizing, their prior understandings. Scaffolded inquiry in which facts, procedures, and principles are introduced as needed within the context of authentic problem solving may provide the practice and encoding opportunities necessary for construction of a memorable and usable knowledge base. The dynamic and interactive capabilities of online technology may facilitate stoichiometry instruction that promotes this meaningful learning. Entering college freshmen were randomly assigned to either a technology-rich or text-only set of cognitively informed stoichiometry review materials. Analysis of posttest scores revealed a significant but small difference in the performance of the two treatment groups, with the technology-rich group having the advantage. Both SAT and gender, however, explained more of the variability in the scores. Analysis of the posttest scores from the technology-rich treatment group revealed that the degree of interaction with the Virtual Lab simulation was significantly related to posttest performance and subsumed any effect of prior knowledge as measured by SAT scores. Future users of the online course should be encouraged to engage with the problem-solving opportunities provided by the Virtual Lab simulation through either explicit instruction and/or implementation of some level of program control within the course's navigational features.

  2. Flipped Classroom as an Alternative Strategy for Teaching Stoichiometry

    Directory of Open Access Journals (Sweden)

    Norrie E. Gayeta

    2017-11-01

    Full Text Available This study aimed to compare the effectiveness of flipped classroom and traditional classroom instruction in measuring conceptual change and to determine if flipped classroom instruction would be an alternative method of teaching to traditional lecture method. This study covered the level of conceptual understanding of students on stoichiometry and the type of conceptual change before and after exposure to flipped and traditional classroom environment. Qualitative and quantitative research methods were used in the study. Respondents were two sections of third year Bachelor of Secondary Education, Biological Science. Frequency, percentage, ranking, mean, standard deviation, Hake factor test, and t-test were the statistical tools applied to answer specific questions. Results showed profound increase towards conceptual change representing a shift from intuitive understanding to correct incomplete understanding level. Thus, change for the better, in theoretical type was determined from pretest to posttest of students exposed to flipped and traditional classroom. Results also indicated that there is no significant difference on students’ conceptual change on stoichiometry exposed to flipped and traditional classroom environment thus, flipped classroom instruction can be used as an alternative teaching method to traditional lecture method in teaching stoichiometry

  3. [Research advances in ecological stoichiometry of marine plankton].

    Science.gov (United States)

    Chen, Lei; Li, Chao-Lun

    2014-10-01

    Ecological stoichiometry can be simply defined as: The biology of elements from molecules to the biosphere, which spans all levels of the environment and of the life. It's a new idea to build a unified theory and becomes an inevitable trend to develop the ecological science. Marine ecosystems, which contribute to 50% of the biosphere biomass, are the important component of the global biogeochemical cycles. Marine zooplankton plays an important role in the material circulation and energy flow of marine ecosystems and serves as a connecting link between the preceding and the following in a more precise understanding of the key elemental cycles. However, research on ecological stoichiometry of marine plankton is fragmentary and rare. This article summarized the ecological phenomena and mechanisms of limiting elements affecting marine plankton, the response of biochemical substances to nutrition limitation, and the food chain transmission and feedback of nutrition limitation. Meanwhile, we also put forward some perspectives for future research of ecological stoichiometry of plankton in China' s seas.

  4. Plant–insect interactions: the role of ecological stoichiometry

    Directory of Open Access Journals (Sweden)

    Michał Filipiak

    2017-03-01

    Full Text Available The energy budget of organisms is a primary factor used to generate hypotheses in ecosystem ecology and evolutionary theory. Therefore, previous studies have focused on the energy costs and benefits of adaptations, the efficiency of energy acquisition and investment, and energy budget limitations. The maintenance of stoichiometric balance is equally important because inconsistency between the chemical composition of the consumer’s tissues and that of its food sources strongly affects the major life-history traits of the consumer and may influence the consumer’s fitness and shape plant–herbivore interactions. In this short review, the framework of ecological stoichiometry is introduced, focusing on plant–insect interactions in terrestrial ecosystems. The use of the trophic stoichiometric ratio (TSR index is presented as a useful tool for indicating the chemical elements that are scarce in food and have the potential to limit the growth and development of herbivores, thereby influencing plant – herbivorous insect interactions. As an example, the elemental composition and stoichiometry of a pollen consumer (mason bee Osmia bicornis and its preferred pollen are compared. The growth and development of O. bicornis may be colimited by the scarcity of K, Na, and N in pollen, whereas the development of the cocoon might be colimited by the scarcity of P, Mg, K, Na, Zn, Ca, and N. A literature review of the elemental composition of pollen shows high taxonomical variability in the concentrations of bee-limiting elements. The optimized collection of pollen species based on the elemental composition may represent a strategy used by bees to overcome stoichiometric mismatches, influencing their interactions with plants. It is concluded that the dependence of life-history traits on food stoichiometry should be considered when discussing life history evolution and plant–herbivore interactions. The TSR index may serve as a convenient and powerful tool

  5. Stoichiometry of ferns in Hawaii: implications for nutrient cycling.

    Science.gov (United States)

    Amatangelo, Kathryn L; Vitousek, Peter M

    2008-10-01

    We asked if element concentrations in ferns differ systematically from those in woody dicots in ways that could influence ecosystem properties and processes. Phylogenetically, ferns are deeply separated from angiosperms; for our analyses we additionally separated leptosporangiate ferns into polypod ferns, a monophyletic clade of ferns which radiated after the rise of angiosperms, and all other leptosporangiate (non-polypod) ferns. We sampled both non-polypod and polypod ferns on a natural fertility gradient and within fertilized and unfertilized plots in Hawaii, and compared our data with shrub and tree samples collected previously in the same plots. Non-polypod ferns in particular had low Ca concentrations under all conditions and less plasticity in their N and P stoichiometry than did polypod ferns or dicots. Polypod ferns were particularly rich in N and P, with low N:P ratios, and their stoichiometry varied substantially in response to differences in nutrient availability. Distinguishing between these two groups has the potential to be useful both in and out of Hawaii, as they have distinct properties which can affect ecosystem function. These differences could contribute to the widespread abundance of polypod ferns in an angiosperm-dominated world, and to patterns of nutrient cycling and limitation in sites where ferns are abundant.

  6. Quantitative imaging through a spectrograph : 2. stoichiometry mapping by Raman scattering

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, ter J.J.

    2004-01-01

    The Bayesian deconvolution algorithm described in a preceding paper [Appl. Opt. 43, 5669–5681 (2004)] is applied to measurement of the two-dimensional stoichiometry field in a combustible methane-air mixture by Raman imaging through a spectrograph. Stoichiometry (fuel equivalence ratio) is derived

  7. Quantitative imaging through a spectrograph. 2. Stoichiometry mapping by Raman scattering.

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter

    2004-01-01

    The Bayesian deconvolution algorithm described in a preceding paper [Appl. Opt. 43, 5669-5681 (2004)] is applied to measurement of the two-dimensional stoichiometry field in a combustible methane-air mixture by Raman imaging through a spectrograph. Stoichiometry (fuel equivalence ratio) is derived

  8. A Novel Code System for Revealing Sources of Students' Difficulties with Stoichiometry

    Science.gov (United States)

    Gulacar, Ozcan; Overton, Tina L.; Bowman, Charles R.; Fynewever, Herb

    2013-01-01

    A coding scheme is presented and used to evaluate solutions of seventeen students working on twenty five stoichiometry problems in a think-aloud protocol. The stoichiometry problems are evaluated as a series of sub-problems (e.g., empirical formulas, mass percent, or balancing chemical equations), and the coding scheme was used to categorize each…

  9. Influence of stoichiometry on electrochromic cerium-titanium oxide compounds

    International Nuclear Information System (INIS)

    Kullman, L.; Richardson, T.; Rubin, M.; Slack, J.; Rottkay, K. von

    1997-01-01

    CeO 2 -TiO 2 finds use as passive counter-electrode in electrochromic devices. Thin films were produced by de-sputtering in a wide range of compositions. Influence of total pressure and oxygen partial pressure on the optical constants of TiO 2 was investigated. Slightly substoichiometric Ti0 2 films exhibit a red-shift of the bandgap. The Ti0 2 content in the compound essentially determines the degree of cathodical coloring upon Li + intercalation [1]. However, pure TiO 2 films with comparable visible transmittance in the clear state behave differently during electrochemical cycling depending on oxygen stoichiometry. Films that are deposited at higher total pressure are more oxygen rich and require initial formatting until current voltage cycles become stable. CeO 2 -Ti0 2 films of intermediate compositions have the relatively highest charge capacity. Comparison with atomic force microscopy indicates a correlation of small grain size with high charge capacity

  10. Subunit stoichiometry of the chloroplast photosystem I complex

    International Nuclear Information System (INIS)

    Bruce, B.D.; Malkin, R.

    1988-01-01

    A native photosystem I (PS I) complex and a PS I core complex depleted of antenna subunits has been isolated from the uniformly 14 C-labeled aquatic higher plant, Lemna. These complexes have been analyzed for their subunit stoichiometry by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis methods. The results for both preparations indicate that one copy of each high molecular mass subunit is present per PS I complex and that a single copy of most low molecular mass subunits is also present. These results suggest that iron-sulfur center X, an early PS I electron acceptor proposed to bind to the high molecular mass subunits, contains a single [4Fe-4S] cluster which is bound to a dimeric structure of high molecular mass subunits, each providing 2 cysteine residues to coordinate this cluster

  11. Evolving Phytoplankton Stoichiometry Fueled Diversification of the Marine Biosphere

    Directory of Open Access Journals (Sweden)

    Antonietta Quigg

    2012-05-01

    Full Text Available The availability of nutrients and the quantity and quality of food at the base of food webs have largely been ignored in discussions of the Phanerozoic record of biodiversity. We examine the role of nutrient availability and phytoplankton stoichiometry (the relative proportions of inorganic nutrients to carbon in the diversification of the marine biosphere. Nutrient availability and phytoplankton stoichiometry played a critical role in the initial diversification of the marine biosphere during the Neoproterozoic. Initial biosphere expansion during this time resulted in the massive sequestration of nutrients into biomass which, along with the geologically slow input of nutrients from land, set the stage for severe nutrient limitation and relatively constant marine biodiversity during the rest of the Paleozoic. Given the slow nutrient inputs from land and low recycling rates, the growth of early-to-middle Paleozoic metazoans remained limited by their having to expend energy to first “burn off” (respire excess carbon in food before the associated nutrients could be utilized for growth and reproduction; the relative equilibrium in marine biodiversity during the Paleozoic therefore appears to be real. Limited nutrient availability and the consequent nutrient imbalance may have delayed the appearance of more advanced carnivores until the Permo-Carboniferous, when widespread orogeny, falling sea level, the spread of forests, greater weathering rates, enhanced ocean circulation, oxygenation, and upwelling all combined to increase nutrient availability. During the Meso-Cenozoic, rising oxygen levels, the continued nutrient input from land, and, especially, increasing rates of bioturbation, enhanced nutrient availability, increasing the nutrient content of phytoplankton that fueled the diversification of the Modern Fauna.

  12. Environmental and organismal predictors of intraspecific variation in the stoichiometry of a neotropical freshwater fish.

    Science.gov (United States)

    El-Sabaawi, Rana W; Kohler, Tyler J; Zandoná, Eugenia; Travis, Joseph; Marshall, Michael C; Thomas, Steven A; Reznick, David N; Walsh, Matthew; Gilliam, James F; Pringle, Catherine; Flecker, Alexander S

    2012-01-01

    The elemental composition of animals, or their organismal stoichiometry, is thought to constrain their contribution to nutrient recycling, their interactions with other animals, and their demographic rates. Factors that affect organismal stoichiometry are generally poorly understood, but likely reflect elemental investments in morphological features and life history traits, acting in concert with the environmental availability of elements. We assessed the relative contribution of organismal traits and environmental variability to the stoichiometry of an insectivorous Neotropical stream fish, Rivulus hartii. We characterized the influence of body size, life history phenotype, stage of maturity, and environmental variability on organismal stoichiometry in 6 streams that differ in a broad suite of environmental variables. The elemental composition of R. hartii was variable, and overlapped with the wide range of elemental composition documented across freshwater fish taxa. Average %P composition was ∼3.2%(±0.6), average %N∼10.7%(±0.9), and average %C∼41.7%(±3.1). Streams were the strongest predictor of organismal stoichiometry, and explained up to 18% of the overall variance. This effect appeared to be largely explained by variability in quality of basal resources such as epilithon N:P and benthic organic matter C:N, along with variability in invertebrate standing stocks, an important food source for R. hartii. Organismal traits were weak predictors of organismal stoichiometry in this species, explaining when combined up to 7% of the overall variance in stoichiometry. Body size was significantly and positively correlated with %P, and negatively with N:P, and C:P, and life history phenotype was significantly correlated with %C, %P, C:P and C:N. Our study suggests that spatial variability in elemental availability is more strongly correlated with organismal stoichiometry than organismal traits, and suggests that the stoichiometry of carnivores may not be

  13. Environmental and organismal predictors of intraspecific variation in the stoichiometry of a neotropical freshwater fish.

    Directory of Open Access Journals (Sweden)

    Rana W El-Sabaawi

    Full Text Available The elemental composition of animals, or their organismal stoichiometry, is thought to constrain their contribution to nutrient recycling, their interactions with other animals, and their demographic rates. Factors that affect organismal stoichiometry are generally poorly understood, but likely reflect elemental investments in morphological features and life history traits, acting in concert with the environmental availability of elements. We assessed the relative contribution of organismal traits and environmental variability to the stoichiometry of an insectivorous Neotropical stream fish, Rivulus hartii. We characterized the influence of body size, life history phenotype, stage of maturity, and environmental variability on organismal stoichiometry in 6 streams that differ in a broad suite of environmental variables. The elemental composition of R. hartii was variable, and overlapped with the wide range of elemental composition documented across freshwater fish taxa. Average %P composition was ∼3.2%(±0.6, average %N∼10.7%(±0.9, and average %C∼41.7%(±3.1. Streams were the strongest predictor of organismal stoichiometry, and explained up to 18% of the overall variance. This effect appeared to be largely explained by variability in quality of basal resources such as epilithon N:P and benthic organic matter C:N, along with variability in invertebrate standing stocks, an important food source for R. hartii. Organismal traits were weak predictors of organismal stoichiometry in this species, explaining when combined up to 7% of the overall variance in stoichiometry. Body size was significantly and positively correlated with %P, and negatively with N:P, and C:P, and life history phenotype was significantly correlated with %C, %P, C:P and C:N. Our study suggests that spatial variability in elemental availability is more strongly correlated with organismal stoichiometry than organismal traits, and suggests that the stoichiometry of carnivores

  14. The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export

    NARCIS (Netherlands)

    Painter, S.C.; Hartman, S.E.; Kivimäe, C.; Salt, L.A.; Clargo, N.M.; Daniels, C.J.; Bozec, Y.; Daniels, L.; Allen, S.; Hemsley, V.S.; Moschonase, G.; Davidson, K.

    2017-01-01

    A detailed analysis of the internal stoichiometry of a temperate latitude shelf sea system is presented whichreveals strong vertical and horizontal gradients in dissolved nutrient and particulate concentrations and in theelemental stoichiometry of those pools. Such gradients have implications for

  15. Effect of stoichiometry on magnetic and transport properties in polycrystalline Y2Ir2O7

    Science.gov (United States)

    Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik

    2018-05-01

    In this paper we discuss synthesis of polycrystalline Y2Ir2O7 by solid state reaction route. XRD analysis shows deviation from stoichiometry which is also confirmed by SEM-EDX analysis. SEM analysis indicates average particle size ranging from 100 nm to 800 µm. EDX analysis gives clear evidence for deviation of stoichiometry of the product. Magnetic analysis is indicating effect of stoichiometry and showing ferromagnetic interaction unlike antiferromagnetic feature. Electrical resistivity is showing similar behavior as reported earlier and reveals no effect of different size of grains or grain boundaries from room temperature to 125 K.

  16. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions

    DEFF Research Database (Denmark)

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas

    2015-01-01

    or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue...... of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation...... functions as a protein repair factor that removes acetylation lesions from lysine residues....

  17. Fundamental study of ash formation and deposition: Effect of reducing stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J.; Bool, L.E.; Kang, S.G. [and others

    1995-11-01

    This project is designed to examine the effects of combustion stoichiometry on the fundamental aspects of ash formation and ash deposit initiation. Emphasis is being placed on reducing stoichiometries associated with low-NOx combustion, although a range of oxidant/fuel ratios are being considered. Previous work has demonstrated that ash formation depends strongly upon coal mineralogy, including mineral type, size, amount, and the presence of organically associated inorganic species. Combustion temperature and the oxidation state of iron also play a significant role. As these latter items will vary with changes in stoichiometry, research to determine the net effect on deposition is required.

  18. Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China).

    Science.gov (United States)

    Xing, Wei; Wu, Haoping; Shi, Qiao; Hao, Beibei; Liu, Han; Wang, Zhixiu; Liu, Guihua

    2015-05-13

    Stoichiometric homeostasis of element composition is one of the central concepts of ecological stoichiometry. We analyzed concentrations of macroelements (C, N, P, Ca, K, Mg, S), microelements (Cu, Fe, Mn, Mo, Ni, Zn) and beneficial elements (Na, Se, Si) in submerged macrophytes, water and sediments across 20 Yunnan plateau lakes. We predicted that tissue element composition in submerged macrophytes is affected by lake trophic level and taxonomy, and submerged macrophytes have weak stoichiometric homeostasis for all above 16 elements. Canonical discriminant analyses successfully discriminated among trophic level groups and taxa groups. Of all the elements, C, N, P and S most effectively discriminated among trophic level groups across 20 lakes, revealing lake trophic level mostly affect tissue macroelement composition in submerged macrophytes; while Ca, K and Se most effectively discriminated among submerged macrophytes taxa groups, suggesting taxonomy mostly affect compositions of macroelements and beneficial elements in submerged macrophytes. In addition, the stoichiometric homeostatic coefficient of 1/HCa:C for all five taxa of submerged macrophytes were less than zero, suggesting submerged macrophytes in Yunnan plateau lakes have strong Ca stoichiometric homeostasis. Our findings, not only broaden the knowledge of multielement stoichiometric homeostasis, but also help to choose most appropriate lake management strategy.

  19. Stoichiometry of excreta and excretion rates of a stream-dwelling plethodontid salamander

    Data.gov (United States)

    U.S. Environmental Protection Agency — Stoichiometry of excreta and excretion rates of a stream-dwelling plethodontid salamander in Cincinnati, OH, USA. This dataset is associated with the following...

  20. Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks

    DEFF Research Database (Denmark)

    Brochado, Ana Rita; Andrejev, Sergej; Maranas, Costas D.

    2012-01-01

    the formulation of the desired objective functions, by casting objective functions using metabolite turnovers rather than fluxes. By simulating perturbed metabolic networks, we demonstrate that the use of stoichiometry representation independent algorithms is fundamental for unambiguously linking modeling results...

  1. Is the stoichiometry of the europium nitrate complexes with neutral organophosphorus extractants be anticipated?

    International Nuclear Information System (INIS)

    Beudaert, Ph.; Lamare, V.; Wipff, G.

    2001-01-01

    Molecular dynamics simulations have been performed in water on europium nitrate complexes with three neutral organophosphorus extractants (TBP, TPPO and CMPO) in order to determine on what criteria it is possible to obtain by simulations the experimental 1:3 stoichiometry in organic solution. This stoichiometry was investigated by progressive saturation of the cation coordination sphere. When the nitrate counter-ions are bidentate, the 1:3 stoichiometry corresponds to the degree of saturation where the interaction energy between europium and water becomes repulsive. Beyond this stoichiometry, complexes with TPPO and CMPO are unstable, although a 1:4 complex with TBP may exist but its formation appears to be energetically unfavored. (author)

  2. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales.

    Science.gov (United States)

    Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A

    2017-07-01

    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry

  3. Cell-Sediment Separation and Elemental Stoichiometries in Extreme Environments

    Science.gov (United States)

    Neveu, M.; Poret-peterson, A. T.; Lee, Z. M.; Anbar, A. D.; Elser, J. J.

    2012-12-01

    counting by epifluorescence microscopy indicated a cell recovery yield between 6 and 40% in field-collected samples (95% for cultured E. coli). Aluminum, assumed to be non-biological in origin, was used to estimate the extent of mineral contamination of isolated cell communities. These results show that our method is successful at separating microbial cells from sediment collected in extreme environments and preserving them for analysis of a broad suite of elements. Photosynthetic sites yielded much more cell material than hotter, chemosynthetic sites (Cox et al., 2011). We are currently measuring cellular elemental abundances and ratios in samples from relatively low-temperature (25 to 65°C), photosynthetic areas, spanning a wide range of pH (2 to 9.5) and composition. These measurements will be compared to existing datasets on the bulk sediment stoichiometry of these ecosystems, and to previous observations of cellular elemental composition. References: Redfield, A.C. (1934) In Daniel, R.J. [Ed.], James Johnstone Memorial Volume, pp. 176-192, Univ. Press Liverpool. Sterner, R.W., Elser, J.J. (2002) Ecological Stoichiometry Princeton Univ. Press, 441p. Havig, J.R., et al. (2011) JGR 116, G01005. Amalfitano, S., Fazi, S. (2008) J. of Microbiol. Methods 75, 237-243. Cox, A., et al. (2011) Chem. Geol. 280, 344-351.

  4. Autotrophic stoichiometry emerging from optimality and variable co-limitation

    Directory of Open Access Journals (Sweden)

    Kai W Wirtz

    2016-11-01

    Full Text Available Autotrophic organisms reveal an astounding flexibility in their elemental stoichiometry, with potentially major implications on biogeochemical cycles and ecological functioning. Notwithstanding, stoichiometric regulation and co-limitation by multiple resources in autotrophs revt were in the past often described by heuristic formulations.In this study, we present a mechanistic model of autotroph growth, which features two major improvements over the existing schemes. First, we introduce the concept of metabolic network independence that defines the degree of phase-locking between accessory machines. Network independence is in particular suggested to be proportional to protein synthesis capability as quantified by variable intracellular N:C. Consequently, the degree of co-limitation becomes variable, contrasting with the dichotomous debate on the use of Liebig's law or the product rule, standing for constantly low and high co-limitation, respectively. Second, we resolve dynamic protein partitioning to light harvesting, carboxylation processes, and to an arbitrary number of nutrient acquisition machineries, as well as instantaneous activity regulation of nutrient uptake. For all regulatory processes we assume growth rate optimality, here extended by an explicit consideration of indirect feed-back effects.The combination of network independence and optimal regulation displays unprecedented skill in reproducing rich stoichiometric patterns collected from a large number of published chemostat experiments. This high skill indicates (1 that the current paradigm of fixed co-limitation is a critical short-coming of conventional models, and (2 that stoichiometric flexibility in autotrophs possibly reflects an optimality strategy. Numerical experiments furthermore show that regulatory mechanisms homogenize the effect of multiple stressors. Extended optimality alleviates the effect of the most limiting resource(s while down-regulating machineries for the

  5. CZTS stoichiometry effects on the band gap energy

    International Nuclear Information System (INIS)

    Malerba, Claudia; Biccari, Francesco; Azanza Ricardo, Cristy Leonor; Valentini, Matteo; Chierchia, Rosa; Müller, Melanie; Santoni, Antonino; Esposito, Emilia; Mangiapane, Pietro; Scardi, Paolo; Mittiga, Alberto

    2014-01-01

    Highlights: • CZTS films with different compositions were grown from stacked-layer precursors. • The band-gap energy varies from 1.48 to 1.63 eV as the [Sn]/[Cu] ratio increases. • The Zn content seems not to be a critical parameter for the optical properties. • PDS data show an increase of the sub-gap absorption as the Sn content is reduced. • Formation of defects at low Sn content was proposed to explain the Eg variation. -- Abstract: The considerable spread of Cu 2 ZnSnS 4 (CZTS) optical properties reported in the literature is discussed in terms of material stoichiometry. To this purpose, kesterite thin films were prepared by sulfurization of multilayered precursors of ZnS, Cu and Sn, changing the relative amounts to obtain CZTS layers with different compositions. X-Ray Diffraction (XRD), Energy Dispersive X-Ray (EDX) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy were used for structural and compositional analysis. XRD quantitative phase analysis provides the amount of spurious phases and information on Sn-site occupancy. The optical properties were investigated by spectrophotometric and Photothermal Deflection Spectroscopy (PDS) measurements to assess the absorption coefficient of samples with different compositions. The PDS data show an increase of the sub-band absorption as the Sn content decreases. The results are interpreted assuming the formation of additional defects as the tin content is reduced. Those defects can also be responsible for the decrease of the band gap energy value as the Sn/Cu ratio is decreased

  6. Morphological Dependence of Element Stoichiometry in the H. americanus Exoskeleton

    Science.gov (United States)

    Mergelsberg, S. T.; Ulrich, R. N.; Dove, P. M.

    2016-02-01

    The crustacean exoskeleton is a complex biocomposite of inorganic mineral and organic macromolecules that expresses highly divergent morphologies across different taxa. While the structures and compositions of the organic framework show complex links to environmental and developmental pressures, little is known about the mineral chemistry. Previous studies of the cuticle have assumed that magnesium, phosphorous, and other trace metals are largely contained in the inorganic mineral fraction. Due to analytical limitations of structural analyses and in situ spectroscopic methods, the stoichiometry of the organic and inorganic portions could not be resolved. For example, previous Raman and XRD studies conclude the higher concentrations of trace elements, such as P and Mg measured in reinforced structures, e.g. the claw and abdomen, are primarily determined by the mineral fraction. Using the American Lobster (Homarus americanus) as a model organism to establish relationships between body part function and cuticle composition, this study quantified the distributions of Mg and P in the mineral and organic fractions. The experiments were designed to dissolve the exoskeleton of 10 body parts using three types of solutions that were specific to extracting 1) the mineral phase, 2) protein, and 3) polysaccharide. Analysis of the solutions by ICP-OES shows the mineral phase contains magnesium and phosphorous at concentrations sufficient to support the formation of calcium-magnesium and phosphate minerals. The protein fraction of the body parts contains significantly more Mg and P than previously hypothesized, while the levels of P contained in the organic portion are fairly constant. The findings demonstrate the lobster cuticle contains a significant amount of non-mineralized P and Mg that is readily water-soluble in the protein component. However, for those body parts used for defense and food acquisition, such as the claw, the mineral component determines the overall

  7. The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Stoichiometry of oxidative phosphorylation.

    Science.gov (United States)

    Beavis, A D; Lehninger, A L

    1986-07-15

    Determination of the intrinsic or mechanistic P/O ratio of oxidative phosphorylation is difficult because of the unknown magnitude of leak fluxes. Applying a new approach developed to overcome this problem (see our preceding paper in this journal), the relationships between the rate of O2 uptake [( Jo)3], the net rate of phosphorylation (Jp), the P/O ratio, and the respiratory control ratio (RCR) have been determined in rat liver mitochondria when the rate of phosphorylation was systematically varied by three specific means. (a) When phosphorylation is titrated with carboxyatractyloside, linear relationships are observed between Jp and (Jo)3. These data indicate that the upper limit of the mechanistic P/O ratio is 1.80 for succinate and 2.90 for 3-hydroxybutyrate oxidation. (b) Titration with malonate or antimycin yields linear relationships between Jp and (Jo)3. These data give the lower limit of the mechanistic P/O ratio of 1.63 for succinate and 2.66 for 3-hydroxybutyrate oxidation. (c) Titration with a protonophore yields linear relationships between Jp, (Jo)3, and (Jo)4 and between P/O and 1/RCR. Extrapolation of the P/O ratio to 1/RCR = 0 yields P/O ratios of 1.75 for succinate and 2.73 for 3-hydroxybutyrate oxidation which must be equal to or greater than the mechanistic stoichiometry. When published values for the H+/O and H+/ATP ejection ratios are taken into consideration, these measurements suggest that the mechanistic P/O ratio is 1.75 for succinate oxidation and 2.75 for NADH oxidation.

  8. Consequences of Modification of Photosystem Stoichiometry and Amount in Cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Willem [Arizona State Univ., Tempe, AZ (United States)

    2016-12-13

    The proposed research seeks to address two interconnected, important questions that impact photosynthetic processes and that reflect key differences between the photosynthetic systems of cyanobacteria and plants or algae. The first question is what are the reasons and consequences of the high photosystem I / photosystem II (PS I/PS II) ratio in many cyanobacteria, vs. a ratio that is close to unity in many plants and algae. The corresponding hypothesis is that most of PS I functions in cyclic electron transport, and that reduction in PS I will result primarily in a shortage of ATP rather than reducing power. This hypothesis will be tested by reducing the amount of PS I by changing the promoter region of the psaAB operon in the cyanobacterium Synechocystis sp. PCC 6803 and generating a range of mutants with different PS I content and thereby different PS I/PS II ratios, with some of the mutants having a PS II/PS I ratio closer to that in plants. The resulting mutants will be probed in terms of their growth rates, electron transfer rates, and P700 redox kinetics. A second question relates to a Mehler-type reaction catalyzed by two flavoproteins, Flv1 and Flv3, that accept electrons from PS I and that potentially function as an electron safety valve leading to no useful purpose of the photosynthesis-generated electrons. The hypothesis to be tested is that Flv1 and Flv3 use the electrons for useful purposes such as cyclic electron flow around PS I. This hypothesis will be tested by analysis of a mutant strain lacking flv3, the gene for one of the flavoproteins. This research is important for a more detailed understanding of the consequences of photosystem stoichiometry and amounts in a living system. Such an understanding is critical for not only insights in the regulatory systems of the organism but also to guide the development of biological or bio-hybrid systems for solar energy conversion into fuels.

  9. Plant fertilization interacts with life history: variation in stoichiometry and performance in nettle-feeding butterflies.

    Directory of Open Access Journals (Sweden)

    Hélène Audusseau

    Full Text Available Variation in food stoichiometry affects individual performance and population dynamics, but it is also likely that species with different life histories should differ in their sensitivity to food stoichiometry. To address this question, we investigated the ability of the three nettle-feeding butterflies (Aglais urticae, Polygonia c-album, and Aglais io to respond adaptively to induced variation in plant stoichiometry in terms of larval performance. We hypothesized that variation in larval performance between plant fertilization treatments should be functionally linked to species differences in host plant specificity. We found species-specific differences in larval performance between plant fertilization treatments that could not be explained by nutrient limitation. We showed a clear evidence of a positive correlation between food stoichiometry and development time to pupal stage and pupal mass in A. urticae. The other two species showed a more complex response. Our results partly supported our prediction that host plant specificity affects larval sensitivity to food stoichiometry. However, we suggest that most of the differences observed may instead be explained by differences in voltinism (number of generations per year. We believe that the potential of some species to respond adaptively to variation in plant nutrient content needs further attention in the face of increased eutrophication due to nutrient leakage from human activities.

  10. Teaching Reaction Stoichiometry: Exploring and Acknowledging Nigerian Chemistry Teachers Pedagogical Content Knowledge

    Directory of Open Access Journals (Sweden)

    Ayoade Ejiwale Okanlawon

    2010-06-01

    Full Text Available Although there is a growing interest in studies of students’ problem-solving strategies and difficulties, and misconceptionsregarding stoichiometry, little is known about the way teachers understand and teach reaction stoichiometry. This articlepresents a case study of pedagogical content knowledge put into actions by chemistry teachers when teaching the topic ofstoichiometry to second year senior secondary school students. Fourteen chemistry teachers with teaching experience rangingfrom 5 to 20 years were involved in this study. Research data were obtained from classroom observations and videotapedrecordings of classroom practice. Analyses of the teachers’ teaching activities revealed their skillfulness, resourcefulness, andweaknesses in terms of pedagogical content knowledge displayed when teaching stoichiometry. The results of this exploratorystudy offer insight into the knowledge systems that need to be expanded, enriched, and elaborated for teaching stoichiometry.To better understand the findings of this study, the results obtained were presented under two separate sections: (1 resultsconcerning introducing reaction stoichiometry to students and (2 results concerning leading students to identify limitingreagents. Implications for instruction and teachers’ professional development are offered.

  11. From Elements to Function: Toward Unifying Ecological Stoichiometry and Trait-Based Ecology

    Directory of Open Access Journals (Sweden)

    Cédric L. Meunier

    2017-05-01

    Full Text Available The theories developed in ecological stoichiometry (ES are fundamentally based on traits. Traits directly linked to cell/body stoichiometry, such as nutrient uptake and storage, as well as the associated trade-offs, have the potential to shape ecological interactions such as competition and predation within ecosystems. Further, traits that indirectly influence and are influenced by nutritional requirements, such as cell/body size and growth rate, are tightly linked to organismal stoichiometry. Despite their physiological and ecological relevance, traits are rarely explicitly integrated in the framework of ES and, currently, the major challenge is to more closely inter-connect ES with trait-based ecology (TBE. Here, we highlight four interconnected nutrient trait groups, i.e., acquisition, body stoichiometry, storage, and excretion, which alter interspecific competition in autotrophs and heterotrophs. We also identify key differences between producer-consumer interactions in aquatic and terrestrial ecosystems. For instance, our synthesis shows that, in contrast to aquatic ecosystems, traits directly influencing herbivore stoichiometry in forested ecosystems should play only a minor role in the cycling of nutrients. We furthermore describe how linking ES and TBE can help predict the ecosystem consequences of global change. The concepts we highlight here allow us to predict that increasing N:P ratios in ecosystems should shift trait dominances in communities toward species with higher optimal N:P ratios and higher P uptake affinity, while decreasing N retention and increasing P storage.

  12. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency

    Science.gov (United States)

    Kleiblinger, K.M.; Hall, E.K.; Wanek, W.; Szukics, U.; Hämmerle, I.; Ellersdorfer, G.; Böck, S.; Strauss, J.; Sterflinger, K.; Richter, A.; Zechmeister-Boltenstern, S.

    2010-01-01

    The carbon-use-efficiency (CUE) of microorganisms is an important parameter in determining ecosystem-level carbon (C) cycling; however, little is known about how variance in resources affects microbial CUE. To elucidate how resource quantity and resource stoichiometry affect microbial CUE, we cultured four microorganisms - two fungi (Aspergillus nidulans and Trichoderma harzianum) and two bacteria (Pectobacterium carotovorum and Verrucomicrobium spinosum) - under 12 unique C, nitrogen (N) and phosphorus (P) ratios. Whereas the CUE of A. nidulans was strongly affected by C, bacterial CUE was more strongly affected by mineral nutrients (N and P). Specifically, CUE in P. carotovorum was positively correlated with P, while CUE of V. spinosum primarily depended on N. This resulted in a positive relationship between fungal CUE and resource C : nutrient stoichiometry and a negative relationship between bacterial CUE and resource C : nutrient stoichiometry. The difference in the direction of the relationship between CUE and C : nutrient for fungi vs. bacteria was consistent with differences in biomass stoichiometry and suggested that fungi have a higher C demand than bacteria. These results suggest that the links between biomass stoichiometry, resource demand and CUE may provide a mechanism for commonly observed temporal and spatial patterns in microbial community structure and function in natural habitats.

  13. Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches

    Science.gov (United States)

    Hall, E.K.; Maixner, F.; Franklin, O.; Daims, H.; Richter, A.; Battin, T.

    2011-01-01

    Currently, one of the biggest challenges in microbial and ecosystem ecology is to develop conceptual models that organize the growing body of information on environmental microbiology into a clear mechanistic framework with a direct link to ecosystem processes. Doing so will enable development of testable hypotheses to better direct future research and increase understanding of key constraints on biogeochemical networks. Although the understanding of phenotypic and genotypic diversity of microorganisms in the environment is rapidly accumulating, how controls on microbial physiology ultimately affect biogeochemical fluxes remains poorly understood. We propose that insight into constraints on biogeochemical cycles can be achieved by a more rigorous evaluation of microbial community biomass composition within the context of ecological stoichiometry. Multiple recent studies have pointed to microbial biomass stoichiometry as an important determinant of when microorganisms retain or recycle mineral nutrients. We identify the relevant cellular components that most likely drive changes in microbial biomass stoichiometry by defining a conceptual model rooted in ecological stoichiometry. More importantly, we show how X-ray microanalysis (XRMA), nanoscale secondary ion mass spectroscopy (NanoSIMS), Raman microspectroscopy, and in situ hybridization techniques (for example, FISH) can be applied in concert to allow for direct empirical evaluation of the proposed conceptual framework. This approach links an important piece of the ecological literature, ecological stoichiometry, with the molecular front of the microbial revolution, in an attempt to provide new insight into how microbial physiology could constrain ecosystem processes.

  14. Threshold stoichiometry for beam induced nitrogen depletion of SiN

    International Nuclear Information System (INIS)

    Timmers, H.; Weijers, T.D.M.; Elliman, R.G.; Uribasterra, J.; Whitlow, H.J.; Sarwe, E.-L.

    2002-01-01

    Measurements of the stoichiometry of silicon nitride films as a function of the number of incident ions using heavy ion elastic recoil detection (ERD) show that beam-induced nitrogen depletion depends on the projectile species, the beam energy, and the initial stoichiometry. A threshold stoichiometry exists in the range 1.3>N/Si≥1, below which the films are stable against nitrogen depletion. Above this threshold, depletion is essentially linear with incident fluence. The depletion rate correlates non-linearly with the electronic energy loss of the projectile ion in the film. Sufficiently long exposure of nitrogen-rich films renders the mechanism, which prevents depletion of nitrogen-poor films, ineffective. Compromising depth-resolution, nitrogen depletion from SiN films during ERD analysis can be reduced significantly by using projectile beams with low atomic numbers

  15. Low stoichiometry operation of a polymer electrolyte membrane fuel cell employing the interdigitated flow field design

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2011-01-01

    Fuel cell operation on dry reactant gases under low stoichiometry conditions employing the interdigitated flow field is investigated using a multi-fluid model. It is assumed that the MEA contains a water uptake layer which facilitates water absorption to the membrane and hence prevents the anode...

  16. Investigating the Effect of Complexity Factors in Stoichiometry Problems Using Logistic Regression and Eye Tracking

    Science.gov (United States)

    Tang, Hui; Kirk, John; Pienta, Norbert J.

    2014-01-01

    This paper includes two experiments, one investigating complexity factors in stoichiometry word problems, and the other identifying students' problem-solving protocols by using eye-tracking technology. The word problems used in this study had five different complexity factors, which were randomly assigned by a Web-based tool that we developed. The…

  17. Near Surface Stoichiometry in UO2: A Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Jianguo Yu

    2015-01-01

    Full Text Available The mechanisms of oxygen stoichiometry variation in UO2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110 surface relaxation and stoichiometry in UO2 have been studied with density functional theory (DFT calculations. On the basis of the point-defect model (PDM, a general expression for the near surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.

  18. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances.

    Science.gov (United States)

    Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constantí; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Peñuelas, Josep

    2015-01-01

    Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems

    NARCIS (Netherlands)

    van de Waal, D.B.; Verschoor, A.M.; Verspagen, J.M.H.; van Donk, E.; Huisman, J.

    2010-01-01

    Advances in ecological stoichiometry, a rapidly expanding research field investigating the elemental composition of organisms and their environment, have shed new light on the impacts of climate change on freshwater and marine ecosystems. Current changes in the Earth's climate alter the availability

  20. Stoichiometry control in quantum dots: a viable analog to impurity doping of bulk materials.

    Science.gov (United States)

    Luther, Joseph M; Pietryga, Jeffrey M

    2013-03-26

    A growing body of research indicates that the stoichiometry of compound semiconductor quantum dots (QDs) may offer control over the materials' optoelectronic properties in ways that could be invaluable in electronic devices. Quantum dots have been characterized as having a stoichiometric bulk-like core with a highly reconstructed surface of a more flexible composition, consisting essentially of ligated, weakly bound ions. As such, many efforts toward stoichiometry-based control over material properties have focused on ligand manipulation. In this issue of ACS Nano, Murray and Kagan's groups instead demonstrate control of the conductive properties of QD arrays by altering the stoichiometry via atomic infusion using a thermal evaporation technique. In this work, PbSe and PbS QD films are made to show controlled n- or p-type behavior, which is key to developing optimized QD-based electronics. In this Perspective, we discuss recent developments and the future outlook in using stoichiometry as a tool to further manipulate QD material properties in this context.

  1. Students' Understanding of Conservation of Matter, Stoichiometry and Balancing Equations in Indonesia

    Science.gov (United States)

    Agung, Salamah; Schwartz, Marc S.

    2007-01-01

    This study examines Indonesian students' understanding of conservation of matter, balancing of equations and stoichiometry. Eight hundred and sixty-seven Grade 12 students from 22 schools across four different cities in two developed provinces in Indonesia participated in the study. Nineteen teachers also participated in order to validate the…

  2. Accurate quantification of site-specific acetylation stoichiometry reveals the impact of sirtuin deacetylase CobB on the E. coli acetylome

    DEFF Research Database (Denmark)

    Weinert, Brian Tate; Satpathy, Shankha; Hansen, Bogi Karbech

    2017-01-01

    B suppressed acetylation to lower than median stoichiometry in WT, ptaΔ, and ackAΔ cells. Together, our results provide a detailed view of acetylation stoichiometry in E. coli and suggest an evolutionarily conserved function of Sirtuin deacetylases in suppressing low stoichiometry acetylation....

  3. Looking inside the box: using Raman microspectroscopy to deconstruct microbial biomass stoichiometry one cell at a time

    Science.gov (United States)

    Hall, Edward K.; Singer, Gabriel A.; Pölzl, Marvin; Hämmerle, Ieda; Schwarz, Christian; Daims, Holger; Maixner, Frank; Battin, Tom J.

    2011-01-01

    Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity.

  4. Stoichiometry of the U3O8 phase formed during calcination of some uranium compounds

    International Nuclear Information System (INIS)

    El-Fekey, S.A.; Farah, M.Y.; Rofail, N.H.

    1981-01-01

    Although recent work has shown U 3 O 8 phase to be the decomposition product obtained after calcining uranyl nitrate, sulphate or ammonium uranate, neither the necessary conditions for obtaining stoichiometric U 3 O 8 nor the details of the reaction have been established. Presence of sulphate or nitrate ions during preparation greatly affects the O/U of the obtained oxides and the physico-chemical properties of uranium tetrafluoride prepared afterwards from it (1-3). The aim of the present investigation was to study the effect of calcination regimes on the stoichiometry of the U 3 O 8 phase produced by the thermal decomposition of uranyl nitrate, sulphate, and ammonium uranate, which was prepared by precipitation from nuclear-pure uranyl sulphate. Stoichiometry of the U 3 O 8 phase formed during calcination of ammonium uranate precipitated from nuclear pure uranyl nitrate solution was reported before (1)

  5. Stoichiometry of Silicon Dioxide Films Obtained by Ion-Beam Sputtering

    Science.gov (United States)

    Telesh, E. V.; Dostanko, A. P.; Gurevich, O. V.

    2018-03-01

    The composition of SiOx films produced by ion-beam sputtering (IBS) of silicon and quartz targets were studied by infrared spectrometry. Films with thicknesses of 150-390 nm were formed on silicon substrates. It was found that increase in the partial pressure of oxygen in the working gas, increase in the temperature of the substrate, and the presence of a positive potential on the target during reactive IBS of silicon shifted the main absorption band νas into the high-frequency region and increased the composition index from 1.41 to 1.85. During IBS of a quartz target the stoichiometry of the films deteriorates with increase of the energy of the sputtering argon ions. This may be due to increase of the deposition rate. Increase in the current of the thermionic compensator, increase of the substrate temperature, and addition of oxygen led to the formation of SiOx films with improved stoichiometry.

  6. Effects of three global change drivers on terrestrial C:N:P stoichiometry

    DEFF Research Database (Denmark)

    Yue, Kai; Fornara, Dario A; Yang, Wanqin

    2017-01-01

    more common than synergistic or antagonistic interactions, (4) C:N:P stoichiometry of soil and soil microbial biomass shows high homeostasis under global change manipulations, and (5) C:N:P responses to global change are strongly affected by ecosystem type, local climate and experimental conditions......Over the last few decades there has been an increasing number of controlled-manipulative experiments to investigate how plants and soils might respond to global change. These experiments typically examined the effects of each of three global change drivers (i.e. nitrogen (N) deposition, warming...... of plants, soils and soil microbial biomass might respond to individual vs. combined effects of the three global change drivers. Our results show that (1) individual effects of N addition and elevated CO2 on C:N:P stoichiometry are stronger than warming, (2) combined effects of pairs of global change...

  7. Stoichiometry-Controlled Inversion of Supramolecular Chirality in Nanostructures Co-assembled with Bipyridines.

    Science.gov (United States)

    Wang, Fang; Feng, Chuan-Liang

    2018-02-01

    To control supramolecular chirality of the co-assembled nanostructures, one of the remaining issues is how stoichiometry of the different molecules involved in co-assembly influence chiral transformation. Through co-assembly of achiral 1,4-bis(pyrid-4-yl)benzene and chiral phenylalanine-glycine derivative hydrogelators, stoichiometry is found to be an effective tool for controlling supramolecular chirality inversion processes. This inversion is mainly mediated by a delicate balance between intermolecular hydrogen bonding interactions and π-π stacking of the two components, which may subtly change the stacking of the molecules, in turn, the self-assembled nanostructures. This study exemplifies a simplistic way to invert the handedness of chiral nanostructures and provide fundamental understanding of the inherent principles of supramolecular chirality. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A simple way to constrain the stoichiometry of secondary smectites upon aqueous glass alteration

    International Nuclear Information System (INIS)

    Thien, Bruno M.J.

    2014-01-01

    Highlights: • Si/Al of different glasses were compared to Si/Al of associated secondary smectites. • Si/Al of secondary smectite is nearly equal to Si/Al of parent glass. • This is a simple way which can help to constrain smectite composition. • Accurate smectite composition cannot be measured in many cases. - Abstract: The comparison of the stoichiometry of several nuclear waste glasses and basaltic glasses with their associated secondary smectites evidenced that Si/Al ratios of secondary smectites are nearly equal to the Si/Al ratios of parent glasses. This information may be very useful in constraining secondary smectites structure and stoichiometry in cases where other identification methods are difficult to apply

  9. Surface stoichiometry of zinc sulfide and its effect on the adsorption behaviors of xanthate

    Directory of Open Access Journals (Sweden)

    Wang Meng

    2011-11-01

    Full Text Available Abstract In this paper, the surface stoichiometry, acid-base properties as well as the adsorption of xanthate at ZnS surfaces were studied by means of potentiometric titration, adsorption and solution speciation modeling. The surface proton binding site was determined by using Gran plot to evaluate the potentiometric titration data. Testing results implied that for stoichiometric surfaces of zinc sulfide, the proton and hydroxide determine the surface charge. For the nonstoichiometric surfaces, the surface charge is controlled by proton, hydroxide, zinc and sulfide ions depending on specific conditions. The xanthate adsorption decreases with increasing solution pH, which indicates an ion exchange reaction at the surfaces. Based on experimental results, the surface protonation, deprotonation, stoichiometry and xanthate adsorption mechanism were discussed.

  10. Determination of kinetics and stoichiometry of chemical sulfide oxidation in wastewater of sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Vollertsen, Jes; Hvitved-Jacobsen, Thorkild

    2003-01-01

    A method for determination of kinetics and stoichiometry of chemical sulfide oxidation by dissolved oxygen (DO) in wastewater is presented. The method was particularly developed to investigate chemical sulfide oxidation in wastewater of sewer networks at low DO concentrations. The method is based...... be considered constant during the course of the experiments although intermediates accumulated. This was explained by an apparent slow oxidation rate of the intermediates. The method was capable of determining kinetics and stoichiometry of chemical sulfide oxidation at DO concentrations lower than 1 g of O2 m...... on continuous measurement of the reactants allowing the kinetics to be determined at varying reactant concentrations during the course of the experiment. The kinetics determined was simulated by a rate equation. The precision of the method was assessed in terms of the standard deviation of the kinetic...

  11. The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences

    Directory of Open Access Journals (Sweden)

    Judith Sitters

    2017-04-01

    Full Text Available It is widely recognized that the release of nutrients by herbivores via their waste products strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N and phosphorus (P recycled through herbivore release (i.e., waste N:P are mainly determined by the stoichiometric composition of the herbivore's food (food N:P and its body nutrient content (body N:P. Waste N:P can in turn impact autotroph nutrient limitation and productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is dominated by theoretical and experimental research in freshwater systems, in particular interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the impact of herbivores on nutrient cycling and availability is often limited to studying carbon (C:N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also likely to influence herbivore-driven nutrient recycling. In this review, we use rules and predictions on the stoichiometry of nutrient release originating from algal-based aquatic systems to identify the factors that determine the stoichiometry of nutrient release by herbivores. We then explore how these rules can be used to understand the stoichiometry of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals, and its impact on plant nutrient limitation and productivity. Future studies should focus on measuring both N and P when investigating herbivore-driven nutrient recycling in terrestrial ecosystems, while also taking the form of waste product (urine or feces and other pathways by which herbivores change nutrients into account, to be able to quantify the impact of waste stoichiometry on plant communities.

  12. Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots

    Czech Academy of Sciences Publication Activity Database

    Gargallo-Garriga, A.; Sardans, J.; Pérez-Trujillo, M.; Oravec, Michal; Urban, Otmar; Jentsch, A.; Kreyling, J.; Beierkuhnlein, C.; Parella, T.; Penuelas, J.

    2015-01-01

    Roč. 207, č. 3 (2015), s. 591-603 ISSN 1469-8137 R&D Projects: GA MŠk(CZ) LO1415; GA AV ČR(CZ) M200871201 Institutional support: RVO:67179843 Keywords : climate change * drought * HPLC-MS * nitrogen * phosphorus (N : P) * nuclear magnetic resonance (NMR) * stoichiometry * warming * abiotic stresses Subject RIV: EH - Ecology, Behaviour Impact factor: 6.545, year: 2013

  13. Non stoichiometry in U3O(8±x), its temperature and oxygen pressure dependence

    International Nuclear Information System (INIS)

    Rodriguez De Sastre, M.S.; Philippot, J.; Moreau, C.

    1967-01-01

    The deviation from stoichiometry in uranium oxide U 3 O 8 obtained by oxidation of UO 2 , has been studied with respect to its dependence on temperature and oxygen pressure. It is shown that the ratio r = O/U increases with oxygen pressure up to 200 mm Hg at any temperature. At higher pressures, this ratio tends toward a limit which decreases with increasing temperatures. The curve r = f(P) suggest a chemisorption phenomenon as the reaction limiting mechanism. (authors) [fr

  14. Stoichiometry in Context: Inquiry-Guided Problems of Chemistry for Encouraging Critical Thinking in Engineering Students

    OpenAIRE

    Gabriel Pinto; María Luisa Prolongo

    2013-01-01

    This paper focuses on examples of educational tools concerning the learning of chemistry for engineering students through different daily life cases. These tools were developed during the past few years for enhancing the active role of students. They refer to cases about mineral water, medicaments, dentifrices and informative panels about solar power, where an adequate quantitative treatment through stoichiometry calculations allows the interpretation of data and values announced by manufactu...

  15. Coexistence and community structure in a consumer resource model with implicit stoichiometry.

    Science.gov (United States)

    Orlando, Paul A; Brown, Joel S; Wise, David H

    2012-09-01

    We combine stoichiometry theory and optimal foraging theory into the MacArthur consumer-resource model. This generates predictions for diet choice, coexistence, and community structure of heterotroph communities. Tradeoffs in consumer resource-garnering traits influence community outcomes. With scarce resources, consumers forage opportunistically for complementary resources and may coexist via tradeoffs in resource encounter rates. In contrast to single currency models, stoichiometry permits multiple equilibria. These alternative stable states occur when tradeoffs in resource encounter rates are stronger than tradeoffs in elemental conversion efficiencies. With abundant resources consumers exhibit partially selective diets for essential resources and may coexist via tradeoffs in elemental conversion efficiencies. These results differ from single currency models, where adaptive diet selection is either opportunistic or selective. Interestingly, communities composed of efficient consumers share many of the same properties as communities based on substitutable resources. However, communities composed of relatively inefficient consumers behave similarly to plant communities as characterized by Tilman's consumer resource theory. The results of our model indicate that the effects of stoichiometry theory on community ecology are dependent upon both consumer foraging behavior and the nature of resource garnering tradeoffs. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Resource stoichiometry and availability modulate species richness and biomass of tropical litter macro-invertebrates.

    Science.gov (United States)

    Jochum, Malte; Barnes, Andrew D; Weigelt, Patrick; Ott, David; Rembold, Katja; Farajallah, Achmad; Brose, Ulrich

    2017-09-01

    High biodiversity and biomass of soil communities are crucial for litter decomposition in terrestrial ecosystems such as tropical forests. However, the leaf litter that these communities consume is of particularly poor quality as indicated by elemental stoichiometry. The impact of resource quantity, quality and other habitat parameters on species richness and biomass of consumer communities is often studied in isolation, although much can be learned from simultaneously studying both community characteristics. Using a dataset of 780 macro-invertebrate consumer species across 32 sites in tropical lowland rain forest and agricultural systems on Sumatra, Indonesia, we investigated the effects of basal resource stoichiometry (C:X ratios of N, P, K, Ca, Mg, Na, S in local leaf litter), litter mass (basal resource quantity and habitat space), plant species richness (surrogate for litter habitat heterogeneity), and soil pH (acidity) on consumer species richness and biomass across different consumer groups (i.e. 3 feeding guilds and 10 selected taxonomic groups). In order to distinguish the most important predictors of consumer species richness and biomass, we applied a standardised model averaging approach investigating the effects of basal resource stoichiometry, litter mass, plant species richness and soil pH on both consumer community characteristics. This standardised approach enabled us to identify differences and similarities in the magnitude and importance of such effects on consumer species richness and biomass. Across consumer groups, we found litter mass to be the most important predictor of both species richness and biomass. Resource stoichiometry had a more pronounced impact on consumer species richness than on their biomass. As expected, taxonomic groups differed in which resource and habitat parameters (basal resource stoichiometry, litter mass, plant species richness and pH) were most important for modulating their community characteristics. The importance

  17. Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2

    Science.gov (United States)

    Moreno, Allison R.; Hagstrom, George I.; Primeau, Francois W.; Levin, Simon A.; Martiny, Adam C.

    2018-05-01

    Marine phytoplankton stoichiometry links nutrient supply to marine carbon export. Deviations of phytoplankton stoichiometry from Redfield proportions (106C : 1P) could therefore have a significant impact on carbon cycling, and understanding which environmental factors drive these deviations may reveal new mechanisms regulating the carbon cycle. To explore the links between environmental conditions, stoichiometry, and carbon cycling, we compared four different models of phytoplankton C : P: a fixed Redfield model, a model with C : P given as a function of surface phosphorus concentration (P), a model with C P given as a function of temperature, and a new multi-environmental model that predicts C : P as a function of light, temperature, and P. These stoichiometric models were embedded into a five-box ocean circulation model, which resolves the three major ocean biomes (high-latitude, subtropical gyres, and tropical upwelling regions). Contrary to the expectation of a monotonic relationship between surface nutrient drawdown and carbon export, we found that lateral nutrient transport from lower C : P tropical waters to high C : P subtropical waters could cause carbon export to decrease with increased tropical nutrient utilization. It has been hypothesized that a positive feedback between temperature and pCO2, atm will play an important role in anthropogenic climate change, with changes in the biological pump playing at most a secondary role. Here we show that environmentally driven shifts in stoichiometry make the biological pump more influential, and may reverse the expected positive relationship between temperature and pCO2, atm. In the temperature-only model, changes in tropical temperature have more impact on the Δ pCO2, atm (˜ 41 ppm) compared to subtropical temperature changes (˜ 4.5 ppm). Our multi-environmental model predicted a decline in pCO2, atm of ˜ 46 ppm when temperature spanned a change of 10 °C. Thus, we find that variation in marine phytoplankton

  18. Quantification of Lysine Acetylation and Succinylation Stoichiometry in Proteins Using Mass Spectrometric Data-Independent Acquisitions (SWATH)

    Science.gov (United States)

    Meyer, Jesse G.; D'Souza, Alexandria K.; Sorensen, Dylan J.; Rardin, Matthew J.; Wolfe, Alan J.; Gibson, Bradford W.; Schilling, Birgit

    2016-11-01

    Post-translational modification of lysine residues by NƐ-acylation is an important regulator of protein function. Many large-scale protein acylation studies have assessed relative changes of lysine acylation sites after antibody enrichment using mass spectrometry-based proteomics. Although relative acylation fold-changes are important, this does not reveal site occupancy, or stoichiometry, of individual modification sites, which is critical to understand functional consequences. Recently, methods for determining lysine acetylation stoichiometry have been proposed based on ratiometric analysis of endogenous levels to those introduced after quantitative per-acetylation of proteins using stable isotope-labeled acetic anhydride. However, in our hands, we find that these methods can overestimate acetylation stoichiometries because of signal interferences when endogenous levels of acylation are very low, which is especially problematic when using MS1 scans for quantification. In this study, we sought to improve the accuracy of determining acylation stoichiometry using data-independent acquisition (DIA). Specifically, we use SWATH acquisition to comprehensively collect both precursor and fragment ion intensity data. The use of fragment ions for stoichiometry quantification not only reduces interferences but also allows for determination of site-level stoichiometry from peptides with multiple lysine residues. We also demonstrate the novel extension of this method to measurements of succinylation stoichiometry using deuterium-labeled succinic anhydride. Proof of principle SWATH acquisition studies were first performed using bovine serum albumin for both acetylation and succinylation occupancy measurements, followed by the analysis of more complex samples of E. coli cell lysates. Although overall site occupancy was low (<1%), some proteins contained lysines with relatively high acetylation occupancy.

  19. Fresh water influence on nutrient stoichiometry in a tropical estuary, Southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Martin, G.D.; Vijay, J.G.; Laluraj, C.M.; Madhu, N.V.; Joseph, T.; Nair, M.; Gupta, G.V.M.; Balachandran, K.K.

    et al.: Fresh water influence on nutrient stoichiometry in a tropical estuary, Southwest coast of India - 57 - APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 6(1): 57-64. http://www.ecology.uni-corvinus.hu ● ISSN 1589 1623  2008, Penkala Bt... estuary, Southwest coast of India - 58 - APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 6(1): 57-64. http://www.ecology.uni-corvinus.hu ● ISSN 1589 1623  2008, Penkala Bt., Budapest, Hungary natural and anthropogenic factors influencing the geochemistry...

  20. The influence of additives in the stoichiometry of hybrid lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ignasi Burgués-Ceballos

    2017-11-01

    Full Text Available We investigate the employment of carefully selected solvent additives in the processing of a commercial perovskite precursor ink and analyze their impact on the performance of organometal trihalide perovskite (CH3NH3PbI3−xClx photovoltaic devices. We provide evidence that the use of benzaldehyde can be used as an effective method to preserve the stoichiometry of the perovskite precursors in solution. Benzaldehyde based additive engineering shows to improve perovskite solid state film morphology and device performance of CH3NH3PbI3−xClx based solar cells.

  1. Report on a NASA astrobiology institute-funded workshop without walls: stellar stoichiometry.

    Science.gov (United States)

    Desch, Steven J; Young, Patrick A; Anbar, Ariel D; Hinkel, Natalie; Pagano, Michael; Truitt, Amanda; Turnbull, Margaret

    2014-04-01

    We report on the NASA Astrobiology Institute-funded Workshop Without Walls entitled "Stellar Stoichiometry," hosted by the "Follow the Elements" team at Arizona State University in April 2013. We describe several innovative practices we adopted that made effective use of the Workshop Without Walls videoconferencing format, including use of information technologies, assignment of scientific tasks before the workshop, and placement of graduate students in positions of authority. A companion article will describe the scientific results arising from the workshop. Our intention here is to suggest best practices for future Workshops Without Walls.

  2. Determination of Stoichiometry of Solutes in Molten Salt Solvents by Correlations of Relative Raman Band Intensities

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Berg, Rolf W.

    1999-01-01

    ); (2) Nb2O5 + nS(2)O(7)(2-) (1) --> Y2n- (1); (3) MoO3 + nS(2)O(7)(2-) (1) --> Z(2n)- (1). It is shown that the solute complex species formed in the studied reactions have, respectively, the following stoichiometries: (1) n = 2, (VO)(2)O(SO4)(4)(4-); (2) n = 3, NbO(SO4)(3)(3-); (3) n = 1, MoO(SO4)(2)(2-)....

  3. Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds

    International Nuclear Information System (INIS)

    Steil, Daniel; Schmitt, Oliver; Fetzer, Roman; Aeschlimann, Martin; Cinchetti, Mirko; Kubota, Takahide; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Rodan, Steven; Blum, Christian G F; Wurmehl, Sabine; Balke, Benjamin

    2015-01-01

    Nowadays, a wealth of information on ultrafast magnetization dynamics of thin ferromagnetic films exists in the literature. Information is, however, scarce on bulk single crystals, which may be especially important for the case of multi-sublattice systems. In Heusler compounds, representing prominent examples for such multi-sublattice systems, off-stoichiometry and degree of order can significantly change the magnetic properties of thin films, while bulk single crystals may be generally produced with a much more well-defined stoichiometry and a higher degree of ordering. A careful characterization of the local structure of thin films versus bulk single crystals combined with ultrafast demagnetization studies can, thus, help to understand the impact of stoichiometry and order on ultrafast spin dynamics.Here, we present a comparative study of the structural ordering and magnetization dynamics for thin films and bulk single crystals of the family of Heusler alloys with composition Co 2 Fe 1 − x Mn x Si. The local ordering is studied by 59 Co nuclear magnetic resonance (NMR) spectroscopy, while the time-resolved magneto-optical Kerr effect gives access to the ultrafast magnetization dynamics. In the NMR studies we find significant differences between bulk single crystals and thin films, both regarding local ordering and stoichiometry. The ultrafast magnetization dynamics, on the other hand, turns out to be mostly unaffected by the observed structural differences, especially on the time scale of some hundreds of femtoseconds. These results confirm hole-mediated spin-flip processes as the main mechanism for ultrafast demagnetization and the robustness of this demagnetization channel against defect states in the minority band gap as well as against the energetic position of the band gap with respect to the Fermi energy. The very small differences observed in the magnetization dynamics on the picosecond time-scale, on the other hand, can be explained by considering the

  4. Stoichiometry and superconductive properties of YBaCuO films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Conde-Gallardo, A.; Falcony, C.; Ortiz, A.

    1994-01-01

    The dependence of the stoichiometry and the superconducting characteristics of YBaCuO films deposited by spray pyrolysis on the spraying solution composition and the deposition conditions is reported. It has been found that a proper optimization of the starting materials concentration in the spraying solution results in superconducting films with zero resistance temperature of 91 K and a transition to superconducting state within a 3 K range. X-ray diffraction and resistance vs temperature measurements have been used to monitor the crystal composition and the conductive characteristics of the films as a function of the spraying solution composition and the deposition parameters

  5. The influence of additives in the stoichiometry of hybrid lead halide perovskites

    Science.gov (United States)

    Burgués-Ceballos, Ignasi; Savva, Achilleas; Georgiou, Efthymios; Kapnisis, Konstantinos; Papagiorgis, Paris; Mousikou, Androniki; Itskos, Grigorios; Othonos, Andreas; Choulis, Stelios A.

    2017-11-01

    We investigate the employment of carefully selected solvent additives in the processing of a commercial perovskite precursor ink and analyze their impact on the performance of organometal trihalide perovskite (CH3NH3PbI3-xClx) photovoltaic devices. We provide evidence that the use of benzaldehyde can be used as an effective method to preserve the stoichiometry of the perovskite precursors in solution. Benzaldehyde based additive engineering shows to improve perovskite solid state film morphology and device performance of CH3NH3PbI3-xClx based solar cells.

  6. The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions

    International Nuclear Information System (INIS)

    Kim, Bosung; Cha, Dowon; Kim, Yongchan

    2015-01-01

    Highlights: • Effects of controlling parameters on the transient response of a PEMFC are studied. • The transient response is measured by varying air stoichiometry and air excess ratio. • Voltage drop, undershoot, and voltage fluctuation are analyzed under the load change. • Optimal air stoichiometry and air excess ratio are suggested for stable operation. - Abstract: The transient response of a proton exchange membrane fuel cell (PEMFC) is an important issue for transportation applications. The objective of this study is to investigate the effects of operating and controlling parameters on the transient response of a PEMFC for achieving more stable cell performance under load change conditions. The transient response of a PEMFC was measured and analyzed by varying air stoichiometry, air humidity, and air excess ratio (AER). The optimal air stoichiometry and AER were determined to minimize the voltage drop, undershoot, and voltage fluctuation under the load change, while maintaining high cell performance. Based on the present data, the optimal air stoichiometry was determined to be between 2.0 and 2.5, and the optimal AER was suggested to be between 1.65 and 2.0

  7. The influence of microscopic and macroscopic non-stoichiometry on interfacial planarity during the solid-phase epitaxial growth of amorphized GaAs

    International Nuclear Information System (INIS)

    Belay, K.B.; Ridgway, M.C.; Llewellyn, D.J.

    1996-01-01

    The influence of microscopic and macroscopic non-stoichiometry on the Solid-Phase Epitaxial Growth of GaAs has been studied. Ion implantation has been employed to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. In-situ Time Resolved Reflectivity and Transmission Electron Microscopy and ex-situ Rutherford Backscattering Spectroscopy and Channeling have been used to investigate the regrowth of amorphized GaAs layers. As non-stoichiometry shifts from microscopic to macroscopic the interface loses its planar nature and subsequently gets rougher. 7 refs., 3 figs

  8. The influence of microscopic and macroscopic non-stoichiometry on interfacial planarity during the solid-phase epitaxial growth of amorphized GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Belay, K.B.; Ridgway, M.C.; Llewellyn, D.J. [Australian National Univ., Canberra, ACT (Australia). Dept. of Physics

    1996-12-31

    The influence of microscopic and macroscopic non-stoichiometry on the Solid-Phase Epitaxial Growth of GaAs has been studied. Ion implantation has been employed to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. In-situ Time Resolved Reflectivity and Transmission Electron Microscopy and ex-situ Rutherford Backscattering Spectroscopy and Channeling have been used to investigate the regrowth of amorphized GaAs layers. As non-stoichiometry shifts from microscopic to macroscopic the interface loses its planar nature and subsequently gets rougher. 7 refs., 3 figs.

  9. The influence of microscopic and macroscopic non-stoichiometry on interfacial planarity during the solid-phase epitaxial growth of amorphized GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Belay, K B; Ridgway, M C; Llewellyn, D J [Australian National Univ., Canberra, ACT (Australia). Dept. of Physics

    1997-12-31

    The influence of microscopic and macroscopic non-stoichiometry on the Solid-Phase Epitaxial Growth of GaAs has been studied. Ion implantation has been employed to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. In-situ Time Resolved Reflectivity and Transmission Electron Microscopy and ex-situ Rutherford Backscattering Spectroscopy and Channeling have been used to investigate the regrowth of amorphized GaAs layers. As non-stoichiometry shifts from microscopic to macroscopic the interface loses its planar nature and subsequently gets rougher. 7 refs., 3 figs.

  10. FeII induced mineralogical transformations of ferric oxyhydroxides into magnetite of variable stoichiometry and morphology

    International Nuclear Information System (INIS)

    Usman, M.; Abdelmoula, M.; Hanna, K.

    2012-01-01

    The Mössbauer spectroscopy was used to monitor the mineralogical transformations of ferrihydrite (F), lepidocrocite (L) and goethite (G) into magnetite as a function of aging time. Ferric oxyhydroxides were reacted with soluble Fe II and OH – in stoichiometric amounts to form magnetite at an initial pH of ∼9.7. Observed transformation extent into magnetite followed the order: F>L>G with almost 30% of untransformed G after 1 month. The departure from stoichiometry, δ, of magnetite (Fe 3−δ O 4 ) generated from F (δ∼0.04) and L (δ∼0.05) was relatively low as compared to that in magnetite from G (δ∼0.08). The analysis by transmission electron microscopy and BET revealed that generated magnetite was also different in terms of morphology, particle size and surface area depending on the nature of initial ferric oxyhydroxide. This method of preparation is a possible way to form nano-sized magnetite. - Graphical abstract: Mössbauer spectrum of the early stage of magnetite formation formed from the interaction of adsorbed Fe II species with goethite. Highlights: ► Ferric oxides were reacted with hydroxylated Fe II to form magnetite. ► Magnetite formation was quantified as a function of aging time. ► Complete transformation of ferrihydrite and lepidocrocite was achieved. ► Almost 70% of initial goethite was transformed. ► Resulting magnetites have differences in stoichiometry and morphological properties.

  11. Synthesis, structure, morphology and stoichiometry characterization of cluster and nano magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Singh, L. Herojit; Pati, S.S. [Institute of Physics, University of Brasilia, 70919-970, Brasilia, DF (Brazil); Guimarães, Edi M. [Institute of Geoscience, University of Brasilia, 70910-900, Brasilia, DF (Brazil); Rodrigues, P.A.M.; Oliveira, Aderbal C. [Institute of Physics, University of Brasilia, 70919-970, Brasilia, DF (Brazil); Garg, V.K., E-mail: vijgarg@gmail.com [Institute of Physics, University of Brasilia, 70919-970, Brasilia, DF (Brazil)

    2016-08-01

    We have studied the stoichiometry of magnetite nanoparticles using three spectroscopic techniques: Mössbauer, photoacoustic and ferromagnetic resonance (FMR). By varying the weight ratio of the Fe precursor to the reducing agent (sodium acetate) and a post-synthesis annealing, we were able to synthesize samples with different amounts of Fe vacancies, from stoichiometric Fe{sub 3}O{sub 4} to γ-Fe{sub 2}O{sub 3}. By synthesizing magnetite in the presence of zeolite we obtained nanoparticles within the 3–10 nm diameter range. The spectroscopic results show that there is a correlation between the amount of Fe vacancies and (i) the optical absorption and (ii) the g-values from the Electron paramagnetic resonance EPR spectra of the nanoparticles. - Highlights: • Magnetite nanoparticles and cluster synthesized. • Photoacoustic spectroscopy is effective in determining the stoichiometry. • Particles with 9 nm size has 0 < δ < 0.14. • Less than 9 nm gives 0.14 < δ < 0.3 and size <3 nm have δ = 0.33 (i.e. γ-Fe{sub 2}O{sub 3}).

  12. Evidence of different stoichiometries for the limiting carbonate complexes of lanthanides(3)

    International Nuclear Information System (INIS)

    Philippini, V.

    2007-12-01

    Two stoichiometries have been proposed by different laboratories to interpret measurements on the limiting carbonate complexes of An 3+ and Ln 3+ cations. The study of the solubility of double carbonates (AlkLn(CO 3 ) 2 ,xH 2 O) in concentrated carbonate solutions at room temperature and high ionic strengths has shown that on the one hand the lightest lanthanides (La and Nd) form Ln(CO 3 ) 4 5- whereas the heaviest (Eu and Dy) form Ln(CO 3 ) 3 3- in the studied chemical conditions, and on the other hand, that the kinetics of precipitation of double carbonates depends on the alkali metal and the lanthanide ions. The existence of two stoichiometries for the limiting carbonate complexes was confirmed by capillary electrophoresis hyphenated to an inductively coupled plasma mass spectrometer (CE-ICP-MS), used to extend the study to the whole series of lanthanides (except Ce, Pm and Yb). Two behaviours have been put forward comparing the electrophoretic mobilities: La to Tb form Ln(CO 3 ) 4 5- while Dy to Lu form Ln(CO 3 ) 3 3- . Measurements by time resolved laser fluorescence spectroscopy (TRLFS) on Eu(III) indicate small variations of the geometry of Eu(CO 3 ) 3 3- complex, specially with Cs + . Although analogies are currently used among the 4f-block trivalent elements, different aqueous speciations are evidenced in concentrated carbonate solutions across the lanthanide series. (author)

  13. Effect of microbial enzyme allocation strategies on stoichiometry of soil organic matter (SOM) decomposition

    Science.gov (United States)

    Wutzler, Thomas

    2014-05-01

    We explored different strategies of soil microbial community to invest resources into extracellular enzymes by conceptual modelling. Similar to the EEZY model by Moorhead et al. (2012), microbial community can invest into two separate pools of enzymes that depolymerize two different SOM pools. We show that with assuming that a fixed fraction of substrate uptake is allocated to enzymes, the microbial dynamics decouples from decomposition dynamics. We propose an alternative formulation where investment into enzymes is proportional to microbial biomass. Next, we show that the strategy of optimizing stoichiometry of decomposition flux according to microbial biomass stoichiometry yield less microbial growth than the strategy of optimizing revenue of the currently limiting element. However, both strategies result in better usage of the resources, i.e. less C overflow or N mineralization, than the strategy of equal allocation to both enzymes. Further, we discuss effects of those strategies on decomposition of SOM and priming at different time scales and discuss several abstractions from the detailed model dynamics for usage in larger scale models.

  14. Stoichiometry control of SrVO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Scheiderer, Philipp; Schmitt, Matthias; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2016-07-01

    Oxide heterostructures exhibit fascinating properties, e.g., the coexistence of superconductivity and ferromagnetism at the interface of LaAlO{sub 3}/SrTiO{sub 3}, but the extraordinary electronic properties of transition metal oxides caused by electron correlation yet wait to be fully harnessed. One suitable candidate for future device applications is the correlated metal SrVO{sub 3}, which can be prepared by pulsed laser deposition (PLD) on commonly used substrates such as SrTiO{sub 3}. Sample fabrication by PLD offers a wide variety of possibilities to manipulate the structural and electronic properties of the grown films in a controlled way. Here we report on the manipulation of the cation and oxygen stoichiometry of SrVO{sub 3} thin films by tuning the laser flux density of the PLD-ablation process and the oxygen background pressure during growth, respectively. In situ photoemission, x-ray diffraction, and temperature dependent resistivity measurements enable us to monitor the structural and electronic changes: Cation off-stoichiometry causes a strong increase of the out-of-plane lattice constant as well as a lower residual resistivity ratio, while excess oxygen is found to induce a shift to higher vanadium valences. After exposure to air a similar shift is detected, indicating an overoxidation of the SrVO{sub 3} film.

  15. Non-stoichiometry defects and radiation hardness of lead tungstate crystals PbWO sub 4

    CERN Document Server

    Devitsin, E G; Potashov, S Yu; Terkulov, A R; Nefedov, V A; Polyansky, E V; Zadneprovski, B I; Kjellberg, P; Korbel, V

    2002-01-01

    It has been stated many times that the formation of radiation infringements in PbWO sub 4 is to a big extent stipulated by the non-stoichiometry defects of the crystals, arising in the process of their growth and annealing. To refine the idea of characteristics of the non-stoichiometry defects and their effect on the radiation hardness of PbWO sub 4 , the current study is aimed at the melt composition infringements during its evaporation and at optical transmission of crystals obtained in these conditions after their irradiation ( sup 1 sup 3 sup 7 Cs source). In the optical transmission measurements along with traditional techniques a method 'in situ' was used, which provided the measurements in fixed points of the spectrum (380, 470 and 535 nm) directly in the process of the irradiation. X-ray phase and fluorescence analysis of condensation products of vapours over PbWO sub 4 melt has found PbWO sub 4 phase in their content as well as compounds rich in lead PbO, Pb sub 2 WO sub 5 with overall ratio Pb/W (3....

  16. Non-stoichiometry Defects and Radiation Hardness of Lead Tungstate Crystals PbWO4

    CERN Document Server

    Devitsin, E G; Kozlov, V A; Nefedov, L; Polyansky, E V; Potashov, S Yu; Terkulov, A R; Zadneprovski, B I

    2001-01-01

    It has been stated many times that the formation of radiation infringements in PbWO4 is to big extent stipulated by non-stoichiometry defects of the crystals, arising in the process of their growth and annealing. To refine the idea of characteristics of non-stoichiometry defects and their effect on the radiation hardness of PbWO4 the current study is aimed at the melt composition infringements during its evaporation and at optical transmission of crystals obtained in these conditions after their irradiation (137Cs source). In the optical transmission measurements along with traditional techniques a method "in situ" was used, which provided the measurements in fixed points of the spectrum (380, 470 and 535 nm) directly in the process of the irradiation. X-ray phase and fluorescence analysis of condensation products of vapours over PbWO4 melt has found PbWO4 phase in their content as well as compounds rich in lead, PbO, Pb2WO5, with overall ratio Pb/W = 3.2. Correspondingly the lack of lead and variations in th...

  17. Investment in boney defensive traits alters organismal stoichiometry and excretion in fish.

    Science.gov (United States)

    El-Sabaawi, Rana W; Warbanski, Misha L; Rudman, Seth M; Hovel, Rachel; Matthews, Blake

    2016-08-01

    Understanding how trait diversification alters ecosystem processes is an important goal for ecological and evolutionary studies. Ecological stoichiometry provides a framework for predicting how traits affect ecosystem function. The growth rate hypothesis of ecological stoichiometry links growth and phosphorus (P) body composition in taxa where nucleic acids are a significant pool of body P. In vertebrates, however, most of the P is bound within bone, and organisms with boney structures can vary in terms of the relative contributions of bones to body composition. Threespine stickleback populations have substantial variation in boney armour plating. Shaped by natural selection, this variation provides a model system to study the links between evolution of bone content, elemental body composition, and P excretion. We measure carbon:nitrogen:P body composition from stickleback populations that vary in armour phenotype. We develop a mechanistic mass-balance model to explore factors affecting P excretion, and measure P excretion from two populations with contrasting armour phenotypes. Completely armoured morphs have higher body %P but excrete more P per unit body mass than other morphs. The model suggests that such differences are driven by phenotypic differences in P intake as well as body %P composition. Our results show that while investment in boney traits alters the elemental composition of vertebrate bodies, excretion rates depend on how acquisition and assimilation traits covary with boney trait investment. These results also provide a stoichiometric hypothesis to explain the repeated loss of boney armour in threespine sticklebacks upon colonizing freshwater ecosystems.

  18. Stoichiometry of ATP hydrolysis and chlorophyllide formation of dark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Nomata, Jiro [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan); Terauchi, Kazuki [Department of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 (Japan); Fujita, Yuichi, E-mail: fujita@agr.nagoya-u.ac.jp [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan)

    2016-02-12

    Dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR) is a nitrogenase-like enzyme catalyzing a reduction of the C17 = C18 double bond of Pchlide to form chlorophyllide a (Chlide) in bacteriochlorophyll biosynthesis. DPOR consists of an ATP-dependent reductase component, L-protein (a BchL dimer), and a catalytic component, NB-protein (a BchN–BchB heterotetramer). The L-protein transfers electrons to the NB-protein to reduce Pchlide, which is coupled with ATP hydrolysis. Here we determined the stoichiometry of ATP hydrolysis and the Chlide formation of DPOR. The minimal ratio of ATP to Chlide (ATP/2e{sup –}) was 4, which coincides with that of nitrogenase. The ratio increases with increasing molar ratio of L-protein to NB-protein. This profile differs from that of nitrogenase. These results suggest that DPOR has a specific intrinsic property, while retaining the common features shared with nitrogenase. - Highlights: • The stoichiometry of nitrogenase-like protochlorophyllide reductase was determined. • The minimal ATP/2e{sup –} ratio was 4, which coincides with that of nitrogenase. • The ATP/2e{sup –} ratio increases with increasing L-protein/NB-protein molar ratio. • DPOR has an intrinsic property, but retains features shared with nitrogenase.

  19. The Impact of Variable Phytoplankton Stoichiometry on Projections of Primary Production, Food Quality, and Carbon Uptake in the Global Ocean

    Science.gov (United States)

    Kwiatkowski, Lester; Aumont, Olivier; Bopp, Laurent; Ciais, Philippe

    2018-04-01

    Ocean biogeochemical models are integral components of Earth system models used to project the evolution of the ocean carbon sink, as well as potential changes in the physical and chemical environment of marine ecosystems. In such models the stoichiometry of phytoplankton C:N:P is typically fixed at the Redfield ratio. The observed stoichiometry of phytoplankton, however, has been shown to considerably vary from Redfield values due to plasticity in the expression of phytoplankton cell structures with different elemental compositions. The intrinsic structure of fixed C:N:P models therefore has the potential to bias projections of the marine response to climate change. We assess the importance of variable stoichiometry on 21st century projections of net primary production, food quality, and ocean carbon uptake using the recently developed Pelagic Interactions Scheme for Carbon and Ecosystem Studies Quota (PISCES-QUOTA) ocean biogeochemistry model. The model simulates variable phytoplankton C:N:P stoichiometry and was run under historical and business-as-usual scenario forcing from 1850 to 2100. PISCES-QUOTA projects similar 21st century global net primary production decline (7.7%) to current generation fixed stoichiometry models. Global phytoplankton N and P content or food quality is projected to decline by 1.2% and 6.4% over the 21st century, respectively. The largest reductions in food quality are in the oligotrophic subtropical gyres and Arctic Ocean where declines by the end of the century can exceed 20%. Using the change in the carbon export efficiency in PISCES-QUOTA, we estimate that fixed stoichiometry models may be underestimating 21st century cumulative ocean carbon uptake by 0.5-3.5% (2.0-15.1 PgC).

  20. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory

    Directory of Open Access Journals (Sweden)

    Nina Welti

    2017-07-01

    Full Text Available Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates. ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1 changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2 changing trophic dynamics influences the transformation and

  1. Dry Etching of Copper Phthalocyanine Thin Films: Effects on Morphology and Surface Stoichiometry

    Directory of Open Access Journals (Sweden)

    Michael J. Brett

    2012-08-01

    Full Text Available We investigate the evolution of copper phthalocyanine thin films as they are etched with argon plasma. Significant morphological changes occur as a result of the ion bombardment; a planar surface quickly becomes an array of nanopillars which are less than 20 nm in diameter. The changes in morphology are independent of plasma power, which controls the etch rate only. Analysis by X-ray photoelectron spectroscopy shows that surface concentrations of copper and oxygen increase with etch time, while carbon and nitrogen are depleted. Despite these changes in surface stoichiometry, we observe no effect on the work function. The absorbance and X-ray diffraction spectra show no changes other than the peaks diminishing with etch time. These findings have important implications for organic photovoltaic devices which seek nanopillar thin films of metal phthalocyanine materials as an optimal structure.

  2. Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: A machine learning approach.

    Science.gov (United States)

    Furmanchuk, Al'ona; Saal, James E; Doak, Jeff W; Olson, Gregory B; Choudhary, Alok; Agrawal, Ankit

    2018-02-05

    The regression model-based tool is developed for predicting the Seebeck coefficient of crystalline materials in the temperature range from 300 K to 1000 K. The tool accounts for the single crystal versus polycrystalline nature of the compound, the production method, and properties of the constituent elements in the chemical formula. We introduce new descriptive features of crystalline materials relevant for the prediction the Seebeck coefficient. To address off-stoichiometry in materials, the predictive tool is trained on a mix of stoichiometric and nonstoichiometric materials. The tool is implemented into a web application (http://info.eecs.northwestern.edu/SeebeckCoefficientPredictor) to assist field scientists in the discovery of novel thermoelectric materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Stoichiometry in Context: Inquiry-Guided Problems of Chemistry for Encouraging Critical Thinking in Engineering Students

    Directory of Open Access Journals (Sweden)

    Gabriel Pinto

    2013-01-01

    Full Text Available This paper focuses on examples of educational tools concerning the learning of chemistry for engineering students through different daily life cases. These tools were developed during the past few years for enhancing the active role of students. They refer to cases about mineral water, medicaments, dentifrices and informative panels about solar power, where an adequate quantitative treatment through stoichiometry calculations allows the interpretation of data and values announced by manufacturers. These cases were developed in the context of an inquiry-guided instruction model. By bringing tangible chemistry examples into the classroom we provide an opportunity for engineering students to apply this science to familiar products in hopes that they will appreciate chemistry more, will be motivated to study concepts in greater detail, and will connect the relevance of chemistry to everyday life.

  4. A defect model for UO2+x based on electrical conductivity and deviation from stoichiometry measurements

    Science.gov (United States)

    Garcia, Philippe; Pizzi, Elisabetta; Dorado, Boris; Andersson, David; Crocombette, Jean-Paul; Martial, Chantal; Baldinozzi, Guido; Siméone, David; Maillard, Serge; Martin, Guillaume

    2017-10-01

    Electrical conductivity of UO2+x shows a strong dependence upon oxygen partial pressure and temperature which may be interpreted in terms of prevailing point defects. A simulation of this property along with deviation from stoichiometry is carried out based on a model that takes into account the presence of impurities, oxygen interstitials, oxygen vacancies, holes, electrons and clusters of oxygen atoms. The equilibrium constants for each defect reaction are determined to reproduce the experimental data. An estimate of defect concentrations and their dependence upon oxygen partial pressure can then be determined. The simulations carried out for 8 different temperatures (973-1673 K) over a wide range of oxygen partial pressures are discussed and resulting defect equilibrium constants are plotted in an Arrhenius diagram. This provides an estimate of defect formation energies which may further be compared to other experimental data or ab-initio and empirical potential calculations.

  5. Ion plasma deposition of oxide films with graded-stoichiometry composition: Experiment and simulation

    Science.gov (United States)

    Volpyas, V. A.; Tumarkin, A. V.; Mikhailov, A. K.; Kozyrev, A. B.; Platonov, R. A.

    2016-07-01

    A method of ion plasma deposition is proposed for obtaining thin multicomponent films with continuously graded composition in depth of the film. The desired composition-depth profile is obtained by varying the working gas pressure during deposition in the presence of an additional adsorbing screen in the drift space between a sputtered target and substrate. Efficiency of the proposed method is confirmed by Monte Carlo simulation of the deposition of thin films of Ba x Sr1- x TiO3 (BSTO) solid solution. It is demonstrated that, during sputtering of a Ba0.3Sr0.7TiO3 target, the parameter of composition stoichiometry in the growing BSTO film varies in the interval of x = 0.3-0.65 when the gas pressure is changed within 2-60 Pa.

  6. Study of Stoichiometry and Stability of some Fe(III)-Amino Acid Complexes

    International Nuclear Information System (INIS)

    Latif, S.; Shirin, K.; Nisar, S.; Zahida, T. M.

    2005-01-01

    The complexation of ferric with three amino acids (Glycine, Glutamic acid and Aspartic acid) was studied spectrophotometrically and potentiometrically at pH 5.0 and in aqueous medium. The stoichiometry was calculated spectrophotometrically using mole ratio method and is found to be ML3 for Fe (III)-Glycine and ML2 for Fe (III)-Glutamate for Fe (III)-Glutamate and Aspartate complex. The stabilities of these complexes were calculated spectrophotometrically and potentiometrically. The experimental results of potentiometric titrations were treated by well known computer program B EST . The values were further refined till least sigma fit i.e. 0.03. The complexes were not formed under normal conditions. Each complex was studied at more than one wavelength and no kmax was obtained because Fe (III) solution and the complexes absorb in similar wavelength region. The formation constants of all these complexes are not very high shows weak complexation of Fe (III) with these amino acids. (author)

  7. Action of DCCD on the H+/O stoichiometry of mitoplast cytochrome c oxidase.

    Science.gov (United States)

    Lehninger, A L; Reynafarje, B; Costa, L

    1985-01-01

    The mechanistic H+/O ejection stoichiometry of the cytochrome c oxidase reaction in rat liver mitoplasts is close to 4 at level flow when the reduced oxidase is pulsed with O2. Dicyclohexylcarbodiimide (DCCD) up to 30 nmol/mg protein fails to influence the rate of electron flow through the mitoplast oxidase, but inhibits H+ ejection. The inhibition of H+ ejection appears to be biphasic; ejection of 2-3 H+ per O is completely inhibited by very low DCCD, whereas inhibition of the remaining H+ ejection requires very much higher concentrations of DCCD. This effect suggests the occurrence of two types of H+ pumps in the native cytochrome oxidase of mitoplasts.

  8. Relationship between stoichiometry and ecosystem services in organic crop production systems

    DEFF Research Database (Denmark)

    Fan, Fan

    contribute to and mitigate global ES loss. Organic farming has been suggested as one possible solution to alleviate the loss of ES in agro-ecosystems due to its environmental benefits compared with conventional farming. However, only a few studies have accounted for the economic value of ES in different...... organic crop production systems and little is known about how anthropogenic activities affect the supply of ES in such organic crop production systems. Ecological stoichiometry, which is the study of the fluxes of chemical elements and the ratio between them, has been considered as a new approach....... The organic farming systems with a high soil C:N stoichiometric ratio had a potential to produce more food, sequester more carbon from the atmosphere, store more water in the soil, attract more aphid predators, and regulate more nitrogen compared with the organic farming systems with a low soil C...

  9. A cell-free assay to determine the stoichiometry of plasma membrane proteins.

    Science.gov (United States)

    Trigo, Cesar; Vivar, Juan P; Gonzalez, Carlos B; Brauchi, Sebastian

    2013-04-01

    Plasma membrane receptors, transporters, and ion channel molecules are often found as oligomeric structures that participate in signaling cascades essential for cell survival. Different states of protein oligomerization may play a role in functional control and allosteric regulation. Stochastic GFP-photobleaching (SGP) has emerged as an affordable and simple method to determine the stoichiometry of proteins at the plasma membrane. This non-invasive optical approach can be useful for total internal reflection of fluorescence microscopy (TIRFM), where signal-to-noise ratio is very high at the plasma membrane. Here, we report an alternative methodology implemented on a standard laser scanning confocal microscope (LSCM). The simplicity of our method will allow for its implementation in any epifluorescence microscope of choice.

  10. Consequences of warming and resource quality on the stoichiometry and nutrient cycling of a stream shredder.

    Directory of Open Access Journals (Sweden)

    Esther Mas-Martí

    Full Text Available As a result of climate change, streams are warming and their runoff has been decreasing in most temperate areas. These changes can affect consumers directly by increasing their metabolic rates and modifying their physiology and indirectly by changing the quality of the resources on which organisms depend. In this study, a common stream detritivore (Echinogammarus berilloni Catta was reared at two temperatures (15 and 20°C and fed Populus nigra L. leaves that had been conditioned either in an intermittent or permanent reach to evaluate the effects of resource quality and increased temperatures on detritivore performance, stoichiometry and nutrient cycling. The lower quality (i.e., lower protein, soluble carbohydrates and higher C:P and N:P ratios of leaves conditioned in pools resulted in compensatory feeding and lower nutrient retention capacity by E. berilloni. This effect was especially marked for phosphorus, which was unexpected based on predictions of ecological stoichiometry. When individuals were fed pool-conditioned leaves at warmer temperatures, their growth rates were higher, but consumers exhibited less efficient assimilation and higher mortality. Furthermore, the shifts to lower C:P ratios and higher lipid concentrations in shredder body tissues suggest that structural molecules such as phospholipids are preserved over other energetic C-rich macromolecules such as carbohydrates. These effects on consumer physiology and metabolism were further translated into feces and excreta nutrient ratios. Overall, our results show that the effects of reduced leaf quality on detritivore nutrient retention were more severe at higher temperatures because the shredders were not able to offset their increased metabolism with increased consumption or more efficient digestion when fed pool-conditioned leaves. Consequently, the synergistic effects of impaired food quality and increased temperatures might not only affect the physiology and survival of

  11. Experiments to investigate the effects of small changes in fuel stoichiometry on fission gas release

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, P S; Smith, R C [Windscale Lab., AEA Technology, Seascale, Cumbria (United Kingdom)

    1997-08-01

    Fuel pin failure in-reactor leads to fission product and in the case of a PWR fuel debris release to the coolant. For economic reasons immediate shutdown and discharge of failed fuel needs to be avoided but this needs to be counter-balanced against the increasing dose to operators. PWR practice is to continue running wit failed rods, monitoring coolant activity, and only shutting down the reactor and discharging the fuel when circuit activity levels become unacceptable. The rate of fission product release under failed fuel conditions is of key importance and considerable effort has been directed towards establishing the dependency of release on temperature, heating rate, burn-up, and also the extent of fuel oxidation. As a precursor to a possible wider investigation of this area, a small programme was mounted during 1992/1993 to confirm whether small changes in the oxidation state of the fuel, for example those caused by minor cladding defects, would significantly effect fuel behaviour during postulated design basis faults. The objective of the programme was to determine the effects of small departures from stoichiometric fuel composition on fission gas release, and to compare the results with the current methodology for calculating releases under fault conditions. A total of eight experiments was performed. Two were intended as baseline tests to provide a reference with which to compare the effect of oxidation state influenced behaviour with that of thermal effects. It was found that small changes in stoichiometry of {sup {approx}}1 x 10{sup -6} had little or no effect on release but that changes of {sup {approx}} 1 x 10{sup -4} were observed to increase the diffusion coefficient, for {sup 85}Kr, by up to an order of magnitude and hence greatly increase the release rate. The stoichiometry of the sample used in these tests was, for convenience, adjusted using He/H{sub 2}/H{sub 2}O atmospheres. (Abstract Truncated)

  12. Simultaneous shifts in elemental stoichiometry and fatty acids of Emiliania huxleyi in response to environmental changes

    Science.gov (United States)

    Bi, Rong; Ismar, Stefanie M. H.; Sommer, Ulrich; Zhao, Meixun

    2018-02-01

    Climate-driven changes in environmental conditions have significant and complex effects on marine ecosystems. Variability in phytoplankton elements and biochemicals can be important for global ocean biogeochemistry and ecological functions, while there is currently limited understanding on how elements and biochemicals respond to the changing environments in key coccolithophore species such as Emiliania huxleyi. We investigated responses of elemental stoichiometry and fatty acids (FAs) in a strain of E. huxleyi under three temperatures (12, 18 and 24 °C), three N : P supply ratios (molar ratios 10:1, 24:1 and 63:1) and two pCO2 levels (560 and 2400 µatm). Overall, C : N : P stoichiometry showed the most pronounced response to N : P supply ratios, with high ratios of particulate organic carbon vs. particulate organic nitrogen (POC : PON) and low ratios of PON vs. particulate organic phosphorus (PON : POP) in low-N media, and high POC : POP and PON : POP in low-P media. The ratio of particulate inorganic carbon vs. POC (PIC : POC) and polyunsaturated fatty acid proportions strongly responded to temperature and pCO2, both being lower under high pCO2 and higher with warming. We observed synergistic interactions between warming and nutrient deficiency (and high pCO2) on elemental cellular contents and docosahexaenoic acid (DHA) proportion in most cases, indicating the enhanced effect of warming under nutrient deficiency (and high pCO2). Our results suggest differential sensitivity of elements and FAs to the changes in temperature, nutrient availability and pCO2 in E. huxleyi, which is to some extent unique compared to non-calcifying algal classes. Thus, simultaneous changes of elements and FAs should be considered when predicting future roles of E. huxleyi in the biotic-mediated connection between biogeochemical cycles, ecological functions and climate change.

  13. Transcriptional changes underlying elemental stoichiometry shifts in a marine heterotrophic bacterium

    Directory of Open Access Journals (Sweden)

    Leong-Keat eChan

    2012-05-01

    Full Text Available Marine bacteria drive the biogeochemical processing of oceanic dissolved organic carbon (DOC, a 750-Tg C reservoir that is a critical component of the global C cycle. Catabolism of DOC is thought to be regulated by the biomass composition of heterotrophic bacteria, as cells maintain a C:N:P ratio of ~50:10:1 during DOC processing. Yet a complicating factor in stoichiometry-based analyses is that bacteria can change the C:N:P ratio of their biomass in response to resource composition. We investigated the physiological mechanisms of resource-driven shifts in biomass stoichiometry in continuous cultures of the marine heterotrophic bacterium Ruegeria pomeroyi (a member of the Roseobacter clade under four element limitation regimes (C, N, P, and S. Microarray analysis indicated that the bacterium scavenged for alternate sources of the scarce element when cells were C-, N-, or P-limited; reworked the ratios of biomolecules when C- and P- limited; and exerted tighter control over import/export and cytoplasmic pools when N-limited. Under S-limitation, a scenario not existing naturally for surface ocean microbes, stress responses dominated transcriptional changes. Resource-driven changes in C:N ratios of up to 2.5-fold and in C:P ratios of up to 6-fold were measured in R. pomeroyi biomass. These changes were best explained if the C and P content of the cells was flexible in the face of shifting resources but N content was not, achieved through the net balance of different transcriptional strategies. The cellular-level metabolic trade-offs that govern biomass stoichiometery in R. pomeroyi may have implications for global carbon cycling. Strong homeostatic responses to N limitation by heterotrophic marine bacteria would intensify competition with autotrophs. Modification of cellular inventories in C- and P-limited heterotrophs would vary the elemental ratio of particulate organic matter sequestered in the deep ocean.

  14. Oxidation of manganese(II) with ferrate: Stoichiometry, kinetics, products and impact of organic carbon.

    Science.gov (United States)

    Goodwill, Joseph E; Mai, Xuyen; Jiang, Yanjun; Reckhow, David A; Tobiason, John E

    2016-09-01

    Manganese is a contaminant of concern for many drinking water utilities, and future regulation may be pending. An analysis of soluble manganese (Mn(II)) oxidation by ferrate (Fe(VI)) was executed at the bench-scale, in a laboratory matrix, both with and without the presence of natural organic matter (NOM) and at two different pH values, 6.2 and 7.5. In the matrix without NOM, the oxidation of Mn(II) by Fe(VI) followed a stoichiometry of 2 mol Fe(VI) to 3 mol Mn(II). The presence of NOM did not significantly affect the stoichiometry of the oxidation reaction, indicating relative selectivity of Fe(VI) for Mn(II). The size distribution of resulting particles included significant amounts of nanoparticles. Resulting manganese oxide particles were confirmed to be MnO2 via X-ray photoelectron spectroscopy. The rate of the Mn(II) oxidation reaction was fast relative to typical time scales in drinking water treatment, with an estimated second order rate constant of approximately 1 × 10(4) M(-1) s(-1) at pH 9.2 and > 9 × 10(4) M(-1) s(-1) at pH 6.2. In general, ferrate is a potential option for Mn(II) oxidation in water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Use of stoichiometry to predict the abundance and functioning of root symbioses

    Science.gov (United States)

    Johnson, N. C.

    2012-04-01

    Plants form nutritional symbioses with fungi and bacteria and the importance of these partnerships varies with the mineral fertility of soil. There is strong evidence that plants acclimate and adapt to their local soil conditions through root symbioses; nitrogen limitation is ameliorated by symbiosis with diazotrophic prokaryotes and mycorrhizas ameliorate phosphorus limitation. Corollaries of ecological stoichiometry may be useful for predicting the abundance and functioning of mycorrhizas and N-fixation symbioses. A series of field experiments show that arbuscular mycorrhizal (AM) symbioses in grasslands in North America and in the African Serengeti are most beneficial to plant nutrition when plants are phosphorus limited and have sufficient nitrogen and carbon. A reciprocal inoculation experiment shows that locally adapted communities of AM fungi, associated soil organisms and plants arise such that mutualistic benefits are maximized; both AM fungi and plants grew best in their "home" soil-symbiont combination compared to "away" soil-symbiont combinations. Plants in their home combination acquired more limiting resource (either phosphorus or nitrogen) and consequently grew larger; similarly, AM fungi in their home combination formed more arbuscules and extraradical hyphae. Genetic analysis of the AM fungi inside plant roots indicate that these results correspond to variation in the community composition of AM fungi and also to variation in the symbiotic performance of local isolates of one particular species of AM fungus. The next step is to conduct landscape scale studies of root symbioses to test the hypothesis that plants cultivate microbial communities in and around their roots such that the species and ecotypes of microorganisms within these communities is customized for optimal nutrient acquisition under site-specific environmental conditions. If locally adapted communities of root and rhizosphere organisms are common, then plants may be optimizing their

  16. Multi-signal sedimentation velocity analysis with mass conservation for determining the stoichiometry of protein complexes.

    Directory of Open Access Journals (Sweden)

    Chad A Brautigam

    Full Text Available Multi-signal sedimentation velocity analytical ultracentrifugation (MSSV is a powerful tool for the determination of the number, stoichiometry, and hydrodynamic shape of reversible protein complexes in two- and three-component systems. In this method, the evolution of sedimentation profiles of macromolecular mixtures is recorded simultaneously using multiple absorbance and refractive index signals and globally transformed into both spectrally and diffusion-deconvoluted component sedimentation coefficient distributions. For reactions with complex lifetimes comparable to the time-scale of sedimentation, MSSV reveals the number and stoichiometry of co-existing complexes. For systems with short complex lifetimes, MSSV reveals the composition of the reaction boundary of the coupled reaction/migration process, which we show here may be used to directly determine an association constant. A prerequisite for MSSV is that the interacting components are spectrally distinguishable, which may be a result, for example, of extrinsic chromophores or of different abundances of aromatic amino acids contributing to the UV absorbance. For interacting components that are spectrally poorly resolved, here we introduce a method for additional regularization of the spectral deconvolution by exploiting approximate knowledge of the total loading concentrations. While this novel mass conservation principle does not discriminate contributions to different species, it can be effectively combined with constraints in the sedimentation coefficient range of uncomplexed species. We show in theory, computer simulations, and experiment, how mass conservation MSSV as implemented in SEDPHAT can enhance or even substitute for the spectral discrimination of components. This should broaden the applicability of MSSV to the analysis of the composition of reversible macromolecular complexes.

  17. Proton translocation stoichiometry of cytochrome oxidase: use of a fast-responding oxygen electrode.

    Science.gov (United States)

    Reynafarje, B; Alexandre, A; Davies, P; Lehninger, A L

    1982-01-01

    The mechanistic stoichiometry of vectorial H+ ejection coupled to electron transport from added ferrocytochrome c to oxygen by the cytochrome oxidase (EC 1.9.3.1) of rat liver mitoplasts was determined from measurements of the initial rates of electron flow and H+ ejection in the presence of K+ (with valinomycin). Three different methods of measuring electron flow were used: (a) dual-wavelength spectrophotometry of ferrocytochrome c oxidation, (b) uptake of scalar H+ for the reduction of O2 in the presence of a protonophore, and (c) a fast-responding membraneless oxygen electrode. The reliability of the rate measurements was first established against the known stoichiometry of the scalar reaction of cytochrome oxidase (2ferrocytochrome c + 2H+ + 1/2O2 leads to 2ferricytochrome c + H2O) in the presence of excess protonophore. With all three methods the directly observed vectorial H+/O ejection ratios in the presence of K+ + valinomycin significantly exceeded 3.0. However, because the rate of backflow of the ejected H+ into the mitoplasts is very high and increases with the increasing delta pH generated across the membrane, there is a very rapid decline in the observed H+/O ratio from the beginning of the reaction. Kinetic analysis of ferrocytochrome c oxidation by the mitoplasts, carried out with a fast-responding membraneless oxygen electrode, showed the reaction to be first order in O2 and allowed accurate extrapolation of the rates of O2 uptake and H+ ejection to zero time. At this point, at which there is zero delta pH across the membrane, the H+/O ejection ratio of the cytochrome oxidase reaction, obtained from the rates at zero time, is close to 4.0. PMID:6296824

  18. Forest wildfire increases soil microbial biomass C:N:P stoichiometry in long-term effects

    Science.gov (United States)

    Zhou, Xuan

    2017-04-01

    Boreal forest fire strongly influences carbon (C) stock in permafrost soil by thawing permafrost table which accelerated microbe decomposition process. We studied soil microbial biomass stoichiometry in a gradient of four (3 yr, 25 yr, 46 yr and more than 100 yr) ages since fire in Canada boreal forest. Soil microbial biomass (MB) in long-term after fire is significantly higher than in short-term. MB C and nitrogen (N) were mainly dominated by corresponding soil element concentration and inorganic P, while MB phosphorus (P) changes were fully explained by soil N. Fire ages and soil temperature positively increased MB N and P, indicating the negative impact by fire. Microbial C:N:P gradually increased with fire ages from 15:2:1 to 76:6:1 and then drop down to 17:2:1 in the oldest fire ages. The degree of homeostasis of microbial C, N and P are close to 1 indicates non-homoeostasis within microbial elements, while it of C:N:P is close to 8 shows a strong homeostasis within element ratios and proved microbial stoichiometric ratio is not driven by soil element ratios. In conclusion, i) microbial biomass elements highly depends on soil nutrient supply rather than fire ages; ii) wildfire decreased microbial stoichiometry immediate after fire but increased with years after fire (YF) which at least 3 times higher than > 100 fire ages; iii) microbial biomass C, N and P deviated from strict homeostasis but C:N:P ratio reflects stronger homeostasis.

  19. Evolution of nutrient uptake reveals a trade-off in the ecological stoichiometry of plant-herbivore interactions

    NARCIS (Netherlands)

    Branco, P.; Stomp, M.; Egas, M.; Huisman, J.

    2010-01-01

    Nutrient limitation determines the primary production and species composition of many ecosystems. Here we apply an adaptive dynamics approach to investigate evolution of the ecological stoichiometry of primary producers and its implications for plant‐herbivore interactions. The model predicts a

  20. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...

  1. Thermometric titration of beta-aryl-alpha-mercaptopropenoic acids and determination of the stoichiometry of their metal complexes.

    Science.gov (United States)

    Izquierdo, A; Carrasco, J

    1981-05-01

    Automatic thermometric titration was applied to some beta-aryl-alpha-mercaptopropenoic acids and the stoichiometry of their complexes with several metal ions was investigated. The heats of neutralization of the mercapto-acids with sodium hydroxide and the heats of their reaction with metal ions were calculated.

  2. Simultaneous shifts in elemental stoichiometry and fatty acids of Emiliania huxleyi in response to environmental changes

    Directory of Open Access Journals (Sweden)

    R. Bi

    2018-02-01

    Full Text Available Climate-driven changes in environmental conditions have significant and complex effects on marine ecosystems. Variability in phytoplankton elements and biochemicals can be important for global ocean biogeochemistry and ecological functions, while there is currently limited understanding on how elements and biochemicals respond to the changing environments in key coccolithophore species such as Emiliania huxleyi. We investigated responses of elemental stoichiometry and fatty acids (FAs in a strain of E. huxleyi under three temperatures (12, 18 and 24 °C, three N : P supply ratios (molar ratios 10:1, 24:1 and 63:1 and two pCO2 levels (560 and 2400 µatm. Overall, C : N : P stoichiometry showed the most pronounced response to N : P supply ratios, with high ratios of particulate organic carbon vs. particulate organic nitrogen (POC : PON and low ratios of PON vs. particulate organic phosphorus (PON : POP in low-N media, and high POC : POP and PON : POP in low-P media. The ratio of particulate inorganic carbon vs. POC (PIC : POC and polyunsaturated fatty acid proportions strongly responded to temperature and pCO2, both being lower under high pCO2 and higher with warming. We observed synergistic interactions between warming and nutrient deficiency (and high pCO2 on elemental cellular contents and docosahexaenoic acid (DHA proportion in most cases, indicating the enhanced effect of warming under nutrient deficiency (and high pCO2. Our results suggest differential sensitivity of elements and FAs to the changes in temperature, nutrient availability and pCO2 in E. huxleyi, which is to some extent unique compared to non-calcifying algal classes. Thus, simultaneous changes of elements and FAs should be considered when predicting future roles of E. huxleyi in the biotic-mediated connection between biogeochemical cycles, ecological functions and climate change.

  3. Patterns in foliar nutrient resorption stoichiometry at multiple scales: controlling factors and ecosystem consequences (Invited)

    Science.gov (United States)

    Reed, S.; Cleveland, C. C.; Davidson, E. A.; Townsend, A. R.

    2013-12-01

    During leaf senescence, nutrient rich compounds are transported to other parts of the plant and this 'resorption' recycles nutrients for future growth, reducing losses of potentially limiting nutrients. Variations in leaf chemistry resulting from nutrient resorption also directly affect litter quality, in turn, regulating decomposition rates and soil nutrient availability. Here we investigated stoichiometric patterns of nitrogen (N) and phosphorus (P) resorption efficiency at multiple spatial scales. First, we assembled a global database to explore nutrient resorption among and within biomes and to examine potential relationships between resorption stoichiometry and ecosystem nutrient status. Next, we used a forest regeneration chronosequence in Brazil to assess how resorption stoichiometry linked with a suite of other nutrient cycling measures and with ideas of how nutrient limitation may change over secondary forest regrowth. Finally, we measured N:P resorption ratios of six canopy tree species in a Costa Rican tropical forest. We calculated species-specific resorption ratios and compared them with patterns in leaf litter and topsoil nutrient concentrations. At the global scale, N:P resorption ratios increased with latitude and decreased with mean annual temperature (MAT) and precipitation (MAP; P1 in latitudes >23°. Focusing on tropical sites in our global dataset we found that, despite fewer data and a restricted latitudinal range, a significant relationship between latitude and N:P resorption ratios persisted (PAmazon Basin chronosequence of regenerating forests, where previous work reported a transition from apparent N limitation in younger forests to P limitation in mature forests, we found N resorption was highest in the youngest forest, whereas P resorption was greatest in the mature forest. Over the course of succession, N resorption efficiency leveled off but P resorption continued to increase with forest age. In Costa Rica, though we found species

  4. Pelagic community production and carbon-nutrient stoichiometry under variable ocean acidification in an Arctic fjord

    Directory of Open Access Journals (Sweden)

    A. Silyakova

    2013-07-01

    clear that the pelagic ecosystem response to increasing CO2 is more complex than that represented in previous work, e.g. Bellerby et al. (2008. Carbon and nutrient uptake representation in models should, where possible, be more focused on individual plankton functional types as applying a single stoichiometry to a biogeochemical model with regard to the effect of increasing pCO2 may not always be optimal. The phase variability in NCP and stoichiometry may be better understood if CO2 sensitivities of the plankton's functional type biogeochemical uptake kinetics and trophic interactions are better constrained.

  5. High-frequency fire alters C : N : P stoichiometry in forest litter.

    Science.gov (United States)

    Toberman, Hannah; Chen, Chengrong; Lewis, Tom; Elser, James J

    2014-07-01

    Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every 2 years (2yrB), burning every 4 years (4 yrB) and no burning (NB). C : N ratios in freshly fallen litter were 29-42% higher and C : P ratios were 6-25% lower for 2 yrB than NB during decomposition, with correspondingly lower 2yrB N : P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N : P ratios were similar to the overall litter N : P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2 yrB than NB, whereas 4 yrB was generally intermediate between 2 yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2 yrB (72 ± 2% mass remaining at the end of experiment) than for 4 yrB (59 ± 3%) and NB (62 ± 3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2 yrB) decoupled N and P cycling, as manifested in litter C : N : P stoichiometry and in microbial biomass N : P ratio and enzymatic activities. Furthermore, these data indicate that fire induced a transient shift to N-limited ecosystem conditions

  6. Nitrogen Addition Changes the Stoichiometry and Growth Rate of Different Organs in Pinus tabuliformis Seedlings

    Directory of Open Access Journals (Sweden)

    Hang Jing

    2017-11-01

    Full Text Available Background: Nitrogen (N deposition could influence plant stoichiometry and growth rate and thus alter the structure and function of the ecosystem. However, the mechanism by which N deposition changes the stoichiometry and relative growth rate (RGR of plant organs, especially roots with different diameters, is unclear.Methods: We created a gradient of N availability (0–22.4 g N m-2 year-1 for Pinus tabuliformis seedlings for 3 years and examined changes in the carbon (C:N:phosphorus (P ratios and RGRs of the leaves, stems, and roots with four diameter classes (finest roots, <0.5 mm; finer roots, 0.5–1 mm; middle roots, 1–2 mm; and coarse roots, >2 mm.Results: (1 N addition significantly increased the C and N contents of the leaves and whole roots, the C content of the stems, the N:P ratios of the leaves and stems, and the C:P ratio of the whole roots. (2 In the root system, the C:N ratio of the finest roots and the C:P ratios of the finest and finer roots significantly changed with N addition. The N:P ratios of the finest, finer, and middle roots significantly increased with increasing amount of N added. The stoichiometric responses of the roots were more sensitive to N addition than those of the other organs (3 The RGR of all the organs significantly increased at low N addition levels (2.8–11.2 g N m-2 year-1 but decreased at high N addition levels (22.4 g N m-2 year-1. (4 The RGRs of the whole seedlings and leaves were not significantly correlated with their N:P ratios at low and high N addition levels. By contrast, the RGRs of the stems and roots showed a significantly positive correlation with their own N:P ratio only at low N addition level.Conclusion: Addition of N affected plant growth by altering the contents of C and N; the ratios of C, N, and P; and the RGRs of the organs. RGR is correlated with the N:P ratios of the stems and roots at low N addition level but not at high N addition level. This finding is inconsistent with the

  7. Stoichiometry and kinetics of single and mixed substrate uptake in Aspergillus niger.

    Science.gov (United States)

    Lameiras, Francisca; Ras, Cor; Ten Pierick, Angela; Heijnen, Joseph J; van Gulik, Walter M

    2018-02-01

    In its natural environment, the filamentous fungus Aspergillus niger grows on decaying fruits and plant material, thereby enzymatically degrading the lignocellulosic constituents (lignin, cellulose, hemicellulose, and pectin) into a mixture of mono- and oligosaccharides. To investigate the kinetics and stoichiometry of growth of this fungus on lignocellulosic sugars, we carried out batch cultivations on six representative monosaccharides (glucose, xylose, mannose, rhamnose, arabinose, and galacturonic acid) and a mixture of these. Growth on these substrates was characterized in terms of biomass yields, oxygen/biomass ratios, and specific conversion rates. Interestingly, in combination, some of the carbon sources were consumed simultaneously and some sequentially. With a previously developed protocol, a sequential chemostat cultivation experiment was performed on a feed mixture of the six substrates. We found that the uptake of glucose, xylose, and mannose could be described with a Michaelis-Menten-type kinetics; however, these carbon sources seem to be competing for the same transport systems, while the uptake of arabinose, galacturonic acid, and rhamnose appeared to be repressed by the presence of other substrates.

  8. Ecological stoichiometry of C, N and P on different time enclosed in desertification steppe soil

    Science.gov (United States)

    Yang, W. Z.; Jiao, Y.; Jia, Y. Q.

    2017-08-01

    It is the research object for the ecological stoichiometry of C, N and P on the different time of desertification grasslands enclosed and grazing grassland in Taibusi country of the Inner Mongolia, China. Through the measurement and analysis on ecological stoichiometric ratio of C, N and P in soil, the time of desertification grassland enclosed is determined. There are 13 soil of desertification grassland with different en-closure time, and 1 soil of grazing grassland. They are analyzed for the soil organic carbon, total nitro-gen, total phosphorus content and their density. The C/N of soil were increased with the extension of the time of desertification grassland enclosed. To 22 years enclosed, the C/N of grassland desertification soil enclosed is greater than the soil of grazing grassland that is 17. After the desertification grassland is en-closed, the C/N of soil is 13, and it is accumulated to maximum for C and N, and The grazing period is the best.

  9. Physical determinants of phytoplankton production, algal stoichiometry, and vertical nutrient fluxes.

    Science.gov (United States)

    Jäger, Christoph G; Diehl, Sebastian; Emans, Maximilian

    2010-04-01

    Most phytoplankters face opposing vertical gradients in light versus nutrient supplies but have limited capacities for vertical habitat choice. We therefore explored a dynamical model of negatively buoyant algae inhabiting a one-dimensional water column to ask how water column depth and turbulence constrain total (areal) phytoplankton biomass. We show that the population persistence boundaries in water column depth-turbulence space are set by sinking losses and light limitation but that nutrients are most limiting to total biomass in water columns that are neither too shallow or too weakly mixed (where sinking losses prevail) nor too deep and turbulent (where light limitation prevails). In shallow waters, the most strongly limiting process is nutrient influx to the bottom of the water column (e.g., from sediments). In deep waters, the most strongly limiting process is turbulent upward transport of nutrients to the photic zone. Consequently, the highest total biomasses are attained in turbulent waters at intermediate water column depths and in deep waters at intermediate turbulences. These patterns are insensitive to the assumption of fixed versus flexible algal carbon-to-nutrient stoichiometry, and they arise irrespective of whether the water column is a surface layer above a deep water compartment or has direct contact with sediments.

  10. Effects of stoichiometry on the transport properties of crystalline phase-change materials.

    Science.gov (United States)

    Zhang, Wei; Wuttig, Matthias; Mazzarello, Riccardo

    2015-09-03

    It has recently been shown that a metal-insulator transition due to disorder occurs in the crystalline state of the GeSb2Te4 phase-change compound. The transition is triggered by the ordering of the vacancies upon thermal annealing. In this work, we investigate the localization properties of the electronic states in selected crystalline (GeTe)x-(Sb2Te3)y compounds with varying GeTe content by large-scale density functional theory simulations. In our models, we also include excess vacancies, which are needed to account for the large carrier concentrations determined experimentally. We show that the models containing a high concentration of stoichiometric vacancies possess states at the Fermi energy localized inside vacancy clusters, as occurs for GeSb2Te4. On the other hand, the GeTe-rich models display metallic behavior, which stems from two facts: a) the tail of localized states shrinks due to the low probability of having sizable vacancy clusters, b) the excess vacancies shift the Fermi energy to the region of extended states. Hence, a stoichiometry-controlled metal-insulator transition occurs. In addition, we show that the localization properties obtained by scalar-relativistic calculations with gradient-corrected functionals are unaffected by the inclusion of spin-orbit coupling or the use of hybrid functionals.

  11. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    Science.gov (United States)

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Influence of PEG Stoichiometry on Structure-Tuned Formation of Self-Assembled Submicron Nickel Particles

    Directory of Open Access Journals (Sweden)

    Bingxue Pu

    2018-01-01

    Full Text Available Self-assembled submicron nickel particles were successfully synthesized via the one-step surfactant-assisted solvothermal method. The impact of surfactant and reducing agent stoichiometry is investigated in this manuscript. Different morphologies and structures of Ni particles, including flower-like nanoflakes, hydrangea-like structures, chain structures, sphere-like structures, and hollow structures were prepared through different processing conditions with two parameters such as temperature and time. Based on scanning electron microscopy (SEM, X-ray diffraction (XRD, thermal gravimetric analysis (TGA and vibrating sample magnetometry (VSM, the submicron nickel particles show good saturation magnetization and excellent thermal stabilities with a possible growth mechanism for the variety of the structure-tuned formation. Importantly, the microwave absorption properties of the submicron nickel particles were studied. The lowest reflection loss of Ni-P9/T200/H15 with a thin layer thickness of 1.7 mm can reach −42.6 dB at 17.3 GHz.

  13. The control of stoichiometry in Epitaxial semiconductor structures. Interfacial Chemistry: Property relations. A workshop review

    Science.gov (United States)

    Bachmann, Klaus J.

    1995-01-01

    A workshop on the control of stoichiometry in epitaxial semiconductor structures was held on August 21-26, 1995 in the hotel Stutenhaus at Vesser in Germany. The secluded location of the workshop in the forest of Thuringia and its informal style stimulated extensive private discussions among the participants and promoted new contacts between young scientists from Eastern and Western Europe and the USA. Topics addressed by the presentations were interactions of precursors to heteroepitaxy and doping with the substrate surface, the control of interfacial properties under the conditions of heteroepitaxy for selected materials systems, methods of characterization of interfaces and native point defects in semiconductor heterostructures and an in depth evaluation of the present status of the control and characterization of the point defect chemistry for one specific semiconductor (ZnGeP2), including studies of both heterostructures and bulk single crystals. The selected examples of presentations and comments given here represent individual choices - made by the author to highlight major points of the discussions.

  14. The influence of titanium adhesion layer oxygen stoichiometry on thermal boundary conductance at gold contacts

    Science.gov (United States)

    Olson, David H.; Freedy, Keren M.; McDonnell, Stephen J.; Hopkins, Patrick E.

    2018-04-01

    We experimentally demonstrate the role of oxygen stoichiometry on the thermal boundary conductance across Au/TiOx/substrate interfaces. By evaporating two different sets of Au/TiOx/substrate samples under both high vacuum and ultrahigh vacuum conditions, we vary the oxygen composition in the TiOx layer from 0 ≤ x ≤ 2.85. We measure the thermal boundary conductance across the Au/TiOx/substrate interfaces with time-domain thermoreflectance and characterize the interfacial chemistry with x-ray photoemission spectroscopy. Under high vacuum conditions, we speculate that the environment provides a sufficient flux of oxidizing species to the sample surface such that one essentially co-deposits Ti and these oxidizing species. We show that slower deposition rates correspond to a higher oxygen content in the TiOx layer, which results in a lower thermal boundary conductance across the Au/TiOx/substrate interfacial region. Under the ultrahigh vacuum evaporation conditions, pure metallic Ti is deposited on the substrate surface. In the case of quartz substrates, the metallic Ti reacts with the substrate and getters oxygen, leading to a TiOx layer. Our results suggest that Ti layers with relatively low oxygen compositions are best suited to maximize the thermal boundary conductance.

  15. Stoichiometry of mitochondrial H+ translocation coupled to succinate oxidation at level flow.

    Science.gov (United States)

    Costa, L E; Reynafarje, B; Lehninger, A L

    1984-04-25

    The mechanistic stoichiometry of vectorial H+ translocation coupled to succinate oxidation by rat liver mitochondria in the presence of a permeant cation has been determined under level flow conditions with a membraneless fast responding O2 electrode kinetically matched with a glass pH electrode. The reactions were initiated by rapid injection of O2 into the anaerobically preincubated test system under conditions in which interfering H+ backflow was minimized. The rates of O2 uptake and H+ ejection, obtained from computer-fitted regression lines, were monotonic and first order over 75% of the course of O2 consumption. Extrapolation of the observed rates to zero time, at which zero delta mu H+ and thus level flow prevails, yielded vectorial H+/O flow ratios above 7 and closely approaching 8. The mitochondria undergo no irreversible change and give identical H+/O ratios on repeated tests. In a further refinement, the lower and upper limits of the mechanistic H+/O ratio were determined to be 7.55 and 8.56, respectively, from plots of the rates of O2 uptake versus H+ ejection at increasing malonate and increasing valinomycin concentrations, respectively. It is therefore concluded that the mechanistic H+/O ratio for energy-conserving sites 2 + 3 is 8, in confirmation of earlier measurements. KCl concentration is critical for maximal observed H+/O ratios. Optimum conditions and possible errors in determination of mechanistic H+/O translocation ratios are discussed.

  16. Stoichiometry of H+ ejection during respiration-dependent accumulation of Ca2+ by rat liver mitochondria.

    Science.gov (United States)

    Brand, M D; Chen, C H; Lehninger, A L

    1976-02-25

    We have investigated the energy-dependent uptake of Ca2+ by rat liver mitochondria with succinate as respiratory substrate with rotenone added to block NAD-linked electron transport. In the presence of 3-hydroxybutyric or other permeant monocarboxylic acids Ca2+ was taken up to extents approaching those seen in the presence of phosphate. The quantitative relationship between cation and anion uptake was determined from the slope of a plot of 3-hydroxybutyrate uptake against Ca2+ uptake, a method which allowed determination of the stoichiometry without requiring ambiguous corrections for early nonenergized or nonstoichiometric binding events. This procedure showed that 2 molecules of 3-hydroxtbutyrate were accumulated with each Ca2+ ion. Under these conditions close to 2 Ca2+ ions and 4 molecules of 3-hydroxybutyrate were accumulated per pair of electrons per energy-conserving site of the respiratory chain. Since 3-hydroxybutyrate must be protonated to pass the membrane as the undissociated free acid, it is concluded that 4 protons were ejected (and subsequently reabsorbed) per pair of electrons per energy-conserving site, in contrast to the value 2.0 postulated by the chemiosmotic hypothesis.

  17. Heteroleptic metallosupramolecular racks, rectangles, and trigonal prisms: stoichiometry-controlled reversible interconversion.

    Science.gov (United States)

    Neogi, Subhadip; Lorenz, Yvonne; Engeser, Marianne; Samanta, Debabrata; Schmittel, Michael

    2013-06-17

    A simple approach toward preparation of heteroleptic two-dimensional (2D) rectangles and three-dimensional (3D) triangular prisms is described utilizing the HETPYP (HETeroleptic PYridyl and Phenanthroline metal complexes) concept. By mixing metal-loaded linear bisphenanthrolines of varying lengths with diverse (multi)pyridine (py) ligands in a proper ratio, six different self-assembled architectures arise cleanly and spontaneously in the absence of any template. They are characterized by (1)H and DOSY NMR, ESI-FT-ICR mass spectrometry as well as by Job plots and UV-vis titrations. Density functional theory (DFT) computations provide information about each structure. A stoichiometry-controlled supramolecule-to-supramolecule interconversion based on the relative amounts of metal bisphenanthroline and bipyridine forces the rectangular assembly to reorganize to a rack architecture and back to the rectangle, as clearly supported by variable temperature and DOSY NMR as well as dynamic light scattering data. The highly dynamic nature of the assemblies represents a promising starting point for constitutional dynamic materials.

  18. A model for variable phytoplankton stoichiometry based on cell protein regulation

    Directory of Open Access Journals (Sweden)

    J. A. Bonachela

    2013-06-01

    Full Text Available The elemental ratios of marine phytoplankton emerge from complex interactions between the biotic and abiotic components of the ocean, and reflect the plastic response of individuals to changes in their environment. The stoichiometry of phytoplankton is, thus, dynamic and dependent on the physiological state of the cell. We present a theoretical model for the dynamics of the carbon, nitrogen and phosphorus contents of a phytoplankton population. By representing the regulatory processes controlling nutrient uptake, and focusing on the relation between nutrient content and protein synthesis, our model qualitatively replicates existing experimental observations for nutrient content and ratios. The population described by our model takes up nutrients in proportions that match the input ratios for a broad range of growth conditions. In addition, there are two zones of single-nutrient limitation separated by a wide zone of co-limitation. Within the co-limitation zone, a single point can be identified where nutrients are supplied in an optimal ratio. When different species compete, the existence of a wide co-limitation zone implies a more complex pattern of coexistence and exclusion compared to previous model predictions. However, additional comprehensive laboratory experiments are needed to test our predictions. Our model contributes to the understanding of the global cycles of oceanic nitrogen and phosphorus, as well as the elemental ratios of these nutrients in phytoplankton populations.

  19. Quantity and quality limit detritivore growth: mechanisms revealed by ecological stoichiometry and co-limitation theory.

    Science.gov (United States)

    Halvorson, Halvor M; Sperfeld, Erik; Evans-White, Michelle A

    2017-12-01

    Resource quantity and quality are fundamental bottom-up constraints on consumers. Best understood in autotroph-based systems, co-occurrence of these constraints may be common but remains poorly studied in detrital-based systems. Here, we used a laboratory growth experiment to test limitation of the detritivorous caddisfly larvae Pycnopsyche lepida across a concurrent gradient of oak litter quantity (food supply) and quality (phosphorus : carbon [P:C ratios]). Growth increased simultaneously with quantity and quality, indicating co-limitation across the resource gradients. We merged approaches of ecological stoichiometry and co-limitation theory, showing how co-limitation reflected shifts in C and P acquisition throughout homeostatic regulation. Increased growth was best explained by elevated consumption rates and improved P assimilation, which both increased with elevated quantity and quality. Notably, C assimilation efficiencies remained unchanged and achieved maximum 18% at low quantity despite pronounced C limitation. Detrital C recalcitrance and substantive post-assimilatory C losses probably set a minimum quantity threshold to achieve positive C balance. Above this threshold, greater quality enhanced larval growth probably by improving P assimilation toward P-intensive growth. We suggest this interplay of C and P acquisition contributes to detritivore co-limitation, highlighting quantity and quality as potential simultaneous bottom-up controls in detrital-based ecosystems, including under anthropogenic change like nutrient enrichment. © 2017 by the Ecological Society of America.

  20. Stoichiometry of Na/Ca antiport obtained by magnesium inhibition in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Smith, J.B.; Higgins, B.L.; Smith, L.

    1987-01-01

    Cultured smooth muscle cells from rat aorta were loaded with Na, and Na/Ca antiport was assayed by measuring the initial rates of 45 Ca influx and 22 Na efflux. The replacement of extracellular Na with other monovalent ions, usually N-methyl-D-glucamine (NMG), was essential for obtaining significant antiport activity. Mg competitively inhibited 45 Ca influx via the antiporter (Ki = 100 uM). External Ca stimulated 22 Na efflux as expected for antiport activity. Mg did not stimulate 22 Na efflux indicating that Mg is not transported by the antiporter. Mg inhibited Ca-stimulated 22 Na efflux as expected from the 45 Ca influx data. The stoichiometry of the antiporter was calculated from the changes in the rates of 45 Ca influx and 22 Na efflux at 3 Mg concentrations: 2.87 +/- 0.25 (mean +/- SE, n=5). The replacement of external NMG with potassium, but not other monovalent ions (choline, Li), decreased the potency of Mg as an inhibitor of Na/Ca antiport by about 6 fold. Other divalent cations (Co, Mn, Cd, Ba) inhibited Na/Ca antiport and high external potassium decreased the potency of each by about 6 fold. The order of effectiveness of the divalent cations as inhibitors of Na/Ca antiport (Cd>Mn>Co>Ba>Mg) correlated with the crystal ionic radius of the cation

  1. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, A. [ORNL, Materials Science and Technology Division, Bethel Valley Road, Oak Ridge, Tennessee 37831-6056 (United States); Martin Luther University Halle-Wittenberg, Institute for Physics, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Dörr, K. [Martin Luther University Halle-Wittenberg, Institute for Physics, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Ward, T. Z.; Eres, G. [ORNL, Materials Science and Technology Division, Bethel Valley Road, Oak Ridge, Tennessee 37831-6056 (United States); Christen, H. M.; Biegalski, M. D. [ORNL, Center for Nanophase Materials Sciences, Bethel Valley Road, Oak Ridge, Tennessee 37831-6496 (United States)

    2015-03-30

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  2. Fluorescence correlation spectroscopy to study antibody binding and stoichiometry of complexes

    Science.gov (United States)

    Swift, Kerry M.; Matayoshi, Edmund D.

    2008-02-01

    FCS (fluorescence correlation spectroscopy) was used to study the association at the single molecule level of tumor necrosis factor alpha (TNF-α) and two of its protein antagonists Humira (TM) (adalimumab), a fully humanized monoclonal antibody, and Enbrel (TM) (etanercept), a soluble form of the TNF receptor. Single molecule approaches potentially have the advantage not only of enhanced sensitivity, but also of observing at equilibrium the details that would otherwise be lost in classical ensemble experiments where heterogeneity is averaged. We prepared fluorescent conjugates of the protein drugs and their biological target, the trimeric soluble form of TNF-α. The bivalency of adalimumab and the trimeric nature of TNF-α potentially allow several forms of associative complexes that may differ in stoichiometry. Detailed knowledge of this reaction may be relevant to understanding adalimumab's pharmacological properties. Our FCS data showed that a single trimeric TNF-α can bind up to three adalimumab molecules. Under some conditions even larger complexes are formed, apparently the result of cross-linking of TNF-α trimers by adalimumab. In addition, distinct differences between Humira and Enbrel were observed in their association with TNF-α.

  3. Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium.

    Science.gov (United States)

    Trautwein, Kathleen; Feenders, Christoph; Hulsch, Reiner; Ruppersberg, Hanna S; Strijkstra, Annemieke; Kant, Mirjam; Vagts, Jannes; Wünsch, Daniel; Michalke, Bernhard; Maczka, Michael; Schulz, Stefan; Hillebrand, Helmut; Blasius, Bernd; Rabus, Ralf

    2017-05-01

    The stoichiometric constraints of algal growth are well understood, whereas there is less knowledge for heterotrophic bacterioplankton. Growth of the marine bacterium Phaeobacter inhibens DSM 17395, belonging to the globally distributed Roseobacter group, was studied across a wide concentration range of NH4+ and PO43-. The unique dataset covers 415 different concentration pairs, corresponding to 207 different molar N:P ratios (from 10-2 to 105). Maximal growth (by growth rate and biomass yield) was observed within a restricted concentration range at N:P ratios (∼50-120) markedly above Redfield. Experimentally determined growth parameters deviated to a large part from model predictions based on Liebig's law of the minimum, thus implicating synergistic co-limitation due to biochemical dependence of resources. Internal elemental ratios of P. inhibens varied with external nutrient supply within physiological constraints, thus adding to the growing evidence that aquatic bacteria can be flexible in their internal elemental composition. Taken together, the findings reported here revealed that P. inhibens is well adapted to fluctuating availability of inorganic N and P, expected to occur in its natural habitat (e.g. colonized algae, coastal areas). Moreover, this study suggests that elemental variability in bacterioplankton needs to be considered in the ecological stoichiometry of the oceans. © FEMS 2017.

  4. Acid-sensing ion channel (ASIC) 1a/2a heteromers have a flexible 2:1/1:2 stoichiometry.

    Science.gov (United States)

    Bartoi, Tudor; Augustinowski, Katrin; Polleichtner, Georg; Gründer, Stefan; Ulbrich, Maximilian H

    2014-06-03

    Acid-sensing ion channels (ASICs) are widely expressed proton-gated Na(+) channels playing a role in tissue acidosis and pain. A trimeric composition of ASICs has been suggested by crystallization. Upon coexpression of ASIC1a and ASIC2a in Xenopus oocytes, we observed the formation of heteromers and their coexistence with homomers by electrophysiology, but could not determine whether heteromeric complexes have a fixed subunit stoichiometry or whether certain stoichiometries are preferred over others. We therefore imaged ASICs labeled with green and red fluorescent proteins on a single-molecule level, counted bleaching steps from GFP and colocalized them with red tandem tetrameric mCherry for many individual complexes. Combinatorial analysis suggests a model of random mixing of ASIC1a and ASIC2a subunits to yield both 2:1 and 1:2 ASIC1a:ASIC2a heteromers together with ASIC1a and ASIC2a homomers.

  5. 3D Microstructural Characterization of Uranium Oxide as a Surrogate Nuclear Fuel: Effect of Oxygen Stoichiometry on Grain Boundary Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Rudman, K. [Arizona State Univ., Tempe, AZ (United States); Dickerson, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peralta, P. [Arizona State Univ., Tempe, AZ (United States); Lim, H. [Arizona State Univ., Tempe, AZ (United States); McDonald, R. [Arizona State Univ., Tempe, AZ (United States); Dickerson, R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-06

    The initial microstructure of an oxide fuel can play a key role in its performance. At low burn-ups, the diffusion of fission products can depend strongly on grain size and grain boundary (GB) characteristics, which in turn depend on processing conditions and oxygen stoichiometry. Serial sectioning techniques using Focused Ion Beam were developed to obtain Electron Backscatter Diffraction (EBSD) data for depleted UO2 pellets that were processed to obtain 3 different oxygen stoichiometries. The EBSD data were used to create 3D microstructure reconstructions and to gather statistical information on the grain and GB crystallography, with emphasis on identifying the character (twist, tilt, mixed) for GBs that meet the Coincident Site Lattice (CSL) criterion as well as GBs with the most common misorientation angles. Data on dihedral angles at triple points were also collected. The results were compared across different samples to understand effects of oxygen content on microstructure evolution.

  6. Characterization, stoichiometry, and stability of salivary protein-tannin complexes by ESI-MS and ESI-MS/MS.

    Science.gov (United States)

    Canon, Francis; Paté, Franck; Meudec, Emmanuelle; Marlin, Thérèse; Cheynier, Véronique; Giuliani, Alexandre; Sarni-Manchado, Pascale

    2009-12-01

    Numerous protein-polyphenol interactions occur in biological and food domains particularly involving proline-rich proteins, which are representative of the intrinsically unstructured protein group (IUP). Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), which also gives access to ligand binding stoichiometry. Surprisingly, the study of interactions between polyphenolic molecules and proteins is still an area where ESI-MS has poorly benefited, whereas it has been extensively applied to the detection of noncovalent complexes. Electrospray ionization mass spectrometry has been applied to the detection and the characterization of the complexes formed between tannins and a human salivary proline-rich protein (PRP), namely IB5. The study of the complex stability was achieved by low-energy collision-induced dissociation (CID) measurements, which are commonly implemented using triple quadrupole, hybrid quadrupole time-of-flight, or ion trap instruments. Complexes composed of IB5 bound to a model polyphenol EgCG have been detected by ESI-MS and further analyzed by MS/MS. Mild ESI interface conditions allowed us to observe intact noncovalent PRP-tannin complexes with stoichiometries ranging from 1:1 to 1:5. Thus, ESI-MS shows its efficiency for (1) the study of PRP-tannin interactions, (2) the determination of stoichiometry, and (3) the study of complex stability. We were able to establish unambiguously both their stoichiometries and their overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Our results prove that IB5.EgCG complexes are maintained intact in the gas phase.

  7. Stoichiometry and Life-History Interact to Determine the Magnitude of Cross-Ecosystem Element and Biomass Fluxes

    Directory of Open Access Journals (Sweden)

    Thomas M. Luhring

    2017-05-01

    Full Text Available Ecosystems are linked through the transfer of materials and energy. Studies examining material fluxes across habitat boundaries frequently quantify unidirectional flows of nutrients and energy. However, material fluxes can be multidirectional, and we lack a conceptual framework to describe how their quantity and stoichiometry influence the net transfer of individual elements between ecosystems. Here we develop a zero net transfer isocline (ZNTI framework that integrates the relative mass and stoichiometry of fluxes into and out of an ecosystem. We then use case studies with amphibians and salmon to elucidate how life history, ontogenetic shifts in stoichiometry, and trophic interactions shape relative fluxes of nutrients between aquatic and terrestrial ecosystems. Because they increase in both size and Ca content from ova to metamorphs, amphibian life histories strongly bias them toward net Ca export into the terrestrial environment. Because amphibian biomass, C, P, and Ca ZNTIs do not overlap, there is no value of survivorship where the net flux of biomass, C, P, and Ca are simultaneously balanced between terrestrial and aquatic habitats. The degree of iteroparity and semelparity in salmon strongly affects both the magnitude of net biomass and P flux between riverine and marine environments. While the net direction of biomass flux generally remains strongly biased toward import into the riverine system, net P flux can reach net export into the marine environment because of increasing adult breeding survival leading to reduced mass and %P of what they deposit in rivers (e.g., ova vs. whole carcasses. These examples highlight how ontogenetic shifts in body size and stoichiometry result in asymmetric fluxes of elements and biomass that can lead to simultaneous net imports and exports of different elements within the same system. Furthermore, they demonstrate how changes in life-history characteristics and stage-specific survivorship can lead to

  8. Effects of oxygen stoichiometry on the scaling behaviors of YBa2Cu3Ox grain boundary weak-links

    International Nuclear Information System (INIS)

    Wu, K.H.; Fu, C.M.; Jeng, W.J.

    1994-01-01

    The effects of oxygen stoichiometry on the transport properties of the pulsed laser deposited YBa 2 Cu 3 O x bicrystalline grain boundary weak-link junctions were studied. It is found that not only the cross boundary resistive transition foot structure can be manipulated repeatedly with oxygen annealling processes but the junction behaviors are also altered in accordance. In the fully oxygenated state i.e. with x=7.0 in YBa 2 Cu 3 O x stoichiometry, the junction critical current exhibits a power of 2 scaling behavior with temperature. In contrast, when annealed in the conditions of oxygen-deficient state (e.g. with x=6.9 in YBa 2 Cu 3 O x stoichiometry) the junction critical current switches to a linear temperature dependence behavior. The results are tentatively attributed to the modification of the structure in the boundary area upon oxygen annealing, which, in turn, will affect the effective dimension of the geometrically constrained weak-link bridges. The detailed discussion on the responsible physical mechanisms as well as the implications of the present results on device applications will be given

  9. Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    Jirousek, Martin, E-mail: machozrut@mail.muni.c [Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Hajek, Michal [Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Bragazza, Luca [WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Station 2, Case Postale 96, CH-1015 Lausanne (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory of Ecological Systems - ECOS, Batiment GR, Station 2, CH-1015 Lausanne (Switzerland); Department of Biology and Evolution, University of Ferrara, Corso Ercole I d' Este 32, I-44100 Ferrara (Italy)

    2011-02-15

    We investigated the variation of N:P and N:K ratio in ombrotrophic Sphagnum plants along a gradient of atmospheric N deposition from 1 to 2.5 g m{sup -2} year{sup -1} in Central-East Europe. The N:P and N:K ratio in Sphagnum capitula increased significantly along the N deposition gradient. Sphagnum species from the Cuspidata section were characterised by significantly lower ratios at low N deposition. When we compared the observed N:P ratios in Sphagnum plants with the values reported in a previous European-wide study, we found a correspondence in nutrient stoichiometry only for a few bogs: higher P concentration in Sphagnum capitula caused a lower N:P ratio in most of the study bogs so that Sphagnum plants still seem N-limited despite their N saturation. Interaction between summer water table decrease and aerial liming of surrounding forests is proposed as an explanation for this discrepancy. Local forestry practice interacting with climate thus alter N:P stoichiometry of Sphagnum along the N deposition gradient. - Research highlights: Despite high atmopsheric nitrogen deposition, Sphagnum mosses still have rather low N:P ratio. Regional climate and landscape management can enhance P and K availability in bogs. Sphagnum species of the Cuspidata section were characterised by lower N:P ratio. - Regional climate and local forestry practices are expected to alter nutrient stoichiometry in Sphagnum mosses at high atmospheric N deposition in Central-East Europe.

  10. Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe

    International Nuclear Information System (INIS)

    Jirousek, Martin; Hajek, Michal; Bragazza, Luca

    2011-01-01

    We investigated the variation of N:P and N:K ratio in ombrotrophic Sphagnum plants along a gradient of atmospheric N deposition from 1 to 2.5 g m -2 year -1 in Central-East Europe. The N:P and N:K ratio in Sphagnum capitula increased significantly along the N deposition gradient. Sphagnum species from the Cuspidata section were characterised by significantly lower ratios at low N deposition. When we compared the observed N:P ratios in Sphagnum plants with the values reported in a previous European-wide study, we found a correspondence in nutrient stoichiometry only for a few bogs: higher P concentration in Sphagnum capitula caused a lower N:P ratio in most of the study bogs so that Sphagnum plants still seem N-limited despite their N saturation. Interaction between summer water table decrease and aerial liming of surrounding forests is proposed as an explanation for this discrepancy. Local forestry practice interacting with climate thus alter N:P stoichiometry of Sphagnum along the N deposition gradient. - Research highlights: → Despite high atmopsheric nitrogen deposition, Sphagnum mosses still have rather low N:P ratio.→ Regional climate and landscape management can enhance P and K availability in bogs. → Sphagnum species of the Cuspidata section were characterised by lower N:P ratio. - Regional climate and local forestry practices are expected to alter nutrient stoichiometry in Sphagnum mosses at high atmospheric N deposition in Central-East Europe.

  11. Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy

    Science.gov (United States)

    Torchynska, T.; Khomenkova, L.; Slaoui, A.

    2018-04-01

    Si-rich SiN x films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiN x films. Spectroscopic ellipsometry was used to determine the refractive index of the SiN x films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiN x films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1-3.0 eV are related to the carrier recombination via radiative native defects in the SiN x host. Simultaneously, the PL bands with the peaks at 1.5-2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiN x emission is discussed.

  12. Measuring Conceptual Change on Stoichiometry Using Mental Models and IllStructured Problems In a Flipped Classroom Environment

    Directory of Open Access Journals (Sweden)

    Norrie E. Gayeta

    2017-05-01

    Full Text Available This study aimed to measure conceptual change on stoichiometry using mental models and ill-structured problems in flipped classroom environment. This study examined the level of conceptual understanding of students on stoichiometry before and after exposure to flipped and traditional lecture method. It also covered the type of conceptual change, and students’ description in flipped classroom environment. Qualitative and quantitative research methods were used in the study. Respondents were two sections of third year Bachelor of Secondary Education, Biological Science. Frequency, percentage, ranking, mean, standard deviation, Hake factor test, and t-test were the statistical tools applied to answer specific questions. Results showed profound increase towards conceptual change representing a shift from intuitive understanding to correct incomplete understanding level. Thus, change for the better, in theoretical type was determined from pretest to posttest of students exposed to flipped and traditional instruction. Results also indicated that there is no significant difference on students’ conceptual change on stoichiometry exposed to flipped and traditional lecture method. Furthermore, students strongly agreed that flipped classroom instruction helped them develop positive attitude towards chemistry and appropriate for learning college chemistry.

  13. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mandy Velthuis

    2017-05-01

    Full Text Available Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus. In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition

  14. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates.

    Science.gov (United States)

    Niklas, Karl J

    2006-02-01

    Life forms as diverse as unicellular algae, zooplankton, vascular plants, and mammals appear to obey quarter-power scaling rules. Among the most famous of these rules is Kleiber's (i.e. basal metabolic rates scale as the three-quarters power of body mass), which has a botanical analogue (i.e. annual plant growth rates scale as the three-quarters power of total body mass). Numerous theories have tried to explain why these rules exist, but each has been heavily criticized either on conceptual or empirical grounds. N,P-STOICHIOMETRY: Recent models predicting growth rates on the basis of how total cell, tissue, or organism nitrogen and phosphorus are allocated, respectively, to protein and rRNA contents may provide the answer, particularly in light of the observation that annual plant growth rates scale linearly with respect to standing leaf mass and that total leaf mass scales isometrically with respect to nitrogen but as the three-quarters power of leaf phosphorus. For example, when these relationships are juxtaposed with other allometric trends, a simple N,P-stoichiometric model successfully predicts the relative growth rates of 131 diverse C3 and C4 species. The melding of allometric and N,P-stoichiometric theoretical insights provides a robust modelling approach that conceptually links the subcellular 'machinery' of protein/ribosomal metabolism to observed growth rates of uni- and multicellular organisms. Because the operation of this 'machinery' is basic to the biology of all life forms, its allometry may provide a mechanistic explanation for the apparent ubiquity of quarter-power scaling rules.

  15. Ribosomal binding region for the antibiotic tiamulin: stoichiometry, subunit location, and affinity for various analogs.

    Science.gov (United States)

    Högenauer, G; Ruf, C

    1981-01-01

    Equilibrium dialysis experiments with a highly purified preparation of labeled tiamulin, a semisynthetic derivative of the antibiotic pleuromutilin, and Escherichia coli ribosomes allowed the determination of two binding sites for the drug. The binding reaction showed a cooperative effect. Of the two subunits, the 50S particle was able to bind the antibiotic in a 1:1 stoichiometry. Hence, the 50S subunit contributed predominantly to the binding energy which held the antibiotic to the ribosomes. The 30S subunit, showing no strong affinity for the drug, may be needed for the generation of the second binding site in the 70S particle. If depleted of ammonium ions, 70S ribosomes lost their binding capacity for the antibiotic. The attachment sites for tiamulin could be restored by heating the ribosomes to 40 degrees C in the presence of either ammonium ions or the antibiotic. Other pleuromutilin derivatives displaced labeled tiamulin from its ribosomal binding sites. By quantifying this competition, the relative affinity of various pleuromutilin derivatives for E. coli ribosomes was determined. The binding correlated with the minimal inhibitory concentrations of these compounds against E. coli. When compared with the minimal inhibitory concentrations of these compounds against E. coli. When compared with the minimal inhibitory concentrations against E. coli. When compared with the minimal inhibitory concentrations against Staphylococcus aureus, the correlation was less strict, but the same trend prevailed. These results suggest that the antibacterial activities of various pleuromutilin derivatives on a given test organism are mainly determined by the strength of binding to the ribosomes within the bacterial cell. PMID:6751216

  16. Nutrient Partitioning and Stoichiometry in Unburnt Sugarcane Ratoon at Varying Yield Levels

    Directory of Open Access Journals (Sweden)

    José Marcos Leite

    2016-04-01

    Full Text Available Unraveling nutrient imbalances in contemporary agriculture is a research priority to improve whenever possible yield and nutrient use efficiency in sugarcane (Saccharum spp. systems while minimizing the costs of cultivation (e.g., use of fertilizers and environmental concerns. The main goal of this study was therefore to investigate biomass and nutrient [nitrogen (N, phosphorus (P, and potassium (K] content, partitioning, stoichiometry and internal efficiencies in sugarcane ratoon at varying yield levels. Three sites were established on highly weathered tropical soils located in the Southeast region of Brazil. At all sites, seasonal biomass and nutrient uptake patterns were synthesized from four sampling times taken throughout the sugarcane ratoon season. At all sites, in-season nutrient partitioning (in diverse plant components, internal efficiencies (yield to nutrient content ratio and nutrient ratios (N:P and N:K were determined at harvesting. Sugarcane exhibited three distinct phases of plant growth, as follows: lag, exponential-linear, and stationary. Across sites, nutrient requirement per unit of yield was 1.4 kg N, 0.24 kg P, and 2.7 kg K per Mg of stalk produced, but nutrient removal varied with soil nutrient status (based on soil plus fertilizer nutrient supply and crop demand (potential yield. Dry leaves had lower nutrient content (N, P, and K and broader N:P and N:K ratios when compared with tops and stalks plant fractions. Greater sugarcane yield and narrowed N:P ratio (6:1 were verified for tops of sugarcane when increasing both N and P content. High-yielding sugarcane systems were related to higher nutrient content and more balanced N:P (6:1 and N:K (0.5:1 ratios.

  17. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  18. Nutrient Stoichiometry Shapes Microbial Community Structure in an Evaporitic Shallow Pond

    Directory of Open Access Journals (Sweden)

    Zarraz M.-P. Lee

    2017-05-01

    Full Text Available Nutrient availability and ratios can play an important role in shaping microbial communities of freshwater ecosystems. The Cuatro Ciénegas Basin (CCB in Mexico is a desert oasis where, perhaps paradoxically, high microbial diversity coincides with extreme oligotrophy. To better understand the effects of nutrients on microbial communities in CCB, a mesocosm experiment was implemented in a stoichiometrically imbalanced pond, Lagunita, which has an average TN:TP ratio of 122 (atomic. The experiment had four treatments, each with five spatial replicates – unamended controls and three fertilization treatments with different nitrogen:phosphorus (N:P regimes (P only, N:P = 16 and N:P = 75 by atoms. In the water column, quantitative PCR of the 16S rRNA gene indicated that P enrichment alone favored proliferation of bacterial taxa with high rRNA gene copy number, consistent with a previously hypothesized but untested connection between rRNA gene copy number and P requirement. Bacterial and microbial eukaryotic community structure was investigated by pyrosequencing of 16S and 18S rRNA genes from the planktonic and surficial sediment samples. Nutrient enrichment shifted the composition of the planktonic community in a treatment-specific manner and promoted the growth of previously rare bacterial taxa at the expense of the more abundant, potentially endemic, taxa. The eukaryotic community was highly enriched with phototrophic populations in the fertilized treatment. The sediment microbial community exhibited high beta diversity among replicates within treatments, which obscured any changes due to fertilization. Overall, these results showed that nutrient stoichiometry can be an important factor in shaping microbial community structure.

  19. Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT

    International Nuclear Information System (INIS)

    Zhao, Huaying; Schuck, Peter

    2015-01-01

    Global multi-method analysis for protein interactions (GMMA) can increase the precision and complexity of binding studies for the determination of the stoichiometry, affinity and cooperativity of multi-site interactions. The principles and recent developments of biophysical solution methods implemented for GMMA in the software SEDPHAT are reviewed, their complementarity in GMMA is described and a new GMMA simulation tool set in SEDPHAT is presented. Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysical techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design

  20. Reversal of sodium pump inhibitor induced vascular smooth muscle contraction with digibind. Stoichiometry and its implications.

    Science.gov (United States)

    Krep, H H; Graves, S W; Price, D A; Lazarus, M; Ensign, A; Soszynski, P A; Hollenberg, N K

    1996-01-01

    The possibility that a circulating sodium pump inhibitor contributes to the pathogenesis of volume-dependent hypertension via an action on vascular smooth muscle (VSM) is supported by multiple lines of investigation, but remains controversial. We had two goals in this study. The first was to compare the pattern of contractile response of rabbit aorta induced by two candidates, ouabain and a labile sodium pump inhibitor that we have identified in the peritoneal dialysate of volume-expanded hypertensive patients with chronic renal failure. Our second goal was to examine the ability of Digibind, a Fab fragment of antisera directed against digoxin, to reverse VSM contraction induced by both agents. Ouabain induced a concentration-dependent contraction, which was delayed in onset, was gradual, and reached a stable plateau after many hours. The labile sodium pump inhibitor induced a qualitatively similar series of responses. Digibind rapidly reversed the contractile responses to both sodium pump inhibitors, with a rate of relaxation that matched that induced by physical removal of the pump inhibitor from the bath. For ouabain, the Digibind:ouabain stoichiometry was highly predictable. When Digibind was present in a molar concentration equivalent to that of ouabain, or less, it had no effect. When the Digibind concentration was twice that of ouabain, complete relaxation occurred. Although the concentration:VSM response relationship for ouabain was steep, the concentration:effect interaction with Digibind was even more steep. The molar concentration of Digibind required to reverse the effects of the labile endogenous inhibitor from peritoneal dialysate was consistently lower than that for ouabain, which is compatible with either greater potency of the labile factor in VSM or greater affinity for Digibind. These findings are compatible with a role for one or more endogenous sodium pump inhibitors as the determinant of vascular smooth muscle tone in the volume

  1. H+ stoichiometry of sites 1 + 2 of the respiratory chain of normal and tumor mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Villalobo, A.; Alexandre, A.; Lehninger, A.L.

    1984-09-01

    The mechanistic stoichiometry for vectorial H+ ejection coupled to electron transport through energy-conserving segments 1 + 2 was determined on cyanide-inhibited mitochondria from rat liver, rat heart, and Ehrlich ascites tumor cells, and on rat liver mitoplasts with ferricyanide or ferricytochrome c as electron acceptors. K+ (+ valinomycin) and Ca2+ were employed as permeant cations. Three different methods were employed. In the first, known pulses of ferricyanide were added, and the total H+ ejected was determined with a glass electrode. Such measurements gave H+/2e-values exceeding 7.0 for both normal and tumor mitochondria with beta-hydroxybutyrate and other NAD-linked substrates; uptake of Ca2+ was also measured and gave the expected q+/2e-ratios. The second type of measurement was initiated by addition of ferricytochrome c to rat liver mitoplasts, with H+ ejection monitored with the glass electrode and ferricytochrome c reduction by dual-wavelength spectrophotometry; the H+/2e-ratios generally exceeded 7.0. In the third type of measurement, mixing and dilution artifacts were eliminated by oxidizing ferrocytochrome c in situ with a small amount of ferricyanide. H+/2e-ratios for rat liver mitoplasts oxidizing beta-hydroxybutyrate consistently approached or exceeded 7.5. Over 150 measurements made under a variety of conditions gave observed H+/2e-ejection ratios significantly exceeding 7.0, which correlated closely with H+/2e-measurements on sites 1 + 2 + 3, sites 2 + 3, and site 2. Factors leading to the deficit of the observed ratios from the integral value 8 for sites 1 + 2 were discussed.

  2. Upper and lower limits of the proton stoichiometry of cytochrome c oxidation in rat liver mitoplasts.

    Science.gov (United States)

    Reynafarje, B; Costa, L E; Lehninger, A L

    1986-06-25

    The stoichiometry of vectorial H+ translocation coupled to oxidation of added ferrocytochrome c by O2 via cytochrome-c oxidase of rat liver mitoplasts was determined employing a fast-responding O2 electrode. Electron flow was initiated by addition of either ferrocytochrome c or O2. When the rates were extrapolated to level flow, the H+/O ratios in both cases were less than but closely approached 4; the directly observed H+/O ratios significantly exceeded 3.0. The mechanistic H+/O ratio was then more closely fixed by a kinetic approach that eliminates the necessity for measuring energy leaks and is independent of any particular model of the mechanism of energy transduction. From two sets of kinetic measurements, an overestimate and an underestimate and thus the upper and lower limits of the mechanistic H+/O ratio could be obtained. In the first set, the utilization of respiratory energy was systematically varied through changes in the concentrations of valinomycin or K+. From the slope of a plot of the initial rates of H+ ejection (JH) and O2 uptake (JO) obtained in such experiments, the upper limit of the H+/O ratio was in the range 4.12-4.19. In the second set of measurements, the rate of respiratory energy production was varied by inhibiting electron transport. From the slope of a plot of JH versus JO, the lower limit of the H+/O ratio, equivalent to that at level flow, was in the range 3.83-3.96. These data fix the mechanistic H+/O ratio for the cytochrome oxidase reaction of mitoplasts at 4.0, thus confirming our earlier measurements (Reynafarje, B., Alexandre, A., Davies, P., and Lehninger, A. L. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 7218-7222). Possible reasons for discrepancies in published reports on the H+/O ratio of cytochrome oxidase in various mitochondrial and reconstituted systems are discussed.

  3. Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics.

    Science.gov (United States)

    Flynn, Kevin J; Skibinski, David O F; Lindemann, Christian

    2018-04-01

    Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment.

  4. Molecular Dynamics study of the effects of non-stoichiometry and oxygen Frenkel pairs on the thermal conductivity of uranium dioxide

    International Nuclear Information System (INIS)

    Nichenko, Sergii; Staicu, Dragos

    2013-01-01

    In the present work, calculations of the thermal conductivity of UO 2 were carried out applying classical Molecular Dynamics for the isothermal-isobaric (NPT) statistical ensemble, using the Green–Kubo approach. The thermal conductivity calculated for perfect stoichiometric UO 2 is in good agreement with the literature data over the temperature range corresponding to heat transfer by phonons (up to 1700 K). The effect of non-stoichiometry on the thermal conductivity was calculated taking into account the presence of polarons. It was found that for the same value of the stoichiometry deviation, the effect of oxygen vacancies (hypo-stoichiometry) is more pronounced than the effect of oxygen interstitials (hyper-stoichiometry). Then the influence of the oxygen Frenkel pairs on the thermal conductivity was calculated. The simultaneous impact of non-stoichiometry and OFP on the thermal conductivity was investigated and it was shown that the two effects can be combined using the interpretation obtained with the classical phonons scattering theory. Finally, simplified correlations were deduced for the calculation of the thermal conductivity of UO 2 taking into account the effect of non-stoichiometry and of Frenkel pairs, these two effects being present during irradiation

  5. Integrated survey of elemental stoichiometry (C, N, P from the western to eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    M. Pujo-Pay

    2011-04-01

    Full Text Available This paper provides an extensive vertical and longitudinal description of the biogeochemistry along an East-West transect of 3000 km across the Mediterranean Sea during summer 2008 (BOUM cruise. During this period of strong stratification, the distribution of nutrients, particulate and dissolved organic carbon (DOC, nitrogen (DON and phosphorus (DOP were examined to produce a detailed spatial and vertically extended description of the elemental stoichiometry of the Mediterranean Sea. Surface waters were depleted in nutrients and the thickness of this depleted layer increased towards the East from about 10 m in the Gulf of Lion to more than 100 m in the Levantine basin, with the phosphacline deepening to a greater extent than that for corresponding nitracline and thermocline depths. We used the minimum oxygen concentration through the water column in combination with 2 fixed concentrations of dissolved oxygen to distinguish an intermediate layer (Mineralization Layer; ML from surface (Biogenic Layer; BL, and deep layers (DL. Whilst each layer was represented by different water masses, this approach allowed us to propose a schematic box-plot representation of the biogeochemical functioning of the two Mediterranean basins. Despite the increasing oligotrophic nature and the degree of P-depletion along the West to East gradient strong similarities were encountered between eastern and western ecosystems. Within the BL, the C:N:P ratios in all pools largely exceeded the Redfield ratios, but surprisingly, the nitrate vs. phosphate ratios in the ML and DL tended towards the canonical Redfield values in both basins. A change in particulate matter composition has been identified by a C increase relative to N and P along the whole water column in the western basin and between BL and ML in the eastern one. Our data showed a noticeable stability of the DOC:DON ratio (12–13 throughout the Mediterranean Sea. This is in good agreement with a P-limitation of

  6. Cellular Stoichiometry of Methyl-Accepting Chemotaxis Proteins in Sinorhizobium meliloti.

    Science.gov (United States)

    Zatakia, Hardik M; Arapov, Timofey D; Meier, Veronika M; Scharf, Birgit E

    2018-03-15

    The chemosensory system in Sinorhizobium meliloti has several important deviations from the widely studied enterobacterial paradigm. To better understand the differences between the two systems and how they are optimally tuned, we determined the cellular stoichiometry of the methyl-accepting chemotaxis proteins (MCPs) and the histidine kinase CheA in S. meliloti Quantitative immunoblotting was used to determine the total amount of MCPs and CheA per cell in S. meliloti The MCPs are present in the cell in high abundance (McpV), low abundance (IcpA, McpU, McpX, and McpW), and very low abundance (McpY and McpZ), whereas McpT was below the detection limit. The approximate cellular ratio of these three receptor groups is 300:30:1. The chemoreceptor-to-CheA ratio is 23.5:1, highly similar to that seen in Bacillus subtilis (23:1) and about 10 times higher than that in Escherichia coli (3.4:1). Different from E. coli , the high-abundance receptors in S. meliloti are lacking the carboxy-terminal NWETF pentapeptide that binds the CheR methyltransferase and CheB methylesterase. Using transcriptional lacZ fusions, we showed that chemoreceptors are positively controlled by the master regulators of motility, VisNR and Rem. In addition, FlbT, a class IIA transcriptional regulator of flagellins, also positively regulates the expression of most chemoreceptors except for McpT and McpY, identifying chemoreceptors as class III genes. Taken together, these results demonstrate that the chemosensory complex and the adaptation system in S. meliloti deviates significantly from the established enterobacterial paradigm but shares some similarities with B. subtilis IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti is of great agricultural importance because of its nitrogen-fixing properties, which enhances growth of its plant symbiont, alfalfa. Chemotaxis provides a competitive advantage for bacteria to sense their environment and interact with their eukaryotic hosts. For a better

  7. Effects of stoichiometry and neutron irradiation in superconducting A-15 compounds

    International Nuclear Information System (INIS)

    Moehlecke, S.

    1978-01-01

    The A-15 (A 3 B) compounds comprise an important class of superconducting compounds. In order to gain a clearer understanding of the parameters influencing the superconductivity in these materials, several A-15 compounds have been prepared and the effects of varying stoichiometry, heat treatment, and irradiation with high energy neutrons (E > 1 MeV) on the superconducting transition temperature T/sub c/, Bragg--William order parameter S, and the lattice parameter a 0 , have been studied. The systems investigated include Nb 3 Ge, Nb 3 Al, Nb 3 Pt, Nb 3 Ir, V 3 Ga, V 3 Si and Mo 3 Os. Some of the results may be summarized as follows: 1) for Nb 3 Al, Nb 3 Pt and V 3 Ga, T/sub c/ is a strong function of composition, reaching a maximum value at the ideal stoichiometric composition of 3A: 1B, if that composition exists in the equilibrium phase diagram, 2) irradiation with high energy neutrons at temperatures of approx.150 0 C results in drastic lowering of T/sub c/ for Nb 3 Al, Nb 3 Pt and Nb 3 Ge, but not for Mo 3 Os, 3) T/sub c/ can be recovered by annealing, the recovery temperature being in the range 300-800 0 C depends on the particular compound, 4) the order parameter S, decreases with increasing neutron fluence (decreasing T/sub c/), and is also recoverable upon annealing at the appropriate temperature, 5) the lattice parameter a 0 , increases with increasing neutron fluence, and isalso restored to its original value by annealing. A simple hard sphere model is developed to calculate the dependence of a 0 on composition within the A-15 phase. Excellent agreement is obtained for the measured values in the Nb--Al, Nb--Pt and V--Ga systems. The results of both compositionally and irradiation induced disorder can be understood on the basis of site-exchange taking placee between the A and B sites in the A-15 structure

  8. Variation of crystallinity and stoichiometry in films of gallium oxide, gallium nitride and barium zirconate prepared by means of PLD

    International Nuclear Information System (INIS)

    Brendt, Jochen

    2011-01-01

    Pulsed Laser Deposition (PLD) is an ablation technique for thin film preparation of many materials. The film properties can be well controlled by the process parameters. Therefore, in many cases a given material can be deposited with different properties by changing one or more process parameters. In this thesis thin films of gallium oxide, gallium nitride and barium zirconate were deposited with a large variation in structure and stoichiometry by means of Pulsed Laser Deposition. The characterization of the film crystallinity, phase purity and short range structural order was completed by means of X-ray diffraction and X-ray absorption spectroscopy. The stoichiometry was investigated using electron probe microanalysis. For analyzing the correlation between the structure and stoichiometry with the optical and electrical properties, optical absorption and electrical conductivity measurements were carried out. The investigation of all three material systems showed that very unique properties can be realized when combining an amorphous structure and a non-stoichiometric composition. For example, in amorphous and oxygen deficient gallium oxide an insulator-metal-transition can be induced by partial crystallization of the as prepared phase accomplished by annealing at about 400 C in argon atmosphere (as shown in literature). Furthermore, amorphous and highly non-stoichiometric barium zirconate has the ability to split water molecules to hydrogen and oxygen at room temperature. A detailed analysis of both phenomena has been performed by means of photoemission and transmission electron microscopy in the case of gallium oxide and via X-ray absorption spectroscopy and gas chromatography in the case of barium zirconate.

  9. Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor

    International Nuclear Information System (INIS)

    Ivičak-Kocjan, Karolina; Panter, Gabriela; Benčina, Mojca; Jerala, Roman

    2013-01-01

    Highlights: •The chimeric protein fusing flagellin to the TLR5 ectodomain is constitutively active. •Mutation P736H within the BB-loop of TLR5 TIR domain renders the receptor inactive. •The R90D mutation in flagellin inactivated autoactivation of the chimeric protein. •The 2:2 stoichiometry of the TLR5:flagellin complex is physiologically relevant. -- Abstract: Toll-like receptor 5 (TLR5) recognizes flagellin of most flagellated bacteria, enabling activation of the MyD88-dependent signaling pathway. The recently published crystal structure of a truncated zebrafish TLR5 ectodomain in complex with an inactive flagellin fragment indicated binding of two flagellin molecules to a TLR5 homodimer, however this complex did not dimerize in solution. In the present study, we aimed to determine the physiological stoichiometry of TLR5:flagellin activation by the use of a chimeric protein composed of an active flagellin fragment linked to the N-terminus of human TLR5 (SF-TLR5). This construct was constitutively active. Inactivation by the R90D mutation within flagellin demonstrated that autoactivation of the chimeric protein depended solely on the specific interaction between TLR5 and flagellin. Addition of wild-type hTLR5 substantially lowered autoactivation of SF-TLR5 in a concentration dependent manner, an effect which was reversible by the addition of exogenous Salmonella typhimurium flagellin, indicating the biological activity of a TLR5:flagellin complex with a 2:2 stoichiometry. These results, in addition to the combinations of inactive P736H mutation within the BB-loop of the TIR domain of TLR5 and SF-TLR5, further confirm the mechanism of TLR5 activation

  10. Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor

    Energy Technology Data Exchange (ETDEWEB)

    Ivičak-Kocjan, Karolina; Panter, Gabriela; Benčina, Mojca [Laboratory of Biotechnology, National Institute of Chemistry, 1000 Ljubljana (Slovenia); The Centre of Excellence EN-FIST, 1000 Ljubljana (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Laboratory of Biotechnology, National Institute of Chemistry, 1000 Ljubljana (Slovenia); The Centre of Excellence EN-FIST, 1000 Ljubljana (Slovenia); The Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana (Slovenia)

    2013-05-24

    Highlights: •The chimeric protein fusing flagellin to the TLR5 ectodomain is constitutively active. •Mutation P736H within the BB-loop of TLR5 TIR domain renders the receptor inactive. •The R90D mutation in flagellin inactivated autoactivation of the chimeric protein. •The 2:2 stoichiometry of the TLR5:flagellin complex is physiologically relevant. -- Abstract: Toll-like receptor 5 (TLR5) recognizes flagellin of most flagellated bacteria, enabling activation of the MyD88-dependent signaling pathway. The recently published crystal structure of a truncated zebrafish TLR5 ectodomain in complex with an inactive flagellin fragment indicated binding of two flagellin molecules to a TLR5 homodimer, however this complex did not dimerize in solution. In the present study, we aimed to determine the physiological stoichiometry of TLR5:flagellin activation by the use of a chimeric protein composed of an active flagellin fragment linked to the N-terminus of human TLR5 (SF-TLR5). This construct was constitutively active. Inactivation by the R90D mutation within flagellin demonstrated that autoactivation of the chimeric protein depended solely on the specific interaction between TLR5 and flagellin. Addition of wild-type hTLR5 substantially lowered autoactivation of SF-TLR5 in a concentration dependent manner, an effect which was reversible by the addition of exogenous Salmonella typhimurium flagellin, indicating the biological activity of a TLR5:flagellin complex with a 2:2 stoichiometry. These results, in addition to the combinations of inactive P736H mutation within the BB-loop of the TIR domain of TLR5 and SF-TLR5, further confirm the mechanism of TLR5 activation.

  11. Effect of Wind on the Relation of Leaf N, P Stoichiometry with Leaf Morphology in Quercus Species

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2018-02-01

    Full Text Available Leaf nitrogen (N and phosphorus (P stoichiometry correlates closely to leaf morphology, which is strongly impacted by wind at multiple scales. However, it is not clear how leaf N, P stoichiometry and its relationship to leaf morphology changes with wind load. We determined the leaf N and P concentrations and leaf morphology—including specific leaf area (SLA and leaf dissection index (LDI—for eight Quercus species under a simulated wind load for seven months. Leaf N and P concentrations increased significantly under these conditions for Quercus acutissima, Quercus rubra, Quercus texana, and Quercus palustris—which have elliptic leaves—due to their higher N, P requirements and a resultant leaf biomass decrease, which is a tolerance strategy for Quercus species under a wind load. Leaf N:P was relatively stable under wind for all species, which supports stoichiometric homeostasis. Leaf N concentrations showed a positive correlation to SLA, leaf N and P concentrations showed positive correlations to LDI under each wind treatment, and the slope of correlations was not affected by wind, which indicates synchronous variations between leaf stoichiometry and leaf morphology under wind. However, the intercept of correlations was affected by wind, and leaf N and P use efficiency decreased under the wind load, which suggests that the Quercus species changes from “fast investment-return” in the control to “slow investment-return” under windy conditions. These results will be valuable to understanding functional strategies for plants under varying wind loads, especially synchronous variations in leaf traits along a wind gradient.

  12. Effect of charge state and stoichiometry on the structure and reactivity of nickel oxide clusters with CO

    Science.gov (United States)

    Johnson, Grant E.; Reilly, Nelly M.; Castleman, A. W., Jr.

    2009-02-01

    The collision induced fragmentation and reactivity of cationic and anionic nickel oxide clusters with carbon monoxide were studied experimentally using guided-ion-beam mass spectrometry. Anionic clusters with a stoichiometry containing one more oxygen atom than nickel atom (NiO2-, Ni2O3-, Ni3O4- and Ni4O5-) were found to exhibit dominant products resulting from the transfer of a single oxygen atom to CO, suggesting the formation of CO2. Of these four species, Ni2O3- and Ni4O5- were observed to be the most reactive having oxygen transfer products accounting for approximately 5% and 10% of the total ion intensity at a maximum pressure of 15 mTorr of CO. Our findings, therefore, indicate that anionic nickel oxide clusters containing an even number of nickel atoms and an odd number of oxygen atoms are more reactive than those with an odd number of nickel atoms and an even number of oxygen atoms. The majority of cationic nickel oxides, in contrast to anionic species, reacted preferentially through the adsorption of CO onto the cluster accompanied by the loss of either molecular O2 or nickel oxide units. The adsorption of CO onto positively charged nickel oxides, therefore, is exothermic enough to break apart the gas-phase clusters. Collision induced dissociation experiments, employing inert xenon gas, were also conducted to gain insight into the structural properties of nickel oxide clusters. The fragmentation products were found to vary considerably with size and stoichiometry as well as ionic charge state. In general, cationic clusters favored the collisional loss of molecular O2 while anionic clusters fragmented through the loss of both atomic oxygen and nickel oxide units. Our results provide insight into the effect of ionic charge state on the structure of nickel oxide clusters. Furthermore, we establish how the size and stoichiometry of nickel oxide clusters influences their ability to oxidize CO, an important reaction for environmental pollution abatement.

  13. High Variability in Cellular Stoichiometry of Carbon, Nitrogen, and Phosphorus Within Classes of Marine Eukaryotic Phytoplankton Under Sufficient Nutrient Conditions.

    Science.gov (United States)

    Garcia, Nathan S; Sexton, Julie; Riggins, Tracey; Brown, Jeff; Lomas, Michael W; Martiny, Adam C

    2018-01-01

    Current hypotheses suggest that cellular elemental stoichiometry of marine eukaryotic phytoplankton such as the ratios of cellular carbon:nitrogen:phosphorus (C:N:P) vary between phylogenetic groups. To investigate how phylogenetic structure, cell volume, growth rate, and temperature interact to affect the cellular elemental stoichiometry of marine eukaryotic phytoplankton, we examined the C:N:P composition in 30 isolates across 7 classes of marine phytoplankton that were grown with a sufficient supply of nutrients and nitrate as the nitrogen source. The isolates covered a wide range in cell volume (5 orders of magnitude), growth rate (temperature (2-24°C). Our analysis indicates that C:N:P is highly variable, with statistical model residuals accounting for over half of the total variance and no relationship between phylogeny and elemental stoichiometry. Furthermore, our data indicated that variability in C:P, N:P, and C:N within Bacillariophyceae (diatoms) was as high as that among all of the isolates that we examined. In addition, a linear statistical model identified a positive relationship between diatom cell volume and C:P and N:P. Among all of the isolates that we examined, the statistical model identified temperature as a significant factor, consistent with the temperature-dependent translation efficiency model, but temperature only explained 5% of the total statistical model variance. While some of our results support data from previous field studies, the high variability of elemental ratios within Bacillariophyceae contradicts previous work that suggests that this cosmopolitan group of microalgae has consistently low C:P and N:P ratios in comparison with other groups.

  14. Calcium-dependent stoichiometries of the KCa2.2 (SK) intracellular domain/calmodulin complex in solution.

    Science.gov (United States)

    Halling, D Brent; Kenrick, Sophia A; Riggs, Austen F; Aldrich, Richard W

    2014-02-01

    Ca(2+) activates SK Ca(2+)-activated K(+) channels through the protein Ca(2+) sensor, calmodulin (CaM). To understand how SK channels operate, it is necessary to determine how Ca(2+) regulates CaM binding to its target on SK. Tagless, recombinant SK peptide (SKp), was purified for binding studies with CaM at low and high Ca(2+) concentrations. Composition gradient multi-angle light scattering accurately measures the molar mass, stoichiometry, and affinity of protein complexes. In 2 mM Ca(2+), SKp and CaM bind with three different stoichiometries that depend on the molar ratio of SKp:CaM in solution. These complexes include 28 kD 1SKp/1CaM, 39 kD 2SKp/1CaM, and 44 kD 1SKp/2CaM. A 2SKp/2CaM complex, observed in prior crystallographic studies, is absent. At sedimentation coefficient is smaller for a 1SKp:1CaM solution than it is for either 2SKp:1CaM or 1SKp:2CaM. At low Ca(2+) and at >100 µM protein concentrations, a molar excess of SKp over CaM causes aggregation. Aggregation is not observed in Ca(2+) or with CaM in molar excess. In low Ca(2+) both 1SKp:1CaM and 1SKp:2CaM solutions have similar sedimentation coefficients, which is consistent with the absence of a 1SKp/2CaM complex in low Ca(2+). These results suggest that complexes with stoichiometries other than 2SKp/2CaM are important in gating.

  15. Role of an extracellular loop in determining the stoichiometry of Na+–HCO3− cotransporters

    Science.gov (United States)

    Chen, Li-Ming; Liu, Ying; Boron, Walter F

    2011-01-01

    The Na+–HCO3− cotransporters (NBCs) of the solute carrier 4 family (SLC4) are critical for regulating pH in cells as well as in fluids such as blood and cerebrospinal fluid. Moreover, mutations and gene disruptions in NBC are linked to a wide range of pathologies. NBCe1 (SLC4A4) is electrogenic because it has an apparent Na+:HCO3− stoichiometry of 1:2 or 1:3, whereas NBCn1 (SLC4A7) is electroneutral because it has an apparent stoichiometry of 1:1. Because stoichiometry influences the effect of transport on membrane potential and vice versa, a central question is what structural features underlie electrogenicity versus electroneutrality. A previous study on rat NBCe1/n1 chimeras demonstrated that the structural elements determining the electrogenicity of NBCe1-A are located within the transmembrane domain, excluding the large third extracellular loop. In the present study we generated a series of chimeras of human NBCe1-A and human NBCn1-A. We found that replacing merely the predicted fourth extracellular loop (EL4) – containing 32 amino acid residues that include 7 prolines – of human NBCe1-A with EL4 of NBCn1-A creates an electroneutral NBC. The opposite switch converts an electroneutral construct to one with electrogenic properties. The introduction of an N-glycosylation site into EL4 confirms that at least a part of it is exposed to the extracellular fluid. We hypothesize that putative EL4 either contributes to the substrate-binding vestibule or indirectly influences substrate binding by interacting with one or more transmembrane segments, thereby controlling the nature of transport. PMID:21224233

  16. Energy storage and fecundity explain deviations from ecological stoichiometry predictions under global warming and size-selective predation.

    Science.gov (United States)

    Zhang, Chao; Jansen, Mieke; De Meester, Luc; Stoks, Robby

    2016-11-01

    A key challenge for ecologists is to predict how single and joint effects of global warming and predation risk translate from the individual level up to ecosystem functions. Recently, stoichiometric theory linked these levels through changes in body stoichiometry, predicting that both higher temperatures and predation risk induce shifts in energy storage (increases in C-rich carbohydrates and reductions in N-rich proteins) and body stoichiometry (increases in C : N and C : P). This promising theory, however, is rarely tested and assumes that prey will divert energy away from reproduction under predation risk, while under size-selective predation, prey instead increase fecundity. We exposed the water flea Daphnia magna to 4 °C warming and fish predation risk to test whether C-rich carbohydrates increase and N-rich proteins decrease, and as a result, C : N and C : P increase under warming and predation risk. Unexpectedly, warming decreased body C : N, which was driven by reductions in C-rich fat and sugar contents while the protein content did not change. This reflected a trade-off where the accelerated intrinsic growth rate under warming occurred at the cost of a reduced energy storage. Warming reduced C : N less and only increased C : P and N : P in the fish-period Daphnia. These evolved stoichiometric responses to warming were largely driven by stronger warming-induced reductions in P than in C and N and could be explained by the better ability to deal with warming in the fish-period Daphnia. In contrast to theory predictions, body C : N decreased under predation risk due to a strong increase in the N-rich protein content that offsets the increase in C-rich fat content. The higher investment in fecundity (more N-rich eggs) under predation risk contributed to this stronger increase in protein content. Similarly, the lower body C : N of pre-fish Daphnia also matched their higher fecundity. Warming and predation risk independently shaped body

  17. Oxygen Stoichiometry in Cation Deficient (La,Sr)_{1-z}MnO_3 SOFC Cathode Materials

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Skaarup, Steen

    1997-01-01

    by the imposed potential.It is found that the oxygen stoichiometry and hence the defect chemistry is different whether A-site charge deficiency is established by Sr-doping or by A-site vacancies. Furthermore,A-site deficient lanthanum strontium manganates expel a secondary phase of manganese oxide when exposed...... to low oxygen partial pressures. The presence of small amounts of secondary phase isobserved and identified by its reoxidation peak. The amount of this foreign phase is determined by the charge used for its oxidation....

  18. A simple wet chemical method for the determination of cation stoichiometry of YBa2Cu3O7-d

    International Nuclear Information System (INIS)

    Sahasranaman, S.; Premila, M.; Sreedharan, O.M.

    1996-01-01

    A comprehensive wet chemical procedure for the rapid analysis of yttrium, barium and copper ions in dilute HNO 3 medium has been developed to facilitate a precise and accurate determination of cation non-stoichiometry in high temperature ceramic superconducting materials Y 1±x Ba 2±y Cu 3±z O 7-d . The ease of analysis for copper by electrogravimetry and of yttrium and barium by a complexometric titration of the same aliquot against complexone III using arsenazo I as the indicator under appropriate pH has been demonstrated with the help of individual standard solutions and with synthetic mixtures. (author)

  19. Effect of the Reburning Zone Stoichiometry on the Nox Concentration at the Three-Stage Combustion of Pulverized Coal

    Directory of Open Access Journals (Sweden)

    Chernetskaya Nelya

    2016-01-01

    Full Text Available Numerical study of heat and mass transfer taking into account the combustion of coal particles in the furnace at the three-stage combustion of pulverized coal was performed. Analysis of the reburning zone stoichiometry on the concentration of nitrogen oxides at the furnace outlet was made. The values of excess air in the primary and reburning combustion zones, providing for the concentration of nitrogen oxides at the furnace outlet is not more than 350 mg/m3 and unburned carbon not more than 1 % when burning coal with a high content of nitrogen were established.

  20. Supporting traditional instructional methods with a constructivist approach to learning: Promoting conceputal change and understanding of stoichiometry using e-learning tools

    Science.gov (United States)

    Abayan, Kenneth Munoz

    Stoichiometry is a fundamental topic in chemistry that measures a quantifiable relationship between atoms, molecules, etc. Stoichiometry is usually taught using expository teaching methods. Students are passively given information, in the hopes they will retain the transmission of information to be able to solve stoichiometry problems masterfully. Cognitive science research has shown that this kind of instructional teaching method is not very effecting in meaningful learning practice. Instead, students must take ownership of their learning. The students need to actively construct their own knowledge by receiving, interpreting, integrating and reorganizing that information into their own mental schemas. In the absence of active learning practices, tools must be created in such a way to be able to scaffold difficult problems by encoding opportunities necessary to make the construction of knowledge memorable, thereby creating a usable knowledge base. Using an online e-learning tool and its potential to create a dynamic and interactive learning environment may facilitate the learning of stoichiometry. The study entailed requests from volunteer students, IRB consent form, a baseline questionnaire, random assignment of treatment, pre- and post-test assessment, and post assessment survey. These activities were given online. A stoichiometry-based assessment was given in a proctored examination at the University of Texas at Arlington (UTA) campus. The volunteer students who took part in these studies were at least 18 of age and were enrolled in General Chemistry 1441, at the University of Texas at Arlington. Each participant gave their informed consent to use their data in the following study. Students were randomly assigned to one of 4 treatments groups based on teaching methodology, (Dimensional Analysis, Operational Method, Ratios and Proportions) and a control group who just received instruction through lecture only. In this study, an e-learning tool was created to

  1. Superconductivity in CeCu/sub 2/Si/sub 2/: dependence of Tsub(c) on alloying and stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Spille, H; Rauchschwalbe, U; Steglich, F [Technische Hochschule Darmstadt (Germany, F.R.). Inst. fuer Festkoerperphysik

    1938-01-01

    The authors have determined the transition temperatures of the alloy systems (Ce,M)Cu/sub 2/Si/sub 2/ with M = La, Y, Sc, Ce(Cu,T)/sub 2/Si/sub 2/ with T = Ag, Au, Mn, Ru, Rh, Pd and CeCu/sub 2/(Si,Ge)/sub 2/ as well as of CeCu/sub 2/Si/sub 2/ samples with varying stoichiometry. In each case, alloying is found to depress Tsub(c), the critical concentrations necessary to destroy superconductivity ranging between < 1 at.% and 10 at.%. Off-stoichiometry samples with a Cu- or Ce-deficiency of a few at.% are not superconducting, while samples prepared with a comparable excess of Cu or Ce show sharp transitions at Tsub(c) >approx. 600 mK. It is inferred that stoichiometric CeCu/sub 2/Si/sub 2/ contains substantial concentrations of Cu- and Ce-vacancies, which hinder superconductivity. First results on CeCu/sub 2/Si/sub 2/ single crystals, which exhibit bulk superconductivity, are also reported.

  2. The effect of nutrient enrichment on the growth, nucleic acid concentrations, and elemental stoichiometry of coral reef macroalgae.

    Science.gov (United States)

    Reef, Ruth; Pandolfi, John M; Lovelock, Catherine E

    2012-08-01

    The growth rate hypothesis (GRH) links growth rates with organism elemental stoichiometry. Support for the GRH was found for many animal species, but less so for plants. This is the first study to test the GRH in macroalgae. Tropical coral reef macroalgae from three lineages, Caulerpa serrulata (Chlorophyta), Laurencia intricata (Rhodophyta), and Sargassum polyphyllum (Phaeophyceae) were grown enriched with nitrogen or phosphorous and under control conditions at Heron Island on the Great Barrier Reef, Australia. Growth rate, photosynthesis, nucleic acid composition, and elemental stoichiometry were measured. Nutrient enrichment had positive effects on photosynthetic rates and on investment in RNA. However, growth rate was not correlated with either photosynthetic rates or RNA content; thus, we did not find support for the GRH in tropical macroalgae. Macroalgae, especially L. intricata, accumulated P to very high levels (>0.6% of dry weight). The growth rate response to tissue P concentrations was unimodal. Above 0.21%, P accumulation had negative effects on growth. Nitrogen was not stored, but evidence of futile cycling was observed. The capacity to store large amounts of P is probably an adaptation to the low and patchy nutrient environment of the tropical oceans.

  3. Rapid top-down regulation of plant C:N:P stoichiometry by grasshoppers in an Inner Mongolia grassland ecosystem.

    Science.gov (United States)

    Zhang, Guangming; Han, Xingguo; Elser, James J

    2011-05-01

    Understanding how food web interactions alter the processing of limiting nutrient elements is an important goal of ecosystem ecology. An experiment manipulating densities of the grasshopper Oedaleus asiaticus was performed to assess top-down effects of grasshoppers on C:N:P stoichiometry of plants and soil in a grassland ecosystem in Inner Mongolia (China). With increased grasshopper feeding, plant biomass declined fourfold, litter abundance increased 30%, and the plant community became dominated by non-host plant taxa. Plant stoichiometric response depended on whether or not the plant was a grasshopper host food species: C:N and C:P ratios increased with increasing grasshopper density (GD) for host plants but decreased in non-host plants. These data suggest either a direct transfer of grasshopper-recycled nutrients from host to non-host plants or a release of non-host plants from nutrient competition with heavily grazed host plants. Litterfall C:N and C:P decreased across moderate levels of grasshopper density but no effects on C:N:P stoichiometry in the surface soil were observed, possibly due to the short experimental period. Our observations of divergent C:N:P stoichiometric response among plant species highlight the important role of grasshopper herbivory in regulating plant community structure and nutrient cycling in grassland ecosystems.

  4. Interplay between structure, stoichiometry, and electron transfer dynamics in SILAR-based quantum dot-sensitized oxides.

    Science.gov (United States)

    Wang, Hai; Barceló, Irene; Lana-Villarreal, Teresa; Gómez, Roberto; Bonn, Mischa; Cánovas, Enrique

    2014-10-08

    We quantify the rate and efficiency of picosecond electron transfer (ET) from PbS nanocrystals, grown by successive ionic layer adsorption and reaction (SILAR), into a mesoporous SnO2 support. Successive SILAR deposition steps allow for stoichiometry- and size-variation of the QDs, characterized using transmission electron microscopy. Whereas for sulfur-rich (p-type) QD surfaces substantial electron trapping at the QD surface occurs, for lead-rich (n-type) QD surfaces, the QD trapping channel is suppressed and the ET efficiency is boosted. The ET efficiency increase achieved by lead-rich QD surfaces is found to be QD-size dependent, increasing linearly with QD surface area. On the other hand, ET rates are found to be independent of both QD size and surface stoichiometry, suggesting that the donor-acceptor energetics (constituting the driving force for ET) are fixed due to Fermi level pinning at the QD/oxide interface. Implications of our results for QD-sensitized solar cell design are discussed.

  5. Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe.

    Science.gov (United States)

    Jiroušek, Martin; Hájek, Michal; Bragazza, Luca

    2011-02-01

    We investigated the variation of N:P and N:K ratio in ombrotrophic Sphagnum plants along a gradient of atmospheric N deposition from 1 to 2.5 g m(-2) year(-1) in Central-East Europe. The N:P and N:K ratio in Sphagnum capitula increased significantly along the N deposition gradient. Sphagnum species from the Cuspidata section were characterised by significantly lower ratios at low N deposition. When we compared the observed N:P ratios in Sphagnum plants with the values reported in a previous European-wide study, we found a correspondence in nutrient stoichiometry only for a few bogs: higher P concentration in Sphagnum capitula caused a lower N:P ratio in most of the study bogs so that Sphagnum plants still seem N-limited despite their N saturation. Interaction between summer water table decrease and aerial liming of surrounding forests is proposed as an explanation for this discrepancy. Local forestry practice interacting with climate thus alter N:P stoichiometry of Sphagnum along the N deposition gradient. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Influence of the reaction stoichiometry on the mechanical and thermal properties of SWCNT-modified epoxy composites

    International Nuclear Information System (INIS)

    Ashrafi, Behnam; Johnston, Andrew; Martinez-Rubi, Yadienka; Kingston, Christopher T; Simard, Benoit; Khoun, Lolei; Yourdkhani, Mostafa; Hubert, Pascal

    2013-01-01

    Previous studies suggest that carbon nanotubes (CNTs) have a considerable influence on the curing behavior and crosslink density of epoxy resins. This invariably has an important effect on different thermal and mechanical properties of the epoxy network. This work focuses on the important role of the epoxy/hardener mixing ratio on the mechanical and thermal properties of a high temperature aerospace-grade epoxy (MY0510 Araldite as an epoxy and 4,4′-diaminodiphenylsulfone as an aromatic hardener) modified with single-walled carbon nanotubes (SWCNTs). The effects of three different stoichiometries (stoichiometric and off-stoichiometric) on various mechanical and thermal properties (fracture toughness, tensile properties, glass transition temperature) of the epoxy resin and its SWCNT-modified composites were obtained. The results were also supported by Raman spectroscopy and scanning electron microscopy (SEM). For the neat resin, it was found that an epoxy/hardener molar ratio of 1:0.8 provides the best overall properties. In contrast, the pattern in property changes with the reaction stoichiometry was considerably different for composites reinforced with unfunctionalized SWCNTs and reduced SWCNTs. A comparison among composites suggests that a 1:1 molar ratio considerably outperforms the other two ratios examined in this work (1:0.8 and 1:1.1). This composition at 0.2 wt% SWCNT loading provides the highest overall mechanical properties by improving fracture toughness, ultimate tensile strength and ultimate tensile strain of the epoxy resin by 40%, 34%, 54%, respectively. (paper)

  7. In Planta Single-Molecule Pull-Down Reveals Tetrameric Stoichiometry of HD-ZIPIII:LITTLE ZIPPER Complexes.

    Science.gov (United States)

    Husbands, Aman Y; Aggarwal, Vasudha; Ha, Taekjip; Timmermans, Marja C P

    2016-08-01

    Deciphering complex biological processes markedly benefits from approaches that directly assess the underlying biomolecular interactions. Most commonly used approaches to monitor protein-protein interactions typically provide nonquantitative readouts that lack statistical power and do not yield information on the heterogeneity or stoichiometry of protein complexes. Single-molecule pull-down (SiMPull) uses single-molecule fluorescence detection to mitigate these disadvantages and can quantitatively interrogate interactions between proteins and other compounds, such as nucleic acids, small molecule ligands, and lipids. Here, we establish SiMPull in plants using the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) and LITTLE ZIPPER (ZPR) interaction as proof-of-principle. Colocalization analysis of fluorophore-tagged HD-ZIPIII and ZPR proteins provides strong statistical evidence of complex formation. In addition, we use SiMPull to directly quantify YFP and mCherry maturation probabilities, showing these differ substantially from values obtained in mammalian systems. Leveraging these probabilities, in conjunction with fluorophore photobleaching assays on over 2000 individual complexes, we determined HD-ZIPIII:ZPR stoichiometry. Intriguingly, these complexes appear as heterotetramers, comprising two HD-ZIPIII and two ZPR molecules, rather than heterodimers as described in the current model. This surprising result raises new questions about the regulation of these key developmental factors and is illustrative of the unique contribution SiMPull is poised to make to in planta protein interaction studies. © 2016 American Society of Plant Biologists. All rights reserved.

  8. The acceleration of dissolved cobalt's ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean

    Science.gov (United States)

    Saito, Mak A.; Noble, Abigail E.; Hawco, Nicholas; Twining, Benjamin S.; Ohnemus, Daniel C.; John, Seth G.; Lam, Phoebe; Conway, Tim M.; Johnson, Rod; Moran, Dawn; McIlvin, Matthew

    2017-10-01

    The stoichiometry of biological components and their influence on dissolved distributions have long been of interest in the study of the oceans. Cobalt has the smallest oceanic inventory of inorganic micronutrients and hence is particularly vulnerable to influence by internal oceanic processes including euphotic zone uptake, remineralization, and scavenging. Here we observe not only large variations in dCo : P stoichiometry but also the acceleration of those dCo : P ratios in the upper water column in response to several environmental processes. The ecological stoichiometry of total dissolved cobalt (dCo) was examined using data from a US North Atlantic GEOTRACES transect and from a zonal South Atlantic GEOTRACES-compliant transect (GA03/3e and GAc01) by Redfieldian analysis of its statistical relationships with the macronutrient phosphate. Trends in the dissolved cobalt to phosphate (dCo : P) stoichiometric relationships were evident in the basin-scale vertical structure of cobalt, with positive dCo : P slopes in the euphotic zone and negative slopes found in the ocean interior and in coastal environments. The euphotic positive slopes were often found to accelerate towards the surface and this was interpreted as being due to the combined influence of depleted phosphate, phosphorus-sparing (conserving) mechanisms, increased alkaline phosphatase metalloenzyme production (a zinc or perhaps cobalt enzyme), and biochemical substitution of Co for depleted Zn. Consistent with this, dissolved Zn (dZn) was found to be drawn down to only 2-fold more than dCo, despite being more than 18-fold more abundant in the ocean interior. Particulate cobalt concentrations increased in abundance from the base of the euphotic zone to become ˜ 10 % of the overall cobalt inventory in the upper euphotic zone with high stoichiometric values of ˜ 400 µmol Co mol-1 P. Metaproteomic results from the Bermuda Atlantic Time-series Study (BATS) station found cyanobacterial isoforms of the

  9. Engineering the microstructure and magnetism of La2CoMnO6−δ thin films by tailoring oxygen stoichiometry

    International Nuclear Information System (INIS)

    Galceran, R.; Frontera, C.; Balcells, Ll.; Cisneros-Fernández, J.; López-Mir, L.; Bozzo, B.; Pomar, A.; Sandiumenge, F.; Martínez, B.; Roqueta, J.; Santiso, J.; Bagués, N.

    2014-01-01

    We report on the magnetic and structural properties of ferromagnetic-insulating La 2 CoMnO 6−δ thin films grown on top of (001) SrTiO 3 substrates by means of RF sputtering technique. Careful structural analysis, by using synchrotron X-ray diffraction, allows identifying two different crystallographic orientations that are closely related to oxygen stoichiometry and to the features (coercive fields and remanence) of the hysteresis loops. Both Curie temperature and magnetic hysteresis turn out to be dependent on the oxygen stoichiometry. In situ annealing conditions allow tailoring the oxygen content of the films, therefore controlling their microstructure and magnetic properties

  10. The Search Engine for Multi-Proteoform Complexes: An Online Tool for the Identification and Stoichiometry Determination of Protein Complexes.

    Science.gov (United States)

    Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L

    2016-12-08

    Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  11. Effect of deviation from stoichiometry on the nature of shallow acceptor states in CdTe crystals

    International Nuclear Information System (INIS)

    Agrinskaya, N.V.; Shashkova, V.V.

    1988-01-01

    Photoconductivity and photoluminescence spectra in the region of donor-acceptor recombination of pure CdTe crystals, grown under conditions of different deviations from stoichiometry are investigated. It is shown that the predominant type of minor acceptors in n-type crystals (with Cd excess) differs from acceptors in p-type crystals (with Te excess). Residual acceptors replacing Te(P, As) prevail in n-type crystals and acceptors replacing Cd(Li, Na) prevail in p-type crystals. As a result of p-type crystal annealing a change of the type of prevailing aceptors accurs in Cd pairs (bands linked with P, As prevail) which testifies to the residual impurity reconstruction in Cd and Te sublattices

  12. Oxygen stoichiometry, superconductivity and structure of the Bi-2212 ceramics after thermal treatment in the inert atmosphere

    International Nuclear Information System (INIS)

    Bratukhin, P.V.; Aksenova, T.D.; Shavkin, S.V.; Komarov, A.O.; Voronkov, S.A.; Mozhaev, A.P.

    1993-01-01

    A complex study of the stoichiometry and superconducting properties has been performed as well as an X-ray structure analysis of Bi 1.6 Pb 0.4 Sr 2 Ca 1 Cu 2 O x ceramic samples after thermal treatment in the helium atmosphere. Annealing has been found to result in the reduction of the oxygen coefficient followed by the critical temperature rise and the decrease of the unit cell parameters which sharply distinguishes Bi2212 from Y123. Anisotropic widening of diffraction lines due to monoclinic distortions has been detected. Correlations between the monoclinic angle and the critical temperature have been disclosed. Structural changes in Bi2122 are 30-100 times smaller than in the Y123 structure under similar changes in T c

  13. Ceramic research on transformational superplasticity and stoichiometry effects on fracture. Research progress report, June 1, 1975--May 31, 1976

    International Nuclear Information System (INIS)

    Bradt, R.C.; Hoke, J.H.

    1976-01-01

    The progress of the program is reviewed by treating each of the areas separately. In the superplasticity investigation, the results of the Bi 2 WO 6 and Bi 2 MoO 3 systems are discussed both in terms of the transformational deformation and also the thermal cycling growth phenomenon. The growth phenomenon on thermal cycling through the phase transition shows some interesting bulk and microstructural features in terms of specimen strain and highly anisotropic grain growth. The stoichiometry effects on the fracture (K/sub Ic/ and K-V behavior) of TiO/sub 2-x/ and Fe/sub 1-x/ are reviewed as that study has been completed. Progress on the MgO . X Al 2 O 3 system is discussed

  14. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system.

    Science.gov (United States)

    Scharler, U M; Ulanowicz, R E; Fogel, M L; Wooller, M J; Jacobson-Meyers, M E; Lovelock, C E; Feller, I C; Frischer, M; Lee, R; McKee, K; Romero, I C; Schmit, J P; Shearer, C

    2015-11-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.

  15. Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment

    Directory of Open Access Journals (Sweden)

    R. G. J. Bellerby

    2008-11-01

    Full Text Available Changes to seawater inorganic carbon and nutrient concentrations in response to the deliberate CO2 perturbation of natural plankton assemblages were studied during the 2005 Pelagic Ecosystem CO2 Enrichment (PeECE III experiment. Inverse analysis of the temporal inorganic carbon dioxide system and nutrient variations was used to determine the net community stoichiometric uptake characteristics of a natural pelagic ecosystem perturbed over a range of pCO2 scenarios (350, 700 and 1050 μatm. Nutrient uptake showed no sensitivity to CO2 treatment. There was enhanced carbon production relative to nutrient consumption in the higher CO2 treatments which was positively correlated with the initial CO2 concentration. There was no significant calcification response to changing CO2 in Emiliania huxleyi by the peak of the bloom and all treatments exhibited low particulate inorganic carbon production (~15 μmol kg−1. With insignificant air-sea CO2 exchange across the treatments, the enhanced carbon uptake was due to increase organic carbon production. The inferred cumulative C:N:P stoichiometry of organic production increased with CO2 treatment from 1:6.3:121 to 1:7.1:144 to 1:8.25:168 at the height of the bloom. This study discusses how ocean acidification may incur modification to the stoichiometry of pelagic production and have consequences for ocean biogeochemical cycling.

  16. δ15N and nutrient stoichiometry of water, aquatic organisms and environmental implications in Taihu lake, China.

    Science.gov (United States)

    Tao, Yu; Dan, Dai; Kun, Lei; Chengda, He; Haibing, Cong; Guo, Fu; Qiujin, Xu; Fuhong, Sun; Fengchang, Wu

    2018-06-01

    Nitrogen pollution has become a worldwide problem and the source identification is important for the development of pertinent control measures. In this study, isotope end members (rain, nitrogen fertilizer, untreated/treated sewage), and samples (river water discharging to Taihu lake, lake water, aquatic organisms of different trophic levels) were taken during 2010-2015 to examine their δ 15 N values and nutrient stoichiometry. Results indicated that phytoplankton (primary producers), which directly take up and incorporate N from the lake water, had a similar δ 15 N value (14.1‰ ± 3.2) to the end member of treated sewage (14.0‰ ± 7.5), and the most frequently observed δ 15 N value in the lake water was 8-12‰, both indicating the dominant impact of the sewage discharge. Relationship analysis between N isotope value of nitrate and nitrate concentration indicated that different N cycling existed between the algae-dominated northwest lake (NW) and the macrophyte-dominated southeast lake (SE), which is a result of both impacts of river inputs and denitrification. Our nutrient stoichiometry analysis showed that the lake water had a significantly higher N:P ratio than that of algae (p economic development in the watershed further confirmed that the rapid population increase and urbanization have resulted in a great change in the N loading and source proportion. We suggest that although P control is necessary in terms of eutrophication control, N pollution control is urgent for the water quality and ecological recovery for Taihu lake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude.

    Science.gov (United States)

    Khan, Mohammad Haneef; Meghvansi, Mukesh K; Gupta, Rajeev; Veer, Vijay

    2015-09-15

    The functioning of high-altitude agro-ecosystems is constrained by the harsh environmental conditions, such as low temperatures, acidic soil, and low nutrient supply. It is therefore imperative to investigate the site-specific ecological stoichiometry with respect to AM symbiosis in order to maximize the arbuscular mycorrhizal (AM) benefits for the plants in such ecosystems. Here, we assess the elemental stoichiometry of four Capsicum genotypes grown on acidic soil at high altitude in Arunachal Pradesh, India. Further, we try to identify the predominant resource limitations influencing the symbioses of different Capsicum genotypes with the AM fungi. Foliar and soil elemental stoichiometric relations of Capsicum genotypes were evaluated with arbuscular mycorrhizal (AM) colonization and occurrence under field conditions. AM fungal diversity in rhizosphere, was estimated through PCR-DGGE profiling. Results demonstrated that the symbiotic interaction of various Capsicum genotypes with the AM fungi in acidic soil was not prominent in the study site as evident from the low range of root colonization (21-43.67%). In addition, despite the rich availability of carbon in plant leaves as well as in soil, the carbon-for-phosphorus trade between AMF and plants appeared to be limited. Our results provide strong evidences of predominant influence of the potassium-limitation, in addition to phosphorus-limitation, on AM symbiosis with Capsicum in acidic soil at high altitude. We also conclude that the potassium should be considered in addition to carbon, nitrogen, and phosphorus in further studies investigating the stoichiometric relationships with the AMF symbioses in high altitude agro-ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation

    Directory of Open Access Journals (Sweden)

    Michael J. McCann

    2016-03-01

    Full Text Available Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis to nutrient stoichiometry (nitrogen and phosphorus and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C and low nutrient conditions (0.5 mg N L−1, 0.083 mg P L−1. The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions.

  19. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation

    Science.gov (United States)

    2016-01-01

    Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L−1, 0.083 mg P L−1). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions. PMID:26989619

  20. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Science.gov (United States)

    Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing

    2018-04-01

    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations

  1. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system

    Science.gov (United States)

    Scharler, U.M.; Ulanowicz, Robert E.; Fogel, M.L.; Wooller, M.J.; Jacobson-Meyers, M.E.; Lovelock, C.E.; Feller, I.C.; Frischer, M.; Lee, R.; Mckee, Karen L.; Romero, I.C.; Schmit, J.P.; Shearer, C.

    2015-01-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.

  2. Development of Analytical Thinking Ability and Attitudes towards Science Learning of Grade-11 Students through Science Technology Engineering and Mathematics (STEM Education) in the Study of Stoichiometry

    Science.gov (United States)

    Chonkaew, Patcharee; Sukhummek, Boonnak; Faikhamta, Chatree

    2016-01-01

    The purpose of this study was to investigate the analytical thinking abilities and attitudes towards science learning of grade-11 students through science, technology, engineering, and mathematics (STEM) education integrated with a problem-based learning in the study of stoichiometry. The research tools consisted of a pre- and post-analytical…

  3. Composition control of low-volatile solids through chemical vapor transport reactions. III. The example of gallium monoselenide: Control of the polytypic structure, non-stoichiometry and properties

    International Nuclear Information System (INIS)

    Zavrazhnov, A.; Naumov, A.; Sidey, V.; Pervov, V.

    2012-01-01

    Highlights: ► This work is devoted to the composition control of solids with selective CVT method. ► Phase identity and non-stoichiometry of solids (GaSe, etc.) depend on CVT-temperatures. ► The interrelation between the properties of GaSe and CVT conditions is also found. ► For iodide transporting system the diagram of phase stability of solids is adjusted. ► High temperatures and Se-rich non-stoichiometry are necessary for γ-GaSe stability. - Abstract: By means of particular examples, the present work demonstrates the possibility of directed delicate non-destructive control of structure, composition and properties of inorganic solids using the method of selective chemical vapor transport (SCVT). Gallium monoselenide GaSe is the main model object. Additional, though less detailed, explanation is given by the example of gallium monosulfide GaS. Experimental evidences on the possibility of the control of polytypic structure, non-stoichiometry and properties of gallium monoselenide were obtained in non-isothermal variant of selective chemical vapor transport which has non-destructive character. Diagnostics of the phase (polytypic) composition and non-stoichiometry of GaSe was performed with the use of X-ray diffractometry as well as with the use of cathode luminescence spectra. It was experimentally found that there exists a connection of non-stoichiometry and the properties of gallium selenides with the determining conditions of selective chemical vapor transport: temperature of controlled sample (T 2 ) and the difference of temperatures between the hot and cold zones (ΔT). It is shown that the phase diagram of Ga–Se system needs to be partially revised near the composition of Ga 1 Se 1 . The reason for such revision is the fact that two polytypes (ε-GaSe and γ-GaSe) exist on this phase diagram as independent phases.

  4. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2018-04-01

    Full Text Available Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523–4685 m on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3–47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2–75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m, likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer, their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most

  5. Effect of ‘A’-site non stoichiometry in strontium doped lanthanum ferrite based solid oxide fuel cell cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Koyel; Mukhopadhyay, Jayanta, E-mail: jayanta_mu@cgcri.res.in; Barman, Madhurima; Basu, Rajendra N., E-mail: rnbasu@cgcri.res.in

    2015-12-15

    Highlights: • La{sub 1−x}Sr{sub x}Co{sub y}Fe{sub 1−y}O{sub 3−δ}, x = 0.4; y = 0.2 system varying La-site (0.6–0.54) are studied. • Combustion synthesis technique is used to prepare the powder samples. • Highest electrical conductivity observed with largest A-site deficit composition. • Lowest cathode polarization is found with the same composition (0.02 Ω cm{sup 2}). • Composition with largest A-site deficiency exhibits best performance (2.84 A cm{sup −2}). - Abstract: Effect of A-site non-stoichiometry in strontium doped lanthanum cobalt ferrite (La{sub 1−x}Sr{sub x}Co{sub y}Fe{sub 1−y}O{sub 3−δ}, x = 0.4; y = 0.2) is studied in a systematic manner with variation of ‘A’ site stoichiometry from 1 to 0.94. The perovskite based cathode compositions are synthesized by combustion synthesis. Powder characterizations reveal rhombohedral crystal structure with crystallite size ranging from 29 to 34 nm with minimum lattice spacing of 0.271 nm. Detailed sintering studies along with total DC electrical conductivities are evaluated in the bulk form with variation of sintering temperatures. The electrode polarizations are measured in the symmetric cell configuration by impedance spectroscopy which is found to be the lowest (0.02 Ω cm{sup 2} at 800 °C) for cathode having highest degree of ‘A’-site deficiency. The same cathode composition exhibits a current density of 2.84 A cm{sup −2} (at 0.7 V, 800 °C) in anode-supported single cell. An attempt has been made to correlate the trend of electrical behaviour with increasing ‘A’-site deficiency for such cathode compositions.

  6. The influence of carbon non-stoichiometry on the electronic properties of thorium monocarbide ThC

    International Nuclear Information System (INIS)

    Shein, I.R.; Ivanovskii, A.L.

    2010-01-01

    The first-principle band structure calculations are employed to examine the influence of carbon non-stoichiometry on the structural and electronic properties of the cubic thorium monocarbide ThC. As a result, the equilibrium geometries, electronic bands, densities of states (DOS), Sommerfeld constants and Pauli paramagnetic susceptibility for ThC 1-x (where x = 0, 0.25 and 0.50) are obtained and analyzed in comparison with available experimental data. Additionally, the formation energies of carbon vacancies are theoretically estimated for ThC 1-x . The results obtained indicate that the introduction of carbon vacancies in ThC is accompanied by pronounced DOS changes due to the appearance of novel 'vacancy states' in the near-Fermi region formed by comparable contributions of Th 6d and 5f states. The carbon deficiency strongly affects the structure and stability of thorium carbide. For example, for the hypothetical 'over-deficient' composition ThC 0.50 the initial cubic structure undergoes significant tetragonal distortions. On the contrary, for ThC 0.75 the value of Evf is positive and the cubic structure of this phase is preserved. (authors)

  7. Protein adsorption/desorption and antibody binding stoichiometry on silicon interferometric biosensors examined with TOF-SIMS

    KAUST Repository

    Gajos, Katarzyna

    2018-03-05

    Time-of-flight secondary ion mass spectrometry has been employed to examine, with biomolecular discrimination, sensing arm areas (20 μm x 600 μm) of integrated onto silicon chips Mach-Zehnder interferometers aiming to optimize their biofunctionalization with regard to indirect immunochemical (competitive) detection of ochratoxin A. Sensing areas are examined after: modification with (3-aminopropyl)triethoxysilane, spotting of OTA-ovalbumin conjugate (probe) from solutions with different concentration, blocking with bovine serum albumin, reaction with OTA-specific mouse monoclonal antibody followed by goat anti-mouse IgG secondary antibody. Component mass loadings of all proteins involved in immunodetection are determined from TOF-SIMS micro-analysis combined with ellipsometry of planar surfaces. These data show that partial desorption of surface-bound probe and blocking protein takes place upon primary immunoreaction to a degree that depends on probe concentration in spotting solution. Taking into account this desorption, apparent binding stoichiometry of both antibodies in immune complexes formed onto chip surface is determined more accurately than the respective evaluation based on real-time sensor response. In addition, mass loadings for probe and secondary antibody is observed to saturate for optimum probe concentrations. Also, principal component analysis of TOF-SIMS data could resolve both immunoreactions and biofunctionalization and discriminate surfaces prepared with optimum probe concentrations from those prepared using suboptimum ones.

  8. Protein adsorption/desorption and antibody binding stoichiometry on silicon interferometric biosensors examined with TOF-SIMS

    KAUST Repository

    Gajos, Katarzyna; Budkowski, Andrzej; Petrou, Panagiota; Pagkali, Varvara; Awsiuk, Kamil; Rysz, Jakub; Bernasik, Andrzej; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios

    2018-01-01

    Time-of-flight secondary ion mass spectrometry has been employed to examine, with biomolecular discrimination, sensing arm areas (20 μm x 600 μm) of integrated onto silicon chips Mach-Zehnder interferometers aiming to optimize their biofunctionalization with regard to indirect immunochemical (competitive) detection of ochratoxin A. Sensing areas are examined after: modification with (3-aminopropyl)triethoxysilane, spotting of OTA-ovalbumin conjugate (probe) from solutions with different concentration, blocking with bovine serum albumin, reaction with OTA-specific mouse monoclonal antibody followed by goat anti-mouse IgG secondary antibody. Component mass loadings of all proteins involved in immunodetection are determined from TOF-SIMS micro-analysis combined with ellipsometry of planar surfaces. These data show that partial desorption of surface-bound probe and blocking protein takes place upon primary immunoreaction to a degree that depends on probe concentration in spotting solution. Taking into account this desorption, apparent binding stoichiometry of both antibodies in immune complexes formed onto chip surface is determined more accurately than the respective evaluation based on real-time sensor response. In addition, mass loadings for probe and secondary antibody is observed to saturate for optimum probe concentrations. Also, principal component analysis of TOF-SIMS data could resolve both immunoreactions and biofunctionalization and discriminate surfaces prepared with optimum probe concentrations from those prepared using suboptimum ones.

  9. Variation in decomposition rates in the fynbos biome, South Africa: the role of plant species and plant stoichiometry.

    Science.gov (United States)

    Bengtsson, Jan; Janion, Charlene; Chown, Steven L; Leinaas, Hans Petter

    2011-01-01

    Previous studies in the fynbos biome of the Western Cape, South Africa, have suggested that biological decomposition rates in the fynbos vegetation type, on poor soils, may be so low that fire is the main factor contributing to litter breakdown and nutrient release. However, the fynbos biome also comprises vegetation types on more fertile soils, such as the renosterveld. The latter is defined by the shrub Elytropappus rhinocerotis, while the shrub Galenia africana may become dominant in overgrazed areas. We examined decomposition of litter of these two species and the geophyte Watsonia borbonica in patches of renosterveld in an agricultural landscape. In particular, we sought to understand how plant species identity affects litter decomposition rates, especially through variation in litter stoichiometry. Decomposition (organic matter mass loss) varied greatly among the species, and was related to litter N and P content. G. africana, with highest nutrient content, lost 65% of its original mass after 180 days, while E. rhinocerotis had lost ca. 30%, and the very nutrient poor W. borbonica biome. Thus, biological decomposition has likely been underestimated and, along with small-scale variation in ecosystem processes, would repay further study.

  10. Protein adsorption/desorption and antibody binding stoichiometry on silicon interferometric biosensors examined with TOF-SIMS

    Science.gov (United States)

    Gajos, Katarzyna; Budkowski, Andrzej; Petrou, Panagiota; Pagkali, Varvara; Awsiuk, Kamil; Rysz, Jakub; Bernasik, Andrzej; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios

    2018-06-01

    Time-of-flight secondary ion mass spectrometry has been employed to examine, with biomolecular discrimination, sensing arm areas (20 μm × 600 μm) of integrated onto silicon chips Mach-Zehnder interferometers aiming to optimize their biofunctionalization with regard to indirect immunochemical (competitive) detection of ochratoxin A. Sensing areas are examined after: modification with (3-aminopropyl)triethoxysilane, spotting of OTA-ovalbumin conjugate (probe) from solutions with different concentration, blocking with bovine serum albumin, reaction with OTA-specific mouse monoclonal antibody followed by goat anti-mouse IgG secondary antibody. Component mass loadings of all proteins involved in immunodetection are determined from TOF-SIMS micro-analysis combined with ellipsometry of planar surfaces. These data show that partial desorption of surface-bound probe and blocking protein takes place upon primary immunoreaction to a degree that depends on probe concentration in spotting solution. Taking into account this desorption, apparent binding stoichiometry of both antibodies in immune complexes formed onto chip surface is determined more accurately than the respective evaluation based on real-time sensor response. In addition, mass loadings for probe and secondary antibody is observed to saturate for optimum probe concentrations. Also, principal component analysis of TOF-SIMS data could resolve both immunoreactions and biofunctionalization and discriminate surfaces prepared with optimum probe concentrations from those prepared using suboptimum ones.

  11. The influence of carbon non-stoichiometry on the electronic properties of thorium monocarbide ThC

    Energy Technology Data Exchange (ETDEWEB)

    Shein, I.R.; Ivanovskii, A.L. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2010-09-15

    The first-principle band structure calculations are employed to examine the influence of carbon non-stoichiometry on the structural and electronic properties of the cubic thorium monocarbide ThC. As a result, the equilibrium geometries, electronic bands, densities of states (DOS), Sommerfeld constants and Pauli paramagnetic susceptibility for ThC{sub 1-x} (where x = 0, 0.25 and 0.50) are obtained and analyzed in comparison with available experimental data. Additionally, the formation energies of carbon vacancies are theoretically estimated for ThC{sub 1-x}. The results obtained indicate that the introduction of carbon vacancies in ThC is accompanied by pronounced DOS changes due to the appearance of novel 'vacancy states' in the near-Fermi region formed by comparable contributions of Th 6d and 5f states. The carbon deficiency strongly affects the structure and stability of thorium carbide. For example, for the hypothetical 'over-deficient' composition ThC{sub 0.50} the initial cubic structure undergoes significant tetragonal distortions. On the contrary, for ThC{sub 0.75} the value of Evf is positive and the cubic structure of this phase is preserved. (authors)

  12. Improvement of stoichiometry in (ZnO)1-x(GaN)x thin films grown by laser ablation

    International Nuclear Information System (INIS)

    Gopalakrishnan, N.; Shin, B.C.; Bhuvana, K.P.; Elanchezhiyan, J.; Balasubramanian, T.

    2008-01-01

    The fabrication of pure and GaN (1 mol%) doped ZnO thin films by KrF excimer laser have been addressed. The fabricated films on Si(1 1 1) substrates have been investigated by X-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) in order to investigate the structural, optical and morphological properties, respectively. The XRD analysis shows that the full width at half maximum (FWHM) of ZnO film is found to be decreased as doped with GaN due to the improvement of the stoichiometery between Zn and O. The PL spectra reveal that the deep level emissions due to native donor defects in pure ZnO are suppressed upon doping with GaN. The images of AFM show that the RMS surface roughness of pure ZnO, 27 nm is reduced to18 nm while doped with 1 mol% GaN. The incorporation of nitrogen in the film is confirmed by glow discharge mass spectroscopy (GDMS). The improved structural, optical and morphological properties of ZnO by GaN dopant due to enhancement of stoichiometry have been discussed in detail

  13. Controlling the stoichiometry and strand polarity of a tetramolecular G-quadruplex structure by using a DNA origami frame

    Science.gov (United States)

    Rajendran, Arivazhagan; Endo, Masayuki; Hidaka, Kumi; Lan Thao Tran, Phong; Mergny, Jean-Louis; Sugiyama, Hiroshi

    2013-01-01

    Guanine-rich oligonucleotides often show a strong tendency to form supramolecular architecture, the so-called G-quadruplex structure. Because of the biological significance, it is now considered to be one of the most important conformations of DNA. Here, we describe the direct visualization and single-molecule analysis of the formation of a tetramolecular G-quadruplex in KCl solution. The conformational changes were carried out by incorporating two duplex DNAs, with G–G mismatch repeats in the middle, inside a DNA origami frame and monitoring the topology change of the strands. In the absence of KCl, incorporated duplexes had no interaction and laid parallel to each other. Addition of KCl induced the formation of a G-quadruplex structure by stably binding the duplexes to each other in the middle. Such a quadruplex formation allowed the DNA synapsis without disturbing the duplex regions of the participating sequences, and resulted in an X-shaped structure that was monitored by atomic force microscopy. Further, the G-quadruplex formation in KCl solution and its disruption in KCl-free buffer were analyzed in real-time. The orientation of the G-quadruplex is often difficult to control and investigate using traditional biochemical methods. However, our method using DNA origami could successfully control the strand orientations, topology and stoichiometry of the G-quadruplex. PMID:23863846

  14. Stoichiometry behavior of TaN, TaCN and TaC thin films produced by magnetron sputtering

    International Nuclear Information System (INIS)

    Vargas, M.; Castillo, H.A.; Restrepo-Parra, E.; De La Cruz, W.

    2013-01-01

    Thin films were synthesized in a magnetron sputtering system using a target of Ta with 99.99% purity and silicon substrates (1 1 1). The gases used for the film growth were (Ar + N 2 ), (Ar + CH 4 + N 2 ) and (Ar + CH 4 ) mixtures for TaN, TaCN and TaC, respectively. The substrate temperature increased from room temperature to 500 °C. The chemical composition and bonding configuration were examined using X-ray photoelectron spectroscopy (XPS), revealing Ta-N, Ta-C-N, Ta-C and C-C bonds. Moreover, the crystallographic structure was analyzed using X-ray diffraction (XRD), indicating the presence of (1 1 1) and (2 0 0) planes belonging to a face-centered cubic structure. The stoichiometry variation dependence on the CH 4 and N 2 flow was analyzed, and the influence of the substrate temperature on the coatings was investigated. Finally, scanning electron microscopy (SEM) was used to determine the evolution on the grain formation in the coatings as the substrate temperature increased.

  15. Stoichiometry behavior of TaN, TaCN and TaC thin films produced by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, M. [Centro de Nanociencia y Nanotecnología, Universidad Nacional Autónoma de México, A.P. 2681, C.P. 22860, Ensenada, B.C. (Mexico); Castillo, H.A. [Centro de Enseñanza Técnica y Superior, CETYS Universidad, Campus Tijuana, Tijuana, B.C. (Mexico); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Universidad Nacional de Colombia Sede Medellín Colombia, Facultad de Minas, Manizales (Colombia); De La Cruz, W. [Centro de Nanociencia y Nanotecnología, Universidad Nacional Autónoma de México, A.P. 2681, C.P. 22860, Ensenada, B.C. (Mexico)

    2013-08-15

    Thin films were synthesized in a magnetron sputtering system using a target of Ta with 99.99% purity and silicon substrates (1 1 1). The gases used for the film growth were (Ar + N{sub 2}), (Ar + CH{sub 4} + N{sub 2}) and (Ar + CH{sub 4}) mixtures for TaN, TaCN and TaC, respectively. The substrate temperature increased from room temperature to 500 °C. The chemical composition and bonding configuration were examined using X-ray photoelectron spectroscopy (XPS), revealing Ta-N, Ta-C-N, Ta-C and C-C bonds. Moreover, the crystallographic structure was analyzed using X-ray diffraction (XRD), indicating the presence of (1 1 1) and (2 0 0) planes belonging to a face-centered cubic structure. The stoichiometry variation dependence on the CH{sub 4} and N{sub 2} flow was analyzed, and the influence of the substrate temperature on the coatings was investigated. Finally, scanning electron microscopy (SEM) was used to determine the evolution on the grain formation in the coatings as the substrate temperature increased.

  16. Response of cellular stoichiometry and phosphorus storage of the cyanobacteria Aphanizomenon flos-aquae to small-scale turbulence

    Science.gov (United States)

    Li, Zhe; Xiao, Yan; Yang, Jixiang; Li, Chao; Gao, Xia; Guo, Jinsong

    2017-11-01

    Turbulent mixing, in particular on a small scale, affects the growth of microalgae by changing diffusive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under different turbulent mixing conditions. Aphanizomenon flos-aquae were cultivated in different stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s3 to 0.050 58 m2/s3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory effect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum effective quantum yield of PSII (the ratio of F v/ F m) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the diffusive sublayer, regulating the nutrient flux of cells.

  17. Foliar spray with vermiwash modifies the Arbuscular mycorrhizal dependency and nutrient stoichiometry of Bhut Jolokia (Capsicum assamicum.

    Directory of Open Access Journals (Sweden)

    Mohammad Haneef Khan

    Full Text Available Vermiwash (VW, a liquid extract obtained from vermicomposting beds, is used as an organic fertilizer for crop plants. The current study investigated the effect of a vermiwash foliar spray on the response of bhut jolokia (Capsicum assamicum exposed to two different arbuscular mycorrhizal fungi (AMF: Rhizophagus irregularis, RI and G. mosseae, GM in acidic soil under naturally ventilated greenhouse conditions. The VW spray significantly influenced the growth of plants receiving the dual treatment of AMF+VW. Plant growth was more prominent in the GM+VW treatment group than that in the RI+VW treatment group. The plant-AMF interactions in relation to growth and nutrient requirements were also significantly influenced by the application of VW. Interestingly, the VW treatment appeared to contribute more N to plants when compared to that under the AMF treatment, which led to changes in the C:N:P stoichiometry in plant shoots. Furthermore, the increased potassium dependency, as observed in the case of the dual treatments, suggests the significance of such treatments for improving crop conditions under salt stress. Overall, our study shows that the VW foliar spray modifies the response of a crop to inoculations of different AMF with regard to growth and nutrient utilization, which has implications for the selection of an efficient combination of nutrient source for improving crop growth.

  18. Use of portable analytical methods to determine the stoichiometry of reaction for hexahydrotriazine-based hydrogen sulfide scavenger operations.

    Science.gov (United States)

    Taylor, Grahame N; Matherly, Ron

    2014-05-20

    During the reaction between 1,3,5-tris(2-hydroxyethyl)hexahydro-s-triazine and hydrogen sulphide, the principle by-product is the organic sulphide 5-(2-hydroxyethyl)dithiazine. It can be determined by a novel, portable, field-capable ion mobility spectrometry method described herein and enables the "degree spent" to be determined. Dependant upon the level of carbon dioxide in the produced gas, a mixture of ethanolaminium bicarbonate and ethanolamine bisulphide is also produced. Using a field capable spectrophotometric method the level of inorganic sulphide can be determined, thus allowing the ethanolaminium bisulphide concentration to be calculated. Provided the fluid is only partially spent, and there is some unreacted 1,3,5-tris(2-hydroxyethyl)hexahydro-s-triazine remaining; the only source of inorganic sulphide is the amine salt. From a knowledge of the original fluid concentration, the combination of these two methods allows the effective stoichiometry, or observed molar reaction proportions between 1,3,5-tris(2-hydroxyethyl)hexahydro-s-triazine and hydrogen sulphide, to be measured for a specific field location.

  19. Foliar Spray with Vermiwash Modifies the Arbuscular Mycorrhizal Dependency and Nutrient Stoichiometry of Bhut Jolokia (Capsicum assamicum)

    Science.gov (United States)

    Gupta, Rajeev; Veer, Vijay; Singh, Lokendra; Kalita, Mohan C.

    2014-01-01

    Vermiwash (VW), a liquid extract obtained from vermicomposting beds, is used as an organic fertilizer for crop plants. The current study investigated the effect of a vermiwash foliar spray on the response of bhut jolokia (Capsicum assamicum) exposed to two different arbuscular mycorrhizal fungi (AMF: Rhizophagus irregularis, RI and G. mosseae, GM) in acidic soil under naturally ventilated greenhouse conditions. The VW spray significantly influenced the growth of plants receiving the dual treatment of AMF+VW. Plant growth was more prominent in the GM+VW treatment group than that in the RI+VW treatment group. The plant-AMF interactions in relation to growth and nutrient requirements were also significantly influenced by the application of VW. Interestingly, the VW treatment appeared to contribute more N to plants when compared to that under the AMF treatment, which led to changes in the C:N:P stoichiometry in plant shoots. Furthermore, the increased potassium dependency, as observed in the case of the dual treatments, suggests the significance of such treatments for improving crop conditions under salt stress. Overall, our study shows that the VW foliar spray modifies the response of a crop to inoculations of different AMF with regard to growth and nutrient utilization, which has implications for the selection of an efficient combination of nutrient source for improving crop growth. PMID:24651577

  20. C and P in aquatic food chain: A review on C:P stoichiometry and PUFA regulation

    Directory of Open Access Journals (Sweden)

    Saikia S.K.

    2010-09-01

    Full Text Available Carbon (C and phosphorous (P regulation in aquatic food chains are transferred from lower to upper trophic levels primarily as polyunsaturated fatty acids (PUFAs and C:P stoichiometry. The majority of C is transferred through algal based pathway. Microbial loop, though optionally contributes to C transfer, highly constrained by P limitation and bacterial predator type. Lack of essential PUFAs in bacteria is also responsible for its low trophic transfer of C. The seston size and algal taxonomic variations directly affect herbivore through P-dependent food quality and de novo synthesis of PUFAs. Change in algal community over a gradient could therefore determine C transfer. Feeding nature (herbivorous or carnivorous and predator sizes also regulate transfer efficiency of C and P to upper trophic levels. As trophic levels move up, P-limitation becomes higher compared to autotrophs. For Daphnia, as mostly studied aquatic herbivore member, P limitation becomes critical at C:P > 300 indicating excess C is not always invited under P-deficient situations. However, as a part of homeostasis mechanism for trophic upgrading, conversion of algal-zooplankton interface from qualitative to quantitative could minimize such critical C:P regulation at higher trophic levels. Protists, in turn, with high clearance rate by zooplankton predator could also compensate qualitative effect.

  1. How to make a beetle out of wood: multi-elemental stoichiometry of wood decay, xylophagy and fungivory.

    Science.gov (United States)

    Filipiak, Michał; Weiner, January

    2014-01-01

    The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates.

  2. Engineering the microstructure and magnetism of La{sub 2}CoMnO{sub 6−δ} thin films by tailoring oxygen stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Galceran, R.; Frontera, C.; Balcells, Ll.; Cisneros-Fernández, J.; López-Mir, L.; Bozzo, B.; Pomar, A.; Sandiumenge, F.; Martínez, B. [Institut de Ciència de Materials de Barcelona-CSIC, Campus UAB, E-08193 Bellaterra (Spain); Roqueta, J.; Santiso, J. [Institut Català de Nanociència i Nanotecnologia, ICN2-CSIC, Campus UAB, E-08193 Bellaterra (Spain); Bagués, N. [Institut de Ciència de Materials de Barcelona-CSIC, Campus UAB, E-08193 Bellaterra (Spain); Institut Català de Nanociència i Nanotecnologia, ICN2-CSIC, Campus UAB, E-08193 Bellaterra (Spain)

    2014-12-15

    We report on the magnetic and structural properties of ferromagnetic-insulating La{sub 2}CoMnO{sub 6−δ} thin films grown on top of (001) SrTiO{sub 3} substrates by means of RF sputtering technique. Careful structural analysis, by using synchrotron X-ray diffraction, allows identifying two different crystallographic orientations that are closely related to oxygen stoichiometry and to the features (coercive fields and remanence) of the hysteresis loops. Both Curie temperature and magnetic hysteresis turn out to be dependent on the oxygen stoichiometry. In situ annealing conditions allow tailoring the oxygen content of the films, therefore controlling their microstructure and magnetic properties.

  3. Phase stability and oxygen non-stoichiometry of SrCo0.8Fe0.2O3-d measured by in-situ neutron diffraction

    NARCIS (Netherlands)

    McIntosh, Steven; McIntosh, S.; Vente, Jaap F.; Haije, Wim G.; Blank, David H.A.; Bouwmeester, Henricus J.M.

    2006-01-01

    The phase stability, oxygen stoichiometry and expansion properties of SrCo0.8Fe0.2O3−δ (SCF) were determined by in situ neutron diffraction between 873 and 1173 K and oxygen partial pressures of 5×10−4 to 1 atm. At a pO2 of 1 atm, SCF adopts a cubic perovskite structure, space group Pm3¯m, across

  4. Selectivity and stoichiometry boosting of beta-cyclodextrin in cationic/anionic surfactant systems: when host-guest equilibrium meets biased aggregation equilibrium.

    Science.gov (United States)

    Jiang, Lingxiang; Yu, Caifang; Deng, Manli; Jin, Changwen; Wang, Yilin; Yan, Yun; Huang, Jianbin

    2010-02-18

    Cationic surfactant/anionic surfactant/beta-CD ternary aqueous systems provide a platform for the coexistence of the host-guest (beta-CD/surfactant) equilibrium and the biased aggregation (monomeric/aggregated surfactants) equilibrium. We report here that the interplay between the two equilibria dominates the systems as follows. (1) The biased aggregation equilibrium imposes an apparent selectivity on the host-guest equilibrium, namely, beta-CD has to always selectively bind the major surfactant (molar fraction > 0.5) even if binding constants of beta-CD to the pair of surfactants are quite similar. (2) In return, the host-guest equilibrium amplifies the bias of the aggregation equilibrium, that is, the selective binding partly removes the major surfactant from the aggregates and leaves the aggregate composition approaching the electroneutral mixing stoichiometry. (3) This composition variation enhances electrostatic attractions between oppositely charged surfactant head groups, thus resulting in less-curved aggregates. In particular, the present apparent host-guest selectivity is of remarkably high values, and the selectivity stems from the bias of the aggregation equilibrium rather than the difference in binding constants. Moreover, beta-CD is defined as a "stoichiometry booster" for the whole class of cationic/anionic surfactant systems, which provides an additional degree of freedom to directly adjust aggregate compositions of the systems. The stoichiometry boosting of the compositions can in turn affect or even determine microstructures and macroproperties of the systems.

  5. Effects of oxygen stoichiometry on the scaling behaviors of YBa{sub 2}Cu{sub 3}O{sub x} grain boundary weak-links

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.H.; Fu, C.M.; Jeng, W.J. [National Chiao-Tung Univ., Taiwan (China)] [and others

    1994-12-31

    The effects of oxygen stoichiometry on the transport properties of the pulsed laser deposited YBa{sub 2}Cu{sub 3}O{sub x} bicrystalline grain boundary weak-link junctions were studied. It is found that not only the cross boundary resistive transition foot structure can be manipulated repeatedly with oxygen annealling processes but the junction behaviors are also altered in accordance. In the fully oxygenated state i.e. with x=7.0 in YBa{sub 2}Cu{sub 3}O{sub x} stoichiometry, the junction critical current exhibits a power of 2 scaling behavior with temperature. In contrast, when annealed in the conditions of oxygen-deficient state (e.g. with x=6.9 in YBa{sub 2}Cu{sub 3}O{sub x} stoichiometry) the junction critical current switches to a linear temperature dependence behavior. The results are tentatively attributed to the modification of the structure in the boundary area upon oxygen annealing, which, in turn, will affect the effective dimension of the geometrically constrained weak-link bridges. The detailed discussion on the responsible physical mechanisms as well as the implications of the present results on device applications will be given.

  6. The use of NH4+ rather than NO3- affects cell stoichiometry, C allocation, photosynthesis and growth in the cyanobacterium Synechococcus sp UTEX LB 2380, only when energy is limiting

    Czech Academy of Sciences Publication Activity Database

    Ruan, Z.; Giordano, Mario

    2017-01-01

    Roč. 40, č. 2 (2017), s. 227-236 ISSN 0140-7791 Institutional support: RVO:61388971 Keywords : carbon allocation * cyanobacteria * elemental stoichiometry Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 6.173, year: 2016

  7. Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM—Instituto Politecnico Nacional, Mexico DF 07738 (Mexico); Casas Espinola, J.L. [ESFM—Instituto Politecnico Nacional, Mexico DF 07738 (Mexico); Vergara Hernandez, E. [UPIITA—Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Khomenkova, L., E-mail: khomen@ukr.net [V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, 03028 Kyiv (Ukraine); Delachat, F.; Slaoui, A. [ICube, 23 rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2 (France)

    2015-04-30

    Si-rich Silicon nitride films were grown on silicon substrates by plasma enhanced chemical vapor deposition. The film stoichiometry was controlled via the variation of NH{sub 3}/SiH{sub 4} ratio from 0.45 up to 1.0. Thermal annealing at 1100 °C for 30 min in the nitrogen flow was applied to form the Si nanocrystals in the films that have been investigated by means of photoluminescence and Raman scattering methods, as well as transmission electron microscopy. Several emission bands have been detected with the peak positions at: 2.8–3.0 eV, 2.5–2.7 eV, 2.10–2.25 eV, and 1.75–1.98 eV. The temperature dependences of photoluminescence spectra were studied with the aim to confirm the types of optical transitions and the nature of light emitting defects in silicon nitride. The former three bands were assigned to the defects in silicon nitride, whereas the last one (1.75–1.98 eV) was attributed to the exciton recombination inside of Si nanocrystals. The photoluminescence mechanism is discussed. - Highlights: • Substoichiometric silicon nitride films were grown by PECVD technique. • The variation of the NH{sub 3}/SiH{sub 4} ratio controls excess Si content in the films. • Both Si nanocrystals and amorphous Si phase were observed in annealed films. • Temperature evolution of carrier recombination via Si nanocrystals and host defects.

  8. Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, F.X. Jr.; Mustardy, L.; Gantt, E. (Univ. of Maryland, College Park (USA)); Dennenberg, R.J.; Jursinic, P.A. (Department of Agriculture, Peoria, IL (USA))

    1989-11-01

    Cells of the red alga Porphyridium cruentum (ATCC 50161) exposed to increasing growth irradiance exhibited up to a three-fold reduction in photosystems I and II (PSI and PSII) and phycobilisomes but little change in the relative numbers of these components. Batch cultures of P. cruentum were grown under four photon flux densities of continuous white light; 6 (low light LL), 35 (medium light, ML), 180 (high light, HL), and 280 (very high light, VHL) microeinsteins per square meter per second and sampled in the exponential phase of growth. Ratios of PSII to PSI ranged between 0.43 and 0.54. About three PSII centers per phycobilisome were found, regardless of growth irradiance. The phycoerythrin content of phycobilisomes decreased by about 25% for HL and VHL compared to LL and ML cultures. The unit sizes of PSI (chlorophyll/P{sub 700}) and PSII (chlorophyll/Q{sub A}) decreased by about 20% with increase in photon flux density from 6 to 280 microeinsteins per square meter per second. A threefold reduction in cell content of chlorophyll at the higher photon flux densities was accompanied by a twofold reduction in {beta}-carotene, and a drastic reduction in thylakoid membrane area. Cell content of zeaxanthin, the major carotenoid in P. cruentum, did not vary with growth irradiance, suggesting a role other than light-harvesting. HL cultures had a growth rate twice that of ML, eight times that of LL, and slightly greater than that of VHL cultures. Cell volume increased threefold from LL to VHL, but volume of the single chloroplast did not change. From this study it is evident that a relatively fixed stoichiometry of PSI, PSII, and phycobilisomes is maintained in the photosynthetic apparatus of this red alga over a wide range of growth irradiance.

  9. Cocrystals of the antimalarial drug 11-azaartemisinin with three alkenoic acids of 1:1 or 2:1 stoichiometry.

    Science.gov (United States)

    Nisar, Madiha; Wong, Lawrence W Y; Sung, Herman H Y; Haynes, Richard K; Williams, Ian D

    2018-06-01

    The stoichiometry, X-ray structures and stability of four pharmaceutical cocrystals previously identified from liquid-assisted grinding (LAG) of 11-azaartemisinin (11-Aza; systematic name: 1,5,9-trimethyl-14,15,16-trioxa-11-azatetracyclo[10.3.1.0 4,13 .0 8,13 ]hexadecan-10-one) with trans-cinnamic (Cin), maleic (Mal) and fumaric (Fum) acids are herein reported. trans-Cinnamic acid, a mono acid, forms 1:1 cocrystal 11-Aza:Cin (1, C 15 H 23 NO 4 ·C 9 H 8 O 2 ). Maleic acid forms both 1:1 cocrystal 11-Aza:Mal (2, C 15 H 23 NO 4 ·C 4 H 4 O 4 ), in which one COOH group is involved in self-catenation, and 2:1 cocrystal 11-Aza 2 :Mal (3, 2C 15 H 23 NO 4 ·C 4 H 4 O 4 ). Its isomer, fumaric acid, only affords 2:1 cocrystal 11-Aza 2 :Fum (4). All cocrystal formation appears driven by acid-lactam R 2 2 (8) heterosynthons with short O-H...O=C hydrogen bonds [O...O = 2.56 (2) Å], augmented by weaker C=O...H-N contacts. Despite a better packing efficiency, cocrystal 3 is metastable with respect to 2, probably due to a higher conformational energy for the maleic acid molecule in its structure. In each case, the microcrystalline powders from LAG were useful in providing seeding for the single-crystal growth.

  10. Isoform composition and stoichiometry of the ∼ 90-kDa heat shock protein associated with glucocorticoid receptors

    International Nuclear Information System (INIS)

    Mendel, D.B.; Orti, E.

    1988-01-01

    The authors observed that the ∼ 90-kDa non-steroid-binding component of nonactivated glucocorticoid receptors purified from WEHI-7 mouse thymoma cells (which has been identified as the ∼ 90-kDa heat shock protein) consistently migrates as a doublet during polyacrylamide gel electrophoresis under denaturing and reducing conditions. It has recently been reported that murine Meth A cells contain a tumor-specific transplantation antigen (TSTA) which is related or identical to the ∼ 90-kDa heat shock protein. The observation that TSTA and the ∼ 90-kDa heat shock protein isolated from these cells exists as two isoforms of similar molecular mass and charge has suggested that the doublet observed is also due to the existence of two isoforms. They have therefore conducted this study to determine whether TSTA and the ∼ 90-kDa component of glucocorticoid receptors are indeed related, to establish whether the receptor preferentially binds one isoform of the ∼ 90-kDa heat shock protein, and to investigate the stoichiometry of the nonactivated receptor complex. They used the BuGr1 and AC88 monoclonal antibodies to purify, respectively, receptor-associated and free ∼ 90-kDa heat shock protein from WEHI-7 cells grown for 48 h with [ 35 S]methionine to metabolically label proteins to steady state. The long-term metabolic labeling approach has also enabled them to directly determine that the purified non-activated glucocorticoid receptor contains a single steroid-binding protein and two ∼ 90-kDa non-steroid-binding subunits. The consistency with which a ∼ 1:2 stoichiometric ratio of steroid binding to ∼ 90-kDa protein is observed supports the view that the ∼ 90-kDa heat shock protein is a true component of nonactivated glucocorticoid-receptor complexes

  11. Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe.

    Science.gov (United States)

    Peng, Yunfeng; Li, Fei; Zhou, Guoying; Fang, Kai; Zhang, Dianye; Li, Changbin; Yang, Guibiao; Wang, Guanqin; Wang, Jun; Yang, Yuanhe

    2017-12-01

    Unprecedented levels of nitrogen (N) have entered terrestrial ecosystems over the past century, which substantially influences the carbon (C) exchange between the atmosphere and biosphere. Temperature and moisture are generally regarded as the major controllers over the N effects on ecosystem C uptake and release. N-phosphorous (P) stoichiometry regulates the growth and metabolisms of plants and soil organisms, thereby affecting many ecosystem C processes. However, it remains unclear how the N-induced shift in the plant N:P ratio affects ecosystem production and C fluxes and its relative importance. We conducted a field manipulative experiment with eight N addition levels in a Tibetan alpine steppe and assessed the influences of N on aboveground net primary production (ANPP), gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem exchange (NEE); we used linear mixed-effects models to further determine the relative contributions of various factors to the N-induced changes in these parameters. Our results showed that the ANPP, GEP, ER, and NEE all exhibited nonlinear responses to increasing N additions. Further analysis demonstrated that the plant N:P ratio played a dominate role in shaping these C exchange processes. There was a positive relationship between the N-induced changes in ANPP (ΔANPP) and the plant N:P ratio (ΔN:P), whereas the ΔGEP, ΔER, and ΔNEE exhibited quadratic correlations with the ΔN:P. In contrast, soil temperature and moisture were only secondary predictors for the changes in ecosystem production and C fluxes along the N addition gradient. These findings highlight the importance of plant N:P ratio in regulating ecosystem C exchange, which is crucial for improving our understanding of C cycles under the scenarios of global N enrichment. © 2017 John Wiley & Sons Ltd.

  12. RRh2Al10 (R = Ce, Yb): New intermetallic compounds in the 1 : 2 : 10 stoichiometry series

    Science.gov (United States)

    Strydom, A. M.; Djoumessi, R. F.; Blinova, M.; Tursina, A.; Nesterenko, S.; Avzuragova, V.

    2018-05-01

    The orthorhombic, space group Cmcm YbFe2Al10 structure type series of compounds are known to form with practically the entire series of rare-earth elements R, but only with the three d - electron elements Fe, Ru, and Os. The Ce-derivatives in particular have been of much interest since the first reports of their highly unusual physical properties. Classified as Kondo insulators, CeRu2Al10 and CeOs2Al10 controversially order magnetically and with uncharacteristically high Néel temperatures of ≃ 28 K. CeFe2Al10 on the other hand shows pronounced semiconducting and Kondo features but remains paramagnetic. As part of our ongoing studies into the rich physics of this class of materials we have succeeded in synthesizing new members of the 1:2:10 stoichiometry involving the chemical element Rh for the first time. CeRh2Al10 is found to crystallize in the tetragonal system with space group I41 / amd . Yb Rh2Al10 on the other hand forms in the serial Cmcm orthorhombic structure type. We discuss important similarities between the two types. At 5.310 Å the shortest Ce-Ce distance is, likewise to the situation in CeRu2Al10 and CeOs2Al10 , also well above the Hill limit of 3.40 Å. Despite the cage-like structure and large rare-earth separation distances, this study reveals the onset of long-range magnetic ordering in CeRh2Al10 at 3.9 K. The magnetic ordering develops out of an incoherent Kondo state that dominates the electrical resistivity below about 40 K.

  13. Sustained effects of volcanic ash on biofilm stoichiometry, enzyme activity and community composition in North- Patagonia streams.

    Science.gov (United States)

    Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz

    2018-04-15

    Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event

  14. Polarographic determination of uranium dioxide stoichiometry; La determination polarographique de la stoechiometrie du dioxyde d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Viguie, J.; Uny, G. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Grenoble, 38 (France)

    1966-10-01

    The method described allows the determination of small deviations from stoichiometry for uranium dioxide. It was applied to the study of surface oxidation of bulk samples. The sample is dissolved in phosphoric acid under an argon atmosphere; U(VI) is determined by polarography in PO{sub 4}H{sub 3} 4.5 N - H{sub 2}SO{sub 4} 4 N. U(IV) is determined by potentiometry. The detection limit is UO{sub 2,0002}. The accuracy for a single determination at the 95% confidence level is {+-}20 per cent for samples with composition included between UO{sub 2,001} and UO{sub 2,01}. (authors) [French] La methode decrite permet de determiner les faibles ecarts a la stoechiometrie du dioxyde d'uranium. Elle a ete appliquee a l'etude de l'oxydation superficielle des echantillons. La mise en solution s'effectue dans l'acide phosphorique concentre sous atmosphere d'argon; U(VI) est dose par polarographie dans le milieu PO{sub 4}H{sub 3} 4,5 N et H{sub 2}SO{sub 4} 4 N; U(IV) est dose par potentiometrie. La limite de detection est UO{sub 2,0002}. La precision obtenue pour une determination au taux de certitude 0,95 est de l'ordre de 20 pour cent pour des echantillons dont la teneur est comprise entre UO{sub 2,001} et UO{sub 2,01}. (auteurs)

  15. Influence of chronic alcoholism and oestrogen deficiency on the variation of stoichiometry of hydroxyapatite within alveolar bone crest of rats.

    Science.gov (United States)

    Marchini, Adriana M P S; Deco, Camila P; Lodi, Karina B; Marchini, Leonardo; Santo, Ana M E; Rocha, Rosilene F

    2012-10-01

    Previous findings suggest that chronic alcoholism and oestrogenic deficiency may affect bones in general (including alveolar bone) and increase individuals' susceptibility to the development of periodontal disease. The aim of this study was to assess possible alterations in the chemical composition of alveolar bone in rats subjected to chronic alcoholism, oestrogen deficiency or both. Fifty-four rats were initially divided into two groups: ovariectomized (Ovx), and Sham operated (Sham). A month after surgery, the groups were sub-divided and received the following dietary intervention for eight weeks: 20% alcohol, isocaloric diet and ad libitum diet. Samples of the mandible, in the alveolar bone crest region, were analyzed to verify possible changes in the stoichiometric composition of bone hydroxyapatite, by measuring the relationship between the concentration of calcium and phosphorus (Ca/P ratios), using micro X-ray fluorescence spectrometry. The ad libitum groups presented the highest average values of Ca/P ratios, while the groups with dietary restrictions presented the smallest average values. The Ovx ad libitum group presented the highest values of Ca/P ratios (2.03 ± 0.04). However, these values were not considered statistically different (p>0.05) from the Sham ad libitum group (2.01 ± 0.01). The Ovx alcohol group presented lower values for Ca/P ratios (1.92 ± 0.06), being the only group statistically different (palcohol consumption at 20% significantly changed the stoichiometry composition of hydroxyapatite in the alveolar bone crest, leading to a reduction in Ca/P ratios. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Structure and stoichiometry

    International Nuclear Information System (INIS)

    Gai, P.L.

    1992-01-01

    Structural and stoichiometric variations and their role in superconducting properties of bulk cuprate ceramics are elucidated. Atomic structure and chemistry of defect microstructures, including vacancy and interstitial defects, weak-link problems, structural modulations and coherent intergrowths leading to new structures are studies and quantitatively interpreted. They are shown to play a critical role in controlling hole concentration, critical currents and flux pinning. These phenomena underpin the solid state chemistry which determines the physical properties of the nonstoichiometric oxide superconductors. In this paper technological implications, synthesis of related novel materials and recent developments are discussed

  17. [Leaf nitrogen and phosphorus stoichiometry of shrubland plants in the rocky desertification area of Southwestern Hunan, China.

    Science.gov (United States)

    Jing, Yi Ran; Deng, Xiang Wen; Wei, Hui; Li, Yan Qiong; Deng, Dong Hua; Liu, Hao Jian; Xiang, Wen Hua

    2017-02-01

    In this paper, we took the leaves of shrubland plants in rocky desertification area in Southwestern Hunan as the research object to analyze the nitrogen (N) and phosphorus (P) stoichiometry characteristics for different functional groups and different grades of rocky desertification, i.e., light rocky desertification (LRD), moderate rocky desertification (MRD) and intense rocky desertification (IRD). The results showed that the average contents of N and P were 12.89 and 1.19 g·kg -1 , respectively, and N/P was 11.24 in common shrubland plants in the study area, which indicated that the growth of most plants were mainly limited by N. The content of N was declined in order of deciduous shrubs > evergreen shrubs > annual herbs > perennial herbs. The content of P and N/P were higher in deciduous shrubs than in perennial herbs. Significant differences were found among the main families of plants in terms of the contents of N, P and N/P in the study sites. The plants of Gramineae had the lowest contents of N and P, andtheir growth was mostly restricted by N, while Leguminosae had the highest content of N and N/P, and their productivity was majorly controlled by P. The contents of N and P in the leaves were significantly higher in dicotyledon plants and C3 plants than in monocotyledon plants and C4 plants, but the N/P was not significantly diffe-rent between these two plant categories. The nitrogen-fixing plants had higher content of N and N/P than the non-nitrogen-fixing plants, but the P content was not significantly different between these two plant groups. There were significant correlations between contents of N and P, N/P and N in all study plots. No significant correlation was found between N/P and P content in the examined rocky desertification sites, except for that in MRD. There were no significant differences of the contents of N, P and N/P under different grades of rocky desertification.

  18. GLT-1 Transport Stoichiometry Is Constant at Low and High Glutamate Concentrations when Chloride Is Substituted by Gluconate.

    Directory of Open Access Journals (Sweden)

    Anatoli Y Kabakov

    Full Text Available Glutamate is the major excitatory neurotransmitter, but prolonged exposure even at micromolar concentrations causes neuronal death. Extracellular glutamate is maintained at nanomolar level by glutamate transporters, which, however, may reverse transport and release glutamate. If and when the reverse occurs depends on glutamate transport stoichiometry (GTS. Previously we found that in the presence of chloride, the coupled GLT-1 glutamate transporter current and its relationship to radiolabeled glutamate flux significantly decreased when extracellular glutamate concentration increased above 0.2 mM, which implies a change in GTS. Such high concentrations are feasible near GLT-1 expressed close to synaptic release site during excitatory neurotransmission. The aim of this study was to determine GLT-1 GTS at both low (19-75 μM and high (300-1200 μM glutamate concentration ranges. GTS experiments were conducted in the absence of chloride to avoid contributions by the GLT-1 uncoupled chloride conductance. Mathematical analysis of the transporter thermodynamic equilibrium allowed us to derive equations revealing the number of a particular type of ion transported per elementary charge based on the measurements of the transporter reversal potential. We found that GLT-1a expressed in COS-7 cells co-transports 1.5 Na+, 0.5 Glu-, 0.5 H+ and counter-transports 0.6 K+ per elementary charge in both glutamate concentration ranges, and at both 37°C and 26°C temperatures. The thermodynamic parameter Q10 = 2.4 for GLT-1 turnover rate of 19 s-1 (37°C, -50 mV remained constant in the 10 μM-10 mM glutamate concentration range. Importantly, the previously reported decrease in the current/flux ratio at high glutamate concentration was not seen in the absence of chloride in both COS-7 cells and cultured rat neurons. Therefore, only in the absence of chloride, GLT-1 GTS remains constant at all glutamate concentrations. Possible explanations for why apparent GTS might

  19. Carbon, nitrogen, and phosphorus stoichiometry of plankton and the nutrient regime in Cabo Frio Bay, SE Brazil.

    Science.gov (United States)

    Kütter, Vinicius T; Wallner-Kersanach, Monica; Sella, Silvia M; Albuquerque, Ana Luiza S; Knoppers, Bastiaan A; Silva-Filho, Emmanoel V

    2014-01-01

    This long-term study, performed during the years 2003-2005 and 2008-2009, investigated the carbon (C), nitrogen (N), and phosphorus (P) contents of the phyto- and zooplankton communities and the nutrient regime of Cabo Frio Bay, SE Brazil. The information intends to serve as baseline of the plankton C, N, and P stoichiometry for the calibration of biogeochemical and ecological models in support to future findings related to the local and regional phenomena of climatic change. Cabo Frio Bay is a small semienclosed system set adjacent to a region subject to sporadic coastal upwelling. Zooplankton exhibited average annual C, N, and P contents of 11.6 ± 6.9 %, 2.8 ± 1.8 %, and 0.18 ± 0.08 %, and phytoplankton (>20 μm) 6.8 ± 6.0 %, 1.6 ± 1.5 %, and 0.09 ± 0.08 %, respectively. The C/N/P ratios correspond to the lowest already found to date for a marine environment. The low C contents must have been brought about by a predominance of gelatinous zooplankton, like Doliolids/ Salps and also Pteropods. Average annual nutrient concentrations in the water were 0.21 ± 0.1 μM for phosphate, 0.08 ± 0.1 μM for nitrite, 0.74 ± 1.6 μM for nitrate, and 1.27 ± 1.1 μM for ammonium. N/P ratios were around 8:1 during the first study period and 12:1 during the second. The plankton C/N/P and N/P nutrient ratios and elemental concentrations suggest that the system was oligotrophic and nitrogen limited. The sporadic intrusions of upwelling waters during the first study period had no marked effect upon the systems metabolism, likely due to dilution effects and the short residence times of water of the bay.

  20. Microbial C:P stoichiometry is shaped by redox conditions along an elevation gradient in humid tropical rainforests

    Science.gov (United States)

    Lin, Y.; Gross, A.; Silver, W. L.

    2017-12-01

    Elemental stoichiometry of microorganisms is intimately related to ecosystem carbon and nutrient fluxes and is ultimately controlled by the chemical (plant tissue, soil, redox) and physical (temperature, moisture, aeration) environment. Previous meta-analyses have shown that the C:P ratio of soil microbial biomass exhibits significant variations among and within biomes. Little is known about the underlying causes of this variability. We examined soil microbial C:P ratios along an elevation gradient in the Luquillo Experimental Forest in Puerto Rico. We analyzed soils from mixed forest paired with monodominant palm forest every 100 m from 300 m to 1000 m a.s.l.. Mean annual precipitation increased with increasing elevation, resulting in stronger reducing conditions and accumulation of soil Fe(II) at higher elevations. The mean value and variability of soil microbial C:P ratios generally increased with increasing elevation except at 1000 m. At high elevations (600-900 m), the average value of microbial C:P ratio (108±10:1) was significantly higher than the global average ( 55:1). We also found that soil organic P increased with increasing elevation, suggesting that an inhibition of organic P mineralization, not decreased soil P availability, may cause the high microbial C:P ratio. The soil microbial C:P ratio was positively correlated with soil HCl-extractable Fe(II), suggesting that reducing conditions may be responsible for the elevational changes observed. In a follow-up experiment, soils from mixed forests at four elevation levels (300, 500, 700, and 1000 m) were incubated under aerobic and anaerobic conditions for two weeks. We found that anaerobic incubation consistently increased the soil microbial C:P ratio relative to the aerobic incubation. Overall, our results indicate that redox conditions can shift the elemental composition of microbial biomass. The high microbial C:P ratios induced under anoxic conditions may reflect inhibition of microbial P

  1. EM structure of a helicase-loader complex depicting a 6:2 binding sub-stoichiometry from Geobacillus kaustophilus HTA426

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yen-Chen [Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan (China); Naveen, Vankadari [Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan (China); Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Hsiao, Chwan-Deng, E-mail: hsiao@gate.sinica.edu.tw [Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan (China); Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China)

    2016-04-22

    During DNA replication, bacterial helicase is recruited as a complex in association with loader proteins to unwind the parental duplex. Previous structural studies have reported saturated 6:6 helicase-loader complexes with different conformations. However, structural information on the sub-stoichiometric conformations of these previously-documented helicase-loader complexes remains elusive. Here, with the aid of single particle electron-microscopy (EM) image reconstruction, we present the Geobacillus kaustophilus HTA426 helicase-loader (DnaC-DnaI) complex with a 6:2 binding stoichiometry in the presence of ATPγS. In the 19 Å resolution EM map, the undistorted and unopened helicase ring holds a robust loader density above the C-terminal RecA-like domain. Meanwhile, the path of the central DNA binding channel appears to be obstructed by the reconstructed loader density, implying its potential role as a checkpoint conformation to prevent the loading of immature complex onto DNA. Our data also reveals that the bound nucleotides and the consequently induced conformational changes in the helicase hexamer are essential for active association with loader proteins. These observations provide fundamental insights into the formation of the helicase-loader complex in bacteria that regulates the DNA replication process. - Highlights: • Helicase-loader complex structure with 6:2 sub-stoichiometry is resolved by EM. • Helicase hexamer in 6:2 sub-stoichiometry is constricted and un-opened. • 6:2 binding ratio of helicase-loader complex could act as a DNA loading checkpoint. • Nucleotides stabilize helicase-loader complex at low protein concentrations.

  2. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  3. EM structure of a helicase-loader complex depicting a 6:2 binding sub-stoichiometry from Geobacillus kaustophilus HTA426

    International Nuclear Information System (INIS)

    Lin, Yen-Chen; Naveen, Vankadari; Hsiao, Chwan-Deng

    2016-01-01

    During DNA replication, bacterial helicase is recruited as a complex in association with loader proteins to unwind the parental duplex. Previous structural studies have reported saturated 6:6 helicase-loader complexes with different conformations. However, structural information on the sub-stoichiometric conformations of these previously-documented helicase-loader complexes remains elusive. Here, with the aid of single particle electron-microscopy (EM) image reconstruction, we present the Geobacillus kaustophilus HTA426 helicase-loader (DnaC-DnaI) complex with a 6:2 binding stoichiometry in the presence of ATPγS. In the 19 Å resolution EM map, the undistorted and unopened helicase ring holds a robust loader density above the C-terminal RecA-like domain. Meanwhile, the path of the central DNA binding channel appears to be obstructed by the reconstructed loader density, implying its potential role as a checkpoint conformation to prevent the loading of immature complex onto DNA. Our data also reveals that the bound nucleotides and the consequently induced conformational changes in the helicase hexamer are essential for active association with loader proteins. These observations provide fundamental insights into the formation of the helicase-loader complex in bacteria that regulates the DNA replication process. - Highlights: • Helicase-loader complex structure with 6:2 sub-stoichiometry is resolved by EM. • Helicase hexamer in 6:2 sub-stoichiometry is constricted and un-opened. • 6:2 binding ratio of helicase-loader complex could act as a DNA loading checkpoint. • Nucleotides stabilize helicase-loader complex at low protein concentrations.

  4. The stoichiometry of the TMEM16A ion channel determined in intact plasma membranes of COS-7 cells using liquid-phase electron microscopy.

    Science.gov (United States)

    Peckys, Diana B; Stoerger, Christof; Latta, Lorenz; Wissenbach, Ulrich; Flockerzi, Veit; de Jonge, Niels

    2017-08-01

    TMEM16A is a membrane protein forming a calcium-activated chloride channel. A homodimeric stoichiometry of the TMEM16 family of proteins has been reported but an important question is whether the protein resides always in a dimeric configuration in the plasma membrane or whether monomers of the protein are also present in its native state within in the intact plasma membrane. We have determined the stoichiometry of the human (h)TMEM16A within whole COS-7 cells in liquid. For the purpose of detecting TMEM16A subunits, single proteins were tagged by the streptavidin-binding peptide within extracellular loops accessible by streptavidin coated quantum dot (QD) nanoparticles. The labeled proteins were then imaged using correlative light microscopy and environmental scanning electron microscopy (ESEM) using scanning transmission electron microscopy (STEM) detection. The locations of 19,583 individual proteins were determined of which a statistical analysis using the pair correlation function revealed the presence of a dimeric conformation of the protein. The amounts of detected label pairs and single labels were compared between experiments in which the TMEM16A SBP-tag position was varied, and experiments in which tagged and non-tagged TMEM16A proteins were present. It followed that hTMEM16A resides in the plasma membrane as dimer only and is not present as monomer. This strategy may help to elucidate the stoichiometry of other membrane protein species within the context of the intact plasma membrane in future. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Determination of stoichiometry and concentration of trace elements in thin BaxSr1-xTiO3 perovskite layers.

    Science.gov (United States)

    Becker, J S; Boulyga, S F

    2001-07-01

    This paper describes an analytical procedure for determining the stoichiometry of BaxSr1-xTiO3 perovskite layers using inductively coupled plasma mass spectrometry (ICP-MS). The analytical results of mass spectrometry measurements are compared to those of X-ray fluorescence analysis (XRF). The performance and the limits of solid-state mass spectrometry analytical methods for the surface analysis of thin BaxSr1-xTiO3 perovskite layers sputtered neutral mass spectrometry (SNMS)--are investigated and discussed.

  6. Production, partitioning and stoichiometry of organic matter under variable nutrient supply during mesocosm experiments in the tropical Pacific and Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    J. M. S. Franz

    2012-11-01

    Full Text Available Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ, are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N and increasing release of sediment-bound phosphate (P into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP and particulate (POC, PON, POP organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and

  7. Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1-xSrx)(y)MnO3 +/-delta

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2000-01-01

    model, based on delocalised electrons, electron holes and all B-ions being trivalent is given in Appendix A. The sequential mathematical method allows us to calculate the high temperature oxygen partial pressure dependent properties of (La1-xSrx)(y)MnO3+/-delta in a unified manner irrespective...... are calculated by the small polaron model containing only ionic species - the B-ion may be Mn-B' (Mn2+), Mn-B(x) (Mn3+), and Mn-B(Mn4+). The A/B-ratio = y greatly influences the oxygen stoichiometry, oxygen ion vacancy- and cation vacancy concentrations and the total conductivity. Calculations are given...

  8. Comparing the Ecological Stoichiometry in Green and Brown Food Webs – A Review and Meta-analysis of Freshwater Food Webs

    Directory of Open Access Journals (Sweden)

    Michelle A. Evans-White

    2017-06-01

    Full Text Available The framework of ecological stoichiometry was developed primarily within the context of “green” autotroph-based food webs. While stoichiometric principles also apply in “brown” detritus-based systems, these systems have been historically understudied and differ from green ones in several important aspects including carbon (C quality and the nutrient [nitrogen (N and phosphorus (P] contents of food resources for consumers. In this paper, we review work over the last decade that has advanced the application of ecological stoichiometry from green to brown food webs, focusing on freshwater ecosystems. We first review three focal areas where green and brown food webs differ: (1 bottom–up controls by light and nutrient availability, (2 stoichiometric constraints on consumer growth and nutritional regulation, and (3 patterns in consumer-driven nutrient dynamics. Our review highlights the need for further study of how light and nutrient availability affect autotroph–heterotroph interactions on detritus and the subsequent effects on consumer feeding and growth. To complement this conceptual review, we formally quantified differences in stoichiometric principles between green and brown food webs using a meta-analysis across feeding studies of freshwater benthic invertebrates. From 257 datasets collated across 46 publications and several unpublished studies, we compared effect sizes (Pearson’s r of resource N:C and P:C on growth, consumption, excretion, and egestion between herbivorous and detritivorous consumers. The meta-analysis revealed that both herbivore and detritivore growth are limited by resource N:C and P:C contents, but effect sizes only among detritivores were significantly above zero. Consumption effect sizes were negative among herbivores but positive for detritivores in the case of both N:C and P:C, indicating distinct compensatory feeding responses across resource stoichiometry gradients. Herbivore P excretion rates responded

  9. The stoichiometry of synthetic alunite as a function of hydrothermal aging investigated by solid-state NMR spectroscopy, powder X-ray diffraction and infrared spectroscopy

    DEFF Research Database (Denmark)

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-01-01

    The stoichiometry of a series of synthetic alunite (nominally KAl3(SO4)2(OH)6) samples prepared by hydrothermal methods as a function of reaction time (1 – 31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic...... of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7-10 % impurities in the samples....

  10. Synthesis, growth, and studies (crystal chemistry, magnetic chemistry) of actinide-based intermetallic compounds and alloys with a 1.1.1 stoichiometry

    International Nuclear Information System (INIS)

    Kergadallan, Yann

    1993-01-01

    The first part of this research thesis reports the study of the synthesis and reactivity of intermetallic compounds with a 1.1.1 stoichiometry. It presents the thermal properties of 1.1.1 compounds: general presentation of physical transitions, and of solid solutions and formation heat, application to actinides (reactivity analysis from phase diagrams, techniques of crystal synthesis and crystal growth. It describes experimental techniques: synthesis, determination of fusion temperature by dilatometry, methods used for crystal growth, characterisation techniques (metallography, X ray diffraction on powders, dilatometry). It discusses the obtained results in terms of characterisation of synthesised samples, of crystal growth, and of measurements of fusion temperature. The second part addresses crystal chemistry studies: structure of compounds with a 1.1.1 stoichiometry (Laves structures, Zr, Ti and Pu compounds), techniques of analysis by X-ray diffraction (on powders and on single crystals), result interpretation (UNiX compounds, AnTAl compounds with T being a metal from group VIII, AnTGa compounds, AnNiGe compounds, distance comparison, structure modifications under pressure). The third part concerns physical issues. The author addresses the following topics: physical properties of intermetallic 1.1.1 compounds (magnetism of yttrium phases, behaviour of uranium-based Laves phases, analysis of pseudo-binary diagrams, physical characteristics of uranium-based 1.1.1 compounds, predictions of physical measurements), analysis techniques (Moessbauer spectroscopy, SQUID for Superconducting Quantum Interference Device), and result interpretation

  11. Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply.

    Science.gov (United States)

    Gulis, Vladislav; Kuehn, Kevin A; Schoettle, Louie N; Leach, Desiree; Benstead, Jonathan P; Rosemond, Amy D

    2017-12-01

    Aquatic fungi mediate important energy and nutrient transfers in freshwater ecosystems, a role potentially altered by widespread eutrophication. We studied the effects of dissolved nitrogen (N) and phosphorus (P) concentrations and ratios on fungal stoichiometry, elemental homeostasis, nutrient uptake and growth rate in two experiments that used (1) liquid media and a relatively recalcitrant carbon (C) source and (2) fungi grown on leaf litter in microcosms. Two monospecific fungal cultures and a multi-species assemblage were assessed in each experiment. Combining a radioactive tracer to estimate fungal production (C accrual) with N and P uptake measurements provided an ecologically relevant estimate of mean fungal C:N:P of 107:9:1 in litter-associated fungi, similar to the 92:9:1 obtained from liquid cultures. Aquatic fungi were found to be relatively homeostatic with respect to their C:N ratio (~11:1), but non-homeostatic with respect to C:P and N:P. Dissolved N greatly affected fungal growth rate and production, with little effect on C:nutrient stoichiometry. Conversely, dissolved P did not affect fungal growth and production but controlled biomass C:P and N:P, probably via luxury P uptake and storage. The ability of fungi to immobilize and store excess P may alter nutrient flow through aquatic food webs and affect ecosystem functioning.

  12. Stoichiometry and local bond configuration of In{sub 2}S{sub 3}:Cl thin films by Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Juma, Albert O., E-mail: jumaa@biust.ac.bw

    2016-10-15

    In{sub 2}S{sub 3} thin films deposited using chemical methods always contain residual elements from the precursors, which modify their properties. As buffer layers in solar cells, the residual elements in the In{sub 2}S{sub 3} layer affect the performance of these devices. The stoichiometry of In{sub 2}S{sub 3} thin films deposited by spray ion layer gas reaction (ILGAR) was studied as a function of the residual Cl from InCl{sub 3} precursor by varying the deposition parameters. The chemical formula was deduced from the elemental composition determined using Rutherford backscattering (RBS). Incomplete sulfurization of the precursor implies that residual Cl{sup −} remains bonded to the In{sup 3+} ions while some occupy interstitial and/or antisite positions in the In{sub 2}S{sub 3} matrix. This results in thin films with different stoichiometry, described by the formula In{sub 4}S{sub 6−x}Cl{sub 2x+2y}. This changes the local bond configuration and geometry and underpins the influence of residual Cl on the physical properties of In{sub 2}S{sub 3} thin films.

  13. [Characteristics of 'salt island' and 'fertile island' for Tamarix chinensis and soil carbon, nitrogen and phosphorus ecological stoichiometry in saline-alkali land].

    Science.gov (United States)

    Zhang, Li-hua; Chen, Xiao-bing

    2015-03-01

    To clarify the nutrient characteristics of 'salt island' and 'fertile island' effects in saline-alkali soil, the native Tamarix chinensis of the Yellow River Delta (YRD) was selected to measure its soil pH, electrical conductivity (EC), organic carbon (SOC), total nitrogen (N), total phosphorus (P) and their stoichiometry characteristics at different soil depths. The results showed that soil pH and EC increased with the increasing soil depth. Soil EC and P in the 0-20 cm layer decreased and increased from canopied area to interspace, respectively. SOC, N, N/P and C/P in the 20-40 cm soil layer decreased, and C/N increased from the shrub center to interspace. SOC and N contents between island and interspace both decreased but P content decreased firstly and then increased with the increasing soil depth. Soil pH correlated positively with EC. In addition, pH and EC correlated negatively with C, N, P contents and their ecological stoichiometry.

  14. Stoichiometry and phase purity control of radio frequency magnetron sputter deposited Ba0.45Sr0.55TiO3 thin films for tunable devices

    Science.gov (United States)

    Alema, Fikadu; Reinholz, Aaron; Pokhodnya, Konstantin

    2013-11-01

    The systematic study of the oxygen partial pressure (OPP) and total chamber gas pressure (TGP) effects on the stoichiometry and crystal structure of rf sputtered Ba0.45Sr0.55TiO3 (BST) films and their phase purity allowed identifying close to optimal sputtering parameters for BST single phase polycrystalline film. The film with a Ba/Sr ratio equal to that of the source target and (Ba + Sr)/Ti ratio close to unity demonstrated the enhanced permittivity value of 553 and tunability of 69%. It was confirmed that the increase of TGP enables better match of the film and target stoichiometry. However, using O2/Ar ratio as a parameter should be utilized cautiously since exceeding a threshold OPP (2 mTorr in our case) may facilitate secondary phase formation. Relatively large dielectric losses were observed in both films sputtered at high (30 mTorr) and low (5 mTor) TGPs. The presence of oxygen vacancies was identified as a probable cause of losses, which is indirectly confirmed by the deviation of the film lattice constant from that of the bulk target.

  15. Improvements of uniformity and stoichiometry for zone-leveling Czochralski growth of MgO-doped LiNbO3 crystals

    International Nuclear Information System (INIS)

    Tsai, C.B.; Hsu, W.T.; Shih, M.D.; Tai, C.Y.; Hsieh, C.K.; Hsu, W.C.; Hsu, R.T.; Lan, C.W.

    2006-01-01

    The zone-leveling Czochralski (ZLCz) technique is a continuous feeding process and can be used for the growth of near-stoichiometric lithium niobate (SLN) single crystals. However, the finite crucible length can cause the variation of the zone length and thus the composition and stoichiometry, especially in the growth of a large diameter crystal. To solve the problems, several approaches were proposed for the growth of 4 cm-diameter 1 mol% MgO-doped SLN. The modification of the hot zone to minimize the zone variation was found useful for the uniformity, but the stoichiometry was inadequate even with the zone composition up to 60 mol% Li 2 O. A Li-excess feed was further used and a good Li/Nb ratio was obtained. Adding K 2 O (16 mol%) into the solution zone was useful as well, but it was inferior to using the Li-excess feed. In addition, a much lower growth rate was needed for getting an inclusion-free crystal

  16. Effects of taxonomy, sediment, and water column on C:N:P stoichiometry of submerged macrophytes in Yangtze floodplain shallow lakes, China.

    Science.gov (United States)

    Su, Haojie; Wu, Yao; Xie, Ping; Chen, Jun; Cao, Te; Xia, Wulai

    2016-11-01

    Carbon (C), nitrogen (N) and phosphorus (P) are the three most important essential elements limiting growth of primary producers. Submerged macrophytes generally absorb nutrients from sediments by root uptake. However, the C:N:P stoichiometric signatures of plant tissue are affected by many additional factors such as taxonomy, nutrient availability, and light availability. We first revealed the relative importance of taxonomy, sediment, and water column on plant C:N:P stoichiometry using variance partitioning based on partial redundancy analyses. Results showed that taxonomy was the most important factor in determining C:N:P stoichiometry, then the water column and finally the sediment. In this study, a significant positive relationship was found between community C concentration and macrophyte community biomass, indicating that the local low C availability in macrophytes probably was the main reason why submerged macrophytes declined in Yangtze floodplain shallow lakes. Based on our study, it is suggested that submerged macrophytes in Yangtze floodplain shallow lakes are primarily limited by low light levels rather than nutrient availability.

  17. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems

    International Nuclear Information System (INIS)

    Huang Wenjuan; Zhou Guoyi; Liu Juxiu; Zhang Deqiang; Xu Zhihong; Liu Shizhong

    2012-01-01

    The effects of elevated carbon dioxide (CO 2 ) and nitrogen (N) addition on foliar N and phosphorus (P) stoichiometry were investigated in five native tree species (four non-N 2 fixers and one N 2 fixer) in open-top chambers in southern China from 2005 to 2009. The high foliar N:P ratios induced by high foliar N and low foliar P indicate that plants may be more limited by P than by N. The changes in foliar N:P ratios were largely determined by P dynamics rather than N under both elevated CO 2 and N addition. Foliar N:P ratios in the non-N 2 fixers showed some negative responses to elevated CO 2 , while N addition reduced foliar N:P ratios in the N 2 fixer. The results suggest that N addition would facilitate the N 2 fixer rather than the non-N 2 fixers to regulate the stoichiometric balance under elevated CO 2 . - Highlights: ► Five native tree species in southern China were more limited by P than by N. ► Shifts in foliar N:P ratios were driven by P dynamic under the global change. ► N addition lowered foliar N:P ratios in the N 2 fixer under elevated CO 2 . - N addition could facilitate the N 2 fixer rather than the non-N 2 fixers to regulate foliar N and P stoichiometry under elevated CO 2 in subtropical forests.

  18. Oxygen Non-Stoichiometry and Electrical Conductivity of LA0.2Sr0.8Fe0.8B0.2O3-d, B = Fe, Ti, Ta

    NARCIS (Netherlands)

    Lohne, O.F.; Phung, T.N.; Grande, T.; Bouwmeester, Henricus J.M.; Hendriksen, P.V.; Sogaard, M.; Wiik, K.

    2014-01-01

    The oxygen non-stoichiometry was determined by coulometric titration for the perovskite oxides La0.2Sr0.8FeO3−δ and La0.2Sr0.8Fe0.8B0.2O3−δ (B = Ti4+ and Ta5+) in the temperature range 600 ◦C ≤ T ≤ 900 ◦C and the oxygen partial pressure range: 1 · 10−15 ≤ pO2 ≤ 0.209 atm. The non-stoichiometry (δ)

  19. Soil carbon, nitrogen, and phosphorus stoichiometry of three dominant plant communities distributed along a small-scale elevation gradient in the East Dongting Lake

    Science.gov (United States)

    Hu, Cong; Li, Feng; Xie, Yong-hong; Deng, Zheng-miao; Chen, Xin-sheng

    2018-02-01

    Soil carbon (C), nitrogen (N), and phosphorus (P) stoichiometry greatly affects plant community succession and structure. However, few studies have examined the soil stoichiometric changes in different vegetation communities of freshwater wetland ecosystems along an elevation gradient distribution. In the present study, soil nutrient concentrations (C, N, and P), soil stoichiometry (C:N, C:P, and N:P ratios), and other soil physicochemical characteristics were measured and analyzed in 62 soil samples collected from three dominant plant communities (Carex brevicuspis, Artemisia selengensis, and Miscanthus sacchariflorus) in the East Dongting Lake wetlands. The concentration ranges of soil organic carbon (SOC), total soil nitrogen (TN), and total soil phosphorus (TP) were 9.42-45.97 g/kg, 1.09-5.50 g/kg, and 0.60-1.70 g/kg, respectively. SOC and TN concentrations were the highest in soil from the C. brevicuspis community (27.48 g/kg and 2.78 g/kg, respectively) and the lowest in soil from the A. selengensis community (17.97 g/kg and 1.71 g/kg, respectively). However, the highest and lowest TP concentrations were detected in soil from the A. selengensis (1.03 g/kg) and M. sacchariflorus (0.89 g/kg) communities, respectively, and the C:N ratios were the highest and lowest in soil from the M. sacchariflorus (12.72) and A. selengensis (12.01) communities, respectively. C:P and N:P ratios were the highest in soil from the C. brevicuspis community (72.77 and 6.46, respectively) and the lowest in soil from the A. selengensis community (45.52 and 3.76, respectively). Correlation analyses confirmed that SOC concentrations were positively correlated with TN and TP, and C:N and N:P ratios were positively correlated with C:P. These data indicated that soil C, N, and P stoichiometry differed significantly among different plant communities and that these differences might be accounted for by variations in the hydrological conditions of the three communities.

  20. Oxygen stoichiometry shift of irradiated LWR-fuels at high burn-ups: Review of data and alternative interpretation of recently published results

    International Nuclear Information System (INIS)

    Spino, J.; Peerani, P.

    2008-01-01

    The available oxygen potential data of LWR-fuels by the EFM-method have been reviewed and compared with thermodynamic data of equivalent simulated fuels and mixed oxide systems, combined with the analysis of lattice parameter data. Up to burn-ups of 70-80 GWd/tM the comparison confirmed traditional predictions anticipating the fuels to remain quasi stoichiometric along irradiation. However, recent predictions of a fuel with average burn-up around 100 GWd/tM becoming definitely hypostoichiometric were not confirmed. At average burn-ups around 80 GWd/tM and above, it is shown that the fuels tend to acquire progressively slightly hyperstoichiometric O/M ratios. The maximum derived O/M ratio for an average burn-up of 100 GWd/tM lies around 2.001 and 2.002. Though slight, the stoichiometry shift may have a measurable accelerating impact on fission gas diffusion and release

  1. Impact of cation stoichiometry on the early stage of growth of SrTiO{sub 3} deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chencheng, E-mail: c.xu@fz-juelich.de; Moors, Marco; Dittmann, Regina

    2015-12-30

    Highlights: • Stoichiometry dependence of SrTiO{sub 3} sub-monolayer growth monitored by RHEED/AFM. • Reduced surface diffusion of non-stoichiometric SrTiO{sub 3} was detected. • A modified step density model correlates surface diffusion and RHEED minimum. - Abstract: By performing in situ growth studies during pulsed laser deposition, we observed a strong reduction of the surface diffusion coefficients for slightly non-stoichiometric SrTiO{sub 3}. Both, stoichiometric and non-stoichiometric thin films exhibit 2D layer by layer growth. However, in the non-stoichiometric case the 2D island coalescence is significantly delayed, which goes along with a shift of the reflection high electron energy diffraction (RHEED) minimum. We could explain this shift of the RHEED minimum by developing a model for the step density evolution taking into account finite surface diffusion.

  2. Correlation of the superconducting transition to oxygen stoichiometry in single-crystal Ba1-xKxBiO3-y

    Science.gov (United States)

    Mosley, W. D.; Dykes, J. W.; Klavins, P.; Shelton, R. N.; Sterne, P. A.; Howell, R. H.

    1993-07-01

    Temperature-dependent positron-lifetime experiments have been performed from room temperature to 15 K on single crystals of the oxide superconductor Ba1-xKxBiO3-y. Results indicate that the filling of oxygen vacancies has a marked impact on the superconducting properties of this system. Cation defect concentrations were below the detectable limit of positron-annihilation-analysis techniques in this material, which is in sharp contrast to identical studies on polycrystalline samples. We find that the positron lifetime in these electrochemically deposited single crystals is determined by the oxygen stoichiometry of the lattice, but there is no experimental signature of strong positron localization. By performing a subsequent oxygen anneal on the crystals, the superconducting transition is sharpened and the onset is raised. The observed change in positron lifetime associated with this annealing procedure is in quantitative agreement with theory.

  3. Unusual stoichiometry control in the atomic layer deposition of manganese borate films from manganese bis(tris(pyrazolyl)borate) and ozone

    International Nuclear Information System (INIS)

    Klesko, Joseph P.; Bellow, James A.; Saly, Mark J.; Winter, Charles H.; Julin, Jaakko; Sajavaara, Timo

    2016-01-01

    The atomic layer deposition (ALD) of films with the approximate compositions Mn 3 (BO 3 ) 2 and CoB 2 O 4 is described using MnTp 2 or CoTp 2 [Tp = tris(pyrazolyl)borate] with ozone. The solid state decomposition temperatures of MnTp 2 and CoTp 2 are ∼370 and ∼340 °C, respectively. Preparative-scale sublimations of MnTp 2 and CoTp 2 at 210 °C/0.05 Torr afforded >99% recoveries with <0.1% nonvolatile residues. Self-limited ALD growth was demonstrated at 325 °C for MnTp 2 or CoTp 2 with ozone as the coreactant. The growth rate for the manganese borate process was 0.19 Å/cycle within the ALD window of 300–350 °C. The growth rate for the cobalt borate process was 0.39–0.42 Å/cycle at 325 °C. X-ray diffraction of the as-deposited films indicated that they were amorphous. Atomic force microscopy of 35–36 nm thick manganese borate films grown within the 300–350 °C ALD window showed root mean square surface roughnesses of 0.4–0.6 nm. Film stoichiometries were assessed by x-ray photoelectron spectroscopy and time of flight-elastic recoil detection analysis. The differing film stoichiometries obtained from the very similar precursors MnTp 2 and CoTp 2 are proposed to arise from the oxidizing ability of the intermediate high valent manganese oxide layers and lack thereof for cobalt.

  4. Unusual stoichiometry control in the atomic layer deposition of manganese borate films from manganese bis(tris(pyrazolyl)borate) and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Klesko, Joseph P.; Bellow, James A.; Saly, Mark J.; Winter, Charles H., E-mail: chw@chem.wayne.edu [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States); Julin, Jaakko; Sajavaara, Timo [Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland)

    2016-09-15

    The atomic layer deposition (ALD) of films with the approximate compositions Mn{sub 3}(BO{sub 3}){sub 2} and CoB{sub 2}O{sub 4} is described using MnTp{sub 2} or CoTp{sub 2} [Tp = tris(pyrazolyl)borate] with ozone. The solid state decomposition temperatures of MnTp{sub 2} and CoTp{sub 2} are ∼370 and ∼340 °C, respectively. Preparative-scale sublimations of MnTp{sub 2} and CoTp{sub 2} at 210 °C/0.05 Torr afforded >99% recoveries with <0.1% nonvolatile residues. Self-limited ALD growth was demonstrated at 325 °C for MnTp{sub 2} or CoTp{sub 2} with ozone as the coreactant. The growth rate for the manganese borate process was 0.19 Å/cycle within the ALD window of 300–350 °C. The growth rate for the cobalt borate process was 0.39–0.42 Å/cycle at 325 °C. X-ray diffraction of the as-deposited films indicated that they were amorphous. Atomic force microscopy of 35–36 nm thick manganese borate films grown within the 300–350 °C ALD window showed root mean square surface roughnesses of 0.4–0.6 nm. Film stoichiometries were assessed by x-ray photoelectron spectroscopy and time of flight-elastic recoil detection analysis. The differing film stoichiometries obtained from the very similar precursors MnTp{sub 2} and CoTp{sub 2} are proposed to arise from the oxidizing ability of the intermediate high valent manganese oxide layers and lack thereof for cobalt.

  5. An analysis of diet quality, how it controls fatty acid profiles, isotope signatures and stoichiometry in the malaria mosquito Anopheles arabiensis.

    Directory of Open Access Journals (Sweden)

    Rebecca Hood-Nowotny

    Full Text Available Knowing the underlying mechanisms of mosquito ecology will ensure effective vector management and contribute to the overall goal of malaria control. Mosquito populations show a high degree of population plasticity in response to environmental variability. However, the principle factors controlling population size and fecundity are for the most part unknown. Larval habitat and diet play a crucial role in subsequent mosquito fitness. Developing the most competitive insects for sterile insect technique programmes requires a "production" orientated perspective, to deduce the most effective larval diet formulation; the information gained from this process offers us some insight into the mechanisms and processes taking place in natural native mosquito habitats.Fatty acid profiles and de-novo or direct assimilation pathways, of whole-individual mosquitoes reared on a range of larval diets were determined using pyrolysis gas chromatograph/mass spectrometry. We used elemental analysis and isotope ratio mass spectrometry to measure individual-whole-body carbon, nitrogen and phosphorous values and to assess the impact of dietary quality on subsequent population stoichiometry, size, quality and isotopic signature. Diet had the greatest impact on fatty acid (FA profiles of the mosquitoes, which exhibited a high degree of dietary routing, characteristic of generalist feeders. De-novo synthesis of a number of important FAs was observed. Mosquito C:N stoichiometry was fixed in the teneral stage. Dietary N content had significant influence on mosquito size, and P was shown to be a flexible pool which limited overall population size.Direct routing of FAs was evident but there was ubiquitous de-novo synthesis suggesting mosquito larvae are competent generalist feeders capable of survival on diet with varying characteristics. It was concluded that nitrogen availability in the larval diet controlled teneral mosquito size and that teneral CN ratio is a sex- and

  6. Influences of micro-geomorphology on the stoichiometry of C, N and P in Chenier Island soils and plants in the Yellow River Delta, China.

    Science.gov (United States)

    Qu, Fanzhu; Meng, Ling; Yu, Junbao; Liu, Jingtao; Sun, Jingkuan; Yang, Hongjun; Dong, Linshui

    2017-01-01

    Studies have indicated that consistent or well-constrained (relatively low variability) carbon:nitrogen:phosphorus (C:N:P) ratios exist in large-scale ecosystems, including both marine and terrestrial ecosystems. Little is known about the C, N and P stoichiometric ratios that exist in the soils and plants of Chenier Island in the Yellow River Delta (YRD). We examined the distribution patterns and relationships of C, N and P stoichiometry in the soils and plants of Chenier Island, as well as the potential influences of the island's micro-geomorphology. Based on a study of four soil profile categories and Phragmites australis and Suaeda heteroptera plant tissues, our results showed that micro-geomorphology could leave a distinct imprint on the soil and plant elemental stoichiometry of Chenier Island; significant variation in the atomic C:N:P ratios (RCNP) existed in soils and plants, indicating that the RCNP values in both the soil and plants are not well constrained at the Chenier Island scale. RCN and RCP in Chenier Island soils were high, whereas the RNP values were comparatively low, indicating that the ecosystems of Chenier Island are nutrient-limited by N and P. However, the RNP values in P. australis and S. heteroptera plant tissues were high, suggesting that the plants of Chenier Island are nutrient-limited by P. Finally, we suggest that soil and plant N:P ratios may be good indicators of the soil and plant nutrient status during soil development and plant growth, which could be a useful reference for restoring the degraded soils of Chenier Island.

  7. Mössbauer studies of stoichiometry of Fe{sub 3}O{sub 4}: characterization of nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C. E., E-mail: cjohnson@utsi.edu; Johnson, J. A.; Hah, H. Y.; Cole, M.; Gray, S. [University of Tennessee Space Institute, Center for Laser Applications (United States); Kolesnichenko, V. [Xavier University, Department of Chemistry (United States); Kucheryavy, P. [Rutgers University, Department of Chemistry (United States); Goloverda, G. [Xavier University, Department of Chemistry (United States)

    2016-12-15

    The iron oxide Fe{sub 3}O{sub 4}, the mineral magnetite sometimes called ferrosoferric oxide, is notoriousy non-stoichiometric even in bulk form so its formula may be written Fe{sub 3−δ}O{sub 4}. In nanoparticle form, where it has applications in medicine and information technology, it is even more susceptible to oxidation. In this paper we report synthesis and studies of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with controlled diameters of 5.3, 10.6 and 11.9 nm. In room temperature spectra, departures from stoichiometry δ of up to 0.02 were estimated from the relative amounts of Fe {sup 3+}/ Fe {sup 2+} and from their isomer shifts. This cannot be used for very small particles of diameter 10.6 nm and less as they are superparamagnetic at room temperature and do not show hyperfine splitting owing to fast relaxation. Such particles have promise for use in enhancing MRI signals. The magnetic spectrum is restored by the application of a relatively small magnetic field (10 kG). As the temperature is lowered the relaxation slows down and 6-line magnetic hyperfine patterns appear below a blocking temperature T{sub B}. The values of T{sub B} obtained are lower than those of many other researchers reported in the literature, suggesting that our particles are less affected by magnetic interactions between them. At low temperatures all the spectra are similar and closely resemble that of bulk Fe{sub 3}O{sub 4} confirming that departures from stoichiometry are small.

  8. Cation non-stoichiometry in pulsed laser deposited Sr{sub 2+y}Fe{sub 1+x}Mo{sub 1-x}O₆ epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T. L.; Woodward, P. M., E-mail: woodward.55@osu.edu [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Dixit, M.; Williams, R. E. A.; Susner, M. A.; Fraser, H. L.; McComb, D. W.; Sumption, M. D. [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Lemberger, T. R. [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States)

    2014-07-07

    Sr₂FeMoO₆ (SFMO) films were grown on SrTiO₃ (100)- and (111)-oriented substrates via pulsed laser deposition (PLD). In order to study the fundamental characteristics of deposition, films were grown in two different PLD chambers. In chamber I, the best films were grown with a relatively long substrate-to-target distance (89 mm), high substrate temperature (850 °C), and low pressure (50 mTorr) in a 95% Ar/5% H₂ atmosphere. Although X-ray diffraction (XRD) measurements indicate these films are single phase, Rutherford Backscattering (RBS) measurements reveal considerable non-stoichiometry, corresponding to a Sr₂Fe{sub 1–x}Mo{sub 1+x}O₆ composition with x≅0.2–0.3. This level of non-stoichiometry results in inferior magnetic properties. In chamber II, the best films were grown with a much shorter substrate-to-target distance (38 mm), lower temperature (680 °C), and higher pressure (225 mTorr). XRD measurements show that the films are single phase, and RBS measurements indicate that they are nearly stoichiometric. The degree of ordering between Fe and Mo was dependent on both the temperature and pressure used during deposition, reaching a maximum order parameter of 85%. The saturation magnetization increases as the Fe/Mo ordering increases, reaching a maximum of 2.4 μB/f.u. Based on prior studies of bulk samples, one would expect a higher saturation magnetization for this degree of Fe/Mo order. The presence of extra strontium oxide layers in the form of Ruddlesden-Popper intergrowths appears to be responsible for the lower than expected saturation magnetization of these films.

  9. Defects, stoichiometry, and electronic transport in SrTiO{sub 3-δ} epilayers: A high pressure oxygen sputter deposition study

    Energy Technology Data Exchange (ETDEWEB)

    Ambwani, P.; Xu, P.; Jeong, J. S.; Deng, R.; Mkhoyan, K. A.; Jalan, B.; Leighton, C., E-mail: leighton@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Haugstad, G. [Characterization Facility, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2016-08-07

    SrTiO{sub 3} is not only of enduring interest due to its unique dielectric, structural, and lattice dynamical properties, but is also the archetypal perovskite oxide semiconductor and a foundational material in oxide heterostructures and electronics. This has naturally focused attention on growth, stoichiometry, and defects in SrTiO{sub 3}, one exciting recent development being such precisely stoichiometric defect-managed thin films that electron mobilities have finally exceeded bulk crystals. This has been achieved only by molecular beam epitaxy, however (and to a somewhat lesser extent pulsed laser deposition (PLD)), and numerous open questions remain. Here, we present a study of the stoichiometry, defects, and structure in SrTiO{sub 3} synthesized by a different method, high pressure oxygen sputtering, relating the results to electronic transport. We find that this form of sputter deposition is also capable of homoepitaxy of precisely stoichiometric SrTiO{sub 3}, but only provided that substrate and target preparation, temperature, pressure, and deposition rate are carefully controlled. Even under these conditions, oxygen-vacancy-doped heteroepitaxial SrTiO{sub 3} films are found to have carrier density, mobility, and conductivity significantly lower than bulk. While surface depletion plays a role, it is argued from particle-induced X-ray emission (PIXE) measurements of trace impurities in commercial sputtering targets that this is also due to deep acceptors such as Fe at 100's of parts-per-million levels. Comparisons of PIXE from SrTiO{sub 3} crystals and polycrystalline targets are shown to be of general interest, with clear implications for sputter and PLD deposition of this important material.

  10. The Effect of Barium Non-Stoichiometry on the Phase Structure, Sintering and Electrical Conductivity of BaZr0.7Pr0.1Y0.2O3

    KAUST Repository

    Mohamed Shibly, Kaamil

    2015-01-01

    This thesis attempts to test the effects of barium non stoichiometry and varying calcination temperatures on the microstructure and electrical conductivity of BaxZr0.7Pr0.1Y0.2O3- δ (x = 0.9, 1.0, 1.1). BZPY powders were fabricated using a

  11. A determination of the oxygen non-stoichiometry of the oxygen storage materials LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr)

    Energy Technology Data Exchange (ETDEWEB)

    Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana; Jacobson, Allan J., E-mail: ajjacob@uh.edu

    2016-07-15

    The A-site ordered double-perovskite oxides, LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr), were synthesized and investigated to understand the effect of A site cation substitution on the oxygen storage properties of these materials. The present results are compared with our previous data for YBaMn{sub 2}O{sub 5+δ}. The results clearly reveal that changing the Ln cation strongly influences the oxidation/reduction behavior of LnBaMn{sub 2}O{sub 5+δ}. Based on thermogravimetric analysis data, oxygen uptake begins at lower temperatures in both air and oxygen in compounds with Ln{sup 3+} ions larger than Y{sup 3+}. These oxides exhibit almost complete and reversible oxygen uptake/release between fully-reduced LnBaMn{sub 2}O{sub 5} and fully-oxidized LnBaMn{sub 2}O{sub 6} during changes of the oxygen partial pressure between air and 1.99% H{sub 2}/Ar. In addition, the oxygen non-stoichiometries of GdBaMn{sub 2}O{sub 5+δ} and PrBaMn{sub 2}O{sub 5+δ} were determined as a function of pO{sub 2} at 600, 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that these materials have two distinct phases on oxidation/reduction with δ≈0, 0.5 and a third phase with a range of composition with an oxygen content (5+δ) approaching ~6. The stabilities of the LnBaMn{sub 2}O{sub 5+δ} phases extend over a wide range of oxygen partial pressures (∼10{sup −25}≤pO{sub 2} (atm)≤∼1) depending on temperature. Isothermal experiments show that the larger the Ln{sup 3+} cation the lower pO{sub 2} for phase conversion. At some temperatures and pO{sub 2} conditions, the LnBaMn{sub 2}O{sub 5+δ} compounds are unstable with respect to decomposition to BaMnO{sub 3−δ} and LnMnO{sub 3}. This instability is more apparent in Coulometric titration experiments than in thermogravimetric analysis. The Coulometric titration experiments are necessarily slow in order to achieve equilibrium oxygen compositions. - Graphical abstract: Structure of Ln

  12. Careful stoichiometry monitoring and doping control during the tunneling interface growth of an n + InAs(Si)/p + GaSb(Si) Esaki diode

    Science.gov (United States)

    El Kazzi, S.; Alian, A.; Hsu, B.; Verhulst, A. S.; Walke, A.; Favia, P.; Douhard, B.; Lu, W.; del Alamo, J. A.; Collaert, N.; Merckling, C.

    2018-02-01

    In this work, we report on the growth of pseudomorphic and highly doped InAs(Si)/GaSb(Si) heterostructures on p-type (0 0 1)-oriented GaSb substrate and the fabrication and characterization of n+/p+ Esaki tunneling diodes. We particularly study the influence of the Molecular Beam Epitaxy shutter sequences on the structural and electrical characteristics of InAs(Si)/GaSb(Si) Esaki diodes structures. We use real time Reflection High Electron Diffraction analysis to monitor different interface stoichiometry at the tunneling interface. With Atomic Force Microscopy, X-ray diffraction and Transmission Electron Microscopy analyses, we demonstrate that an "InSb-like" interface leads to a sharp and defect-free interface exhibiting high quality InAs(Si) crystal growth contrary to the "GaAs-like" one. We then prove by means of Secondary Ion Mass Spectroscopy profiles that Si-diffusion at the interface allows the growth of highly Si-doped InAs/GaSb diodes without any III-V material deterioration. Finally, simulations are conducted to explain our electrical results where a high Band to Band Tunneling (BTBT) peak current density of Jp = 8 mA/μm2 is achieved.

  13. On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films.

    Science.gov (United States)

    Tileli, Vasiliki; Duchamp, Martial; Axelsson, Anna-Karin; Valant, Matjaz; Dunin-Borkowski, Rafal E; Alford, Neil McN

    2015-01-07

    The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces.

  14. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes

    Energy Technology Data Exchange (ETDEWEB)

    Kusvuran, Erdal, E-mail: erdalkusvuran@yahoo.com [Chemistry Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey); Gulnaz, Osman [Biology Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey); Samil, Ali [Chemistry Department, Arts and Sciences Faculty, Sutcu Imam University, 46100 Kahramanmaras (Turkey); Yildirim, Ozlem [Chemistry Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey)

    2011-02-15

    This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min{sup -1}. Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.

  15. Optimization of the Electrodeposition Parameters to Improve the Stoichiometry of In2S3 Films for Solar Applications Using the Taguchi Method

    Directory of Open Access Journals (Sweden)

    Maqsood Ali Mughal

    2014-01-01

    Full Text Available Properties of electrodeposited semiconductor thin films are dependent upon the electrolyte composition, plating time, and temperature as well as the current density and the nature of the substrate. In this study, the influence of the electrodeposition parameters such as deposition voltage, deposition time, composition of solution, and deposition temperature upon the properties of In2S3 films was analyzed by the Taguchi Method. According to Taguchi analysis, the interaction between deposition voltage and deposition time was significant. Deposition voltage had the largest impact upon the stoichiometry of In2S3 films and deposition temperature had the least impact. The stoichiometric ratios between sulfur and indium (S/In: 3/2 obtained from experiments performed with optimized electrodeposition parameters were in agreement with predicted values from the Taguchi Method. The experiments were carried out according to Taguchi orthogonal array L27 (3^4 design of experiments (DOE. Approximately 600 nm thick In2S3 films were electrodeposited from an organic bath (ethylene glycol-based containing indium chloride (InCl3, sodium chloride (NaCl, and sodium thiosulfate (Na2S2O3·5H2O, the latter used as an additional sulfur source along with elemental sulfur (S. An X-ray diffractometer (XRD, energy dispersive X-ray spectroscopy (EDS unit, and scanning electron microscope (SEM were, respectively, used to analyze the phases, elemental composition, and morphology of the electrodeposited In2S3 films.

  16. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes

    International Nuclear Information System (INIS)

    Kusvuran, Erdal; Gulnaz, Osman; Samil, Ali; Yildirim, Ozlem

    2011-01-01

    This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min -1 . Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.

  17. Defect chemistry of ''BaCuO2''. Pt. 1. Oxygen non-stoichiometry, cation molecularity and X-ray diffraction determinations

    International Nuclear Information System (INIS)

    Spinolo, G.; Consiglio Nazionale delle Ricerche, Pavia; Anselmi-Tamburini, U.; Consiglio Nazionale delle Ricerche, Pavia; Arimondi, M.; Consiglio Nazionale delle Ricerche, Pavia; Ghigna, P.; Consiglio Nazionale delle Ricerche, Pavia; Flor, G.; Consiglio Nazionale delle Ricerche, Pavia

    1995-01-01

    ''BaCuO 2 '' is the key intermediate in the synthesis of the Ba 2 YCu 3 O 7-δ superconductor. Its very complex crystal structure is able to accommodate a large change in oxygen content. Oxygen non-stoichiometry of ''BaCuO 2 '' materials with 1:1 and 88:90 (Ba:Cu) molecularity has been investigated by polythermal X-ray powder diffraction coupled with isobaric-isothermal gravimetry determinations under different temperature and oxygen partial pressure conditions [300 ≤ T ≤ 820 C, 1 ≥ P(O 2 ) ≥3 . 10 -3 atm]. The 1:1 composition does not give well reproducible results, thus suggesting its polyphasic nature, at least in part of the investigated range. The results for the 88:90 ≅ 0.98 (Ba:Cu) composition are well reproducible and show that the material is single phase. Ba 0.98 CuO 1.98 + δ is oxygen over-stoichiometric in the whole investigated [T, P(O 2 )] range, with a maximum value δ ∼ 0.21. A Rietveld X-ray profile fitting is in agreement with previous single-crystal data. The trend of δ vs. P(O 2 ) is consistent with the presence of oxygen interstitial defects on (possibly different) crystallographic sites. (orig.)

  18. Surface stoichiometry modification and improved DC/RF characteristics by plasma treated and annealed AlGaN/GaN HEMTs

    Science.gov (United States)

    Upadhyay, Bhanu B.; Takhar, Kuldeep; Jha, Jaya; Ganguly, Swaroop; Saha, Dipankar

    2018-03-01

    We demonstrate that N2 and O2 plasma treatment followed by rapid thermal annealing leads to surface stoichiometry modification in a AlGaN/GaN high electron mobility transistor. Both the source/drain access and gate regions respond positively improving the transistor characteristics albeit to different extents. Characterizations indicate that the surface show the characteristics of that of a higher band-gap material like AlxOy and GaxOy along with N-vacancy in the sub-surface region. The N-vacancy leads to an increased two-dimensional electron gas density. The formation of oxides lead to a reduced gate leakage current and surface passivation. The DC characteristics show increased transconductance, saturation drain current, ON/OFF current ratio, sub-threshold swing and lower ON resistance by a factor of 2.9, 2.0, 103.3 , 2.3, and 2.1, respectively. The RF characteristics show an increase in unity current gain frequency by a factor of 1.7 for a 500 nm channel length device.

  19. CNP stoichiometry of a lipid-synthesising zooplankton, Calanus finmarchicus, from winter to spring bloom in a sub-Arctic sound

    Science.gov (United States)

    Aubert, A. B.; Svensen, C.; Hessen, D. O.; Tamelander, T.

    2013-02-01

    The aim of this study was to investigate the seasonal stoichiometry of the high-latitude lipid-synthesising copepod Calanus finmarchicus and assess how this would affect dietary demands with season, ontogeny and lipid storage. C:N:P ratios in different stages (adults, copepodite V and IV), in eggs and faecal pellets as well as in bulk food (seston) was analysed in a sub-Arctic Norwegian sound (69° 47'N, 19° 19'E) from late February to mid-May 2009. The period covered the phytoplankton bloom and was divided into four sequences of the bloom based on chl a and seston C:chl a ratio variations. The calculation of the somatic elemental C:N and C:P body ratios (without the lipid storage) indicates that nearly homeostatic control in C. finmarchicus is maintained in somatic tissues within stages, while not if the lipid storage pool is included. Nutrient limitation was assessed calculating threshold elemental ratios based on the somatic body ratios and for different sets of assimilation efficiencies, and indicated a predominant C limitation that may reflect demands for lipid storage. The results suggest that stoichiometric composition and demands in such high-latitude, lipid-storing species strongly depend on stage and season, and the large contribution of storage lipids highlights the need for a two-compartment approach for lipid-synthesising species, with different dietary requirements for somatic growth and for lipid storage.

  20. Analysis of Ba{sub x}Sr{sub y}TiO{sub 3} perovskite layers. II. Development of analytical method for the determination of the stoichiometry and trace impurities by ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen]|[Radiation Physics and Chemistry Problems Inst., Minsk (Belarus); Becker, J.S. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen

    2000-11-01

    Determination of stoichiometry in semiconducting and non-conducting thin layers is of importance for the study of growth mechanisms and for the control of defects during their development and production. An analytical procedure for inductively coupled plasma mass spectrometry (ICP-MS) was developed using different ICP-MS instruments [one double-focusing sector field ICP-MS (DF-ICP-MS) and two quadrupole ICP-MS without and with hexapole collision cell (ICP-QMS and HEX-ICP-QMS, respectively)] for the determination of stoichiometry and trace impurities in thin Ba{sub x}Sr{sub y}TiO{sub 3} (BST) perovskite layers on silicon substrates after dissolution of layer. Maximum sensitivity, lowest detection limits and best precision was achieved in DF-ICP-MS. ICP-QMS with hexapole collision cell yielded better sensitivity and lower limits of detection in comparison to conventional quadrupole ICP-MS. (orig.)

  1. Oxygen Non-Stoichiometry and Electrical Conductivity of La0.2Sr0.8Fe0.8B0.2O3 − δ, B = Fe, Ti, Ta

    DEFF Research Database (Denmark)

    Lohne, Ørjan Fossmark; Phung, Tan Nhut; Grande, Tor

    2014-01-01

    The oxygen non-stoichiometry was determined by coulometric titration for the perovskite oxides La0.2Sr0.8FeO3 − δ and La0.2Sr0.8Fe0.8B0.2O3 − δ (B = Ti4+ and Ta5+) in the temperature range 600 °C ⩽ T ⩽ 900 °C and the oxygen partial pressure range: 1⋅10-15≤po2≤0.209 atm. The non-stoichiometry (δ...... for the substituted materials. The electrical conductivity was measured at T = 900 °C in the oxygen partial pressure range: 1⋅10-17≤po2≤0.209 atm. The electrical conductivity and charge carrier mobility decrease upon 20% substitution of Fe roughly by a factor of 2, but do not show a significant dependence......) is observed to decrease with B-site substitution of Fe. The data can be well fitted with simple defect chemistry models. At low oxygen non-stoichiometry all compositions show a deviation from a localized electrons defect model. The standard and partial molar thermodynamic quantities were obtained...

  2. On the Relationship of Magnetocrystalline Anisotropy and Stoichiometry in Epitaxial L1{sub 0} CoPt(001) and FePt(001) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Barmak, K

    2004-08-10

    Two series of epitaxial CoPt and FePt films, with nominal thicknesses of 42 or 50 nm, were prepared by sputtering onto single crystal MgO(001) substrates in order to investigate the chemical ordering and the resultant magnetic properties as a function of alloy composition. In the first series, the film composition was kept constant, while the substrate temperature was increased from 144 to 704 C. In the second series the substrate temperature was kept constant at 704 C for CoPt and 620 C for FePt, while the alloy stoichiometry was varied in the nominalrange of 40-60 at% Co(Fe). Film compositions and thicknesses were measured via Rutherford backscattering spectrometry. The lattice and long-range order parameter for the L1{sub 0} phase were obtained for both sets of films using x-ray diffraction. The room-temperature magnetocrystalline anisotropy constants were determined for a subset of the films using torque magnetometry. The order parameter was found to increase with increasing temperature, with ordering occurring more readily in FePt when compared with CoPt. A perpendicular anisotropy developed in CoPt for substrate temperatures above 534 C and in FePt above 321 C. The structure and width of the magnetic domains in CoPt and FePt, as seen by magnetic force microscopy, also demonstrated an increase in magnetic anisotropy with increasing temperature. For the films deposited at the highest temperatures (704 C for CoPt and 620 C for FePt), the order parameter reached a maximum near the equiatomic composition, whereas the magnetocrystalline anisotropy increased as the concentration of Co or Fe was increased from below to slightly above the equiatomic composition. It is concluded that non-stoichiometric L1{sub 0} CoPt and FePt, with a slight excess of Co or Fe, are preferable for applications requiring the highest anisotropies.

  3. Dependency of the properties of Sr xBi yTa2O9 thin films on the Sr and Bi stoichiometry

    International Nuclear Information System (INIS)

    Viapiana, Matteo; Schwitters, Michael; Wouters, Dirk J.; Maes, Herman E.; Van der Biest, Omer

    2005-01-01

    In this study the properties of ferroelectric SBT thin films crystallized at 700 deg. C have been investigated as function of the Sr and Bi stoichiometry. A matrix of 130 nm Sr x Bi y Ta 2 O 9 films with 0.7 ≤ x ≤ 1.0 and 2.0 ≤ y ≤ 2.4 has been realized by metal-organic spin-on deposition technique on Pt/IrO 2 /Ir/TiAlN/SiO 2 /Si substrates. Within this composition range, we found that the ferroelectric properties peak into a narrow window of 0.8 ≤ x ≤ 0.9 and y ∼ 2.25 with Pr and Ec of 6.5 μC/cm 2 and 50 kV/cm, respectively (at 2.5 V). Outside this composition window, the Pr decreases while the hysteresis loop becomes slanted. For some Sr/Bi-ratios even no ferroelectricity was achieved. 2Ec-tendencies were seen as function of the x/y-ratios, too. Examination of the microstructure of the films by scanning electron microscopy showed that film grain size increased with decreasing Sr-deficiency and that nucleation increased with increasing Bi-excess. At high Sr-deficiency and low Bi-excess, no complete crystallization of the SBT film occurs. From the film morphology, also different phases can be discriminated. X-ray diffraction analysis showed a strong correlation of the film orientation with the film composition. While our results show a clear correlation of Pr, film grain size and orientation with composition, further investigations are required to clarify the relation of the hysteresis parameters with film orientation

  4. Short-Term Effects of Drying-Rewetting and Long-Term Effects of Nutrient Loading on Periphyton N:P Stoichiometry

    Directory of Open Access Journals (Sweden)

    Andres D. Sola

    2018-01-01

    Full Text Available Nitrogen (N and phosphorus (P concentrations and N:P ratios critically influence periphyton productivity and nutrient cycling in aquatic ecosystems. In coastal wetlands, variations in hydrology and water source (fresh or marine influence nutrient availability, but short-term effects of drying and rewetting and long-term effects of nutrient exposure on periphyton nutrient retention are uncertain. An outdoor microcosm experiment simulated short-term exposure to variation in drying-rewetting frequency on periphyton mat nutrient retention. A 13-year dataset from freshwater marshes of the Florida Everglades was examined for the effect of long-term proximity to different N and P sources on mat-forming periphyton nutrient standing stocks and stoichiometry. Field sites were selected from one drainage with shorter hydroperiod and higher connectivity to freshwater anthropogenic nutrient supplies (Taylor Slough/Panhandle, TS/Ph and another drainage with longer hydroperiod and higher connectivity to marine nutrient supplies (Shark River Slough, SRS. Total P, but not total N, increased in periphyton mats exposed to both low and high drying-rewetting frequency with respect to the control mats in our experimental microcosm. In SRS, N:P ratios slightly decreased downstream due to marine nutrient supplies, while TS/Ph increased. Mats exposed to short-term drying-rewetting had higher nutrient retention, similar to nutrient standing stocks from long-term field data. Periphyton mat microbial communities may undergo community shifts upon drying-rewetting and chronic exposure to nutrient loads. Additional work on microbial species composition may further explain how periphyton communities interact with drying-rewetting dynamics to influence nutrient cycling and retention in wetlands.

  5. Manifested luminescence and magnetic responses of stoichiometry dependent Cd{sub 1− x}Mn{sub x}Se quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Runjun; Deka, Geetamoni; Mohanta, Dambarudhar, E-mail: best@tezu.ernet.in

    2015-02-15

    Highlights: • Thio-glycolic acid (TGA) coated Cd{sub 1−x}Mn{sub x}Se quantum dots have been prepared with varying x • Formation of QD heterostructure can be expected at a nonzero, but higher value of x. • The deep defect related emission can be attributed to V{sub Cd}–V{sub Se} di-vacancies, which is dominant for smaller values of x. • An appreciable charge transfer between Mn{sup 2+} ions and capping agent TGA is anticipated. - Abstract: We report on stoichiometry dependent manifested physical properties of thioglycolic acid (TGA) coated Cd{sub 1− x}Mn{sub x}Se QDs. While possessing a wurtzite phase, with increasing x, the QDs exhibited a notable blue-shifting of the onset of absorption. Attributed to V{sub Cd}–V{sub Se} di-vacancies, the QDs describe an intense deep-defect related emission response at smaller values of x (=0 to 0.3). Due to the facilitation of magnetic Mn{sup 2+} ion migration from the core to the QD surfaces, {sup 4}T{sub 1}–{sup 6}A{sub 1} transition based Mn{sup 2+} orange emission get suppressed at a higher x (=0.6 to 1). While the FT-IR spectra of the alloyed QDs display characteristic Mn–OH stretching mode at ∼644 cm{sup −1}, the peak located at ∼703 cm{sup −1} is assigned to Cd-Se bending. Furthermore, the QDs with a low x (=0.3), exhibit paramagnetic characteristics owing to the presence of uncorrelated, isolated Mn{sup 2+} spins. The collective luminescence and magnetic features would find immense scope in bio-labeling and imaging applications, apart from solid state luminescent components.

  6. The role of C:N:P stoichiometry in affecting denitrification in sediments from agricultural surface and tile-water wetlands.

    Science.gov (United States)

    Grebliunas, Brian D; Perry, William L

    2016-01-01

    Nutrient stoichiometry within a wetland is affected by the surrounding land use, and may play a significant role in the removal of nitrate (NO3-N). Tile-drained, agricultural watersheds experience high seasonal inputs of NO3-N, but low phosphorus (PO4-P) and dissolved organic carbon (DOC) loads relative to surface water dominated systems. This difference may present stoichiometric conditions that limit denitrification within receiving waterways. We investigated how C:N:P ratios affected denitrification rates of sediments from tile-drained mitigation wetlands incubated for: 0, 5, 10, and 20 days. We then tested whether denitrification rates of sediments from surface-water and tile-drained wetlands responded differently to C:N ratios of 2:1 versus 4:1. Ratios of C:N:P (P tile-drained wetland sediments. Carbon limitation of denitrification became evident at elevated NO3-N concentrations (20 mg L(-1)). Denitrification measured from tile water and surface water wetland sediments increased significantly (P < 0.05) at the 2:1 and 4:1 C:N treatments. The results from both experiments suggest wetland sediments provide a limiting pool of labile DOC to maintain prolonged NO3-N removal. Also, DOC limitation became more evident at elevated NO3-N concentrations (20 mg L(-1)). Irrespective of NO3-N concentrations, P did not limit denitrification rates. In addition to wetting period, residence time, and maintenance of anaerobic conditions, the availability of labile DOC is playing an important limiting role in sediment denitrification within mitigation wetlands.

  7. How Diverse Detrital Environments Influence Nutrient Stoichiometry between Males and Females of the Co-Occurring Container Mosquitoes Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus.

    Science.gov (United States)

    Yee, Donald A; Kaufman, Michael G; Ezeakacha, Nnaemeka F

    2015-01-01

    Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar

  8. Full-length cellular β-secretase has a trimeric subunit stoichiometry, and its sulfur-rich transmembrane interaction site modulates cytosolic copper compartmentalization.

    Science.gov (United States)

    Liebsch, Filip; Aurousseau, Mark R P; Bethge, Tobias; McGuire, Hugo; Scolari, Silvia; Herrmann, Andreas; Blunck, Rikard; Bowie, Derek; Multhaup, Gerd

    2017-08-11

    The β-secretase (BACE1) initiates processing of the amyloid precursor protein (APP) into Aβ peptides, which have been implicated as central players in the pathology of Alzheimer disease. BACE1 has been described as a copper-binding protein and its oligomeric state as being monomeric, dimeric, and/or multimeric, but the native cellular stoichiometry has remained elusive. Here, by using single-molecule fluorescence and in vitro cross-linking experiments with photo-activatable unnatural amino acids, we show that full-length BACE1, independently of its subcellular localization, exists as trimers in human cells. We found that trimerization requires the BACE1 transmembrane sequences (TMSs) and cytoplasmic domains, with residues Ala 463 and Cys 466 buried within the trimer interface of the sulfur-rich core of the TMSs. Our 3D model predicts that the sulfur-rich core of the trimeric BACE1 TMS is accessible to metal ions, but copper ions did not trigger trimerization. The results of functional assays of endogenous BACE1 suggest that it has a role in intracellular copper compartmentalization by transferring cytosolic copper to intracellular compartments, while leaving the overall cellular copper concentration unaltered. Adding to existing physiological models, our results provide novel insight into the atypical interactions between copper and BACE1 and into its non-enzymatic activities. In conclusion, therapeutic Alzheimer disease prevention strategies aimed at decreasing BACE1 protein levels should be regarded with caution, because adverse effects in copper homeostasis may occur. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Spectrofluorimetric determination of stoichiometry and association constants of the complexes of harmane and harmine with beta-cyclodextrin and chemically modified beta-cyclodextrins.

    Science.gov (United States)

    Martín, L; León, A; Olives, A I; Del Castillo, B; Martín, M A

    2003-06-13

    The association characteristics of the inclusion complexes of the beta-carboline alkaloids harmane and harmine with beta-cyclodextrin (beta-CD) and chemically modified beta-cyclodextrins such as hydroxypropyl-beta-cyclodextrin (HPbeta-CD), 2,3-di-O-methyl-beta-cyclodextrin (DMbeta-CD) and 2,3,6-tri-O-methyl-beta-cyclodextrin (TMbeta-CD) are described. The association constants vary from 112 for harmine/DMbeta-CD to 418 for harmane/HPbeta-CD. The magnitude of the interactions between the host and the guest molecules depends on the chemical and geometrical characteristics of the guest molecules and therefore the association constants vary for the different cyclodextrin complexes. The steric hindrance is higher in the case of harmine due to the presence of methoxy group on the beta-carboline ring. The association obtained for the harmane complexes is stronger than the one observed for harmine complexes except in the case of harmine/TMbeta-CD. Important differences in the association constants were observed depending on the experimental variable used in the calculations (absolute value of fluorescence intensity or the ratio between the fluorescence intensities corresponding to the neutral and cationic forms). When fluorescence intensity values were considered, the association constants were higher than when the ratio of the emission intensity for the cationic and neutral species was used. These differences are a consequence of the co-existence of acid-base equilibria in the ground and in excited states together with the complexation equilibria. The existence of a proton transfer reaction in the excited states of harmane or harmine implies the need for the experimental dialysis procedure for separation of the complexes from free harmane or harmine. Such methodology allows quantitative results for stoichiometry determinations to be obtained, which show the existence of both 1:1 and 1:2 beta-carboline alkaloid:CD complexes with different solubility properties.

  10. Effect of precursors stoichiometry on morphology, crystallinity and electrical properties of ZnTe epilayers grown on (100)GaAs by MOVPE

    International Nuclear Information System (INIS)

    Paiano, P.; Lovergine, N.; Mancini, A.M.; Prete, P.

    2005-01-01

    The effect of precursors vapour stoichiometry on the morphological, structural and electrical properties of nominally undoped ZnTe grown on (100)GaAs by metalorganic vapour phase epitaxy is reported. The epilayers were grown at 350 C using dimethylzinc (Me 2 Zn) and di-isopropyltelluride, varying their molar flow rate ratios (MFRs) between 0.17 and 3.10. Growth in nearly stoichiometric (MFR=1.03) conditions results in best surface morphology, while samples grown in Te-rich conditions (MFR>1.7) showed micron-size hollow defects (with surface densities up to ∝10 6 cm -2 ) elongated in one of the left angle 011 right angle in-plane directions. The defects are associated to a local structural disorder of the material, ascribed to the formation of a Ga 2 Te 3 extrinsic phase at the ZnTe/GaAs interface. Ohmic contacts to p -ZnTe epilayers were prepared by tungsten evaporation and annealing at 350 C. The RT hole concentration in the epilayers varies almost linearly with Me 2 Zn molar flow between 2 x 10 15 cm -3 and 5 x 10 16 cm -3 . Temperature-dependent Hall measurements performed on samples grown at MFR≤1.03 demonstrate that the material p-type conductivity originates from a single acceptor centre with an ionisation energy between 94.7 meV and 118 meV, its concentration being in the 10 16 cm -3 range and slowly increasing with Me 2 Zn flow. We ascribe this acceptor to a complex formed by a substitutional carbon atom on a Te site and a donor on a nearest neighbor site (C Te -D Zn ), the donor impurity being further identified as Ga diffusing from the substrate. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. S. aureus MscL is a pentamer in vivo but of variable stoichiometries in vitro: implications for detergent-solubilized membrane proteins.

    Directory of Open Access Journals (Sweden)

    Michael R Dorwart

    Full Text Available While the bacterial mechanosensitive channel of large conductance (MscL is the best studied biological mechanosensor and serves as a paradigm for how a protein can sense and respond to membrane tension, the simple matter of its oligomeric state has led to debate, with models ranging from tetramers to hexamers. Indeed, two different oligomeric states of the bacterial mechanosensitive channel MscL have been resolved by X-ray crystallography: The M. tuberculosis channel (MtMscL is a pentamer, while the S. aureus protein (SaMscL forms a tetramer. Because several studies suggest that, like MtMscL, the E. coli MscL (EcoMscL is a pentamer, we re-investigated the oligomeric state of SaMscL. To determine the structural organization of MscL in the cell membrane we developed a disulfide-trapping approach. Surprisingly, we found that virtually all SaMscL channels in vivo are pentameric, indicating this as the physiologically relevant and functional oligomeric state. Complementing our in vivo results, we purified SaMscL and assessed its oligomeric state using three independent approaches (sedimentation equilibrium centrifugation, crosslinking, and light scattering and established that SaMscL is a pentamer when solubilized in Triton X-100 and C(8E(5 detergents. However, performing similar experiments on SaMscL solubilized in LDAO, the detergent used in the crystallographic study, confirmed the tetrameric oligomerization resolved by X-ray crystallography. We further demonstrate that this stoichiometric shift is reversible by conventional detergent exchange experiments. Our results firmly establish the pentameric organization of SaMscL in vivo. Furthermore they demonstrate that detergents can alter the subunit stoichiometry of membrane protein complexes in vitro; thus, in vivo assays are necessary to firmly establish a membrane protein's true functionally relevant oligomeric state.

  12. S. aureus MscL is a pentamer in vivo but of variable stoichiometries in vitro: implications for detergent-solubilized membrane proteins.

    Science.gov (United States)

    Dorwart, Michael R; Wray, Robin; Brautigam, Chad A; Jiang, Youxing; Blount, Paul

    2010-12-07

    While the bacterial mechanosensitive channel of large conductance (MscL) is the best studied biological mechanosensor and serves as a paradigm for how a protein can sense and respond to membrane tension, the simple matter of its oligomeric state has led to debate, with models ranging from tetramers to hexamers. Indeed, two different oligomeric states of the bacterial mechanosensitive channel MscL have been resolved by X-ray crystallography: The M. tuberculosis channel (MtMscL) is a pentamer, while the S. aureus protein (SaMscL) forms a tetramer. Because several studies suggest that, like MtMscL, the E. coli MscL (EcoMscL) is a pentamer, we re-investigated the oligomeric state of SaMscL. To determine the structural organization of MscL in the cell membrane we developed a disulfide-trapping approach. Surprisingly, we found that virtually all SaMscL channels in vivo are pentameric, indicating this as the physiologically relevant and functional oligomeric state. Complementing our in vivo results, we purified SaMscL and assessed its oligomeric state using three independent approaches (sedimentation equilibrium centrifugation, crosslinking, and light scattering) and established that SaMscL is a pentamer when solubilized in Triton X-100 and C(8)E(5) detergents. However, performing similar experiments on SaMscL solubilized in LDAO, the detergent used in the crystallographic study, confirmed the tetrameric oligomerization resolved by X-ray crystallography. We further demonstrate that this stoichiometric shift is reversible by conventional detergent exchange experiments. Our results firmly establish the pentameric organization of SaMscL in vivo. Furthermore they demonstrate that detergents can alter the subunit stoichiometry of membrane protein complexes in vitro; thus, in vivo assays are necessary to firmly establish a membrane protein's true functionally relevant oligomeric state.

  13. Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Mariona Segura-Noguera

    Full Text Available Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA, a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp. collected from different sites of the Catalan coast (NW Mediterranean Sea. As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20-23. The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical

  14. Stoichiometry and food chain dynamics.

    NARCIS (Netherlands)

    Kuijper, L.D.J.; Kooi, B.W.; Anderson, T.R.; Kooijman, S.A.L.M.

    2004-01-01

    Traditional models of chemostat systems looking at interactions between predator, prey and nutrients have used only a single currency, such as energy or nitrogen. In reality, growth of autotrophs and heterotrophs may be limited by various elements, e.g. carbon, nitrogen, phosphorous or iron. In this

  15. A determination of the oxygen non-stoichiometry of the oxygen storage materials LnBaMn2O5+δ (Ln=Gd, Pr)

    Science.gov (United States)

    Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana; Jacobson, Allan J.

    2016-07-01

    The A-site ordered double-perovskite oxides, LnBaMn2O5+δ (Ln=Gd, Pr), were synthesized and investigated to understand the effect of A site cation substitution on the oxygen storage properties of these materials. The present results are compared with our previous data for YBaMn2O5+δ. The results clearly reveal that changing the Ln cation strongly influences the oxidation/reduction behavior of LnBaMn2O5+δ. Based on thermogravimetric analysis data, oxygen uptake begins at lower temperatures in both air and oxygen in compounds with Ln3+ ions larger than Y3+. These oxides exhibit almost complete and reversible oxygen uptake/release between fully-reduced LnBaMn2O5 and fully-oxidized LnBaMn2O6 during changes of the oxygen partial pressure between air and 1.99% H2/Ar. In addition, the oxygen non-stoichiometries of GdBaMn2O5+δ and PrBaMn2O5+δ were determined as a function of pO2 at 600, 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that these materials have two distinct phases on oxidation/reduction with δ≈0, 0.5 and a third phase with a range of composition with an oxygen content (5+δ) approaching 6. The stabilities of the LnBaMn2O5+δ phases extend over a wide range of oxygen partial pressures (∼10-25≤pO2 (atm)≤∼1) depending on temperature. Isothermal experiments show that the larger the Ln3+ cation the lower pO2 for phase conversion. At some temperatures and pO2 conditions, the LnBaMn2O5+δ compounds are unstable with respect to decomposition to BaMnO3-δ and LnMnO3. This instability is more apparent in Coulometric titration experiments than in thermogravimetric analysis. The Coulometric titration experiments are necessarily slow in order to achieve equilibrium oxygen compositions.

  16. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species.

    Science.gov (United States)

    Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong

    2018-03-01

    Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed

  17. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements.

    Directory of Open Access Journals (Sweden)

    Yushi Ye

    Full Text Available Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C, nitrogen (N and phosphorus (P, in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD and four N managements (control, N0; conventional urea at 240 kg N ha(-1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha(-1, BBF; polymer-coated urea at 240 kg N ha(-1, PCU. We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems.

  18. Stoichiometry of water-soluble ions in PM2.5: Application in source apportionment for a typical industrial city in semi-arid region, Northwest China

    Science.gov (United States)

    Zhou, Haijun; Lü, Changwei; He, Jiang; Gao, Manshu; Zhao, Boyi; Ren, Limin; Zhang, Lijun; Fan, Qingyun; Liu, Tao; He, Zhongxiang; Dudagula; Zhou, Bin; Liu, Hualin; Zhang, Yu

    2018-05-01

    Water-soluble ions (WSIs) are major components of PM2.5 and it is valuable for understanding physical and chemical characteristics, sources, behaviors and formation mechanism of WSIs. Baotou is a traditionally industrial city in semi-arid region and frequently subjected to dust storms from March to May. In recent years, air pollution has been listed as one of the most important environmental problems in Baotou. To investigate the seasonal variations and sources of WSIs in PM2.5, the WSIs including SO42-, NO3-, Cl-, F-, NH4+, K+, Na+, Ca2+ and Mg2+ were monitored at six urban sites in Baotou. The results showed that high concentrations of Ca2+ and Na+ were found responding to dust storm events, while high concentrations of SO42-, NO3-, NH4+, K+ and Cl- were observed during haze days. The correlations analysis indicated that excess sulfuric and nitric acid was likely neutralized by carbonate minerals such as calcite, aragonite and dolomite in normal days and cations were fully neutralized during all the sampling periods, while cations were excessive in dust storm days. The concentrations of [NH4+ + SO42- + NO3-], [Na+ + Ca2+ + Mg2+] and [Cl- + K+ + F-] indicated the northwest and southeast region of Baotou presented comparatively high contributions of secondary aerosol and crustal dust, respectively, which were mainly related to the industrial distribution and urbanization process. The cluster analysis, ternary diagram and principal component analysis have a good agreement in source apportionment, where crustal dust sources, secondary aerosol source and the mixture of coal combustion, biomass burning and industrial pollution sources were the main sources of WSIs in PM2.5. The seasonal pattern of sulfur oxidation ratio (SOR) was September > April > November > January, while the nitrogen oxidation ratio (NOR) April > January > November > September in Baotou. This work evaluated the seasonal variation, distribution and source of WSIs on the basis of its stoichiometry in

  19. Enhancing Thermoelectric Figure-of-Merit of Polycrystalline Na y CoO2 by a Combination of Non-stoichiometry and Co-substitution

    Science.gov (United States)

    Mallick, Md. Mofasser; Vitta, Satish

    2018-06-01

    Co-oxides with a layered structure are of interest for high-temperature thermoelectric applications as they can be tuned to enhance their electrical conductivity while retaining their low thermal conductivity. The figure-of-merit of Na y CoO2 has been enhanced using the combined effects of Na-non-stoichiometry and non-isoelectronic Co-substitution. A series of compounds Na0.7Co1- x Ni x O2 with x ≤ 0.1 have been synthesized using conventional techniques. Structural analysis using x-ray diffraction and Rietveld refinement shows the formation of a γ-NaCoO2-type phase in all the compounds. The presence of a small amount of NiO for x > 0.05 indicates that the solubility limit of Ni in Na0.7CoO2 is 5 at.%. All the compounds have been found to be p-type with the thermopower reaching a maximum of 220 μV K-1 at 1023 K for x = 0.1. The thermopower has been found to vary linearly with temperature for all the compounds; a degenerate metallic behavior. The electrical resistivity varies between 3 and 10 mΩ cm at all temperatures and has a metallic temperature dependence in agreement with the thermopower results. The power factor for the x = 0.1 compound reaches a maximum value of 0.55 mW m-1 K-2 at ˜ 900 K compared to 0.45 mW m-1 K-2 for the compound with no substitution. The thermal conductivity at 1023 K decreases from 1.2 to 0.9 W m-1 K-1 for x = 0.1. These factors lead to an increase of the figure-of-merit, zT, to 0.58 at 1023 K for x = 0.1, an increase of 57% compared to the unsubstituted compound. The magnetic studies show that Na0.7CoO2 is paramagnetic with an antiferromagnetic transition at ˜ 36 K. Substitution of Ni2+ for Co3+ has been found to induce a ferromagnetic-like transition at ˜ 240 K which is suppressed at high fields.

  20. Revisiting the concept of Redfield ratios applied to plankton stoichiometry - Addressing model uncertainties with respect to the choice of C:N:P ratios for phytoplankton

    Science.gov (United States)

    Kreus, Markus; Paetsch, Johannes; Grosse, Fabian; Lenhart, Hermann; Peck, Myron; Pohlmann, Thomas

    2017-04-01

    Ongoing Ocean Acidification (OA) and climate change related trends impact on physical (temperature), chemical (CO2 buffer capacity) and biological (stoichiometric) properties of the marine environment. These threats affect the global ocean but they appear particularly pronounced in marginal and shelf seas. Marine biogeochemical models are often used to investigate the impacts of climate change and changes in OA on the marine system as well as its exchange with the atmosphere. Different studies showed that both the structural composition of the models and the elemental ratios of particulate organic matter in the surface ocean affect the key processes controlling the ocean's efficiency storing atmospheric excess carbon. Recent studies focus on the variability of the elemental ratios of phytoplankton and found that the high plasticity of C:N:P ratios enables the storage of large amounts of carbon by incorporation into carbohydrates and lipids. Our analysis focuses on the North Sea, a temperate European shelf sea, for the period 2000-2014. We performed an ensemble of model runs differing only in phytoplankton stoichiometry, representing combinations of C:P = [132.5, 106, 79.5] and N:P=[20, 16, 12] (i.e., Redfield ratio +/- 25%). We examine systematically the variations in annual averages of net primary production (NPP), net ecosystem production in the upper 30 m (NEP30), export production below 30 m depth (EXP30), and the air-sea flux of CO2 (ASF). Ensemble average fluxes (and standard deviations) resulted in NPP = 15.4 (2.8) mol C m-2 a-1, NEP30 = 5.4 (1.1) mol C m-2 a-1, EXP30 = 8.1 (1.1) mol C m-2 a-1 and ASF = 1.1 (0.5) mol C m-2 a-1. All key parameters exhibit only minor variations along the axis of constant C:N, but correlate positively with increasing C:P and decreasing N:P ratios. Concerning regional differences, lowest variations in local fluxes due to different stoichiometric ratios can be found in the shallow southern and coastal North Sea. Highest

  1. Effect of precursors stoichiometry on morphology, crystallinity and electrical properties of ZnTe epilayers grown on (100)GaAs by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Paiano, P.; Lovergine, N.; Mancini, A.M. [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, Via Arnesano, I-73100 Lecce (Italy); Prete, P. [Istituto per la Microelettronica e Microsistemi del CNR, Sezione di Lecce, Via Arnesano, I-73100 Lecce (Italy)

    2005-11-01

    The effect of precursors vapour stoichiometry on the morphological, structural and electrical properties of nominally undoped ZnTe grown on (100)GaAs by metalorganic vapour phase epitaxy is reported. The epilayers were grown at 350 C using dimethylzinc (Me{sub 2}Zn) and di-isopropyltelluride, varying their molar flow rate ratios (MFRs) between 0.17 and 3.10. Growth in nearly stoichiometric (MFR=1.03) conditions results in best surface morphology, while samples grown in Te-rich conditions (MFR>1.7) showed micron-size hollow defects (with surface densities up to {proportional_to}10{sup 6} cm{sup -2}) elongated in one of the left angle 011 right angle in-plane directions. The defects are associated to a local structural disorder of the material, ascribed to the formation of a Ga{sub 2}Te{sub 3} extrinsic phase at the ZnTe/GaAs interface. Ohmic contacts to p -ZnTe epilayers were prepared by tungsten evaporation and annealing at 350 C. The RT hole concentration in the epilayers varies almost linearly with Me{sub 2}Zn molar flow between 2 x 10{sup 15} cm{sup -3} and 5 x 10{sup 16} cm{sup -3}. Temperature-dependent Hall measurements performed on samples grown at MFR{<=}1.03 demonstrate that the material p-type conductivity originates from a single acceptor centre with an ionisation energy between 94.7 meV and 118 meV, its concentration being in the 10{sup 16} cm{sup -3} range and slowly increasing with Me{sub 2}Zn flow. We ascribe this acceptor to a complex formed by a substitutional carbon atom on a Te site and a donor on a nearest neighbor site (C{sub Te}-D{sub Zn}), the donor impurity being further identified as Ga diffusing from the substrate. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Carbon, Nitrogen and Phosphorus Accumulation and Partitioning, and C:N:P Stoichiometry in Late-Season Rice under Different Water and Nitrogen Managements

    Science.gov (United States)

    Ye, Yushi; Liang, Xinqiang; Chen, Yingxu; Li, Liang; Ji, Yuanjing; Zhu, Chunyan

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD) and four N managements (control, N0; conventional urea at 240 kg N ha−1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha−1, BBF; polymer-coated urea at 240 kg N ha−1, PCU). We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems. PMID:24992006

  3. Variation of crystallinity and stoichiometry in films of gallium oxide, gallium nitride and barium zirconate prepared by means of PLD; Variation von Kristallinitaet und Stoechiometrie in mittels PLD hergestellten Schichten aus Galliumoxid, Galliumnitrid und Bariumzirkonat

    Energy Technology Data Exchange (ETDEWEB)

    Brendt, Jochen

    2011-08-05

    Pulsed Laser Deposition (PLD) is an ablation technique for thin film preparation of many materials. The film properties can be well controlled by the process parameters. Therefore, in many cases a given material can be deposited with different properties by changing one or more process parameters. In this thesis thin films of gallium oxide, gallium nitride and barium zirconate were deposited with a large variation in structure and stoichiometry by means of Pulsed Laser Deposition. The characterization of the film crystallinity, phase purity and short range structural order was completed by means of X-ray diffraction and X-ray absorption spectroscopy. The stoichiometry was investigated using electron probe microanalysis. For analyzing the correlation between the structure and stoichiometry with the optical and electrical properties, optical absorption and electrical conductivity measurements were carried out. The investigation of all three material systems showed that very unique properties can be realized when combining an amorphous structure and a non-stoichiometric composition. For example, in amorphous and oxygen deficient gallium oxide an insulator-metal-transition can be induced by partial crystallization of the as prepared phase accomplished by annealing at about 400 C in argon atmosphere (as shown in literature). Furthermore, amorphous and highly non-stoichiometric barium zirconate has the ability to split water molecules to hydrogen and oxygen at room temperature. A detailed analysis of both phenomena has been performed by means of photoemission and transmission electron microscopy in the case of gallium oxide and via X-ray absorption spectroscopy and gas chromatography in the case of barium zirconate.

  4. Effect of A-site stoichiometry on phase stability and electrical conductivity of the perovskite Las(Ni0.59Fe0.41)O3-δ and its compatibility with (La0.8

    DEFF Research Database (Denmark)

    Knudsen, J.; Friehling, P.B.; Bonanos, N.

    2005-01-01

    , prepared by the glycine nitrate combustion method. The chemical compatibility of La-0.99(Ni0.59Fe0.41)O3-delta with the cathode material (La0.85Sr0.15)(0.91)MnO3-delta and the electrolyte Y2O3-doped ZrO2 (8 mol%) was likewise studied by X-ray diffraction and scanning electron microscopy. Small deviations......To investigate the influence of A-site stoichiometry on phase stability and electrical conductivity of the perovskite based series La-S(Ni0.59Fe0.41)O3-delta for cathode current collection in solid oxide fuel cells, X-ray diffraction and DC electrical conductivity studies were performed on samples...... (similar to 1 at.%) in the A-site stoichiometry of the perovskite did not result in significant change to the electrical conductivity. Extensive reaction between La-0.99(Ni0.59Fe0.41)O3-delta and 8 mol% Y2O3 doped ZrO2 after sintering was observed by X-ray diffraction. Reaction between La-0.99(Ni0.59Fe0...

  5. Effect of Sr substituted La 2−x Sr x NiO 4+δ (x = 0, 0.2, 0.4, 0.6, and 0.8) on oxygen stoichiometry and oxygen transport properties

    KAUST Repository

    Inprasit, T.; Wongkasemjit, S.; Skinner, S. J.; Burriel, M.; Limthongkul, P.

    2015-01-01

    © The Royal Society of Chemistry 2015. Stoichiometry and oxygen diffusion properties of La2-xSrxNiO4±δ with x = 0.2, 0.4, 0.6, and 0.8 prepared via a sol-gel method were investigated in this study. Iodometric titration and thermogravimetric analysis were used to determine the oxygen non-stoichiometry. Over the entire compositional range, the samples exhibit oxygen hyperstoichiometry with the minimum value δ = 0.14 at x = 0.4. Mixed effects of reduction of oxygen excess and increasing valence of Ni were found to serve as charge compensation mechanisms; the former dominated at a low level of substitution, x < 0.4, while the latter dominated at higher levels of Sr (0.4 < x < 0.8). The highest oxygen diffusion coefficient was found for the minimum amount of Sr substitution, x = 0.2, continuously decreasing with x until x = 0.6. An unusual increase in D∗ was observed when the Sr content increased up to x = 0.8.

  6. In situ examination of oxygen non-stoichiometry in La0.80Sr0.20CoO3−δ thin films at intermediate and low temperatures by x-ray diffraction

    KAUST Repository

    Biegalski, M. D.

    2014-04-21

    Structural evolution of epitaxial La0.80Sr 0.20CoO3-δ thin films under chemical and voltage stimuli was examined in situ using X-ray diffraction. The changes in lattice parameter (chemical expansivity) were used to quantify oxygen reduction reaction processes and vacancy concentration changes in lanthanum strontium cobaltite. At 550 °C, the observed lattice parameter reduction at an applied bias of -0.6 V was equivalent to that from the reducing condition of a 2% carbon monoxide atmosphere with an oxygen non-stoichiometry δ of 0.24. At lower temperatures (200 °C), the application of bias reduced the sample much more effectively than a carbon monoxide atmosphere and induced an oxygen non-stoichiometry δ of 0.47. Despite these large changes in oxygen concentration, the epitaxial thin film was completely re-oxidized and no signs of crystallinity loss or film amorphization were observed. This work demonstrates that the effects of oxygen evolution and reduction can be examined with applied bias at low temperatures, extending the ability to probe these processes with in-situ analytical techniques. © 2014 AIP Publishing LLC.

  7. The use of NH4+ rather than NO3- affects cell stoichiometry, C allocation, photosynthesis and growth in the cyanobacterium Synechococcus sp. UTEX LB 2380, only when energy is limiting.

    Science.gov (United States)

    Ruan, Zuoxi; Giordano, Mario

    2017-02-01

    The assimilation of N-NO 3 - requires more energy than that of N-NH 4 + . This becomes relevant when energy is limiting and may impinge differently on cell energy budget depending on depth, time of the day and season. We hypothesize that N-limited and energy-limited cells of the oceanic cyanobacterium Synechococcus sp. differ in their response to the N source with respect to growth, elemental stoichiometry and carbon allocation. Under N limitation, cells retained almost absolute homeostasis of elemental and organic composition, and the use of NH 4 + did not stimulate growth. When energy was limiting, however, Synechococcus grew faster in NH 4 + than in NO 3 - and had higher C (20%), N (38%) and S (30%) cell quotas. Furthermore, more C was allocated to protein, whereas the carbohydrate and lipid pool size did not change appreciably. Energy limitation also led to a higher photosynthetic rate relative to N limitation. We interpret these results as an indication that, under energy limitation, the use of the least expensive N source allowed a spillover of the energy saved from N assimilation to the assimilation of other nutrients. The change in elemental stoichiometry influenced C allocation, inducing an increase in cell protein, which resulted in a stimulation of photosynthesis and growth. © 2016 John Wiley & Sons Ltd.

  8. Impact of the natural Fe-fertilization on the magnitude, stoichiometry and efficiency of particulate biogenic silica, nitrogen and iron export fluxes

    Science.gov (United States)

    Lemaitre, N.; Planquette, H.; Dehairs, F.; van der Merwe, P.; Bowie, A. R.; Trull, T. W.; Laurenceau-Cornec, E. C.; Davies, D.; Bollinger, C.; Le Goff, M.; Grossteffan, E.; Planchon, F.

    2016-11-01

    The Kerguelen Plateau is characterized by a naturally Fe-fertilized phytoplankton bloom that extends more than 1000 km downstream in the Antarctic Circumpolar Current. During the KEOPS2 study, in austral spring, we measured particulate nitrogen (PN), biogenic silica (BSi) and particulate iron (PFe) export fluxes in order to investigate how the natural fertilization impacts the stoichiometry and the magnitude of export fluxes and therefore the efficiency of the biological carbon pump. At 9 stations, we estimated elemental export fluxes based on element concentration to 234Th activity ratios for particulate material collected with in-situ pumps and 234Th export fluxes (Planchon et al., 2015). This study revealed that the natural Fe-fertilization increased export fluxes but to variable degrees. Export fluxes for the bloom impacted area were compared with those of a high-nutrient, low-chlorophyll (HNLC), low-productive reference site located to the south-west of Kerguelen and which had the lowest BSi and PFe export fluxes (2.55 mmol BSi m-2 d-1 and 1.92 μmol PFem-2 d-1) and amongst the lowest PN export flux (0.73 mmol PN m-2 d-1). The impact of the Fe fertilization was the greatest within a meander of the polar front (PF), to the east of Kerguelen, with fluxes reaching 1.26 mmol PN m-2 d-1; 20.4 mmol BSi m-2 d-1 and 22.4 μmol PFe m-2 d-1. A highly productive site above the Kerguelen Plateau, on the contrary, was less impacted by the fertilization with export fluxes reaching 0.72 mmol PN m-2 d-1; 4.50 mmol BSi m-2 d-1 and 21.4 μmol PFe m-2 d-1. Our results suggest that ecosystem features (i.e. type of diatom community) could play an important role in setting the magnitude of export fluxes of these elements. Indeed, for the PF meander, the moderate productivity was sustained by the presence of large and strongly silicified diatom species while at the higher productivity sites, smaller and slightly silicified diatoms dominated. Interestingly, our results suggest that

  9. Continuous Ecosystem Stoichiometry (C:N:P) in a Large Spring-fed River Reveals Decoupled N and P Assimilatory Dynamics

    Science.gov (United States)

    Cohen, M. J.; Douglass, R. L.; Martin, J. B.; Thomas, R. G.; Heffernan, J. B.; Foster, C. R.

    2010-12-01

    Diel variation in solutes offers insight into lotic ecosystem processes. Diel variation in dissolved oxygen (DO) is the standard method to estimate aquatic primary production (C fixation). Recently, diel variation in nitrate concentration was used to infer rates and pathways of N processing. From coupled C and N measurements, stoichiometric ratios of nutrient assimilation can be obtained, and variation therein linked back to environmental drivers and ecological changes. Here we present data obtained using an in situ phosphate sensor (Cycle-P, WetLabs, Philomath OR) that permits coupled high frequency C, N and P measurements. We collected hourly samples over 3 two-week deployments in the Ichetucknee River, a large (Q ~ 10 m3 s-1), productive (GPP ~ 6 g C m-2 d-1), entirely spring-fed river in north Florida. We observed average soluble reactive P (SRP) concentrations of 44, 41 and 45 µg/L for Dec-09, Feb-10 and Apr-10, respectively, and marked diel variation that averaged 6.7±0.9 µg/L. Observed river concentrations were consistently at or below the flow-weighted average input concentration of the 6 main springs that feed the river (49 µg/L) suggesting net SRP removal over the 5 km reach. Removal from co-precipitation with calcite or Fe-oxides is unlikely since variation in Fe and Ca is smaller than, and out of phase with, P variation. Since internal stores are presumed to be at steady-state given conditions of constant discharge, the balance of P export likely occurs as organic matter. Based on discharge during each deployment, diel variation of P concentrations indicate system-wide assimilation of 1505 ± 423 g P d-1, or 8.0 ± 2.3 mg P m-2 d-1 over the 17 ha of benthic surface area. Contemporaneous measurements of DO and nitrate implied average ecosystem stoichiometry (C:N:P) of 267:14:1, consistent with production dominated by submerged aquatic macrophytes rather than algae and other microflora. Of particular interest is the observation that diel variation in

  10. Oxygen stoichiometry and the structure of Tl[sub 2]Ba[sub 2]Ca[sub 2]Cu[sub 3]O[sub 10-y]. A high-resolution powder neutron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Ogborne, D.M.; Weller, M.T.; Lanchester, P.C. (Dept. of Chemistry and Physics, Univ. of Southampton (United Kingdom))

    1992-09-15

    Samples of Tl[sub 2]Ba[sub 2]Ca[sub 2]Cu[sub 3]O[sub 10-y] have been prepared with three different oxygen stoichiometries by reaction under various oxygen gas partial pressures. Powder neutron diffraction studies on these materials show that for y > 0 oxygen vacancies exist in the thallium-oxygen layer; filling this site results in a contraction of the lattice with concomitant reduction in the apical Cu-O bond length but with an expansion of the copper-oxygen interlayer distance. These structural changes which occur as a function of oxygen content are discussed in terms of the superconducting properties of these materials. (orig.).

  11. Evidence of different stoichiometries for the limiting carbonate complexes of lanthanides(3); Mise en evidence d'un changement de stoechiometrie du complexe carbonate limite au sein de la serie des lanthanides(3)

    Energy Technology Data Exchange (ETDEWEB)

    Philippini, V

    2007-12-15

    Two stoichiometries have been proposed by different laboratories to interpret measurements on the limiting carbonate complexes of An{sup 3+} and Ln{sup 3+} cations. The study of the solubility of double carbonates (AlkLn(CO{sub 3}){sub 2},xH{sub 2}O) in concentrated carbonate solutions at room temperature and high ionic strengths has shown that on the one hand the lightest lanthanides (La and Nd) form Ln(CO{sub 3}){sub 4}{sup 5-} whereas the heaviest (Eu and Dy) form Ln(CO{sub 3}){sub 3}{sup 3-} in the studied chemical conditions, and on the other hand, that the kinetics of precipitation of double carbonates depends on the alkali metal and the lanthanide ions. The existence of two stoichiometries for the limiting carbonate complexes was confirmed by capillary electrophoresis hyphenated to an inductively coupled plasma mass spectrometer (CE-ICP-MS), used to extend the study to the whole series of lanthanides (except Ce, Pm and Yb). Two behaviours have been put forward comparing the electrophoretic mobilities: La to Tb form Ln(CO{sub 3}){sub 4}{sup 5-} while Dy to Lu form Ln(CO{sub 3}){sub 3}{sup 3-}. Measurements by time resolved laser fluorescence spectroscopy (TRLFS) on Eu(III) indicate small variations of the geometry of Eu(CO{sub 3}){sub 3}{sup 3-} complex, specially with Cs{sup +}. Although analogies are currently used among the 4f-block trivalent elements, different aqueous speciations are evidenced in concentrated carbonate solutions across the lanthanide series. (author)

  12. The Effect of Barium Non-Stoichiometry on the Phase Structure, Sintering and Electrical Conductivity of BaZr0.7Pr0.1Y0.2O3

    KAUST Repository

    Mohamed Shibly, Kaamil

    2015-05-05

    This thesis attempts to test the effects of barium non stoichiometry and varying calcination temperatures on the microstructure and electrical conductivity of BaxZr0.7Pr0.1Y0.2O3- δ (x = 0.9, 1.0, 1.1). BZPY powders were fabricated using a combustion method, with the quantity of barium carefully controlled to create powders with a 10% molar excess or deficiency of barium. Then, portions of the precursor were calcined at 900 ºC, 1000 ºC, 1100 ºC, 1200 ºC and 1300 ºC for 5 h. The resulting calcined powders were pressed into pellets and sintered at 1600 ºC for 10 h, in a powder bath of the same chemical composition. In all, three chemically different powders were synthesized, and each composition was subjected to five different calcination temperatures, resulting in fifteen different samples to characterise. The precursor from the combustion method was characterised by using an STA to perform both TG and DSC simultaneously. The chemical composition of the precursor and calcined samples was analysed using ICP-OES. XRD was used to characterise the phases of both the powders and the sintered pellets. Lattice parameter indexing using Topaz and Scherrer\\'s equation were used to extract the lattice parameters and crystallite sizes respectively. The microstructure of the pellets was examined using an SEM, the grain size measured using a linear intercept method and pore size using ImageJ. Finally, EIS was used to measure the conductivity of the pellets in dry and wet Argon atmospheres, with silver electrodes. Unfortunately, neither changes to barium stoichiometry nor partial calcination could improve the performance of BZPY. Partially calcined samples did not give rise to dense pellets, barium deficient samples showed inferior conductivity and barium excess samples, while showing higher conductivity than the barium deficient pellets at high temperature, were fragile and had to be handled carefully. Ultimately, the attempt to improve the performance of BZPY did not

  13. Raman Spectroscopic Study of Tungsten(VI) Oxosulfato Complexes in WO3–K2S2O7–K2SO4 Molten Mixtures: Stoichiometry, Vibrational Properties and Molecular Structure

    DEFF Research Database (Denmark)

    Paulson, Andreas L.; Kalampounias, Angelos G.; Berg, Rolf W.

    2011-01-01

    The dissolution reaction of WO3 in pure molten K2S2O7 and in molten K2S2O7-K2SO4 mixtures is studied under static equilibrium conditions in the XWO3 0 = 0-0.33 mol fraction range at temperatures up to 860 C. High temperature Raman spectroscopy shows that the dissolution leads to formation of WVI...... configuration as a core unit within the oxosulfato complexes formed. A quantitative exploitation of the relative Raman intensities in the binary WO3-K2S2O7 system allows the determination of the stoichiometric coefficient, n, of the complex formation reaction WO3 þ nS2O7 2-fC2n-. It is found that n = 1......; therefore, the reaction WO3 þ S2O7 2- f WO2(SO4)2 2- with six-fold W coordination is proposed as fully consistent with the observed Raman features. The effects of the incremental dissolution and presence of K2SO4 inWO3-K2S2O7 melts point to aWO3 3 K2S2O7 3 K2SO4 stoichiometry and a corresponding complex...

  14. X-ray studies on crystalline complexes involving amino acids and peptides. XXXII. Effect of chirality on ionisation state, stoichiometry and aggregation in the complexes of oxalic acid with DL- and L-lysine.

    Science.gov (United States)

    Venkatraman, J; Prabu, M M; Vijayan, M

    1997-08-01

    Crystals of the oxalic acid complex of DL-lysine (triclinic P1; a = 5.540(1), b = 10.764(2), c = 12.056(2) A, alpha = 77.8(1), beta = 80.6(1), gamma = 75.6(1).; R = 4.7% for 2023 observed reflections) contain lysine and semioxalate ions in the 1:1 ratio, whereas the ratio of lysine and semioxalate/oxalate ions is 2:3 in the crystals of the L-lysine complex (monoclinic P2(1); alpha = 4.906(1), b = 20.145(4), c = 12.455(1) A, beta = 92.5(1).; R = 4.4% for 1494 observed reflections). The amino acid molecule in the L-lysine complex has an unusual ionisation state with positively charged alpha- and side-chain amino groups and a neutral carboxyl group. The unlike molecules aggregate into separate alternating layers in the DL-lysine complex in a manner similar to that observed in several of the amino acid complexes. The L-lysine complex exhibits a new aggregation pattern which cannot be easily explained in terms of planar features, thus emphasizing the fundamental dependence of aggregation on molecular characteristics. Despite the differences in stoichiometry, ionisation state and long-range aggregation patterns, the basic element of aggregation in the two complexes exhibits considerable similarity.

  15. Spatial and seasonal distribution of carbon, nitrogen, phosphorus, and sulfur and their ecological stoichiometry in wetland soils along a water and salt gradient in the Yellow River Delta, China

    Science.gov (United States)

    Lu, Qiongqiong; Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Wu, Jianjun

    2018-04-01

    Top soils (0-10 cm) were collected in three sampling belts during four seasons in 2014, including bare land (HN1), Calamagrostis epigeios (HN2), Typha orientalis (HN3), Phragmites australis (HN4), Tamarix chinensis (HN5) and Suaeda salsa (HN6) along a water and salinity gradient in the Yellow River Delta, China. Soil organic carbon (SOC), total nitrogen (TN), total phosphorous (TP), total sulfur (TS) and their ecological stoichiometry were measured to investigate their seasonal and horizontal distribution patterns, as well as their important influencing factors such as electric conductivity (EC) and water content (WC). Our results showed that the contents of SOC and TN exhibited similar changing tendency along the water and salinity gradient. The TP contents followed the order HN5 ≈ HN2 > HN3 ≈ HN6 > HN4 > HN1. TS levels generally increased with increasing salinity from HN1 to HN6. The higher levels of SOC and TP were mostly observed in October and August, respectively, while the seasonal variations in TN were heterogeneous under different plant covers. TS contents were lower in August compared with other sampling periods except for HN4. The mean values of the C/N, C/P and C/S ratios along a water-salinity gradient ranged from 26 to 72, 20 to 74, and 61 to 292, respectively. Generally, higher C/P ratios were observed in sampling sites with plant covers in October expect for HN1, whereas they were lower in January or August. SOC, TN and TP were significantly positively correlated with soil organic matter (SOM), silt, WC and cation exchange capacity (CEC) (p 0.05). Bulk density (BD) had a great influence on C/N ratio, C/P ratio were mainly effected by SOM, EC and silt, while C/S ratio showed a significant negative correlation with BD, EC, K+, Na+, and Mg2+ (p < 0.05).

  16. Comparison of H/Al stoichiometry of mineral and organic soils in Brazil Comparação da estequiometria H/Al em solos minerais e orgânicos brasileiros

    Directory of Open Access Journals (Sweden)

    Daniel Vidal Perez

    2009-08-01

    Full Text Available Exchangeable Al has been used as a criterion for the calculation of lime requirement in several Brazilian States. However, the laboratory method with extraction by a 1 mol L-1 KCl solution followed by indirect alkaline titration is not accurate for some Brazilian soils, mainly in the case of soils with high organic matter content. The objective of this study was therefore to evaluate the stoichiometry of H+/Al3+ in KCl soil extracts. The results suggested that organically complexed Al is the main contributor to exchangeable acidity in soils enriched with organic matter. Liming recommendations for organic soils based exclusively on exchangeable Al determined by the NaOH titration method should therefore be revised.A determinação de alumínio trocável é utilizada como critério para cálculo de calagem em vários estados brasileiros. Contudo, a determinação indireta pela titulação com NaOH, após extração com solução de KCl 1 mol L-1, pode não ser adequada para certos tipos de solos brasileiros, notadamente aqueles que apresentem altos teores de carbono orgânico. Dessa forma, o principal objetivo deste trabalho foi avaliar a estequiometria da relação H+/Al3+ em extratos de KCl. Os resultados obtidos sugerem que o Al complexado pela matéria orgânica, em solos orgânicos, é o principal contribuinte para a acidez trocável obtida por titulação. Dessa forma, a recomendação de calagem em solos orgânicos baseado somente na determinação de alumínio trocável por titulação com NaOH deve ser revista.

  17. Biological stoichiometry in tumor micro-environments.

    Directory of Open Access Journals (Sweden)

    Irina Kareva

    Full Text Available Tumors can be viewed as evolving ecological systems, in which heterogeneous populations of cancer cells compete with each other and somatic cells for space and nutrients within the ecosystem of the human body. According to the growth rate hypothesis (GRH, increased phosphorus availability in an ecosystem, such as the tumor micro-environment, may promote selection within the tumor for a more proliferative and thus potentially more malignant phenotype. The applicability of the GRH to tumor growth is evaluated using a mathematical model, which suggests that limiting phosphorus availability might promote intercellular competition within a tumor, and thereby delay disease progression. It is also shown that a tumor can respond differently to changes in its micro-environment depending on the initial distribution of clones within the tumor, regardless of its initial size. This suggests that composition of the tumor as a whole needs to be evaluated in order to maximize the efficacy of therapy.

  18. The global stoichiometry of litter nitrogen mineralization

    Science.gov (United States)

    Stefano Manzoni; Robert B. Jackson; John A. Trofymow; Amilcare Porporato

    2008-01-01

    Plant residue decomposition and the nutrient release to the soil play a major role in global carbon and nutrient cycling. Although decomposition rates vary strongly with climate, nitrogen immobilization into litter and its release in mineral forms are mainly controlled by the initial chemical composition of the residues. We used a data set of ~2800 observations to show...

  19. The global stoichiometry of litter nitrogen mineralization.

    Science.gov (United States)

    Manzoni, Stefano; Jackson, Robert B; Trofymow, John A; Porporato, Amilcare

    2008-08-01

    Plant residue decomposition and the nutrient release to the soil play a major role in global carbon and nutrient cycling. Although decomposition rates vary strongly with climate, nitrogen immobilization into litter and its release in mineral forms are mainly controlled by the initial chemical composition of the residues. We used a data set of approximately 2800 observations to show that these global nitrogen-release patterns can be explained by fundamental stoichiometric relationships of decomposer activity. We show how litter quality controls the transition from nitrogen accumulation into the litter to release and alters decomposers' respiration patterns. Our results suggest that decomposers lower their carbon-use efficiency to exploit residues with low initial nitrogen concentration, a strategy used broadly by bacteria and consumers across trophic levels.

  20. Ecological Stoichiometry Characteristics of Aquatic Macrophytes in the Decomposition Process%水生植物分解过程中生态化学计量学特征研究

    Institute of Scientific and Technical Information of China (English)

    张雷燕; 关保华; 程寒飞; 詹茂华

    2017-01-01

    Plant matter from three macrophytes from different environments was dried and analyzed over time to in-vestigate macrophyte stoichiometry during decomposition and the effect of environment on macrophyte stoichiometry . A floating plant, Lemna minor, and two submerged plants, Vallisneria natans and Potamogeton malaianus, were prepared and placed in three water environments:Treatment A:beaker with 200 mL tap water +3 cm of sediment in a greenhouse;Treatment B: beaker with 200 mL tap water in a greenhouse; Treatment C: in situ in a pond. Each treatment was run in triplicate with six plants per trial.Each week for five weeks, one plant was randomly se-lected from each treatment for determination of dry weight, TN, TC and TP.The C/N range in the three macro-phytes was 7.43-10.06, much lower than the global level of 22.5, and the C/P range was 43.09-91.77, sig-nificantly higher than the global level of 23.2.The results indicate that, with the same assimilation capacity of C, the utilization efficiency of N is higher than that of P.The N/P range (4.71-9.24) in the three macrophytes was lower than the global level of 14, showing that N was the limiting nutrient for the macrophytes.Furthermore, the submerged plants V.natans, and P.malaianus exhibited similar C/N ratios in the greenhouse and under natural conditions, indicating a consistent release rate of C and N from the submerged macrophytes and implying a small environmental effect.However, the C/N ratio of L.minor varied markedly between treatments, implying a large environmental effect.The C/N ratio in L.minor and V.natans increased rapidly at the beginning, indicating that the release rate of N from both macrophytes was higher than the release rate of C.The C/P and N/P ratio in the three macrophytes increased rapidly in the first week and the ratios varied significantly among the three groups.This indicates that the P release rate from the three macrophytes was higher than the release rates of C and N during the first

  1. Molybdenum(VI) Oxosulfato Complexes in MoO3–K2S2O7–K2SO4 Molten Mixtures: Stoichiometry, Vibrational Properties, and Molecular Structures

    DEFF Research Database (Denmark)

    Kalampounias, Angelos G.; Tsilomelekis, George; Berg, Rolf W.

    2012-01-01

    effects were explored in the XMoO30 = 0–0.5 range. MoO3 undergoes a dissolution reaction in molten K2S2O7, and the Raman spectra point to the formation of molybdenum(VI) oxosulfato complexes. The MoO stretching region of the Raman spectrum provides sound evidence for the occurrence of a dioxo Mo(O)2...... configuration as a core. The stoichiometry of the dissolution reaction MoO3 + nS2O72– → C2n– was inferred by exploiting the Raman band intensities, and it was found that n = 1. Therefore, depending on the MoO3 content, monomeric MoO2(SO4)22– and/or associated [MoO2(SO4)2]m2m– complexes are formed in the binary...... with ab initio quantum chemical calculations carried out on [MoO2(SO4)3]4– and [{MoO2}2(SO4)4(μ-SO4)2]8– ions, in assumed isolated gaseous free states, at the DFT/B3LYP (HF) level and with the 3-21G basis set. The calculations included determination of vibrational infrared and Raman spectra, by use...

  2. Empirical Calibration for Dolomite Stoichiometry Calculation: Application on Triassic Muschelkalk- Lettenkohle Carbonates (French Jura Calibration empirique pour le calcul de la stoechiométrie de la dolomite : application aux carbonates triasiques du Muschelkalk-Lettenkohle (Jura français

    Directory of Open Access Journals (Sweden)

    Turpin M.

    2012-02-01

    Full Text Available This study concerns an approach for dolomite quantification and stoichiometry calculation by using X-ray diffractometry coupled with cell and Rietveld refinements and equipped with a newly substantial database of dolomite composition. A greater accuracy and precision are obtained for quantifying dolomite as well as other mineral phases and calculating dolomite stoichiometry compared to the classical “Lumsden line” and previous methods. The applicability of this approach is verified on dolomite reference material (Eugui and on Triassic (Upper Muschelkalk-Lettenkohle carbonates from the French Jura. The approach shown here is applicable to bulk dolostones as well as to specific dolomite cements and was combined with petrographical and isotopic analyses. Upper Muschelkalk dolomites were formed during burial dolomitization under fluids characterized by increased temperature and variable isotopic composition through burial. This is clear from their Ca content in dolomites which gradually approaches an ideal stoichiometry (from 53.16% to 51.19% through increasing dolomitization. Lettenkohle dolostones consist of near-ideal stoichiometric (51.06%Ca and well-ordered dolomites associated with anhydrite relicts. They originated through both sabkha and burial dolomitization. This contribution gives an improved method for the characterization of different dolomite types and their distinct traits in sedimentary rocks, which allows a better evaluation of their reservoir potential. Cette étude propose une approche pour la quantification de la dolomite et le calcul de sa stoechiométrie grâce à l’utilisation de la diffraction des rayons X couplée aux affinements de maille et de Rietveld et complétée par de nombreuses données issues de la littérature. Elle permet d’obtenir une meilleure justesse et précision pour la quantification de la dolomite (et des autres phases minérales ainsi que pour le calcul de sa stoechiométrie par rapport à l

  3. Branch-point stoichiometry can generate weak links in metabolism ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    glycine is partitioned between the synthesis of collagen and other metabolic functions when .... reaction that converts arginine into ornithine and urea, and, in the reverse ..... synthesis and causes increased excretion of 5-oxoproline in the urine.

  4. Electrochemical determination of oxygen stoichiometry and entropy in oxides

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Skaarup, Steen

    1996-01-01

    in the temperature range 800-1000 degrees C. With scan rates of 2 mu V/s potential sweeps on CeO2 are reversible. The change in entropy is determined by either subtraction of e.m.f. curves obtained by potential sweeps of different temperatures or by measuring the e.m.f. during a temperature scan. The latter method...

  5. Non-stoichiometry in sulfides produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Canulescu, Stela; Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt

    and the most volatile component in the film. A very well studied case in the one of oxides, for which the O2 or N2O background gases can reduce the loss of oxygen in the growing films. A much less studied case is the one of sulfides or selenides, such as the solar cell absorber layers of CIGS (Cu(Ga,In)Se2...

  6. Reflections on the aerobic fermentation stoichiometry of crabtree positive yeasts

    DEFF Research Database (Denmark)

    Villadsen, John; Jørgensen, Sten Bay

    2014-01-01

    In this communication a stoichiometric steady state model for Crabtree positive yeasts is proposed. The model is sufficiently simple to be corroborated by experimental data on the key metabolic events around Dcrit. The key feature of the model is that the bottleneck aperture for biomass production...... in the model of Sonnleitner and Käppeli, 1986 shrinks abruptly at Dcrit and continues to decrease with increasing dilution rate. A black box stoichiometric analysis of experiments reported in literature indicates that production of acetaldehyde might account for the abrupt shrinkage through a severe poisoning...

  7. Consumer-resource stoichiometry in detritus-based streams

    Science.gov (United States)

    Wyatt F. Cross; Jonathan P. Benstead; Amy D. Rosemond; J. Bruce Wallace

    2003-01-01

    Stoichiometric relationships between consumers and resources in detritus-based ecosystems have received little attention, despite the importance of detritus in most food webs. We analysed carbon (C), nitrogen (N), and phosphorus (P) content of invertebrate consumers, and basal food resources in two forested headwater streams (one reference and the other nutrient-...

  8. Oxygen stoichiometry and the high Tc superconducting oxides

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Bagley, B.G.

    1989-01-01

    Methods for determining the oxygen content in high Tc materials, such as thermogravimetric analysis and chemical analysis, are discussed. Consideration is given to La-based cuprates, Y-based cuprates, and Bi-based cuprates. Superconducting transition temperatures are analyzed as a function of the Cu(1)-O(4) bond lengths for several different compositions in the Y-based system. 28 references

  9. Effect of Stoichiometry and Strain Rate on Transient Flame Response

    National Research Council Canada - National Science Library

    Knio, Omar M; Najm, Habib N

    2000-01-01

    The interaction of a premixed methane/air flame with a counter-rotating vortex pair is analyzed using a parallel low-Mach-number computational model that is based on a detailed C1C2 chemical mechanism...

  10. Proton stoichiometry of electron transport in rodent tumor mitoplasts.

    Science.gov (United States)

    Ferreira, J; Reynafarje, B; Costa, L E; Lehninger, A L

    1988-02-01

    The mechanistic vectorial H+/O translocation ratios characteristic of energy-conserving sites 2 + 3 and site 3 of the respiratory chain of two tumor cell lines were determined using succinate and ferrocytochrome c, respectively, as electron donors. The measurements were carried out on mitoplasts in order to allow ferrocytochrome c free access to its binding site on the inner mitochondrial membrane. The tumor cell lines used were Ehrlich ascites tumor and the AS30-D ascites tumor. K+ was used as charge-compensating cation in the presence of valinomycin. The O2 uptake rate measurements were made with a fast-responding membrane-less electrode whose response time was closely matched with that of a pH electrode. The rates of O2 uptake and H+ ejection during the apparent zero-order rate phase of respiration, analyzed by computer, were extrapolated to zero time. The observed H+/O ratios for succinate oxidation in both tumors exceeded 7 and approached 8 and the H+/O ratios for the cytochrome oxidase reaction closely approached 4.0, in agreement with data or normal mitochondria. However, the rates of H+ back decay in the tumor mitochondria are relatively high and may influence the net efficiency of oxidative phosphorylation under intracellular conditions.

  11. Proton cycling, buffering, and reaction stoichiometry in natural waters

    NARCIS (Netherlands)

    Hofmann, A.F.; Middelburg, J.J.; Soetaert, K.; Wolf-Gladrow, D.A.; Meysman, F.J.R.

    2010-01-01

    Ongoing acidification of the global ocean necessitates a solid understanding of how biogeochemical processes are driving proton cycling and observed pH changes in natural waters. The standard way of calculating the pH evolution of an aquatic system is to specify first how biogeochemical processes

  12. Aquatic macrophytes drive sediment stoichiometry and the suspended particulate organic carbon composition of a tropical coastal lagoon Macrófitas aquáticas determinam a estequiometria do sedimento e a composição do carbono orgânico particulado em suspensão de uma lagoa costeira tropical

    Directory of Open Access Journals (Sweden)

    Cláudio Cardoso Marinho

    2010-06-01

    Full Text Available AIM: This research aimed to evaluate (1 the influence of the aquatic macrophytes Typha domingensis Pers., Eleocharis interstincta (Vahl Roem. & Schult. (emergent and Potamogeton stenostachys K. Schum. (submersed on sediment stoichiometry and (2 the contribution of these aquatic macrophytes to organic carbon composition in different compartments of a tropical coastal lagoon (Cabiúnas Lagoon, Macaé-RJ; METHODS: The concentration of carbon (C, nitrogen (N and phosphorus (P was determined in 2-cm intervals in the first 10 cm of sediment in both littoral and limnetic regions. In the littoral region, the sediment was collected in three different sites: T. domingensis, E. interstincta and P. stenostachys stands. In order to know the pathways of C in Cabiunas lagoon, the isotopic signature (δ13C of restinga terrestrial vegetation, zooplankton, phytoplankton, macrophytes, dissolved and suspended material on water were evaluated; RESULTS: The concentrations of C and N in the sediment of the E. interstincta and T. domingensis stands were significantly higher than in the sediment of the limnetic region. The concentration of phosphorus in the sediment colonized by T. domingensis was higher than in the limnetic region and in P. stenostachys stand. The highest molar C:P ratios were found in E. interstincta and P. stenostachys stands. The highest N:P ratios were also found in the littoral region. Carbon stable isotopic analysis (δ13C signatures showed that a majority of the particulate organic carbon (POC in the water column had aquatic macrophyte tissues origin; CONCLUSIONS: Emergent macrophytes strongly contribute to nutrient enrichment of the sediment of Cabiúnas lagoon. In general, macrophyte detritus alters the littoral region sediment stoichiometry and quality for decomposers, by accumulating much more C in relation to N and P when compared to limnetic region. However, macrophytes importance isn't restricted to the sediment once they have a central

  13. Three-dimensional structure and stoichiometry of Helmintosporium victoriae190S totivirus

    International Nuclear Information System (INIS)

    Caston, Jose R.; Luque, Daniel; Trus, Benes L.; Rivas, German; Alfonso, Carlos; Gonzalez, Jose M.; Carrascosa, Jose L.; Annamalai, Padmanaban; Ghabrial, Said A.

    2006-01-01

    Most double-stranded RNA viruses have a characteristic capsid consisting of 60 asymmetric coat protein dimers in a so-called T = 2 organization, a feature probably related to their unique life cycle. These capsids organize the replicative complex(es) that is actively involved in genome transcription and replication. Available structural data indicate that their RNA-dependent RNA polymerase (RDRP) is packaged as an integral capsid component, either as a replicative complex at the pentameric vertex (as in reovirus capsids) or as a fusion protein with the coat protein (as in some totivirus). In contrast with members of the family Reoviridae, there are two well-established capsid arrangements for dsRNA fungal viruses, exemplified by the totiviruses L-A and UmV and the chrysovirus PcV. Whereas L-A and UmV have a canonical T = 2 capsid, the PcV capsid is based on a T = 1 lattice composed of 60 capsid proteins. We used cryo-electron microscopy combined with three-dimensional reconstruction techniques and hydrodynamic analysis to determine the structure at 13.8 A resolution of Helminthosporium victoriae 190S virus (Hv190SV), a totivirus isolated from a filamentous fungus. The Hv190SV capsid has a smooth surface and is based on a T = 2 lattice with 60 equivalent dimers. Unlike the RDRP of some other totiviruses, which are expressed as a capsid protein-RDRP fusion protein, the Hv190SV RDRP is incorporated into the capsid as a separate, nonfused protein, free or non-covalently associated to the capsid interior

  14. Using Writing-to-Learn Science Strategies to Improve Year 11 Students' Understandings of Stoichiometry

    Science.gov (United States)

    Hand, Brian; Yang, Olivia Eun-mi; Bruxvoort, Crystal

    2007-01-01

    This study researched the use of writing-to-learn strategies within a high-school (Year 11) chemistry classroom. The writing task itself asked the students to write a business letter to a younger audience of middle-school (Year 7) students. A mixed-method design was used for the study, incorporating pre/post- testing with semi-structured…

  15. Unusual stoichiometry of urea-derivatized calix[4]arenes induced by anion complexation

    Czech Academy of Sciences Publication Activity Database

    Lang, Kamil; Cuřínová, P.; Dudič, M.; Prošková, P.; Stibor, I.; Šťastný, V.; Lhoták, P.

    2005-01-01

    Roč. 46, č. 26 (2005), s. 4469-4472 ISSN 0040-4039 R&D Projects: GA ČR(CZ) GA203/03/0926 Keywords : calixarene * anion complexation * dimerization Subject RIV: CA - Inorganic Chemistry Impact factor: 2.477, year: 2005

  16. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory

    DEFF Research Database (Denmark)

    Welti, Nina; Striebel, Maren; Ulseth, Amber J.

    2017-01-01

    process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency......, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment....

  17. Material balance in coal. 2. Oxygen determination and stoichiometry of 33 coals

    International Nuclear Information System (INIS)

    Volborth, A.; Miller, G.E.; Garner, C.K.; Jerabek, P.A.

    1977-01-01

    The chemical analysis of coal can be supplemented by the determination of oxygen in high and low temperature ash, in coal as received and in coal dried at 105 0 C. The rapid method utilizes fast-neutron activation. The reaction 16 O(n,p) 16 N and counting of the 6.1 and 7.1 MeV gammas of 7.3 second half-life are used. A specially designed dual transfer and simultaneous counting system gives very accurate results. Oxygen in 33 coals ranging from lignite to low volatile bituminous coal is determined and compared with ''oxygen by difference.'' Considerable discrepancies are observed. Better stoichiometric results are obtained if oxygen in coal ash, in wet coal and in the dried coal is determined. This permits the estimation of the true material balances using data of the ultimate and the proximate coal analysis. The oxygen determination provides the coal chemist with an accurate basis and can be used to rank coal. The summation of the percent of carbon, nitrogen, hydrogen, sulfur, and oxygen becomes more meaningful and some errors can be detected and the state of completeness of coal analysis thus evaluated. Total sulfur can be estimated and oxidation effects during drying can be detected. These affect the moisture determination. It appears that after more data are collected, the interpretation of solid fuel analyses may be facilitated and will be stoichiometrically more meaningful. It is shown that it may be possible to simplify the present time-consuming methods of coal analysis

  18. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry

    Directory of Open Access Journals (Sweden)

    Linda V. Hjørnevik

    2015-12-01

    Full Text Available Azaspiracid-1 is an algal toxin that accumulates in edible mussels, and ingestion may result in human illness as manifested by vomiting and diarrhoea. When injected into mice, it causes neurotoxicological symptoms and death. Although it is well known that azaspiracid-1 is toxic to most cells and cell lines, little is known about its biological target(s. A rat PC12 cell line, commonly used as a model for the peripheral nervous system, was used to study the neurotoxicological effects of azaspiracid-1. Azaspiracid-1 induced differentiation-related morphological changes followed by a latter cell death. The differentiated phenotype showed peripherin-labelled neurite-like processes simultaneously as a specific isoform of peripherin was down-regulated. The precise mechanism behind this down-regulation remains uncertain. However, this study provides new insights into the neurological effects of azaspiracid-1 and into the biological significance of specific isoforms of peripherin.

  19. Calcite precipitation from aqueous solution: transformation from vaterite and role of solution stoichiometry

    NARCIS (Netherlands)

    Nehrke, G.

    2007-01-01

    The morphology of vaterite precipitated by bubbling CO2 through a CaCl2 solution is framboidal aggregates. It is not possible, even when using the identical experimental setup and conditions, to reproduce aggregates having identical morphology. The density of the aggregates and crystallite size can

  20. Stoichiometry and Substrate Affinity of the Mannitol Transporter, EnzymeIImtl, from Escherichia coli

    NARCIS (Netherlands)

    Veldhuis, Gertjan; Broos, Jaap; Poolman, Bert; Scheek, Ruud M.

    2005-01-01

    Uptake and consecutive phosphorylation of mannitol in Escherichia coli is catalyzed by the mannitol permease EnzymeIImtl. The substrate is bound at an extracellular-oriented binding site, translocated to an inward-facing site, from where it is phosphorylated, and subsequently released into the cell.

  1. Benthic biogeochemical cycling, nutrient stoichiometry, and carbon and nitrogen mass balances in a eutrophic freshwater bay

    Science.gov (United States)

    Klump, J.V.; Fitzgerald, S.A.; Waplesa, J.T.

    2009-01-01

    Green Bay, while representing only ,7% of the surface area and ??1.4% of the volume of Lake Michigan, contains one-third of the watershed of the lake, and receives approximately one-third of the total nutrient loading to the Lake Michigan basin, largely from the Fox River at the southern end of the bay. With a history of eutrophic conditions dating back nearly a century, the southern portion of the bay behaves as an efficient nutrient and sediment trap, sequestering much of the annual carbon and nitrogen input within sediments accumulating at up to 1 cm per year. Depositional fluxes of organic matter varied from ??0.1 mol C m-2 yr-1 to >10 mol C m-2 yr-1 and were both fairly uniform in stoichiometric composition and relatively labile. Estimates of benthic recycling derived from pore-water concentration gradients, whole-sediment incubation experiments, and deposition-burial models of early diagenesis yielded an estimated 40% of the carbon and 50% of the nitrogen recycled back into the overlying water. Remineralization was relatively rapid with ??50% of the carbon remineralized within <15 yr of deposition, and a mean residence time for metabolizable carbon and nitrogen in the sediments of 20 yr. On average, organic carbon regeneration occurred as 75% CO2, 15% CH4, and 10% dissolved organic carbon (DOC). Carbon and nitrogen budgets for the southern bay were based upon direct measurements of inputs and burial and upon estimates of export and production derived stoichiometrically from a coupled phosphorus budget. Loadings of organic carbon from rivers were ??3.7 mol m-2 yr-1, 80% in the form of DOC and 20% as particulate organic carbon. These inputs were lost through export to northern Green Bay and Lake Michigan (39%), through sediment burial (26%), and net CO2 release to the atmosphere (35%). Total carbon input, including new production, was 4.54 mol m-2 C yr-1, equivalent to ??10% of the gross annual primary production. Nitrogen budget terms were less well quantified, with nitrogen export ??54% of total inputs and burial ??24%, leaving an unquantified residual loss term in the nitrogen budget of ??22%. ?? 2009.

  2. Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniques.

    Science.gov (United States)

    Alejo, Luz; Atkinson, John; Guzmán-Fierro, Víctor; Roeckel, Marlene

    2018-05-16

    Computational self-adapting methods (Support Vector Machines, SVM) are compared with an analytical method in effluent composition prediction of a two-stage anaerobic digestion (AD) process. Experimental data for the AD of poultry manure were used. The analytical method considers the protein as the only source of ammonia production in AD after degradation. Total ammonia nitrogen (TAN), total solids (TS), chemical oxygen demand (COD), and total volatile solids (TVS) were measured in the influent and effluent of the process. The TAN concentration in the effluent was predicted, this being the most inhibiting and polluting compound in AD. Despite the limited data available, the SVM-based model outperformed the analytical method for the TAN prediction, achieving a relative average error of 15.2% against 43% for the analytical method. Moreover, SVM showed higher prediction accuracy in comparison with Artificial Neural Networks. This result reveals the future promise of SVM for prediction in non-linear and dynamic AD processes. Graphical abstract ᅟ.

  3. The Stoichiometry of Isoquercitrin Complex with Iron or Copper Is Highly Dependent on Experimental Conditions

    Czech Academy of Sciences Publication Activity Database

    Catapano, M.C.; Tvrdý, V.; Karlíčková, J.; Migkos, T.; Valentová, Kateřina; Křen, Vladimír; Mladěnka, P.

    2017-01-01

    Roč. 9, č. 11 (2017), s. 1193 ISSN 2072-6643 R&D Projects: GA MŠk(CZ) LD15082 Institutional support: RVO:61388971 Keywords : chelator * copper * quercetin-3-O-beta-glucopyranoside Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.550, year: 2016

  4. Low stoichiometry operation of a proton exchange membrane fuel cell employing the interdigitated flow field

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A multiphase fuel cell model based on computational fluid dynamics is used to investigate the possibility of operating a proton exchange membrane fuel cell at low stoichiometric flow ratios (ξ gases. A case study...

  5. Sphagnum farming in a eutrophic world : The importance of optimal nutrient stoichiometry

    NARCIS (Netherlands)

    Temmink, Ralph J. M.; Fritz, Christian; van Dijk, Gijs; Hensgens, Geert; Lamers, Leon P. M.; Krebs, Matthias; Gaudig, Greta; Joosten, Hans

    Large areas of peatlands have worldwide been drained to facilitate agriculture, which has adverse effects on the environment and the global climate. Agriculture on rewetted peatlands (paludiculture) provides a sustainable alternative to drainage-based agriculture. One form of paludiculture is the

  6. Moessbauer spectroscopy evidence of intrinsic non-stoichiometry in iron telluride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kiiamov, Airat G.; Tayurskii, Dmitrii A. [Institute of Physics, Kazan Federal University (Russian Federation); Centre for Quantum Technologies, Kazan Federal University (Russian Federation); Lysogorskiy, Yury V.; Vagizov, Farit G. [Institute of Physics, Kazan Federal University (Russian Federation); Tagirov, Lenar R. [Institute of Physics, Kazan Federal University (Russian Federation); E.K. Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russian Federation); Croitori, Dorina [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Tsurkan, Vladimir [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Experimental Physics V, University of Augsburg (Germany); Loidl, Alois [Experimental Physics V, University of Augsburg (Germany)

    2017-04-15

    The FeTe parent compound for iron-superconductor chalcogenides was studied applying Moessbauer spectroscopy accompanied by ab initio calculations of electric field gradients at the iron nuclei. Room-temperature (RT) Moessbauer spectra of single crystals have shown asymmetric doublet structure commonly ascribed to contributions of over-stoichiometric iron or impurity phases. Low-temperature Moessbauer spectra of the magnetically ordered compound could be well described by four hyperfine-split sextets, although no other foreign phases different from Fe{sub 1.05}Te were detected by XRD and microanalysis within the sensitivity limits of the equipment. Density functional ab initio calculations have shown that over-stoichiometric iron atoms significantly affect electron charge and spin density up to the second coordination sphere of the iron sub-lattice, and, as a result, four non-equivalent groups of iron atoms are formed by their local environment. The resulting four-group model consistently describes the angular dependence of the single crystals Moessbauer spectra as well as intensity asymmetry of the doublet absorption lines in powdered samples at RT. We suppose that our approach could be extended to the entire class of Fe{sub 1+y}Se{sub 1-x}Te{sub x} compounds, which contain excess iron atoms. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants

    NARCIS (Netherlands)

    Grutters, Bart M.C.; Saccomanno, Benedetta; Gross, Elisabeth M.; Van de Waal, Dedmer B.; van Donk, Ellen; Bakker, Elisabeth S.

    2017-01-01

    Secondary compounds can contribute to the success of non-native plant species if they reduce damage by native herbivores or inhibit the growth of native plant competitors. However, there is opposing evidence on whether the secondary com- pounds of non-native plant species are stronger than those of

  8. Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition

    Science.gov (United States)

    Elser, J.J.; Andersen, T.; Baron, Jill S.; Bergstrom, A.-K.; Jansson, M.; Kyle, M.; Nydick, K.R.; Steger, L.; Hessen, D.O.

    2009-01-01

    Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the atmosphere. Here we show that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus (P) in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted. Under low N deposition, phytoplankton growth is generally N-limited; however, in high-N deposition lakes, phytoplankton growth is consistently P-limited. Continued anthropogenic amplification of the global N cycle will further alter ecological processes, such as biogeochemical cycling, trophic dynamics, and biological diversity, in the world's lakes, even in lakes far from direct human disturbance.

  9. Preparation and characterization of Y-BA-CU-O based superconductors of varying stoichiometries

    International Nuclear Information System (INIS)

    Sarmago, R.V.

    1989-01-01

    Variations on the Y-Ba-Cu-O system were done for each element. The X-ray diffraction pattern of each variation were studied and compared. Resistance measurements for the Y=1.2 and 1.4 samples showed a complete disappearance of electrical resistance at 88K. Infrared spectrum for the different variations showed a growth or disappearance of an absorption peak near 1460 cm -1 depending on the concentration. (Auth.). 7 refs.; 12 figs.; 2 tabs

  10. Experimental evaluation of the stoichiometry of sulfide related concrete sewer corrosion

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Jensen, Henriette Stokbro

    2014-01-01

    This chapter is about science from a book that on Qualitative Economics (Clark and Fast 2008), specifically building a science of economics, grounded in understanding of organizations and what is beneath the surface of structures and activities. Economics should be, as a science, concerned with its...... of interactionism (Blumer 1969). It is a perspective developed from the Lifeworld philosophical traditions, such as symbolic interactionism and phenomenology, seeking to develop the thinking of economics through the use of linguistics (Clark and Fast 2008). The argument is that economics first of all is about two...

  11. Photorefractive features of non-stoichiometry codoped Hf:Fe:LiNbO3 single crystals

    International Nuclear Information System (INIS)

    Liu, Bo; Li, Chunliang; Bi, Jiancong; Sun, Liang; Xu, Yuheng

    2008-01-01

    Hf(2mol%):Fe(0.05wt%):LiNbO 3 crystals with various [Li]/[Nb] ratios of 0.94, 1.05, 1.2 and 1.38 have been grown. The photorefractive resistant ability increases with the accretion of [Li]/[Nb] ratio. When the ratio of [Li]/[Nb] is 1.20 or 1.38, the OH - absorption band shifts to about 3477cm -1 . The mechanisms of the photorefractive resistant ability increase and the absorption band shift have been discussed. The exponential gain coefficient (Γ) of the crystals was measured with two-beam coupling method and the effective charge carrier concentration (N eff ) was calculated. The results show that Γ and N eff increase with the accretion of [Li]/[Nb] ratio. The temperature effect of codoped Hf:Fe:LiNbO 3 crystals was also studied, it was found that the exponential gain coefficient increase dramatically at about 55 C, 70 C and 110 C, this is due to the inner electric field which is resulted from structure phase change. (copyright 2007 WILEY -VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3 photosynthesis

    NARCIS (Netherlands)

    Yin, X.; Oijen, van M.; Schapendonk, A.H.C.M.

    2004-01-01

    The widely used steady-state model of Farquhar et al. (Planta 149: 78-90, 1980) for C-3 photosynthesis was developed on the basis of linear whole-chain (non-cyclic) electron transport. In this model, calculation of the RuBP-regeneration limited CO2-assimilation rate depends on whether it is

  13. Identifying the heterotrimeric complex stoichiometry of AMPK in skeletal muscle by immunoprecipitation

    DEFF Research Database (Denmark)

    Birk, Jesper Bratz; Wojtaszewski, Jørgen

    2018-01-01

    The 5'-AMP-activated protein kinase is a complicated enzyme consisting of three different subunits, each of which is expressed as two or three isoforms. This gives the possibility of 12 different heterotrimeric complexes, which could have diverse functions within the cell. To map out which of the...

  14. A model of the generalized stoichiometry of electron transport limited C3 photosynthesis: Development and Applications

    NARCIS (Netherlands)

    Yin, X.; Harbinson, J.; Struik, P.

    2009-01-01

    We describe an extended Farquhar, Von Caemmerer and Berry (FvCB) model for the RuBP regeneration-limited or electron transport-limited steady-state C3 photosynthesis. Analytical algorithms are presented to account for (i) the effects of Photosystem (PS) I and II photochemical efficiencies and of

  15. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase in the inc......The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase...... in the incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4â10......-10 mol FeS2/gâs are measured, and the rates are only weakly correlated with the sediment pyrite content. The reactivity of pyrite, including the inhibition by FeOOH layers formed on its surface, apparently has a major effect on the rate of oxidation. The code PHREEQC 2.0 was used to calculate...

  16. Investigating Pre-Service Chemistry Teachers' Problem Solving Strategies: Towards Developing a Framework in Teaching Stoichiometry

    Science.gov (United States)

    Espinosa, Allen A.; Nueva España, Rebecca C.; Marasigan, Arlyne C.

    2016-01-01

    The present study investigated pre-service chemistry teachers' problem solving strategies and alternative conceptions in solving stoichiometric problems and later on formulate a teaching framework based from the result of the study. The pre-service chemistry teachers were given four stoichiometric problems with increasing complexity and they need…

  17. Balance matters : N:P stoichiometry and plant diversity in grassland ecosystems

    NARCIS (Netherlands)

    Fujita, Y.

    2010-01-01

    Eutrophication of Nitrogen (N) and Phosphorus (P) is threatening the functioning and biodiversity of grassland ecosystems. A well known effect of eutrophication on grasslands is an increase of above-ground productivity, which intensifies light competition and allows only a few competitive species to

  18. Non-stoichiometry of MoS2 phase prepared by sputtering

    International Nuclear Information System (INIS)

    Ito, T.; Nakajima, K.

    1978-01-01

    The lattice parameters and S/Mo atomic ratio in sputtered MoS 2 films have been examined as a function of sputtering conditions, especially the vacuum pressure in the chamber. It was found that the deposited films had a defect MoS 2 structure ranging from 1.6 to 2 in S/Mo ratio, depending on the pressure. (author)

  19. Soil warming enhances the hidden shift of elemental stoichiometry by elevated CO2 in wheat.

    Science.gov (United States)

    Li, Xiangnan; Jiang, Dong; Liu, Fulai

    2016-03-22

    Increase in atmospheric CO2 concentration ([CO2]) and associated soil warming along with global climate change are expected to have large impacts on grain mineral nutrition in wheat. The effects of CO2 elevation (700 μmol l(-1)) and soil warming (+2.4 °C) on K, Ca and Mg concentrations in the xylem sap and their partitioning in different organs of wheat plant during grain filling were investigated. Results showed that the combination of elevated [CO2] and soil warming improved wheat grain yield, but decreased plant K, Ca and Mg accumulation and their concentrations in the leaves, stems, roots and grains. The reduced grain mineral concentration was attributed to the lowered mineral uptake as exemplified by both the decreased stomatal conductance and mineral concentration in the xylem sap. These findings suggest that future higher atmospheric [CO2] and warmer soil conditions may decrease the dietary availability of minerals from wheat crops. Breeding wheat cultivars possessing higher ability of mineral uptake at reduced xylem flux in exposure to climate change should be a target.

  20. Stoichiometry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria

    Science.gov (United States)

    Alexandre, Adolfo; Reynafarje, Baltazar; Lehninger, Albert L.

    1978-01-01

    In order to verify more directly our earlier measurements showing that, on the average, close to four vectorial H+ are rejected per pair of electrons passing each of the three energy-conserving sites of the mitochondrial electron transport chain, direct tests of the H+/2e- ratio for sites 2 and 3 were carried out in the presence of permeant charge-compensating cations. Site 2 was examined by utilizing succinate as electron donor and ferricyanide as electron acceptor from mitochondrial cytochrome c; the directly measured H+/2e- ratio was close to 4. Energy-conserving site 3 was isolated for study with ferrocyanide or ascorbate plus tetramethylphenylenediamine as electron donors to cytochrome c and with oxygen as electron acceptor. The directly measured H+/2e- ratio for site 3 was close to 4. The H+/ATP ratio (number of vectorial H+ ejected per ATP hydrolyzed) was determined with a new method in which the steady-state rates of both H+ ejection and ATP hydrolysis were measured in the presence of K+ + valinomycin. The H+/ATP ratio was found to approach 3.0. A proton cycle for oxidative phosphorylation is proposed, in which four electrochemical H+ equivalents are ejected per pair of electrons passing each energy-conserving site; three of the H+ equivalents pass inward to derive ATP synthesis from ADP and phosphate and the fourth H+ is used to bring about the energy-requiring electrogenic expulsion of ATP4- in exchange for extramitochondrial ADP3-, via the H+/H2PO4- symporter. PMID:31621

  1. Can changes in soil biochemistry and plant stoichiometry explain loss of animal diversity of heathlands?

    NARCIS (Netherlands)

    Vogels, J.J.; Verberk, W.C.E.P.; Lamers, L.P.M.; Siepel, H.

    2017-01-01

    Increased atmospheric deposition rates of nitrogen (N) and sulphur (S) are known to affect soil biogeochemistry and cause a decline in plant biodiversity of heathlands. Concomitant declines of heathland invertebrates are mainly attributed to changes in vegetation composition and altered habitat

  2. Exploring Fluorescence Antibunching in Solution To Determine the Stoichiometry of Molecular Complexes

    Czech Academy of Sciences Publication Activity Database

    Sýkora, Jan; Kaiser, K.; Gregor, I.; Bönigk, W.; Schmalzing, G.; Enderlain, J.

    2007-01-01

    Roč. 79, - (2007), s. 4040-4049 ISSN 0003-2700 R&D Projects: GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z40400503 Keywords : exploring fluorescence antibunching * molecular complex es * biophysical methods Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.287, year: 2007

  3. Soil warming enhances the hidden shift of elemental stoichiometry by elevated CO2 in wheat

    DEFF Research Database (Denmark)

    Li, Xiangnan; Jiang, Dong; Liu, Fulai

    2016-01-01

    sap and their partitioning in different organs of wheat plant during grain filling were investigated. Results showed that the combination of elevated [CO2] and soil warming improved wheat grain yield, but decreased plant K, Ca and Mg accumulation and their concentrations in the leaves, stems, roots......Increase in atmospheric CO2 concentration ([CO2]) and associated soil warming along with global climate change are expected to have large impacts on grain mineral nutrition in wheat. The effects of CO2 elevation (700 μmol l(-1)) and soil warming (+2.4 °C) on K, Ca and Mg concentrations in the xylem...... and grains. The reduced grain mineral concentration was attributed to the lowered mineral uptake as exemplified by both the decreased stomatal conductance and mineral concentration in the xylem sap. These findings suggest that future higher atmospheric [CO2] and warmer soil conditions may decrease...

  4. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances

    NARCIS (Netherlands)

    Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constanti; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Penuelas, Josep

    2015-01-01

    Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual

  5. InP and GaAs characterization with variable stoichiometry obtained by molecular spray

    Science.gov (United States)

    Massies, J.; Linh, N. T.; Olivier, J.; Faulconnier, P.; Poirier, R.

    1979-01-01

    Both InP and GaAs surfaces were studied in parallel. A molecular spray technique was used to obtain two semiconductor surfaces with different superficial compositions. The structures of these surfaces were examined by electron diffraction. Electron energy loss was measured spectroscopically in order to determine surface electrical characteristics. The results are used to support conclusions relative to the role of surface composition in establishing a Schottky barrier effect in semiconductor devices.

  6. Stoichiometry and kinetics of poly-{beta}-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Beun, J.J.; Paletta, F.; Loosdrecht, M.C.M. Van; Heijnen, J.J.

    2000-02-20

    This paper discusses the poly-{beta}-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.

  7. Effects of nitrogen and water addition on trace element stoichiometry in five grassland species

    DEFF Research Database (Denmark)

    Cai, Jiangping; Weiner, Jacob; Wang, Ruzhen

    2017-01-01

    A 9-year manipulative experiment with nitrogen (N) and water addition, simulating increasing N deposition and changing precipitation regime, was conducted to investigate the bioavailability of trace elements, iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in soil, and their uptake by plants...... in the organism and the chemical concentration in the growth substrate) and foliar Fe:Mn ratio in each plant was calculated. Our results showed that soil available Fe, Mn and Cu concentrations increased under N addition and were negatively correlated with both soil pH and cation exchange capacity. Water addition...... under the two environmental change factors in a semi-arid grassland of Inner Mongolia. We measured concentrations of trace elements in soil and in foliage of five common herbaceous species including 3 forbs and 2 grasses. In addition, bioaccumulation factors (BAF, the ratio of the chemical concentration...

  8. Influence of stoichiometry on the magnetic disaccommodation in M-type Sr hexaferrites

    International Nuclear Information System (INIS)

    Hernandez-Gomez, Pablo; Torres, Carlos; Francisco, Carlos de; Munoz, J.M.; Alejos, Oscar; Iniguez, J.I.; Raposo, Victor

    2004-01-01

    The relaxation of the initial permeability has been measured in polycrystalline Sr hexaferrites with the initial composition SrO·nFe 2 O 3 (n=5.7, 6), prepared by means of standard ceramic techniques in air as well as CO 2 sintering atmospheres. The isochronal disaccommodation spectra show the presence of different relaxation processes, depending on both the sintering atmosphere and especially the initial composition, and associated to ionic reorientations of ferrous cations and lattice vacancies in the different metallic sites within the spinel (S) and hexagonal (R) blocks of the close packed lattice

  9. Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex.

    Science.gov (United States)

    Fukumura, Takuma; Makino, Fumiaki; Dietsche, Tobias; Kinoshita, Miki; Kato, Takayuki; Wagner, Samuel; Namba, Keiichi; Imada, Katsumi; Minamino, Tohru

    2017-08-01

    The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP-FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP-FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation.

  10. Stoichiometry-based estimates of ferric iron in calcic, sodic-calcic and sodic amphiboles: a comparison of various methods

    Directory of Open Access Journals (Sweden)

    Gualda Guilherme A.R.

    2005-01-01

    Full Text Available An important drawback of the electron microprobe is its inability to quantify Fe3+/Fe2+ ratios in routine work. Although these ratios can be calculated, there is no unique criterion that can be applied to all amphiboles. Using a large data set of calcic, sodic-calcic, and sodic amphibole analysis from A-type granites and syenites from southern Brazil, weassess the choices made by the method of Schumacher (1997, Canadian Mineralogist, 35: 238-246, which uses the average between selected maximum and minimum estimates. Maximum estimates selected most frequently are: 13 cations excluding Ca, Na, and K (13eCNK - 66%; sum of Si and Al equal to 8 (8SiAl - 17%; 15 cations excluding K (15eK - 8%. These selections are appropriate based on crystallochemical considerations. Minimum estimates are mostly all iron as Fe2+ (all Fe2 - 71%, and are clearly inadequate. Hence, maximum estimates should better approximate the actual values. To test this, complete analyses were selected from the literature, and calculated and measured values were compared. 13eCNK and maximum estimates are precise and accurate (concordance correlation coefficient- r c " 0.85. As expected, averages yield poor estimates (r c = 0.56. We recommend, thus, that maximum estimates be used for calcic, sodic-calcic, and sodic amphiboles.

  11. In Situ Stoichiometry in a Large River: Continuous Measurement of Doc, NO3 and PO4 in the Sacramento River

    Science.gov (United States)

    Downing, B. D.; Pellerin, B. A.; Bergamaschi, B. A.; Saraceno, J.

    2011-12-01

    Studying controls on geochemical processes in rivers and streams is difficult because concentration and composition often changes rapidly in response to physical and biological forcings. Understanding biogeochemical dynamics in rivers will improve current understanding of the role of watershed sources to carbon cycling, river and stream ecology, and loads to estuaries and oceans. Continuous measurements of dissolved organic carbon (DOC), nitrate (NO3-) and soluble reactive phosphate (SRP) concentrations are now possible, along with some information about DOC composition. In situ sensors designed to measure these constituents provide high frequency, real-time data that can elucidate hydrologic and biogeochemical controls which are difficult to detect using more traditional sampling approaches. Here we present a coupled approach, using in situ optical instrumentation with discharge measurements to provide quantitative estimates of constituent loads to investigate C, NO3- and SRP sources and processing in the Sacramento River, CA, USA. Continuous measurement of DOC concentration was conducted by use of a miniature in situ fluorometer (Turner Designs Cyclops) designed to measure chromophoric dissolved organic matter fluorescence (FDOM) over the course of an entire year. Nitrate was measured concurrently using a Satlantic SUNA and phosphate was measured using a WETLabs model Cycle-P instrument for a two week period in July 2011. Continuous measurement from these instruments paired with continuous measurement of physical water quality variables such as temperature, pH, specific conductance, dissolved oxygen, and turbidity, were used to investigate physical and chemical dynamics of DOC, NO3-, SRP over varying time scales. Deploying these instruments at pre-existing USGS discharge gages allowed for calculation of instantaneous and integrated constituent fluxes, as well as filling in gaps in our understanding biogeochemical processes and transport. Results from the study show that diurnal, event driven and seasonal changes are key to calculating accurate watershed fluxes and detecting transient sources of DOC, NO3- and SRP.

  12. Topotactic redox chemistry of NaFeAs in water and air and superconducting behavior with stoichiometry change.

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, I.; Chung, D. Y.; Claus, H.; Malliakas, C. D.; Douvalis, A. P.; Bakas, T.; He, J.; Dravid, V. P.; Kanatzidis, M. G.; Materials Science Division; Northwestern Univ.; Univ. of Ioannina

    2010-07-13

    We report experimental evidence that shows superconductivity in NaFeAs occurs when it is Na deficient. The oxidation of NaFeAs progresses differently in water and in air. In water the material oxidizes slowly and slightly retaining the original anti-PbFCl structure. In air NaFeAs oxidizes topotactically quickly and extensively transforming to the ThCr{sub 2}Si{sub 2} structure type. Water acts as a mild oxidizing agent on the FeAs layer by extracting electrons and Na{sup +} cations from the structure, while oxidation in air is more extensive and leads to change in structure type from NaFeAs to NaFe{sub 2}As{sub 2}. The superconducting transition temperature moves dramatically during the oxidation process. Exposed to water for an extended time period NaFeAs shows a substantial increase in T{sub c} up to 25 K with contraction of unit cell volume. NaFe{sub 2}As{sub 2}, the air oxidized product, shows T{sub c} of 12 K. We report detailed characterization of the redox chemistry and transformation of NaFeAs in water and air using single crystal and powder X-ray diffraction, magnetization studies, transmission electron microscopy, Moessbauer spectroscopy, pOH and elemental analysis.

  13. G-quadruplex induced chirality of methylazacalix[6]pyridine via unprecedented binding stoichiometry: en route to multiplex controlled molecular switch

    Science.gov (United States)

    Guan, Ai-Jiao; Shen, Meng-Jie; Xiang, Jun-Feng; Zhang, En-Xuan; Li, Qian; Sun, Hong-Xia; Wang, Li-Xia; Xu, Guang-Zhi; Tang, Ya-Lin; Xu, Li-Jin; Gong, Han-Yuan

    2015-05-01

    Nucleic acid based molecular device is a developing research field which attracts great interests in material for building machinelike nanodevices. G-quadruplex, as a new type of DNA secondary structures, can be harnessed to construct molecular device owing to its rich structural polymorphism. Herein, we developed a switching system based on G-quadruplexes and methylazacalix[6]pyridine (MACP6). The induced circular dichroism (CD) signal of MACP6 was used to monitor the switch controlled by temperature or pH value. Furthermore, the CD titration, Job-plot, variable temperature CD and 1H-NMR experiments not only confirmed the binding mode between MACP6 and G-quadruplex, but also explained the difference switching effect of MACP6 and various G-quadruplexes. The established strategy has the potential to be used as the chiral probe for specific G-quadruplex recognition.

  14. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation

    Czech Academy of Sciences Publication Activity Database

    Wang, X.; Xi, W.; Toomey, S.; Chiang, Y.-CH.; Hašek, Jiří; Laue, T.M.; Denis, C.L.

    2016-01-01

    Roč. 11, č. 3 (2016), e0150616 E-ISSN 1932-6203 Institutional support: RVO:61388971 Keywords : DEADENYLATION IN-VIVO * SACCHAROMYCES-CEREVISIAE * POLY(A)-BINDING PROTEIN Subject RIV: EE - Microbiology, Virology Impact factor: 2.806, year: 2016

  15. Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C kappa carbides

    Czech Academy of Sciences Publication Activity Database

    Dey, P.; Nazarov, R.; Dutta, B.; Yao, M.; Herbig, M.; Friák, Martin; Hickel, T.; Raabe, D.; Neugebauer, J.

    2017-01-01

    Roč. 95, č. 10 (2017), č. článku 104108. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA16-24711S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : steels * nano-composites * elasticity * thermodynamics * quantum- mechanical calculations Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  16. Oxygen stoichiometry and its influence on superconductivity in Bi2Sr2CaCu2O8+x

    International Nuclear Information System (INIS)

    Krishnaraj, P.; Lelovic, M.; Eror, N.G.; Balachandran, U.

    1994-01-01

    Bi 2 Sr 2 CaCu 2 O 8+x (2212) was synthesized from freeze-dried precursors. The oxygen content of 2212 was determined as a function of temperature and oxygen partial pressure and the variation of Tc with oxygen content was determined. It was found that 2212 without excess oxygen (x = 0) is superconducting. This points to the role of the (Bi-O) ∞ layers as a source for holes in 2212. Four probe resistivity measurements were also performed on 2212. The nature of oxygen intercalation and oxygen removal in 2212 was studied by thermogravimetry and resistivity. It was also found that samples of 2212 with the same oxygen content had different T c 's depending on thermal history. This difference in T c is thought to arise from oxygen occupying different sites in the lattice while maintaining the same total oxygen content

  17. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    Science.gov (United States)

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Influence of boat material on the structure, stoichiometry and optical properties of gallium sulphide films prepared by thermal evaporation

    International Nuclear Information System (INIS)

    Rao, Pritty; Kumar, Sanjiv; Sahoo, N.K.

    2015-01-01

    The paper describes the deposition of thin films of gallium sulphide on soda-lime glass substrates by thermal evaporation of chemically synthesized powders consisting of gallium sulphide and gallium oxyhydroxide from a Mo or Ta boat and the evolution of their compositional, structural and optical properties on vacuum annealing. The films deposited from Mo or Ta boats possessed distinctly different properties. The Mo-boat evaporated pristine films were amorphous, transparent (α ∼ 10 3  cm −1 ) in visible region and had a direct band gap of about 3.2 eV. Vacuum annealing at 723 K brought about their crystallization predominantly into cubic γ-Ga 2 S 3 and a blue shift by about 0.2 eV. The Ta-boat evaporated pristine films were also amorphous but were absorbing (α ∼ 10 4  cm −1 ) and had a direct band gap of about 2.1 eV. These crystallized into hexagonal GaS and experienced a blue shift by more than 1.0 eV on vacuum annealing at 723 K. The dissimilar properties of the two kinds of films arose mainly from their different atomic compositions. The Mo-boat evaporated pristine films contained Ga and S in ∼1:1 atomic proportions while those prepared using Ta-boat were Ga rich which impaired their transmission characteristics. The former composition favoured the stabilization of S rich gallium sulphide (Ga 2 S 3 ) phase while the latter stabilised S deficient species, GaS. Besides inducing crystallization, vacuum annealing at 723 K also caused the diffusion of Ga in excess of atomic composition of the phase formed, into soda-lime glass which improved the optical transmission of the films. Gallium oxyhydroxide, an inevitable co-product of the chemical synthetic process, in the evaporant introduced oxygen and hydrogen impurities in the films which do not seem to significantly influence their optical properties. - Highlights: • Gallium sulphide films are prepared by thermal evaporation from a Mo or Ta boat. • Mo-boat prepared pristine film has Ga and S in 1:1 atomic ratio and is transparent. • Ta-boat prepared pristine film is Ga rich and absorbing. • Mo/Ta-boat prepared films crystallise into Ga 2 S 3 /GaS on vacuum annealing. • Diffusion of gallium in glass on vacuum annealing improves transmission of films

  19. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments

    DEFF Research Database (Denmark)

    Gücker, Björn; Silva, Ricky C. S.; Graeber, Daniel

    2016-01-01

    , pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than...... natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation...... of heterotrophic DOM decomposition, but increased P limitation. Land use—especially urbanization—also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high...

  20. Seasonal variation in marine C:N:P stoichiometry: can the composition of seston explain stable Redfield ratios?

    Directory of Open Access Journals (Sweden)

    H. Frigstad

    2011-10-01

    Full Text Available Seston is suspended particulate organic matter, comprising a mixture of autotrophic, heterotrophic and detrital material. Despite variable proportions of these components, marine seston often exhibits relatively small deviations from the Redfield ratio (C:N:P = 106:16:1. Two time-series from the Norwegian shelf in Skagerrak are used to identify drivers of the seasonal variation in seston elemental ratios. An ordination identified water mass characteristics and bloom dynamics as the most important drivers for determining C:N, while changes in nutrient concentrations and biomass were most important for the C:P and N:P relationships. There is no standardized method for determining the functional composition of seston and the fractions of POC, PON and PP associated with phytoplankton, therefore any such information has to be obtained by indirect means. In this study, a generalized linear model was used to differentiate between the live autotrophic and non-autotrophic sestonic fractions, and for both stations the non-autotrophic fractions dominated with respective annual means of 76 and 55%. This regression model approach builds on assumptions (e.g. constant POC:Chl-a ratio and the robustness of the estimates were explored with a bootstrap analysis. In addition the autotrophic percentage calculated from the statistical model was compared with estimated phytoplankton carbon, and the two independent estimates of autotrophic percentage were comparable with similar seasonal cycles. The estimated C:nutrient ratios of live autotrophs were, in general, lower than Redfield, while the non-autotrophic C:nutrient ratios were higher than the live autotrophic ratios and above, or close to, the Redfield ratio. This is due to preferential remineralization of nutrients, and the P content mainly governed the difference between the sestonic fractions. Despite the seasonal variability in seston composition and the generally low contribution of autotrophic biomass, the variation observed in the total seston ratios was low compared to the variation found in dissolved and particulate pools. Sestonic C:N:P ratios close to the Redfield ratios should not be used as an indicator of phytoplankton physiological state, but could instead reflect varying contributions of sestonic fractions that sum up to an elemental ratio close to Redfield.

  1. N : P Stoichiometry in a Forested Runoff during Storm Events: Comparisons with Regions and Vegetation Types

    Directory of Open Access Journals (Sweden)

    Lanlan Guo

    2012-01-01

    Full Text Available Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.

  2. N : P stoichiometry in a forested runoff during storm events: comparisons with regions and vegetation types.

    Science.gov (United States)

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.

  3. Non-stoichiometry and properties of SnTe left angle Cd right angle semiconducting phase of variable composition

    International Nuclear Information System (INIS)

    Rogacheva, E.I.; Nashchekina, O.N.

    2006-01-01

    It was established that the dependences of microhardness, hole concentration, electrical conductivity, and the Seebeck coefficient on composition in the Sn 0.984 Te-Cd and Sn 0.984 Te-CdTe solid solutions based on non-stoichiometric tin telluride exhibit non-monotonic behavior. The effects connected with the interaction between intrinsic and impurity defects and with critical phenomena accompanying a transition to the impurity continuum were isolated. The results obtained in this work represent another evidence for our proposition about the universal character of critical phenomena accompanying the transition from an impurity discontinuum to an impurity continuum in solid solutions. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  4. Tilts, dopants, vacancies and non-stoichiometry: Understanding and designing the properties of complex solid oxide perovskites from first principles

    Science.gov (United States)

    Bennett, Joseph W.

    Perovskite oxides of formula ABO3 have a wide range of structural, electrical and mechanical properties, making them vital materials for many applications, such as catalysis, ultrasound machines and communication devices. Perovskite solid solutions with high piezoelectric response, such as ferroelectrics, are of particular interest as they can be employed as sensors in SONAR devices. Ferroelectric materials are unique in that their chemical and electrical properties can be non-invasively and reversibly changed, by switching the bulk polarization. This makes ferroelectrics useful for applications in non-volatile random access memory (NVRAM) devices. Perovskite solid solutions with a lower piezoelectric response than ferroelectrics are important for communication technology, as they function well as electroceramic capacitors. Also of interest is how these materials act as a component in a solid oxide fuel cell, as they can function as an efficient source of energy. Altering the chemical composition of these solid oxide materials offers an opportunity to change the desired properties of the final ceramic, adding a degree of flexibility that is advantageous for a variety of applications. These solid oxides are complex, sometimes disordered systems that are a challenge to study experimentally. However, as it is their complexity which produces favorable properties, highly accurate modeling which captures the essential features of the disordered structure is necessary to explain the behavior of current materials and predict favorable compositions for new materials. Methodological improvements and faster computer speeds have made first-principles and atomistic calculations a viable tool for understanding these complex systems. Offering a combination of accuracy and computational speed, the density functional theory (DFT) approach can reveal details about the microscopic structure and interactions of complex systems. Using DFT and a combination of principles from both inorganic chemistry and materials science, I have been able to gain insights into solid oxide perovskite-based systems.

  5. [Ecological stoichiometry of soil carbon, nitrogen and phosphorus within soil aggregates in tea plantations with different ages].

    Science.gov (United States)

    Li, Wei; Zheng, Zi-cheng; Li, Ting-xuan

    2015-01-01

    This study selected 4 tea plantations with different ages (12-15, 20-22, 30-33 and >50 year-old) located in Ya' an, Sichuan Province, China to investigate the distribution patterns of soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) , and to examine the ecological stoichiometric characteristics of C, N and P within soil aggregates. The results showed that the coefficients of variation of SOC, TN and TP were 17.5%, 16.3% and 9.4%, respectively in the 0-20 cm soil layer and were 24.0%, 21.0% and 9.2%, respectively in the 20-40 cm soil layer. The spatial variation of TP was lower than that of SOC and TN but there were significant positive correlations among them. SOC and TN were distributed in the small-size aggregates and both of them had the greatest values in the >50 year-old tea plantation, however, the distribution of TP was relatively uniform among aggregates and ages. The coefficients of variation of C/N, C/P, and N/P were 9.4%, 14.0% and 14.9%, respectively in the 0-20 cm soil layer and were 7.4%, 24.9% and 21.8%, respectively in the 20-40 cm soil layer. Variation of C/N was lower than that of C/P and N/P. Averaged C/P and N/P values in the small-size aggregates were higher than in aggregates of other sizes, and the maximum values were in the >50 year-old plantation. C/N, C/P and N/P had good indication for soil organic carbon storage.

  6. Characterization of the stoichiometry of the complex formed by Staphylococcal toxin LukSF and human C5a receptor

    NARCIS (Netherlands)

    Haapasalo-Tuomainen, Karita; Wollman, Adam; De Haas, Carla; Aerts, Piet; Van'T Veld, Esther; Strijbis, Karin; Wubbolts, Richard; Van Kessel, Kok; Leake, Mark; Van Strijp, Jos

    2016-01-01

    Staphylococcus aureus causes diseases ranging from superficial skin and soft tissue infections (SSTI) to severe invasive diseases like osteomyelitis and necrotizing pneumonia. Panton Valentine Leukocidin (PVL) is a powerful leukocidal toxin produced by multiple S. aureus isolates. It is a pro-phage

  7. Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS 2) thin films by MOCVD

    Science.gov (United States)

    Höpfner, C.; Ellmer, K.; Ennaoui, A.; Pettenkofer, C.; Fiechter, S.; Tributsch, H.

    1995-06-01

    The growth process of polycrystalline pyrite thin films employing low pressure metalorganic chemical vapor deposition (LP-MOCVD) in a vertical cold wall reactor has been investigated. Iron pentacarbonyl (IPC) and t-butyldisulfide (TBDS) were utilized as precursors. Study of the growth rate as a function of temperature reveals a kinetically controlled growth process with an activation energy of 73 kJ / mol over the temperature range from 250 to 400°C. From 500 to 630°C, the growth rate is mainly mass transport limited. Decomposition of the films into pyrrhotite (Fe 1 - xS) occurs at higher growth temperatures. The {S}/{Fe} ratio in the films has been controlled from 1.23 up to 2.03 by changing the TBDS partial pressure. With increasing deposition temperature, the crystallites in the films show the tendency to grow [100]-oriented on amorphous substrates at a growth rate of 2.5 Å / s. The grains show a preferential orientation in the [111] direction upon lowering the growth rate down to 0.3 Å / s. Temperatures above 550°C are beneficial in enhancing the grain size in the columnar structured films up to 1.0 μm.

  8. Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS{sub 2}) thin films by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Hoepfner, C.; Ellmer, K.; Ennaoui, A.; Pettenkofer, C.; Fiechter, S.; Tributsch, H. [Hahn-Meitner-Institut Berlin, Abteilung Solare Energetik, Berlin (Germany)

    1995-06-01

    The growth process of polycrystalline pyrite thin films employing low pressure metalorganic chemical vapor deposition (LP-MOCVD) in a vertical cold wall reactor has been investigated. Iron pentacarbonyl (IPC) and t-butyldisulfide (TBDS) were utilized as precursors. Study of the growth rate as a function of temperature reveals a kinetically controlled growth process with an activation energy of 73 kJ/mol over the temperature range from 250 to 400C. From 500 to 630C, the growth rate is mainly mass transport limited. Decomposition of the films into pyrrhotite (Fe{sub 1-x}S) occurs at higher growth temperatures. The S/Fe ratio in the films has been controlled from 1.23 up to 2.03 by changing the TBDS partial pressure. With increasing deposition temperature, the crystallites in the films show the tendency to grow [100]-oriented on amorphous substrates at a growth rate of 2.5 A/s. The grains show a preferential orientation in the [111] direction upon lowering the growth rate down to 0.3 A/s. Temperatures above 550C are beneficial in enhancing the grain size in the columnar structured films up to 1.0 {mu}m

  9. Effect of off-stoichiometry and site disorder on the properties of Ni3Al: II. Magnetics

    International Nuclear Information System (INIS)

    Abhyankar, A C; Semwal, A; Kaul, S N

    2008-01-01

    A detailed comparison between the magnetic behaviours of the 'as-prepared' ap-Ni x Al 100-x alloys with x = 74.3, 74.8, 75.1 and 76.1 at.% (that have both compositional disorder and site disorder) and 'annealed' counterparts (that have only compositional disorder) over a wide range of temperatures and magnetic fields (H) permits us to draw the following conclusions about the role of disorder. Regardless of the type of disorder, Curie temperature, T C , and spontaneous magnetization at 0 K, M 0 , decrease in accordance with the power laws T C (x) = t x (x-x c ) τ and M 0 (x) m x (x-x c ) ψ as x→x c (the threshold Ni concentration below which the long-range ferromagnetic order ceases to exist). Site disorder lowers the value of x c by nearly 1 at.% Ni, enhances T C for a given composition (more so as x→x c ) by increasing the number of Ni nearest neighbours for a given Ni atom, and leaves M 0 essentially unaltered because site disorder has essentially no effect on the density of states, N(E F ), at the Fermi level, E F , and the shape of the density-of-states curve near E F (except for x∼x c , where site disorder tends to primarily enhance N(E F ) and thereby stabilize long-range ferromagnetic order for Ni concentrations below the threshold concentration, x c ≅74.6 at.%, dictated by compositional disorder). At low and intermediate temperatures, spontaneous magnetization, M(T,H = 0), as well as the 'in-field' magnetization, M(T,H), exhibit non-Fermi liquid behaviour in the samples ap-Ni 74.3 and ap-Ni 74.8 . As x c is approached from above, i.e. as the compositional disorder increases, stronger deviations from the Fermi liquid behaviour occur and the temperature range over which the non-Fermi liquid behaviour persists widens. In contrast, the ap-Ni 75.1 and ap-Ni 76.1 alloys follow the behaviour that the self-consistent spin-fluctuation theory predicts for a weak itinerant-electron ferromagnet with no disorder. Both compositional disorder and site disorder have no effect on the critical behaviour of the alloys near the ferromagnetic-to-paramagnetic phase transition.

  10. Stoichiometry and characterization of aluminum oxynitride thin films grown by ion-beam-assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zabinski, J.S. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Hu, J.J. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)], E-mail: Jianjun.Hu@WPAFB.AF.MIL; Bultman, J.E. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Pierce, N.A. [Propulsion Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Voevodin, A.A. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)

    2008-07-31

    Oxides are inherently stable in air at elevated temperatures and may serve as wear resistant matrices for solid lubricants. Aluminum oxide is a particularly good candidate for a matrix because it has good diffusion barrier properties and modest hardness. Most thin film deposition techniques that are used to grow alumina require high temperatures to impart crystallinity. Crystalline films are about twice as hard as amorphous ones. Unfortunately, the mechanical properties of most engineering steels are degraded at temperatures above 250-350 deg. C. This work is focused on using energetic reactive ion bombardment during simultaneous pulsed laser deposition to enhance film crystallization at low temperatures. Alumina films were grown at several background gas pressures and temperatures, with and without Ar ion bombardment. The films were nearly stoichiometric except for depositions in vacuum. Using nitrogen ion bombardment, nitrogen was incorporated into the films and formed the Al-O-N matrix. Nitrogen concentration could be controlled through selection of gas pressure and ion energy. Crystalline Al-O-N films were grown at 330 deg. C with a negative bias voltage to the substrate, and showed improved hardness in comparison to amorphous films.

  11. An operation protocol for facilitating start-up of single-stage autotrophic nitrogen removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan

    2012-01-01

    Start-up and operation of single-stage nitritation/anammox reactor employing complete autotrophic nitrogen can be difficult. Keeping the performance criteria and monitoring the microbial community composition may not be easy or fast enough to take action on time. In this study, a control strategy...

  12. Influence of oxygen stoichiometry on the structure and superconducting transition temperature of YBa 2Cu 3O x

    Science.gov (United States)

    Farneth, W. E.; Bordia, R. K.; McCarron, E. M.; Crawford, M. K.; Flippen, R. B.

    1988-06-01

    A detailed study of the superconducting properties and the crystal symmetry of YBa 2Cu 3O x as a function of oxygen content (x) is presented. We correlate the oxygen content, structure and superconducting transition temperature for YBa 2Cu 3O x (6topotactic intercalation/deintercalation of oxygen. It is shown that the orthorhombic to tetragonal phase transition coincides with a loss in superconductivity for samples prepared both by quenching from high temperature and samples prepared by deoxygenation at low temperature. For the orthorhombic phase, T c monotonically decreases as x goes from 7.0 to 6.4 along with a complementary decrease in the extent of orthorhombic distortion. The decrease in T c, however, is not uniform. For quenched samples it shows a plateau for x ˜ 6.75 to 6.55 and then a rather abrupt drop around x ˜ 6.5. Comparison of our data with the literature indicates that the dependence of superconducting properties and crystal structure on the oxygen content can be a complex function of sample processing history. Samples with the same oxygen content but prepared in different ways may have x-ray powder patterns that are indistinguishable, but significantly different electrical properties.

  13. NMR study of heteroligand lanthanide complexes. Structure and stoichiometry of chelates of cerium subgroup with 18-member polyethers

    International Nuclear Information System (INIS)

    Bajbalov, S.P.; Kriger, Yu.G.

    1993-01-01

    Different ligand complexes of lanthanides were studied by the method of 1 H NMR, the results being presented. The literature data on the study of complexes of the class in solution were generalized. Detection of lanthanide-induced splitting of group CH 2 diastereotopic proton signals of macrocyclic polyethers in the complexes is enough to identify kinetically stable complexes, having inclusive type structure. 16 refs., 2 figs., 2 tabs

  14. Modelling the interdependence between the stoichiometry of receptor oligomerization and ligand binding for a coexisting dimer/tetramer receptor system.

    Science.gov (United States)

    Rovira, X; Vivó, M; Serra, J; Roche, D; Strange, P G; Giraldo, J

    2009-01-01

    Many G protein-coupled receptors have been shown to exist as oligomers, but the oligomerization state and the effects of this on receptor function are unclear. For some G protein-coupled receptors, in ligand binding assays, different radioligands provide different maximal binding capacities. Here we have developed mathematical models for co-expressed dimeric and tetrameric species of receptors. We have considered models where the dimers and tetramers are in equilibrium and where they do not interconvert and we have also considered the potential influence of the ligands on the degree of oligomerization. By analogy with agonist efficacy, we have considered ligands that promote, inhibit or have no effect on oligomerization. Cell surface receptor expression and the intrinsic capacity of receptors to oligomerize are quantitative parameters of the equations. The models can account for differences in the maximal binding capacities of radioligands in different preparations of receptors and provide a conceptual framework for simulation and data fitting in complex oligomeric receptor situations.

  15. Influence of ignition energy, ignition location, and stoichiometry on the deflagration-to-detonation distance in a Pulse Detonation Engine

    OpenAIRE

    Robinson, John P.

    2000-01-01

    The feasibility of utilizing detonations for air-breathing propulsion is the subject of a significant research effort headed by the Office of Naval Research. Pulse Detonation Engines (PDE) have a theoretically greater efficiency than current combustion cycles. However, pulse detonation technology must mature beginning with research in the fundamental process of developing a detonation wave. This thesis explores various ignition conditions which minimize the deflagration-to- detonation transit...

  16. Seasonal cycle of N:P:TA stoichiometry as a modulator of CO2 buffering in eastern boundary upwelling systems

    CSIR Research Space (South Africa)

    Gregor, L

    2013-10-01

    Full Text Available of water as it upwelled. Deviations from the Redfield ratio were dominated by denitrification and sulfate reduction in the subsurface waters. The N:P ratio was lowest (7.2) during autumn once anoxic waters had formed. Total alkalinity (TA) generation...

  17. Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange

    Directory of Open Access Journals (Sweden)

    Lokteva Irina

    2011-01-01

    Full Text Available Abstract Resonant Raman study reveals the noticeable effect of the ligand exchange on the nanocrystal (NC surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO phonon mode, as well as its intensity ratio to overtones. The broad shoulder above the LO peak frequency was enhanced and sharpened after pyridine treatment, as well as with decreasing NC size. The low-frequency mode around 100 cm-1 which is commonly related with the disorder-activated acoustical phonons appears in smaller NCs but is not enhanced after pyridine treatment. Surprisingly, the feature at low-frequency shoulder of the LO peak, commonly assigned to the surface optical phonon mode, was not sensitive to ligand exchange and concomitant close packing of the NCs. An increased structural disorder on the NC surface, strain and modified electron-phonon coupling is discussed as the possible reason of the observed changes in the phonon spectrum of ligand-exchanged CdTe NCs. PACS: 63.20.-e, 78.30.-j, 78.67.-n, 78.67.Bf

  18. Quantifying Kinase-Specific Phosphorylation Stoichiometry Using Stable Isotope Labeling In a Reverse In-Gel Kinase Assay

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Cox, Jonathan T.; Huang, Weiliang; Kane, Maureen; Tang, Keqi; Bieberich, Charles J.

    2016-12-06

    Reversible protein phosphorylation regulates essentially all cellular activities. Aberrant protein phosphorylation is an etiological factor in a wide array of diseases, including cancer1, diabetes2, and Alzheimer’s3. Given the broad impact of protein phosphorylation on cellular biology and organismal health, understanding how protein phosphorylation is regulated and the consequences of gain and loss of phosphoryl moieties from proteins is of primary importance. Advances in instrumentation, particularly in mass spectrometry, coupled with high throughput approaches have recently yielded large datasets cataloging tens of thousands of protein phosphorylation sites in multiple organisms4-6. While these studies are seminal in term of data collection, our understanding of protein phosphorylation regulation remains largely one-dimensional.

  19. Adsorption of Cu and Pd on alpha-Al2O3(0001) surfaces with different stoichiometries

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Nørskov, Jens Kehlet

    2001-01-01

    We report density functional theory calculations of the interaction of Cu and Pd with the (0001) surface of alpha -Al2O3. The interaction of those metals with the oxide surface varies from covalent-like for the aluminum rich surface to ionic-like for the oxygen terminated surface. Stoichiometric ...

  20. Oxygen stoichiometry of LaTiO{sub 3} thin films studied by in-situ photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Scheiderer, Philipp; Goessmann, Alex; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2015-07-01

    As in the famous oxide heterostructure LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) a two dimensional electron system is found at the interface between the strongly correlated Mott insulator LaTi{sup 3+}O{sub 3} and the band insulator STO. The stabilization of LaTi{sup 3+}O{sub 3} requires strong reducing growth conditions since the thermodynamically stable bulk phase is the oxygen rich La{sub 2}Ti{sup 4+}{sub 2}O{sub 7}. Therefore, we have systematically studied the impact of the oxygen background atmosphere on LaTi{sup 3+}O{sub 3} thin film growth by PLD. Reflection high-energy diffraction intensity oscillations of the specular spot indicate a layer by layer growth mode for thin films, which merges into the formation of islands for thicker films. In-situ photoemission measurements enables us to determine the oxidation state of Ti indicating excess or lack of oxygen present in the prepared samples. Our experiments show that even for films grown in vacuum, strong oxygen excess is present probably due to oxygen out-diffusion from the STO substrate. We find that an LAO buffer layer serves as an effective barrier for this process. The spectral weight of the lower Hubbard band, being a characteristic feature for the Mott insulating phase, is found to scale inversely with the amount of excess oxygen.

  1. Multiple constraint modeling of nutrient cycling stoichiometry following forest clearing and pasture abandonment in the Eastern Amazon

    Science.gov (United States)

    Davidson, Eric; Nifong, Rachel

    2017-04-01

    While deforestation has declined since its peak, land-use change continues to modify Amazonian landscapes. The responses and feedbacks of biogeochemical cycles to these changes play an important role in determining possible future trajectories of ecosystem function and for land stewardship through effects on rates of secondary forest regrowth, soil emissions of greenhouse gases, inputs of nutrients to groundwater and streamwater, and nutrient management in agroecosystems. Here we present a new synthetic analyses of data from the NASA-supported LBA-ECO project and others datasets on nutrient cycling in cattle pastures, secondary forests, and mature forests at Paragominas, Pará, Brazil. We have developed a stoichiometric model relating C-N-P interactions during original forest clearing, extensive and intensive pasture management, and secondary forest regrowth, constrained by multiple observations of ecosystem stocks and fluxes in each land use. While P is conservatively cycled in all land uses, we demonstrate that pyrolyzation of N during pasture formation and during additional burns for pasture management depletes available-N pools, consistent with observations of lower rates of N leaching and trace gas emission and consistent with secondary forest growth responses to experimental N amendments. The soils store large stocks of N and P, and our parameterization of available forms of these nutrients for steady-state dynamics in the mature forest yield reasonable estimates of net N and P mineralization available for grasses and secondary forest species at rates consistent with observed biomass accumulation and productivity in these modified ecosystems. Because grasses and forests have much different demands for N relative to P, the land use has important biogeochemical impacts. The model demonstrates the need for periodic P inputs for sustainable pasture management and for a period of significant biological N fixation for early-to-mid-successional secondary forest regrowth. The model framework illustrates the relative magnitudes of changing stocks and flows of nutrients and attendant ecosystem functions through the phases of land use change experienced in eastern Amazonia.

  2. Topography and stoichiometry of acidic proteins in large ribosomal subunits from Artemia salina as determined by crosslinking

    International Nuclear Information System (INIS)

    Uchiumi, T.; Wahba, A.J.; Traut, R.R.

    1987-01-01

    The 60S subunits isolated from Artemia salina ribosomes were treated with the crosslinking reagent 2-iminothiolane under mild conditions. Proteins were extracted and fractions containing crosslinked acidic proteins were obtained by stepwise elution from CM-cellulose. Each fraction was analyzed by diagonal (two-dimensional nonreducing-reducing) NaDodSO 4 /polyacrylamide gel electrophoresis. Crosslinked proteins below the diagonal were radioiodinated and identified by two-dimensional acidic urea-NaDodSO 4 gel electrophoresis. Each of the acidic proteins P1 and P2 was crosslinked individually to the same third protein, PO. The fractions containing acidic proteins were also analyzed by two-dimensional nonequilibrium isoelectric focusing-NaDodSO 4 /polyacrylamide gel electrophoresis. Two crosslinked complexes were observed that coincide in isoelectric positions with monomeric P1 and P2, respectively. Both P1 and P2 appear to form crosslinked homodimers. These results suggest the presence in the 60S subunit of (P1) 2 and (P2) 2 dimers, each of which is anchored to PO. Protein PO appears to play the same role as L10 in Escherichia coli ribosomes and may form a pentameric complex with the two dimers in the 60S subunits

  3. Atomic-scale understanding of non-stoichiometry effects on the electrochemical performance of Ni-rich cathode materials

    Science.gov (United States)

    Kong, Fantai; Liang, Chaoping; Longo, Roberto C.; Zheng, Yongping; Cho, Kyeongjae

    2018-02-01

    As the next-generation high energy capacity cathode materials for Li-ion batteries, Ni-rich oxides face the problem of obtaining near-stoichiometric phases due to excessive Ni occupying Li sites. These extra-Ni-defects drastically affect the electrochemical performance. Despite of its importance, the fundamental correlation between such defects and the key electrochemical properties is still poorly understood. In this work, using density-functional-theory, we report a comprehensive study on the effects of non-stoichiometric phases on properties of Ni-rich layered oxides. For instance, extra-Ni-defects trigger charge disproportionation reaction within the system, alleviating the Jahn-Teller distortion of Ni3+ ions, which constitutes an important reason for their low formation energies. Kinetic studies of these defects reveal their immobile nature, creating a "pillar effect" that increases the structural stability. Ab initio molecular dynamics revealed Li depletion regions surrounding extra-Ni-defects, which are ultimate responsible for the arduous Li diffusion and re-intercalation, resulting in poor rate performance and initial capacity loss. Finally, the method with combination of high valence cation doping and ion-exchange synthesis is regarded as the most promising way to obtain stoichiometric oxides. Overall, this work not only deepens our understanding of non-stoichiometric Ni-rich layered oxides, but also enables further optimizations of high energy density cathode materials.

  4. Investigation of the correlation between stoichiometry and thermoelectric properties in a PtSb2 single crystal

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Christensen, Mogens; Bjerg, Lasse

    2012-01-01

    utilizing X-Ray Diffraction and Energy Dispersive X-Ray Spectroscopy. The correlation between Pt/Sb ratio and physical property parameters - Seebeck coefficient, mobility, resistivity and charge carrier concentration - was studied. Elemental analysis by Energy Dispersive X-Ray Spectroscopy, X......The thermoelectric properties of a PtSb2 single crystal containing a stoichiometric gradient were investigated. The gradient was produced by employing a Stockbarger synthesis technique. The gradient was observed through the use of spatial resolved Seebeck coefficient measurements and verified...

  5. Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris

    Science.gov (United States)

    Zhang, Ping; Li, Zhe; Lu, Lunhui; Xiao, Yan; Liu, Jing; Guo, Jinsong; Fang, Fang

    2017-06-01

    Stressful conditions can stimulate the accumulation of carotenoids in some microalgae. To obtain more knowledge of the stress response, we studied the effects of different N concentrations on unicellular content of carotenoids using Raman spectroscopic technique; cellular stoichiometric changes and the fluorescence parameters of Chlorella vulgaris were concomitantly studied. Initially, we optimized the Raman scattering conditions and demonstrated the feasibility of unicellular carotenoid analysis by Raman spectroscopic technique. The results showed that an integration time of 10 s, laser power at 0.1 mW and an accumulation time of 1 were the optimum conditions, and the peak height at 1523 cm- 1 scaled linearly with the carotenoid content in the range of 0.625-1440 mg/L with a recovery rate of 97% 103%. In the experiment, seven different nitrogen levels ranging from 0 to 2.48 × 105 μg/L were imposed. Samples were taken at the start, exponential phase and end of the experiment. The results showed that nitrogen stress can facilitate the synthesis of carotenoids, while at the same time, excessive nitrogen stress led to lower proliferative and photosynthetic activity. Compared with carotenoids, chlorophylls were more sensitive to nitrogen stress; it declined dramatically as stress processed. There existed no significant differences for Fv/Fm among different nitrogen levels during the exponential phase, while in the end, it declined and a significant difference appeared between cells in 2.48 × 105 μg/L N and other experimental levels. Photosynthetic efficiency, namely the C/N mole ratio in algal cells, didnot significantly change during the exponential phase; however, apparent increases ultimately occurred, except for the stable C/N in BG11 medium. This increase matched well with the carotenoid decline, indicating that an increasing cellular C/N mole ratio can be used as an indicator of excessive stress in carotenoid production. Besides, there also existed an inverse correlation with ETRmax.

  6. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain.

    Science.gov (United States)

    Dienel, Gerald A

    2017-11-01

    Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMR glc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMR O2 /CMR glc ) fell during activation in human brain, and the small rise in CMR O2 could not fully support oxidation of lactate produced by disproportionate increases in CMR glc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMR glc -CMR O2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Unusual stoichiometry control in the atomic layer deposition of manganese borate films from manganese bis(tris(pyrazolyl)borate) and ozone

    OpenAIRE

    Klesko, Joseph P.; Bellow, James A.; Saly, Mark J.; Winter, Charles H.; Julin, Jaakko; Sajavaara, Timo

    2016-01-01

    The atomic layer deposition (ALD) of films with the approximate compositions Mn3(BO3)2 and CoB2O4 is described using MnTp2 or CoTp2 [Tp ¼ tris(pyrazolyl)borate] with ozone. The solid state decomposition temperatures of MnTp2 and CoTp2 are 370 and 340 C, respectively. Preparative-scale sublimations of MnTp2 and CoTp2 at 210 C/0.05 Torr afforded >99% recoveries with

  8. Effect of off-stoichiometry and site disorder on the properties of Ni3Al: I. Electrical and magneto-transport

    International Nuclear Information System (INIS)

    Abhyankar, A C; Kaul, S N

    2008-01-01

    Electrical resistivity, ρ(T), and longitudinal magnetoresistance, Δρ || /ρ=[ρ || (T,H)-ρ(T,H=0)]/ρ(T,H=0), of 'as-prepared' Ni x Al 100-x alloys with x = 74.3, 74.8, 75.1 and 76.1 at.% and 'annealed' Ni 75.1 Al 24.9 alloy, measured over wide ranges of temperature and external magnetic field (H), are discussed in the light of existing theoretical models. ρ(T) exhibits a non-Fermi liquid (NFL) behaviour at low temperatures in the range 1.7 K≤T≤T x (where T x decreases from 25 to 21 K as the Ni concentration x increases from 74.3 to 75.1 at.%) in the alloys with x 3 Al), and stabilizes the NFL behaviour in any given composition over a much wider temperature range. The main contributions to ρ(T) and Δρ || /ρ arise from the scattering of conduction electrons from the 'unconventional' spin waves (exchange-enhanced non-propagating spin-density fluctuations) at low temperatures (intermediate temperatures and temperatures close to the Curie point, T C ). The self-consistent spin fluctuation theory correctly predicts that H leaves the functional dependence of ρ on temperature unaltered and quantitatively describes the suppression of the spin-wave and spin-density fluctuation contributions to ρ by H in different temperature regimes.

  9. Correlation between stoichiometry and surface structure of the polar MgAl2O4(100) surface as a function of annealing temperature

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Rasmussen, Morten Karstoft; Knudsen, Jan

    2015-01-01

    is found to significantly increase as the surface is sputtered and annealed in oxygen at intermediate temperatures ranging from 800-1000 [degree]C. The Al excess is explained by the observed surface structure, where the formation of nanometer sized pits and elongated patches with Al terminated step edges....... The excess of Al and high concentration of octahedral vacancies, very interestingly means, that the top few surface layers of the MgAl2O4(100) adopts a surface structure similar to that of a spinel-like transition Al2O3 film. However, after annealing at a high temperature of 1200 [degree]C, the Al/Mg ratio...... are filled by Mg from the bulk, due to the increased mobility at high annealing temperatures....

  10. Effect of oxygen stoichiometry on the electrical properties of La0.5Sr0.5CoO3 electrodes

    International Nuclear Information System (INIS)

    Madhukar, S.; Aggarwal, S.; Dhote, A.M.; Ramesh, R.; Krishnan, A.; Keeble, D.; Poindexter, E.

    1997-01-01

    We report on the metal-insulator transition of La 0.5 Sr 0.5 CoO 3 thin films deposited by pulsed laser ablation on LaAlO 3 substrates. The films were cooled in oxygen partial pressures between 760 and 10 -5 Torr and electrical resistivity of the films was measured as a function of cooling oxygen pressure. La 0.5 Sr 0.5 CoO 3 films changed from metallic to insulating behavior depending on their oxygen content. A defect model has been proposed to explain this transition and the change in conductivity is related to the change in the oxidation state of the cobalt ions. The model explains the relationship between oxygen partial pressure and electrical conductivity in La 0.5 Sr 0.5 CoO 3 , which describes the experimental dependence reasonably well. Positron annihilation studies were also done on the same set of samples and the S parameter was seen to increase by 8% from a fully oxygenated sample to a sample cooled in 10 -5 Torr. copyright 1997 American Institute of Physics

  11. Carotenoid stoichiometry in the LH2 crystal: no spectral evidence for the presence of the second molecule in the alpha/beta-apoprotein dimer.

    Science.gov (United States)

    Gall, Andrew; Gardiner, Alastair T; Cogdell, Richard J; Robert, Bruno

    2006-07-10

    In this work we have investigated the carotenoid-protein interactions in LH2 complexes of Rhodopseudomonas acidophila both in "free in solution" mixed-micelles and in three-dimensional crystals by Raman spectroscopy in resonance with the carotenoid (Car) molecules. We show that the Car molecules when bound to their binding pockets show no significant differences when the complexes are "free in solution" or packed in crystalline arrays. Furthermore, there is no significant wavelength dependence in the Raman spectrum of the Car molecules of LH2. This indicates that there is only one Car configuration in LH2 and thus only one molecule per alpha/beta-heterodimer.

  12. Single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers: Reactant- and stoichiometry-dependent syntheses, effective photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinfang, E-mail: zjf260@jiangnan.edu.cn [China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Wang, Chao [China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Wang, Yinlin; Chen, Weitao [China-Australia Joint Research Center for Functional Molecular Materials, Scientific Research Academy, Jiangsu University, Zhenjiang 212013 (China); Cifuentes, Marie P.; Humphrey, Mark G. [Research School of Chemistry, Australian National University, Canberra ACT 0200 (Australia); Zhang, Chi, E-mail: chizhang@jiangnan.edu.cn [China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-11-15

    The systematic study on the reaction variables affecting single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers (CPs) is firstly demonstrated. Five anionic single cyanide-bridged Mo(W)/S/Cu cluster-based CPs {[Pr_4N][WS_4Cu_3(CN)_2]}{sub n} (1), {[Pr_4N][WS_4Cu_4(CN)_3]}{sub n} (2), {[Pr_4N][WOS_3Cu_3(CN)_2]}{sub n} (3), {[Bu_4N][WOS_3Cu_3(CN)_2]}{sub n} (4) and {[Bu_4N][MoOS_3Cu_3(CN)_2]}{sub n} (5) were prepared by varying the molar ratios of the starting materials, and the specific cations, cluster building blocks and central metal atoms in the cluster building blocks. 1 possesses an anionic 3D diamondoid framework constructed from 4-connected T-shaped clusters [WS{sub 4}Cu{sub 3}]{sup +} and single CN{sup −} bridges. 2 is fabricated from 6-connected planar ‘open’ clusters [WS{sub 4}Cu{sub 4}]{sup 2+} and single CN{sup −} bridges, forming an anionic 3D architecture with an “ACS” topology. 3 and 4 exhibit novel anionic 2-D double-layer networks, both constructed from nest-shaped clusters [WOS{sub 3}Cu{sub 3}]{sup +} linked by single CN{sup −} bridges, but containing the different cations [Pr{sub 4}N]{sup +} and [Bu{sub 4}N]{sup +}, respectively. 5 is constructed from nest-shaped clusters [MoOS{sub 3}Cu{sub 3}]{sup +} and single CN{sup −} bridges, with an anionic 3D diamondoid framework. The anionic frameworks of 1-5, all sustained by single CN{sup −} bridges, are non-interpenetrating and exhibit huge potential void volumes. Employing differing molar ratios of the reactants and varying the cluster building blocks resulted in differing single cyanide-bridged Mo(W)/S/Cu cluster-based CPs, while replacing the cation ([Pr{sub 4}N]{sup +} vs. [Bu{sub 4}N]{sup +}) was found to have negligible impact on the nature of the architecture. Unexpectedly, replacement of the central metal atom (W vs. Mo) in the cluster building blocks had a pronounced effect on the framework. Furthermore, the photocatalytic activities of heterothiometallic cluster-based CPs were firstly explored by monitoring the photodegradation of methylene blue (MB) under visible light irradiation, which reveals that 2 exhibits effective photocatalytic properties. - Highlights: • Reaction variables affecting Mo(W)/S/Cu cluster-based CPs is firstly explored. • Replacing central metal atom had a pronounced effect on W/S/Cu cluster-based CPs. • Photocatalytic activities of Mo(W)/S/Cu cluster-based CPs are firstly investigated.

  13. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality.

    Science.gov (United States)

    Filipiak, Michał; Kuszewska, Karolina; Asselman, Michel; Denisow, Bożena; Stawiarz, Ernest; Woyciechowski, Michał; Weiner, January

    2017-01-01

    The least understood aspects of the nutritional needs of bees are the elemental composition of pollen and the bees' need for a stoichiometrically balanced diet containing the required proportions of nutrients. Reduced plant diversity has been proposed as an indirect factor responsible for the pollinator crisis. We suggest stoichiometric mismatch resulting from a nutritionally unbalanced diet as a potential direct factor. The concentrations and stoichiometric ratios of C, N, S, P, K, Na, Ca, Mg, Fe, Zn, Mn, and Cu were studied in the bodies of honeybees of various castes and sexes and in the nectar and pollen of various plant species. A literature review of the elemental composition of pollen was performed. We identified possible co-limitations of bee growth and development resulting mainly from the scarcity of Na, S, Cu, P and K, and possibly Zn and N, in pollen. Particular castes and sexes face specific limitations. Concentrations of potentially limiting elements in pollen revealed high taxonomic diversity. High floral diversity may be necessary to maintain populations of pollen eaters. Single-species crop plantations, even if these species are rich in nectar and pollen, might limit bee growth and development, not allowing for gathering nutrients in adequate proportions. However, particular plant species may play greater roles than others in balancing honeybee diets. Therefore, we suggest specific plant species that may (1) ensure optimal growth and production of individuals by producing pollen that is exceptionally well balanced stoichiometrically (e.g., clover) or (2) prevent growth and development of honeybees by producing pollen that is extremely unbalanced for bees (e.g., sunflower). Since pollen is generally poor in Na, this element must be supplemented using "dirty water". Nectar cannot supplement the diet with limiting elements. Stoichiometric mismatch should be considered in intervention strategies aimed at improving the nutritional base for bees.

  14. Consequences of non-uniformity in the stoichiometry of component fractions within one and two loops models of alpha-helical peptides

    Science.gov (United States)

    Atoms in biomolecular structures like alpha helices contain an array of distances and angles which include abundant multiple patterns of redundancies. Thus all peptides backbones contain the three atom sequence N-C*C, whereas the repeating set of a four atom sequences (N-C*C-N, C*-C-N-C*, and C-N-C...

  15. A Suite of Tetraphenylethylene-Based Discrete Organoplatinum(II) Metallacycles: Controllable Structure and Stoichiometry, Aggregation-Induced Emission, and Nitroaromatics Sensing.

    Science.gov (United States)

    Yan, Xuzhou; Wang, Haoze; Hauke, Cory E; Cook, Timothy R; Wang, Ming; Saha, Manik Lal; Zhou, Zhixuan; Zhang, Mingming; Li, Xiaopeng; Huang, Feihe; Stang, Peter J

    2015-12-09

    Materials that organize multiple functionally active sites, especially those with aggregation-induced emission (AIE) properties, are of growing interest due to their widespread applications. Despite promising early architectures, the fabrication and preparation of multiple AIEgens, such as multiple tetraphenylethylene (multi-TPE) units, in a single entity remain a big challenge due to the tedious covalent synthetic procedures often accompanying such preparations. Coordination-driven self-assembly is an alternative synthetic methodology with the potential to deliver multi-TPE architectures with light-emitting characteristics. Herein, we report the preparation of a new family of discrete multi-TPE metallacycles in which two pendant phenyl rings of the TPE units remain unused as a structural element, representing novel AIE-active metal-organic materials based on supramolecular coordination complex platforms. These metallacycles possess relatively high molar absorption coefficients but weak fluorescent emission under dilute conditions because of the ability of the untethered phenyl rings to undergo torsional motion as a non-radiative decay pathway. Upon molecular aggregation, the multi-TPE metallacycles show AIE-activity with markedly enhanced quantum yields. Moreover, on account of their AIE characteristics in the condensed state and ability to interact with electron-deficient substrates, the photophysics of these metallacycles is sensitive to the presence of nitroaromatics, motivating their use as sensors. This work represents a unification of themes including molecular self-assembly, AIE, and fluorescence sensing and establishes structure-property-application relationships of multi-TPE scaffolds. The fundamental knowledge obtained from the current research facilitates progress in the field of metal-organic materials, metal-coordination-induced emission, and fluorescent sensing.

  16. Stoichiometry, structure, and properties of La2NiO4+δ and La2-xSrxNiO4±δ

    International Nuclear Information System (INIS)

    Buttrey, D.J.; Sachan, V.

    1995-01-01

    The oxygen content phase diagram of La 2 NiO 4+δ has been studied in detail using x-ray and neutron diffraction data from well-characterized specimens. There are numerous phase separations and phase transitions which are observed with changes in temperature and composition. The complexity of the phase diagram arises primarily from oxygen defect interactions, however the authors have also obtained evidence for coupled charge and spin ordering at δ = 0.125 corresponding to organization of holes into ordered domain walls. These domain walls act as antiphase boundaries between stripes of antiferromagnetically ordered nickel moments. Neutron scattering data on Sr-substituted compositions with well-defined oxygen content indicate incommensurate charge and spin correlations closely related to those in the x=0, δ = 0.125 composition. The incommensurability approaches 1/4 and the correlation length increases as the hole concentration approaches p = x+2δ = 0.25

  17. Target and Non-target metabolomics profiling of different barley varieties affected by enhanced ultraviolet radiation and various C:N stoichiometry

    Czech Academy of Sciences Publication Activity Database

    Oravec, Michal; Novotná, Kateřina; Rajsnerová, P.; Veselá, B.; Urban, Otmar; Holub, Petr; Klem, Karel

    2015-01-01

    Roč. 29, č. 1 (2015), s. 887.7 ISSN 0892-6638 Institutional support: RVO:67179843 Keywords : metabolomic profiling * different barley varieties * ultraviolet radiation Subject RIV: EH - Ecology, Behaviour

  18. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types

    Science.gov (United States)

    Brian H. Hill; Colleen M. Elonen; Terri M. Jicha; Randall K. Kolka; LaRae L.P. Lehto; Stephen D. Sebestyen; Lindsey R. Seifert-Monson

    2014-01-01

    We compared carbon (C), nitrogen (N), and phosphorus (P) concentrations in atmospheric deposition, runoff, and soils with microbial respiration [dehydrogenase (DHA)] and ecoenzyme activity (EEA) in an ombrotrophic bog and a minerotrophic fen to investigate the environmental drivers of biogeochemical cycling in peatlands at the Marcell Experimental Forest in northern...

  19. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P limitation among peatland types

    Science.gov (United States)

    We compared C, N, and P concentrations in atmospheric deposition, runoff, and soil standing stocks with microbial respiration (DHA) and ecoenzyme activity (EEA) in an ombrotrophic bog (S2) and a minerotrophic fen (S3) to investigate the environmental drivers of biogeochemical cyc...

  20. An operational protocol for facilitating start-up of single-stage autotrophic nitrogen-removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, Ayten Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan

    2013-01-01

    Start-up and operation of single-stage nitritation–anammox sequencing batch reactors (SBRs) for completely autotrophic nitrogen removal can be challenging and far from trivial. In this study, a step-wise procedure is developed based on stoichiometric analysis of the process performance from...

  1. Non-stoichiometry in the KMo2P3O12-tunnel structure: The oxide K0.75MoNbP3O12

    International Nuclear Information System (INIS)

    Leclaire, A.; Borel, M.M.; Grandin, A.; Raveau, B.

    1990-01-01

    K 0.75 MoNbP 3 O 12 , M r =503.009, orthorhombic, Pbcm, a=8.8518 (5), b=9.1453 (11), c=12.5174 (11) A, V=1013.3 (3) A 3 , Z=4, D x =3.300 Mg m -3 , λ(Mo Kα)=0.71073 A, μ=3.13 mm -1 , F(000)=953, T=294 K, R=0.029, wR=0.033 for 1235 observed reflections. This compound is isostructural with KMo 2 P 3 O 12 -type oxides. Its framework is built up from MoO 6 octahedra and PO 4 tetrahedra which delimit tunnels running along b. Different from KMo 2 P 3 O 12 , the tunnels are partly occupied by the potassium ions which are distributed at random. (orig.)

  2. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality.

    Directory of Open Access Journals (Sweden)

    Michał Filipiak

    Full Text Available The least understood aspects of the nutritional needs of bees are the elemental composition of pollen and the bees' need for a stoichiometrically balanced diet containing the required proportions of nutrients. Reduced plant diversity has been proposed as an indirect factor responsible for the pollinator crisis. We suggest stoichiometric mismatch resulting from a nutritionally unbalanced diet as a potential direct factor. The concentrations and stoichiometric ratios of C, N, S, P, K, Na, Ca, Mg, Fe, Zn, Mn, and Cu were studied in the bodies of honeybees of various castes and sexes and in the nectar and pollen of various plant species. A literature review of the elemental composition of pollen was performed. We identified possible co-limitations of bee growth and development resulting mainly from the scarcity of Na, S, Cu, P and K, and possibly Zn and N, in pollen. Particular castes and sexes face specific limitations. Concentrations of potentially limiting elements in pollen revealed high taxonomic diversity. High floral diversity may be necessary to maintain populations of pollen eaters. Single-species crop plantations, even if these species are rich in nectar and pollen, might limit bee growth and development, not allowing for gathering nutrients in adequate proportions. However, particular plant species may play greater roles than others in balancing honeybee diets. Therefore, we suggest specific plant species that may (1 ensure optimal growth and production of individuals by producing pollen that is exceptionally well balanced stoichiometrically (e.g., clover or (2 prevent growth and development of honeybees by producing pollen that is extremely unbalanced for bees (e.g., sunflower. Since pollen is generally poor in Na, this element must be supplemented using "dirty water". Nectar cannot supplement the diet with limiting elements. Stoichiometric mismatch should be considered in intervention strategies aimed at improving the nutritional base for bees.

  3. Role of process conditions on the microstructure, stoichiometry and functional performance of atmospheric plasma sprayed La(Sr)MnO3 coatings

    Science.gov (United States)

    Han, Su Jung; Chen, Yikai; Sampath, Sanjay

    2014-08-01

    Strontium doped lanthanum manganite (LSM) perovskite coatings were produced via atmospheric plasma spray technique to examine their applicability as electrically conductive coatings to protect chromium-poisoning of cathode side metallic interconnects in solid oxide fuel cells. Various plasma spray process conditions were manipulated including plasma power, total gas flow and content of H2 in the plasma gas in order to understand their effects on coating properties as well as efficacy as a protectant against Cr-poisoning. In-flight temperatures and velocities of spray particles were monitored for the various plasma spray conditions enabling assessment of thermal and kinetic energies of LSM particles. As anticipated, coating density improves with increasing thermal and/or kinetic energies of the LSM particles. However, the LSM particles also experienced significant phase decomposition at higher thermal exposure and longer residence time conditions. Due to preferential loss of oxygen and manganese, La2O3 phase is also formed under certain processing regimes. The resultant mixed-phase coating is ineffective both from electrical transport and as a protective coating for the metallic interconnect. Concomitantly, coatings with limited decomposition show excellent conductivity and protection characteristics demonstrating the need for mechanism driven process optimization for these functional oxide coatings.

  4. An Investigation of the Stoichiometry of Na+ Cotransport with Dopamine in Rat and Human Dopamine Transporters Expressed in Human Embryonic Kidney Cells

    National Research Council Canada - National Science Library

    Schumacher, Paul

    2001-01-01

    The neuronal membrane transporter for dopamine (DAT) is a member of the Na+ and Cl dependent family of transporters and concentrates dopamine intracellularly up to 106 fold over extracellular levels...

  5. Late summer distribution and stoichiometry of dissolved N, Si and P in the Southern Ocean near Heard and McDonald Islands on the Kerguelen Plateau

    Science.gov (United States)

    Chase, Z.; Bowie, A. R.; Blain, S.; Holmes, T.; Rayner, M.; Sherrin, K.; Tonnard, M.; Trull, T. W.

    2016-12-01

    The Kerguelen plateau in the Southern Indian Ocean is a naturally iron-fertilised region surrounded by iron-limited, High Nutrient Low Chlorophyll waters. The Heard Earth Ocean Biosphere Interaction (HEOBI) project sampled waters south of the Polar Front in the vicinity of Heard and McDonald Islands (HIMI) in January and February 2016. Fe fertilised waters over the plateau generally exhibited high phytoplankton biomass and photosynthetic competency (as in previous studies and satellite observations), but interestingly, phytoplankton biomass was low near HIMI, though photosynthetic competency was high. In plateau waters away from HIMI, silicic acid (Si) concentrations were strongly depleted in surface waters, averaging 3 μM, while nitrate concentrations were close to 25 μM. Relative to the remnant winter water, this represents an average seasonal drawdown of 32 μM Si and only 8 μM nitrate. Though absolute drawdown was lower at an HNLC reference site south of Heard Island, the drawdown ratio was similarly high (ΔSi: ΔN 4-5). The average N:P drawdown ratio was 12, typical for a diatom-dominated system (Weber and Deutsch 2010). N:P drawdown was positively correlated with Si drawdown, perhaps indicative of an impact of Fe on both seasonal Si drawdown and diatom N:P uptake (Price 2005). In the well-mixed, shallow waters (McDonald Islands, despite the apparent lack of nutrient drawdown or biomass accumulation. Mixed layers deeper than the euphotic zone are one mechanism that retains these remineralization signatures and near the islands, tidal mixing also contributes.

  6. Preparation and Eh-pH diagrams of Fe(II)-Fe(III) green rust compounds; hyperfine interaction characteristics and stoichiometry of hydroxy-chloride, -sulphate and -carbonate

    International Nuclear Information System (INIS)

    Genin, J.-M.R.; Refait, Ph.; Simon, L.; Drissi, S.H.

    1998-01-01

    Fe(II)-Fe(III) hydroxy-chloride, -sulphate and -carbonate were prepared by oxidation of a ferrous hydroxide precipitate in anion-containing aqueous solutions. The compounds are characterized by monitoring the redox potential E h and the pH of stochiometric suspension vs time with the appropriate concentration ratios. X-ray diffraction allows us to characterize the crystal structure by distinguishing 'green rust one' (GR1) from 'green rust two' (GR2). Since green rusts (GRs) are of a pyroaurite-sjoegrenite-like structure, i.e., consisting of intercalated foreign anions and water molecules in the interlayers between the brucite-like layers of Fe(OH) 2 , their chemical formulae can be determined from the Moessbauer spectra. Three quadrupole doublets are observed: D 1 and D 2 correspond to a ferrous state with isomershift IS of about 1.27 mm s -1 and quadrupole splittings QS of about 2.85 and 2.60 mm s -1 , respectively, whereas D 3 corresponds to a ferric state with IS and QS of about 0.4 mm s -1 . The hyperfine parameters of these doublets are similar from one green rust to another but their intensity ratios vary considerably. Finally, E h and pH equilibrium diagrams of the Fe species in the presence of chloride, sulphate and carbonate anions contained within the water solution are drawn and the thermodynamic conditions of existence and degrees of oxidation of green rusts are discussed

  7. X-radiographic study of rare-earth compounds with special regardment of modulated structures. The response of the crystal structure to stoichiometry deviations

    International Nuclear Information System (INIS)

    Leisegang, Tilmann

    2010-01-01

    Even shortly after World War II, as large amounts of ultrapure rare earths (RE) became available for scientific research, a large reservoir of peculiar phenomena was uncovered. These had not been investigated before or were completely unknown. Examples of these phenomena are, magnetic ordering, the KONDO effect, quantum critical points, heavy fermion behaviour, as well as superconductivity. A strong influence of small variations of the chemical composition on the physical properties had been observed. The main focus of the present thesis is the detailed elucidation of the crystal structure of fundamental representatives of this class of substances, as well as the influence of dedicated variations of the chemical composition on their structure and properties. In particular, the characterisation of modulated crystals is an important facet. A large spectrum of physical methods, especially X-ray diffraction, is employed in the investigations. Results on oriented intergrowth in the Y-Ni-B-C system, incommensurately ordered vacancies in the Ce-Si system, incorporation of stacking faults as well as commensurately ordered transition metal atoms (TM) in the RE-TM-Si system and site specific occupancy in the Y-Mn-Fe-O system are presented. Their elucidation is reported for the first time. It is shown which consequences the structural peculiarities will have on the physical properties. An objective of this thesis is to give an overview of the possible ''answers'' that can be obtained with regard to the influence of the crystal structure of rare earth transition metal compounds on deviations of the chemical composition. (orig.)

  8. A trait-based framework for understanding how and why litter decay and resource stoichiometry promote biogeochemical syndromes in arbuscular- and ectomycorrhizal-dominated forests

    Science.gov (United States)

    Phillips, R.; Brzostek, E. R.; Fisher, J. B.; Sulman, B. N.; Midgley, M.; Craig, M.; Keller, A. B.

    2016-12-01

    While it has long been known that ecosystems dominated by arbuscular mycorrhizal (AM) plants (e.g., grasslands, tropical forests) cycle carbon (C) and nutrients differently than those dominated by ectomycorrhizal (ECM) plants (e.g., boreal and subarctic forests), demonstrations of these patterns in ecosystems where both mycorrhizal types co-occur are rare. We tested the hypothesis that variation between AM and ECM nutrient use traits (e.g., litter quality) promote distinct microbial traits that track biogeochemical syndromes in temperate forests. We then explored whether such belowground dynamics influence ecosystem responses to elevated CO2. To do this, we calculated the C to N ratios of litter, soil microbes and soil organic matter in AM- and ECM-dominated forests throughout the temperate region. We then used these data to parameterize a coupled plant uptake-microbial decomposition model, in order to determine how belowground interactions feedback to affect ecosystem C and N cycling in forests exposed to elevated CO2. We found support for our hypothesis: AM litters decomposed 50% faster than ECM litters (p litter decay rates were negatively correlated with the C:N of soils (including the microbial biomass and mineral soil; p < 0.05 for both) and positively correlated with net nitrification rates (p < 0.01). However, faster nitrogen (N) cycling in AM plots was also associated with a greater amount of physcially protected N in soil, suggesting that nutrient stabilizing mechanisms may constrain NPP in response to elevated CO2. Our model results supported this prediction. We found that while the C cost of acquiring of N is cheaper for AM trees than ECM trees, this cost difference is reduced under rising atmospheric CO2 owing to the enhanced protection of soil N in AM soils. Taken together, our results demonstrate that variation in AM- and ECM-associated plant and microbial traits promote predictable biogeochemical syndromes in temperate forests that can impact decomposition and NPP. Given that AM species are predicted to increase in abundance across much of the temperate region, our modeling results suggest that more N may get locked up in soils - a process that would induce progressive nutrient limitation of NPP and reduce the strength of the C sink in these forests.

  9. Single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers: Reactant- and stoichiometry-dependent syntheses, effective photocatalytic properties

    International Nuclear Information System (INIS)

    Zhang, Jinfang; Wang, Chao; Wang, Yinlin; Chen, Weitao; Cifuentes, Marie P.; Humphrey, Mark G.; Zhang, Chi

    2015-01-01

    The systematic study on the reaction variables affecting single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers (CPs) is firstly demonstrated. Five anionic single cyanide-bridged Mo(W)/S/Cu cluster-based CPs {[Pr_4N][WS_4Cu_3(CN)_2]}_n (1), {[Pr_4N][WS_4Cu_4(CN)_3]}_n (2), {[Pr_4N][WOS_3Cu_3(CN)_2]}_n (3), {[Bu_4N][WOS_3Cu_3(CN)_2]}_n (4) and {[Bu_4N][MoOS_3Cu_3(CN)_2]}_n (5) were prepared by varying the molar ratios of the starting materials, and the specific cations, cluster building blocks and central metal atoms in the cluster building blocks. 1 possesses an anionic 3D diamondoid framework constructed from 4-connected T-shaped clusters [WS_4Cu_3]"+ and single CN"− bridges. 2 is fabricated from 6-connected planar ‘open’ clusters [WS_4Cu_4]"2"+ and single CN"− bridges, forming an anionic 3D architecture with an “ACS” topology. 3 and 4 exhibit novel anionic 2-D double-layer networks, both constructed from nest-shaped clusters [WOS_3Cu_3]"+ linked by single CN"− bridges, but containing the different cations [Pr_4N]"+ and [Bu_4N]"+, respectively. 5 is constructed from nest-shaped clusters [MoOS_3Cu_3]"+ and single CN"− bridges, with an anionic 3D diamondoid framework. The anionic frameworks of 1-5, all sustained by single CN"− bridges, are non-interpenetrating and exhibit huge potential void volumes. Employing differing molar ratios of the reactants and varying the cluster building blocks resulted in differing single cyanide-bridged Mo(W)/S/Cu cluster-based CPs, while replacing the cation ([Pr_4N]"+ vs. [Bu_4N]"+) was found to have negligible impact on the nature of the architecture. Unexpectedly, replacement of the central metal atom (W vs. Mo) in the cluster building blocks had a pronounced effect on the framework. Furthermore, the photocatalytic activities of heterothiometallic cluster-based CPs were firstly explored by monitoring the photodegradation of methylene blue (MB) under visible light irradiation, which reveals that 2 exhibits effective photocatalytic properties. - Highlights: • Reaction variables affecting Mo(W)/S/Cu cluster-based CPs is firstly explored. • Replacing central metal atom had a pronounced effect on W/S/Cu cluster-based CPs. • Photocatalytic activities of Mo(W)/S/Cu cluster-based CPs are firstly investigated.

  10. Dependence of the electronic structure of SrRuO3 and its degree of correlation on cation off-stoichiometry

    NARCIS (Netherlands)

    Siemons, W.; Koster, Gertjan; Vailionis, Arturas; Yamamoto, Hideki; Blank, David H.A.; Beasley, Malcolm R.

    2007-01-01

    We have grown and studied high quality SrRuO3 films grown by molecular beam epitaxy as well as pulsed laser deposition. By changing the oxygen activity during deposition, we were able to make SrRuO3 samples that were stoichiometric (low oxygen activity) or with ruthenium vacancies (high oxygen

  11. Biotite and chlorite weathering at 25 degrees C: the dependence of pH and (bi)carbonate on weathering kinetics, dissolution stoichiometry, and solubility; and the relation to redox conditions in granitic aquifers

    International Nuclear Information System (INIS)

    Malmstroem, M.; Banwart, S.

    1995-01-01

    We have studied the kinetics and thermodynamics of biotite and chlorite weathering in the pH range 2 2 -10 2 year); and 2. the development of characteristic Fe(III) concentrations (10 -5 M in 10 - 1 years). The Fe(III)-bearing clay minerals formed during these experiments are similar to the fracture-filling-material observed at the Aespoe Hard Rock Laboratory. Such clays can provide reducing capacity to a repository. They can help maintain anoxic conditions by consuming oxygen that enters the repository during the construction and operation phases thereby helping maintain the redox stability of the repository regarding canister corrosion. The half-life of oxygen trapped in the repository at the time of closure depends on the rate of oxygen uptake by Fe(II) minerals, sulfide minerals and organic carbon. Fe(II)-clay minerals are important to the redox stability of a repository, as well as providing a sorption barrier to radionuclide migration. 107 refs, 52 figs, 35 tabs

  12. Biotite and chlorite weathering at 25 degrees C: the dependence of pH and (bi)carbonate on weathering kinetics, dissolution stoichiometry, and solubility; and the relation to redox conditions in granitic aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Malmstroem, M.; Banwart, S. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Inorganic Chemistry; Duro, L. [Universidad Politecnica de Cataluna, Barcelona (Spain). Dept. de Ingneria Quimica; Wersin, P.; Bruno, J. [MBT Technologia Ambiental, Cerdanyola (Spain)

    1995-01-01

    We have studied the kinetics and thermodynamics of biotite and chlorite weathering in the pH range 2

  13. X-radiographic study of rare-earth compounds with special regardment of modulated structures. The response of the crystal structure to stoichiometry deviations; Roentgengraphische Untersuchung von Seltenerdverbindungen mit besonderer Beruecksichtigung modulierter Strukturen. Die Antwort der Kristallstruktur auf Stoechiometrieabweichungen

    Energy Technology Data Exchange (ETDEWEB)

    Leisegang, Tilmann

    2010-04-09

    Even shortly after World War II, as large amounts of ultrapure rare earths (RE) became available for scientific research, a large reservoir of peculiar phenomena was uncovered. These had not been investigated before or were completely unknown. Examples of these phenomena are, magnetic ordering, the KONDO effect, quantum critical points, heavy fermion behaviour, as well as superconductivity. A strong influence of small variations of the chemical composition on the physical properties had been observed. The main focus of the present thesis is the detailed elucidation of the crystal structure of fundamental representatives of this class of substances, as well as the influence of dedicated variations of the chemical composition on their structure and properties. In particular, the characterisation of modulated crystals is an important facet. A large spectrum of physical methods, especially X-ray diffraction, is employed in the investigations. Results on oriented intergrowth in the Y-Ni-B-C system, incommensurately ordered vacancies in the Ce-Si system, incorporation of stacking faults as well as commensurately ordered transition metal atoms (TM) in the RE-TM-Si system and site specific occupancy in the Y-Mn-Fe-O system are presented. Their elucidation is reported for the first time. It is shown which consequences the structural peculiarities will have on the physical properties. An objective of this thesis is to give an overview of the possible ''answers'' that can be obtained with regard to the influence of the crystal structure of rare earth transition metal compounds on deviations of the chemical composition. (orig.)

  14. Interactions of Kid-Kis toxin-antitoxin complexes with the parD operator-promotor region of plasmid R1 are piloted by the Kis antitoxin and tuned by the stoichiometry of Kid-Kis oligomers

    NARCIS (Netherlands)

    Monti, M.C.; Hernandez-Arriaga, A.M.; Kamphuis, M.B.; Lopez-Villarejo, J.; Heck, A.J.R.; Boelens, R.; Diaz-Orejas, R.; van den Heuvel, R.H.H.

    2007-01-01

    The parD operon of Escherichia coli plasmid R1 encodes a toxin–antitoxin system, which is involved in plasmid stabilization. The toxin Kid inhibits cell growth by RNA degradation and its action is neutralized by the formation of a tight complex with the antitoxin Kis. A fascinating but poorly

  15. Effect of B-site cation stoichiometry on electrical fatigue of RuO2//Pb(ZrxTi1-x)O3//RuO2 capacitors

    International Nuclear Information System (INIS)

    Al-Shareef, H.N.; Tuttle, B.A.; Warren, W.L.; Headley, T.J.; Dimos, D.; Voigt, J.A.; Nasby, R.D.

    1996-01-01

    There have been numerous reports that Pb(Zr x Ti 1-x )O 3 (PZT) thin-film capacitors with RuO 2 electrodes and compositions near the morphotropic phase boundary exhibit minimal decrease in switched polarization with electric-field cycling. We show that the fatigue performance of RuO 2 //PZT//RuO 2 capacitors strongly depends on PZT film composition. Specifically, we demonstrate that the rate of polarization fatigue increases with increasing Ti content for PZT thin films of tetragonal crystal symmetry deposited on RuO 2 electrodes. As the Ti content of the PZT films increased, the film gain morphology changed from columnar to granular and the volume percent of a fluorite-type second phase decreased. These microstructural trends and the possibility that the electrode material acts as a sink for oxygen vacancies are discussed to explain the fatigue dependence on B-site cation ratio for PZT films with RuO 2 electrodes. copyright 1996 American Institute of Physics

  16. The Sr2.75Ce0.25Co2O7-δ oxide, n=2 member of the Ruddlesden-Popper series: Structural and magnetic evolution depending on oxygen stoichiometry

    International Nuclear Information System (INIS)

    Demont, A.; Hebert, S.; Pelloquin, D.; Maignan, A.

    2008-01-01

    The second member of the Ruddlesden-Popper series, n=2 in Sr n+1 Co n O 3n+1 , has been stabilized by substituting cerium for strontium leading to the pure compound Sr 2.75 Ce 0.25 Co 2 O 7-δ . The oxygen vacancies of this phase can be partially filled by a post-annealing oxidizing treatment with δ decreasing from 1.1 to 0.3 for the as-prepared and oxidized phases, respectively. As the samples are oxidized from δ∼1.1 to 0.3, the a and b unit cell parameters decrease from 3.836 to 3.815 A and from 20.453 to 20.047 A, respectively. Despite the average value of the cobalt valence state, V Co ∼+3.5, obtained in the oxidized Sr 2.75 Ce +4 0.25 Co 2 O 6.7 phase, a clear ferromagnetic state wit T C =175 K and M S =0.8 μB/Co is reached. - Graphical abstract: Temperature dependence of the magnetic susceptibility of as-prepared and PO 2 annealing Sr 2.75 Ce 0.25 Co 2 O 7-δ RP2-type structures

  17. Temporal pattern in biometrics and nutrient stoichiometry of the intertidal seagrass Zostera japonica and its adaptation to air exposure in a temperate marine lagoon (China): Implications for restoration and management.

    Science.gov (United States)

    Zhang, Xiaomei; Zhou, Yi; Liu, Peng; Wang, Feng; Liu, Bingjian; Liu, Xujia; Yang, Hongsheng

    2015-05-15

    In coastal areas of China, the seagrass Zostera japonica has drastically decreased in the past decades. Swan Lake is an exception, where we found extensive areas of Z. japonica beds. The growth of Z. japonica in the lagoon exhibited strong seasonal variation. The maximum shoot density of 9880±2786 shoots m(-2) occurred in August. The maximum specific growth rate (SGR) of 4.99±1.99%⋅d(-1) was recorded in June 2012. SGR might be a good parameter for assessing the growth status of Z. japonica population. N and P contents in the rhizome were significantly lower than those in the leaf and leaf sheath. Lower C/P ratios suggested P enrichment of the seagrass. The occurrence of Z. japonica in Swan Lake was featured by adapting to the intertidal harsh environments. The transplantation method using sectioned rhizomes would be a potential way for restoration of degraded Z. japonica beds. The establishment of the Rongcheng Swan National Nature Reserve in China has contributed to the survival and expansion of Z. japonica in Swan Lake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of influent fractionation, kinetics, stoichiometry and mass transfer on CH4, H2 and CO2 production for (plant-wide) modeling of anaerobic digesters

    DEFF Research Database (Denmark)

    Solon, Kimberly; Flores Alsina, Xavier; Gernaey, Krist

    2015-01-01

    simulation model no. 2 is used to quantify the generation of CH4, H2 and CO2. A comprehensive global sensitivity analysis based on (i) standardized regression coefficients (SRC) and (ii) Morris' screening's (MS's) elementary effects reveals the set of parameters that influence the biogas production......This paper examines the importance of influent fractionation, kinetic, stoichiometric and mass transfer parameter uncertainties when modeling biogas production in wastewater treatment plants. The anaerobic digestion model no. 1 implemented in the plant-wide context provided by the benchmark...

  19. Stoichiometry, thickness and crystallinity of MOCVD grown Hg{sub 1x-y}Cd{sub x}Mn{sub y}Te determined by nuclear techniques of analysis

    Energy Technology Data Exchange (ETDEWEB)

    Studd, W B; Johnston, P N; Bubb, I F [Royal Melbourne Inst. of Tech., VIC (Australia); Leech, P W [Applied Research and Developement, Telecom Australia, Clayton, VIC (Australia)

    1994-12-31

    The quaternary semi-conductor Hg{sub 1-x-y}Cd{sub x}Mn{sub y}Te has been grown by Metal Organic Chemical Vapour Deposition using the Interdiffused Multi-layer Process. The layers have been analysed by Ion beam (PIXE, RBS, channeling) and related analytical techniques (EDXRF, XRD, RHEED) to obtain stoichiometric and structural information. The analysis shows that all four elements are present throughout the layer and that the elemental concentrations and thickness of the layer vary considerably over the film. Channeling, XRD and RHEED have been combined to show that the layer is polycrystalline. 14 refs., 3 figs.

  20. Influence of the target-substrate distance on the S-W stoichiometry and triboperformance of WSxC films deposited by PVD in reactive and non-reactive processes

    NARCIS (Netherlands)

    Cao, Huatang; De Hosson, J.T.M.; Pei, Yutao T.

    2017-01-01

    Layered transition metal dichalcogenides (TMD) such as WS2 are materials well-known for their solid lubrication properties in vacuum [1]. However, the lubricating property degrades through oxidation in moisture and it is also limited by its low hardness and low load-bearing capacity. The

  1. In situ examination of oxygen non-stoichiometry in La0.80Sr0.20CoO3−δ thin films at intermediate and low temperatures by x-ray diffraction

    KAUST Repository

    Biegalski, M. D.; Crumlin, E.; Belianinov, A.; Mutoro, E.; Shao-Horn, Y.; Kalinin, S. V.

    2014-01-01

    processes and vacancy concentration changes in lanthanum strontium cobaltite. At 550 °C, the observed lattice parameter reduction at an applied bias of -0.6 V was equivalent to that from the reducing condition of a 2% carbon monoxide atmosphere

  2. Stoichiometry, thickness and crystallinity of MOCVD grown Hg{sub 1x-y}Cd{sub x}Mn{sub y}Te determined by nuclear techniques of analysis

    Energy Technology Data Exchange (ETDEWEB)

    Studd, W.B.; Johnston, P.N.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Leech, P.W. [Applied Research and Developement, Telecom Australia, Clayton, VIC (Australia)

    1993-12-31

    The quaternary semi-conductor Hg{sub 1-x-y}Cd{sub x}Mn{sub y}Te has been grown by Metal Organic Chemical Vapour Deposition using the Interdiffused Multi-layer Process. The layers have been analysed by Ion beam (PIXE, RBS, channeling) and related analytical techniques (EDXRF, XRD, RHEED) to obtain stoichiometric and structural information. The analysis shows that all four elements are present throughout the layer and that the elemental concentrations and thickness of the layer vary considerably over the film. Channeling, XRD and RHEED have been combined to show that the layer is polycrystalline. 14 refs., 3 figs.

  3. High performance of nanoscaled Fe2O3 catalyzing UV-Fenton under neutral condition with a low stoichiometry of H2O2: Kinetic study and mechanism

    DEFF Research Database (Denmark)

    Wang, Yong; Sun, Yunkai; Li, Weiguang

    2015-01-01

    radical), O21 (singlet oxygen) and O2- (superoxide radical) showed HO, O21 and O2- participated in nano-Fe2O3 catalyzing UV-Fenton. Presence of oxygen could greatly enhance the degradation rate compared with the case of bubbling nitrogen, and a possible mechanism of catechol oxidation in nano-Fe2O3...... temperatures, Ea (activation energy), ΔH (enthalpy change) and ΔS (entropy change) were calculated to be 45.1(±6.3) kJ/mol, 42.6(±6.3) kJ/mol and -148.0(±20.8) J/K/mol, respectively. Radical identification experiments based on inhibition of methylene blue degradation under respective scavenger for HO (hydroxyl...

  4. Comparison of peer-tutoring learning model through problem-solving approach and traditional learning model on the cognitive ability of grade 10 students at SMKN 13 Bandung on the topic of Stoichiometry

    Science.gov (United States)

    Hayat, A. Z.; Wahyu, W.; Kurnia

    2018-05-01

    This study aims to find out the improvement of cognitive ability of students on the implementation of cooperative learning model of peer-tutoring by using problem-solving approach. The research method used is mix method of Sequential Explanatory strategy and pretest post-test non-equivalent control group design. The participants involved in this study were 68 grade 10 students of Vocational High School in Bandung that consisted of 34 samples of experimental class and 34 samples of control class. The instruments used include written test and questionnaires. The improvement of cognitive ability of students was calculated using the N- gain formula. Differences of two average scores were calculated using t-test at significant level of α = 0.05. The result of study shows that the improvement of cognitive ability in experimental class was significantly different compared to the improvement in the control class at significant level of α = 0.05. The improvement of cognitive ability in experimental class is higher than in control class.

  5. Crystal structures of 1,4-diazabicyclo[2.2.2]octan-1-ium 4-nitrobenzoate dihydrate and 1,4-diazabicyclo[2.2.2]octane-1,4-diium bis(4-nitrobenzoate: the influence of solvent upon the stoichiometry of the formed salt

    Directory of Open Access Journals (Sweden)

    Aina Mardia Akhmad Aznan

    2014-07-01

    Full Text Available The 1:1 co-crystallization of 1,4-diazabicyclo[2.2.2]octane (DABCO with 4-nitrobenzoic acid in ethanol–water (3/1 gave the salt dihydrate C6H13N2+·C7H4NO4−·2H2O, (1, whereas from methanol, the salt C6H14N22+·2C7H4NO4−, (2, was isolated. In (1, the cation and anion are linked by a strong N—H...O hydrogen bond, and the carboxylate anion is close to planar [dihedral angle between terminal residues = 6.83 (9°]. In (2, a three-ion aggregate is assembled by two N—H...O hydrogen bonds, and the carboxylate anions are again close to planar [dihedral angles between terminal residues = 1.7 (3 and 5.9 (3°]. Through the intervention of solvent water molecules, which self-assemble into helical supramolecular chains along the b axis, the three-dimensional architecture in (1 is stabilized by water–DABCO O—H...N and water–carboxylate O—H...O hydrogen bonds, with additional stability afforded by C—H...O interactions. The global crystal structure comprises alternating layers of water molecules and ion pairs stacked along the c axis. In the crystal of (2, the three-ion aggregates are assembled into a three-dimensional architecture by a large number of methylene–carboxylate/nitro C—H...O interactions as well as π–π contacts between inversion-related benzene rings [inter-centroid distances = 3.5644 (16 and 3.6527 (16 Å]. The cations and anions assemble into alternating layers along the c axis.

  6. Validation of a Novel Bioassay for Low-level Perchlorate Determination

    Science.gov (United States)

    2014-04-01

    was not attractive, since these reduce PMS2 , and it was thought they would interfere with the stoichiometry of NADH and perchlorate in the bioassay...these reduce PMS2 directly, and would interfere with the stoichiometry of NADH and perchlorate in the bioassay. Thus the only approach that could be

  7. Improving the prediction of methane production and representation of rumen fermentation for finishing beef cattle within a mechanistic model

    NARCIS (Netherlands)

    Ellis, J.L.; Dijkstra, J.; Bannink, A.; Kebreab, E.; Archibeque, S.; Benchaar, C.; Beauchemin, K.; Nkrumah, D.J.; France, J.

    2014-01-01

    The purpose of this study was to evaluate prediction of methane emissions from finishing beef cattle using an extant mechanistic model with pH-independent or pH-dependent VFA stoichiometries, a recent stoichiometry adjustment for the use of monensin, and adaptation of the underlying model structure,

  8. Reaction of iodine oxidation by potassium permanganate in tributyl phosphate

    International Nuclear Information System (INIS)

    Khokhlov, M.L.; Legin, E.K.

    1990-01-01

    Stoichiometry was determined and kinetics of iodine oxidation by potassium permanganate in tributylphosphate was studied. Kinetic scheme, which agrees with stoichiometry and experimental kinetic equation of the reaction, is suggested. A mixture is the reaction product. It is ascertained that when the mixture is heated, thermal decomposition of iodate to iodide occurs without elementary iodine separation, which is catalyzed by polymanganate

  9. Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams

    Science.gov (United States)

    Ryan McManamay; Jackson Webster; H. Valett; C. Dolloff

    2011-01-01

    Consumer nutrient cycling supplies limiting elements to autotrophic and heterotrophic organisms in aquatic systems. However, the role of consumers in supplying nutrients may change depending on their diet and their own stoichiometry. We evaluated the stoichiometry, N and P excretion, and diets of the dominant macroinvertebrates and fish at 6 stream sites to determine...

  10. Propane Oxidation at High Pressure and Intermediate Temperatures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    Propane oxidation at intermediate temperatures (500—900 K) and high pressure (100 bar) has been characterized by conducting experiments in a laminar flow reactor over a wide range of stoichiometries. The onset of fuel oxidation was found to be 600—725 K, depending on mixture stoichiometry...

  11. Numerical investigation of the effect of operating parameters on a planar solid oxide fuel cell

    International Nuclear Information System (INIS)

    Raj, Abhishek; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Effects of operating parameters on a planar type of SOFC are investigated. • The studies carried out by developing a three dimensional mathematical model. • The cell performance is enhanced at high temperatures and cathode stoichiometry. • Cathode stoichiometry has a high influence on the cell performance. • The effect of anode stoichiometry on the cell performance is low. - Abstract: The three operating parameters – temperature, stoichiometry and the degree of humidification – constitute key factors required to ensure high performance of the solid oxide fuel cell (SOFC). A careful trade-off between performance and parasitic loads is required in order to optimize the output. The present study numerically analyzes the influence of the key operating parameters on the performance of planar type of SOFC and parasitic loads utilizing a validated three dimensional mathematical model which takes into account of the conservation of mass, momentum, species and charge. The numerical results indicate that the cell performance is enhanced at high temperatures and cathode stoichiometry and it declines with increasing cathode relative humidity. Furthermore, cathode stoichiometry is found to have higher influence on the cell performance as compared to the anode stoichiometry. The gain in cell performance however, has to be balanced with the changing parasitic load requirement from pumping, humidification and heating. The results presented herein can assist in the selection of optimum or near-to-optimum operating parameters for high performance planar type SOFC

  12. A Phenomena-Oriented Environment for Teaching Process Modeling: Novel Modeling Software and Its Use in Problem Solving.

    Science.gov (United States)

    Foss, Alan S.; Geurts, Kevin R.; Goodeve, Peter J.; Dahm, Kevin D.; Stephanopoulos, George; Bieszczad, Jerry; Koulouris, Alexandros

    1999-01-01

    Discusses a program that offers students a phenomenon-oriented environment expressed in the fundamental concepts and language of chemical engineering such as mass and energy balancing, phase equilibria, reaction stoichiometry and rate, modes of heat, and species transport. (CCM)

  13. Redox mechanisms and superconductivity in layered copper oxides

    International Nuclear Information System (INIS)

    Raveau, B.; Michel, C.; Hervieu, M.; Provost, J.

    1992-01-01

    Redox reactions in high T c superconductors cuprates are complex and play an important role in superconductivity: oxygen non-stoichiometry is influencing the critical temperature, and rock salt layers interact with copper layers. 25 refs., 7 figs

  14. A Chemistry Lesson at Three Mile Island.

    Science.gov (United States)

    Mammano, Nicholas J.

    1980-01-01

    Details the procedures used in utilizing the hydrogen bubble incident at Three Mile Island to relate these basic chemical principles to nuclear chemistry: gas laws, Le Chatelier's principle and equilibrium, and stoichiometry. (CS)

  15. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth

    DEFF Research Database (Denmark)

    Degreif, Daniel; de Rond, Tristan; Bertl, Adam

    2017-01-01

    Cells modulate lipid metabolism in order to maintain membrane homeostasis. Here we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggere...

  16. Probing the Composition, Assembly and Activity of Protein Molecular Machines using Native Mass Spectrometry

    NARCIS (Netherlands)

    van de Waterbeemd, M.J.

    2017-01-01

    Native mass spectrometry and mass spectrometry in general, are powerful analytical tools for studying proteins and protein complexes. Native mass spectrometry may provide accurate mass measurements of large macromolecular assemblies enabling the investigation of their composition and stoichiometry.

  17. Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism

    Czech Academy of Sciences Publication Activity Database

    Memmola, F.; Mukherjee, B.; Moroney, James V.; Giordano, Mario

    2014-01-01

    Roč. 121, 2-3 (2014), s. 201-211 ISSN 0166-8595 Institutional support: RVO:61388971 Keywords : Chlamydomonas mutants * carbon * carbon dioxide * elemental stoichiometry Subject RIV: EE - Microbiology, Virology Impact factor: 3.502, year: 2014

  18. Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees

    Czech Academy of Sciences Publication Activity Database

    Rivas-Ubach, A.; Gargallo-Garriga, A.; Sardans, J.; Oravec, Michal; Mateu-Castell, L.; Pérez-Trujillo, M.; Parella, T.; Ogaya, R.; Urban, Otmar; Penuelas, J.

    2014-01-01

    Roč. 202, č. 3 (2014), s. 874-885 ISSN 1469-8137 Institutional support: RVO:67179843 Keywords : drought * ecology * ecometabolomics * folivory * metabolomics * stoichiometry Subject RIV: EF - Botanics Impact factor: 6.545, year: 2013

  19. Static light scattering to characterize membrane proteins in detergent solution

    NARCIS (Netherlands)

    Slotboom, Dirk Jan; Duurkens, Ria H.; Olieman, Kees; Erkens, Guus B.

    2008-01-01

    Determination of the oligomeric state or the subunit stoichiometry of integral membrane proteins in detergent solution is notoriously difficult, because the amount of detergent (and lipid) associated with the proteins is usually not known. Only two classical methods (sedimentation equilibrium

  20. Sublethal effects of temperature on freshwater organisms, with ...

    African Journals Online (AJOL)

    or species may manifest at higher levels of the hierarchy, namely, populations, communities and entire ..... the field, acclimated and then transferred to aerated containers, ...... availability interact to mediate growth and body stoichiometry in a.

  1. Effect of increasing lanthanum substitution and the sintering ...

    Indian Academy of Sciences (India)

    Administrator

    University of Hyderabad, P.O. Central University, Hyderabad 500 046, India. MS received 27 ... sintering can cause problems in the stoichiometry of the final product owing to ..... Rambabu greatfully acknowledges the financial support from the ...

  2. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.; Bakr, Osman; Kamat, Prashant V.

    2016-01-01

    To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice

  3. Molecular dynamics simulation of helium and oxygen diffusion in UO{sub 2+}-{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Govers, K., E-mail: kgovers@sckcen.b [Service de Metrologie Nucleaire (CP 165/84), Universite Libre de Bruxelles, 50 av. F.D. Roosevelt, B-1050 Bruxelles (Belgium); Institute for Nuclear Materials Sciences, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lemehov, S. [Institute for Nuclear Materials Sciences, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Hou, M. [Physique des Solides Irradies et des Nanostructures (CP 234), Universite Libre de Bruxelles, Bd du Triomphe, B-1050 Bruxelles (Belgium); Verwerft, M. [Institute for Nuclear Materials Sciences, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2009-12-15

    Atomic scale simulation techniques based on empirical potentials have been considered in the present work to get insight on helium diffusion in uranium dioxide. By varying the stoichiometry, together with the system temperature, the performed molecular dynamics simulations indicate two diffusion regimes for He. The first one presents a low activation energy (0.5 eV) and suggests oxygen vacancies assisted migration. This regime seems to provide the major contribution to diffusion when structural defects are present (extrinsic defects, imposed, e.g. by the stoichiometry). The second regime presents a higher activation energy, around 2 eV, and dominates in the higher temperature range or at perfect stoichiometry, suggesting an intrinsic migration process. Considering the dependence of He behaviour with oxygen defects, oxygen diffusion has been considered as well in the different stoichiometry domains. Finally, further investigations were made with nudged elastic bands calculations for a better interpretation of the operating migration mechanisms, both for He and O.

  4. and Cu(II)

    African Journals Online (AJOL)

    MBI

    The stoichiometry of the complexes were determined using Job's continuous variation method and ... However, despite the numerous work ... is essential for healthy life of humans and animals ... using Adventurer AR3130 analytical balance,.

  5. Molecular dynamics simulation of helium and oxygen diffusion in UO2±x

    International Nuclear Information System (INIS)

    Govers, K.; Lemehov, S.; Hou, M.; Verwerft, M.

    2009-01-01

    Atomic scale simulation techniques based on empirical potentials have been considered in the present work to get insight on helium diffusion in uranium dioxide. By varying the stoichiometry, together with the system temperature, the performed molecular dynamics simulations indicate two diffusion regimes for He. The first one presents a low activation energy (0.5 eV) and suggests oxygen vacancies assisted migration. This regime seems to provide the major contribution to diffusion when structural defects are present (extrinsic defects, imposed, e.g. by the stoichiometry). The second regime presents a higher activation energy, around 2 eV, and dominates in the higher temperature range or at perfect stoichiometry, suggesting an intrinsic migration process. Considering the dependence of He behaviour with oxygen defects, oxygen diffusion has been considered as well in the different stoichiometry domains. Finally, further investigations were made with nudged elastic bands calculations for a better interpretation of the operating migration mechanisms, both for He and O.

  6. Thermodynamic Study of Inclusion Interactions between Gemini ...

    African Journals Online (AJOL)

    NICO

    2014-11-25

    Nov 25, 2014 ... Xiaomei Qiu*. College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China. E-mail: ... Introduction. Cyclodextrins (CD) are ... mine the thermodynamic parameters (stoichiometry, association constant ...

  7. Parasite and nutrient enrichment effects on Daphnia interspecific competition

    NARCIS (Netherlands)

    Decaestecker, Ellen; Verreydt, Dino; De Meester, Luc; Declerck, Steven A.J.

    2015-01-01

    Increased productivity due to nutrient enrichment is hypothesized to affect density-dependent processes, such as transmission success of horizontally transmitting parasites. Changes in nutrient availability can also modify the stoichiometry and condition of individual hosts, which may affect their

  8. Transients of Water Distribution and Transport in PEFCs

    KAUST Repository

    Hussaini, Irfan; Wang, Chao-Yang

    2008-01-01

    occurring at sub-second time scales. Use of humidified reactants as a means to control magnitude of voltage undershoot has been demonstrated. Constant stoichiometry operation under certain current-step conditions is found to result in reactant starvation

  9. It is elemental

    DEFF Research Database (Denmark)

    Delgado-Baquerizo, Manuel; Reich, Peter B.; Khachane, Amit N.

    2017-01-01

    interactions) and microbial biomass (soil microbe-microbe interactions). In aggregate, these findings provide evidence that nutrient stoichiometry is a strong predictor of bacterial diversity and composition at a regional scale. This article is protected by copyright. All rights reserved....

  10. Model development and optimization of operating conditions to maximize PEMFC performance by response surface methodology

    International Nuclear Information System (INIS)

    Kanani, Homayoon; Shams, Mehrzad; Hasheminasab, Mohammadreza; Bozorgnezhad, Ali

    2015-01-01

    Highlights: • The optimization of the operating parameters in a serpentine PEMFC is done using RSM. • The RSM model can predict the cell power over the wide range of operating conditions. • St-An, St-Ca and RH-Ca have an optimum value to obtain the best performance. • The interactions of the operating conditions affect the output power significantly. • The cathode and anode stoichiometry are the most effective parameters on the power. - Abstract: Optimization of operating conditions to obtain maximum power in PEMFCs could have a significant role to reduce the costs of this emerging technology. In the present experimental study, a single serpentine PEMFC is used to investigate the effects of operating conditions on the electrical power production of the cell. Four significant parameters including cathode stoichiometry, anode stoichiometry, gases inlet temperature, and cathode relative humidity are studied using Design of Experiment (DOE) to obtain an optimal power. Central composite second order Response Surface Methodology (RSM) is used to model the relationship between goal function (power) and considered input parameters (operating conditions). Using this statistical–mathematical method leads to obtain a second-order equation for the cell power. This model considers interactions and quadratic effects of different operating conditions and predicts the maximum or minimum power production over the entire working range of the parameters. In this range, high stoichiometry of cathode and low stoichiometry of anode results in the minimum cell power and contrary the medium range of fuel and oxidant stoichiometry leads to the maximum power. Results show that there is an optimum value for the anode stoichiometry, cathode stoichiometry and relative humidity to reach the best performance. The predictions of the model are evaluated by experimental tests and they are in a good agreement for different ranges of the parameters

  11. Rich Ground State Chemical Ordering in Nanoparticles: Exact Solution of a Model for Ag-Au Clusters

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2018-01-01

    We show that nanoparticles can have very rich ground state chemical order. This is illustrated by determining the chemical ordering of Ag-Au 309-atom Mackay icosahedral nanoparticles. The energy of the nanoparticles is described using a cluster expansion model, and a Mixed Integer Programming (MIP......) approach is used to find the exact ground state configurations for all stoichiometries. The chemical ordering varies widely between the different stoichiometries, and display a rich zoo of structures with non-trivial ordering....

  12. A polyethylene glycol radioimmunoprecipitation assay for human immunoglobulin G

    International Nuclear Information System (INIS)

    Waller, S.J.; Taylor, R.P.; Andrews, B.S.

    1979-01-01

    A polyethylene glycol (PEG) radioimmunoprecipitation assay for human IgG is described that is sufficiently sensitive to detect 0.5 ng of IgG. This model antibody-antigen system was also used to study the stoichiometries of PEG-precipitation complexes. The results suggest that the presence of PEG may affect the stoichiometry of the complexes which precipitate from solution. (Auth.)

  13. Pulsed laser deposition of Cu-Sn-S for thin film solar cells

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt; Crovetto, Andrea; Bosco, Edoardo

    Thin films of copper tin sulfide were deposited from a target of the stoichiometry Cu:Sn:S ~1:2:3 using pulsed laser deposition (PLD). Annealing with S powder resulted in films close to the desired Cu2SnS3 stoichiometry although the films remained Sn rich. Xray diffraction showed that the final...... films contained both cubic-phase Cu2SnS3 and orthorhombic-phase SnS...

  14. Contribution to the study of Li{sub x}(Co,M)O{sub 2} phases used as cathodes in Li-ion batteries. Combined effects of the lithium sur-stoichiometry and of the substitution (M = Ni, Mg); Contribution a l'etude des phases Li{sub x}(Co,M)O{sub 2} en tant que materiaux d'electrode positive des batteries Li-ion. Effets combines de la surstoechiometrie en lithium et de la substitution (M = Ni, Mg)

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, St.

    2001-12-01

    Li{sub x0}(Co,M)O{sub 2} (M = Ni, Mg; x0 {<=} 1.0) materials used as positive electrode for Li-ion batteries have been prepared at high temperature (900 degrees C) and characterized by X-ray diffraction, galvano-static measurements, {sup 7}Li MAS NMR spectroscopy and electrical properties measurements. If the results on the LiCoO{sub 2} phase agree with the literature, the adding of an excess of lithium during synthesis leads to the presence in the actual materials to the presence of oxygen vacancies and intermediate spin Co{sup 3+} ions (Co{sup 3+(IS)}) in a square-based environment. This defect suppresses all the phase transitions usually observed upon lithium de-intercalation in Li{sub x}CoO{sub 2}. The partial substitution by Ni ions allows us to separate the relative contribution of Ni(III) and Co{sup 3+(IS)} ions in the suppression of the various phase transitions upon cycling. Mg doping, even without any lithium excess, systematically induces some oxygen vacancies and Co{sup 3+(IS)} ions in the material. This observation had been correlated to the behaviour of the Li{sub x}(Co,Mg)O{sub 2} system upon cycling. (author)

  15. Reactions of the dirhenium(II) complexes Re2X4(dppm)2 (X = Cl, Br; dppm = Ph2PCH2PPh2) with isocyanides. 5. Mixed carbonyl-isocyanide and carbonyl-isocyanide-nitrile complexes of stoichiometry (Re2Cl3(dppm)2(CO)(CNR)(L))PF6 (R = t-Bu, xyl (Xylyl); L = t-BuNC, xylNC, MeCN, EtCN). Structural characterization of the cation (Cl2(CO)Re(μ-dppm)2ReCl (CN-t-Bu)2)+

    International Nuclear Information System (INIS)

    Fanwick, P.E.; Price, A.C.; Walton, R.A.

    1988-01-01

    Several dirhenium (II) species that contain mixed sets of carbonyl, isocyanide, and/or nitrile ligands have been prepared from the reactions between Re 2 Cl 4 (dppm) 2 (CO)(CNR) (dppm = Ph 2 PCHPPh 2 ; R = t-Bu, xyl (xylyl)), and the appropriate ligands in the presence of TlPF 6 . The crystal structures of these compounds are reported. The terminally-bound ligand noted in the complexes (Re 2 Cl 3 (dppm) 2 (CO)(CN-t-Bu) 2 )PF 6 and (Re 2 CL 3 (dppm) 2 (CO)(CN-t-Bu)(CNxyl))PF 6 indicates structures that have not been previously reported. Complexes in which there are mixed sets of carbonyl, isocyanide, and nitrile ligands, viz. (Re 2 Cl 3 (dppm) 2 (CO)(CNR)(CNR'))PF 6 are also reported. 20 refs., 1 fig., 5 tabs

  16. Secondary defects in non-metallic solids

    International Nuclear Information System (INIS)

    Ashbee, K.H.G.; Hobbs, L.W.

    1977-01-01

    This paper points out features of secondary defect formation which are peculiar to non-metallic solids (excluding elemental semiconductors). Most of the materials of interest are compounds of two or more (usually more or less ionic) atomic species, and immediate consequence of which is a need to maintain both stoichiometry (or accommodate non-stoichiometry) and order. Primary defects in these solids, whether produced thermally, chemically or by irradiation, seldom are present or aggregate in exactly stoichiometric proportions, and the resulting extending defect structures can be quite distinct from those found in metallic solids. Where stoichiometry is maintained, it is often convenient to describe extended defects in terms of alterations in the arrangement of 'molecular' units. The adoption of this procedure enables several novel features of extended defect structures in non-metals to be explained. There are several ways in which a range of non-stoichiometry can be accommodated, which include structural elimination of point defects, nucleation of new coherent phases of altered stoichiometry, and decomposition. (author)

  17. Global dynamics in a stoichiometric food chain model with two limiting nutrients.

    Science.gov (United States)

    Chen, Ming; Fan, Meng; Kuang, Yang

    2017-07-01

    Ecological stoichiometry studies the balance of energy and multiple chemical elements in ecological interactions to establish how the nutrient content affect food-web dynamics and nutrient cycling in ecosystems. In this study, we formulate a food chain with two limiting nutrients in the form of a stoichiometric population model. A comprehensive global analysis of the rich dynamics of the targeted model is explored both analytically and numerically. Chaotic dynamic is observed in this simple stoichiometric food chain model and is compared with traditional model without stoichiometry. The detailed comparison reveals that stoichiometry can reduce the parameter space for chaotic dynamics. Our findings also show that decreasing producer production efficiency may have only a small effect on the consumer growth but a more profound impact on the top predator growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Y-Ba-Cu-O superconducting thin films by simultaneous or sequential evaporation

    International Nuclear Information System (INIS)

    Mogro-Campero, A.; Hunt, B.D.; Turner, L.G.; Burrell, M.C.; Balz, W.E.

    1988-01-01

    Superconducting thin films of Y-Ba-Cu-O near the 1:2:3 stoichiometry were produced by simultaneous (coevaporation) and sequential (multilayer) evaporation in the same evaporator. The best film obtained on yttria-stabilized zirconia (YSZ) had a superconducting onset temperature of 104 K, a midpoint T/sub c/ of 92 K, and zero resistance at T≤74 K. Stoichiometry was deduced by inductively coupled plasma emission spectroscopy, and elemental depth profiles were obtained by x-ray photoelectron spectroscopy. Film stoichiometry changes only near the film/substrate boundary for films on YSZ. Films on Si/SiO 2 were not superconducting; depth profiling shows severe changes of film composition with depth. A major theme of this work is process reproducibility, which was found to be poor for coevaporation but improved considerably for sequential evaporation

  19. Manufacturing and characterization of ceramic pigment Zn{sub 1-x}Fe{sub x}Cr{sub 2}O{sub 4} by synthetic non conventional methods; Fabricacion y caracterizacion del pigmento ceramico Zn{sub 1-x}Fe{sub x}Cr{sub 2}O{sub 4} por metodos de sintesis no convencionales

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, Leidy Johana Jaramillo; Baena, Oscar Jaime Restrepo, E-mail: ojrestre@unal.edu.co [Universidad Nacional de Colombia, Medellin (Colombia). Facultad de Minas

    2012-07-01

    The ceramic pigment with structure Zn{sub 1-x}Fe{sub x}Cr{sub 2}O{sub 4} (x = 0, 0.5, 1) was synthesized by non conventional methods of coprecipitation assisted by ultrasound and milling of high energy. This pigment was characterized by XRD, XRF, SEM, UV-VIS spectrophotometry and CIELab colorimetry. The aim of this work was studied two alternative methods to the traditional method of synthesis, evaluating the pigment properties, varying the stoichiometry, such as structure, composition, morphology and colorimetric coordinates. The results showed that is possible to obtain the desired crystalline structure at temperatures below 1000 ° C in both cases, also expected hues are obtained according to each stoichiometry, which shows the advantages of using methods non conventional when produce these pigments, since it has a higher controlling the composition, stoichiometry and is obtained at temperatures below compared with traditional ceramic method.

  20. Application of nondestructive ion beam analysis to measure variations in the elemental composition of armor materials

    Energy Technology Data Exchange (ETDEWEB)

    Pallone, Arthur. E-mail: art.pallone@murraystate.edu; Demaree, John; Adams, Jane. E-mail: jadams@arl.army.mil

    2004-06-01

    Lightweight, state-of-the-art armors rely on ceramics for their enhanced performance. One goal of the United States Army is to expand the industrial base of companies that provide the armors. A systematic study of armor performance as a function of ceramic stoichiometry will result in a better understanding of the fundamental relations between composition and mechanical performance. One ceramic of interest is aluminum oxynitride (AlON). The stoichiometries of representative samples of AlON were investigated with the nondestructive techniques of Rutherford backscattering spectrometry and resonant nuclear reaction analysis. Future tests of the performance of the AlON samples are to be correlated with the stoichiometries, and hence will lead to optimum, standardized processes for the manufacture of the AlON.

  1. Nonstoichiometric defects in GaAs and the EL2 bandwagon

    Science.gov (United States)

    Lagowski, J.; Gatos, H. C.

    1985-09-01

    In the present paper, an attempt is made to formulate a common framework for a discussion of nonstoichiometric defects, especially EL2 and dislocations. An outline is provided of the most important settled and unsettled issues, taking into account not only fundamental interests, but also urgent needs in advancing IC technology. Attention is given to stoichiometry-controlled compensation, the expected role of melt stoichiometry in electrical conductivity for the basic atomic disorders, defect equilibria-dislocations and EL2, and current issues pertaining to the identification of EL2. It is concluded that nonstoichiometric defects play a critical role in the electronic properties of GaAs and its electronic applications. Very significant progress has been recently made in learning how to adjust melt stoichiometry in order to maximize its beneficial effects and minimize its detrimental ones.

  2. Experimental characterization and modeling of commercial polybenzimidazole-based MEA performance

    DEFF Research Database (Denmark)

    Korsgaard, Anders; Refshauge, R. H.; Nielsen, Mads Pagh

    2006-01-01

    are currently published to enable good system design and modeling. In this paper the influence of operation on synthesis gas and the variation of the cathode stoichiometry are investigated based on a generic commercial membrane electrode assembly (MEA). The CO content in the anode gas was varied from 0 to 5......%, with CO2 contents ranging from 25 to 20% at temperatures ranging from 160 to 200 °C. The influence of the cathode stoichiometry was investigated in the interval of 2-5 at temperatures from 120 to 180 °C with pure hydrogen on the anode. A novel semi empirical model of the fuel cell voltage versus current...... density, cathode stoichiometry and temperature was derived. It shows excellent agreement with the experimental data. The simplicity and accuracy of the model makes it ideal for system modeling, control design and real-time applications....

  3. Manufacturing and characterization of ceramic pigment Zn1-xFexCr2O4 by synthetic non conventional methods

    International Nuclear Information System (INIS)

    Nieves, Leidy Johana Jaramillo; Baena, Oscar Jaime Restrepo

    2012-01-01

    The ceramic pigment with structure Zn 1-x Fe x Cr 2 O 4 (x = 0, 0.5, 1) was synthesized by non conventional methods of coprecipitation assisted by ultrasound and milling of high energy. This pigment was characterized by XRD, XRF, SEM, UV-VIS spectrophotometry and CIELab colorimetry. The aim of this work was studied two alternative methods to the traditional method of synthesis, evaluating the pigment properties, varying the stoichiometry, such as structure, composition, morphology and colorimetric coordinates. The results showed that is possible to obtain the desired crystalline structure at temperatures below 1000 ° C in both cases, also expected hues are obtained according to each stoichiometry, which shows the advantages of using methods non conventional when produce these pigments, since it has a higher controlling the composition, stoichiometry and is obtained at temperatures below compared with traditional ceramic method

  4. Single crystal growth and structure refinements of CsMxTe2-xO6 (M = Al, Ga, Ge, In) pyrochlores

    International Nuclear Information System (INIS)

    Siritanon, Theeranun; Sleight, A.W.; Subramanian, M.A.

    2011-01-01

    Graphical abstract: Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown and structure refinements indicate deviations from ideal stoichiometry presumably related to mixed valency of tellurium. Highlights: → Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown. → Structure refinements from single crystal X-ray diffraction data confirm e structure. → Deviations from ideal stoichiometry suggest mixed valency of tellurium and hence conductivity. -- Abstract: Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown from a TeO 2 flux. Structure refinements from single crystal X-ray diffraction data are reported. These results are used to discuss deviations from ideal stoichiometry that result in electronic conductivity presumably related to mixed valency of tellurium.

  5. Quasi-two-dimensional metallic hydrogen in diphosphide at a high pressure

    International Nuclear Information System (INIS)

    Degtyarenko, N. N.; Mazur, E. A.

    2016-01-01

    The structural, electronic, phonon, and other characteristics of the normal phases of phosphorus hydrides with stoichiometry PH k are analyzed. The properties of the initial substance, namely, diphosphine are calculated. In contrast to phosphorus hydrides with stoichiometry PH 3 , a quasi-two-dimensional phosphorus-stabilized lattice of metallic hydrogen can be formed in this substance during hydrostatic compression at a high pressure. The formed structure with H–P–H elements is shown to be locally stable in phonon spectrum, i.e., to be metastable. The properties of diphosphine are compared with the properties of similar structures of sulfur hydrides.

  6. Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1

    DEFF Research Database (Denmark)

    Kjaer, B; Frigaard, N-U; Yang, F

    1998-01-01

    Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules of menaqui......Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules...

  7. Development of a metrology method for composition and thickness of barium strontium titanate thin films

    International Nuclear Information System (INIS)

    Remmel, Thomas; Werho, Dennis; Liu, Ran; Chu, Peir

    1998-01-01

    Thin films of barium strontium titanate (BST) are being investigated as the charge storage dielectric in advanced memory devices, due to their promise for high dielectric constant. Since the capacitance of BST films is a function of both stoichiometry and thickness, implementation into manufacturing requires precise metrology methods to monitor both of these properties. This is no small challenge, considering the BST film thicknesses are 60 nm or less. A metrology method was developed based on X-ray Fluorescence and applied to the measurement of stoichiometry and thickness of BST thin films in a variety of applications

  8. Molecular calculations of interplanar electronic interactions in a YBaCu2O6+δ cluster as a function of the oxygen concentration

    International Nuclear Information System (INIS)

    Cogordan, J.A.; Sansores, L.E.; Valladares, A.A.

    1991-01-01

    In this paper molecular ab initio SCF calculations on a cluster formed by Y, Cu(2)-(2)-O(3) plane, Ba-O(1) plane and Cu(1)-O(4) chains are reported. The computations were performed for five different sets of lattice parameters of YBACu 2 O 6+δ . Each of these sets correspond to a values of the oxygen stoichiometry. Mulliken population analysis results show a charge transfer to the Cu(2)-O(2)-O(3) plane when the oxygen stoichiometry is increased from six to seven

  9. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Tsukada, A; Haas, O; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  10. Complex coacervates of hyaluronic acid and lysozyme

    DEFF Research Database (Denmark)

    Water, Jorrit J.; Schack, Malthe M.; Velazquez-Campoy, Adrian

    2014-01-01

    stoichiometry was determined using solution depletion and isothermal titration calorimetry. The binding stoichiometry of lysozyme to hyaluronic acid (870 kDa) determined by solution depletion was found to be 225.9 ± 6.6 mol, or 0.1 bound lysozyme molecules per hyaluronic acid monomer. This corresponded well...... with that obtained by isothermal titration calorimetry of 0.09 bound lysozyme molecules per hyaluronic acid monomer. The complexation did not alter the secondary structure of lysozyme measured by Fourier-transform infrared spectroscopy overlap analysis and had no significant impact on the Tm of lysozyme determined...

  11. Quasi-two-dimensional metallic hydrogen in diphosphide at a high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Degtyarenko, N. N.; Mazur, E. A., E-mail: eugen-mazur@mail.ru [National Research Nuclear University MEPhI (Russian Federation)

    2016-08-15

    The structural, electronic, phonon, and other characteristics of the normal phases of phosphorus hydrides with stoichiometry PH{sub k} are analyzed. The properties of the initial substance, namely, diphosphine are calculated. In contrast to phosphorus hydrides with stoichiometry PH{sub 3}, a quasi-two-dimensional phosphorus-stabilized lattice of metallic hydrogen can be formed in this substance during hydrostatic compression at a high pressure. The formed structure with H–P–H elements is shown to be locally stable in phonon spectrum, i.e., to be metastable. The properties of diphosphine are compared with the properties of similar structures of sulfur hydrides.

  12. High performance yttrium-doped BSCF hollow fibre membranes

    DEFF Research Database (Denmark)

    Haworth, P.; Smart, S.; Glasscock, Julie

    2012-01-01

    measurements in air was similar for both compositions, suggesting that the higher oxygen fluxes obtained for BSCFY hollow fibres could be attributed to the higher non-stoichiometry due to yttrium addition to the BSCF crystal structure. In addition, the improvement of oxygen fluxes for small wall thickness (∼0...

  13. Superconducting materials arrangement and realization process

    International Nuclear Information System (INIS)

    Pribat, D.; Dieumegard, D.; Garry, G.; Mercandalli, L.

    1989-01-01

    Thin and stable layers of the superconducting oxychloride YBa Cu OF with an accurate content of oxygen and fluorine can be obtained by the invention. The superconducting material is deposited on a substrate and encapsulated in an ionic conductor for adjustment of stoichiometry. Composition of the superconductor can be adjusted by electrolysis [fr

  14. Electrochemical treatment of an oxide material, application to superconductors, and obtained superconductors. Procede de traitement electrochimique d'un materiau sous forme oxyde, application aux supraconducteurs et supraconducteurs ainsi obtenus

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, J C; Pouchard, M; Wattiaux, A

    1991-06-07

    The present invention describes the electrochemical treatment of a superconductor oxide so as to modify its stoichiometry. These materials comprise in their anionic lattice oxygenated and hydrogenated species. These treated materials are prepared by an electrochemical process in which the oxide is an electrode in a liquid electrolysis. 3 refs., 3 figs.

  15. Superconducting materials fabrication process and products obtained. Procede de fabrication de materiaux supraconducteurs et produits ainsi obtenus

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, B; Odier, P

    1989-09-15

    A fabrication process of a fine superconducting powder easy to sinter is claimed. It consists in thermal treatment of an aerosol containing an organic and/or inorganic salt and/or a hydroxide of a rare earth, an alkaline earth metal and a transition metal in a ratio corresponding to the stoichiometry of the superconducting materials.

  16. Electrochemical treatment of an oxide material, application to superconductors, and obtained superconductors

    International Nuclear Information System (INIS)

    Grenier, J.C.; Pouchard, M.; Wattiaux, A.

    1991-01-01

    The present invention describes the electrochemical treatment of a superconductor oxide so as to modify its stoichiometry. These materials comprise in their anionic lattice oxygenated and hydrogenated species. These treated materials are prepared by an electrochemical process in which the oxide is an electrode in a liquid electrolysis. 3 refs., 3 figs

  17. Oxyhalogen-Sulfur Chemistry: Kinetics and Mechanism of Oxidation ...

    African Journals Online (AJOL)

    The oxidation of N-acetylthiourea (ACTU) by acidic bromate has been studied by observing formation of bromine in excess bromate conditions. The reaction displays an induction period before formation of bromine. The stoichiometry of the reaction was determined to be 4:3: 4BrO3 ...

  18. catalysed oxidation of atenolol by alkaline permanganate

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0⋅30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry.

  19. Defect equilibrium in PrBaCo2O5+δ at elevated temperatures

    International Nuclear Information System (INIS)

    Suntsov, A.Yu.; Leonidov, I.A.; Patrakeev, M.V.; Kozhevnikov, V.L.

    2013-01-01

    A defect equilibrium model for PrBaCo 2 O 5+δ is suggested based on oxygen non-stoichiometry data. The model includes reactions of oxygen exchange and charge disproportionation of Co 3+ cations. The respective equilibrium constants, enthalpies and entropies for the reactions entering the model are obtained from the fitting of the experimental data for oxygen non-stoichiometry. The enthalpies of oxidation Co 2+ →Co 3+ and Co 3+ →Co 4+ are found to be equal to 115±9 kJ mol –1 and 45±4 kJ mol –1 , respectively. The obtained equilibrium constants were used in order to calculate variations in concentration of cobalt species with non-stoichiometry, temperature and oxygen pressure. - Graphical abstract: Variations in concentration of cobalt species with oxygen content in PrBaCo n 2+ Co z 3+ Co p 4+ O 5+δ at 650 °S. Display Omitted - Highlights: • The defect equilibrium model based on oxygen non-stoichiometry data is suggested. • Disproportionation of Co 3+ cations gives significant contribution to defect equilibrium. • The hole concentration obtained from the model is in accord with electrical properties

  20. Multi-metal oxide ceramic nanomaterial

    Science.gov (United States)

    O'Brien, Stephen; Liu, Shuangyi; Huang, Limin

    2016-06-07

    A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.