WorldWideScience

Sample records for stochastic wind power

  1. Stochastic Optimization of Wind Turbine Power Factor Using Stochastic Model of Wind Power

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic optimization algorithm that aims to minimize the expectation of the system power losses by controlling wind turbine (WT) power factors. This objective of the optimization is subject to the probability constraints of bus voltage and line current requirements....... The optimization algorithm utilizes the stochastic models of wind power generation (WPG) and load demand to take into account their stochastic variation. The stochastic model of WPG is developed on the basis of a limited autoregressive integrated moving average (LARIMA) model by introducing a crosscorrelation...... structure to the LARIMA model. The proposed stochastic optimization is carried out on a 69-bus distribution system. Simulation results confirm that, under various combinations of WPG and load demand, the system power losses are considerably reduced with the optimal setting of WT power factor as compared...

  2. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya

    2017-10-03

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  3. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya; Kalligiannaki, Evangelia; Tempone, Raul

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  4. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized

  5. Modeling real-time balancing power demands in wind power systems using stochastic differential equations

    International Nuclear Information System (INIS)

    Olsson, Magnus; Perninge, Magnus; Soeder, Lennart

    2010-01-01

    The inclusion of wind power into power systems has a significant impact on the demand for real-time balancing power due to the stochastic nature of wind power production. The overall aim of this paper is to present probabilistic models of the impact of large-scale integration of wind power on the continuous demand in MW for real-time balancing power. This is important not only for system operators, but also for producers and consumers since they in most systems through various market solutions provide balancing power. Since there can occur situations where the wind power variations cancel out other types of deviations in the system, models on an hourly basis are not sufficient. Therefore the developed model is in continuous time and is based on stochastic differential equations (SDE). The model can be used within an analytical framework or in Monte Carlo simulations. (author)

  6. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  7. ARIMA-Based Time Series Model of Stochastic Wind Power Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Pedersen, Troels; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from...... the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation...... and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power...

  8. Life cycle cost analysis of wind power considering stochastic uncertainties

    International Nuclear Information System (INIS)

    Li, Chiao-Ting; Peng, Huei; Sun, Jing

    2014-01-01

    This paper presents a long-term cost analysis of wind power and compares its competitiveness to non-renewable generating technologies. The analysis considers several important attributes related to wind intermittency that are sometimes ignored in traditional generation planning or LCOE (levelized cost of energy) studies, including the need for more nameplate capacity due to intermittency, hourly fluctuations in wind outputs and cost for reserves. The competitiveness of wind power is assessed by evaluating four scenarios: 1) adding natural gas generating capacity to the power grid; 2) adding coal generating capacity to the power grid; 3) adding wind capacity to the power grid; and, 4) adding wind capacity and energy storage to the power grid where an energy storage device is used to cover wind intermittency. A case study in the state of Michigan is presented to demonstrate the use of the proposed methodology, in which a time horizon from 2010 to 2040 is considered. The results show that wind energy will still be more expensive than natural gas power plants in the next three decades, but will be cheaper than coal capacities if wind intermittency is mitigated. Furthermore, if the costs of carbon emissions and environmental externalities are considered, wind generation will be a competitive option for grid capacity expansion. - Highlights: • The competitiveness of wind power is analyzed via life cycle cost analysis. • Wind intermittency and reserve costs are explicitly considered in the analysis. • Results show that wind is still more expensive than natural gas power plants. • Wind can be cheaper than coal capacities if wind intermittency is mitigated. • Wind will be competitive if costs of carbon emissions are considered

  9. Stochastic reactive power market with volatility of wind power considering voltage security

    International Nuclear Information System (INIS)

    Kargarian, A.; Raoofat, M.

    2011-01-01

    While wind power generation is growing rapidly around the globe; its stochastic nature affects the system operation in many different aspects. In this paper, the impact of wind power volatility on the reactive power market is taken into account. The paper presents a novel stochastic method for optimal reactive power market clearing considering voltage security and volatile nature of the wind. The proposed optimization algorithm uses a multiobjective nonlinear programming technique to minimize market payment and simultaneously maximize voltage security margin. Considering a set of probable wind speeds, in the first stage, the proposed algorithm seeks to minimize expected system payment which is summation of reactive power payment and transmission loss cost. The object of the second stage is maximization of expected voltage security margin to increase the system loadability and security. Finally, in the last stage, a multiobjective function is presented to schedule the stochastic reactive power market using results of two previous stages. The proposed algorithm is applied to IEEE 14-bus test system. As a benchmark, Monte Carlo Simulation method is utilized to simulate the actual market of given period of time to evaluate results of the proposed algorithm, and satisfactory results are achieved. -- Highlights: →The paper proposes a new algorithm for stochastic reactive power market clearing. →The stochastic nature of the wind which impacts the system operation and market clearing process, is taken into account. →The paper suggests an expected voltage stability margin and optimizes it in conjunction with expected total market payment. →To clear the market with two mentioned objective functions, a three-stage multiobjective nonlinear programming is implemented. →Also, a simple method is suggested to determine a suitable priority coefficient between two individual objective functions.

  10. Stochastic Optimal Wind Power Bidding Strategy in Short-Term Electricity Market

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2012-01-01

    Due to the fluctuating nature and non-perfect forecast of the wind power, the wind power owners are penalized for the imbalance costs of the regulation, when they trade wind power in the short-term liberalized electricity market. Therefore, in this paper a formulation of an imbalance cost...... minimization problem for trading wind power in the short-term electricity market is described, to help the wind power owners optimize their bidding strategy. Stochastic optimization and a Monte Carlo method are adopted to find the optimal bidding strategy for trading wind power in the short-term electricity...... market in order to deal with the uncertainty of the regulation price, the activated regulation of the power system and the forecasted wind power generation. The Danish short-term electricity market and a wind farm in western Denmark are chosen as study cases due to the high wind power penetration here...

  11. Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation

    International Nuclear Information System (INIS)

    Taghavi, Reza; Seifi, Ali Reza; Samet, Haidar

    2015-01-01

    Environmental concerns besides fuel costs are the predominant reasons for unprecedented escalating integration of wind turbine on power systems. Operation and planning of power systems are affected by this type of energy due to the intermittent nature of wind speed inputs with high uncertainty in the optimization output variables. Consequently, in order to model this high inherent uncertainty, a PRPO (probabilistic reactive power optimization) framework should be devised. Although MC (Monte-Carlo) techniques can solve the PRPO with high precision, PEMs (point estimate methods) can preserve the accuracy to attain reasonable results when diminishing the computational effort. Also, this paper introduces a methodology for optimally dispatching the reactive power in the transmission system, while minimizing the active power losses. The optimization problem is formulated as a LFP (linear fuzzy programing). The core of the problem lay on generation of 2m + 1 point estimates for solving PRPO, where n is the number of input stochastic variables. The proposed methodology is investigated using the IEEE-14 bus test system equipped with HVDC (high voltage direct current), UPFC (unified power flow controller) and DFIG (doubly fed induction generator) devices. The accuracy of the method is demonstrated in the case study. - Highlights: • This paper uses stochastic loads in optimization process. • AC–DC load flow is modified to use some advantages of DC part in optimization process. • UPFC and DFIG are simulated in a way that could be effective in optimization process. • Fuzzy set has been used as an uncertainty analysis tool in the optimization

  12. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-04-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  13. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.

    Science.gov (United States)

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2015-09-01

    Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.

  14. Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Zugno, Marco; Madsen, Henrik

    2016-01-01

    The increasing penetration of wind power has resulted in larger shares of volatile sources of supply in power systems worldwide. In order to operate such systems efficiently, methods for reliable probabilistic forecasts of future wind power production are essential. It is well known...... that the conditional density of wind power production is highly dependent on the level of predicted wind power and prediction horizon. This paper describes a new approach for wind power forecasting based on logistic-type stochastic differential equations (SDEs). The SDE formulation allows us to calculate both state......-dependent conditional uncertainties as well as correlation structures. Model estimation is performed by maximizing the likelihood of a multidimensional random vector while accounting for the correlation structure defined by the SDE formulation. We use non-parametric modelling to explore conditional correlation...

  15. Copula-based modeling of stochastic wind power in Europe and implications for the Swiss power grid

    International Nuclear Information System (INIS)

    Hagspiel, Simeon; Papaemannouil, Antonis; Schmid, Matthias; Andersson, Göran

    2012-01-01

    Highlights: ► We model stochastic wind power using copula theory. ► Stochastic wind power is integrated in a European system adequacy evaluation. ► The Swiss power grid is put at risk by further integrating wind power in Europe. ► System elements located at or close to Swiss borders are affected the most. ► A criticality indicator allows prioritizing expansion plans on a probabilistic basis. -- Abstract: Large scale integration of wind energy poses new challenges to the European power system due to its stochastic nature and often remote location. In this paper a multivariate uncertainty analysis problem is formulated for the integration of stochastic wind energy in the European grid. By applying copula theory a synthetic set of data is generated from scarce wind speed reanalysis data in order to achieve the increased sample size for the subsequent Monte Carlo simulation. In the presented case study, European wind power samples are generated from the modeled stochastic process. Under the precondition of a modeled perfect market environment, wind power impacts dispatch decisions and therefore leads to alterations in power balances. Stochastic power balances are implemented in a detailed model of the European electricity network, based on the generated samples. Finally, a Monte Carlo method is used to determine power flows and contingencies in the system. An indicator is elaborated in order to analyze risk of overloading and to prioritize necessary grid reinforcements. Implications for the Swiss power grid are investigated in detail, revealing that the current system is significantly put at risk in certain areas by the further integration of wind power in Europe. It is the first time that the results of a probabilistic model for wind energy are further deployed within a power system analysis of the interconnected European grid. The method presented in this paper allows to account for stochastic wind energy in a load flow analysis and to evaluate

  16. Stochastic PSO-based heat and power dispatch under environmental constraints incorporating CHP and wind power units

    Energy Technology Data Exchange (ETDEWEB)

    Piperagkas, G.S.; Anastasiadis, A.G.; Hatziargyriou, N.D. [National Technical University of Athens, School of Electrical and Computer Engineering, Electric Power Division, 9, Iroon Polytechneiou Str., GR-15773 Zografou, Athens (Greece)

    2011-01-15

    In this paper an extended stochastic multi-objective model for economic dispatch (ED) is proposed, that incorporates in the optimization process heat and power from CHP units and expected wind power. Stochastic restrictions for the CO{sub 2}, SO{sub 2} and NO{sub x} emissions are used as inequality constraints. The ED problem is solved using a multi-objective particle swarm optimization technique. The available wind power is estimated from a transformation of the wind speed considered as a random variable to wind power. Simulations are performed on the modified IEEE 30 bus network with 2 cogeneration units and actual wind data. Results concerning minimum cost and emissions reduction options are finally drawn. (author)

  17. A stochastic framework for the grid integration of wind power using flexible load approach

    International Nuclear Information System (INIS)

    Heydarian-Forushani, E.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K.; Shafie-khah, M.; Catalão, J.P.S.

    2014-01-01

    Highlights: • This paper focuses on the potential of Demand Response Programs (DRPs) to contribute to flexibility. • A stochastic network constrained unit commitment associated with DR is presented. • DR participation levels and electricity tariffs are evaluated on providing a flexible load profile. • Novel quantitative indices for evaluating flexibility are defined to assess the success of DRPs. • DR types and customer participation levels are the main factors to modify the system load profile. - Abstract: Wind power integration has always been a key research area due to the green future power system target. However, the intermittent nature of wind power may impose some technical and economic challenges to Independent System Operators (ISOs) and increase the need for additional flexibility. Motivated by this need, this paper focuses on the potential of Demand Response Programs (DRPs) as an option to contribute to the flexible operation of power systems. On this basis, in order to consider the uncertain nature of wind power and the reality of electricity market, a Stochastic Network Constrained Unit Commitment associated with DR (SNCUCDR) is presented to schedule both generation units and responsive loads in power systems with high penetration of wind power. Afterwards, the effects of both price-based and incentive-based DRPs are evaluated, as well as DR participation levels and electricity tariffs on providing a flexible load profile and facilitating grid integration of wind power. For this reason, novel quantitative indices for evaluating flexibility are defined to assess the success of DRPs in terms of wind integration. Sensitivity studies indicate that DR types and customer participation levels are the main factors to modify the system load profile to support wind power integration

  18. Stochastic Dynamic AC Optimal Power Flow Based on a Multivariate Short-Term Wind Power Scenario Forecasting Model

    Directory of Open Access Journals (Sweden)

    Wenlei Bai

    2017-12-01

    Full Text Available The deterministic methods generally used to solve DC optimal power flow (OPF do not fully capture the uncertainty information in wind power, and thus their solutions could be suboptimal. However, the stochastic dynamic AC OPF problem can be used to find an optimal solution by fully capturing the uncertainty information of wind power. That uncertainty information of future wind power can be well represented by the short-term future wind power scenarios that are forecasted using the generalized dynamic factor model (GDFM—a novel multivariate statistical wind power forecasting model. Furthermore, the GDFM can accurately represent the spatial and temporal correlations among wind farms through the multivariate stochastic process. Fully capturing the uncertainty information in the spatially and temporally correlated GDFM scenarios can lead to a better AC OPF solution under a high penetration level of wind power. Since the GDFM is a factor analysis based model, the computational time can also be reduced. In order to further reduce the computational time, a modified artificial bee colony (ABC algorithm is used to solve the AC OPF problem based on the GDFM forecasting scenarios. Using the modified ABC algorithm based on the GDFM forecasting scenarios has resulted in better AC OPF’ solutions on an IEEE 118-bus system at every hour for 24 h.

  19. Generation Expansion Planning With Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Yiduo; Zheng, Qipeng P.; Wang, Jianhui; Pinson, Pierre

    2017-07-01

    Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets' planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of wind power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning.

  20. Maximum power tracking in WECS (Wind energy conversion systems) via numerical and stochastic approaches

    International Nuclear Information System (INIS)

    Elnaggar, M.; Abdel Fattah, H.A.; Elshafei, A.L.

    2014-01-01

    This paper presents a complete design of a two-level control system to capture maximum power in wind energy conversion systems. The upper level of the proposed control system adopts a modified line search optimization algorithm to determine a setpoint for the wind turbine speed. The calculated speed setpoint corresponds to the maximum power point at given operating conditions. The speed setpoint is fed to a generalized predictive controller at the lower level of the control system. A different formulation, that treats the aerodynamic torque as a disturbance, is postulated to derive the control law. The objective is to accurately track the setpoint while keeping the control action free from unacceptably fast or frequent variations. Simulation results based on a realistic model of a 1.5 MW wind turbine confirm the superiority of the proposed control scheme to the conventional ones. - Highlights: • The structure of a MPPT (maximum power point tracking) scheme is presented. • The scheme is divided into the optimization algorithm and the tracking controller. • The optimization algorithm is based on an online line search numerical algorithm. • The tracking controller is treating the aerodynamics torque as a loop disturbance. • The control technique is simulated with stochastic wind speed by Simulink and FAST

  1. Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system

    International Nuclear Information System (INIS)

    Jiang, Yibo; Xu, Jian; Sun, Yuanzhang; Wei, Congying; Wang, Jing; Ke, Deping; Li, Xiong; Yang, Jun; Peng, Xiaotao; Tang, Bowen

    2017-01-01

    Highlights: • Improving the utilization of wind power by the demand response of residential hybrid energy system. • An optimal scheduling of home energy management system integrating micro-CHP. • The scattered response capability of consumers is aggregated by demand bidding curve. • A stochastic day-ahead economic dispatch model considering demand response and wind power. - Abstract: As the installed capacity of wind power is growing, the stochastic variability of wind power leads to the mismatch of demand and generated power. Employing the regulating capability of demand to improve the utilization of wind power has become a new research direction. Meanwhile, the micro combined heat and power (micro-CHP) allows residential consumers to choose whether generating electricity by themselves or purchasing from the utility company, which forms a residential hybrid energy system. However, the impact of the demand response with hybrid energy system contained micro-CHP on the large-scale wind power utilization has not been analyzed quantitatively. This paper proposes an operation optimization model of the residential hybrid energy system based on price response, integrating micro-CHP and smart appliances intelligently. Moreover, a novel load aggregation method is adopted to centralize scattered response capability of residential load. At the power grid level, a day-ahead stochastic economic dispatch model considering demand response and wind power is constructed. Furthermore, simulation is conducted respectively on the modified 6-bus system and IEEE 118-bus system. The results show that with the method proposed, the wind power curtailment of the system decreases by 78% in 6-bus system. In the meantime, the energy costs of residential consumers and the operating costs of the power system reduced by 10.7% and 11.7% in 118-bus system, respectively.

  2. Leveraging stochastic differential equations for probabilistic forecasting of wind power using a dynamic power curve

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Morales González, Juan Miguel; Møller, Jan Kloppenborg

    2017-01-01

    Short-term (hours to days) probabilistic forecasts of wind power generation provide useful information about the associated uncertainty of these forecasts. Standard probabilistic forecasts are usually issued on a per-horizon-basis, meaning that they lack information about the development of the u...

  3. Fuzzy Stochastic Unit Commitment Model with Wind Power and Demand Response under Conditional Value-At-Risk Assessment

    Directory of Open Access Journals (Sweden)

    Jiafu Yin

    2018-02-01

    Full Text Available With the increasing penetration of wind power and demand response integrated into the grid, the combined uncertainties from wind power and demand response have been a challenging concern for system operators. It is necessary to develop an approach to accommodate the combined uncertainties in the source side and load side. In this paper, the fuzzy stochastic conditional value-at-risk criterions are proposed as the risk measure of the combination of both wind power uncertainty and demand response uncertainty. To improve the computational tractability without sacrificing the accuracy, the fuzzy stochastic chance-constrained goal programming is proposed to transfer the fuzzy stochastic conditional value-at-risk to a deterministic equivalent. The operational risk of forecast error under fuzzy stochastic conditional value-at-risk assessment is represented by the shortage of reserve resource, which can be further divided into the load-shedding risk and the wind curtailment risk. To identify different priority levels for the different objective functions, the three-stage day-ahead unit commitment model is proposed through preemptive goal programming, in which the reliability requirement has the priority over the economic operation. Finally, a case simulation is performed on the IEEE 39-bus system to verify the effectiveness and efficiency of the proposed model.

  4. A stochastic model for hybrid off-grid wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Fouladgar, Javad [Inst. de Recherche en Electronique et en Electrotechnique de Nantes Atlantique (IREENA), Saint-Nazaire (France)

    2008-07-01

    Long-term wind speed and wind power forecasting of a hybrid installation are studied. A statistical approach based on Weibull distribution is used to predict the auxiliary power required or the exceeding power produced for an isolated site. The presence of a suitable storage system has been taken into account. (orig.)

  5. Stochastic model of wind-fuel cell for a semi-dispatchable power generation

    DEFF Research Database (Denmark)

    Alvarez-Mendoza, Fernanda; Bacher, Peder; Madsen, Henrik

    2017-01-01

    electrolyte membrane fuel cell, which are embedded in one complete system with the wind power. This study uses historic wind speed data from Mexico; the forecasts are obtained using the recursive least square algorithm with a forgetting factor. The proposed approach provides probabilistic information......Hybrid systems are implemented to improve the efficiency of individual generation technologies by complementing each other. Intermittence is a challenge to overcome especially for renewable energy sources for electric generation, as in the case of wind power. This paper proposes a hybrid system...... for short-term wind power generation and electric generation as the outcome of the hybrid system. A method for a semi-dispatchable electric generation based on time series analysis is presented, and the implementation of wind power and polymer electrolyte membrane fuel cell models controlled by a model...

  6. Inexact stochastic risk-aversion optimal day-ahead dispatch model for electricity system management with wind power under uncertainty

    International Nuclear Information System (INIS)

    Ji, Ling; Huang, Guo-He; Huang, Lu-Cheng; Xie, Yu-Lei; Niu, Dong-Xiao

    2016-01-01

    High penetration of wind power generation and deregulated electricity market brings a great challenge to the electricity system operators. It is crucial to make optimal strategy among various generation units and spinning reserve for supporting the system safety operation. By integrating interval two-stage programming and stochastic robust programming, this paper proposes a novel robust model for day-ahead dispatch and risk-aversion management under uncertainties. In the proposed model, the uncertainties are expressed as interval values with different scenario probability. The proposed method requires low computation, and still retains the complete information. A case study is to validate the effectiveness of this approach. Facing the uncertainties of future demand and electricity price, the system operators need to make optimal dispatch strategy for thermal power units and wind turbine, and arrange proper spinning reserve and flexible demand response program to mitigate wind power forecasting error. The optimal strategies provide the system operators with better trade-off between the maximum benefits and the minimum system risk. In additional, two different market rules are compared. The results show that extra financial penalty for the wind power dispatch deviation is another efficient way to enhance the risk consciousness of decision makers and lead to more conservative strategy. - Highlights: • An inexact two-stage stochastic robust programming model for electricity system with wind power penetration. • Uncertainties expressed as discrete intervals and probability distributions. • Demand response program was introduced to adjust the deviation in real-time market. • Financial penalty for imbalance risk from wind power generation was evaluated.

  7. Optimal stochastic reactive power scheduling in a microgrid considering voltage droop scheme of DGs and uncertainty of wind farms

    International Nuclear Information System (INIS)

    Khorramdel, Benyamin; Raoofat, Mahdi

    2012-01-01

    Distributed Generators (DGs) in a microgrid may operate in three different reactive power control strategies, including PV, PQ and voltage droop schemes. This paper proposes a new stochastic programming approach for reactive power scheduling of a microgrid, considering the uncertainty of wind farms. The proposed algorithm firstly finds the expected optimal operating point of each DG in V-Q plane while the wind speed is a probabilistic variable. A multi-objective function with goals of loss minimization, reactive power reserve maximization and voltage security margin maximization is optimized using a four-stage multi-objective nonlinear programming. Then, using Monte Carlo simulation enhanced by scenario reduction technique, the proposed algorithm simulates actual condition and finds optimal operating strategy of DGs. Also, if any DGs are scheduled to operate in voltage droop scheme, the optimum droop is determined. Also, in the second part of the research, to enhance the optimality of the results, PSO algorithm is used for the multi-objective optimization problem. Numerical examples on IEEE 34-bus test system including two wind turbines are studied. The results show the benefits of voltage droop scheme for mitigating the impacts of the uncertainty of wind. Also, the results show preference of PSO method in the proposed approach. -- Highlights: ► Reactive power scheduling in a microgrid considering loss and voltage security. ► Stochastic nature of wind farms affects reactive power scheduling and is considered. ► Advantages of using the voltage droop characteristics of DGs in voltage security are shown. ► Power loss, voltage security and VAR reserve are three goals of a multi-objective optimization. ► Monte Carlo method with scenario reduction is used to determine optimal control strategy of DGs.

  8. Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty.

    Science.gov (United States)

    Zhang, Huifeng; Lei, Xiaohui; Wang, Chao; Yue, Dong; Xie, Xiangpeng

    2017-01-01

    Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications.

  9. Generation Expansion Planning with Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    DEFF Research Database (Denmark)

    Zhan, Yiduo; Zheng, Qipeng; Wang, Jianhui

    2016-01-01

    , the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming......Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined...

  10. The optimization model for multi-type customers assisting wind power consumptive considering uncertainty and demand response based on robust stochastic theory

    International Nuclear Information System (INIS)

    Tan, Zhongfu; Ju, Liwei; Reed, Brent; Rao, Rao; Peng, Daoxin; Li, Huanhuan; Pan, Ge

    2015-01-01

    Highlights: • Our research focuses on demand response behaviors of multi-type customers. • A wind power simulation method is proposed based on the Brownian motion theory. • Demand response revenue functions are proposed for multi-type customers. • A robust stochastic optimization model is proposed for wind power consumptive. • Models are built to measure the impacts of demand response on wind power consumptive. - Abstract: In order to relieve the influence of wind power uncertainty on power system operation, demand response and robust stochastic theory are introduced to build a stochastic scheduling optimization model. Firstly, this paper presents a simulation method for wind power considering external environment based on Brownian motion theory. Secondly, price-based demand response and incentive-based demand response are introduced to build demand response model. Thirdly, the paper constructs the demand response revenue functions for electric vehicle customers, business customers, industry customers and residential customers. Furthermore, robust stochastic optimization theory is introduced to build a wind power consumption stochastic optimization model. Finally, simulation analysis is taken in the IEEE 36 nodes 10 units system connected with 650 MW wind farms. The results show the robust stochastic optimization theory is better to overcome wind power uncertainty. Demand response can improve system wind power consumption capability. Besides, price-based demand response could transform customers’ load demand distribution, but its load curtailment capacity is not as obvious as incentive-based demand response. Since price-based demand response cannot transfer customer’s load demand as the same as incentive-based demand response, the comprehensive optimization effect will reach best when incentive-based demand response and price-based demand response are both introduced.

  11. Wind power prediction models

    Science.gov (United States)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  12. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  13. Partial differential equation methods for stochastic dynamic optimization: an application to wind power generation with energy storage.

    Science.gov (United States)

    Johnson, Paul; Howell, Sydney; Duck, Peter

    2017-08-13

    A mixed financial/physical partial differential equation (PDE) can optimize the joint earnings of a single wind power generator (WPG) and a generic energy storage device (ESD). Physically, the PDE includes constraints on the ESD's capacity, efficiency and maximum speeds of charge and discharge. There is a mean-reverting daily stochastic cycle for WPG power output. Physically, energy can only be produced or delivered at finite rates. All suppliers must commit hourly to a finite rate of delivery C , which is a continuous control variable that is changed hourly. Financially, we assume heavy 'system balancing' penalties in continuous time, for deviations of output rate from the commitment C Also, the electricity spot price follows a mean-reverting stochastic cycle with a strong evening peak, when system balancing penalties also peak. Hence the economic goal of the WPG plus ESD, at each decision point, is to maximize expected net present value (NPV) of all earnings (arbitrage) minus the NPV of all expected system balancing penalties, along all financially/physically feasible future paths through state space. Given the capital costs for the various combinations of the physical parameters, the design and operating rules for a WPG plus ESD in a finite market may be jointly optimizable.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  14. Wind power

    International Nuclear Information System (INIS)

    2009-01-01

    At the end of 2008,the European wind power capacity had risen to 65,247 MW which is a 15,1% increase on 2007. The financial crisis does not appear to have any real consequences of the wind power sector's activity in 2008. At the end of 2008 the European Union accommodated 53,9% of the world's wind power capacity. The top ten countries in terms of installed wind capacities are: 1) Usa with 25,388 MW, 2) Germany with 23,903 MW, 3) Spain with 16,740 MW, 4) China with 12,200 MW, 5) India with 9,645 MW, 6) Italy with 3,736 MW, 7) France with 3,542 MW, 8) U.K. with 3,406 MW, 9) Denmark with 3,166 MW and 10) Portugal with 2,862 MW. (A.C.)

  15. Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage

    International Nuclear Information System (INIS)

    Bornapour, Mosayeb; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin; Parastegari, Moein

    2017-01-01

    Highlights: •Stochastic model is proposed for coordinated scheduling of renewable energy sources. •The effect of combined heat and power is considered. •Hydrogen storage is considered for fuel cells. •Maximizing profits of micro grid is considered as objective function. •Considering the uncertainties of problem lead to profit increasing. -- Abstract: Nowadays, renewable energy sources and combined heat and power units are extremely used in micro grids, so it is necessary to schedule these units to improve the performance of the system. In this regard, a stochastic model is proposed in this paper to schedule proton exchange membrane fuel cell-combined heat and power, wind turbines, and photovoltaic units coordinately in a micro grid while considering hydrogen storage. Hydrogen storage strategy is considered for the operation of proton exchange membrane fuel cell-combined heat and power units. To consider stochastic generation of renewable energy source units in this paper, a scenario-based method is used. In this method, the uncertainties of electrical market price, the wind speed, and solar irradiance are considered. This stochastic scheduling problem is a mixed integer- nonlinear programming which considers the proposed objective function and variables of coordinated scheduling of PEMFC-CHP, wind turbines and photovoltaic units. It also considers hydrogen storage strategy and converts it to a mixed integer nonlinear problem. In this study a modified firefly algorithm is used to solve the problem. This method is examined on modified 33-bus distributed network as a MG for its performance.

  16. Wind power

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This publication describes some of the technical, economic, safety and institutional considerations involved in the selection, installation and evaluation of a wind generation system. This information is presented, where possible, in practical, non-technical terms. The first four sections provide background information, theory, and general knowledge, while the remaining six sections are of a more specific nature to assist the prospective owner of a wind generator in his calculations and selections. Meteorological information is provided relating to the wind regime in Nova Scotia. The section on cost analysis discusses some of the factors and considerations which must be examined in order to provide a logical comparison between the alternatives of electricity produced from other sources. The final two sections are brief summaries of the regulations and hazards pertaining to the use of wind generators. The cost of wind-generated electricity is high compared to present Nova Scotia Power Corporation rates, even on Sable Island, Nova Scotia's highest wind area. However, it may be observed that Sable Island is one of the areas of Nova Scotia which is not presently supplied through the power grid and, particularly if there was a significant increase in the price of diesel oil, wind-generated electricity may well be the most economical alternative in that area. Generally speaking, however, where a consumer can purchase electricity at the normal domestic rate, wind generators are not economical, and they will not become economical unless there is a great reduction in their cost, an great increase in electricity rates, or both. Includes glossary. 23 figs., 11 tabs.

  17. Deterministic and Stochastic Study of Wind Farm Harmonic Currents

    DEFF Research Database (Denmark)

    Sainz, Luis; Mesas, Juan Jose; Teodorescu, Remus

    2010-01-01

    Wind farm harmonic emissions are a well-known power quality problem, but little data based on actual wind farm measurements are available in literature. In this paper, harmonic emissions of an 18 MW wind farm are investigated using extensive measurements, and the deterministic and stochastic char...

  18. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  19. MCMC for Wind Power Simulation

    NARCIS (Netherlands)

    Papaefthymiou, G.; Klöckl, B.

    2008-01-01

    This paper contributes a Markov chain Monte Carlo (MCMC) method for the direct generation of synthetic time series of wind power output. It is shown that obtaining a stochastic model directly in the wind power domain leads to reduced number of states and to lower order of the Markov chain at equal

  20. Strategic wind power trading considering rival wind power production

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers, uncert...... depending on the rival’s wind generation, given that its own expected generation is not high. Finally, as anticipated, expected system cost is higher when both wind power producers are expected to have low wind power generation......In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers......, uncertainty of rival wind power generation should also be considered. Under this context, this paper addresses the impact of rival wind producers on the offering strategy and profits of a pricemaker wind producer. A stochastic day-ahead market setup is considered, which optimizes the day-ahead schedules...

  1. Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response

    International Nuclear Information System (INIS)

    Ju, Liwei; Li, Huanhuan; Zhao, Junwei; Chen, Kangting; Tan, Qingkun; Tan, Zhongfu

    2016-01-01

    Highlights: • Our research focuses on virtual power plant. • Electric vehicle group and demand response are integrated into virtual power plant. • Stochastic chance constraint planning is applied to overcome uncertainties. • A multi-objective stochastic scheduling model is proposed for virtual power plant. • A three-stage hybrid intelligent solution algorithm is proposed for solving the model. - Abstract: A stochastic chance-constrained planning method is applied to build a multi-objective optimization model for virtual power plant scheduling. Firstly, the implementation cost of demand response is calculated using the system income difference. Secondly, a wind power plant, photovoltaic power, an electric vehicle group and a conventional power plant are aggregated into a virtual power plant. A stochastic scheduling model is proposed for the virtual power plant, considering uncertainties under three objective functions. Thirdly, a three-stage hybrid intelligent solution algorithm is proposed, featuring the particle swarm optimization algorithm, the entropy weight method and the fuzzy satisfaction theory. Finally, the Yunnan distributed power demonstration project in China is utilized for example analysis. Simulation results demonstrate that when considering uncertainties, the system will reduce the grid connection of the wind power plant and photovoltaic power to decrease the power shortage punishment cost. The average reduction of the system power shortage punishment cost and the operation revenue of virtual power plant are 61.5% and 1.76%, respectively, while the average increase of the system abandoned energy cost is 40.4%. The output of the virtual power plant exhibits a reverse distribution with the confidence degree of the uncertainty variable. The proposed algorithm rapidly calculates a global optimal set. The electric vehicle group could provide spinning reserve to ensure stability of the output of the virtual power plant. Demand response could

  2. Stochastic Sizing of Energy Storage Systems for Wind Integration

    Directory of Open Access Journals (Sweden)

    D. D. Le

    2018-06-01

    Full Text Available In this paper, we present an optimal capacity decision model for energy storage systems (ESSs in combined operation with wind energy in power systems. We use a two-stage stochastic programming approach to take into account both wind and load uncertainties. The planning problem is formulated as an AC optimal power flow (OPF model with the objective of minimizing ESS installation cost and system operation cost. Stochastic wind and load inputs for the model are generated from historical data using clustering technique. The model is tested on the IEEE 39-bus system.

  3. Stochastic Modeling and Analysis of Power System with Renewable Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan

    Unlike traditional fossil-fuel based power generation, renewable generation such as wind power relies on uncontrollable prime sources such as wind speed. Wind speed varies stochastically, which to a large extent determines the stochastic behavior of power generation from wind farms...... that such a stochastic model can be used to simulate the effect of load management on the load duration curve. As CHP units are turned on and off by regulating power, CHP generation has discrete output and thus can be modeled by a transition matrix based discrete Markov chain. As the CHP generation has a strong diurnal...

  4. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  5. Wind Power Now!

    Science.gov (United States)

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  6. Evaluation of a binary optimization approach to find the optimum locations of energy storage devices in a power grid with stochastically varying loads and wind generation

    Science.gov (United States)

    Dar, Zamiyad

    The prices in the electricity market change every five minutes. The prices in peak demand hours can be four or five times more than the prices in normal off peak hours. Renewable energy such as wind power has zero marginal cost and a large percentage of wind energy in a power grid can reduce the price significantly. The variability of wind power prevents it from being constantly available in peak hours. The price differentials between off-peak and on-peak hours due to wind power variations provide an opportunity for a storage device owner to buy energy at a low price and sell it in high price hours. In a large and complex power grid, there are many locations for installation of a storage device. Storage device owners prefer to install their device at locations that allow them to maximize profit. Market participants do not possess much information about the system operator's dispatch, power grid, competing generators and transmission system. The publicly available data from the system operator usually consists of Locational Marginal Prices (LMP), load, reserve prices and regulation prices. In this thesis, we develop a method to find the optimum location of a storage device without using the grid, transmission or generator data. We formulate and solve an optimization problem to find the most profitable location for a storage device using only the publicly available market pricing data such as LMPs, and reserve prices. We consider constraints arising due to storage device operation limitations in our objective function. We use binary optimization and branch and bound method to optimize the operation of a storage device at a given location to earn maximum profit. We use two different versions of our method and optimize the profitability of a storage unit at each location in a 36 bus model of north eastern United States and south eastern Canada for four representative days representing four seasons in a year. Finally, we compare our results from the two versions of our

  7. Wind Power Utilization Guide.

    Science.gov (United States)

    1981-09-01

    The expres- sions for the rotor torque for a Darrieus machine can be found in Reference 4.16. The Darrieus wind turbine offers the following... turbine generators, wind -driven turbines , power conditioning, wind power, energy conservation, windmills, economic ana \\sis. 20 ABS 1"ACT (Conti,on... turbines , power conditioning requirements, siting requirements, and the economics of wind power under different conditions. Three examples are given to

  8. Wind power soars

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  9. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...... are needed for initial defects and damage accumulation. In this paper, stochastic models are formulated considering some of the failure modes observed in these components. The models are based on theoretical considerations, manufacturing uncertainties, size effects of different scales. It is illustrated how...

  10. Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources

    Science.gov (United States)

    Barnawi, Abdulwasa Bakr

    Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of

  11. Wind power takes over

    International Nuclear Information System (INIS)

    2002-01-01

    All over the industrialized world concentrated efforts are being made to make wind turbines cover some of the energy demand in the coming years. There is still a long way to go, however, towards a 'green revolution' as far as energy is concerned, for it is quite futile to use wind power for electric heating. The article deals with some of the advantages and disadvantages of developing wind power. In Norway, for instance, environmentalists fear that wind power plants along the coast may have serious consequences for the stocks of white-tailed eagle and golden eagle. An other factor that delays the large-scale application of wind power in Norway is the low price of electricity. Some experts, however, maintain that wind power may already compete with new hydroelectric power of intermediate cost. The investment costs are expected to go down with one third by 2020, when wind power may be the most competitive energy source to utilize

  12. Potentials of wind power

    International Nuclear Information System (INIS)

    Bezrukikh, P.P.; Bezrukikh, P.P.

    2000-01-01

    The ecological advantages of the wind power facilities (WPF) are considered. The possibilities of small WPF, generating the capacity from 40 W up to 10 kW, are discussed. The basic technical data on the national and foreign small WPF are presented. The combined wind power systems are considered. Special attention is paid to the most perspective wind-diesel systems, which provide for all possible versions of the electro-power supply. Useful recommendations and information on the wind power engineering are given for those, who decided to build up a wind facility [ru

  13. Danish Wind Power

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Østergaard, Poul Alberg

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power...... misleading. The cost of CO2 reduction by use of wind power in the period 2004-2008 was only 20 EUR/ton. Furthermore, the Danish wind turbines are not paid for by energy taxes. Danish wind turbines are given a subsidy via the electricity price which is paid by the electricity consumers. In the recent years...... is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both...

  14. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Caneghem, A.E. von

    1975-07-24

    The invention applies to a wind power plant in which the wind is used to drive windmills. The plant consists basically of a vertical tube with a lateral wind entrance opening with windmill on its lower end. On its upper end, the tube carries a nozzle-like top which increases the wind entering the tube by pressure decrease. The wind is thus made suitable for higher outputs. The invention is illustrated by constructional examples.

  15. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  16. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  17. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M. K.; Wind, L.; Canter, B.; Moeller, T.

    2002-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 2000 and 2001. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (SM)

  18. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal......The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  19. Wind power today

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  20. Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea

    OpenAIRE

    Deockho Kim; Jin Hur

    2017-01-01

    Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the poten...

  1. Wind power in Norway

    International Nuclear Information System (INIS)

    1998-01-01

    This report analyses business costs and socio-economic costs in the development of wind power in Norway and policy instruments to encourage such a development. It is founded on an analysis of the development of wind power in other countries, notably U.S.A, Denmark, Germany, the Netherlands and Britain. The report describes the institutional background in each country, the policy instruments that have been used and still are and the results achieved. The various cost components in Norwegian wind power development and the expected market price of wind power are also discussed. The discussion of instruments distinguishes between investment oriented and production oriented instruments. 8 refs., 9 figs., 3 tabs

  2. Stochastic Modeling of Wind Derivatives in Energy Markets

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2018-05-01

    Full Text Available We model the logarithm of the spot price of electricity with a normal inverse Gaussian (NIG process and the wind speed and wind power production with two Ornstein–Uhlenbeck processes. In order to reproduce the correlation between the spot price and the wind power production, namely between a pure jump process and a continuous path process, respectively, we replace the small jumps of the NIG process by a Brownian term. We then apply our models to two different problems: first, to study from the stochastic point of view the income from a wind power plant, as the expected value of the product between the electricity spot price and the amount of energy produced; then, to construct and price a European put-type quanto option in the wind energy markets that allows the buyer to hedge against low prices and low wind power production in the plant. Calibration of the proposed models and related price formulas is also provided, according to specific datasets.

  3. Wind Power Career Chat

    Energy Technology Data Exchange (ETDEWEB)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  4. Wind electric power generation

    International Nuclear Information System (INIS)

    Groening, B.; Koch, M.; Canter, B.; Moeller, T.

    1995-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1988 and 1989. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. The statistics for December 1994 comprise 2328 wind turbines

  5. Observability of wind power

    International Nuclear Information System (INIS)

    Gonot, J.P.; Fraisse, J.L.

    2009-01-01

    The total installed capacity of wind power grows from a few hundred MW at the beginning of 2005 to 3400 MW at the end of 2008. With such a trend, a total capacity of 7000 MW could be reached by 2010. The natural variability of wind power and the difficulty of its predictability require a change in the traditional way of managing supply/demand balance, day-ahead margins and the control of electrical flows. As a consequence, RTE operators should be informed quickly and reliably of the real time output power of wind farms and of its evolvement some hours or days ahead to ensure the reliability of the French electrical power system. French specificities are that wind farms are largely spread over the territory, that 95 % of wind farms have an output power below 10 MW and that they are connected to the distribution network. In this context, new tools were necessary to acquire as soon as possible data concerning wind power. In two years long, RTE set up an observatory of wind production 'IPES system' enable to get an access to the technical characteristics of the whole wind farms, to observe in real time 75 % of the wind generation and to implement a forecast model related to wind generation. (authors)

  6. Wind power barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The worldwide wind power increased by 12.4% in 2013 to reach 318.6 GW but the world market globally decreased by losing 10 GW: only 35.6 GW have been installed in 2013 which is even less than was installed in 2009. This activity contraction is mainly due to the collapse of the American market, American authorities having been late to decide to maintain federal incentives. The European wind power market also contracted in 2013 because of the lack of trust of the investors in the new energy policies of the European governments. In the rest of the world wind energy has kept on growing particularly in China and Canada. At the end of 2013 the cumulated wind power reached 117,73 GW in Europe. About 1.5 MW out of 10 MW of wind power installed in Europe in 2013 come from off-shore wind farms, United-Kingdom and Denmark being the most important players by totalling more than 70% of the off-shore wind power installed at the end of 2013. Various charts and tables give the figures of the wind power cumulated and installed in 2013 in different parts of the world: Europe, North America and Asia, the time evolution of the worldwide wind power since 1995, the wind power cumulated and installed in 2013 for the different countries of Europe and the ratio between the cumulated wind power and the country population. A table lists the main manufacturers of wind turbines and gives their turnover and number of employees at the end of 2013

  7. Stochastic Optimal Regulation Service Strategy for a Wind Farm Participating in the Electricity Market

    DEFF Research Database (Denmark)

    Zhang, Baohua; Hu, Weihao; Chen, Zhe

    2015-01-01

    in the stochastic optimization to deal with the uncertainty of the up regulation price and the up regulation activation of the power system.The Danish short-term electricity market and a wind farm in western Denmark are chosen to evaluate the effect of the proposed strategy. Simulation results showthe proposed......As modern wind farmshave the ability to provideregulation service for the power system, wind power plant operators may be motivated to participate in the regulating market to maximize their profit.In this paper, anoptimal regulation servicestrategy for a wind farm to participate...... strategy can increase the revenue of wind farms by leavinga certain amount of wind powerfor regulation service....

  8. Wind power in France

    International Nuclear Information System (INIS)

    Tuille, F.; Courtel, J.

    2015-01-01

    After 3 years of steady decreasing, wind power has resumed growth in 2014 in France and the preliminary figures of 2015 confirm this trend. About 1100 MW were installed in 2014 which was almost twice as much as it was installed the year before. This renaissance is mostly due to the implementation of Brottes' law that eases the installations of wind farms by suppressing the wind power development areas (that were interfering with regional wind power schemes) and by suppressing the minimum number of 5 turbines for any new wind farms. Another important incentive measure was the announcement in January 2015 of a new financial support scheme in replacement of the policy of guaranteed purchase price for the electricity produced. In 2014 the total wind power produced in mainland France reached 17 TW which represented 3.1% of the production of electricity. (A.C.)

  9. Climate Wind Power Resources

    Directory of Open Access Journals (Sweden)

    Nana M. Berdzenishvili

    2013-01-01

    Full Text Available Georgia as a whole is characterized by rather rich solar energy resources, which allows to construct alternative power stations in the close proximity to traditional power plants. In this case the use of solar energy is meant. Georgia is divided into 5 zones based on the assessment of wind power resources. The selection of these zones is based on the index of average annual wind speed in the examined area, V> 3 m / s and V> 5 m / s wind speed by the summing duration in the course of the year and V = 0. . . 2 m / s of passive wind by total and continuous duration of these indices per hour.

  10. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  11. Wind Power in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Georgia has good wind power potential. Preliminary analyses show that the technical wind power potential in Georgia is good. Meteorological data shows that Georgia has four main areas in Georgia with annual average wind speeds of over 6 m/s and two main areas with 5-6 m/s at 80m. The most promising areas are the high mountain zone of the Great Caucasus, The Kura river valley, The South-Georgian highland and the Southern part of the Georgian Black Sea coast. Czech company Wind Energy Invest has recently signed a Memorandum of Understanding with Georgian authorities for development of the first wind farm in Georgia, a 50MW wind park in Paravani, Southern Georgia, to be completed in 2014. Annual generation is estimated to 170.00 GWh and the investment estimated to 101 million US$. Wind power is suited to balance hydropower in the Georgian electricity sector Electricity generation in Georgia is dominated by hydro power, constituting 88% of total generation in 2009. Limited storage capacity and significant spring and summer peaks in river flows result in an uneven annual generation profile and winter time shortages that are covered by three gas power plants. Wind power is a carbon-free energy source well suited to balance hydropower, as it is available (often strongest) in the winter and can be exported when there is a surplus. Another advantage with wind power is the lead time for the projects; the time from site selection to operation for a wind power park (approximately 2.5 years) is much shorter than for hydro power (often 6-8 years). There is no support system or scheme for renewable sources in Georgia, so wind power has to compete directly with other energy sources and is in most cases more expensive to build than hydro power. In a country and region with rapidly increasing energy demands, the factors described above nevertheless indicate that there is a commercial niche and a role to play for Georgian wind power. Skra: An example of a wind power development

  12. Wind power: Italian wind power industry

    International Nuclear Information System (INIS)

    Botta, G.; Casale, C.

    2008-01-01

    Trends in the world point a growing wind power sector in the future taking into account the safety of energy supply and environmental issues. Will determine the future scenario of price and availability of conventional energy sources. The current level reached by the price of oil create a win-win situation [it

  13. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, G

    1975-11-20

    A wind power plant is proposed suitable for electicity generation or water pumping. This plant is to be self-adjusting to various wind velocities and to be kept in operation even during violent storms. For this purpose the mast, carrying the wind rotor and pivotable around a horizontal axis is tiltable and equipped with a wind blind. Further claims contain various configurations of the tilting base resp. the cut in of an elastic link, the attachment and design of the wind blind as well as the constructive arrangement of one or more dynamos.

  14. Statement on Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-15

    Wind power will grow in importance in future electricity supply. In the next few decades it will to some degree replace fossil power but it will, at the same time also depend on fossil-b beyond, when wind power is expected to have a substantial share of the electricity market, CO{sub 2} emission-free electricity plants that are well suited for balancing the wind intermittency will be required. Predictions of the future penetration of wind power into the electricity market are critically dependent on a number of policy measures and will be especially influenced by climate driven energy policies. Very large investments will also be necessary as is shown by the lEA's Blue Map Scenario which includes 5,000 TWh wind electricity by 2050 at a cost of USD 700 billion. This implies an average 8% increase of wind electricity per year energy system, i.e. an energy system so large that it affects the entire world. The Energy Committee's scenario for electricity production in the year 2050 includes 5,000 TWh wind electricity out of a total of 45,000 TWh. Wind electricity thus has a within presently reached penetration of wind energy in a single country and within the calculated future projections of its penetration. Future large continental and intercontinental power grids may enable higher penetrations of wind energy since contributions of wind power from a larger area will tend to reduce its intermittency. Also, large-scale storage systems (thermal storage as is intermittent power systems. These alternatives have been discussed from a technical point of view [3] but for the required large-scale systems, further studies on the social, environmental and economical implications are needed

  15. Wind power forecast

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Rui [Rede Electrica Nacional (REN), S.A., Lisboa (Portugal). Dept. Systems and Development System Operator; Trancoso, Ana Rosa; Delgado Domingos, Jose [Univ. Tecnica de Lisboa (Portugal). Seccao de Ambiente e Energia

    2012-07-01

    Accurate wind power forecast are needed to reduce integration costs in the electric grid caused by wind inherent variability. Currently, Portugal has a significant wind power penetration level and consequently the need to have reliable wind power forecasts at different temporal scales, including localized events such as ramps. This paper provides an overview of the methodologies used by REN to forecast wind power at national level, based on statistical and probabilistic combinations of NWP and measured data with the aim of improving accuracy of pure NWP. Results show that significant improvement can be achieved with statistical combination with persistence in the short-term and with probabilistic combination in the medium-term. NWP are also able to detect ramp events with 3 day notice to the operational planning. (orig.)

  16. Stochastic Optimization Model to STudy the Operational Impacts of High Wind Penetrations in Ireland

    DEFF Research Database (Denmark)

    Meibom, Peter; Barth, R.; Hasche, B.

    2011-01-01

    A stochastic mixed integer linear optimization scheduling model minimizing system operation costs and treating load and wind power production as stochastic inputs is presented. The schedules are updated in a rolling manner as more up-to-date information becomes available. This is a fundamental...... change relative to day-ahead unit commitment approaches. The need for reserves dependent on forecast horizon and share of wind power has been estimated with a statistical model combining load and wind power forecast errors with scenarios of forced outages. The model is used to study operational impacts...

  17. Calculation of Wind Power Limit adjusting the Continuation Power Flow

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio

    2012-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  18. Wind power generation

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. The data are arranged according to the size of the turbines. For each wind turbine the name of the site and type of turbine is given as well as the production during the last 3 months in 1998, and the total production in 1997 and 1998. Data on the operation is given

  19. Offshore Wind Power

    DEFF Research Database (Denmark)

    Negra, Nicola Barberis

    reliability models, and a new model that accounts for all relevant factors that influence the evaluations is developed. According to this representation, some simulations are performed and both the points of view of the wind farm owner and the system operator are evaluated and compared. A sequential Monte...... Carlo simulation is used for these calculations: this method, in spite of an extended computation time, has shown flexibility in performing reliability studies, especially in case of wind generation, and a broad range of results which can be evaluated. The modelling is then extended to the entire power......The aim of the project is to investigate the influence of wind farms on the reliability of power systems. This task is particularly important for large offshore wind farms, because failure of a large wind farm might have significant influence on the balance of the power system, and because offshore...

  20. The difficult wind power

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2005-01-01

    The article presents a brief survey of the conditions for wind power production in Norway and points out that several areas should be well suited. A comparison to Danish climate is made. The wind variations, turbulence problems and regional conditions are discussed

  1. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kling, A

    1977-01-13

    The wind power plant described has at least one rotor which is coupled to an electricity generator. The systems are fixed to a suspended body so that it is possible to set up the wind power plant at greater height where one can expect stronger and more uniform winds. The anchoring on the ground or on a floating body is done by mooring cables which can simultaneously have the function of an electric cable. The whole system can be steered by fins. The rotor system itself consists of at least one pair of contrarotating, momentum balanced rotors.

  2. Short-term Probabilistic Forecasting of Wind Speed Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Morales González, Juan Miguel; Møller, Jan Kloppenborg

    2016-01-01

    and uncertain nature. In this paper, we propose a modeling framework for wind speed that is based on stochastic differential equations. We show that stochastic differential equations allow us to naturally capture the time dependence structure of wind speed prediction errors (from 1 up to 24 hours ahead) and......It is widely accepted today that probabilistic forecasts of wind power production constitute valuable information for both wind power producers and power system operators to economically exploit this form of renewable energy, while mitigating the potential adverse effects related to its variable......, most importantly, to derive point and quantile forecasts, predictive distributions, and time-path trajectories (also referred to as scenarios or ensemble forecasts), all by one single stochastic differential equation model characterized by a few parameters....

  3. Status of Wind Power Technologies

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei

    2018-01-01

    With the development of wind turbine technology, wind power will become more controllable and grid‐friendly. It is desirable to make wind farms operate as conventional power plants. Wind turbine generators (WTGs) were mainly used in rural and remote areas for wind power generation. WTG‐based wind...... energy conversion systems (WECS) can be divided into the four main types (type 1‐4). Due to the inherent variability and uncertainty of the wind, the integration of wind power into the grid has brought challenges in several different areas, including power quality, system reliability, stability......, and planning. The impact of each is largely dependent on the level of wind power penetration in the grid. In many countries, relatively high levels of wind power penetration have been achieved. This chapter shows the estimated wind power penetration in leading wind markets....

  4. Stochastic Evaluation of Maximum Wind Installation in a Radial Distribution Network

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe

    2011-01-01

    This paper proposes an optimization algorithm to find the maximum wind installation in a radial distribution network. The algorithm imposes a limit on the amount of wind energy that can be curtailed annually. The algorithm implements the wind turbine reactive power control and wind energy...... curtailment using sensitivity factors. The optimization is integrated with Monte Carlo simulation to account for the stochastic behavior of load demand and wind power generation. The proposed algorithm is tested on a real 20 kV Danish distribution system in Støvring. It is demonstrated that the algorithm...... executes reactive compensation and energy curtailment sequentially in an effective and efficient manner....

  5. Wind power investment within a market environment

    International Nuclear Information System (INIS)

    Baringo, L.; Conejo, A.J.

    2011-01-01

    Highlights: → The interaction of a wind power investor and the pool is represented via an MPEC. → The considered electricity pool is cleared through a network constrained auction. → Uncertainty of load and wind production is characterized by a moderate number of scenarios. → The investment model can be recast as a mixed integer linear programming problem. → Large instances of the considered model are computationally tractable. - Abstract: Within an existing transmission network, this paper considers the problem of identifying the wind power plants to be built by a wind power investor to maximize its profit. For this analysis a future target year is considered and the loads at different buses are represented by stepwise load-duration curves. The stochastic nature of both load and wind is represented via scenarios. The considered electric energy system operates under a pool-market arrangement and each producer/consumer is paid/pays the Local Marginal Price (LMP) of the bus at which it is located. The higher the wind penetration is, the lower the resulting LMPs. To tackle this problem a stochastic bilevel model is proposed, whose upper-level represents the wind investment and operation decisions with the target of maximizing profits; and its lower-level represents the market clearing under differing load and wind conditions and provides LMPs. This model can be recast as a mixed-integer linear programming problem solvable using commercially available branch-and-cut solvers. The proposed model is illustrated using an example and two case studies.

  6. Stochastic Economic Dispatch with Wind using Versatile Probability Distribution and L-BFGS-B Based Dual Decomposition

    DEFF Research Database (Denmark)

    Huang, Shaojun; Sun, Yuanzhang; Wu, Qiuwei

    2018-01-01

    This paper focuses on economic dispatch (ED) in power systems with intermittent wind power, which is a very critical issue in future power systems. A stochastic ED problem is formed based on the recently proposed versatile probability distribution (VPD) of wind power. The problem is then analyzed...

  7. Offshore Wind Power Data

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Zeni, Lorenzo

    2012-01-01

    Wind power development scenarios are critical when trying to assess the impact of the demonstration at national and European level. The work described in this report had several objectives. The main objective was to prepare and deliver the proper input necessary for assessing the impact of Demo 4...

  8. Wind power barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The global wind power market not only repelled the strictures of the financial crisis, but saw the installation of 37 GW in 2009, which is almost 10 GW up on 2008. China and the United States registered particularly steady growth and the European Union also picked up momentum to break its installation record. A total capacity of 158 GW of wind power are now installed across the world from which 74.8 GW in the European Union. Among the European countries Denmark has the highest wind capacity per inhabitant in 2009: 627.5 kW/1000 inhabitants. Spain seeks to limit its market's growth in order to better manage the development of wind energy across the country. German growth is back, Italy chalks up a new record for installation and the French market is becoming increasingly regulated. United-Kingdom is developing offshore wind farms: the offshore capacity could reasonably rise to 20000 MW by 2020. The last part of the article reports some economical news from the leading players: Vestas, GE-Energy, Gamesa, Enercon, Sinovel and Siemens. (A.C.)

  9. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-12-31

    During the wind power generator project a design algorithm for a gearless permanent magnet generator with an axially orientated magnetic flux was developed and a 10 kW model machine was constructed. Utilising the test results a variable wind speed system of 100 kW was designed that incorporates a permanent magnet generator, a frequency converter and a fuzzy controller. This system produces about 5-15% more energy than existing types and stresses to the blades are minimised. The type of generator designed in the project represents in general a gearless solution for slow-speed electrical drives. (orig.)

  10. Wind power engine

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, P J

    1977-02-10

    The device is a wind-power engine with vertical axis and with one or several wings with airfoil profile fixed on a frame which is pivoted at the vertical axis. Each wing forms at least on one part of its length an angle of inclination with the vertical. The angle increases under the influence of the centrifugal force when the r.p.m. exceed a normal operation range. This method helps to reduce mechanical loads occurring with high wind speeds without requiring a complicated construction.

  11. Stochastic dynamic stiffness of surface footing for offshore wind turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    Highlights •This study concerns the stochastic dynamic stiffness of foundations for large offshore wind turbines. •A simple model of wind turbine structure with equivalent coupled springs at the base is utilized. •The level of uncertainties is quantified through a sensitivity analysis. •Estimation...

  12. Wind Powering America

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L. (NREL); Dougherty, P. J. (DOE)

    2001-07-07

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately $60 billion investment and $1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced.

  13. Commercial wind power

    International Nuclear Information System (INIS)

    Braun, G.W.; Smith, D.R.

    1992-01-01

    In 1990 the 23,000 wind turbines in the world connected to utility grids were rated at a total of 2200 MW and produced 3,353,000,000 kWh of electricity. This represents the residential use of a city with population of 1,000,000 at US energy use rates, or 2,000,000 at European rates. Denmark produced about 2% of its electricity from the wind, while California and Hawaii produced about 1% of theirs. California wind farms produced 76% of the world total, and Pacific Gas and Electric Company (PG and E) received nearly half of this. In addition to these grid-connected turbines, more than 50,000 smaller turbines (averaging about 100 watts each) supplied electricity to remote areas, such as Mongolia. Such non-grid-connected turbines can be components of hybrid generation systems when combined with energy storage and/or complementary power sources. However, the emphasis of this paper is on utility-connected wind turbines. Wind also supplies mechanical energy, such as for water pumping

  14. Wind Powering America

    International Nuclear Information System (INIS)

    Flowers, L.; Dougherty, P. J.

    2001-01-01

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately$60 billion investment and$1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced

  15. Wind power integration : From individual wind turbine to wind park as a power plant

    NARCIS (Netherlands)

    Zhou, Y.

    2009-01-01

    As power capacities of single wind turbine, single wind park and total wind power installation are continuously increasing, the wind power begins to challenge the safety operation of the power system. This thesis focuses on the grid integration aspects such as the dynamic behaviours of wind power

  16. Pricing offshore wind power

    International Nuclear Information System (INIS)

    Levitt, Andrew C.; Kempton, Willett; Smith, Aaron P.; Musial, Walt; Firestone, Jeremy

    2011-01-01

    Offshore wind offers a very large clean power resource, but electricity from the first US offshore wind contracts is costlier than current regional wholesale electricity prices. To better understand the factors that drive these costs, we develop a pro-forma cash flow model to calculate two results: the levelized cost of energy, and the breakeven price required for financial viability. We then determine input values based on our analysis of capital markets and of 35 operating and planned projects in Europe, China, and the United States. The model is run for a range of inputs appropriate to US policies, electricity markets, and capital markets to assess how changes in policy incentives, project inputs, and financial structure affect the breakeven price of offshore wind power. The model and documentation are made publicly available. - Highlights: → We calculate the Breakeven Price (BP) required to deploy offshore wind plants. → We determine values for cost drivers and review incentives structures in the US. → We develop 3 scenarios using today's technology but varying in industry experience. → BP differs widely by Cost Scenario; relative policy effectiveness varies by stage. → The low-range BP is below regional market values in the Northeast United States.

  17. Wind power barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Despite the economic crisis affecting most of the globe's major economies, wind energy continues to gain supporters around the world. Global wind power capacity increased by 40.5 GW between 2010 and 2011 compared to a 39 GW rise between 2009 and 2010, after deduction of decommissioned capacity. By the end of 2011 global installed wind turbine capacity should stand at around 238.5 GW, and much of the world's growth is being driven by capacity build-up in the emerging markets (China, India...). In 2011 Asia was the world's biggest market (52%) ahead of Europe (24.5%) and North-America (19.7%). Europe has still the largest wind power capacity in the world with 40.6% of total in 2011. 2011 was another tough year for Vestas company while Gamesa company has managed to maintain positive profit growth by gaining market shares abroad. Siemens keeps its lead in the offshore market. The Chinese market is now suffering form excess capacity and Chinese companies fell prey to domestic competition

  18. Market value of wind power

    NARCIS (Netherlands)

    Haan, de J.E.S.; Shoeb, M.A.; Lopes Ferreira, H.M.; Kling, W.L.

    2013-01-01

    Variability and predictability constraints of wind hinder the cost-efficient integration of wind power generation into power markets. Within the framework of EIT KIC INNOENERGY Offwindtech project, a ‘Market Value’ tool is developed. Here, the market value of wind power generation can be assessed

  19. Wind power bidding in electricity markets with high wind penetration

    International Nuclear Information System (INIS)

    Vilim, Michael; Botterud, Audun

    2014-01-01

    Highlights: • We analyze the pricing systems and wind power trading in electricity markets. • We propose a model that captures the relation between market prices and wind power. • A probabilistic bidding model can increase profits for wind power producers. • Profit maximizing bidding strategies carry risks for power system operators. • We conclude that modifications of current market designs may be needed. - Abstract: Objective: The optimal day-ahead bidding strategy is studied for a wind power producer operating in an electricity market with high wind penetration. Methods: A generalized electricity market is studied with minimal assumptions about the structure of the production, bidding, or consumption of electricity. Two electricity imbalance pricing schemes are investigated, the one price and the two price scheme. A stochastic market model is created to capture the price effects of wind power production and consumption. A bidding algorithm called SCOPES (Supply Curve One Price Estimation Strategy) is developed for the one price system. A bidding algorithm called MIMICS (Multivariate Interdependence Minimizing Imbalance Cost Strategy) is developed for the two price system. Results: Both bidding strategies are shown to have advantages over the assumed “default” bidding strategy, the point forecast. Conclusion: The success of these strategies even in the case of high deviation penalties in a one price system and the implicit deviation penalties of the two price system has substantial implications for power producers and system operators in electricity markets with a high level of wind penetration. Practice implications: From an electricity market design perspective, the results indicate that further penalties or regulations may be needed to reduce system imbalance

  20. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  1. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-10-01

    In the project a 100 kW axial flux permanent magnet wind power generator has been designed. The toroidal stator with air gap winding is placed between two rotating discs with permanent magnets. The magnet material is NdBFe due to its excellent magnetic properties compared to other materials. This type of topology enables a very large number of poles compared to conventional machine of the same size. A large number of poles is required to achieve a low rotational speed and consequently a direct driven system. The stator winding is formed by rectangular coils. The end winding is very short leading to small resistive losses. On the other hand, the absence of iron teeth causes eddy current losses in the conductors. These can be restricted to an acceptable level by keeping the wire diameter and flux density small. This means that the number of phases should be large. Several independent three phase systems may be used. The toothless stator also means that the iron losses are small and there exists no cogging torque

  2. Wind power - energy from air

    International Nuclear Information System (INIS)

    Alakangas, E.

    1998-01-01

    The wind conditions for wind power generation are favourable on the coast, in the archipelagos and in the fell areas of Finland. About 7 MW of wind power has been constructed in Finland, with the investment support of the Ministry of Trade and Industry. In 1995 about 11 GWh were produced by wind energy. A number of wind power plants are under design on the coasts of the Gulf of Finland and the Gulf of Bothnia as well as on the Aaland Islands. The first arctic wind park was constructed in Lapland in September 1996

  3. Assembling Markets for Wind Power

    DEFF Research Database (Denmark)

    Pallesen, Trine

    hand, as an economic good, wind power is said to suffer from (techno-economic) ‘disabilities’, such as high costs, fluctuating and unpredictable generation, etc. Therefore, because of its performance as a good, it is argued that the survival of wind power in the market is premised on different......This project studies the making of a market for wind power in France. Markets for wind power are often referred to as ‘political markets: On the one hand, wind power has the potential to reduce CO2-emissions and thus stall the effects of electricity generation on climate change; and on the other...... instruments, some of which I will refer to as ‘prosthetic devices’. This thesis inquires into two such prosthetic devices: The feed-in tariff and the wind power development zones (ZDE) as they are negotiated and practiced in France, and also the ways in which they affect the making of markets for wind power....

  4. Wind-power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kling, A

    1976-08-26

    The invention is concerned with a wind-power plant whose rotor axis is pivoted in the supporting structure and swingable around an axis of tilt, forming an angle with the rotor axis and the vertical axis, and allowing precession of the rotor. On changes of wind direction an electric positioning device is moving the rotor axis into the new direction in such a way that no precession forces are exerted on the supporting structure and this one may very easily be held. Instead of one rotor, also a type with two coaxial, co-planar countercurrent rotors may be used. Each of the two countercurrent rotors is carrying a number of magnetic poles, distributed all over the circumference, acting together with the magnetic poles of the other rotor. At least the poles of one rotor have electric line windings being connected by leads with a collector so that the two rotors form the two parts of a power generator being each rotatable with respect to the other ('stator' and 'rotor').

  5. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.; Schavemaker, P.H.; Sluis, van der L.; Kling, W.L.; Kurowicka, D.; Cooke, R.M.

    2006-01-01

    Stochastic generation, i.e., electrical power production by an uncontrolled primary energy source, is expected to play an important role in future power systems. A new power system structure is created due to the large-scale implementation of this small-scale, distributed, non-dispatchable

  6. Trend in China's Wind Power

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Attractive prospects for wind power development Sha Yiqiang:In recent years,the development and utilization of wind energy has achieved remarkable results.To the end of 2007,the installed capacity of the wind power had reached 94 000 MW all over the world,which is distributed over 60 countries.Over the past 20 years,the wind power generation installation cost has been reduced by 50% and is closing to that of the conventional energy resources.Meanwhile,the single unit capacity,efficiency and reliability of wind power have been greatly improved.

  7. Operation of Power Grids with High Penetration of Wind Power

    Science.gov (United States)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  8. Wind turbine power stations

    International Nuclear Information System (INIS)

    Anon.

    1992-11-01

    The Countryside Council for Wales (CCW's) policy on wind turbine power stations needs to be read in the context of CCW's document Energy:Policy and perspectives for the Welsh countryside. This identifies four levels of action aimed at reducing emission of gases which contribute towards the risk of global warming and gases which cause acid deposition. These are: the need for investment in energy efficiency; the need for investment in conventional power generation in order to meet the highest environmental standards; the need for investment in renewable energy; and the need to use land use transportation policies and decisions to ensure energy efficiency and energy conservation. CCW views wind turbine power stations, along with other renewable energy systems, within this framework. CCW's policy is to welcome the exploitation of renewable energy sources as an element in a complete and environmentally sensitive energy policy, subject to the Environmental Assessment of individual schemes and monitoring of the long-term impact of the various technologies involved. (Author)

  9. Wind power's coming of age

    International Nuclear Information System (INIS)

    Phillips, J.A.

    1992-01-01

    This article examines the role that wind power has in meeting future energy demand. The topics of the article include demonstration of current technology, an overview of research and market activity, institutional and regulatory barriers and other issues, financing of wind power projects, incentives and penalties, current market experience, national trends in application of wind power plants, advanced technologies, intermittency, power quality, and transmission and distribution

  10. Excess wind power

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    Expansion of wind power is an important element in Danish climate change abatement policy. Starting from a high penetration of approx 20% however, momentary excess production will become an important issue in the future. Through energy systems analyses using the EnergyPLAN model and economic...... analyses it is analysed how excess productions are better utilised; through conversion into hydrogen of through expansion of export connections thereby enabling sales. The results demonstrate that particularly hydrogen production is unviable under current costs but transmission expansion could...

  11. Generation of electricity by wind power

    Energy Technology Data Exchange (ETDEWEB)

    Golding, E W

    1976-01-01

    Information on wind power is presented concerning the history of windmills; estimation of the energy obtainable from the wind; wind characteristics and distribution; wind power sites; wind surveys; wind flow over hills; measurement of wind velocity; wind structure and its determination; wind data and energy estimation; testing of wind driven ac generators; wind-driven machines; propeller type windmills; plants for isolated premises and small communities; economy of wind power generation; construction costs for large wind-driven generators; relationship of wind power to other power sources; research and development; and international cooperation.

  12. The wind power of Mexico

    International Nuclear Information System (INIS)

    Hernandez-Escobedo, Q.; Manzano-Agugliaro, F.; Zapata-Sierra, A.

    2010-01-01

    The high price of fossil fuels and the environmental damage they cause have encouraged the development of renewable energy resources, especially wind power. This work discusses the potential of wind power in Mexico, using data collected every 10 min between 2000 and 2008 at 133 automatic weather stations around the country. The wind speed, the number of hours of wind useful for generating electricity and the potential electrical power that could be generated were estimated for each year via the modelling of a wind turbine employing a logistic curve. A linear correlation of 90.3% was seen between the mean annual wind speed and the mean annual number of hours of useful wind. Maps were constructed of the country showing mean annual wind speeds, useful hours of wind, and the electrical power that could be generated. The results show that Mexico has great wind power potential with practically the entire country enjoying more than 1700 h of useful wind per year and the potential to generate over 2000 kW of electrical power per year per wind turbine installed (except for the Chiapas's State). Indeed, with the exception of six states, over 5000 kW per year could be generated by each turbine. (author)

  13. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...

  14. Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market

    International Nuclear Information System (INIS)

    Gomes, I.L.R.; Pousinho, H.M.I.; Melício, R.; Mendes, V.M.F.

    2017-01-01

    This paper presents an optimal bid submission in a day-ahead electricity market for the problem of joint operation of wind with photovoltaic power systems having an energy storage device. Uncertainty not only due to the electricity market price, but also due to wind and photovoltaic powers is one of the main characteristics of this submission. The problem is formulated as a two-stage stochastic programming problem. The optimal bids and the energy flow in the batteries are the first-stage variables and the energy deviation is the second stage variable of the problem. Energy storage is a way to harness renewable energy conversion, allowing the store and discharge of energy at conveniently market prices. A case study with data from the Iberian day-ahead electricity market is presented and a comparison between joint and disjoint operations is discussed. - • Joint wind and PV systems with energy storage. • Electricity markets. • Stochastic optimization. • Day-ahead market.

  15. Disadvantages of the wind power

    International Nuclear Information System (INIS)

    Andersen, Odd W.

    2005-01-01

    The article discussed various disadvantages of the wind power production and focuses on turbine types, generators, operational safety and development aspects. Some environmental problems are mentioned

  16. Presentation of a stochastic model estimating the wind energy contribution in remote island electrical networks

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Kapsali, M.; Tiligadas, D.

    2012-01-01

    Highlights: ► This study estimates the maximum wind energy contribution to an isolated micro-grid. ► An integrated computational tool is developed on the basis of stochastic analysis. ► The probability distribution of the wind energy surplus and deficit is estimated. ► The results indicate that a strict penetration limit is imposed to wind energy. -- Abstract: The electrification in remote islands whose electricity distribution network is not connected to the mainland’s grid is mostly based on Autonomous Power Stations (APSs) that are usually characterized by a considerably high electricity production cost, while at the same time the contribution of Renewable Energy Sources (RES) in these regions accounts for less than 10% of the total electricity generation. This actually results from the fact that despite the excellent wind potential of most of these islands, the wind energy contribution is significantly restricted from limits imposed to protect the remote electrical grids from possible instability problems, due to the stochastic wind speed behavior and the variable electricity consumption. On the basis of probability distribution of the load demand of a representative Greek island and the corresponding data related to the available wind potential, the present study estimates the maximum – acceptable by the local grid – wind energy contribution. For that reason, an integrated computational algorithm has been developed from first principles, based on a stochastic analysis. According to the results obtained, it becomes evident that with the current wind turbine technology, wind energy cannot play a key role in coping with the electrification problems encountered in many Greek island regions, excluding however the case of introducing bulk energy storage systems that may provide considerable recovery of the remarkable wind energy rejections expected.

  17. Mastering the power of wind

    International Nuclear Information System (INIS)

    Stiegel, J.

    1999-01-01

    In this paper the author deals with environmental aspects use of fossil fuels for the energy production. As a way for our planet to get back to a normal and ecologically balanced system the fossil fuels reduction and their replacement by renewable racecourses is recommended. Energetic potential of flowing sun, wind and tidal waves as power resources is discussed. The natural ecological resources are best utilised in the United States where the installed wind power output is 1600 MW. With 360 MW installed output in 1991 the Denmark took lead among European countries in utilising the wind power. The most dynamic power plant development among the European Union countries was recorded in Germany, where the installed power output of the wind power plants is 632 MW, i.e. i.e. 11.5 times higher compared to 55 MW in 1991. The economy of wind power in Germany and in Slovakia is compared. In Slovakia with annual 200 000 kWh power generation annually and the present kWh purchase price guarantee the rate of return of 10 million slovak crowns investment into a wind power plant project is in 100 years. Although the first wind power plants have already been built in the Zahorie, Kremnicke Bane, and Secovce regions, the wind exploitation status in Slovakia is still limping. According to professionals, the wind conditions in Slovakia are not ideal, but sufficient for a supplementary wind power plant system, that can be quite motivating especially for villages. Mount Chopok or mount Krizna are ideal sites to erect the three-blade tower with respect to wind speed. And also the anticipated Kremnicke vrchy site is worth considering. (author)

  18. Bidding Strategy of Virtual Power Plant with Energy Storage Power Station and Photovoltaic and Wind Power

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2018-01-01

    Full Text Available For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.

  19. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  20. Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea

    Directory of Open Access Journals (Sweden)

    Deockho Kim

    2017-05-01

    Full Text Available Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the potential sites of wind farms, wind speed data at points of interest are not always available. We apply the Kriging method, which is one of spatial interpolation, to estimate wind speed at potential sites. We also consider a wind profile power law to correct wind speed along the turbine height and terrain characteristics. After that, we used estimated wind speed data to calculate wind power output and select the best wind farm sites using a Weibull distribution. Probability density function (PDF or cumulative density function (CDF is used to estimate the probability of wind speed. The wind speed data is classified along the manufacturer’s power curve data. Therefore, the probability of wind speed is also given in accordance with classified values. The average wind power output is estimated in the form of a confidence interval. The empirical data of meteorological towers from Jeju Island in Korea is used to interpolate the wind speed data spatially at potential sites. Finally, we propose the best wind farm site among the four potential wind farm sites.

  1. Wind power outlook 2006

    Energy Technology Data Exchange (ETDEWEB)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  2. Power from the Wind

    Science.gov (United States)

    Roman, Harry T.

    2004-01-01

    Wind energy is the fastest-growing renewable energy source in the world. Over the last 20 years, the wind industry has done a very good job of engineering machines, improving materials, and economies of production, and making this energy source a reality. Like all renewable energy forms, wind energy's successful application is site specific. Also,…

  3. A Stochastic Operational Planning Model for Smart Power Systems

    Directory of Open Access Journals (Sweden)

    Sh. Jadid

    2014-12-01

    Full Text Available Smart Grids are result of utilizing novel technologies such as distributed energy resources, and communication technologies in power system to compensate some of its defects. Various power resources provide some benefits for operation domain however, power system operator should use a powerful methodology to manage them. Renewable resources and load add uncertainty to the problem. So, independent system operator should use a stochastic method to manage them. A Stochastic unit commitment is presented in this paper to schedule various power resources such as distributed generation units, conventional thermal generation units, wind and PV farms, and demand response resources. Demand response resources, interruptible loads, distributed generation units, and conventional thermal generation units are used to provide required reserve for compensating stochastic nature of various resources and loads. In the presented model, resources connected to distribution network can participate in wholesale market through aggregators. Moreover, a novel three-program model which can be used by aggregators is presented in this article. Loads and distributed generation can contract with aggregators by these programs. A three-bus test system and the IEEE RTS are used to illustrate usefulness of the presented model. The results show that ISO can manage the system effectively by using this model

  4. A Dynamic Programming based method for optimizing power system restoration with high wind power penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Li, Pengfei

    2016-01-01

    and relatively low cost. Thus, many countries are increasing the wind power penetration in their power system step by step, such as Denmark, Spain and Germany. The incremental wind power penetration brings a lot of new issues in operation and programming. The power system sometimes will operate close to its...... stable limits. Once the blackout happens, a well-designed restoration strategy is significant. This paper focuses on how to ameliorate the power system restoration procedures to adapt the high wind power penetration and how to take full advantages of the wind power plants during the restoration....... In this paper, the possibility to exploit the stochastic wind power during restoration was discussed, and a Dynamic Programming (DP) method was proposed to make wind power contribute in the restoration rationally as far as possible. In this paper, the method is tested and verified by a modified IEEE 30 Buses...

  5. Innovation paths in wind power

    DEFF Research Database (Denmark)

    Lema, Rasmus; Nordensvärd, Johan; Urban, Frauke

    Denmark and Germany both make substantial investments in low carbon innovation, not least in the wind power sector. These investments in wind energy are driven by the twin objectives of reducing carbon emissions and building up international competitive advantage. Support for wind power dates back....... The ‘Danish Design’ remains the global standard. The direct drive design, while uncommon in Denmark, dominates the German installation base. Direct drive technology has thus emerged as a distinctly German design and sub-trajectory within the overall technological innovation path. When it comes to organising...... global interconnectedness of wind technology markets and the role of emerging new players, such as China and India....

  6. Attitudes towards wind power

    International Nuclear Information System (INIS)

    Young, B.

    1993-01-01

    Planning permission for the construction of a small 'farm' of wind turbines at Delabole (Deli windfarm) had been obtained and it was intended to use this source of renewable energy by generating electricity and selling it to the electrical power companies for distribution through the National Grid. It was important, therefore, to establish just what the attitudes of local residents were to the proposed development. A programme of research was discussed with the developer and it was agreed that an attitude survey would be conducted in the local area in the summer of 1990, before the turbines were erected, and before the tourist season was completely spent in order to obtain the views of visitors as well. A similar survey would then be done one year later, when the Deli windfarm was established and running. In addition, control samples would be taken at these two times in Exeter to give baseline information on attitudes toward this topic. This proposal was put to the developer and agreement was reached with him and the UK Department of Energy who were providing financial support for the research. The results of the research are reported. (author)

  7. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Costa, L.M.

    2008-12-01

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  8. Supplementary speed control for wind power smoothing

    NARCIS (Netherlands)

    Haan, de J.E.S.; Frunt, J.; Kechroud, A.; Kling, W.L.

    2010-01-01

    Wind fluctuations result in even larger wind power fluctuations because the power of wind is proportional to the cube of the wind speed. This report analyzes wind power fluctuations to investigate inertial power smoothing, in particular for the frequency range of 0.08 - 0.5 Hz. Due to the growing

  9. A Review of Power Electronics for Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems. Main wind turbine systems with different generators and power electronic converters are described. The electrical topologies of wind farms with power electronic conversion are discussed. Power electronic applications...

  10. Modeling and Modern Control of Wind Power

    DEFF Research Database (Denmark)

    This book covers the modeling of wind power and application of modern control methods to the wind power control—specifically the models of type 3 and type 4 wind turbines. The modeling aspects will help readers to streamline the wind turbine and wind power plant modeling, and reduce the burden...... of power system simulations to investigate the impact of wind power on power systems. The use of modern control methods will help technology development, especially from the perspective of manufactures....

  11. Noise from wind power plants

    International Nuclear Information System (INIS)

    Ljunggren, S.

    2001-12-01

    First, the generation of noise at wind power plants and the character of the sound is described. The propagation of the sound and its dependence on the structure of the ground and on wind and temperature is treated next. Models for calculation of the noise emission are reviewed and examples of applications are given. Different means for reducing the disturbances are described

  12. Wind power limit calculation basedon frequency deviation using Matlab

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Salgado Duarte, Yorlandis; MejutoFarray, Davis

    2017-01-01

    The utilization of the wind energy for the production of electricity it’s a technology that has promoted itself in the last years, like an alternative before the environmental deterioration and the scarcity of the fossil fuels. When the power generation of wind energy is integrated into the electrical power systems, maybe take place problems in the frequency stability due to, mainly, the stochastic characteristic of the wind and the impossibility of the wind power control on behalf of the dispatchers. In this work, is make an analysis of frequency deviation when the wind power generation rise in an isolated electrical power system. This analysis develops in a computerized frame with the construction of an algorithm using Matlab, which allowed to make several simulations in order to obtain the frequency behavior for different loads and wind power conditions. Besides, it was determined the wind power limit for minimum, medium and maximum load. The results show that the greatest values on wind power are obtained in maximum load condition. However, the minimum load condition limit the introduction of wind power into the system. (author)

  13. A Review of Power Electronics for Wind Power

    Institute of Scientific and Technical Information of China (English)

    Zhe CHEN

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems.Main wind turbine systems with different generators and power electronic converters are described.The electrical topologies of wind farms with power electronic conversion are discussed.Power electronic applications for improving the performance of wind turbines and wind farms in power systems have been illustrated.

  14. Wind Power in Electrical Distribution Systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    Recent years, wind power is experiencing a rapid growth, large number of wind turbines/wind farms have been installed and connected to power systems. In addition to the large centralised wind farms connected to transmission grids, many distributed wind turbines and wind farms are operated as dist...

  15. Starting to Explore Wind Power

    Science.gov (United States)

    Hare, Jonathan

    2008-01-01

    Described is a simple, cheap and versatile homemade windmill and electrical generator suitable for a school class to use to explore many aspects and practicalities of using wind to generate electrical power. (Contains 8 figures.)

  16. Wind power policy in Norway

    International Nuclear Information System (INIS)

    2002-01-01

    The Norwegian government's ambition of developing 3 TWh wind power by 2010 seems hard to fulfill. Recently Norway's first wind park was officially opened on the island of Smoela, just off Kristiansund. The 20 large windmills are Danish-made and described in some detail in this article. Fulfillment of the government's ambition requires that 20 similar power stations are put into operation the coming eight years, and so far it has not been decided to build the next one. Statkraft have great ambitions for wind power. However, environmental considerations present difficulties. For instance, for Smoela, Statkraft spent an extra 4 million NOK on ground cables the last 1.5 km to land in order to minimize the disturbance of bird populations. Considerations for the white-tailed eagle may be a decisive factor in the development of wind power plants in Norway

  17. Theoretical derivation of wind power probability distribution function and applications

    International Nuclear Information System (INIS)

    Altunkaynak, Abdüsselam; Erdik, Tarkan; Dabanlı, İsmail; Şen, Zekai

    2012-01-01

    Highlights: ► Derivation of wind power stochastic characteristics are standard deviation and the dimensionless skewness. ► The perturbation is expressions for the wind power statistics from Weibull probability distribution function (PDF). ► Comparisons with the corresponding characteristics of wind speed PDF abides by the Weibull PDF. ► The wind power abides with the Weibull-PDF. -- Abstract: The instantaneous wind power contained in the air current is directly proportional with the cube of the wind speed. In practice, there is a record of wind speeds in the form of a time series. It is, therefore, necessary to develop a formulation that takes into consideration the statistical parameters of such a time series. The purpose of this paper is to derive the general wind power formulation in terms of the statistical parameters by using the perturbation theory, which leads to a general formulation of the wind power expectation and other statistical parameter expressions such as the standard deviation and the coefficient of variation. The formulation is very general and can be applied specifically for any wind speed probability distribution function. Its application to two-parameter Weibull probability distribution of wind speeds is presented in full detail. It is concluded that provided wind speed is distributed according to a Weibull distribution, the wind power could be derived based on wind speed data. It is possible to determine wind power at any desired risk level, however, in practical studies most often 5% or 10% risk levels are preferred and the necessary simple procedure is presented for this purpose in this paper.

  18. Panorama 2016 - Offshore wind power

    International Nuclear Information System (INIS)

    Vinot, Simon

    2015-11-01

    While onshore wind power is a rapidly growing global industry, the offshore wind power market remains in its consolidation and globalization phase. This most mature of renewable marine energies continues to develop and can no longer be considered a niche industry. This fact sheet evaluates the market over the last several years, looking at its potential and its current rank in terms of electricity production costs. (author)

  19. How wind power landscapes change

    DEFF Research Database (Denmark)

    Möller, Bernd

    2006-01-01

    Following 25 years of continuous development, Danish wind energy landscapes are going to face changes. Ceased on-shore construction, unresolved re-powering and stalled regional planning characterize the situation overshadowed by off-shore development. One of the factors inhibiting development...... in general. However, the pattern of visibility will become askew, and the present homogenous distribution of visibility will disappear. This skewness, together with changing ownership and receding local involvement, could eventually lead to lower popular acceptance of wind power....

  20. Panorama 2013 - Offshore wind power

    International Nuclear Information System (INIS)

    Vinot, Simon

    2012-10-01

    While onshore wind power is already a well-developed global industry, offshore wind power is still in the consolidation and globalization phase. The most mature of marine renewable energies is beginning to venture off the European coast and even to other continents, driven by public policies and the ever increasing number of players joining this promising market, which should evolve into deeper waters thanks to floating structures. (author)

  1. Stochastic Analysis of Wind Energy for Wind Pump Irrigation in Coastal Andhra Pradesh, India

    Science.gov (United States)

    Raju, M. M.; Kumar, A.; Bisht, D.; Rao, D. B.

    2014-09-01

    The rapid escalation in the prices of oil and gas as well as increasing demand for energy has attracted the attention of scientists and researchers to explore the possibility of generating and utilizing the alternative and renewable sources of wind energy in the long coastal belt of India with considerable wind energy resources. A detailed analysis of wind potential is a prerequisite to harvest the wind energy resources efficiently. Keeping this in view, the present study was undertaken to analyze the wind energy potential to assess feasibility of the wind-pump operated irrigation system in the coastal region of Andhra Pradesh, India, where high ground water table conditions are available. The stochastic analysis of wind speed data were tested to fit a probability distribution, which describes the wind energy potential in the region. The normal and Weibull probability distributions were tested; and on the basis of Chi square test, the Weibull distribution gave better results. Hence, it was concluded that the Weibull probability distribution may be used to stochastically describe the annual wind speed data of coastal Andhra Pradesh with better accuracy. The size as well as the complete irrigation system with mass curve analysis was determined to satisfy various daily irrigation demands at different risk levels.

  2. Wind farm - A power source in future power systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    wind turbines and wind farms, and then introduces the wind power development and wind farms. An optimization platform for designing electrical systems of offshore wind farms is briefed. The major issues related to the grid connection requirements and the operation of wind turbines/farms in power......The paper describes modern wind power systems, introduces the issues of large penetration of wind power into power systems, and discusses the possible methods of making wind turbines/farms act as a power source, like conventional power plants in power systems. Firstly, the paper describes modern...... systems are illustrated....

  3. Wind power planning: assessing long-term costs and benefits

    International Nuclear Information System (INIS)

    Kennedy, Scott

    2005-01-01

    In the following paper, a new and straightforward technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic load duration curves to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. The model is applied to potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO 2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on CO 2 charges, and capital costs for wind turbines and IGCC plant is also discussed. The methodology is intended for use by energy planners in assessing the social benefit of future investments in wind power

  4. Offshore wind power in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H. [VTT Energy, Espoo (Finland)

    1998-12-31

    The objectives of the project were to estimate the technical offshore wind power potential of the Gulf of Bothnia, with cost assessments, to study icing conditions and ice loads, and to design a foundation suitable for the environmental conditions. The technical offshore potential from Vaasa to Tornio is huge, more than 40 TWh/a, although the cost of offshore wind power is still higher than on land. Wind turbines have not previously been designed for the icing conditions found in Gulf of Bothnia and the recommendations for load cases and siting of megawatt-class turbines are an important result of the project. (orig.)

  5. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    Science.gov (United States)

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  6. Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load

    Science.gov (United States)

    Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.

    2017-12-01

    Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.

  7. Wind power; Die Kraft der Winde

    Energy Technology Data Exchange (ETDEWEB)

    Mardo, Dietrich

    2009-10-30

    Wind power plants are probably only one pillar of the bridge that is taking us into an energy future still unimaginable to us. They are extremely cost-intensive and bulky and they spoil our landscapes. Their patronage by political leaders is understandable considering our excessive dependence on oil and gas. True energy autonomy is currently still a utopian dream for a country as poor in resources as Germany. On the other hand, to reach Utopia you have to build bridges there. Seen this way all currently available types of renewable energy represent bridge technologies whose realisation is imperative.

  8. Wind power in political whirlwind

    International Nuclear Information System (INIS)

    Morch, Stein

    2002-01-01

    In Norway, according to this article, shifting fair wind and head wind for wind power have changed to unpredictable political whirlwinds. That is, there is great uncertainty with respect to further development of wind power in Norway as well as in nearby markets such as Sweden, Denmark and the Netherlands. The government, represented by Enova, has announced reduced investment grants, and so the realization of a ''green'' market, at home or across the frontiers, becomes very important. The political goal of producing 3 TWh of wind power per year by 2010 apparently is still valid, but it is difficult to see any robust and convincing clarity when it comes to policy instruments and economical frames that will make it possible to reach that goal. In its directive on renewable energy sources in the energy generation, the EU has quoted a total increase in capacity from 14 percent in 1997 to 22 percent in 2010. This has been shared among the member countries as indicative targets and there is great freedom in the selection of policy instruments. At the end of 2002, the wind power production in Norway is 0.3 TWh/year

  9. China Wind Power Outlook 2010

    International Nuclear Information System (INIS)

    Junfeng, Li; Pengfei, Shi; Hu, Gao

    2010-10-01

    China's wind power can reach 230 GW of installed capacity by 2020, which is equal to 13 times the current capacity of the Three Gorges Dam; its annual electricity output of 464.9 TWh could replace 200 coal fire power plants. In 2009, China led the world in newly installed wind-energy devices, reaching a capacity of 13.8 GW (10,129 turbines) - a rate of one new turbine every hour. In terms of overall capacity, China ranks second, at 25.8 GW. The report projects that by 2020, China's total wind power capacity will reach at least 150GW, possibly up to 230GW, which, if realized, could cut 410 million tons of CO2 emission, or 150 million tons of coal consumption. Compared to multinationals, many Chinese companies are young and lack a strong basis for research and development. Despite a renewable energy policy requiring grid companies to purchase all electricity from wind farms, access to wind power for the grid is frequently lagging behind an unstable, out-dated grid infrastructure. There is also the problem of a lack of incentives and penalties for grid companies, and slow progress in more wind energy technologies.

  10. China Wind Power Outlook 2010

    Energy Technology Data Exchange (ETDEWEB)

    Junfeng, Li; Pengfei, Shi; Hu, Gao [Chinese Renewable Energy Industries Association CREIA, Beijing (China)

    2010-10-15

    China's wind power can reach 230 GW of installed capacity by 2020, which is equal to 13 times the current capacity of the Three Gorges Dam; its annual electricity output of 464.9 TWh could replace 200 coal fire power plants. In 2009, China led the world in newly installed wind-energy devices, reaching a capacity of 13.8 GW (10,129 turbines) - a rate of one new turbine every hour. In terms of overall capacity, China ranks second, at 25.8 GW. The report projects that by 2020, China's total wind power capacity will reach at least 150GW, possibly up to 230GW, which, if realized, could cut 410 million tons of CO2 emission, or 150 million tons of coal consumption. Compared to multinationals, many Chinese companies are young and lack a strong basis for research and development. Despite a renewable energy policy requiring grid companies to purchase all electricity from wind farms, access to wind power for the grid is frequently lagging behind an unstable, out-dated grid infrastructure. There is also the problem of a lack of incentives and penalties for grid companies, and slow progress in more wind energy technologies.

  11. Low-power wind plants

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Shevchenko, Yu.V.; Shikhajlov, N.A.; Kokhanevich, V.P.; Tanan, G.L.

    1993-01-01

    Design peculiarities, as well as the prospects of development and introduction of the low-power (from 0.5 up to 4 kW) wind power plants (WPP) are considered. The variants of WPP with vertical and horizontal rotation axis are described. The data characterizing cost and structure of expenditures on WPP manufacture and operation are given

  12. Reducing storage of global wind ensembles with stochastic generators

    KAUST Repository

    Jeong, Jaehong

    2018-03-09

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth’s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  13. Reducing storage of global wind ensembles with stochastic generators

    KAUST Repository

    Jeong, Jaehong; Castruccio, Stefano; Crippa, Paola; Genton, Marc G.

    2018-01-01

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth’s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  14. Spatial dependence in wind and optimal wind power allocation: A copula-based analysis

    International Nuclear Information System (INIS)

    Grothe, Oliver; Schnieders, Julius

    2011-01-01

    The investment decision on the placement of wind turbines is, neglecting legal formalities, mainly driven by the aim to maximize the expected annual energy production of single turbines. The result is a concentration of wind farms at locations with high average wind speed. While this strategy may be optimal for single investors maximizing their own return on investment, the resulting overall allocation of wind turbines may be unfavorable for energy suppliers and the economy because of large fluctuations in the overall wind power output. This paper investigates to what extent optimal allocation of wind farms in Germany can reduce these fluctuations. We analyze stochastic dependencies of wind speed for a large data set of German on- and offshore weather stations and find that these dependencies turn out to be highly nonlinear but constant over time. Using copula theory we determine the value at risk of energy production for given allocation sets of wind farms and derive optimal allocation plans. We find that the optimized allocation of wind farms may substantially stabilize the overall wind energy supply on daily as well as hourly frequency. - Highlights: → Spatial modeling of wind forces in Germany. → A novel way to assess nonlinear dependencies of wind forces by copulas. → Wind turbine allocation by maximizing lower quantiles of energy production. → Optimal results show major increase in reliable part of wind energy.

  15. Strategic bidding for wind power producers in electricity markets

    International Nuclear Information System (INIS)

    Sharma, Kailash Chand; Bhakar, Rohit; Tiwari, H.P.

    2014-01-01

    Highlights: • Game theoretic bidding strategy approach developed to optimize wind power producers bids. • Rival behavior modeled through Stochastic Cournot model. • Location based dual imbalance price mechanism proposed to obtain imbalance charges. • Proposed approach evaluated using two realistic case studies. • Proposed approach increases profit of strategic wind power producers significantly. - Abstract: In evolving electricity markets, wind power producers (WPPs) would increase their profit through strategic bidding. However, generated power by WPPs is highly random, which may result into heavy imbalance charges. In markets dominated by wind generators, they would optimize their offered bids, considering rival behavior. In oligopolistic day-ahead electricity markets, this strategic behavior can be represented as a Stochastic Cournot model. Wind uncertainty is represented by scenarios generated using Auto Regressive Moving Average (ARMA) model. With a consideration of wind power uncertainty and imbalance charges, strategic WPPs can maximize their expected payoff or profit through the proposed Nash equilibrium based bidding strategy. Nash equilibrium is obtained using payoff matrix approach. Proposed approach is evaluated on two realistic case studies considering different technical constraints. Obtained results shows that proposed bidding strategy mechanism offers quantum increase in profit for WPPs, when their behavior is modeled in a game theoretic framework. Flexibility of approach offers opportunities for its extension to associated challenges

  16. Wind power project at Pasni

    International Nuclear Information System (INIS)

    Masud, Jamil

    1998-01-01

    Major power generation capacity additions have recently been achieved in Pakistan as a result of policy initiatives taken in response to widespread power shortages in the eighties. These additions are based mainly on residual fuel oil and natural gas as fuel, resulting in a marked shift in favor of thermal generation and away from the traditionally dominant hydel sources. In recent decades, the supply of electricity to less developed areas has also been accorded high priority in Pakistan, although economic considerations in grid expansion have largely limited an otherwise aggressive rural electrification program to areas easily accessible from the national grid. These factors, coupled with relatively high system losses, have contributed to an unprecedented increase in emissions of greenhouse gases from the power generation industry in the country. An option which merits serious consideration in Pakistan is wind power. Wind power provides an opportunity to reduce dependence on imported fossil fuels and, at the same time, expand the power supply capacity to remote locations where grid expansion is not practical. Preliminary analysis of wind data in selected coastal locations in the Balochistan province indicates that a potential exists for harvesting wind energy using currently available technologies. (author)

  17. Integrated Wind Power Planning Tool

    DEFF Research Database (Denmark)

    Rosgaard, M. H.; Giebel, Gregor; Nielsen, T. S.

    2012-01-01

    model to be developed in collaboration with ENFOR A/S; a danish company that specialises in forecasting and optimisation for the energy sector. This integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting......This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely...

  18. Integrated Wind Power Planning Tool

    DEFF Research Database (Denmark)

    Rosgaard, M. H.; Hahmann, Andrea N.; Nielsen, T. S.

    This poster describes the status as of April 2012 of the Public Service Obligation (PSO) funded project PSO 10464 \\Integrated Wind Power Planning Tool". The project goal is to integrate a meso scale numerical weather prediction (NWP) model with a statistical tool in order to better predict short...... term power variation from off shore wind farms, as well as to conduct forecast error assessment studies in preparation for later implementation of such a feature in an existing simulation model. The addition of a forecast error estimation feature will further increase the value of this tool, as it...

  19. Economic performance indicators of wind energy based on wind speed stochastic modeling

    International Nuclear Information System (INIS)

    D’Amico, Guglielmo; Petroni, Filippo; Prattico, Flavio

    2015-01-01

    Highlights: • We propose a new and different wind energy production indicator. • We compute financial profitability of potential wind power sites. • The wind speed process is modeled as an indexed semi-Markov chain. • We check if the wind energy is a good investment with and without incentives. - Abstract: We propose the computation of different wind energy production indicators and financial profitability of potential wind power sites. The computation is performed by modeling the wind speed process as an indexed semi-Markov chain to predict and simulate the wind speed dynamics. We demonstrate that the indexed semi-Markov chain approach enables reproducing the indicators calculated on real data. Two different time horizons of 15 and 30 years are analyzed. In the first case we consider the government incentives on the energy price now present in Italy, while in the second case the incentives have not been taken into account

  20. Drivers of imbalance cost of wind power

    DEFF Research Database (Denmark)

    Obersteiner, C.; Siewierski, T.; Andersen, Anders

    2010-01-01

    In Europe an increasing share of wind power is sold on the power market. Therefore more and more wind power generators become balancing responsible and face imbalance cost that reduce revenues from selling wind power. A comparison of literature illustrates that the imbalance cost of wind power...... varies in a wide range. To explain differences we indentify parameters influencing imbalance cost and compare them for case studies in Austria, Denmark and Poland. Besides the wind power forecast error also the correlation between imbalance and imbalance price influences imbalance cost significantly...... of imperfect forecast is better suited to reflect real cost incurred due to inaccurate wind power forecasts....

  1. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  2. Stochastic Optimal Dispatch of Virtual Power Plant considering Correlation of Distributed Generations

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2015-01-01

    Full Text Available Virtual power plant (VPP is an aggregation of multiple distributed generations, energy storage, and controllable loads. Affected by natural conditions, the uncontrollable distributed generations within VPP, such as wind and photovoltaic generations, are extremely random and relative. Considering the randomness and its correlation of uncontrollable distributed generations, this paper constructs the chance constraints stochastic optimal dispatch of VPP including stochastic variables and its random correlation. The probability distributions of independent wind and photovoltaic generations are described by empirical distribution functions, and their joint probability density model is established by Frank-copula function. And then, sample average approximation (SAA is applied to convert the chance constrained stochastic optimization model into a deterministic optimization model. Simulation cases are calculated based on the AIMMS. Simulation results of this paper mathematic model are compared with the results of deterministic optimization model without stochastic variables and stochastic optimization considering stochastic variables but not random correlation. Furthermore, this paper analyzes how SAA sampling frequency and the confidence level influence the results of stochastic optimization. The numerical example results show the effectiveness of the stochastic optimal dispatch of VPP considering the randomness and its correlations of distributed generations.

  3. Wind power in Arctic regions

    International Nuclear Information System (INIS)

    Lundsager, P.; Ahm, P.; Madsen, B.; Krogsgaard, P.

    1993-07-01

    Arctic or semi-arctic regions are often endowed with wind resources adequate for a viable production of electricity from the wind. Only limited efforts have so far been spent to introduce and to demonstrate the obvious synergy of combining wind power technology with the problems and needs of electricity generation in Arctic regions. Several factors have created a gap preventing the wind power technology carrying its full role in this context, including a certain lack of familiarity with the technology on the part of the end-users, the local utilities and communities, and a lack of commonly agreed techniques to adapt the same technology for Arctic applications on the part of the manufacturers. This report is part of a project that intends to contribute to bridging this gap. The preliminary results of a survey conducted by the project are included in this report, which is a working document for an international seminar held on June 3-4, 1993, at Risoe National Laboratory, Denmark. Following the seminar a final report will be published. It is intended that the final report will serve as a basis for a sustained, international effort to develop the wind power potential of the Arctic and semi-arctic regions. The project is carried out by a project group formed by Risoe, PA Energy and BTM Consult. The project is sponsored by the Danish Energy Agency of the Danish Ministry of Energy through grant no. ENS-51171/93-0008. (au)

  4. Wind power and bird kills

    International Nuclear Information System (INIS)

    Raynolds, M.

    1998-01-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy

  5. Wind power and bird kills

    Energy Technology Data Exchange (ETDEWEB)

    Raynolds, M.

    1998-12-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy.

  6. Wind for Schools: A Wind Powering America Project

    Science.gov (United States)

    US Department of Energy, 2007

    2007-01-01

    The U.S. Department of Energy's (DOE's) Wind Powering America program (based at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously educating college seniors regarding wind energy applications. The three primary project goals of…

  7. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  8. Wind-powered aqueduct systems

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, F R; Ljungstroem, O [ed.

    1976-01-01

    The MITRE Corporation is proposing to develop a preliminarydesign for a system that would use large-scale wind-driven units to provide power for the pumping of water from the main reservoir to auxiliary reservoirs in other parts of an aqueduct system. The study would include a comparison of the cost and effectiveness of alternative methods of performing such operations.

  9. Scaling forecast models for wind turbulence and wind turbine power intermittency

    Science.gov (United States)

    Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy

    2017-04-01

    The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.

  10. Wind power; Vindkraft

    Energy Technology Data Exchange (ETDEWEB)

    Loevseth, Joergen

    2009-07-01

    The clear majority of Norwegian politicians seem to think that the climate crisis must be taken seriously. But they have not taken the consequences of this view in relation to what Norway should do. Particularly to act quickly. Technologies for renewable energy must be developed and put into use now. Only through thorough testing and mass production at a mature and affordable technology is it achieved. The innovation must be provided to poor countries. That is where the strongest growth in consumption and emissions is coming. Now coal is the solution - a climate term 'bad guy'. Norway's 'moon landing' with the purification of gas power plants will probably never be profitable. A hyper-modern gas power plant at Kaarstoe - without cleaning - have been idle most of the time since start-up because the power is too expensive. Moreover, natural gas is a very valuable resource even as more and more need to replace oil. The world has a serious energy crisis, oil production is about to pass the top, and only a fifth of the world's population has fully taken part in the festivities. China, India and many other poor countries are now in good speed to make up the rich, with family car to everyone and an enormous need for more electricity. There is a great time pressure in relation to the climate crisis, economic analysis shows that it is costly to delay action. (AG)

  11. Transient stability risk assessment of power systems incorporating wind farms

    DEFF Research Database (Denmark)

    Miao, Lu; Fang, Jiakun; Wen, Jinyu

    2013-01-01

    fed induction generator has been established. Wind penetration variation and multiple stochastic factors of power systems have been considered. The process of transient stability risk assessment based on the Monte Carlo method has been described and a comprehensive risk indicator has been proposed......Large-scale wind farm integration has brought several aspects of challenges to the transient stability of power systems. This paper focuses on the research of the transient stability of power systems incorporating with wind farms by utilizing risk assessment methods. The detailed model of double....... An investigation has been conducted into an improved 10-generator 39-bus system with a wind farm incorporated to verify the validity and feasibility of the risk assessment method proposed....

  12. A Framework to Analyze the Stochastic Harmonics and Resonance of Wind Energy Grid Interconnection

    Directory of Open Access Journals (Sweden)

    Youngho Cho

    2016-08-01

    Full Text Available This paper addresses a modeling and analysis methodology for investigating the stochastic harmonics and resonance concerns of wind power plants (WPPs. Wideband harmonics from modern wind turbines (WTs are observed to be stochastic, associated with real power production, and they may adversely interact with the grid impedance and cause unexpected harmonic resonance, if not comprehensively addressed in the planning and commissioning of the WPPs. These issues should become more critical as wind penetration levels increase. We thus propose a planning study framework comprising the following functional steps: First, the best fitted probability density functions (PDFs of the harmonic components of interest in the frequency domain are determined. In operations planning, maximum likelihood estimations (MLEs followed by a chi-square test are used once field measurements or manufacturers’ data are available. Second, harmonic currents from the WPP are represented by randomly-generating harmonic components based on their PDFs (frequency spectrum and then synthesized for time domain simulations via inverse Fourier transform. Finally, we conduct a comprehensive assessment by including the impacts of feeder configurations, harmonic filters and the variability of parameters. We demonstrate the efficacy of the proposed study approach for a 100-MW offshore WPP consisting of 20 units of 5-MW full converter turbines, a realistic benchmark system adapted from a WPP under development in Korea and discuss lessons learned through this research.

  13. Wind Power Prediction using Ensembles

    DEFF Research Database (Denmark)

    Giebel, Gregor; Badger, Jake; Landberg, Lars

    2005-01-01

    offshore wind farm and the whole Jutland/Funen area. The utilities used these forecasts for maintenance planning, fuel consumption estimates and over-the-weekend trading on the Leipzig power exchange. Othernotable scientific results include the better accuracy of forecasts made up from a simple...... superposition of two NWP provider (in our case, DMI and DWD), an investigation of the merits of a parameterisation of the turbulent kinetic energy within thedelivered wind speed forecasts, and the finding that a “naïve” downscaling of each of the coarse ECMWF ensemble members with higher resolution HIRLAM did...

  14. Strategic Demand-Side Response to Wind Power Integration

    DEFF Research Database (Denmark)

    Daraeepour, Ali; Kazempour, Seyyedjalal; Patiño-Echeverri, Dalia

    2016-01-01

    This paper explores the effects of allowing large, price-responsive consumers to provide reserves in a power system with significant penetration of wind energy. A bilevel optimization model represents the utility maximization problem of a large consumer, subject to a stochastic day-ahead co......-optimization of energy and reserves that a system operator would solve to clear the market while considering wind power uncertainty. An examination of the market outcomes from both an illustrative and a large-scale study using this model allows analysis of a) the effects of the type of behavior of the large consumer (i...

  15. Spatial dependencies of wind power and interrelations with spot price dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Elberg, Christina; Hagspiel, Simeon

    2013-06-15

    Wind power has seen a strong growth over the last decade. Due to its high intermittency, spot prices have become more volatile and exhibit correlated behavior with wind power fed into the system. In this paper, we develop a stochastic simulation model that incorporates the spatial dependencies of wind power and its interrelations with spot prices: We employ a structural supply and demand based model for the electricity spot price that takes into account stochastic production quantities of wind power. Spatial dependencies are modeled with the help of copulas, thus linking the single turbine wind power to the aggregated wind power in a market. The model is applied to the German electricity market where wind power already today makes up a significant share of total power production. Revenue distributions and the market value of different wind power plants are analyzed. We find that the specific location of the considered wind turbine, i.e. its spatial dependency with respect to the aggregated wind power in the system, is of high relevance for its market value. Many of the analyzed locations show an upper tail dependence that adversely impacts the market value. This effect becomes more important for increasing levels of wind power penetration.

  16. Spatial dependencies of wind power and interrelations with spot price dynamics

    International Nuclear Information System (INIS)

    Elberg, Christina; Hagspiel, Simeon

    2013-01-01

    Wind power has seen a strong growth over the last decade. Due to its high intermittency, spot prices have become more volatile and exhibit correlated behavior with wind power fed into the system. In this paper, we develop a stochastic simulation model that incorporates the spatial dependencies of wind power and its interrelations with spot prices: We employ a structural supply and demand based model for the electricity spot price that takes into account stochastic production quantities of wind power. Spatial dependencies are modeled with the help of copulas, thus linking the single turbine wind power to the aggregated wind power in a market. The model is applied to the German electricity market where wind power already today makes up a significant share of total power production. Revenue distributions and the market value of different wind power plants are analyzed. We find that the specific location of the considered wind turbine, i.e. its spatial dependency with respect to the aggregated wind power in the system, is of high relevance for its market value. Many of the analyzed locations show an upper tail dependence that adversely impacts the market value. This effect becomes more important for increasing levels of wind power penetration.

  17. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  18. Stochastic maintenance optimization at Candu power plants

    International Nuclear Information System (INIS)

    Doyle, E.K.; Duchesne, T.; Lee, C.G.; Cho, D.I.

    2004-01-01

    The use of various innovative maintenance optimization techniques at Bruce has lead to cost effective preventive maintenance applications for complex systems as previously reported at ICONE 6 in New Orleans (1996). Further refinement of the station maintenance strategy was evaluated via the applicability of statistical analysis of historical failure data. The viability of stochastic methods in Candu maintenance was illustrated at ICONE 10 in Washington DC (2002). The next phase consists of investigating the validity of using subjective elicitation techniques to obtain component lifetime distributions. This technique provides access to the elusive failure statistics, the lack of which is often referred to in the literature as the principal impediment preventing the use of stochastic methods in large industry. At the same time the technique allows very valuable information to be captured from the fast retiring 'baby boom generation'. Initial indications have been quite positive. The current reality of global competition necessitates the pursuit of all financial optimizers. The next construction phase in the power generation industry will soon begin on a worldwide basis. With the relatively high initial capital cost of new nuclear generation all possible avenues of financial optimization must be evaluated and implemented. (authors)

  19. Nordic wind power conference 2007. Proceedings

    International Nuclear Information System (INIS)

    Cutululis, Nicolaos; Soerensen, Poul

    2007-11-01

    This fourth Nordic Wind Power Conference was focused on power system integration and electrical systems of wind turbines and wind farms. NWPC presents the newest research results related to technical electrical aspects of wind power, spanning from power system integration to electrical design and control of wind turbines. The first NWPC was held in Trondheim (2000), Norway, the second in Gothenburg (2004), Sweden, and the third in Espoo (2006), Finland. Invited speakers, oral presentation of papers and poster sessions ensured this to be a valuable event for professionals and high-level students wanting to strengthen their knowledge on wind power integration and electrical systems. (au)

  20. Nordic wind power conference 2007. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N; Soerensen, P [eds.

    2007-11-15

    This fourth Nordic Wind Power Conference was focused on power system integration and electrical systems of wind turbines and wind farms. NWPC presents the newest research results related to technical electrical aspects of wind power, spanning from power system integration to electrical design and control of wind turbines. The first NWPC was held in Trondheim (2000), Norway, the second in Gothenburg (2004), Sweden, and the third in Espoo (2006), Finland. Invited speakers, oral presentation of papers and poster sessions ensured this to be a valuable event for professionals and high-level students wanting to strengthen their knowledge on wind power integration and electrical systems. (au)

  1. Partial analysis of wind power limit in an electric micro system using continuation power flow

    International Nuclear Information System (INIS)

    Fiallo Guerrero, Jandry; Santos Fuentefria, Ariel; Castro Fernández, Miguel

    2013-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit that can insert in an electric grid without losing stability is a very important matter. Existing in bibliography a few methods for calculation of wind power limit, some of them are based in static constrains, an example is a method based in a continuation power flow analysis. In the present work the method is applied in an electric micro system formed when the system is disconnected of the man grid, the main goal was prove the method in a weak and island network. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  2. Dynamic Influences of Wind Power on The Power System

    DEFF Research Database (Denmark)

    Rosas, Pedro Andrè Carvalho

    2004-01-01

    between different wind turbines.Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suit-able to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power systemquality and stability...... integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting largeamount of wind power showed very small voltage variations. The frequency variations analysed from the Nordel showed also small varia...

  3. Research Developments on Power System Integration of Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe; Hansen, Jens Carsten; Wu, Qiuwei

    2011-01-01

    variability and prediction, wind power plant ancillary services, grid connection and operation, Smart grids and demand side management under market functionality. The topics of the first group of PhD program starting 2011 under the wind energy Sino-Danish Centre for Education & Research (SDC) are also......This paper presents an overview on the recent research activities and tendencies regarding grid integration of wind power in Denmark and some related European activities, including power electronics for enhancing wind power controllability, wind turbines and wind farms modeling, wind power...

  4. Research on unit commitment with large-scale wind power connected power system

    Science.gov (United States)

    Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing

    2017-01-01

    Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.

  5. Wind power today: 1999 Wind Energy program highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, Pat

    2000-04-06

    Wind Power Today is an annual publication that provides an overview for the Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy for the 21st century. Content objectives include: Educate readers about the advantages and potential for widespread deployment of wind energy; explain DOE wind energy program objectives and goals; describe program accomplishments in research and application; examine the barriers to widespread deployment; describe benefits of continued research and development; facilitate technology transfer; attract cooperative wind energy projects with industry.

  6. Trend chart: wind power. Forth quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2017-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the forth quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  7. Trend chart: wind power. First quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-05-01

    This publication presents the wind energy situation of continental France and overseas territories during the first quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  8. Trend chart: wind power. Second quarter 2017

    International Nuclear Information System (INIS)

    2017-08-01

    This publication presents the wind energy situation of continental France and overseas territories during the second quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  9. Trend chart: wind power. Fourth quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2018-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the fourth quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  10. Trend chart: wind power. Third quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  11. Trend chart: wind power. Second quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-08-01

    This publication presents the wind energy situation of continental France and overseas territories during the second quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  12. Trend chart: wind power. Third quarter 2017

    International Nuclear Information System (INIS)

    2017-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  13. Trend chart: wind power. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents the wind energy situation of continental France and overseas territories during the first quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  14. Trend chart: wind power. Forth quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the forth quarter 2015: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  15. Trend chart: wind power. Third quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2015: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  16. Wind power in a deregulated market

    International Nuclear Information System (INIS)

    Ravn, Hans F.

    2000-01-01

    The paper describes organisational and economic elements related to wind power in a deregulated market, it describes physical and technical characteristics of wind power and it describes how wind power is handled in daily operation as well as on the market. (author)

  17. Efficiency of a small wind power station

    International Nuclear Information System (INIS)

    Ivanov, K.; Christov, Ch.; Kozarev, N.

    2001-01-01

    The aim of the study is to obtain the optimal solution for wind station both by technical parameters and costs. The energetic characteristics of the wind as a renewable energy source are discussed and assessment of the economical efficiency is made. For the determination of the optimal wind parameters the method of integral wind curves is used. The low power wind generators (0.4 - 1.5 kW) are considered as optimal for the presented wind characteristics

  18. Wind power forecast error smoothing within a wind farm

    International Nuclear Information System (INIS)

    Saleck, Nadja; Bremen, Lueder von

    2007-01-01

    Smoothing of wind power forecast errors is well-known for large areas. Comparable effects within a wind farm are investigated in this paper. A Neural Network was taken to predict the power output of a wind farm in north-western Germany comprising 17 turbines. A comparison was done between an algorithm that fits mean wind and mean power data of the wind farm and a second algorithm that fits wind and power data individually for each turbine. The evaluation of root mean square errors (RMSE) shows that relative small smoothing effects occur. However, it can be shown for this wind farm that individual calculations have the advantage that only a few turbines are needed to give better results than the use of mean data. Furthermore different results occurred if predicted wind speeds are directly fitted to observed wind power or if predicted wind speeds are first fitted to observed wind speeds and then applied to a power curve. The first approach gives slightly better RMSE values, the bias improves considerably

  19. Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain

    International Nuclear Information System (INIS)

    González-Aparicio, I.; Zucker, A.

    2015-01-01

    Highlights: • Reduction wind power forecasting uncertainty for day ahead and intraday markets. • Statistical relationship between total load and wind power generation. • Accurately forecast expected revenues from wind producer’s perspective. - Abstract: The growing share of electricity production from variable renewable energy sources increases the stochastic nature of the power system. This has repercussions on the markets for electricity. Deviations from forecasted production schedules require balancing of a generator’s position within a day. Short term products that are traded on power and/or reserve markets have been developed for this purpose, providing opportunities to actors who can offer flexibility in the short term. The value of flexibility is typically modelled using stochastic scenario extensions of dispatch models which requires, as a first step, understanding the nature of forecast uncertainties. This study provides a new approach for determining the forecast errors of wind power generation in the time period between the closure of the day ahead and the opening of the first intraday session using Spain as an example. The methodology has been developed using time series analysis for the years 2010–2013 to find the explanatory variables of the wind error variability by applying clustering techniques to reduce the range of uncertainty, and regressive techniques to forecast the probability density functions of the intra-day price. This methodology has been tested considering different system actions showing its suitability for developing intra-day bidding strategies and also for the generation of electricity generated from Renewable Energy Sources scenarios. This methodology could help a wind power producer to optimally bid into the intraday market based on more accurate scenarios, increasing their revenues and the system value of wind.

  20. Sharing wind power forecasts in electricity markets: A numerical analysis

    International Nuclear Information System (INIS)

    Exizidis, Lazaros; Kazempour, S. Jalal; Pinson, Pierre; Greve, Zacharie de; Vallée, François

    2016-01-01

    Highlights: • Information sharing among different agents can be beneficial for electricity markets. • System cost decreases by sharing wind power forecasts between different agents. • Market power of wind producer may increase by sharing forecasts with market operator. • Extensive out-of-sample analysis is employed to draw reliable conclusions. - Abstract: In an electricity pool with significant share of wind power, all generators including conventional and wind power units are generally scheduled in a day-ahead market based on wind power forecasts. Then, a real-time market is cleared given the updated wind power forecast and fixed day-ahead decisions to adjust power imbalances. This sequential market-clearing process may cope with serious operational challenges such as severe power shortage in real-time due to erroneous wind power forecasts in day-ahead market. To overcome such situations, several solutions can be considered such as adding flexible resources to the system. In this paper, we address another potential solution based on information sharing in which market players share their own wind power forecasts with others in day-ahead market. This solution may improve the functioning of sequential market-clearing process through making more informed day-ahead schedules, which reduces the need for balancing resources in real-time operation. This paper numerically evaluates the potential value of sharing forecasts for the whole system in terms of system cost reduction. Besides, its impact on each market player’s profit is analyzed. The framework of this study is based on a stochastic two-stage market setup and complementarity modeling, which allows us to gain further insights into information sharing impacts.

  1. Variability of the Wind Turbine Power Curve

    Directory of Open Access Journals (Sweden)

    Mahesh M. Bandi

    2016-09-01

    Full Text Available Wind turbine power curves are calibrated by turbine manufacturers under requirements stipulated by the International Electrotechnical Commission to provide a functional mapping between the mean wind speed v ¯ and the mean turbine power output P ¯ . Wind plant operators employ these power curves to estimate or forecast wind power generation under given wind conditions. However, it is general knowledge that wide variability exists in these mean calibration values. We first analyse how the standard deviation in wind speed σ v affects the mean P ¯ and the standard deviation σ P of wind power. We find that the magnitude of wind power fluctuations scales as the square of the mean wind speed. Using data from three planetary locations, we find that the wind speed standard deviation σ v systematically varies with mean wind speed v ¯ , and in some instances, follows a scaling of the form σ v = C × v ¯ α ; C being a constant and α a fractional power. We show that, when applicable, this scaling form provides a minimal parameter description of the power curve in terms of v ¯ alone. Wind data from different locations establishes that (in instances when this scaling exists the exponent α varies with location, owing to the influence of local environmental conditions on wind speed variability. Since manufacturer-calibrated power curves cannot account for variability influenced by local conditions, this variability translates to forecast uncertainty in power generation. We close with a proposal for operators to perform post-installation recalibration of their turbine power curves to account for the influence of local environmental factors on wind speed variability in order to reduce the uncertainty of wind power forecasts. Understanding the relationship between wind’s speed and its variability is likely to lead to lower costs for the integration of wind power into the electric grid.

  2. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... and unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility......, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented to increase...

  3. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability. ...

  4. Simulation of power fluctuation of wind farms based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Sun, Yuanzhang; Li, Guojie

    2011-01-01

    , however, is incapable of completely explaining the physical mechanism of randomness of power fluctuation. To remedy such a situation, fluctuation modeling based on the frequency domain is proposed. The frequency domain characteristics of stochastic fluctuation on large wind farms are studied using...... the power spectral density of wind speed, the frequency domain model of a wind power generator and the information on weather and geography of the wind farms. The correctness and effectiveness of the model are verified by comparing the measurement data with simulation results of a certain wind farm. © 2011...

  5. Harnessing wind power with sustained policy support

    Energy Technology Data Exchange (ETDEWEB)

    Meera, L. [BITS-Pilani. Dept. of Economics, Hyderabad (India)

    2012-07-01

    The development of wind power in India began in the 1990s, and has significantly increased in the last few years. The ''Indian Wind Turbine Manufacturers Association (IWTMA)'' has played a leading role in promoting wind energy in India. Although a relative newcomer to the wind industry compared with Denmark or the US, a combination of domestic policy support for wind power and the rise of Suzlon (a leading global wind turbine manufacturer) have led India to become the country with the fifth largest installed wind power capacity in the world. Wind power accounts for 6% of India's total installed power capacity, and it generates 1.6% of the country's power. (Author)

  6. Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants

    International Nuclear Information System (INIS)

    Díaz, Guzmán; Gómez-Aleixandre, Javier; Coto, José

    2016-01-01

    Highlights: • State space representations for simulating wind power plant output are proposed. • The representation of wind speed in state space allows structural analysis. • The joint model incorporates the temporal and spatial dependence structure. • The models are easily integrable into a backward/forward sweep algorithm. • Results evidence the remarkable differences between joint and marginal models. - Abstract: This paper proposes the use of state space models to generate scenarios for the analysis of wind power plant (WPP) generation capabilities. The proposal is rooted on the advantages that state space models present for dealing with stochastic processes; mainly their structural definition and the use of Kalman filter to naturally tackle some involved operations. The specification proposed in this paper comprises a structured representation of individual Box–Jenkins models, with indications about further improvements that can be easily performed. These marginal models are combined to form a joint model in which the dependence structure is easily handled. Indications about the procedure to calibrate and check the model, as well as a validation of its statistical appropriateness, are provided. Application of the proposed state space models provides insight on the need to properly specify the structural dependence between wind speeds. In this paper the joint and marginal models are smoothly integrated into a backward–forward sweep algorithm to determine the performance indicators (voltages and powers) of a WPP through simulation. As a result, visibly heavy tails emerge in the generated power probability distribution through the use of the joint model—incorporating a detailed description of the dependence structure—in contrast with the normally distributed power yielded by the margin-based model.

  7. Offshore Wind Power Planning in Korea

    DEFF Research Database (Denmark)

    Seo, Chul Soo; Cha, Seung-Tae; Park, Sang Ho

    2012-01-01

    this possible, Korea has announced the National offshore power roadmap and is now in pursuit. However, large scale offshore wind farms can incur many problems, such as power quality problems, when connecting to a power system.[1][2] Thus, KEPCO is on the process of a research study to evaluate the effects...... that connecting offshore wind power generation to a power system has on the power system. This paper looks over offshore wind power planning in Korea and describes the development of impact assessment technology of offshore wind farms.......Wind power generation is globally recognized as the most universal and reliable form of renewable energy. Korea is currently depending mostly on coal and petroleum to generate electrical power and is now trying to replace them with renewable energy such as offshore wind power generation. To make...

  8. Blowing in the Wind: A Review of Wind Power Technology

    Science.gov (United States)

    Harris, Frank

    2014-01-01

    The use of wind as a replenishable energy resource has come back into favour in recent decades. It is much promoted as a viable, clean energy option that will help towards reducing CO[subscript 2] emissions in the UK. This article examines the history of wind power and considers the development of wind turbines, together with their economic,…

  9. Wind power development and policies in China

    International Nuclear Information System (INIS)

    Liao, Cuiping; Farid, Nida R.; Jochem, Eberhard; Zhang, Yi

    2010-01-01

    The People's Republic of China foresees a target of 30 GW for installed wind power capacity by 2010 (2008: 12 GW). This paper reports on the technical and economic potentials of wind power, the recent development, existing obstacles, and related policies in China. The barriers to further commercialization of the wind power market are important and may deter the 100 GW capacity target of the Chinese government by 2020. The paper concludes that the diffusion of wind power in China is an important element for not only reducing global greenhouse gas emissions, but also for worldwide progress of wind power technology and needed economies of scale. (author)

  10. Sources of the wind power stations

    International Nuclear Information System (INIS)

    Chudivani, J.; Huettner, L.

    2012-01-01

    The paper deals with problems of the wind power stations. Describes the basic properties of wind energy. Shows and describes the different types of electrical machines used as a source of electricity in the wind power stations. Shows magnetic fields synchronous generator with salient poles and permanent magnets in the program FEMM. Describes methods for assessing of reversing the effects of the wind power stations on the distribution network. (Authors)

  11. Endurance Wind Power : practical insights into small wind

    International Nuclear Information System (INIS)

    Hicks, D.

    2008-01-01

    This presentation discussed practical issues related to purchasing and installing small wind turbines in Canada. Wind power capacity can be estimated by looking at provincial wind maps as well as by seeking wind data at local airports. Wind resources are typically measured at heights of between 20 meters and 50 m. The height of a wind turbine tower can significantly increase the turbine's wind generating capacity. Turbine rotors should always be placed 30 feet higher than obstacles within 500 feet. Many provinces have now mandated utilities to accept renewable energy resources from grid-connected wind energy plants. Net billing systems are used to determine the billing relationship between power-producing consumers and the utilities who will buy the excess power and sell it to other consumers. Utilities are not yet mandated to purchase excess power, and it is likely that federal and provincial legislation will be needed to ensure that net billing systems continue to grow. Many Canadian municipalities have no ordinances related to wind turbine placements. Consumers interested in purchasing small wind turbines should ensure that the turbine has been certified by an accredited test facility and has an adequate safety system. The noise of the turbine as well as its power performance in relation to the purchaser's needs must also be considered. It was concluded that small wind turbines can provide a means for electricity consumers to reduce their carbon footprint and hedge against the inflationary costs of fossil-fuelled energy resources. tabs., figs

  12. Stochastic dynamic response analysis of spar-type wind turbines with catenary or taut mooring systems

    Energy Technology Data Exchange (ETDEWEB)

    Karimirad, Madjid

    2011-03-15

    Floating wind turbines can be the most practical and economical way to extract the vast offshore wind energy resources at deep and intermediate water depths. The Norwegian Ministry of Petroleum and Energy is strongly committed to developing offshore wind technology that utilises available renewable energy sources. As the wind is steadier and stronger over the sea than over land, the wind industry recently moved to offshore areas. Analysis of the structural dynamic response of offshore wind turbines subjected to stochastic wave and wind loads is an important aspect of the assessment of their potential for power production and of their structural integrity. Of the concepts that have been proposed for floating wind turbines, spar-types such as the catenary moored spar (CMS) and tension leg spar (TLS) wind turbines seem to be well-suited to the harsh environmental conditions that exist in the North Sea. Hywind and Sway are two examples of such Norwegian concepts; they are based on the CMS and TLS, respectively. Floating wind turbines are sophisticated structures that are subjected to simultaneous wind and wave actions. The coupled nonlinear structural dynamics and motion response equations of these turbines introduce geometrical nonlinearities through the relative motions and velocities. Moreover, the hydrodynamic and aerodynamic loading of this type of structure is nonlinear. A floating wind turbine is a multi body aero-hydro-servo-elastic structural system; for such structures, the coupled nonlinear equations of motion considering nonlinear excitation and damping forces, including all wave- and wind-induced features, should be solved in the time domain. In this thesis, the motion and structural responses for operational and extreme environmental conditions were considered to investigate the performance and the structural integrity of spar-type floating wind turbines. The power production and the effects of aerodynamic and hydrodynamic damping, including wind

  13. Wind Power Today: 2000 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, W.

    2001-05-08

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

  14. Optimal control of wind power plants

    NARCIS (Netherlands)

    Steinbuch, M.; Boer, de W.W.; Bosgra, O.H.; Peeters, S.A.W.M.; Ploeg, J.

    1988-01-01

    The control system design for a wind power plant is investigated. Both theoverall wind farm control and the individual wind turbine control effect thewind farm dynamic performance.For a wind turbine with a synchronous generator and rectifier/invertersystem a multivariable controller is designed.

  15. Wind power in Mali 1979-1988

    International Nuclear Information System (INIS)

    Mamadou Adama Diallo.

    1990-08-01

    The purpose of this paper is to offer to the users maps of available wind power, the percentage of calm wind, the average speed of the wind and tables of wind frequencies in Mali, in order to provide possible solutions for the energy problems of the country. 11 tabs, 3 maps

  16. Modelling of hydro and wind power in the regulation market

    International Nuclear Information System (INIS)

    Kiviluoma, J.; Holttinen, H.; Meibom, P.

    2006-01-01

    The amount of required regulation capacity in the power system is affected by the wind power prediction errors. A model has been developed which can evaluate the monetary effects of prediction errors. The model can be used to evaluate (1) the regulation costs of wind power, (2) regulation market prices including effects related to the participation of power producers in the regulating power market, (3) value of accurate wind forecasts and (4) the effect of decreasing the length of the spot market clearance. This article discusses the problems related to developing a realistic model of the regulating power market including the interaction between the spot market and the regulating power market. There are several issues that make things complicated. (1) How to calculate the minimum amount of needed secondary (minute) reserves. Traditionally the Nordic TSOs have used an N-1 criteria in each country to determine the required amounts of positive secondary reserve, but as installed wind power capacity grows, it will become relevant to include the wind power prediction errors in the estimation of secondary reserves. (2) Consumption forecast errors and plant outages also contribute to activation of regulating power and should have stochastic input series besides wind power. (3) Risk premiums and transaction costs in the regulating power market are difficult to estimate as well as the effects of the possible use of market power. This is especially true in the Nordic system with the high share of hydro power, since the water value and hydrological limitations make things more complex than in a thermal system. (4) The available regulation capacity is not necessarily equal to the truly available capacity. All producers don't participate in the regulation market although in principle they could. (orig.)

  17. Short-term optimal wind power generation capacity in liberalized electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Roescher, Mark; Larisson, Carlos; Garces, Francisco

    2007-01-01

    Mainly because of environmental concerns and fuel price uncertainties, considerable amounts of wind-based generation capacity are being added to some deregulated power systems. The rapid wind development registered in some countries has essentially been driven by strong subsidizing programs. Since wind investments are commonly isolated from market signals, installed wind capacity can be higher than optimal, leading to distortions of the power prices with a consequent loss of social welfare. In this work, the influence of wind generation on power prices in the framework of a liberalized electricity market has been assessed by means of stochastic simulation techniques. The developed methodology allows investigating the maximal wind capacity that would be profitably deployed if wind investments were subject to market conditions only. For this purpose, stochastic variables determining power prices are accurately modeled. A test system resembling the size and characteristics of the German power system has been selected for this study. The expected value of the optimal, short-term wind capacity is evaluated for a considerable number of random realizations of power prices. The impact of dispersing the wind capacity over statistical independent wind sites has also been evaluated. The simulation results reveal that fuel prices, installation and financing costs of wind investments are very influential parameters on the maximal wind capacity that might be accommodated in a market-based manner

  18. Operational costs induced by fluctuating wind power production in Germany and Scandinavia

    Energy Technology Data Exchange (ETDEWEB)

    Meibom, P. [Risoe National Lab., DTU, System Analysis Dept., Roskilde (Denmark); Weber, C. [Univ. Duisburg-Essen, Chai og Energy Management (Germany); Barth, R.; Brand, H. [Univ. of Stuttgart, Inst. of Energy Economics and the Rational Use of Energy (Germany)

    2007-05-15

    Adding wind power generation in a power system changes the operational patterns of the existing units due to the variability and unpredictability of wind power production. For large amounts of wind power production the expectation is that the operational costs of the other power plants will increase due to more operation time in part-load and more start-ups. The change in operational costs induced by the wind power production can only be calculated by comparing the operational costs in two power system configurations: with wind power production and with alternative production having properties like conventional production, i.e. being predictable and less variable. The choice of the characteristics of the alternative production is not straight forward and will therefore influence the operational costs induced by wind power production. This paper presents a method for calculating the change in operational costs due to wind power production using a stochastic optimization model covering the power systems in Germany and the Nordic countries. Two cases of alternative production are used to calculate the change in operational costs namely perfectly predictable wind power production enabling calculation of the costs connected to unpredictability, and constant wind power production enabling calculation of the operational costs connected to variability of wind power production. A 2010 case with three different wind power production penetration levels is analysed in the paper. (au)

  19. Reactive Power Pricing Model Considering the Randomness of Wind Power Output

    Science.gov (United States)

    Dai, Zhong; Wu, Zhou

    2018-01-01

    With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.

  20. Wind power report Germany 2014

    International Nuclear Information System (INIS)

    Rohrig, Kurt

    2015-01-01

    Record year 2014. In Germany, the expansion figures attained were so high on land and at sea that the overall new installation figure of 5,188 MW surpassed the previous maximum (from 2002) by more than 60%. With an overall capacity of 39,259 MW, for the first time, wind energy in Germany covers 9.7% of gross power consumption. On the global scale a capacity of more than 51,000 MW has been added - another record high for wind energy installations. Power mix. At 161 TWh, renewable energies in Germany covered 27.8% of gross power consumption and provided for the first time more energy than any other energy source. Coming into force of the new REA in August 2014, modified support schemes caused the expansion of biogas plants and large-scale PV installations to falter. The record expansion seen for wind energy can be interpreted as a pull-forward effect due to the tender procedures coming into force in 2017. Grid integration. Loss of production caused by feed-in management measures rose by 44% to 555 GWh as compared to 2012. Wind turbines were affected in 87% of cases but the impact on PV installations is increasing. Power generation must be more flexible and grids expanded to limit loss of production. Of the 23 expansion projects (1,887 km) in the Electricity Grid Expansion Act, just a quarter of them had been realized by the end of 2014 (463 km). In the preliminary analysis results for the 2014 grid development plan, the extent of grid upgrading and conversion was 3050 km. Offshore, the HelWin 1 grid link with a capacity of 580 MW went online. SylWin 1 and BorWin 2, with a total capacity of 1660 MW, are currently being tested in a trial. In the preliminary analysis results for the 2014 offshore grid development plan, grid connections having an overall capacity of 10.3 GW are planned. Onshore. 2014 saw a total of 44 different turbine types installed in Germany. For the first time, virtually the same number of turbines were added in the 3-4 MW class, as in the 2-3 MW

  1. Wind Power Today: Wind Energy Program Highlights 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program accomplishments for the previous year. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2001 edition of Wind Power Today also includes discussions about wind industry growth in 2001, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  2. Wind energy power plants (wind farms) review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, K B; McKeary, M [McMaster Univ., Hamilton, ON (Canada). McMaster Inst. of Environment and Health

    2010-07-01

    Global wind power capacity has increased by an average cumulative rate of over 30 percent over the past 10 years. Although wind energy emits no air pollutants and facilities can often share spaces with other activities, public opposition to wind power development is an ongoing cause of concern. Development at the local level in Ontario has been met with fierce opposition on the basis of health concerns, aesthetic values, potential environmental impacts, and economic risks. This report was prepared for the Town of Wasaga Beach, and examined some of the controversy surrounding wind power developments through a review of evidence found in the scientific literature. The impacts of wind power developments related to noise, shadow flicker, avian mortality, bats, and real estate values were evaluated. The study included details of interviews conducted with individuals from Ontario localities where wind farms were located. 77 refs., 1 tab., 1 fig., 2 appendices.

  3. Global wind power development: Economics and policies

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Cornelis van Kooten, G.; Narbel, Patrick A.

    2013-01-01

    Existing literature indicates that theoretically, the earth's wind energy supply potential significantly exceeds global energy demand. Yet, only 2–3% of global electricity demand is currently derived from wind power despite 27% annual growth in wind generating capacity over the last 17 years. More than 95% of total current wind power capacity is installed in the developed countries plus China and India. Our analysis shows that the economic competitiveness of wind power varies at wider range across countries or locations. A climate change damage cost of US$20/tCO 2 imposed to fossil fuels would make onshore wind competitive to all fossil fuels for power generation; however, the same would not happen to offshore wind, with few exceptions, even if the damage cost is increased to US$100/tCO 2 . To overcome a large number of technical, financial, institutional, market and other barriers to wind power, many countries have employed various policy instruments, including capital subsidies, tax incentives, tradable energy certificates, feed-in tariffs, grid access guarantees and mandatory standards. Besides, climate change mitigation policies, such as the Clean Development Mechanism, have played a pivotal role in promoting wind power. Despite these policies, intermittency, the main technical constraint, could remain as the major challenge to the future growth of wind power. - Highlights: • Global wind energy potential is enormous, yet the wind energy contribution is very small. • Existing policies are boosting development of wind power. • Costs of wind energy are higher than cost of fossil-based energies. • Reasonable premiums for climate change mitigation substantially promote wind power. • Intermittency is the key challenge to future development of wind power

  4. FACTS Devices for Large Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro

    2010-01-01

    Growing number of wind turbines is changing electricity generation profile all over the world. However, high wind energy penetration affects power system safety and stability. For this reason transmission system operators (TSO) impose more stringent connection requirements on the wind power plant...

  5. Dynamic Frequency Response of Wind Power Plants

    DEFF Research Database (Denmark)

    Altin, Müfit

    according to their grid codes. In these scenarios particularly with high wind power penetration cases, conventional power plants (CPPs) such as old thermal power plants are planned to be replaced with wind power plants (WPPs). Consequently, the power system stability will be affected and the control...... to maintain sustainable and reliable operation of the power system for these targets, transmission system operators (TSOs) have revised the grid code requirements. Also, the TSOs are planning the future development of the power system with various wind penetration scenarios to integrate more wind power...... capability of WPPs would be investigated. The objective of this project is to analyze and identify the power system requirements for the synchronizing power support and inertial response control of WPPs in high wind power penetration scenarios. The dynamic frequency response of WPPs is realized...

  6. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  7. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2015-01-01

    Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.

  8. Wind power potential and integration in Africa

    Directory of Open Access Journals (Sweden)

    Agbetuyi, A.F.

    2013-03-01

    Full Text Available Wind energy penetration into power networks is increasing very rapidly all over the world. The great concern about global warming and continued apprehensions about nuclear power around the world should drive most countries in Africa into strong demand for wind generation because of its advantages which include the absence of harmful emissions, very clean and almost infinite availability of wind that is converted into electricity. This paper shows the power available in the wind. It also gives an overview of the wind power potential and integration in some selected Africa countries like Egypt, Morocco, South Africa and Nigeria and the challenges of wind power integration in Africa’s continent are also discussed. The Northern part of Africa is known to be Africa’s Wind pioneers having installed and connected the Wind Energy Converters (WEC to the grid. About 97% of the continent’s total wind installations are located in Egypt, Morocco and Tunisia. Research work should commence on the identified sites with high wind speeds in those selected Africa countries, so that those potential sites can be connected to the grid. This is because the ability of a site to sufficiently accommodate wind generation not only depends on wind speeds but on its ability to interconnect to the existing grid. If these wind energy potentials are tapped and connected to the grid, the erratic and epileptic power supply facing most countries in Africa will be reduced; thereby reducing rural-urban migration and more jobs will be created.

  9. Adaptive robust polynomial regression for power curve modeling with application to wind power forecasting

    DEFF Research Database (Denmark)

    Xu, Man; Pinson, Pierre; Lu, Zongxiang

    2016-01-01

    of the lack of time adaptivity. In this paper, a refined local polynomial regression algorithm is proposed to yield an adaptive robust model of the time-varying scattered power curve for forecasting applications. The time adaptivity of the algorithm is considered with a new data-driven bandwidth selection......Wind farm power curve modeling, which characterizes the relationship between meteorological variables and power production, is a crucial procedure for wind power forecasting. In many cases, power curve modeling is more impacted by the limited quality of input data rather than the stochastic nature...... of the energy conversion process. Such nature may be due the varying wind conditions, aging and state of the turbines, etc. And, an equivalent steady-state power curve, estimated under normal operating conditions with the intention to filter abnormal data, is not sufficient to solve the problem because...

  10. Wind power project; Proyecto eolico

    Energy Technology Data Exchange (ETDEWEB)

    Borja D, Marco A. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    In the international scope, nowadays it is recognized that the wind power generation is an innovating activity of high technology that has been integrated to the electrical systems in order to diversify the power generation and to foment the sustainable development. In several industrialized countries no one discusses any longer if wind power generation is a viable alternative or not, because in the last ten years the facts have widely demonstrated their technical viability and environmental advantage with respect to the conventional generation schemes. [Spanish] En el ambito internacional, hoy en dia se reconoce que la generacion eoloelectrica es una actividad innovadora de alta tecnologia que se ha integrado a los sistemas electricos con el proposito de diversificar la generacion de electricidad y fomentar el desarrollo sustentable. En varios paises industrializados ya no se discute si la generacion eoloelectrica es una alternativa viable o no, pues en los ultimos diez anos los hechos han demostrado ampliamente su viabilidad tecnica y ventaja ambiental respecto a la generacion convencional.

  11. Wind power in Germany - a success story

    International Nuclear Information System (INIS)

    Weller, T.

    1996-01-01

    The successful introduction of wind power to the electric power industry in the Federal Republic of Germany is described using graphic representations to illustrate the industry's growth over the last twenty years. The history of the wind market is discussed, together with the importance of stakeholders as a way of funding the industry. The author concludes that public support for environmentally sensitive power generation was the key factor leading to the success of the wind power industry in Germany. (UK)

  12. Danish Wind Power Export and Cost

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Alberg Østergaard, Poul

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power...... misleading. The cost of CO2 reduction by use of wind power in the period 2004-2008 was only 20 EUR/ton. Furthermore, the Danish wind turbines are not paid for by energy taxes. Danish wind turbines are given a subsidy via the electricity price which is paid by the electricity consumers. In the recent years...... is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both...

  13. Measurement of definite integral of sinusoidal signal absolute value third power using digital stochastic method

    Directory of Open Access Journals (Sweden)

    Beljić Željko

    2017-01-01

    Full Text Available In this paper a special case of digital stochastic measurement of the third power of definite integral of sinusoidal signal’s absolute value, using 2-bit AD converters is presented. This case of digital stochastic method had emerged from the need to measure power and energy of the wind. Power and energy are proportional to the third power of wind speed. Anemometer output signal is sinusoidal. Therefore an integral of the third power of sinusoidal signal is zero. Two approaches are proposed for the third power calculation of the wind speed signal. One approach is to use absolute value of sinusoidal signal (before AD conversion for which there is no need of multiplier hardware change. The second approach requires small multiplier hardware change, but input signal remains unchanged. For the second approach proposed minimal hardware change was made to calculate absolute value of the result after AD conversion. Simulations have confirmed theoretical analysis. Expected precision of wind energy measurement of proposed device is better than 0,00051% of full scale. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR32019

  14. Improving wind power quality with energy storage

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination...... of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times, but allows for a certain fraction of average power in a given timeframe to be available with high...... probability. The amount of storage capacity necessary for significant wind power quality improvement in a given period is found to be 20 to 40% of the energy produced in that period. The necessary power is found to be 80 to 100% of the average power of the period....

  15. Impacts of Wind Power on Power System Stability

    NARCIS (Netherlands)

    Vittal, E.; Keane, A.; Slootweg, J.G.; Kling, W.L.; Ackermann, T.

    2012-01-01

    This chapter examines how wind power will impact the stability of power systems. It focuses on the three aspects of power system stability: voltage stability, rotor angle stability and frequency stability. It completes a detailed analysis as to how wind power in power systems will impact the

  16. POSSPOW: Possible Power of Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Giebel, Gregor; Göçmen, Tuhfe; Sørensen, Poul Ejnar

    2013-01-01

    Introduction In recent years, the very large offshore wind farms were designed as wind power plants, including possibilities to contribute to the stability of the grid by offering grid services (also called ancillary services). One of those services is reserve power, which is achieved by down......-regulating the wind farm from its maximum possible power. The power can be ramped up quite quickly, but the influence of wakes makes it difficult to assess the exact amount of down-regulation available to sell. Currently, Transmission System Operators (TSOs) have no real way to determine exactly the possible power...... will be verified on some of the large offshore wind farms owned by Vattenfall, and possibly in a DONG Energy wind farm too. Dedicated experiments to the wind flow in large offshore wind farms are planned. Main body of abstract Modern wind turbines have a SCADA signal called possible power. In normal operation...

  17. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  18. Systematic Evaluation of Stochastic Methods in Power System Scheduling and Dispatch with Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yishen [Univ. of Washington, Seattle, WA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Zhou, Zhi [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Cong [Argonne National Lab. (ANL), Argonne, IL (United States); Electric Reliability Council of Texas (ERCOT), Austin, TX (United States); Botterud, Audun [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    As more wind power and other renewable resources are being integrated into the electric power grid, the forecast uncertainty brings operational challenges for the power system operators. In this report, different operational strategies for uncertainty management are presented and evaluated. A comprehensive and consistent simulation framework is developed to analyze the performance of different reserve policies and scheduling techniques under uncertainty in wind power. Numerical simulations are conducted on a modified version of the IEEE 118-bus system with a 20% wind penetration level, comparing deterministic, interval, and stochastic unit commitment strategies. The results show that stochastic unit commitment provides a reliable schedule without large increases in operational costs. Moreover, decomposition techniques, such as load shift factor and Benders decomposition, can help in overcoming the computational obstacles to stochastic unit commitment and enable the use of a larger scenario set to represent forecast uncertainty. In contrast, deterministic and interval unit commitment tend to give higher system costs as more reserves are being scheduled to address forecast uncertainty. However, these approaches require a much lower computational effort Choosing a proper lower bound for the forecast uncertainty is important for balancing reliability and system operational cost in deterministic and interval unit commitment. Finally, we find that the introduction of zonal reserve requirements improves reliability, but at the expense of higher operational costs.

  19. Wind power error estimation in resource assessments.

    Directory of Open Access Journals (Sweden)

    Osvaldo Rodríguez

    Full Text Available Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  20. Wind power error estimation in resource assessments.

    Science.gov (United States)

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  1. Analysis of future nuclear power plants competitiveness with stochastic methods

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.

    2004-01-01

    To satisfy the increased demand it is necessary to build new electrical power plants, which could in an optimal way meet, the imposed acceptability criteria. The main criteria are potential to supply the required energy, to supply this energy with minimal (or at least acceptable) costs, to satisfy licensing requirements and be acceptable to public. The main competitors for unlimited electricity production in next few decades are fossil power plants (coal and gas) and nuclear power plants. New renewable power plants (solar, wind, biomass) are also important but due to limited energy supply potential and high costs can be only supplement to the main generating units. Large hydropower plans would be competitive under condition of existence of suitable sites for construction of such plants. The paper describes the application of a stochastic method for comparing economic parameters of future electrical power generating systems including conventional and nuclear power plants. The method is applied to establish competitive specific investment costs of future nuclear power plants when compared with combined cycle gas fired units combined with wind electricity generators using best estimated and optimistic input data. The bases for economic comparison of potential options are plant life time levelized electricity generating costs. The purpose is to assess the uncertainty of several key performance and cost of electricity produced in coal fired power plant, gas fired power plant and nuclear power plant developing probability distribution of levelized price of electricity from different Power Plants, cumulative probability of levelized price of electricity for each technology and probability distribution of cost difference between the technologies. The key parameters evaluated include: levelized electrical energy cost USD/kWh,, discount rate, interest rate for credit repayment, rate of expected increase of fuel cost, plant investment cost , fuel cost , constant annual

  2. Wind power in Norway; Vindkraft i Norge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This report analyses business costs and socio-economic costs in the development of wind power in Norway and policy instruments to encourage such a development. It is founded on an analysis of the development of wind power in other countries, notably U.S.A, Denmark, Germany, the Netherlands and Britain. The report describes the institutional background in each country, the policy instruments that have been used and still are and the results achieved. The various cost components in Norwegian wind power development and the expected market price of wind power are also discussed. The discussion of instruments distinguishes between investment oriented and production oriented instruments. 8 refs., 9 figs., 3 tabs.

  3. Challenges on wind power development in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qianjin; Shi, Jingli

    2010-09-15

    Wind power has experienced exponential growth in China in the past five years, which exceeds the most optimistic expectations. The increasing penetration and aggressive future plan are arousing big concerns about its impact on operation and security of existing power networks. This paper introduces present condition of wind power development in China and the challenges on both grid integration and regulations. Most of these challenges are economical rather than technical. Feed-in tariff policies and grid code are the key countermeasures. Accurate wind forecast and economical mass energy storage are needed to guarantee compliance of wind power to the grid.

  4. A survey on wind power ramp forecasting.

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  5. On the spatial hedging effectiveness of German wind power futures for wind power generators

    DEFF Research Database (Denmark)

    Christensen, Troels Sønderby; Pircalabu, Anca

    2018-01-01

    The wind power futures recently introduced on the German market fill the gap of a standardized product that addresses directly the volume risk in wind power trading. While the German wind power futures entail risk-reducing benefits for wind power generators generally speaking, it remains unclear...... the extent of these benefits across wind farms with different geographical locations. In this paper, we consider the wind utilization at 31 different locations in Germany, and for each site, we propose a copula model for the joint behavior of the site-specific wind index and the overall German wind index....... Our results indicate that static mixture copulas are preferred to the stand-alone copula models usually employed in the economic literature. Further, we find evidence of asymmetric dependence and upper tail dependence. To quantify the benefits of wind power futures at each wind site, we perform...

  6. Modeling and forecasting of wind power generation - Regime-switching approaches

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien

    The present thesis addresses a number of challenges emerging from the increasing penetration of renewable energy sources into power systems. Focus is placed on wind energy and large-scale offshore wind farms. Indeed, offshore wind power variability is becoming a serious obstacle to the integration...... of more renewable energy into power systems since these systems are subjected to maintain a strict balance between electricity consumption and production, at any time. For this purpose, wind power forecasts offer an essential support to power system operators. In particular, there is a growing demand...... case study is the Horns Rev wind farm located in the North Sea. Regime-switching aspects of offshore wind power fluctuations are investigated. Several formulations of Markov-Switching models are proposed in order to better characterize the stochastic behavior of the underlying process and improve its...

  7. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  8. Optimal Control of Wind Power Generation

    Directory of Open Access Journals (Sweden)

    Pawel Pijarski

    2018-03-01

    Full Text Available Power system control is a complex task, which is strongly related to the number and kind of generating units as well as to the applied technologies, such as conventional coal fired power plants or wind and photovoltaic farms. Fast development of wind generation that is considered as unstable generation sets new strong requirements concerning remote control and data hubs cooperating with SCADA systems. Considering specific nature of the wind power generation, the authors analyze the problem of optimal control for wind power generation in farms located over a selected remote-controlled part of the Operator grid under advantageous wind conditions. This article presents an original stepwise method for tracing power flows that makes possible to eliminate current (power overloading of power grid branches. Its core idea is to consider the discussed problem as an optimization task.

  9. Wind Turbine Power Curves Incorporating Turbulence Intensity

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    2014-01-01

    . The model and method are parsimonious in the sense that only a single function (the zero-turbulence power curve) and a single auxiliary parameter (the equivalent turbulence factor) are needed to predict the mean power at any desired turbulence intensity. The method requires only ten minute statistics......The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production...

  10. Impacts from new 50 MW wind power plant - Bogdnaci on the price of electrical energy in Macedonia

    International Nuclear Information System (INIS)

    Minovski, D.; Sarac, V.; Causevski, A.

    2012-01-01

    The paper presents the impact from the new planned wind power plant Bogdnaci on the price for the end users of electrical energy in Republic of Macedonia. In the next years, 50 MW wind power will be installed in the Macedonian electric power system. Production of electricity from wind power plants is unpredictable and of stochastic nature i.e. depends on the weather or the wind speed at the appropriate locations. Output of wind power plants is changing every minute, thus changing in the hourly level can be from 0 - 100%, even several times depending on the occurrence of winds. Changes in output of wind power plants, leads to increased demand for operational reserve in a power system. Preferential price of electrical energy from the wind power plants and increased operational reserve in the electric power system will have big impact on the final price of electrical energy in Republic of Macedonia. (Authors)

  11. Offshore wind power in the Aegean Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Hahmann, Andrea N.

    hub heights at around 100 m using a combination of satellite wind fields and the long-term climate of atmospheric stability from the mesoscale model (Badger et al. 2016). The result of the mean wind speed at hub-height for the Aegean Sea is shown in Figure 1. The map shows the stability dependent......, where the spatial variations in wind speed are very high, accurate resource mapping is of great importance as the produced wind power is proportional to the cubed wind speed. It is challenging to model the wind resource and it is costly to measure from the ground at every place of interest. Maps based...

  12. Conditional prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Kariniotakis, Georges

    2010-01-01

    A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform...... on the characteristics of prediction errors for providing conditional interval forecasts. By simultaneously generating prediction intervals with various nominal coverage rates, one obtains full predictive distributions of wind generation. Adapted resampling is applied here to the case of an onshore Danish wind farm...... to the case of a large number of wind farms in Europe and Australia among others is finally discussed....

  13. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim

    2011-01-01

    , UAVs could be quite cost-effective. In order to test this assumption and to test the limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø has built a lighter-than-air kite with a long tether, Bergen University flies a derivative......This paper describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. Good...... movement. In any case, a good LIDAR or SODAR will cost many tenthousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12MW class, with tip heights of over 200m. Very few measurement masts exist to verify our knowledge of atmospheric physics, and most...

  14. Wind power generation and dispatch in competitive power markets

    Science.gov (United States)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  15. Wind Power: Building and Connecting Large Wind Power Plants; Vindkraft: bygga och ansluta stoerre vindkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    2007-09-15

    This brochure is written for those who want to build a large wind power plant (1 MW or more) or wind power parks. It describes the process from idea to completed plant. A review of environmental impacts of wind power is also included

  16. Realities and myths of wind power

    International Nuclear Information System (INIS)

    Juanico, Luis

    2001-01-01

    In the last ten years we have seen an impressive growth of electrical generation by wind power. However this increase cannot be explained by an advance of the technology or by the improvement of the economic factors. The explanation of the boom is based mostly on environmental aspects instead of strategic considerations on energy supply. In Argentina wind power is promoted as a kind of economically viable panacea based on four myths: the explosive growth of wind power, the decrease of costs as a function of the power increase, the wind power potential of Patagonia, the analogy with conventional technologies. The analysis of these myths shows that the global wind power production is very low and it is concentrated in few developed countries, it is supported by environmental interests and protected by important subsidies. In Argentina this support cannot be justified neither by environmental considerations nor by economic reasons

  17. The Spectrum of Wind Power Fluctuations

    Science.gov (United States)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  18. Attitudes towards wind power development in Denmark

    DEFF Research Database (Denmark)

    Ladenburg, Jacob

    The present paper analyses the attitudes towards existing and future land-based turbines and off-shore wind farms. The analysis is carried out using a probit model to elicit systematic characteristics determining the attitude of the population. The analyses show that off-shore development...... is preferred to land based development, which indicates that the wind power development should be taken off-shore. But, the results also point out that the land-based opportunities for wind power development are not exhausted. On a more detailed level, the results denote that the attitude towards both land...... based and off-shore wind power vary with age of the respondents and experience with wind turbines. Younger respondents are more positive towards wind power than older respondents, pointing towards an increase in acceptance in the future. The attitude was also found to covariate negatively...

  19. Landscape externalities from onshore wind power

    International Nuclear Information System (INIS)

    Meyerhoff, Juergen; Ohl, Cornelia; Hartje, Volkmar

    2010-01-01

    The expansion of renewable energy is a central element of the German Federal Government's climate and energy policy. The target for 2020 is to produce 30% of the electricity from renewable energies. Wind power has been selected to be a major contributor to this change. Replacing old wind turbines by modern ones and building new turbines on land will be crucial in meeting this target. However, the expansion of onshore wind power is not universally accepted. In several regions of Germany residents are protesting against setting up new wind turbines. To determine the negative effects two choice experiments were applied in Westsachsen and Nordhessen, Germany. In both regions the externalities of wind power generation until 2020 based on today's state of technology were measured. The results show that negative landscape externalities would result from expanding wind power generation. Using latent class models three different groups of respondents experiencing different degrees of externalities were identified.

  20. The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming

    International Nuclear Information System (INIS)

    Falsafi, Hananeh; Zakariazadeh, Alireza; Jadid, Shahram

    2014-01-01

    This paper focuses on using DR (Demand Response) as a means to provide reserve in order to cover uncertainty in wind power forecasting in SG (Smart Grid) environment. The proposed stochastic model schedules energy and reserves provided by both of generating units and responsive loads in power systems with high penetration of wind power. This model is formulated as a two-stage stochastic programming, where first-stage is associated with electricity market, its rules and constraints and the second-stage is related to actual operation of the power system and its physical limitations in each scenario. The discrete retail customer responses to incentive-based DR programs are aggregated by DRPs (Demand Response Providers) and are submitted as a load change price and amount offer package to ISO (Independent System Operator). Also, price-based DR program behavior and random nature of wind power are modeled by price elasticity concept of the demand and normal probability distribution function, respectively. In the proposed model, DRPs can participate in energy market as well as reserve market and submit their offers to the wholesale electricity market. This approach is implemented on a modified IEEE 30-bus test system over a daily time horizon. The simulation results are analyzed in six different case studies. The cost, emission and multiobjective functions are optimized in both without and with DR cases. The multiobjective generation scheduling model is solved using augmented epsilon constraint method and the best solution can be chosen by Entropy and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methods. The results indicate demand side participation in energy and reserve scheduling reduces the total operation costs and emissions. - Highlights: • Simultaneous participation of loads in both energy and reserve scheduling. • Environmental/economical scheduling of energy and reserve. • Using demand response for covering wind generation forecast

  1. On maintenance management of wind and nuclear power plants

    International Nuclear Information System (INIS)

    Nilsson, Julia

    2009-11-01

    Electrical production in Sweden today is mainly from nuclear and hydro power. However, there is large increase in renewable energy like wind power and the installed new capacity goals are large. Several electrical production sources are important for the sustainability of the energy system. Maintenance is an approach for keeping a system sustainable. The importance of structured maintenance for reliable electrical production systems triggers the development of qualitative and quantitative maintenance management methods. Examples of these methods are Reliability-Centered Maintenance (RCM) which is a structured qualitative approach that focuses on reliability when planning maintenance, and Reliability Centered Asset Management (RCAM) which is a development of RCM into a quantitative approach with the aim to relate preventive maintenance to total maintenance cost and system reliability. This thesis presents models, as applications of RCAM, based on the methods of Life Cycle Cost (LCC) and mathematical optimization, applied to wind and nuclear power plants. Both deterministic and stochastic approaches have been used and the proposed models are based on the Total Cost model, which summarizes costs for maintenance and production loss, and the Aircraft model, which is an opportunistic maintenance optimization model. Opportunistic maintenance is preventive maintenance performed at opportunities. The wind power applications in this study show on different ways to cover costs of condition monitoring systems (CMS) and further on economic benefits of these when uncertainties of times to failure are included in the model. The nuclear power applications show on that the optimization model is dependent on the discount rate and that a high discount rate gives more motivation for opportunistic replacements. When put into a stochastic framework and compared to other maintenance strategies it is shown that an extended opportunistic maintenance optimization model has a good overall

  2. Harmonics in a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  3. Development of Offshore Wind Power Industry

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao

    2011-01-01

    The offshore wind power development target as initially proposed in "The 12=Five-Year" on energy recourses development and renewable energy recourses currently under development is to reach 5m KW by 2015 and 30m KW by 2020. With the unfolding of offshore wind turbine planning from different areas, the curtain of offshore wind power development for our country's "The 12=Five-Year" has been opened.

  4. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow

    Institute of Scientific and Technical Information of China (English)

    Binrong WEN; Sha WEI; Kexiang WEI; Wenxian YANG; Zhike PENG; Fulei CHU

    2017-01-01

    The magnitude and stability of power output are two key indices of wind turbines.This study investigates the effects of wind shear and tower shadow on power output in terms of power fluctuation and power loss to estimate the capacity and quality of the power generated by a wind turbine.First,wind speed models,particularly the wind shear model and the tower shadow model,are described in detail.The widely accepted tower shadow model is modified in view of the cone-shaped towers of modem large-scale wind turbines.Power fluctuation and power loss due to wind shear and tower shadow are analyzed by performing theoretical calculations and case analysis within the framework of a modified version of blade element momentum theory.Results indicate that power fluctuation is mainly caused by tower shadow,whereas power loss is primarily induced by wind shear.Under steady wind conditions,power loss can be divided into wind farm loss and rotor loss.Wind farm loss is constant at 3α(3α-1)R2/(8H2).By contrast,rotor loss is strongly influenced by the wind turbine control strategies and wind speed.That is,when the wind speed is measured in a region where a variable-speed controller works,the rotor loss stabilizes around zero,but when the wind speed is measured in a region where the blade pitch controller works,the rotor loss increases as the wind speed intensifies.The results of this study can serve as a reference for accurate power estimation and strategy development to mitigate the fluctuations in aerodynamic loads and power output due to wind shear and tower shadow.

  5. A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations

    Directory of Open Access Journals (Sweden)

    Henrik Madsen

    2012-03-01

    Full Text Available Accurate wind power forecasts highly contribute to the integration of wind power into power systems. The focus of the present study is on large-scale offshore wind farms and the complexity of generating accurate probabilistic forecasts of wind power fluctuations at time-scales of a few minutes. Such complexity is addressed from three perspectives: (i the modeling of a nonlinear and non-stationary stochastic process; (ii the practical implementation of the model we proposed; (iii the gap between working on synthetic data and real world observations. At time-scales of a few minutes, offshore fluctuations are characterized by highly volatile dynamics which are difficult to capture and predict. Due to the lack of adequate on-site meteorological observations to relate these dynamics to meteorological phenomena, we propose a general model formulation based on a statistical approach and historical wind power measurements only. We introduce an advanced Markov Chain Monte Carlo (MCMC estimation method to account for the different features observed in an empirical time series of wind power: autocorrelation, heteroscedasticity and regime-switching. The model we propose is an extension of Markov-Switching Autoregressive (MSAR models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH errors in each regime to cope with the heteroscedasticity. Then, we analyze the predictive power of our model on a one-step ahead exercise of time series sampled over 10 min intervals. Its performances are compared to state-of-the-art models and highlight the interest of including a GARCH specification for density forecasts.

  6. Decision Support Tools for Electricity Retailers, Wind Power and CHP Plants Using Probabilistic Forecasts

    DEFF Research Database (Denmark)

    Zugno, Marco; Morales González, Juan Miguel; Madsen, Henrik

    2015-01-01

    : trading for a price-maker wind power producer, management of heat and power systems, operation for retailers in a dynamic-price market. A selection of results shows the viability and appropriateness of the presented stochastic optimization approaches for managing energy systems under uncertainty....

  7. Wind Power - A Power Source Enabled by Power Electronics

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe

    2004-01-01

    . The deregulation of energy has lowered the investment in bigger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production sources from......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. The production, distribution and the use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should be set up...... the conventional, fossil (and short term) based energy sources to renewable energy sources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...

  8. Power Transformer Application for Wind Plant Substations

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

    2010-01-01

    Wind power plants use power transformers to step plant output from the medium voltage of the collector system to the HV or EHV transmission system voltage. This paper discusses the application of these transformers with regard to the selection of winding configuration, MVA rating, impedance, loss evaluation, on-load tapchanger requirements, and redundancy.

  9. High-Altitude Wind Power Generation

    NARCIS (Netherlands)

    Fagiano, L.; Milanese, M.; Piga, D.

    2010-01-01

    Abstract—The paper presents the innovative technology of highaltitude wind power generation, indicated as Kitenergy, which exploits the automatic flight of tethered airfoils (e.g., power kites) to extract energy from wind blowing between 200 and 800 m above the ground. The key points of this

  10. Development of Danish Wind Power Market

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2007-01-01

    The modern phase of Danish wind power started after the oil crisis in 1973. During the eighties technological development resulted in increased cost efficiency. In the early nineties favourable feed-in tariffs were introduced together with easy access to the grid. As a result wind power was booming...

  11. The new IEA Wind Task 36 on Wind Power Forecasting

    DEFF Research Database (Denmark)

    Giebel, Gregor; Cline, Joel; Frank, Helmut

    Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind E...... forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions....

  12. Optimal Placement of Energy Storage and Wind Power under Uncertainty

    Directory of Open Access Journals (Sweden)

    Pilar Meneses de Quevedo

    2016-07-01

    Full Text Available Due to the rapid growth in the amount of wind energy connected to distribution grids, they are exposed to higher network constraints, which poses additional challenges to system operation. Based on regulation, the system operator has the right to curtail wind energy in order to avoid any violation of system constraints. Energy storage systems (ESS are considered to be a viable solution to solve this problem. The aim of this paper is to provide the best locations of both ESS and wind power by optimizing distribution system costs taking into account network constraints and the uncertainty associated to the nature of wind, load and price. To do that, we use a mixed integer linear programming (MILP approach consisting of loss reduction, voltage improvement and minimization of generation costs. An alternative current (AC linear optimal power flow (OPF, which employs binary variables to define the location of the generation, is implemented. The proposed stochastic MILP approach has been applied to the IEEE 69-bus distribution network and the results show the performance of the model under different values of installed capacities of ESS and wind power.

  13. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  14. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show......Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...

  15. Integrated Control for Small Power Wind Generator

    Directory of Open Access Journals (Sweden)

    Hongliang Liu

    2018-05-01

    Full Text Available The control strategies of the small power wind generator are usually divided into the maximum power point tracking (MPPT case, which requires the wind generator produce power as much as possible, and the power limited control (PLC case that demands the wind generator produce a power level following the load requirement. Integration of these two operating cases responding to flexible and sophisticated power demands is the main topic of this article. A small power wind generator including the sluggish mechanical dynamic phenomenon, which uses the permanent magnet synchronous generator, is introduced to validate different control methods integrating MPPT and PLC cases and based on hysteresis control. It is a matter of an indirect power control method derived from three direct methods following perturb and observe principle as well as from a look-up table. To analyze and compare the proposed power control methods, which are implemented into an emulator of a small power wind generator, a power demand profile is used. This profile is randomly generated based on measured rapid wind velocity data. Analyzing experimental results, from the power viewpoint, all proposed methods reveal steady-state error with big amount of peak resulting from the nature of perturb and observe.

  16. Wind Power Statistics Sweden 2009; Vindkraftstatistik 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-04-15

    In 2009, wind power produced 2.5 TWh, an increase of 26 percent over the previous year. Throughout the period 2003-2009 has production of electricity from wind power almost quadrupled. Sweden's total net production of electricity amounted, according to provisional statistics for 2009, to 133.7 TWh. The year 2007 wind energy's share passed 1.0 percent of total net production of electricity for the first time. In 2008 the proportion was 1.4 percent, and in 2009 to almost 1.9 percent of total net production. Total installed power 2009 was 1448 MW and the number of plants was 1359, an inckW{sub pse} with 363 MW and 198 resp. from 2008. In 2009, there were three main support system for wind power in Sweden: the certificate system; the wind pilot project; and the environmental bonus. The electricity certificate system is a market-based support system for electricity generation from renewables which includes wind power as one of the approved techniques. The system was introduced in 2003 and aims to increase the production of electricity from renewable energy sources by 25 TWh from 2002 levels by 2020.. Wind pilot support is a support to the market for large-scale wind power. Support aims to reduce the cost of the creation of new wind energy and promoting new technologies. Wind Pilot Aid, which has existed since 2003, has been extended until in 2012 and has increased by 350 million SEK (about 36 M Euro) for the period 2008-2012. The environmental bonus, which means a tax subsidy, has been stepped down for each year until and by the year 2009, which was the last year. In 2009, environmental bonus was 0.12 SEK/kWh for electricity from offshore wind. For onshore wind power the environmentally bonus ceased in 2008

  17. Validation of Sodar Measurements for Wind Power

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2006-01-01

    the project and a new remote power system has been designed. A direct comparison between SODAR and cup measurements revealed a limitation for the SODAR measurements during different weather conditions, especially since the SODAR was not able to measure wind speeds above 15 m/s due to an increasing back-ground......A ground-based SODAR has been tested for 1½ years together with a traditional measurement set-up consisting of cups and vanes for measuring wind data for wind power assessment at a remote location. Many problems associated to the operation of a remote located SODAR have been solved during...... noise. Instead, using the SODAR as a profiler to establish representative wind speed profiles was successful. These wind speed profiles are combined with low height reference measurements to establish reliable hub height wind speed distributions. Representative wind speed profiles can be establish...

  18. Power Quality Issues on Wind Power Installations in Denmark

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio; Lund, Torsten

    2007-01-01

    offshore wind farms connected at transmission level. In this perspective, the power quality issues are divided into local issues particularly related to the voltage quality in the distribution systems and global issues related to the power system control and stability. Power quality characteristics of wind...

  19. Wind power variability and power system reserves in South Africa

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Litong-Palima, Marisciel; Hahmann, Andrea N.

    2017-01-01

    Variable renewable generation, primarily from wind and solar, introduces new uncertainties in the operation of power systems. This paper describes and applies a method to quantify how wind power development will affect the use of short-term automatic reserves in the future South African power sys...

  20. Model predictive control for wind power gradients

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Boyd, Stephen; Jørgensen, John Bagterp

    2015-01-01

    We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time derivative (gradient) of power delivered to the grid. We...... ranges. The system dynamics are quite non-linear, and the constraints and objectives are not convex functions of the control inputs, so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change of variables, which focuses on power flows, we can...... wind data and modern wind forecasting methods. The simulation results using real wind data demonstrate the ability to reject the disturbances from fast changes in wind speed, ensuring certain power gradients, with an insignificant loss in energy production....

  1. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    compare different storage solutions. In chapter 5, energy storage is evaluated as an alternative for increasing the value of wind power in a market-based power system. A method for optimal short-term scheduling of wind power with energy storage has been developed. The basic model employs a dynamic programming algorithm for the scheduling problem. Moreover, different variants of the scheduling problem based on linear programming are presented. During on-line operation, the energy storage is operated to minimize the deviation between the generation schedule and the actual power output of the wind-storage system. It is shown how stochastic dynamic programming can be applied for the on-line operation problem by explicitly taking into account wind forecast uncertainty. The model presented in chapter 6 extends and improves the linear programming model described in chapter 5. An operation strategy based on model predictive control is developed for effective management of uncertainties. The method is applied in a simulation model of a wind-hydrogen system that supplies the local demand for electricity and hydrogen. Utilization of fuel cell heat and electrolytic oxygen as by-products is also considered. Computer simulations show that the developed operation method is beneficial for grid-connected as well as for isolated systems. For isolated systems, the method makes it possible to minimize the usage of backup power and to ensure a secure supply of hydrogen fuel. For grid-connected wind-hydrogen systems, the method could be applied for maximizing the profit from operating in an electricity market. Comprehensive simulation studies of different example systems have been carried out to obtain knowledge about the benefits and limitations of using energy storage in conjunction with wind power. In order to exploit the opportunities for energy storage in electricity markets, it is crucial that the electrical efficiency of the storage is as high as possible. Energy storage combined with

  2. New tool for integration of wind power forecasting into power system operation

    DEFF Research Database (Denmark)

    Gubina, Andrej F.; Keane, Andrew; Meibom, Peter

    2009-01-01

    The paper describes the methodology that has been developed for transmission system operators (TSOs) of Republic of Ireland, Eirgrid, and Northern Ireland, SONI the TSO in Northern Ireland, to study the effects of advanced wind power forecasting on optimal short-term power system scheduling....... The resulting schedules take into account the electricity market conditions and feature optimal reserve scheduling. The short-term wind power prediction is provided by the Anemos tool, and the scheduling function, including the reserve optimisation, by the Wilmar tool. The proposed methodology allows...... for evaluation of the impacts that different types of wind energy forecasts (stochastic vs. deterministic vs. perfect) have on the schedules, and how the new incoming information via in-day scheduling impacts the quality of the schedules. Within the methodology, metrics to assess the quality of the schedules...

  3. Power Electronics in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2006-01-01

    the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...... electronics is changing from being a minor energy source to be acting as an important power source in the energy system. By that wind power is also getting an added value in the power system operation....

  4. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  5. Coordinated Frequency Control of Wind Turbines in Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Tarnowski, Germán Claudio

    The integration of large amounts of wind power in power systems presents huge challenges. In particular, with the increase of wind power generation, more regulation reserves would be necessary, the capability of the power system to offer conventional regulating power would be reduced...... particular views. These models were developed and verified during this work, basedaround a particular manufacturer’s wind turbine and on said isolated power system withwind power. The capability of variable speed wind turbines for providing Inertial Response is analysed. To perform this assessment, a control...... generation were studied considering a large share of wind power in the system. Results show the abilities of the architectures to manage the variability of the generated wind power, reducing the impact on the grid frequency and providing suitable frequency regulation service when required. The coordination...

  6. Active Power Controls from Wind Power: Bridging the Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fleming, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Y. C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singh, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muljadi, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scholbrook, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aho, J. [Univ. of Colorado, Boulder, CO (United States); Buckspan, A. [Univ. of Colorado, Boulder, CO (United States); Pao, L. [Univ. of Colorado, Boulder, CO (United States); Singhvi, V. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Tuohy, A. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Pourbeik, P. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Brooks, D. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Bhatt, N. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  7. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    price thresholds are significantly higher when the monopolist at the peakload level owns both types of generators. Furthermore, when producing electricity with the peakload generator, the monopolist can avoid facing prices below marginal cost by owning a certain share of the wind generators.......Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...

  8. Wind power, distrubted generation and transmission

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    the possibilities for integration of even more wind power using new power balancing strategies that exploit the possibilities given by the existence of CHP plants as well as the impact of heat pumps for district heating. The analyses demonstrate that it is possible to accommodate 50% or more wind power without......Denmark has the World?s highest penetration of wind power in electricity generation with a share of 15.0% of total domestic demand in 2002 (DEA, 2004). This is unevenly distributed in the two electricity systems of Denmark giving a share as high as 20.7% in Western Denmark in 2003 up from 18...... power balancing strategies are not applied, costly grid expansions will follow expansions in installed wind power capacity....

  9. Siemens Wind Power 3.6 MW wind turbines for large offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, Vladislav; Nygaard Nielsen, Joergen; Thisted, Jan; Groendahl, Erik; Egedal, Per; Noertoft Frydensbjerg, Michael; Jensen, Kim Hoej [Siemens Wind Power A/S, Brande (Denmark)

    2008-07-01

    Siemens Wind power A/S is the key player on the offshore wind power market. The Siemens Wind Power 3.6 MW variable-speed wind turbine is among the word's largest, most advanced and competitive wind turbines with a solid portfolio of large offshore wind farms. Transmission system operators and developers require dynamic wind turbine models for evaluation of fault-ride-through capability and investigations of power system stability. The even larger size of the on- and offshore wind farms has entailed that the grid impact of the voltage and frequency control capability of the wind farm can be appropriated modelled and evaluated. Siemens Wind Power has developed a dynamic model of the 3.6 MW variable-speed wind turbine with the fault-ride-through sequences and models of the voltage and frequency controllers to be applied for large offshore wind farms. The dynamic models have been implemented in the commercially available simulation tools such as DIgSILENT PowerFactory and Siemens PTI PSS/E and successfully validated from measurements. (orig.)

  10. Dynamic Models for Wind Turbines and Wind Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  11. A stochastic framework for clearing of reactive power market

    International Nuclear Information System (INIS)

    Amjady, N.; Rabiee, A.; Shayanfar, H.A.

    2010-01-01

    This paper presents a new stochastic framework for clearing of day-ahead reactive power market. The uncertainty of generating units in the form of system contingencies are considered in the reactive power market-clearing procedure by the stochastic model in two steps. The Monte-Carlo Simulation (MCS) is first used to generate random scenarios. Then, in the second step, the stochastic market-clearing procedure is implemented as a series of deterministic optimization problems (scenarios) including non-contingent scenario and different post-contingency states. In each of these deterministic optimization problems, the objective function is total payment function (TPF) of generators which refers to the payment paid to the generators for their reactive power compensation. The effectiveness of the proposed model is examined based on the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS). (author)

  12. Wind power: public policies; Energia eolica: politicas publicas

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique Tavares; Faga, Murilo Tadeu Werneck [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia]. E-mail: henrique@iee.usp.br; murfaga@iee.usp.br

    2006-07-01

    This paper presents the incentive models to the wind power applied in Germany and Denmark, two countries with great participation of wind power in their energetic matrixes, analysing the barriers found to the wind power development.

  13. Reactive power control methods for improved reliability of wind power inverters under wind speed variations

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    method to relieve the thermal cycling of power switching devices under severe wind speed variations, by circulating reactive power among the parallel power converters in a WTS or among the WTS's in a wind park. The amount of reactive power is adjusted to limit the junction temperature fluctuation...

  14. Impact of integrating wind power in the Norwegian power system

    International Nuclear Information System (INIS)

    Tande, John Olav

    2006-04-01

    Wind power may in the future constitute a significant part of the Norwegian electricity supply. 20 TWh annual wind generation is a realistic goal for 2020 assuming wind farms on-land and offshore. The development of grid codes for wind farms is sound. It is recognising that large wind farms are basically power plants and may participate in securing efficient and stable power system operation. Modern wind farms may control the reactive power or voltage as any other power plant, and may also control active power or frequency as long as wind conditions permits. Grid code requirements must however be carefully assessed and possibly adjusted over time aiming for overall least cost solutions. Development of wind farms are today to some degree hindered by conservative assumptions being made on operation of wind farms in areas with limited power transfer capacity. By accepting temporary grid congestions, however, a large increase installed wind power is viable. For grid congestion that appears a few hours per year only, the cost of lost generation will be modest and may be economic over the alternatives of limiting wind farm capacities or increasing the grid transfer capacity. Wind generation impact on power system operation and adequacy will be overall positive. Combining wind and hydro provides for a more stable annual energy supply than hydro alone, and wind generation will generally be higher in the winter period than in the summer. Wind will replace the generation with the highest operating cost, and reduce the average Nord Pool spot market price. 20 TWh wind will reduce price with about 3 oere/kWh and CO 2 emissions by 12-14 million tons for the case of replacing coal, and about 6 million tons for replacing natural gas. Wind impact on need for balancing power is small, i.e. the extra balancing cost is about 0,8 oere per kWh wind, and about half if investment in new reserve capacity is not needed. In summary this report demonstrates options for large scale integration

  15. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...... turbine model which is developed for the short-term voltage stability studies can be inaccurate and sufficient for the frequency stability studies. Accordingly, a complete and detailed wind power plant model for every kind of study is not feasible in terms of the computational time and also...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system....

  16. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    Directory of Open Access Journals (Sweden)

    Jie Tian

    2017-03-01

    Full Text Available In modern wind farms, maximum power point tracking (MPPT is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control curves for each individual wind turbine off-line. In typical wind farms with regular layout, based on the detailed analysis of the influence of pitch angle and tip speed ratio on the total active power of the wind farm by the exhausted search, the optimization is simplified with the reduced computation complexity. By using the optimized control curves, the annual energy production (AEP is increased by 1.03% compared to using the MPPT method in a case-study of a typical eighty-turbine wind farm.

  17. 77 FR 31839 - Wind and Water Power Program

    Science.gov (United States)

    2012-05-30

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2012 Wind and Water Power Program, Wind Power Peer Review Meeting will review wind technology... portfolio. The 2012 Wind Power Peer Review Meeting will be held June 19 through June 21, 2012, in Alexandria...

  18. Power quality improvements of wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Soebrink, Kent H. [Eltra (Denmark); Stoeber, Ralf; Schettler, Frank; Bergmann, Klaus [Siemens (Germany); Jenkins, Nicholas; Ekanayake, Janaka; Saad-Saoud, Zouhir; Liboa, Maria Luiza; Strbac, Goran [UMIST (United Kingdom); Kaas Pedersen, Joergen; Helgesen Pedersen, Knud Ole [Technical Univ. of Denmark (Denmark)

    1998-06-01

    The main objective of the project was to investigate how the power quality of the electrical output of wind farms could be improved by the use of modern high power electronic technology. Although the research is of direct application to wind energy it will also be relevant to many other types of small-scale generation embedded in utility distribution networks. The operation of wind turbines with asynchronous generators requires reactive power which, if supplied form the network, leads to low voltages and increased losses. In order to improve the power factor of the generation, fixed capacitors are usually used to provide reactive power. However, if they are sized for the full requirement of the wind farm, they can cause self-excitation and potentially damaging and hazardous overvoltages if the wind turbines` connection with the network is interrupted and they become islanded. An advanced Static VAr Compensator (ASVC) uses a power electronic converter to generate or absorb reactive power. They can be used to provide reactive power with rapid control and with only modestly sized passive components (i.e. small capacitors and reactors). The objective of the project was to combine research and development of this novel form of electronic equipment with its application to increase the use of renewable energy, and wind power in particular, in the European Union. (EG) 19 refs.

  19. Wind power development. Status and perspectives

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    1998-09-01

    This is the final report on the status and long-term perspectives for the development of wind power, contributing to the Macro Task E1 on production cost for fusion and alternative technologies, part of the programme for Socio-Economic Research on Fusion. The report concentrates on the development of the production costs for wind power, limited to turbines connected to the public grid. The report shows status and perspectives for production costs for wind turbines until the year 2020-30. In general two trends have dominated the grid-connected wind turbine development until now: The average size of the turbines sold at the market place has increased substantially, while at the same time the efficiency of turbine electricity production has increased steadily. Together these trends have increased the cost-effectiveness of wind power by almost 45% over a time span of 9-10 years. Looking at perspectives, a substantial cut in wind power cost per kWh can be expected within the next 20-30 years. A survey performed for a number of long-term forecasts for the wind power technology in general shows a decrease in production costs of 2-2.5% p.a., which implies that the cost of wind-generated electricity would be halved by the year 2030, probably making it fully competitive to conventional fossil fuel based electricity production. (au)

  20. Switching overvoltages in offshore wind power grids

    DEFF Research Database (Denmark)

    Arana Aristi, Ivan

    and cables are presented. In Chapter 4 results from time domain measurements and simulations of switching operations in offshore wind power grids are described. Specifically, switching operations on a single wind turbine, the collection grid, the export system and the external grid measured in several real...... offshore wind farms are shown together with simulation results. Switching operations in offshore wind power grids can be simulated with different electromagnetic transient programs. Different programs were used in the project and compared results are included in Chapter 4. Also in Chapter 4 different......Switching transients in wind turbines, the collection grid, the export system and the external grid in offshore wind farms, during normal or abnormal operation, are the most important phenomena when conducting insulation coordination studies. However, the recommended models and methods from...

  1. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  2. Off shore wind power plants

    International Nuclear Information System (INIS)

    Bettinali, F.; Botta, G.; Lembo, E.; Serri, L.; Vailati, R.; Viani, S.

    2008-01-01

    In Italy are present sea area with good wind intensity usable for offshore wind farms. The tourist vocation of territory requires facilities to accept the people at sufficient distance from the coast in deep waters. Innovative solution on the floating platforms can be an interesting prospect [it

  3. Estimating the impacts of wind power on power systems—summary of IEA Wind collaboration

    Science.gov (United States)

    Holttinen, Hannele

    2008-04-01

    Adding wind power to power systems will have beneficial impacts by reducing the emissions of electricity production and reducing the operational costs of the power system as less fuel is consumed in conventional power plants. Wind power will also have a capacity value to a power system. However, possible negative impacts will have to be assessed to make sure that they will only offset a small part of the benefits and also to ensure the security of the power system operation. An international forum for the exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The Task 'Design and Operation of Power Systems with Large Amounts of Wind Power' is analyzing existing case studies from different power systems. There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. This paper describes the general issues of wind power impacts on power systems and presents a comparison of results from ten case studies on increased balancing needs due to wind power.

  4. Estimating the impacts of wind power on power systems-summary of IEA Wind collaboration

    International Nuclear Information System (INIS)

    Holttinen, Hannele

    2008-01-01

    Adding wind power to power systems will have beneficial impacts by reducing the emissions of electricity production and reducing the operational costs of the power system as less fuel is consumed in conventional power plants. Wind power will also have a capacity value to a power system. However, possible negative impacts will have to be assessed to make sure that they will only offset a small part of the benefits and also to ensure the security of the power system operation. An international forum for the exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The Task 'Design and Operation of Power Systems with Large Amounts of Wind Power' is analyzing existing case studies from different power systems. There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. This paper describes the general issues of wind power impacts on power systems and presents a comparison of results from ten case studies on increased balancing needs due to wind power

  5. Scenario-based stochastic optimal operation of wind, photovoltaic, pump-storage hybrid system in frequency- based pricing

    International Nuclear Information System (INIS)

    Zare Oskouei, Morteza; Sadeghi Yazdankhah, Ahmad

    2015-01-01

    Highlights: • Two-stage objective function is proposed for optimization problem. • Hourly-based optimal contractual agreement is calculated. • Scenario-based stochastic optimization problem is solved. • Improvement of system frequency by utilizing PSH unit. - Abstract: This paper proposes the operating strategy of a micro grid connected wind farm, photovoltaic and pump-storage hybrid system. The strategy consists of two stages. In the first stage, the optimal hourly contractual agreement is determined. The second stage corresponds to maximizing its profit by adapting energy management strategy of wind and photovoltaic in coordination with optimum operating schedule of storage device under frequency based pricing for a day ahead electricity market. The pump-storage hydro plant is utilized to minimize unscheduled interchange flow and maximize the system benefit by participating in frequency control based on energy price. Because of uncertainties in power generation of renewable sources and market prices, generation scheduling is modeled by a stochastic optimization problem. Uncertainties of parameters are modeled by scenario generation and scenario reduction method. A powerful optimization algorithm is proposed using by General Algebraic Modeling System (GAMS)/CPLEX. In order to verify the efficiency of the method, the algorithm is applied to various scenarios with different wind and photovoltaic power productions in a day ahead electricity market. The numerical results demonstrate the effectiveness of the proposed approach.

  6. Wind power systems. Applications of computational intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingfeng [Toledo Univ., OH (United States). Dept. of Electrical Engineering and Computer Science; Singh, Chanan [Texas A and M Univ., College Station, TX (United States). Electrical and Computer Engineering Dept.; Kusiak, Andrew (eds.) [Iowa Univ., Iowa City, IA (United States). Mechanical and Industrial Engineering Dept.

    2010-07-01

    Renewable energy sources such as wind power have attracted much attention because they are environmentally friendly, do not produce carbon dioxide and other emissions, and can enhance a nation's energy security. For example, recently more significant amounts of wind power are being integrated into conventional power grids. Therefore, it is necessary to address various important and challenging issues related to wind power systems, which are significantly different from the traditional generation systems. This book is a resource for engineers, practitioners, and decision-makers interested in studying or using the power of computational intelligence based algorithms in handling various important problems in wind power systems at the levels of power generation, transmission, and distribution. Researchers have been developing biologically-inspired algorithms in a wide variety of complex large-scale engineering domains. Distinguished from the traditional analytical methods, the new methods usually accomplish the task through their computationally efficient mechanisms. Computational intelligence methods such as evolutionary computation, neural networks, and fuzzy systems have attracted much attention in electric power systems. Meanwhile, modern electric power systems are becoming more and more complex in order to meet the growing electricity market. In particular, the grid complexity is continuously enhanced by the integration of intermittent wind power as well as the current restructuring efforts in electricity industry. Quite often, the traditional analytical methods become less efficient or even unable to handle this increased complexity. As a result, it is natural to apply computational intelligence as a powerful tool to deal with various important and pressing problems in the current wind power systems. This book presents the state-of-the-art development in the field of computational intelligence applied to wind power systems by reviewing the most up

  7. Cooperative wind turbine control for maximizing wind farm power using sequential convex programming

    International Nuclear Information System (INIS)

    Park, Jinkyoo; Law, Kincho H.

    2015-01-01

    Highlights: • The continuous wake model describes well the wake profile behind a wind turbine. • The wind farm power function describes well the power production of a wind farm. • Cooperative control increases the wind farm power efficiency by 7.3% in average. • SCP can be employed to efficiently optimize the control actions of wind turbines. - Abstract: This paper describes the use of a cooperative wind farm control approach to improve the power production of a wind farm. The power production by a downstream wind turbine can decrease significantly due to reduced wind speed caused by the upstream wind turbines, thereby lowering the overall wind farm power production efficiency. In spite of the interactions among the wind turbines, the conventional (greedy) wind turbine control strategy tries to maximize the power of each individual wind turbine by controlling its yaw angle, its blade pitch angle and its generator torque. To maximize the overall wind farm power production while taking the wake interference into account, this study employs a cooperative control strategy. We first derive the wind farm power as a differentiable function of the control actions for the wind turbines in a wind farm. The wind farm power function is then maximized using sequential convex programming (SCP) to determine the optimum coordinated control actions for the wind turbines. Using an example wind farm site and available wind data, we show how the cooperative control strategy improves the power production of the wind farm

  8. Integrating wind power in the (French) power system

    International Nuclear Information System (INIS)

    Pellen, A.

    2007-03-01

    RTE and EDF have no other technological option than to restrain the contribution of the French wind power fleet to base-load generation where it comes in direct competition with the nuclear power plants. The author aims to explain this situation and answer the following questions. Why the fossil fueled reactor fleet in France will not be affected by an evolution of the wind power capacity? Why, in France electric power generation-demand SYSTEM wind power cannot be a substitute for fossil fueled thermal units? (A.L.B.)

  9. Reactive power management of power networks with wind generation

    CERN Document Server

    Amaris, Hortensia; Ortega, Carlos Alvarez

    2012-01-01

    As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key

  10. Development of Danish wind power market

    International Nuclear Information System (INIS)

    Meyer, Niels I.

    2004-01-01

    The modern phase of Danish wind power started after the oil crisis in 1973. Based on long traditions of Danish wind power dating back to the beginning of the century a new commercial phase was initiated by small industrial entrepreneurs with support by the Danish government, the Danish Academy of Technical Sciences and green organizations. During the eighties technological development resulted in increased cost efficiency, while the investment subsidies from the state were gradually phased out. Conflicts between utilities and wind power producers over tariffs and the costs of grid connections, then slowed down the penetration of wind power on the Danish market. In addition, many local municipalities were setting up administrative barriers for wind turbines. These barriers were removed by government intervention in the early nineties when favourable feed-in tariffs were introduced together with easy access to the grid, simple procedures for construction allowances and priority to green electricity. As a result wind power was booming in the Danish home market and Danish turbines achieved a global market share of around 50%. After a change of government in December 2001, however the Danish home market for wind power has more or less collapsed. (Author)

  11. Development of wind power generation in China

    International Nuclear Information System (INIS)

    Zhiquan, Y.; Yan, C.; Lijun, X.

    1995-01-01

    Present status and development of wind power generation in China is described in this paper. China is vast in territory with abundant wind resources. The exploitable wind energy in China is estimated up to 253,000 MW. At present, more than 150 thousand small WTGs of a total capacity of 17 MW are used to provide residential electricity uses in non-grid connected areas and 13 wind farms, with above 160 medium and large scale grid connected WTGs (50-500 kW) of a total capacity of 30 MW, have been constructed. At the same time, some progress has been made in the fields of nation-wide wind resource assessment, measurement technology of wind turbine performance, the assimilation of foreign wind turbine technology, grid connected WTG technology and the operation of wind farm etc. It is planned that the total installed capacity of WTGs will reach 1000 MW by the end of 2000. Wind power generation could be a part of electric power industry in China. (Author)

  12. Application of stochastic methods for wind speed forecasting and wind turbines design at the area of Thessaly, Greece

    Science.gov (United States)

    Dimitriadis, Panayiotis; Lazaros, Lappas; Daskalou, Olympia; Filippidou, Ariadni; Giannakou, Marianna; Gkova, Eleni; Ioannidis, Romanos; Polydera, Angeliki; Polymerou, Eleni; Psarrou, Eleftheria; Vyrini, Alexandra; Papalexiou, Simon; Koutsoyiannis, Demetris

    2015-04-01

    Several methods exist for estimating the statistical properties of wind speed, most of them being deterministic or probabilistic, disregarding though its long-term behaviour. Here, we focus on the stochastic nature of wind. After analyzing several historical timeseries at the area of interest (AoI) in Thessaly (Greece), we show that a Hurst-Kolmogorov (HK) behaviour is apparent. Thus, disregarding the latter could lead to unrealistic predictions and wind load situations, causing some impact on the energy production and management. Moreover, we construct a stochastic model capable of preserving the HK behaviour and we produce synthetic timeseries using a Monte-Carlo approach to estimate the future wind loads in the AoI. Finally, we identify the appropriate types of wind turbines for the AoI (based on the IEC 61400 standards) and propose several industrial solutions. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  13. Wind power: breakthrough to global dimensions

    International Nuclear Information System (INIS)

    Horrighs, W.

    1996-01-01

    The beginning of the 1980s saw the start of wind-turbine manufacture. Soon it had become a booming industrial sector, thanks mainly to the spirit of some young entrepreneurs and political support in many countries. But the wind-power market has assumed global dimensions and major structural changes have to be faced. (author)

  14. Comparison Between The Characteristics Of Wind Power ...

    African Journals Online (AJOL)

    Data on wind speed and global solar radiation over the period 1985 – 1999 for Onne obtained from the International Institute of Tropical Agriculture (IITA) stationed at Onne, Nigeria have been compiled and evaluated, to determine the wind power which is compared with the global solar radiation energies. Monthly and ...

  15. Stochastic generation of hourly wind speed time series

    International Nuclear Information System (INIS)

    Shamshad, A.; Wan Mohd Ali Wan Hussin; Bawadi, M.A.; Mohd Sanusi, S.A.

    2006-01-01

    In the present study hourly wind speed data of Kuala Terengganu in Peninsular Malaysia are simulated by using transition matrix approach of Markovian process. The wind speed time series is divided into various states based on certain criteria. The next wind speed states are selected based on the previous states. The cumulative probability transition matrix has been formed in which each row ends with 1. Using the uniform random numbers between 0 and 1, a series of future states is generated. These states have been converted to the corresponding wind speed values using another uniform random number generator. The accuracy of the model has been determined by comparing the statistical characteristics such as average, standard deviation, root mean square error, probability density function and autocorrelation function of the generated data to those of the original data. The generated wind speed time series data is capable to preserve the wind speed characteristics of the observed data

  16. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  17. Husum wind `97. Amiable and powerful. Proceedings; Husum Wind `97. Liebenswert und leistungsstark. Kongressband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Husum Fair and Congress on Wind Energy 97 wants to inform on and demonstrate the state of the art of wind energy and its potentials of development. This conference volume contains 21 papers in seven sections: Wind energy - society and environment; forum of the wind power plant manufacturers represented at the Husum Wind 97; foreign markets for wind power plants; development prospects for wind power; wind power in retrospective and relevant operating experience; panel discussion ``The amendment to the act on remuneration for power fed into the mains - wind power in the lull``; excursion to the test field WINDTEST, Kaiser-Wilhelm-Koog. (AKF)

  18. Direct Interval Forecasting of Wind Power

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2013-01-01

    This letter proposes a novel approach to directly formulate the prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization, where prediction intervals are generated through direct optimization of both the coverage probability and sharpness...

  19. Assessing Capacity Value of Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A.

    2017-04-18

    This presentation provides a high-level overview of assessing capacity value of wind power, including Impacts of multiple-year data sets, impacts of transmission assumptions, and future research needs.

  20. Optimal electricity market for wind power

    International Nuclear Information System (INIS)

    Holttinen, H.

    2005-01-01

    This paper is about electricity market operation when looking from the wind power producers' point of view. The focus in on market time horizons: how many hours there is between the closing and delivering the bids. The case is for the Nordic countries, the Nordpool electricity market and the Danish wind power production. Real data from year 2001 was used to study the benefits of a more flexible market to wind power producer. As a result of reduced regulating market costs from better hourly predictions to the market, wind power producer would gain up to 8% more if the time between market bids and delivery was shortened from the day ahead Elspot market (hourly bids by noon for 12-36 h ahead). An after sales market where surplus or deficit production could be traded 2 h before delivery could benefit the producer almost as much, gaining 7%

  1. The wind power reaches the city

    International Nuclear Information System (INIS)

    Marandet, L.

    2007-01-01

    With the first steps in the town, the wind power is confronted with the technical, administrative and financial difficulties of the emerging energies. The sector, some architectural projects, and the regulation are presented. (A.L.B.)

  2. Wind power: valuation and finance

    International Nuclear Information System (INIS)

    Aastrand, C.; Mose, O.; Sorensen, B.

    1996-01-01

    The past 20 years of wind energy experience in Denmark has primarily been based upon three financing schemes, tailored to individually owned, guild owned and utility owned wind turbines. The merits of and problems with these schemes are discussed, as well as their relations to specific legislation regarding e.g. taxation. It is finally explored, whether new forms of organisation, valuation and financing may be needed. (author)

  3. Simplified reactive power management strategy for complex power grids under stochastic operation and incomplete information

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John)

    2009-01-01

    grids is a major issue for system operators. Under these circumstances an online reactive power management strategy with minimum risk concerning all uncertain and stochastic parameters is proposed. Therefore, new concepts such as reactive power-weighted node-to-node linking and reactive power control......In the current released energy market, the large-scale complex transmission networks and the distribution ones with dispersed energy sources and "intelligent" components operate under uncertainties, stochastic and prior incomplete information. A safe and reliable operation of such complex power...... capability are introduced. A distributed and interconnected stochastic learning automata system is implemented to manage, in a unified and unique way, the reactive power in complex power grids with stochastic reactive power demand and detect the vulnerable part. The proposed simplified strategy can also...

  4. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1996-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  5. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  6. Validation of Sodar Measurements for Wind Power

    OpenAIRE

    Hansen, Kurt Schaldemose

    2006-01-01

    A ground-based SODAR has been tested for 1½ years together with a traditional measurement set-up consisting of cups and vanes for measuring wind data for wind power assessment at a remote location. Many problems associated to the operation of a remote located SODAR have been solved during the project and a new remote power system has been designed. A direct comparison between SODAR and cup measurements revealed a limitation for the SODAR measurements during different weather conditions, espec...

  7. Stochastic congestion management in power markets using efficient scenario approaches

    International Nuclear Information System (INIS)

    Esmaili, Masoud; Amjady, Nima; Shayanfar, Heidar Ali

    2010-01-01

    Congestion management in electricity markets is traditionally performed using deterministic values of system parameters assuming a fixed network configuration. In this paper, a stochastic programming framework is proposed for congestion management considering the power system uncertainties comprising outage of generating units and transmission branches. The Forced Outage Rate of equipment is employed in the stochastic programming. Using the Monte Carlo simulation, possible scenarios of power system operating states are generated and a probability is assigned to each scenario. The performance of the ordinary as well as Lattice rank-1 and rank-2 Monte Carlo simulations is evaluated in the proposed congestion management framework. As a tradeoff between computation time and accuracy, scenario reduction based on the standard deviation of accepted scenarios is adopted. The stochastic congestion management solution is obtained by aggregating individual solutions of accepted scenarios. Congestion management using the proposed stochastic framework provides a more realistic solution compared with traditional deterministic solutions. Results of testing the proposed stochastic congestion management on the 24-bus reliability test system indicate the efficiency of the proposed framework.

  8. The challenge of integrating large scale wind power

    Energy Technology Data Exchange (ETDEWEB)

    Kryszak, B.

    2007-07-01

    The support of renewable energy sources is one of the key issues in current energy policies. The paper presents aspects of the integration of wind power in the electric power system from the perspective of a Transmission System Operator (TSO). Technical, operational and market aspects related to the integration of more than 8000 MW of installed wind power into the Transmission Network of Vattenfall Europe Transmission are discussed, and experiences with the transmission of wind power, wind power prediction, balancing of wind power, power production behaviour and fluctuations are reported. Moreover, issues for wind power integration on a European level will be discussed with the background of a wind power study. (auth)

  9. Power Oscillation Damping Controller for Wind Power Plant Utilizing Wind Turbine Inertia as Energy Storage

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygård; Jensen, Kim Høj

    2011-01-01

    For a wind power plant (WPP) the upper limit for active power output is bounded by the instantaneous wind conditions and therefore a WPP must curtail its power output when system services with active power are delivered. Here, a power oscillation damping controller (POD) for WPPs is presented...... that utilizes the stored kinetic energy in the wind turbine (WT) mechanical system as energy storage from which damping power can be exchanged. This eliminates the need for curtailed active power production. Results are presented using modal analysis and induced torque coefficients (ITC) to depict the torques...... induced on the synchronous generators from the POD. These are supplemented with nonlinear time domain simulations with and without an auxiliary POD for the WPP. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....

  10. Wind Powering America FY06 Activities Summary

    Energy Technology Data Exchange (ETDEWEB)

    2007-02-01

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  11. Wind power - the prospects post-1998

    International Nuclear Information System (INIS)

    Hartnell, G.

    1996-01-01

    With the opening of Carno, Europe's largest wind farm, the amount of wind energy installed in the UK now exceeds 230 MW. This puts it third in the league of European countries. Supported by Friends of the Earth, the British Wind Energy Association (BWEA) last month launched a campaign to urge the Government to build upon its support for renewable energy technologies, and to adopt a more ambitious target for wind -to generate 10% of UK electricity by 2025. FoE urged local authorities to take their commitment to sustainable development seriously by supporting sensitively developed wind projects. The BWEA examines the economics for wind power, and assesses the outlook for future trading in green energy. (author)

  12. Powering stochastic reliability models by discrete event simulation

    DEFF Research Database (Denmark)

    Kozine, Igor; Wang, Xiaoyun

    2012-01-01

    it difficult to find a solution to the problem. The power of modern computers and recent developments in discrete-event simulation (DES) software enable to diminish some of the drawbacks of stochastic models. In this paper we describe the insights we have gained based on using both Markov and DES models...

  13. Stochastic Robust Mathematical Programming Model for Power System Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Changhyeok, Lee; Haoyong, Chen; Mehrotra, Sanjay

    2016-01-01

    This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.

  14. Wind power plant for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Landsiedel, E

    1978-11-09

    The invention concerns a wind power plant which rotates on a vertical axis and is suitable for the generation of electricity. This wind power machine with a vertical axis can be mounted at any height, so that it can catch the wind on the vertical axis of rotation. Further, it does not have to be turned into the direction of the wind and fixed. The purpose of the invention is to obtain equal load on the structure due to the vertical axis. The purpose of the invention is fulfilled by having the wind vanes fixed above one another from the bottom to the top in 6 different directions. The particular advantage of the invention lies in the fact that the auxiliary blades can bring the other blades to the operating position in good time, due to their particular method of fixing.

  15. Wind power plant in grid operation

    International Nuclear Information System (INIS)

    Heier, S.

    1993-01-01

    There are new prospects for electrical energy supply in coastal regions and on islands if one succeeds in integrating the available wind energy, dependent on the weather, into existing and to be developed supply structures. Apart from the supply of energy, effects on the grid and on the electrical consumer are gaining in importance. For wind power plants, the operating behaviour is appreciably determined by the electro-technical concept. The mechanical/electrical energy conversion with the corresponding grid connection and plant control play an important part here. Results of measurements and computer simulation make the differences in the behaviour of wind power plants clear. (orig.) [de

  16. Isolated systems with wind power. Main report

    DEFF Research Database (Denmark)

    Lundsager, P.; Bindner, Henrik W.; Clausen, Niels-Erik

    2001-01-01

    The overall objective of this research project is to study the development of methods and guidelines rather than "universal solutions" for the use of wind energy in isolated communities. The main specific objective of the project is to develop and present amore unified and generally applicable...... approach for assessing the technical and economical feasibility of isolated power supply systems with wind energy. As a part of the project the following tasks were carried out: Review of literature, fieldmeasurements in Egypt, development of an inventory of small isolated systems, overview of end...... for Isolated Systems with Wind Power, applicable for international organisations such as donoragencies and development banks....

  17. Wind power and the conditions at a liberalized power market

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    2003-01-01

    Wind power is undergoing a rapid development nationally as well as globally and in a number of countries covers an increasing part of the power supply. At the same time an ongoing liberalization of power markets is taking place and to an increasing extent the owners of wind power plants will themselves have to be responsible for trading the power at the spot market and financially handling the balancing. In the western part of Denmark (Jutland/Funen area), wind-generated power from time to time covers almost 100% of total power consumption. Therefore some examples are chosen from this area to analyse in more detail how well large amounts of wind power in the short-term are handled at the power spot market. It turns out that there is a tendency that more wind power in the system in the short run leads to relatively lower spot prices, while less wind power implies relatively higher spot prices, although, with the exception of December 2002, in general no strong relationship is found. A stronger relationship is found at the regulating market, where there is a fairly clear tendency that the more wind power produced, the higher is the need for down-regulation, and, correspondingly, the less wind power produced, the higher is the need for up-regulation. In general for the Jutland/Funen area the average cost of down-regulation is calculated as 1 2 c euros/kWh regulated for 2002, while the cost of up-regulation amounts to 0 7 c euros/kWh regulated. (author)

  18. Proceedings of the Canadian Wind Energy Association's 2009 wind matters conference : wind and power systems

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for wind energy and electric power industry experts to discuss issues related to wind and power systems. An overview of wind integration studies and activities in Canada and the United States was provided. New tools and technologies for facilitating the integration of wind and improve market conditions for wind energy developers were presented. Methods of increasing wind penetration were evaluated, and technical issues related to wind interconnections throughout North America were reviewed. The conference was divided into the following 5 sessions: (1) experiences with wind integration, and lessons learned, (2) update on ongoing wind integration initiatives in Canada and the United States, (3) initiatives and tools to facilitate wind integration and market access, (4) developments in wind interconnection and grid codes, (5) wind energy and cold weather considerations, and (6) challenges to achieving the 20 per cent WindVision goal in Canada. The conference featured 21 presentations, of which 13 have been catalogued separately for inclusion in this database. refs., tabs., figs

  19. Wind farm power production in the changing wind: Robustness quantification and layout optimization

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2017-01-01

    Wind farms operate often in the changing wind. The wind condition variations in a wide range of time scales lead to the variability of wind farms’ power production. This imposes a major challenge to the power system operators who are facing a higher and higher penetration level of wind power. Thu...

  20. Markov Chain model for the stochastic behaviors of wind-direction data

    International Nuclear Information System (INIS)

    Masseran, Nurulkamal

    2015-01-01

    Highlights: • I develop a Markov chain model to describe about the stochastic and probabilistic behaviors of wind direction data. • I describe some of the theoretical arguments regarding the Markov chain model in term of wind direction data. • I suggest a limiting probabilities approach to determine a dominant directions of wind blow. - Abstract: Analyzing the behaviors of wind direction can complement knowledge concerning wind speed and help researchers draw conclusions regarding wind energy potential. Knowledge of the wind’s direction enables the wind turbine to be positioned in such a way as to maximize the total amount of captured energy and optimize the wind farm’s performance. In this paper, first-order and higher-order Markov chain models are proposed to describe the probabilistic behaviors of wind-direction data. A case study is conducted using data from Mersing, Malaysia. The wind-direction data are classified according to an eight-state Markov chain based on natural geographical directions. The model’s parameters are estimated using the maximum likelihood method and the linear programming formulation. Several theoretical arguments regarding the model are also discussed. Finally, limiting probabilities are used to determine a long-run proportion of the wind directions generated. The results explain the dominant direction for Mersing’s wind in terms of probability metrics

  1. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  2. Two wind power prognosis criteria and regulating power costs

    DEFF Research Database (Denmark)

    Nielsen, Claus S.; Ravn, Hans F.; Schaumburg-Müller, Camilla

    2003-01-01

    . Basically, the choice is between focusing on predicting the energy content of the wind and focusing on the cost of buying regulating power to compensate for the prognosis errors. It will be shown that it can be expected that the two power curves thus estimated will differ, and that therefore also the hourly......The objective of the present work is to investigate the consequences of the choice of criterion in short-term wind power prognosis. This is done by investigating the consequences of choice of objective function in relation to the estimation of the power curve that is applied in the prognoses...... wind power production predicted will differ. In turn this will influence the operation and economics of the system. The consequences of this are illustrated by application to the integration of wind power in the Danish parts of the Nordpool area, using recent data. Using a regression analysis...

  3. Saturation wind power potential and its implications for wind energy.

    Science.gov (United States)

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  4. Hybrid wind-power-distillation plant

    Directory of Open Access Journals (Sweden)

    Ninić Neven

    2012-01-01

    Full Text Available This paper reports and elaborates on the idea of a solar distiller and an offshore wind power plant operating together. The subject under discussion is a single-stage solar distillation plant with vaporization, using adiabatic expansion in the gravitational field inside a wind power plant supporting column. This scheme divides investment costs for electric power and distillate production. In the region of the Adriatic Sea, all electric power produced could be “converted” to hydrogen using less than 10% of the distillate produced.

  5. A stochastic aerodynamic model for stationary blades in unsteady 3D wind fields

    International Nuclear Information System (INIS)

    Fluck, Manuel; Crawford, Curran

    2016-01-01

    Dynamic loads play an important roll in the design of wind turbines, but establishing the life-time aerodynamic loads (e.g. extreme and fatigue loads) is a computationally expensive task. Conventional (deterministic) methods to analyze long term loads, which rely on the repeated analysis of multiple different wind samples, are usually too expensive to be included in optimization routines. We present a new stochastic approach, which solves the aerodynamic system equations (Lagrangian vortex model) in the stochastic space, and thus arrive directly at a stochastic description of the coupled loads along a turbine blade. This new approach removes the requirement of analyzing multiple different realizations. Instead, long term loads can be extracted from a single stochastic solution, a procedure that is obviously significantly faster. Despite the reduced analysis time, results obtained from the stochastic approach match deterministic result well for a simple test-case (a stationary blade). In future work, the stochastic method will be extended to rotating blades, thus opening up new avenues to include long term loads into turbine optimization. (paper)

  6. Simulating European wind power generation applying statistical downscaling to reanalysis data

    International Nuclear Information System (INIS)

    González-Aparicio, I.; Monforti, F.; Volker, P.; Zucker, A.; Careri, F.; Huld, T.; Badger, J.

    2017-01-01

    Highlights: •Wind speed spatial resolution highly influences calculated wind power peaks and ramps. •Reduction of wind power generation uncertainties using statistical downscaling. •Publicly available dataset of wind power generation hourly time series at NUTS2. -- Abstract: The growing share of electricity production from solar and mainly wind resources constantly increases the stochastic nature of the power system. Modelling the high share of renewable energy sources – and in particular wind power – crucially depends on the adequate representation of the intermittency and characteristics of the wind resource which is related to the accuracy of the approach in converting wind speed data into power values. One of the main factors contributing to the uncertainty in these conversion methods is the selection of the spatial resolution. Although numerical weather prediction models can simulate wind speeds at higher spatial resolution (up to 1 × 1 km) than a reanalysis (generally, ranging from about 25 km to 70 km), they require high computational resources and massive storage systems: therefore, the most common alternative is to use the reanalysis data. However, local wind features could not be captured by the use of a reanalysis technique and could be translated into misinterpretations of the wind power peaks, ramping capacities, the behaviour of power prices, as well as bidding strategies for the electricity market. This study contributes to the understanding what is captured by different wind speeds spatial resolution datasets, the importance of using high resolution data for the conversion into power and the implications in power system analyses. It is proposed a methodology to increase the spatial resolution from a reanalysis. This study presents an open access renewable generation time series dataset for the EU-28 and neighbouring countries at hourly intervals and at different geographical aggregation levels (country, bidding zone and administrative

  7. Wind energy in the electric power system

    DEFF Research Database (Denmark)

    Polinder, H.; Peinke, J.; Kramer, O.

    2016-01-01

    have to behave when connected to the power system. In this way, they already incorporate basic ancillary services. However, frequency control is normally not provided as a regular reserve, because this would require reserving parts of the available wind capacity as stand-by capacity. Within R...... in order to guarantee a reliable stable power supply at any instant in time. Substituting these plants with renewable generation units requires the latter to be capable of providing these ancillary services. The state of the art is that grid codes are used to define the way wind turbines and wind farms......&D institutes, such control options were demonstrated and assessed for wind power plant clusters....

  8. Wind power integration connection and system operational aspects

    CERN Document Server

    Fox, Brendan

    2014-01-01

    Wind Power Integration provides a wide-ranging discussion on all major aspects of wind power integration into electricity supply systems. This second edition has been fully revised and updated to take account of the significant growth in wind power deployment in the past few years. New discussions have been added to describe developments in wind turbine generator technology and control, the network integration of wind power, innovative ways to integrate wind power when its generation potential exceeds 50% of demand, case studies on how forecasting errors have affected system operation, and an update on how the wind energy sector has fared in the marketplace. Topics covered include: the development of wind power technology and its world-wide deployment; wind power technology and the interaction of various wind turbine generator types with the utility network; and wind power forecasting and the challenges faced by wind energy in modern electricity markets.

  9. Point Climat no. 21 'Regional wind power plans: is there enough wind to reach the Grenelle wind power targets?'

    International Nuclear Information System (INIS)

    Bordier, Cecile; Charentenay, Jeremie de

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: Regional wind power plans assess the wind power development potential of every French region. The aggregate regional potential largely exceeds national targets for 2020. However, achieving these targets is still far from guaranteed: the forecasted potential is theoretical, and the issues involved in implementing wind power projects on the ground will likely reduce this potential

  10. Large scale wind power penetration in Denmark

    DEFF Research Database (Denmark)

    Karnøe, Peter

    2013-01-01

    he Danish electricity generating system prepared to adopt nuclear power in the 1970s, yet has become the world's front runner in wind power with a national plan for 50% wind power penetration by 2020. This paper deploys a sociotechnical perspective to explain the historical transformation...... of "networks of power" via the interactions of politics, the techno-physics of electrons, and the market setting. The Danish case is about how an assemblage of new agencies has reorganized and reshaped society by building a new sociotechnical network. This has rendered developments highly unpredictable...... and highly experimental. The transformation process can be followed through the way successive technical engineering reports have represented the challenges associated with the penetration of wind power. The iteration shows how novel technical phenomena emerge and are assimilated, and how new engineering...

  11. Integration of wind power in the Danish generation system. EC wind power penetration study, phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-06-01

    The Commission of the European Communities has asked utilities in the member countries to carry out a coordinated study of the wind energy potential. The main objective is to show the consequences for the future electricity system when integrating wind power production covering 5, 10 or 15% of total demand. In addition to the best estimate scenario believed to be operational, some additional calculations have been carried out: wind power production as a negative load only (not operational for the total system); different levels of investment in wind farms. The methodology is based on the following steps: define a reference scenario for year 2000; define an alternative scenario with a certain amount of wind power production; calculate time-series for electrical load and district heating from combined heat/power production; calculate time-series for wind power production; make economic evaluation and sensitivity analysis; show environmental differences. Incorporation of wind power into the ELSAM power system, with the wind energy meeting, about 5% of demand will give rise to additional control capacity, or call for new contracts with neighbouring countries. The study includes estimated network investments. The simulations have been made with the SIM and SLUMP computer programmes. The economic analyses and the sensitivity analyses have been carried out using spreadsheets. The conclusion concerning profitability - based on the best estimate assumptions - is that the studied wind power scenarios are unprofitable. (EG)

  12. Demand side resource operation on the Irish power system with high wind power penetration

    DEFF Research Database (Denmark)

    Keane, A.; Tuohy, A.; Meibom, Peter

    2011-01-01

    part of the power system plant mix and contribute to the flexible operation of a power system. A model for demand side resources is proposed here that captures its key characteristics for commitment and dispatch calculations. The model is tested on the all island Irish power system, and the operation...... of the functions of conventional peaking plant. Demand side resources are also shown to be capable of improving the reliability of the system, with reserve capability identified as a key requirement in this respect....... of the model is simulated over one year in both a stochastic and deterministic mode, to illustrate the impact of wind and load uncertainty. The results illustrate that demand side resources can contribute to the efficient, flexible operation of systems with high penetrations of wind by replacing some...

  13. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  14. Probabilistic Constrained Load Flow Considering Integration of Wind Power Generation and Electric Vehicles

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John)

    2009-01-01

    A new formulation and solution of probabilistic constrained load flow (PCLF) problem suitable for modern power systems with wind power generation and electric vehicles (EV) demand or supply is represented. The developed stochastic model of EV demand/supply and the wind power generation model...... are incorporated into load flow studies. In the resulted PCLF formulation, discrete and continuous control parameters are engaged. Therefore, a hybrid learning automata system (HLAS) is developed to find the optimal offline control settings over a whole planning period of power system. The process of HLAS...

  15. Wind Power and Fault Clearance. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Vikesjoe, Johnny; Messing, Lars (Gothia Power (Sweden))

    2011-04-15

    The increased penetration of wind power will increase the impact of wind power on the grid and thereby increase the importance of a clear guidance concerning the requirements on the protection system of the wind power units and the grid protection in connection to wind power units. The protection system should be able to satisfy the grid connection requirements, set by the TSO (Transmission System Operator) and the grid owners, as well as the general safety and security requirements, such as; personal safety, operational security and economic insurance, i.e. an insurance against economic losses. Vindforsk has appointed Gothia Power AB to perform a study concerning the fault clearance function in connection to wind power installations. The study is divided into two parts; Part 1: The first stage of the project handled the present praxis for the protection, including investigation of legal requirements, operational requirement and personal safety requirement applicable to wind power applications. Proposals for protection requirement for wind power units and the connecting grid are given. Basically 'normal' fault clearance requirements regarding speed, selectivity and redundancy can be used also in applications in connection to wind power. Part 2: The second part of the project results in a guideline for design of protection systems in connection to wind power. In this report mainly part 2 is covered. The main focus is given to clearance of faults in the grid connecting the wind power plants. Regarding internal faults and critical operation states within the wind power plant, a short discussion of feasible protection functions is given. Some critical fault cases in the grid have been identified and discussed: - Undetected islanding and failure of reclosing. There can be a risk of undetected island operation. In such cases it is recommended to use controlled autoreclosing in the vicinity of wind power generation. - Unwanted disconnection of a healthy feeder

  16. Wind power plants the fuel savers

    International Nuclear Information System (INIS)

    Akbar, M.

    2006-01-01

    Wind is a converted from of solar energy. The Sun's radiation heats different parts of the earth at variable rates as the earth surfaces absorb or reflect at different rates. This in turn causes portions of the atmosphere to warm at varying levels. The hot air rises reducing atmospheric pressure at the earth's surface beneath, the cooler air rushes to replace it and in the process creates a momentum called wind. Air possesses mass and when it sets into motion, it contains the energy of that motion, called the Kinetic Energy. A part of the Kinetic Energy of the wind can be converted into other forms of energy i.e. mechanical force or electric power that can be used to perform work. The cost of electric energy from the wind system has dropped from the initial cost of 30 to 40 Cents per kWh to about 5 to 7 Cents/k Wh during the past 20 years. The costs are continually declining as the technology is advanced, the unit size is increased and larger plants are built. Wind power is now a viable, robust and fast growing industry. The cost of wind energy is expected to drop to 2 to 3 Cents / kWh during the next 5 to 10 years. Due to sky-rocketing prices of the fossil fuels, the competitive position of power generation technologies is rapidly changing. Wind energy is likely to emerge as the cheapest source of electric power generation in the global market in the near future. The current assessment of the global wind resources indicate that the wind energy potential is more than double the world's electricity needs. (author)

  17. Wind power and market power in competitive markets

    International Nuclear Information System (INIS)

    Twomey, Paul; Neuhoff, Karsten

    2010-01-01

    Average market prices for intermittent generation technologies are lower than for conventional generation. This has a technical reason but can be exaggerated in the presence of market power. When there is much wind smaller amounts of conventional generation technologies are required, and prices are lower, while at times of little wind prices are higher. This effect reflects the value of different generation technologies to the system. But under conditions of market power, conventional generators with market power can further depress the prices if they have to buy back energy at times of large wind output and can increase prices if they have to sell additional power at times of little wind output. This greatly exaggerates the effect. Forward contracting does not reduce the effect. An important consequence is that allowing market power profit margins as a support mechanism for generation capacity investment is not a technologically neutral policy.

  18. Probabilistic modeling of wind energy sources integrated in a conventional power system; Modelagem probabilistica de fontes eolicas de energia integradas em sistema de potencia convencional

    Energy Technology Data Exchange (ETDEWEB)

    Dalence, G W.H.

    1990-06-15

    This work describes a model capable of including non-conventional energy sources into a stochastic energy production model for conventional power sources. A wind energy system is initially considered as statistically independent of the hourly demand. The correlation between two wind systems is then considered by means of a joint wind speed distribution. The joint wind system is thereafter submitted to the stochastic energy production model considering independence between demand and wind speed. Finally the correlation wind systems and the hourly demand is studied. (author). 29 figs, 31 tabs

  19. Investigation of the stochastic subspace identification method for on-line wind turbine tower monitoring

    Science.gov (United States)

    Dai, Kaoshan; Wang, Ying; Lu, Wensheng; Ren, Xiaosong; Huang, Zhenhua

    2017-04-01

    Structural health monitoring (SHM) of wind turbines has been applied in the wind energy industry to obtain their real-time vibration parameters and to ensure their optimum performance. For SHM, the accuracy of its results and the efficiency of its measurement methodology and data processing algorithm are the two major concerns. Selection of proper measurement parameters could improve such accuracy and efficiency. The Stochastic Subspace Identification (SSI) is a widely used data processing algorithm for SHM. This research discussed the accuracy and efficiency of SHM using SSI method to identify vibration parameters of on-line wind turbine towers. Proper measurement parameters, such as optimum measurement duration, are recommended.

  20. Nonlinear control of fixed-wing UAVs in presence of stochastic winds

    Science.gov (United States)

    Rubio Hervas, Jaime; Reyhanoglu, Mahmut; Tang, Hui; Kayacan, Erdal

    2016-04-01

    This paper studies the control of fixed-wing unmanned aerial vehicles (UAVs) in the presence of stochastic winds. A nonlinear controller is designed based on a full nonlinear mathematical model that includes the stochastic wind effects. The air velocity is controlled exclusively using the position of the throttle, and the rest of the dynamics are controlled with the aileron, elevator, and rudder deflections. The nonlinear control design is based on a smooth approximation of a sliding mode controller. An extended Kalman filter (EKF) is proposed for the state estimation and filtering. A case study is presented: landing control of a UAV on a ship deck in the presence of wind based exclusively on LADAR measurements. The effectiveness of the nonlinear control algorithm is illustrated through a simulation example.

  1. Financial analysis of wind power projects

    International Nuclear Information System (INIS)

    Juanico, Luis E.; Bergallo, Juan E.

    1999-01-01

    In this work a financial assessment of the economic competitiveness of wind power projects in Argentina compared with other no CO 2 emission sources, such as nuclear, was developed. Argentina has a market driven electrical grid system, and no greenhouse gas emissions penalty taxes, together with a very low natural gas cost and a sustained nuclear development program. For the financial analysis an average wind velocity source of 8 m/s, on several wind farms (from 2 machines to 60) built with new technology wind generators (750 kilowatts power, 900 dollar/kilowatt cost) operating over 20 years, was considered. The leveled cost obtained is decreasing while the number of machines is increasing, from 0,130 dollar/kilowatt-hour to 0,090 dollar/kilowatts-hour. This poor performance can be partially explained considering the higher interest rates in the argentine financial market (15%) than the ones in developed countries

  2. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  3. Development and testing of improved statistical wind power forecasting methods.

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-12-06

    (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  4. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio

    2016-01-01

    This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...... of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind...

  5. On wind power in the Nordic countries

    International Nuclear Information System (INIS)

    Nilsson, Lars J.

    1993-01-01

    The purpose of this article is to discuss the prospects for a large scale introduction of wind power in the Nordic countries especially with respect to the consequences for small independent power producers of the ongoing and planned deregulation of the electricity sector. The recoverable wind resources are great and integration costs are small due to the good load following capability of the existing Swedish and Norwegian hydroelectric capacity. The structure of the present electricity system and the current principles for electricity trade are reviewed. To what extent wind power will be the technology of choice for capacity replacement and expansion depends on how intermittent power will be valued on the future electricity market. In a deregulated market, wind power may be priced below its value unless appropriate pricing mechanisms are developed. Market reforms should therefore include consideration of the large contribution that wind energy must make in a future electricity system which, in addition to being economically efficient, is compatible with broader societal goals. 47 refs, 2 figs

  6. Wind Powering America FY07 Activities Summary

    Energy Technology Data Exchange (ETDEWEB)

    2008-02-01

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  7. Grid code requirements for wind power generation

    International Nuclear Information System (INIS)

    Djagarov, N.; Filchev, S.; Grozdev, Z.; Bonev, M.

    2011-01-01

    In this paper production data of wind power in Europe and Bulgaria and plans for their development within 2030 are reviewed. The main characteristics of wind generators used in Bulgaria are listed. A review of the grid code in different European countries, which regulate the requirements for renewable sources, is made. European recommendations for requirements harmonization are analyzed. Suggestions for the Bulgarian gird code are made

  8. Probabilistic Harmonic Modeling of Wind Power Plants

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim H.; Rasmussen, Tonny Wederberg

    2017-01-01

    A probabilistic sequence domain (SD) harmonic model of a grid-connected voltage-source converter is used to estimate harmonic emissions in a wind power plant (WPP) comprised of Type-IV wind turbines. The SD representation naturally partitioned converter generated voltage harmonics into those...... with deterministic phase and those with probabilistic phase. A case study performed on a string of ten 3MW, Type-IV wind turbines implemented in PSCAD was used to verify the probabilistic SD harmonic model. The probabilistic SD harmonic model can be employed in the planning phase of WPP projects to assess harmonic...

  9. Estimation of power system variability due to wind power

    NARCIS (Netherlands)

    Papaefthymiou, G.; Verboomen, J.; Van der Sluis, L.

    2007-01-01

    The incorporation of wind power generation to the power system leads to an increase in the variability of the system power flows. The assessment of this variability is necessary for the planning of the necessary system reinforcements. For the assessment of this variability, the uncertainty in the

  10. Stochastic models for strength of wind turbine blades using tests

    DEFF Research Database (Denmark)

    Toft, H.S.; Sørensen, John Dalsgaard

    2008-01-01

    The structural cost of wind turbine blades is dependent on the values of the partial safety factors which reflect the uncertainties in the design values, including statistical uncertainty from a limited number of tests. This paper presents a probabilistic model for ultimate and fatigue strength...... of wind turbine blades especially considering the influence of prior knowledge and test results and how partial safety factors can be updated when additional full-scale tests are performed. This updating is performed by adopting a probabilistic design basis based on Bayesian statistical methods....

  11. Understanding public responses to offshore wind power

    International Nuclear Information System (INIS)

    Haggett, Claire

    2011-01-01

    This paper is about understanding the role and importance of public responses to offshore wind power. It builds on a framework for understanding social acceptance and opposition to onshore turbines, and reviews the emerging research on offshore wind. While less is known about how people will respond to offshore than onshore wind, there is now an emerging body of research. From this literature, several common factors which influence responses have emerged and are discussed here: the (continued) role of visual impact; place attachment to the local area; lack of tangible benefits; relationships with developers and outsiders; and the role of the planning and decision-making systems. The paper argues that, as with onshore developments, the public should be included in decision-making about offshore wind farms, and that they have a key role which should not be underestimated. The paper concludes with some thoughts about the means to involve people and how effected communities might be effectively acknowledged, identified and engaged. - Research Highlights: →Comprehensive review of public responses to offshore wind literature. →Applies key lessons and analytic insights from onshore wind to offshore wind. →Emphasizes the role and importance of the public in the planning and implementation of offshore wind energy.

  12. Short time ahead wind power production forecast

    International Nuclear Information System (INIS)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-01-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast. (paper)

  13. Offshore wind power: does France remain ashore?

    International Nuclear Information System (INIS)

    Bongrain, T.

    2015-01-01

    France benefits from favorable geographical conditions for offshore wind power but the development of a dedicated industrial sector is slow. 6 projects of wind power farms where turbines are rooted in the seabed are expected to operate progressively from 2018, they represent a cumulated power capacity of 2920 MW. A call for projects has been launched by French authorities for floating offshore wind farms off Brittany and in the mediterranean sea but it will not be sufficient to help to fulfill the declared goal of 40% of the electricity produced in France should be of renewable origin. The main weakness is the cost and countries like Germany benefit from the shallow waters of the North sea to install wind farms at lower costs. The solution could be the development in France of an industrial sector dedicated to floating wind turbines that are easier to install in deep water and can be settled farther off the coast to meet the demand of environmentalists for seascape preservation. More sites could become available for floating wind turbines than for seabed-rooted ones and as the consequence the market for floating systems may become more important. (A.C.)

  14. Short time ahead wind power production forecast

    Science.gov (United States)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-09-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.

  15. Integration of Wind Power into the Danish Power System

    DEFF Research Database (Denmark)

    Rácz, Viktor J.; Yadav, Priyadarshini; Vestergaard, Niels

    Wind energy is a major player in the Danish electricity market with an ambitious goal to pursue 50% of the electricity market by 2020. This paper examines the economic impacts of increasing integration of large-scale wind power to the existing electrical grid. Firstly, we survey the literature...... the price of electricity. We have observed the degree of influence of the fossil fuel prices, total demand, wind power production and import on the electricity price and the individual co-efficiency for the years 2000, 2005 and 2010, according to the energy mix. Using a grid management model for the Western...... Denmark region, we simulate the effect of an increase in wind penetration level on the electricity generation costs and on the CO2 emissions at various penetration levels. The results show that as the wind penetration level increases the cost of electricity production rises thus, reducing the CO2 emission...

  16. Stochastic Models of Defects in Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2013-01-01

    The drivetrain in a wind turbine nacelle typically consists of a variety of heavily loaded components, like the main shaft, bearings, gearbox and generator. The variations in environmental load challenge the performance of all the components of the drivetrain. Failure of each of these components...

  17. Keys to success for wind power in isolated power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J C; Lundsager, P; Bindner, H; Hansen, L; Frandsen, S [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    It is generally expected that wind power could contribute significantly to the electricity supply in power systems of small and medium sized isolated communities. The market for such applications of wind power has not yet materialized. Wind power in isolated power systems have the main market potentials in developing countries. The money available world-wide for this technological development is limited and the necessary R and D and pilot programmes have difficult conditions. Consequently, technology developed exclusively for developing countries rarely becomes attractive for consumers, investors and funding agencies. A Danish research project is aimed at studying development of methods and guidelines rather than `universal solutions` for the use of wind energy in isolated communities. This paper report on the findings of the project regarding barriers removal and engineering methods development, with a focus on analysis and specification of user demand and priorities, numerical modeling requirements as well as wind power impact on power quality and power system operation. Input will be provided on these subjects for establishing of common guidelines on relevant technical issues, and thereby enabling the making of trustworthy project preparation studies. (au) EFP-97. 12 refs.

  18. Marketing of wind power; Vermarktung von Windenergie

    Energy Technology Data Exchange (ETDEWEB)

    Roon, Serafin von [Forschungsstelle fuer Energiewirtschaft e.V., Muenchen (Germany)

    2011-07-01

    With the integration of the fluctuating production in the system of power supply, there is the question about the impact on the electricity market. The special features of the commercialization of wind energy are: (1) The production exclusively takes place supply-dependent; (2) With fex exceptions, the supplied current is compensated according to the Renewable Energy Law; (3) The actual sale is performed by the operators of transmission systems; (4) The marginal cost are close to zero; (5) The day-ahead marketing solely based on a faulty prognosis. The author of the contribution under consideration reports on the actors and the process of wind power marketing. The alternative of direct marketing and the associated barriers and opportunities are discussed. The impact of the marketing of wind power on pricing in the electricity market is shown by means of an empirical analysis. The compensation amounts are be quantified, and the resulting cost to the balance of the forecast error are estimated.

  19. Climate change and wind power in Australia

    International Nuclear Information System (INIS)

    Millais, C.

    2001-01-01

    The article represents a stern criticism of Australia's attitude to climate change. Its climate change policy is described as 'Neanderthal'. The Australian government is said to be strongly opposed to ratification of the Kyoto Protocol. The Government's policy appears to be driven by vested interests in fossil fuels. A list of eight flaws in Australia's 2% renewables target is given; the target is said to be far too small for a country with so much renewables potential. However, investment in the country's enormous wind power potential is increasing and targets are given; six reasons why Australia needs to invest in wind power are given. It is suggested that by the end of this decade, 10% of Australia's electricity could come from wind power - a web site address giving further details is given

  20. Wind Farms’ Spatial Distribution Effect on Power System Reserves Requirements

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    The wind power development during last millennium was typically based on small wind turbines dispersed over large areas, leading to a significant smoothing of the wind power fluctuations in a power system balancing area. The present development goes towards much larger wind farms, concentrated...

  1. The wind power state of the art and development outlooks

    International Nuclear Information System (INIS)

    Bal, J.L.

    2005-01-01

    This document presented during the Physics Summer school, deals with the wind power situation in Europe. The wind energy conversion in electric power is explained as the management and implementing of a wind site. The author discusses also the economy of the wind power and the market and development outlooks. (A.L.B.)

  2. Wind Power Grid Connected Capacity Prediction Using LSSVM Optimized by the Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Qunli Wu

    2015-12-01

    Full Text Available Given the stochastic nature of wind, wind power grid-connected capacity prediction plays an essential role in coping with the challenge of balancing supply and demand. Accurate forecasting methods make enormous contribution to mapping wind power strategy, power dispatching and sustainable development of wind power industry. This study proposes a bat algorithm (BA–least squares support vector machine (LSSVM hybrid model to improve prediction performance. In order to select input of LSSVM effectively, Stationarity, Cointegration and Granger causality tests are conducted to examine the influence of installed capacity with different lags, and partial autocorrelation analysis is employed to investigate the inner relationship of grid-connected capacity. The parameters in LSSVM are optimized by BA to validate the learning ability and generalization of LSSVM. Multiple model sufficiency evaluation methods are utilized. The research results reveal that the accuracy improvement of the present approach can reach about 20% compared to other single or hybrid models.

  3. Evaluation of Electric Power Procurement Strategies by Stochastic Dynamic Programming

    Science.gov (United States)

    Saisho, Yuichi; Hayashi, Taketo; Fujii, Yasumasa; Yamaji, Kenji

    In deregulated electricity markets, the role of a distribution company is to purchase electricity from the wholesale electricity market at randomly fluctuating prices and to provide it to its customers at a given fixed price. Therefore the company has to take risk stemming from the uncertainties of electricity prices and/or demand fluctuation instead of the customers. The way to avoid the risk is to make a bilateral contact with generating companies or install its own power generation facility. This entails the necessity to develop a certain method to make an optimal strategy for electric power procurement. In such a circumstance, this research has the purpose for proposing a mathematical method based on stochastic dynamic programming and additionally considering the characteristics of the start-up cost of electric power generation facility to evaluate strategies of combination of the bilateral contract and power auto-generation with its own facility for procuring electric power in deregulated electricity market. In the beginning we proposed two approaches to solve the stochastic dynamic programming, and they are a Monte Carlo simulation method and a finite difference method to derive the solution of a partial differential equation of the total procurement cost of electric power. Finally we discussed the influences of the price uncertainty on optimal strategies of power procurement.

  4. Short-term wind power prediction

    DEFF Research Database (Denmark)

    Joensen, Alfred K.

    2003-01-01

    , and to implement these models and methods in an on-line software application. The economical value of having predictions available is also briefly considered. The summary report outlines the background and motivation for developing wind power prediction models. The meteorological theory which is relevant......The present thesis consists of 10 research papers published during the period 1997-2002 together with a summary report. The objective of the work described in the thesis is to develop models and methods for calculation of high accuracy predictions of wind power generated electricity...

  5. Maximal network reliability for a stochastic power transmission network

    International Nuclear Information System (INIS)

    Lin, Yi-Kuei; Yeh, Cheng-Ta

    2011-01-01

    Many studies regarded a power transmission network as a binary-state network and constructed it with several arcs and vertices to evaluate network reliability. In practice, the power transmission network should be stochastic because each arc (transmission line) combined with several physical lines is multistate. Network reliability is the probability that the network can transmit d units of electric power from a power plant (source) to a high voltage substation at a specific area (sink). This study focuses on searching for the optimal transmission line assignment to the power transmission network such that network reliability is maximized. A genetic algorithm based method integrating the minimal paths and the Recursive Sum of Disjoint Products is developed to solve this assignment problem. A real power transmission network is adopted to demonstrate the computational efficiency of the proposed method while comparing with the random solution generation approach.

  6. Danish wind power export and cost

    Energy Technology Data Exchange (ETDEWEB)

    Lund, H.; Hvelplund, F.; Alberg OEstergaard, P. (and others)

    2010-02-15

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both local resources and international market mechanisms. This is done in a way which makes it possible for our neighbouring countries to follow a similar path. Moreover, Denmark has a strategy to raise this share to 50 percent and the necessary measures are in the process of being implemented. Recently, a study made by the Danish think tank CEPOS claimed the opposite, i.e. that most of the Danish wind power has been exported in recent years. However, this claim is based on an incorrect interpretation of statistics and a lack of understanding of how the international electricity markets operate. Consequently, the results of the CEPOS study are in general not correct. Moreover, the CEPOS study claims that using wind turbines in Denmark is a very expensive way of reducing CO{sub 2} emissions and that this is the reason for the high energy taxes for private consumers in Denmark. These claims are also misleading. The cost of CO{sub 2} reduction by use of wind power in the period 2004-2008 was only 20 EUR/ton. Furthermore, the Danish wind turbines are not paid for by energy taxes. Danish wind turbines are given a subsidy via the electricity price which is paid by the electricity consumers. In the recent years of 2004-2008, such subsidy has increased consumer prices by 0.54 EURO/kWh on average. On the other hand, however, the same electricity consumers also benefitted from the wind

  7. Turbine Control Strategies for Wind Farm Power Optimization

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Göçmen Bozkurt, Tuhfe; Giebel, Gregor

    2015-01-01

    In recent decades there has been increasing interest in green energies, of which wind energy is the most important one. In order to improve the competitiveness of the wind power plants, there are ongoing researches to decrease cost per energy unit and increase the efficiency of wind turbines...... and wind farms. One way of achieving these goals is to optimize the power generated by a wind farm. One optimization method is to choose appropriate operating points for the individual wind turbines in the farm. We have made three models of a wind farm based on three difference control strategies...... the generated power by changing the power reference of the individual wind turbines. We use the optimization setup to compare power production of the wind farm models. This paper shows that for the most frequent wind velocities (below and around the rated values), the generated powers of the wind farms...

  8. Power Electronics Control of Wind Energy in Distributed Power System

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....

  9. Wind power for the world international reviews and developments

    CERN Document Server

    Maegaard, Preben; Palz, Wolfgang

    2013-01-01

    Introduction, Preben MaegaardAccelerated Global Expansion of the Renewable Energy Sector: the Example of Wind Energy, Preben MaegaardWind Power Development in the European Union, Wolfgang PalzWind Energy to the rescue of mankind from the menace of the Fossil Fuel burning hazards, Anil KaneBlack or Green Wind Power, Frede HvelplundWind Energy Development in China, He DexinNon-grid-connected Wind Power and Offshore "Three Georges of Wind Power" in China, Gu WeidongWind Power in Japan: Past, Present, and Future Prospect, Izumi UshiyamaWind Power Development in India, Jami HossainChallenges and Opportunities for Energy Paradigm Shifting in Ontario, Canada, Jose EtcheverryWind Power in Cuba's Energy Revolution, Conrado Moreno FigueredoWind Power in Argentina, Erico SpinadelThe Emergence of Wind Power in Brazil, Everaldo FeitosaWind Energy in Chile, Arturo KunstmannWind Power in Austria, Wolfgang HeinThe History of Wind Power in France, Jean-Louis BalHistory, State-of-the Art and Future of Wind Energy in France, Ma...

  10. Forecasting winds over nuclear power plants statistics

    International Nuclear Information System (INIS)

    Marais, Ch.

    1997-01-01

    In the event of an accident at nuclear power plant, it is essential to forecast the wind velocity at the level where the efflux occurs (about 100 m). At present meteorologists refine the wind forecast from the coarse grid of numerical weather prediction (NWP) models. The purpose of this study is to improve the forecasts by developing a statistical adaptation method which corrects the NWP forecasts by using statistical comparisons between wind forecasts and observations. The Multiple Linear Regression method is used here to forecast the 100 m wind at 12 and 24 hours range for three Electricite de France (EDF) sites. It turns out that this approach gives better forecasts than the NWP model alone and is worthy of operational use. (author)

  11. Local ownership, smart energy systems and better wind power economy

    DEFF Research Database (Denmark)

    Hvelplund, Frede; Möller, Bernd; Sperling, Karl

    2013-01-01

    is never sold at a lower price than the most expensive heat alternative. The other is to lower the average costs of wind power by building more onshore wind power capacity, and proportionally less offshore wind power. This is facilitated by local and regional majority ownership models that increase...... the acceptance rate of onshore wind. The economy of wind power is thus improved by both increasing its value and reducing its costs.......Increasing wind power shares enhances the need to integrate wind power into the energy system and to improve its economy. In this study we propose two ways of achieving this end. One is to increase the value of wind power by integrating the heat and power markets, and thus ensures that wind power...

  12. Power control for wind turbines in weak grids: Concepts development

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    will make wind power more firm and possible to connect to weaker grids. So, when the concept is matured, theexpectation is that for certain wind power installations, the cost of the power control is paid back as added wind power capacity value and saved grid reinforcement costs. Different systems...... and analyze methods and technologies for making it viable to utilize more of the wind potential in remote areas. The suggestion is to develop a power control concept for wind turbines which will even out thepower fluctuations and make it possible to increase the wind energy penetration. The main options...... are to combine wind power with a pumped hydro power storage or with an AC/DC converter and battery storage. The AC/DC converter can either be an "add-on" typeor it can be designed as an integrated part of a variable speed wind turbine. The idea is that combining wind power with the power control concept...

  13. Power Transmission from Large Offshore Wind Farms

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Kaas

    1999-01-01

    The major part of the coming wind farms in Denmark will be placed offshore. If the location is near a grid with a high short circuit level the power can be transmitted as AC.If the wind farm is far away from the grid and the grid perhaps has a low short circuit level, the best solution...... for transmitting the power can be by DC. At the moment it is possible to build self-commutating DC/AC-inverters up to about 150 kV. This paper will show a concept to a solution for a wind farm and a transmission system based on synchronous generators or a powerformer® with a rated voltage of 50 kV. The AC power...... will be rectified and boosted to a fixed DC voltage (e.g. 100 kV). The speed of the generator will be variable, depending of the wind but also controlled with the duty-cycle of the booster. In that way all wind turbines can be connected to the same DC bus and the cable to the inverter station connected to the AC...

  14. The wind power prediction research based on mind evolutionary algorithm

    Science.gov (United States)

    Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina

    2018-04-01

    When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.

  15. Power reserve provision with wind farms. Grid integration of wind power

    Energy Technology Data Exchange (ETDEWEB)

    Gesino, Alejandro J.

    2011-07-01

    Wind power is, admittedly, different from other power technologies and integrating large amounts of it in the existing power systems is a challenge that requires innovative approaches to keep the sustainability of the power system operation. In the coming years its contribution to the system security will become mandatory as far as the trend goes towards more decentralized structures and an increase in complexity due to a higher number of market participants. This PhD addresses one of the fundamental ancillary services researching about a secure and flexible methodology for power reserve provision with wind farms. Based on the current needs and security standards of those highly developed European grid codes, a new model for power reserve provision with wind power is developed. This methodology, algorithms and variables are tested based on real scenarios from five German wind farm clusters. Finally, once the methodology for power reserve provision with wind power has been tested, real control capabilities from already installed wind farms in Germany and Portugal are analyzed. Their capabilities of following control commands as well as an error deviation analysis are also presented. (orig.)

  16. Wind farm electrical power production model for load flow analysis

    International Nuclear Information System (INIS)

    Segura-Heras, Isidoro; Escriva-Escriva, Guillermo; Alcazar-Ortega, Manuel

    2011-01-01

    The importance of renewable energy increases in activities relating to new forms of managing and operating electrical power: especially wind power. Wind generation is increasing its share in the electricity generation portfolios of many countries. Wind power production in Spain has doubled over the past four years and has reached 20 GW. One of the greatest problems facing wind farms is that the electrical power generated depends on the variable characteristics of the wind. To become competitive in a liberalized market, the reliability of wind energy must be guaranteed. Good local wind forecasts are therefore essential for the accurate prediction of generation levels for each moment of the day. This paper proposes an electrical power production model for wind farms based on a new method that produces correlated wind speeds for various wind farms. This method enables a reliable evaluation of the impact of new wind farms on the high-voltage distribution grid. (author)

  17. Simplified reactive power management strategy for complex power grids under stochastic operation and incomplete information

    International Nuclear Information System (INIS)

    Vlachogiannis, John G.

    2009-01-01

    In the current released energy market, the large-scale complex transmission networks and the distribution ones with dispersed energy sources and 'intelligent' components operate under uncertainties, stochastic and prior incomplete information. A safe and reliable operation of such complex power grids is a major issue for system operators. Under these circumstances an online reactive power management strategy with minimum risk concerning all uncertain and stochastic parameters is proposed. Therefore, new concepts such as reactive power-weighted node-to-node linking and reactive power control capability are introduced. A distributed and interconnected stochastic learning automata system is implemented to manage, in a unified and unique way, the reactive power in complex power grids with stochastic reactive power demand and detect the vulnerable part. The proposed simplified strategy can also consider more stochastic aspects such as variable grid's topology. Results of the proposed strategy obtained on the networks of IEEE 30-bus and IEEE 118-bus systems demonstrate the effectiveness of the proposed strategy.

  18. Harmonic Resonances in Wind Power Plants

    DEFF Research Database (Denmark)

    Fernandez, Francisco Daniel Freijedo; Chaudhary, Sanjay; Teodorescu, Remus

    2015-01-01

    This work reviews the state-of-the-art in the field of harmonic resonance problems in Wind Power Plants (WPPs). Firstly, a generic WPP is modeled according to the equivalent circuits of its passive and active components. Main focus is put on modeling active components, i.e. the ones based on power...... converters. Subsequently, pros and cons of frequency and time domain analysis methods are outlined. The next sections are devoted to mitigation methods implemented in the power electronics converters. From the wind turbine perspective, different techniques to enhance the robustness of the controller...... are analyzed. Subsequently, the suitability for active damping of harmonics using STATCOM devices is assessed, with focus both on control techniques and power converter technologies....

  19. Thermal and Driven Stochastic Growth of Langmuir Waves in the Solar Wind and Earth's Foreshock

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.; Anderson, R. R.

    2000-01-01

    Statistical distributions of Langmuir wave fields in the solar wind and the edge of Earth's foreshock are analyzed and compared with predictions for stochastic growth theory (SGT). SGT quantitatively explains the solar wind, edge, and deep foreshock data as pure thermal waves, driven thermal waves subject to net linear growth and stochastic effects, and as waves in a pure SGT state, respectively, plus radiation near the plasma frequency f(sub p). These changes are interpreted in terms of spatial variations in the beam instability's growth rate and evolution toward a pure SGT state. SGT analyses of field distributions are shown to provide a viable alternative to thermal noise spectroscopy for wave instruments with coarse frequency resolution, and to separate f(sub p) radiation from Langmuir waves.

  20. Short-Term Wind Electric Power Forecasting Using a Novel Multi-Stage Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Haoran Zhao

    2018-03-01

    Full Text Available As the most efficient renewable energy source for generating electricity in a modern electricity network, wind power has the potential to realize sustainable energy supply. However, owing to its random and intermittent instincts, a high permeability of wind power into a power network demands accurate and effective wind energy prediction models. This study proposes a multi-stage intelligent algorithm for wind electric power prediction, which combines the Beveridge–Nelson (B-N decomposition approach, the Least Square Support Vector Machine (LSSVM, and a newly proposed intelligent optimization approach called the Grasshopper Optimization Algorithm (GOA. For data preprocessing, the B-N decomposition approach was employed to disintegrate the hourly wind electric power data into a deterministic trend, a cyclic term, and a random component. Then, the LSSVM optimized by the GOA (denoted GOA-LSSVM was applied to forecast the future 168 h of the deterministic trend, the cyclic term, and the stochastic component, respectively. Finally, the future hourly wind electric power values can be obtained by multiplying the forecasted values of these three trends. Through comparing the forecasting performance of this proposed method with the LSSVM, the LSSVM optimized by the Fruit-fly Optimization Algorithm (FOA-LSSVM, and the LSSVM optimized by Particle Swarm Optimization (PSO-LSSVM, it is verified that the established multi-stage approach is superior to other models and can increase the precision of wind electric power prediction effectively.

  1. A Dynamic Wind Generation Model for Power Systems Studies

    OpenAIRE

    Estanqueiro, Ana

    2007-01-01

    In this paper, a wind park dynamic model is presented together with a base methodology for its application to power system studies. This detailed wind generation model addresses the wind turbine components and phenomena more relevant to characterize the power quality of a grid connected wind park, as well as the wind park response to the grid fast perturbations, e.g., low voltage ride through fault. The developed model was applied to the operating conditions of the selected sets of wind turbi...

  2. Wind power: basic challenge concerning social acceptance

    NARCIS (Netherlands)

    Wolsink, M.; Meyers, R.A.

    2012-01-01

    This reference article gives an overview of social acceptance (acceptance by all relevant actors in society) of all relevant aspects of implementation and diffusion of wind power. In social acceptance three dimensions of acceptance are distinguished (socio-political -; community -; market

  3. Grid Code Requirements for Wind Power Integration

    DEFF Research Database (Denmark)

    Wu, Qiuwei

    2018-01-01

    This chapter reviews the grid code requirements for integration of wind power plants (WPPs). The grid codes reviewed are from the UK, Ireland, Germany, Denmark, Spain, Sweden, the USA, and Canada. Transmission system operators (TSOs) around the world have specified requirements for WPPs under...

  4. Wind power externalities: A meta-analysis

    NARCIS (Netherlands)

    Mattmann, M.; Logar, I.; Brouwer, R.

    2016-01-01

    This study presents the first quantitative meta-analysis of the non-market valuation literature on the external effects associated with wind power production. A data set of 60 observations drawn from 32 studies is constructed. The relative economic values of different types of externalities as well

  5. Breezy Power: From Wind to Energy

    Science.gov (United States)

    Claymier, Bob

    2009-01-01

    This lesson combines the science concepts of renewable energy and producing electricity with the technology concepts of design, constraints, and technology's impact on the environment. Over five class periods, sixth-grade students "work" for a fictitious power company as they research wind as an alternative energy source and design and test a…

  6. Wind power; L'energie eolienne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  7. Future on Power Electronics for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2013-01-01

    networks and more and more wind power stations, acting as power plants, are connected directly to the transmission networks. As the grid penetration and power level of the wind turbines increase steadily, the wind power starts to have significant impacts to the power grid system. Therefore, more advanced...... generators, power electronic systems, and control solutions have to be introduced to improve the characteristics of the wind power plant and make it more suitable to be integrated into the power grid. Meanwhile, there are also some emerging technology challenges, which need to be further clarified......Wind power is still the most promising renewable energy in the year of 2013. The wind turbine system (WTS) started with a few tens of kilowatt power in the 1980s. Now, multimegawatt wind turbines are widely installed even up to 6-8 MW. There is a widespread use of wind turbines in the distribution...

  8. Power fluctuations from large wind farms - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Pinson, P.; Cutululis, N.A.; Madsen, Henrik; Jensen, Leo Enrico; Hjerrild, J.; Heyman Donovan, M.; Vigueras-ROdriguez, A.

    2009-08-15

    Experience from power system operation with the first large offshore wind farm in Denmark: Horns Rev shows that the power from the wind farm is fluctuating significantly at certain times, and that this fluctuation is seen directly on the power exchange between Denmark and Germany. This report describes different models for simulation and prediction of wind power fluctuations from large wind farms, and data acquired at the two large offshore wind farms in Denmark are applied to validate the models. Finally, the simulation model is further developed to enable simulations of power fluctuations from several wind farms simultaneously in a larger geographical area, corresponding to a power system control area. (au)

  9. Stochastic Methods Applied to Power System Operations with Renewable Energy: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Electric Reliability Council of Texas (ERCOT), Austin, TX (United States); Botterud, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Renewable energy resources have been rapidly integrated into power systems in many parts of the world, contributing to a cleaner and more sustainable supply of electricity. Wind and solar resources also introduce new challenges for system operations and planning in terms of economics and reliability because of their variability and uncertainty. Operational strategies based on stochastic optimization have been developed recently to address these challenges. In general terms, these stochastic strategies either embed uncertainties into the scheduling formulations (e.g., the unit commitment [UC] problem) in probabilistic forms or develop more appropriate operating reserve strategies to take advantage of advanced forecasting techniques. Other approaches to address uncertainty are also proposed, where operational feasibility is ensured within an uncertainty set of forecasting intervals. In this report, a comprehensive review is conducted to present the state of the art through Spring 2015 in the area of stochastic methods applied to power system operations with high penetration of renewable energy. Chapters 1 and 2 give a brief introduction and overview of power system and electricity market operations, as well as the impact of renewable energy and how this impact is typically considered in modeling tools. Chapter 3 reviews relevant literature on operating reserves and specifically probabilistic methods to estimate the need for system reserve requirements. Chapter 4 looks at stochastic programming formulations of the UC and economic dispatch (ED) problems, highlighting benefits reported in the literature as well as recent industry developments. Chapter 5 briefly introduces alternative formulations of UC under uncertainty, such as robust, chance-constrained, and interval programming. Finally, in Chapter 6, we conclude with the main observations from our review and important directions for future work.

  10. Simulation of an offshore wind farm using fluid power for centralized electricity generation

    Directory of Open Access Journals (Sweden)

    A. Jarquin Laguna

    2017-07-01

    Full Text Available A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents a few examples of the time domain simulation results for a hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm based on conventional wind turbine generator technology using the same wind farm layout and environmental conditions. For the presented case studies, results indicate that the individual wind turbines are able to operate within operational limits. Despite the stochastic turbulent wind conditions and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions. With the current pressure control concept, a continuous operation of the hydraulic wind farm is shown including the full stop of one or more turbines.

  11. Dispatching strategies for coordinating environmental awareness and risk perception in wind power integrated system

    International Nuclear Information System (INIS)

    Jin, Jingliang; Zhou, Dequn; Zhou, Peng; Qian, Shuqu; Zhang, Mingming

    2016-01-01

    Wind power plays a significant role in economic and environmental operation of electric power system. Meanwhile, the variability and uncertainty characteristics of wind power generation bring technical and economical challenges for power system operation. In order to harmonize the relationship between environmental protection and risk management in power dispatching, this paper presents a stochastic dynamic economic emission dispatch model combining risk perception with environmental awareness of decision-makers by following the principle of chance-constrained programming. In this power dispatching model, the description of wind power uncertainty is derived from the probability statistic character of wind speed. Constraints-handling techniques as a heuristic strategy are embedded into non-dominated sorting genetic algorithm-II. In addition, more information is digested from the Pareto optimum solution set by cluster analysis and fuzzy set theory. The simulation results eventually demonstrate that the increase of the share of wind power output will bring higher risk, though it is beneficial for economic cost and environmental protection. Since different risk perception and environmental awareness can possibly lead to diverse non-dominated solutions, decision-makers may choose an appropriate dispatching strategy according to their specific risk perception and environmental awareness. - Highlights: • A dispatch model combining environmental awareness and risk perception is proposed. • The uncertain characteristic of available wind power is determined. • Constraints-handling techniques are embedded into genetic algorithm. • An appropriate decision-making method is designed. • Dispatching strategies can be coordinated by the proposed model and method.

  12. A stochastic MILP energy planning model incorporating power market dynamics

    International Nuclear Information System (INIS)

    Koltsaklis, Nikolaos E.; Nazos, Konstantinos

    2017-01-01

    Highlights: •Stochastic MILP model for the optimal energy planning of a power system. •Power market dynamics (offers/bids) are incorporated in the proposed model. •Monte Carlo method for capturing the uncertainty of some key parameters. •Analytical supply cost composition per power producer and activity. •Clean dark and spark spreads are calculated for each power unit. -- Abstract: This paper presents an optimization-based methodological approach to address the problem of the optimal planning of a power system at an annual level in competitive and uncertain power markets. More specifically, a stochastic mixed integer linear programming model (MILP) has been developed, combining advanced optimization techniques with Monte Carlo method in order to deal with uncertainty issues. The main focus of the proposed framework is the dynamic formulation of the strategy followed by all market participants in volatile market conditions, as well as detailed economic assessment of the power system’s operation. The applicability of the proposed approach has been tested on a real case study of the interconnected Greek power system, quantifying in detail all the relevant technical and economic aspects of the system’s operation. The proposed work identifies in the form of probability distributions the optimal power generation mix, electricity trade at a regional level, carbon footprint, as well as detailed total supply cost composition, according to the assumed market structure. The paper demonstrates that the proposed optimization approach is able to provide important insights into the appropriate energy strategies designed by market participants, as well as on the strategic long-term decisions to be made by investors and/or policy makers at a national and/or regional level, underscoring potential risks and providing appropriate price signals on critical energy projects under real market operating conditions.

  13. A comprehensive measure of the energy resource: Wind power potential (WPP)

    International Nuclear Information System (INIS)

    Zhang, Jie; Chowdhury, Souma; Messac, Achille

    2014-01-01

    Highlights: • A more comprehensive metric is developed to accurately assess the quality of wind resources at a site. • WPP exploits the joint distribution of wind speed and direction, and yields more credible estimates. • WPP investigates the effect of wind distribution on the optimal net power generation of a farm. • The results show that WPD and WPP follow different trends. - Abstract: Currently, the quality of available wind energy at a site is assessed using wind power density (WPD). This paper proposes to use a more comprehensive metric: the wind power potential (WPP). While the former accounts for only wind speed information, the latter exploits the joint distribution of wind speed and wind direction and yields more credible estimates. The WPP investigates the effect of wind velocity distribution on the optimal net power generation of a farm. A joint distribution of wind speed and direction is used to characterize the stochastic variation of wind conditions. Two joint distribution methods are adopted in this paper: bivariate normal distribution and anisotropic lognormal method. The net power generation for a particular farmland size and installed capacity is maximized for different distributions of wind speed and wind direction, using the Unrestricted Wind Farm Layout Optimization (UWFLO) framework. A response surface is constructed to represent the computed maximum wind farm capacity factor as a function of the parameters of the wind distribution. Two different response surface methods are adopted in this paper: (i) the adaptive hybrid functions (AHF), and (ii) the quadratic response surface method (QRSM). Toward this end, for any farm site, we can (i) estimate the parameters of the joint distribution using recorded wind data (for bivariate normal or anisotropic lognormal distributions) and (ii) predict the maximum capacity factor for a specified farm size and capacity using this response surface. The WPP metric is illustrated using recorded wind

  14. Multi-Time Scale Coordinated Scheduling Strategy with Distributed Power Flow Controllers for Minimizing Wind Power Spillage

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-11-01

    Full Text Available The inherent variability and randomness of large-scale wind power integration have brought great challenges to power flow control and dispatch. The distributed power flow controller (DPFC has the higher flexibility and capacity in power flow control in the system with wind generation. This paper proposes a multi-time scale coordinated scheduling model with DPFC to minimize wind power spillage. Configuration of DPFCs is initially determined by stochastic method. Afterward, two sequential procedures containing day-head and real-time scales are applied for determining maximum schedulable wind sources, optimal outputs of generating units and operation setting of DPFCs. The generating plan is obtained initially in day-ahead scheduling stage and modified in real-time scheduling model, while considering the uncertainty of wind power and fast operation of DPFC. Numerical simulation results in IEEE-RTS79 system illustrate that wind power is maximum scheduled with the optimal deployment and operation of DPFC, which confirms the applicability and effectiveness of the proposed method.

  15. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    Science.gov (United States)

    Kennedy, Scott Warren

    A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable

  16. Wind Power Plant Voltage Control Optimization with Embedded Application of Wind Turbines and Statcom

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Solanas, Jose Ignacio Busca; Zhao, Haoran

    2017-01-01

    Increasing wind power penetration and the size of wind power plants (WPPs) brings challenges to the operation and control of power systems. Most of WPPs are located far from load centers and the short circuit ratio at the point of common coupling (PCC) is low. The fluctuations of wind power...

  17. Dynamic evaluation of the levelized cost of wind power generation

    International Nuclear Information System (INIS)

    Díaz, Guzmán; Gómez-Aleixandre, Javier; Coto, José

    2015-01-01

    Highlights: • Conventional levelized cost of energy is static and does not consider flexibility. • This paper defines a dynamic version by means of stochastic programming. • A penalty for early exercising is proposed to differentiate static and dynamic. • Results show the effects of feed-in tariff support in low wind sites. • Policy implications are derived on the basis of the static and dynamic measures. - Abstract: This paper discusses an alternative computation method of the levelized cost of energy of distributed wind power generators. Unlike in the conventional procedures, it includes time of commencement as an optimization variable. For that purpose, a methodology from Longstaff and Schwartz’s dynamic program for pricing financial American options is derived, which provides the ability to find the optimum time and value while coping with uncertainty revenues from energy sales and variable capital costs. The results obtained from the analysis of wind records of 50 sites entail that the conventional levelized cost of energy can be broken down into an optimum, minimum (time-dependent) value and a penalty for early exercising, which can be employed to define investment strategies and support policies

  18. Butinge Wind Power Plant - Pre-engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mollestad, Knut A.

    1997-03-01

    A preliminary study has been done for a wind farm at Butinge in Lithuania consisting of six 600 kW wind turbines. The location of the wind farm is planned near the border with Latvia and near the coast of the Baltic Sea. The preliminary study has through a relatively detailed technical examination of the project, primarily aimed at gathering basic data for budget estimation and cost calculations. Other relevant aspects of the project are also considered. These include an examination of the basis for the project, an analysis of wind conditions, consideration of the various environmental conditions, discussion about the form of organisation and division of responsibility, as well as an examination of the operational and maintenance framework. Based on wind measurements taken at IFE (Institute for Energy Technology), the annual mean wind is estimated to be 7.3 m/s at 45 m height (equivalent to the hub height for the proposed wind turbines). A production calculation has also been done, which shows that the total energy production of the entire wind farm is expected to 9.47 GWh per year. This is equivalent to a use time of 2630 hours respective to a load factor of 30%. The total cost is estimated at 30.2 mill NOK, and the energy price (including operational costs) delivered from the ''power plant wall'', based on this figure and the production estimate, is calculated at 0,32 NOK/kWh. This is based on a lifetime of 20 years for the facility and a 6.5% required rate of return. In addition, there is outlined a possible financial solution based on various price-scenarios and support arrangements. With an equity capital of 8% and 28% external support, the project meets the current energy price in Lithuania (3,4 US cents/kWh). Without support the sales price of the produced energy is increased by approx. 50%. (author)

  19. Gas-fired wind power and electric hydrogen

    NARCIS (Netherlands)

    Hemmes, K.

    2006-01-01

    In the seemingly endless discussions about the pros and cons of wind power even its advocates have to agree that though wind can fly, with offshore wind farms soon to become reality, this only exacerbates the problem of the winds changeability. Even now the major producers of electricity and power

  20. Wind Power Plant Prediction by Using Neural Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  1. Stochastic oscillations induced by vortex shedding in wind

    DEFF Research Database (Denmark)

    Christensen, Claus

    1997-01-01

    As a fluid flows past a circular cylinder,vortices are shed alternately from each side at most values of the Reynolds number. Over a certain range of windspeeds, the periodicity in the wake is synchronized or captured by the mechanical system. The shedding abruptly deviates from the linear Strouhal...... dependence and stays constant at the mechanical natural frequency. This coupling between the velocity field and the motion of the mechanical system is referred to as the lock-in phenomenon. The lock-in phenomenon has importance in structural engineering for slightly damped slender structures exposed to wind...... in the wake is synchronized or captured by the mechanical system. The shedding abruptly deviates from the linear Strouhal dependence and stays constant at the mechanical natural frequency. This coupling between the velocity field and the motion of the mechanical system is referred to as the lock-in phenomenon...

  2. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    , is provided by the hour-ahead power balancing model, i.e. Simulation power Balancing model (SimBa. The regulating power plan is prepared from day-ahead power production plan and hour-ahead wind power forecast. The wind power (forecasts and available) are provided by the Correlated Wind power fluctuations (Cor......Wind) model, where the wind turbine storm controllers are also implemented....

  3. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  4. Success Factors in Wind Power Projects

    International Nuclear Information System (INIS)

    Cabal, H.; Varela, M.; Lago, C.; Saez, R. M.

    2002-01-01

    The Spanish wind energy market has experienced an average annual increase over 60% in recent years. With more than 4.1 GW of power at the end of 2002, this market has became the second in Europe and the third in the world. With the objective of obtaining the origin of this success, an analysis of technical and economic features of selected wind projects has been undertaken to draw the outstanding factors that any new independent promoter/developer should take into account within this market. (Author) 16 refs

  5. Wind energy and Swiss hydro power

    International Nuclear Information System (INIS)

    Ott, W.; Baur, M.; Fritz, W.; Zimmer, Ch.; Feldmann, J.; Haubrich, H.-J.; Dany, G.; Schmoeller, H.; Hartmann, T.

    2004-01-01

    This report for the Swiss Federal Office of Energy (SFOE) examines the possibilities of using Switzerland's hydropower generation facilities as a means of control and as a capacity-reserve for a European power system that includes a considerable amount of wind-generated electricity. The aims of the study - the analysis of possible changes in power availability and of the relative importance of peak load compensation, economic optimisation potential for the use of Swiss hydropower and organisational aspects - are presented. Various methods for organising production timetables and trading are looked at, as are future developments in the European power market. Methods of assessment of the value of Swiss hydropower installations are discussed in detail and possibilities of increasing capacity are discussed. The report is concluded with recommendations on the participation of Swiss hydropower in the market for regulation energy and the development of associated strategies. Also, environmental aspects are examined and the influence of national wind-energy concepts are discussed

  6. Risk averse optimal operation of a virtual power plant using two stage stochastic programming

    International Nuclear Information System (INIS)

    Tajeddini, Mohammad Amin; Rahimi-Kian, Ashkan; Soroudi, Alireza

    2014-01-01

    VPP (Virtual Power Plant) is defined as a cluster of energy conversion/storage units which are centrally operated in order to improve the technical and economic performance. This paper addresses the optimal operation of a VPP considering the risk factors affecting its daily operation profits. The optimal operation is modelled in both day ahead and balancing markets as a two-stage stochastic mixed integer linear programming in order to maximize a GenCo (generation companies) expected profit. Furthermore, the CVaR (Conditional Value at Risk) is used as a risk measure technique in order to control the risk of low profit scenarios. The uncertain parameters, including the PV power output, wind power output and day-ahead market prices are modelled through scenarios. The proposed model is successfully applied to a real case study to show its applicability and the results are presented and thoroughly discussed. - Highlights: • Virtual power plant modelling considering a set of energy generating and conversion units. • Uncertainty modelling using two stage stochastic programming technique. • Risk modelling using conditional value at risk. • Flexible operation of renewable energy resources. • Electricity price uncertainty in day ahead energy markets

  7. Review of Energy Storage System for Wind Power Integration Support

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Hu, Shuju

    2015-01-01

    -discharging characteristics, Energy Storage System (ESS) is considered as an effective tool to enhance the flexibility and controllability not only of a specific wind farm, but also of the entire grid. This paper reviews the state of the art of the ESS technologies for wind power integration support from different aspects......With the rapid growth of wind energy development and increasing wind power penetration level, it will be a big challenge to operate the power system with high wind power penetration securely and reliably due to the inherent variability and uncertainty of wind power. With the flexible charging...

  8. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  9. Aggregated wind power generation probabilistic forecasting based on particle filter

    International Nuclear Information System (INIS)

    Li, Pai; Guan, Xiaohong; Wu, Jiang

    2015-01-01

    Highlights: • A new method for probabilistic forecasting of aggregated wind power generation. • A dynamic system is established based on a numerical weather prediction model. • The new method handles the non-Gaussian and time-varying wind power uncertainties. • Particle filter is applied to forecast predictive densities of wind generation. - Abstract: Probability distribution of aggregated wind power generation in a region is one of important issues for power system daily operation. This paper presents a novel method to forecast the predictive densities of the aggregated wind power generation from several geographically distributed wind farms, considering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a mesoscale numerical weather prediction model, a dynamic system is established to formulate the relationship between the atmospheric and near-surface wind fields of geographically distributed wind farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmospheric state with the near-surface wind power generation measurements, and to forecast the possible samples of the aggregated wind power generation. The predictive densities of the aggregated wind power generation are then estimated based on these predicted samples by a kernel density estimator. In case studies, the new method presented is tested on a 9 wind farms system in Midwestern United States. The testing results that the new method can provide competitive interval forecasts for the aggregated wind power generation with conventional statistical based models, which validates the effectiveness of the new method

  10. Synchrophasor Applications for Wind Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Y. C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Allen, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singh, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wan, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  11. An investigation on the impacts of regulatory interventions on wind power expansion in generation planning

    International Nuclear Information System (INIS)

    Alishahi, Ehsan; Moghaddam, Mohsen P.; Sheikh-El-Eslami, Mohammad K.

    2011-01-01

    Large integration of intermittent wind generation in power system has necessitated the inclusion of more innovative and sophisticated approaches in power system investment planning. This paper presents a novel framework on the basis of a combination of stochastic dynamic programming (SDP) algorithm and game theory to study the impacts of different regulatory interventions to promote wind power investment in generation expansion planning. In this study, regulatory policies include Feed-in-Tariff (FIT) incentive, quota and tradable green certificate. The intermittent nature and uncertainties of wind power generation will cause the investors encounter risk in their investment decisions. To overcome this problem, a novel model has been derived to study the regulatory impacts on wind generation expansion planning. In our approach, the probabilistic nature of wind generation is modeled. The model can calculate optimal investment strategies, in which the wind power uncertainty is included. This framework is implemented on a test system to illustrate the working of the proposed approach. The result shows that FITs are the most effective policy to encourage the rapid and sustained deployment of wind power. FITs can significantly reduce the risks of investing in renewable energy technologies and thus create conditions conducive to rapid market growth. - Highlights: → The impacts of regulatory policies to promote wind power investment are investigated. → These policies include Feed-in-Tariff (FIT), quota and tradable green certificate. → Result shows that FIT is an effective policy to motivate the rapid growth of wind power. → In quota, customers are forced to provide the quota decided by regulators from wind.

  12. Plans for wind power in Norway - Enova's perspective

    International Nuclear Information System (INIS)

    Stensaas, Dag Rune

    2006-01-01

    A brief presentation of Enova's view on wind power development in Norway. Enova supports a continued development of wind power combined with the development of district heating, as well as other measures to reduce energy consumption (ml)

  13. Improving acceptance in wind power planning

    Energy Technology Data Exchange (ETDEWEB)

    Hammarlund, K. [Lund Univ. (Sweden). Dept. of Social and Economic Geography

    1996-12-01

    This paper presents important factors and planning procedures for public acceptance of wind power. Opinion surveys in Sweden show that acceptance is connected to the concept of utility rather than the aesthetic values. If wind turbines are confined by the authorities to marginal areas, they will not earn their rightful place in the landscape by being of use. A positive attitude in general promotes a positive experience of the effects of wind turbines. It is therefore essential to establish a sense of cooperation between the project management and the public. An open dialogue and continuous information will increase the possibilities for acceptance of future development. We must establish new codes of practice in permit processing because policies today contains ideological and practical contradictions between development and preservation of landscapes. 16 refs, 2 tabs

  14. Improving acceptance in wind power planning

    International Nuclear Information System (INIS)

    Hammarlund, K.

    1996-01-01

    This paper presents important factors and planning procedures for public acceptance of wind power. Opinion surveys in Sweden show that acceptance is connected to the concept of utility rather than the aesthetic values. If wind turbines are confined by the authorities to marginal areas they will not earn their rightful place in the landscape by being of use. A positive attitude in general promotes positive experience of the effects of wind turbines. It is therefore essential to establish a sense of cooperation between the project management and the public. An open dialogue and continuous information will increase the possibilities for acceptance of future development. We must establish new codes of practice in permit processing because policies today contains idealogical and practical contradictions between the development and preservation of landscapes. (author)

  15. Estimation of the Possible Power of a Wind Farm

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Göçmen Bozkurt, Tuhfe; Giebel, Gregor

    2014-01-01

    the possible power calculated based on the estimated effective wind speed of a down regulated wind farm (the industry standard) is compared against the calculated possible power based on the algorithm presented in the paper. The latter takes into account the eect of the wakes of down regulated turbines......It seems possible to increase competitiveness of wind power plants by offering grid services (also called ancillary services) and enter the wind power plants into the ancillary market. One of the ancillary services is called reserve power, the differential capacity between the generated power...... and the available power in the farm. The total amount of energy that a wind farm can potentially generate is called possible power. It is very important for a wind farm owner to have a relatively accurate estimate of the possible power of the wind farm in order to be able to trade the reserve power. In this paper...

  16. Power control of a wind farm with active stall wind turbines and AC grid connection

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Sørensen, Poul; Iov, Florin

    both the control on wind turbine level as well as the central control on the wind farm level. The ability of active stall wind farms with AC grid connection to regulate the power production to the reference power ordered by the operators is assessed and discussed by means of simulations.......This paper describes the design of a centralised wind farm controller for a wind farm made-up exclusively of active stall wind turbines with AC grid connection. The overall aim of such controller is to enable the wind farms to provide the best grid support. The designed wind farm control involves...

  17. Power system stabilizer control for wind power to enhance power system stability

    OpenAIRE

    Domínguez García, José Luís; Gomis Bellmunt, Oriol; Bianchi, Fernando Daniel; Sumper, Andreas

    2011-01-01

    The paper presents a small signal stability analysis for power systems with wind farm interaction. Power systems have damping oscillation modes that can be excited by disturbance or fault in the grid. The power converters of the wind farms can be used to reduce these oscillations and make the system more stable. These ideas are explored to design a power system stabilized (PSS) for a network with conventional generators and a wind farm in order to increase the damping of the oscillation...

  18. Impact of wind power in autonomous power systems—power fluctuations—modelling and control issues

    DEFF Research Database (Denmark)

    Margaris, Ioannis D.; Hansen, Anca Daniela; Cutululis, Nicolaos Antonio

    2011-01-01

    for diesel and steam generation plants are applied. The power grid, including speed governors, automatic voltage regulators, protection system and loads is modelled in the same platform. Results for different load and wind profile cases are being presented for the case study of the island Rhodes, in Greece......This paper describes a detailed modelling approach to study the impact of wind power fluctuations on the frequency control in a non-interconnected system with large-scale wind power. The approach includes models for wind speed fluctuations, wind farm technologies, conventional generation...... technologies, power system protection and load. Analytical models for wind farms with three different wind turbine technologies, namely Doubly Fed Induction Generator, Permanent Magnet Synchronous Generator and Active Stall Induction Generator-based wind turbines, are included. Likewise, analytical models...

  19. Stochastic analysis of residential micro combined heat and power system

    DEFF Research Database (Denmark)

    Karami, H.; Sanjari, M. J.; Gooi, H. B.

    2017-01-01

    In this paper the combined heat and power functionality of a fuel-cell in a residential hybrid energy system, including a battery, is studied. The demand uncertainties are modeled by investigating the stochastic load behavior by applying Monte Carlo simulation. The colonial competitive algorithm...... algorithm. The optimized scheduling of different energy resources is listed in an efficient look-up table for all time intervals. The effects of time of use and the battery efficiency and its size are investigated on the operating cost of the hybrid energy system. The results of this paper are expected...

  20. VAr reserve concept applied to a wind power plant

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    to wind power plants. This paper proposes two different VAr reserve control strategies for a wind power plant. The amount of dynamic VAr available most of the operation time, makes the wind power plant (WPP) a good candidate to include a VAr reserve management system. Two different ways of implementing...... a VAr management system are proposed and analyzed. Such a reactive power reserve may be provided by the wind power plant since the amount of reactive power installed for most active power working points exceeds the demand required by the grid operator. Basically, this overrated reactive power capacity...... is a consequence of sizing wind turbine facilities for maximum active power level. The reactive power losses, due to active power transportation inside the plant (normally two transformers), and P-Q wind turbine characteristics define the P-Q reserve chart. By utilizing the intrinsic overrated reactive power...

  1. Small scale wind energy harvesting with maximum power tracking

    Directory of Open Access Journals (Sweden)

    Joaquim Azevedo

    2015-07-01

    Full Text Available It is well-known that energy harvesting from wind can be used to power remote monitoring systems. There are several studies that use wind energy in small-scale systems, mainly with wind turbine vertical axis. However, there are very few studies with actual implementations of small wind turbines. This paper compares the performance of horizontal and vertical axis wind turbines for energy harvesting on wireless sensor network applications. The problem with the use of wind energy is that most of the time the wind speed is very low, especially at urban areas. Therefore, this work includes a study on the wind speed distribution in an urban environment and proposes a controller to maximize the energy transfer to the storage systems. The generated power is evaluated by simulation and experimentally for different load and wind conditions. The results demonstrate the increase in efficiency of wind generators that use maximum power transfer tracking, even at low wind speeds.

  2. A combined modeling approach for wind power feed-in and electricity spot prices

    International Nuclear Information System (INIS)

    Keles, Dogan; Genoese, Massimo; Möst, Dominik; Ortlieb, Sebastian; Fichtner, Wolf

    2013-01-01

    Wind power generation and its impacts on electricity prices has strongly increased in the EU. Therefore, appropriate mark-to-market evaluation of new investments in wind power and energy storage plants should consider the fluctuant generation of wind power and uncertain electricity prices, which are affected by wind power feed-in (WPF). To gain the input data for WPF and electricity prices, simulation models, such as econometric models, can serve as a data basis. This paper describes a combined modeling approach for the simulation of WPF series and electricity prices considering the impacts of WPF on prices based on an autoregressive approach. Thereby WPF series are firstly simulated for each hour of the year and integrated in the electricity price model to generate an hourly resolved price series for a year. The model results demonstrate that the WPF model delivers satisfying WPF series and that the extended electricity price model considering WPF leads to a significant improvement of the electricity price simulation compared to a model version without WPF effects. As the simulated series of WPF and electricity prices also contain the correlation between both series, market evaluation of wind power technologies can be accurately done based on these series. - Highlights: • Wind power feed-in can be directly simulated with stochastic processes. • Non-linear relationship between wind power feed-in and electricity prices. • Price reduction effect of wind power feed-in depends on the actual load. • Considering wind power feed-in effects improves the electricity price simulation. • Combined modeling of both parameters delivers a data basis for evaluation tools

  3. Transient stability probability evaluation of power system incorporating with wind farm and SMES

    DEFF Research Database (Denmark)

    Fang, Jiakun; Miao, Lu; Wen, Jinyu

    2013-01-01

    Large scale renewable power generation brings great challenges to the power system operation and stabilization. Energy storage is one of the most important technologies to face the challenges. This paper proposes a method for transient stability probability evaluation of power system with wind farm...... and SMES. Firstly, a modified 11-bus test system with both wind farm and SMES has been implemented. The wind farm is represented as a doubly fed induction generator (DFIG). Then a stochastic-based approach to evaluate the probabilistic transient stability index of the power system is presented. Uncertain...... the probability indices. With the proposed method based on Monte-Carlo simulation and bisection method, system stability is "measured". Quantitative relationship of penetration level, SMES coil size and system stability is established. Considering the stability versus coil size to be the production curve...

  4. Optimal offering and allocation policies for wind power in energy and reserve markets

    DEFF Research Database (Denmark)

    Soares, Tiago; Jensen, Tue Vissing; Mazzi, Nicolo

    2017-01-01

    Cormick relaxation and piecewise linear decision rules are adapted and tested aiming to maximize the expected revenue for participating in both energy and reserve markets, while accounting for estimated balancing costs for failing to provide energy and reserve. A set of numerical examples, as well as a case study......Proliferation of wind power generation is increasingly making this power source an important asset in designs of energy and reserve markets. Intuitively, wind power producers will require the development of new offering strategies that maximize the expected profit in both energy and reserve markets...... of better forecast information from the different day-ahead and balancing stages, allowing different shares of energy and reserve in both stages. Under these assumptions, different mathematical methods able to deal with the uncertain nature of wind power generation, namely, stochastic programming, with Mc...

  5. Challenges and options for large scale integration of wind power

    International Nuclear Information System (INIS)

    Tande, John Olav Giaever

    2006-01-01

    Challenges and options for large scale integration of wind power are examined. Immediate challenges are related to weak grids. Assessment of system stability requires numerical simulation. Models are being developed - validation is essential. Coordination of wind and hydro generation is a key for allowing more wind power capacity in areas with limited transmission corridors. For the case study grid depending on technology and control the allowed wind farm size is increased from 50 to 200 MW. The real life example from 8 January 2005 demonstrates that existing marked based mechanisms can handle large amounts of wind power. In wind integration studies it is essential to take account of the controllability of modern wind farms, the power system flexibility and the smoothing effect of geographically dispersed wind farms. Modern wind farms contribute to system adequacy - combining wind and hydro constitutes a win-win system (ml)

  6. Integrating Wind Power in Electricity Grids : an Economic Analysis

    NARCIS (Netherlands)

    Liu, J.; Kooten, van G.C.; Pitt, L.

    2005-01-01

    As a renewable energy source, wind power is gaining popularity as a favoured alternative to fossil fuel, nuclear and hydro power generation. In Europe, countries are required to achieve 15% of their energy consumption from wind by 2010 as the EU strives to meet its Kyoto obligations. Wind power is

  7. 77 FR 38277 - Wind and Water Power Program

    Science.gov (United States)

    2012-06-27

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... public meeting. SUMMARY: The Department of Energy (DOE) Wind and Water Power Program is planning a... in Washington, DC on June 13, 2012. Mark Higgins, Wind and Water Power Acting Program Manager, Office...

  8. High Power Electronics - Key Technology for Wind Turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2014-01-01

    reliability challenges for the future wind turbines are explained. It is concluded that the wind turbine behavior/performance can be significantly improved by introducing power electronics, and there will be higher requirements for the power electronics performances in wind power application....

  9. Integration of wind power in the liberalized Dutch electricity market

    NARCIS (Netherlands)

    Ummels, B.C.; Gibescu, M.; Kling, W.L.; Paap, G.C.

    2006-01-01

    Wind power is becoming a large-scale electricity generation technology in a number of European countries, including the Netherlands.Owing to the variability and unpredictability of wind power production, large-scale wind power can be foreseen to have large consequences for balancing generation and

  10. Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy

    International Nuclear Information System (INIS)

    Nosratabadi, Seyyed Mostafa; Hooshmand, Rahmat-Allah; Gholipour, Eskandar

    2016-01-01

    Highlights: • VPPs and IVPPs are defined for energy management of aggregated generations. • IVPP can manage industrial microgrid containing some relevant load and generation. • A stochastic modeling is proposed to schedule optimal generations in competition market. • Wind generation and day-ahead and spot market prices are considered to be stochastic. • A new DRL program selection scheme is presented in the scheduling procedure. - Abstract: One of the main classified microgrids in a power system is the industrial microgrid. Due to its behaviors and the heavy loads, its energy management is challengeable. Virtual Power Plant (VPP) can be an important concept in managing such problems in this kind of grids. Here, a transmission power system is considered as a Regional Electric Company (REC) and the VPPs comprising Distributed Generation (DG) units and Demand Response Loads (DRLs) are determined in this system. This paper focuses on Industrial VPP (IVPP) and its management. An IVPP can be determined as a management unit comprising generations and loads in an industrial microgrid. Since the scheduling procedure for these units is very important for their participation in a short-term electric market, a stochastic formulation is proposed for power scheduling in VPPs especially in IVPPs in this paper. By introducing the DRL programs and using the proposed modeling, the operator can select the best DRL program for each VPP in a scheduling procedure. In this regard, a suitable approach is presented to determine the proposed formulation and its solution in a Mixed Integer Non-Linear Programming (MINLP). To validate the performance of the proposed method, the IEEE Reliability Test System (IEEE-RTS) is considered to apply the method on it, while some challenging aspects are presented.

  11. Wind energy systems solutions for power quality and stabilization

    CERN Document Server

    Ali, Mohd Hasan

    2012-01-01

    Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases--and wind energy is a free, renewable resource. However, the induction machines commonly used as wind generators have stability problems similar to the transient stability of synchronous machines. To minimize power, frequency, and voltage fluctuations caused by network faults or random wind speed variations, control mechanisms are necessary. Wind Energy Systems: Solutions for Power Quality and Stabilization clearly explains how to solve stability and power quality issues of wind generator systems. Covering

  12. Wind power developments in New Zealand

    International Nuclear Information System (INIS)

    Botha, P.; White, G.

    1997-01-01

    New Zealand currently generates approximately 86% of its electricity requirement from renewable energy sources, predominantly large hydro. Forecasts show that due to the expected increase in demand, a new mid-sized power station will be required by 1997/98. Due to the commercialisation and restructuring of the electricity market, and despite the country's commitment to CO 2 reductions, proposed new large generation projects are gas fired stations. The country's first commercial wind farm was commissioned in June 1996, in a market where there are no subsidies or tax benefits for non traditional energy generation. For wind power projects to compete with other forms of electricity generation, they need to take full advantage of all the benefits of being embedded into the local network. This paper considers these issues in the existing electricity market. (author)

  13. Wind power, policy learning and paradigm change

    International Nuclear Information System (INIS)

    Szarka, Joseph

    2006-01-01

    The aim of this article is to study how policy learning has led to new understandings of ways to support renewable energies, based on experience in the wind power sector. Drawing on analysis of the literature and informed by field-work in the wind power sector in Denmark, France and the UK, it explores the extent to which policy learning over the medium term has brought us closer to models that integrate economic, environmental and societal desiderata into renewables policy in a manner congruent with the sustainable development aspirations espoused by the European Union and its constituent states. It contributes to policy theory development by arguing in favour of a new policy paradigm that reaches beyond measures to increase production capacity per se to embrace both the institutional dynamics of innovation processes and the fostering of societal engagement in implementation processes

  14. Wind Observatory 2017. Analysis of the wind power market, wind jobs and future of the wind industry in France

    International Nuclear Information System (INIS)

    2017-09-01

    Two years after the enactment of the Energy Transition for Green Growth Act, wind power capacity continues to grow in France, exceeding 12 GWatt the end of 2016 and soon to account for 5% of France's electric power consumption. This vitality, which is set to continue in 2017, will help France achieve its objectives of an installed capacity of 15,000 MW in onshore wind by 2018 and 21,800 to 26,000 MW by 2023. The current pace will nevertheless have to be accelerated in order to reach the realistic objective of 26 GW by 2023 mentioned in the multi-annual energy plan (PPE). With 1,400 jobs created in one year and more than 3,300 over the last two years, the relevance of wind power as a driving force of sustainable job creation throughout the country is unequivocally confirmed: the increase in wind power capacity continues to contribute to the growth in employment in the country. Prepared in collaboration with the consulting firm BearingPoint, the 2017 edition of the Observatory aims to give the reader an overview of employment in the wind industry and the wind power market over the period under consideration. Any changes from the three previous editions are highlighted. It is based on a comprehensive census of all market participants on three themes: employment, the market and the future of wind power. The Observatory gives an accurate picture of how the wind energy industry is structured, thereby presenting a precise overview of the wind energy industry and all its components

  15. Small-scale wind power design, analysis, and environmental impacts

    CERN Document Server

    Abraham, John P

    2014-01-01

    In today's world, clean and robust energy sources are being sought to provide power to residences, commercial operations, and manufacturing enterprises. Among the most appealing energy sources is wind power-with its high reliability and low environmental impact. Wind power's rapid penetration into markets throughout the world has taken many forms, and this book discusses the types of wind power, as well as the appropriate decisions that need to be made regarding wind power design, testing, installation, and analysis. Inside, the authors detail the design of various small-wind systems including horizontal-axis wind turbines (HAWTs) and vertical-axis wind turbines (VAWTs). The design of wind turbines takes advantage of many avenues of investigation, all of which are included in the book. Analytical methods that have been developed over the past few decades are major methods used for design. Alternatively, experimentation (typically using scaled models in wind tunnels) and numerical simulation (using modern comp...

  16. Evaluating the quality of scenarios of short-term wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Girard, R.

    2012-01-01

    Scenarios of short-term wind power generation are becoming increasingly popular as input to multi-stage decision-making problems e.g. multivariate stochastic optimization and stochastic programming. The quality of these scenarios is intuitively expected to substantially impact the benets from...... their use in decision-making. So far however, their verication is almost always focused on their marginal distributions for each individual lead time only, thus overlooking their temporal interdependence structure. The shortcomings of such an approach are discussed. Multivariate verication tools, as well...... as diagnostic approaches based on event-based verication are then presented. Their application to the evaluation of various sets of scenarios of short-term wind power generation demonstrates them as valuable discrimination tools....

  17. China's Wind Power Development in 2008

    Institute of Scientific and Technical Information of China (English)

    Jiang Liping; LiJialu

    2009-01-01

    @@ Introduction Over the past decade,considering the energy supply security and the sustainable energy development,as well as the atmospheric-environmental protection especially the climate change,countries all over the world have generated more and more enthusiasm for renewable energy development.Driven by this trend,wind power development has been keeping up great momentum worldwide,and new records have been set.

  18. Review of wind power tariff policies in China

    International Nuclear Information System (INIS)

    Hu, Zheng; Wang, Jianhui; Byrne, John; Kurdgelashvili, Lado

    2013-01-01

    In the past 20 years, China has paid significant attention to wind power. Onshore wind power in China has experienced tremendous growth since 2005, and offshore wind power development has been on-going since 2009. In 2010, with a total installed wind power capacity of 41.8 GW, China surpassed the U.S. as the country with the biggest wind power capacity in the world. By comparing the wind power situations of three typical countries, Germany, Spain, and Denmark, this paper provides a comprehensive evaluation and insights into the prospects of China’s wind power development. The analysis is carried out in four aspects including technology, wind resources, administration and time/space frame. We conclude that both German and Spanish have been growing rapidly in onshore capacity since policy improvements were made. In Denmark, large financial subsidies flow to foreign markets with power exports, creating inverse cost-benefit ratios. Incentives are in place for German and Danish offshore wind power, while China will have to remove institutional barriers to enable a leap in wind power development. In China, cross-subsidies are provided from thermal power (coal-fired power generation) in order to limit thermal power while encouraging wind power. However, the mass installation of wind power capacity completely relies on power subsidies. Furthermore, our study illustrates that capacity growth should not be the only consideration for wind power development. It is more important to do a comprehensive evaluation of multi-sectorial efforts in order to achieve long-term development. - Highlights: ► Key components to exam China’s wind power. ► Evaluation of Europe could be helpful. ► China has to remove institutional barrier.

  19. Generating optimized stochastic power management strategies for electric car components

    Energy Technology Data Exchange (ETDEWEB)

    Fruth, Matthias [TraceTronic GmbH, Dresden (Germany); Bastian, Steve [Technische Univ. Dresden (Germany)

    2012-11-01

    With the increasing prevalence of electric vehicles, reducing the power consumption of car components becomes a necessity. For the example of a novel traffic-light assistance system, which makes speed recommendations based on the expected length of red-light phases, power-management strategies are used to control under which conditions radio communication, positioning systems and other components are switched to low-power (e.g. sleep) or high-power (e.g. idle/busy) states. We apply dynamic power management, an optimization technique well-known from other domains, in order to compute energy-optimal power-management strategies, sometimes resulting in these strategies being stochastic. On the example of the traffic-light assistant, we present a MATLAB/Simulink-implemented framework for the generation, simulation and formal analysis of optimized power-management strategies, which is based on this technique. We study capabilities and limitations of this approach and sketch further applications in the automotive domain. (orig.)

  20. Utilization of excess wind power in electric vehicles

    International Nuclear Information System (INIS)

    Hennings, Wilfried; Mischinger, Stefan; Linssen, Jochen

    2013-01-01

    This article describes the assessment of future wind power utilization for charging electric vehicles (EVs) in Germany. The potential wind power production in the model years 2020 and 2030 is derived by extrapolating onshore wind power generation and offshore wind speeds measured in 2007 and 2010 to the installed onshore and offshore wind turbine capacities assumed for 2020 and 2030. The energy consumption of an assumed fleet of 1 million EVs in 2020 and 6 million in 2030 is assessed using detailed models of electric vehicles, real world driving cycles and car usage. It is shown that a substantial part of the charging demand of EVs can be met by otherwise unused wind power, depending on the amount of conventional power required for stabilizing the grid. The utilization of wind power is limited by the charging demand of the cars and the bottlenecks in the transmission grid. -- Highlights: •Wind power available for charging depends on minimum required conventional power (must-run). •With 20 GW must-run power, 50% of charging can be met by excess wind power. •Grid bottlenecks decrease charging met by wind power from 50 % to 30 %. •With zero must-run power, only very little wind power is available for charging

  1. The influence of turbulence and vertical wind profile in wind turbine power curve

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia, A.; Gomez-Lazaro, E. [Castilla-La Mancha Univ., Albacete (Spain). Renewable Energy Research Inst.; Vigueras-Rodriguez, A. [Albacete Science and Technolgy Park, Albacete (Spain)

    2012-07-01

    To identify the influence of turbulence and vertical wind profile in wind turbine performance, wind speed measurements at different heights have been performed. Measurements have been developed using a cup anemometer and a LIDAR equipment, specifically a pulsed wave one. The wind profile has been recorded to study the effect of the atmospheric conditions over the energy generated by a wind turbine located close to the LIDAR system. The changes in the power production of the wind turbine are relevant. (orig.)

  2. Parameter study of electric power production in wind farms - experiments using two model scale wind turbines

    OpenAIRE

    Ceccotti, Clio

    2015-01-01

    Wind farms are widely developed even if several unsolved problems need to be faced. The rotor-wake interaction involves different physical phenomena, not yet fully understood, directly affecting the overall wind farm power production. Numerical models and engineering rules have always been used to design wind farm layout but a spread between power predictions and results is verified. In this context wind energy research assumes a "back to basic" approach, by means of wind tunne...

  3. Multi-objective unit commitment with wind penetration and emission concerns under stochastic and fuzzy uncertainties

    International Nuclear Information System (INIS)

    Wang, Bo; Wang, Shuming; Zhou, Xianzhong; Watada, Junzo

    2016-01-01

    Recent years have witnessed the ever increasing renewable penetration in power generation systems, which entails modern unit commitment problems with modelling and computation burdens. This study aims to simulate the impacts of manifold uncertainties on system operation with emission concerns. First, probability theory and fuzzy set theory are applied to jointly represent the uncertainties such as wind generation, load fluctuation and unit outage that interleaved in unit commitment problems. Second, a Value-at-Risk-based multi-objective approach is developed as a bridge of existing stochastic and robust unit commitment optimizations, which not only captures the inherent conflict between operation cost and supply reliability, but also provides easy-to-adjust robustness against worst-case scenarios. Third, a multi-objective algorithm that integrates fuzzy simulation and particle swarm optimization is developed to achieve approximate Pareto-optimal solutions. The research effectiveness is exemplified by two case studies: The comparison between test systems with and without generation uncertainty demonstrates that this study is practicable and can suggest operational insights of generation mix systems. The sensitivity analysis on Value-at-Risk proves that our method can achieve adequate tradeoff between performance optimality and robustness, thus help system operators in making informed decisions. Finally, the model and algorithm comparisons also justify the superiority of this research. - Highlights: • Probability theory and fuzzy set theory are used to describe different uncertainties. • A Value-at-Risk-based multi-objective unit commitment model is proposed. • An improved multi-objective particle swarm optimization algorithm is developed. • The model achieves adequate trade-off between performance optimality and robustness. • The algorithm can obtain convergent and diversified Pareto fronts.

  4. Resilience of electricity grids against transmission line overloads under wind power injection at different nodes.

    Science.gov (United States)

    Schiel, Christoph; Lind, Pedro G; Maass, Philipp

    2017-09-14

    A steadily increasing fraction of renewable energy sources for electricity production requires a better understanding of how stochastic power generation affects the stability of electricity grids. Here, we assess the resilience of an IEEE test grid against single transmission line overloads under wind power injection based on the dc power flow equations and a quasi-static grid response to wind fluctuations. Thereby we focus on the mutual influence of wind power generation at different nodes. We find that overload probabilities vary strongly between different pairs of nodes and become highly affected by spatial correlations of wind fluctuations. An unexpected behaviour is uncovered: for a large number of node pairs, increasing wind power injection at one node can increase the power threshold at the other node with respect to line overloads in the grid. We find that this seemingly paradoxical behaviour is related to the topological distance of the overloaded line from the shortest path connecting the wind nodes. In the considered test grid, it occurs for all node pairs, where the overloaded line belongs to the shortest path.

  5. Aggregated Wind Park Models for Analysing Power System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Poeller, Markus; Achilles, Sebastian [DIgSILENT GmbH, Gomaringen (Germany)

    2003-11-01

    The increasing amount of wind power generation in European power systems requires stability analysis considering interaction between wind-farms and transmission systems. Dynamics introduced by dispersed wind generators at the distribution level can usually be neglected. However, large on- and offshore wind farms have a considerable influence to power system dynamics and must definitely be considered for analyzing power system dynamics. Compared to conventional power stations, wind power plants consist of a large number of generators of small size. Therefore, representing every wind generator individually increases the calculation time of dynamic simulations considerably. Therefore, model aggregation techniques should be applied for reducing calculation times. This paper presents aggregated models for wind parks consisting of fixed or variable speed wind generators.

  6. Wind Power Plant Voltage Stability Evaluation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  7. Regulation strategies for wind power fluctuations depending on demand in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Martinez, Sergio; Vigueras-Rodriguez, Antonio; Gomez-Lazaro, Emilio [Universidad de Castilla-La Mancha, Albacete (Spain). Energy Research Inst.; Fuentes, Juan Alvaro; Molina-Garcia, Angel [Cartagena Univ. (Spain). Dept. of Electrical Engineering

    2010-07-01

    Power systems need more flexibility as far as significant amounts of load are being covered by wind power. The variations of large wind power production impose some adverse effects on the power system. Some of these effects are the cycling losses on centralized units, discarded wind energy and increase of reserve requirements. Cycling losses derived from a non-optimal operation on great thermal and hydro power plants is an important issue produced by the stochastic wind power nature. Discarded wind energy is produced when the system can not assimilate all the wind power production. Reserve requirements are increased to keep the system balance with the secondary control. Different control functions have been developed for active power production. Some of them are balance control, delta control and power gradient limitation. Balance control consists in adjusting the production in steps to a set point constant production. The delta production constraint consists on limiting the current production to a fix delta power value below the possible production. This constraint is usually used for increasing the regulation capabilities in the wind farm. The Delta constraint can also be used jointly with the negative ramp limiting strategy, allowing then also to fix a maximum negative gradient for the cases in which the wind speed is decreasing and it is possible to limit that descend by reducing the delta value. The power gradient limiting strategy consists in a limitation of the maximum increasing gradient of the current production, i.e. it prevents the farm production from increasing too fast when the wind speed is rising or when the farm is to be started in high wind. It the wind speed is decreasing, then the constraint does not have any function. On the other hand, the negative ramp limiting strategy consists in a limitation of the maximum decreasing gradient of the current production. If the wind speed is increasing, then the constraint does not have any function. This

  8. Simulation of an offshore wind farm using fluid power for centralized electricity generation

    International Nuclear Information System (INIS)

    Jarquin-Laguna, A

    2016-01-01

    A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents two examples of the time-domain simulation results for an hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm with conventional technology turbines, using the same wind farm layout and environmental conditions. For the presented case study, results indicate that the individual wind turbines are able to operate within operational limits with the current pressure control concept. Despite the stochastic turbulent wind input and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions. (paper)

  9. Validation of Power Output for the WIND Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    King, J.; Clifton, A.; Hodge, B. M.

    2014-09-01

    Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

  10. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  11. Gas-fired wind power and electric hydrogen

    OpenAIRE

    Hemmes, K.

    2006-01-01

    In the seemingly endless discussions about the pros and cons of wind power even its advocates have to agree that though wind can fly, with offshore wind farms soon to become reality, this only exacerbates the problem of the winds changeability. Even now the major producers of electricity and power grid companies foresee grave difficulties from the peaks and dips in supply of this green power source. Dr Kas Hemmes of the faculty of Systems Engineering, Policy Analysis, and Management at TU Del...

  12. Integrating Wind Power in Electricity Grids : an Economic Analysis

    OpenAIRE

    Liu, J.; Kooten, van, G.C.; Pitt, L.

    2005-01-01

    As a renewable energy source, wind power is gaining popularity as a favoured alternative to fossil fuel, nuclear and hydro power generation. In Europe, countries are required to achieve 15% of their energy consumption from wind by 2010 as the EU strives to meet its Kyoto obligations. Wind power is considered to be environmentally friendly and low cost. While environmental friendliness has come under scrutiny because wind turbines continue to pose a hazard to birds, are visually unappealing, a...

  13. Lifetime estimation for the power semiconductors considering mission profiles in wind power converter

    OpenAIRE

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power...

  14. A long-term analysis of pumped hydro storage to firm wind power

    International Nuclear Information System (INIS)

    Foley, A.M.; Leahy, P.G.; Li, K.; McKeogh, E.J.; Morrison, A.P.

    2015-01-01

    Highlights: • This is a long term generation analysis of a high wind power system. • A high CO 2 and fossil fuel price is closest to Ireland’s EU ETS 2020 target. • New pumped storage to firm wind is limited unless strong market costs exist. • Reserve for wind power show that ancillary services are relevant for balancing. - Abstract: Although pumped hydro storage is seen as a strategic key asset by grid operators, financing it is complicated in new liberalised markets. It could be argued that the optimum generation portfolio is now determined by the economic viability of generators based on a short to medium term return on investment. This has meant that capital intensive projects such as pumped hydro storage are less attractive for wholesale electricity companies because the payback periods are too long. In tandem a significant amount of wind power has entered the generation mix, which has resulted in operating and planning integration issues due to wind’s inherent uncertain, varying spatial and temporal nature. These integration issues can be overcome using fast acting gas peaking plant or energy storage. Most analysis of wind power integration using storage to date has used stochastic optimisation for power system balancing or arbitrage modelling to examine techno-economic viability. In this research a deterministic dynamic programming long term generation expansion model is employed to optimise the generation mix, total system costs and total carbon dioxide emissions, and unlike other studies calculates reserve to firm wind power. The key finding of this study is that the incentive to build capital-intensive pumped hydro storage to firm wind power is limited unless exogenous market costs come very strongly into play. Furthermore it was demonstrated that reserve increases with increasing wind power showing the importance of ancillary services in future power systems

  15. The role of co-located storage for wind power producers in conventional electricity markets

    KAUST Repository

    Bitar, E.

    2011-06-01

    In this paper we study the problem of optimizing contract offerings for an independent wind power producer (WPP) participating in conventional day-ahead forward electricity markets for energy. As wind power is an inherently variable source of energy and is difficult to predict, we explore the extent to which co-located energy storage can be used to improve expected profit and mitigate the the financial risk associated with shorting on the offered contracts. Using a simple stochastic model for wind power production and a model for the electricity market, we show that the problem of determining optimal contract offerings for a WPP with co-located energy storage can be solved using convex programming.

  16. Isolated systems with wind power. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Lundsager, P.; Bindner, H.; Clausen, N.E.; Frandsen, S.; Hansen, L.H.; Hansen, J.C.

    2001-06-01

    The overall objective of this research project is to study the development of methods and guidelines rather than 'universal solutions' for the use of wind energy in isolated communities. The main specific objective of the project is to develop and present a more unified and generally applicable approach for assessing the technical and economical feasibility of isolated power supply systems with wind energy. As a part of the project the following tasks were carried out: Review of literature, field measurements in Egypt, development of an inventory of small isolated systems, overview of end-user demands, analysis of findings and development of proposed guidelines. The project is reported in one main report and four topical reports, all of them issued as Risoe reports. This is the Main Report Risoe-R-1256, summing up the activities and findings of the project and outlining an Implementation Strategy for Isolated Systems with Wind Power, applicable for international organisations such as donor agencies and development banks. (au)

  17. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2011-01-01

    presents a simulation model of a variable speed wind farm with permanent magnet synchronous generators (PMSGs) and fullscale back-to-back converters in the simulation tool of DIgSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power......Grid connected wind turbines are fluctuating power sources due to wind speed variations, the wind shear and the tower shadow effects. The fluctuating power may be able to excite the power system oscillation at a frequency close to the natural oscillation frequency of a power system. This paper...... systems with large scale wind power penetrations are investigated during continuous operation based on the wind turbine model and the power system model....

  18. Methodology for Assessment of Inertial Response from Wind Power Plants

    DEFF Research Database (Denmark)

    Altin, Müfit; Teodorescu, Remus; Bak-Jensen, Birgitte

    2012-01-01

    High wind power penetration levels result in additional requirements from wind power in order to improve frequency stability. Replacement of conventional power plants with wind power plants reduces the power system inertia due to the wind turbine technology. Consequently, the rate of change...... of frequency and the maximum frequency deviation increase after a disturbance such as generation loss, load increase, etc. Having no inherent inertial response, wind power plants need additional control concepts in order to provide an additional active power following a disturbance. Several control concepts...... have been implemented in the literature, but the assessment of these control concepts with respect to power system requirements has not been specified. In this paper, a methodology to assess the inertial response from wind power plants is proposed. Accordingly, the proposed methodology is applied...

  19. Wind power statistics and an evaluation of wind energy density

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, M.; Parsa, S.; Majidi, M. [Materials and Energy Research Centre, Tehran (Iran, Islamic Republic of)

    1995-11-01

    In this paper the statistical data of fifty days` wind speed measurements at the MERC- solar site are used to find out the wind energy density and other wind characteristics with the help of the Weibull probability distribution function. It is emphasized that the Weibull and Rayleigh probability functions are useful tools for wind energy density estimation but are not quite appropriate for properly fitting the actual wind data of low mean speed, short-time records. One has to use either the actual wind data (histogram) or look for a better fit by other models of the probability function. (Author)

  20. Wind Power Today: 1998 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Tromly, K.

    1999-06-17

    The US Department of Energy's Office of Energy Efficiency and Renewable Energy manages the Federal Wind Energy Program. The mission of the program is to help the US wind industry to complete the research, testing, and field verification needed to fully develop advanced wind technologies that will lead the world in cost-effectiveness and reliability. This publication, printed annually, provides a summary of significant achievements in wind energy made during the previous calendar year. Articles include wind energy in the Midwest, an Alaskan wind energy project, the US certification program, structural testing, and the federal program in review.

  1. Short-term strategies for Dutch wind power producers to reduce imbalance costs

    International Nuclear Information System (INIS)

    Chaves-Ávila, José Pablo; Hakvoort, Rudi A.; Ramos, Andrés

    2013-01-01

    The paper assesses bidding strategies for a wind power producer in the Netherlands. To this end, a three-stage stochastic optimization framework is used, maximizing wind power producer's profit using the day-ahead and cross-border intraday market, taking into account available interconnection capacity. Results show that the wind power producer can increase its profits by trading on the intraday market and – under certain imbalance prices – by intentionally creating imbalances. It has been considered uncertainties about prices, power forecast and interconnection capacity at the day-ahead and intraday timeframes. - Highlights: ► A cross-border bidding strategy model for wind power producers has been developed. ► The model was applied to a real case study of a Dutch offshore wind power producer. ► Under certain imbalance prices, it is not profitable to deliver all possible power. ► Intraday markets give the possibility to reduce imbalance costs. ► Integration of intraday markets will increase liquidity.

  2. Wind power in areas with limited export capability

    Energy Technology Data Exchange (ETDEWEB)

    Matevosyan, Julija

    2004-03-01

    During the last two decades, increase in electricity demand and environmental concern resulted in fast growth of power production from renewable sources. Wind power is one of the most efficient alternatives. Due to rapid development of wind turbine technology and increasing size of wind farms, wind power plays a significant part in the power production mix of Germany, Spain, Denmark and some other countries. Wind power has to be build in areas with good wind potential. The best conditions for installation of wind power are, thus, in remote areas free of obstacles, and consequently with low population density. The transmission system in such areas might not be dimensioned to accommodate additional large-scale power plants. Insufficient transmission capacity problem, however, would emerge for any type of new generation, planned in similar conditions, although wind power has some special features that should be considered solving this problem. In this thesis the four possibilities are considered. One possibility is to revise the methods for calculation of available transmission capacity. Another solution for large-scale integration of wind power in such areas is to reinforce the network. This alternative however may be expensive and time consuming. Since wind power production depends on the wind speed, the wind farm utilization time is only 2,000-4,000 hours a year, and power production peaks not necessarily occur during periods with insufficient transmission capacity. Therefore wind energy curtailment may be considered as an alternative for large-scale wind power integration. It is also possible to store excess wind energy during the periods with insufficient transmission capacity. Conventional power plants with possibilities of fast production control (e.g. hydropower plants or gas power plants) may also be employed for this purpose. There is a lot of research regarding first two measures, therefore, this thesis provides a review and summarized conclusions from the

  3. Evaluation of flexible demand-side load-following reserves in power systems with high wind generation penetration

    NARCIS (Netherlands)

    Paterakis, N.G.; Catalao, J.P.S.; Ntomaris, A.V.; Erdinc, O.

    2015-01-01

    In this study, a two-stage stochastic programming joint energy and reserve day-ahead market structure is proposed in order to procure the required load-following reserves to tackle with wind power production uncertainty. Reserves can be procured both from generation and demand-side. Responsive

  4. A Meteorological Information Mining-Based Wind Speed Model for Adequacy Assessment of Power Systems With Wind Power

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2017-01-01

    Accurate wind speed simulation is an essential prerequisite to analyze the power systems with wind power. A wind speed model considering meteorological conditions and seasonal variations is proposed in this paper. Firstly, using the path analysis method, the influence weights of meteorological...... systems with wind power. The assessment results of the modified IEEE-RTS79 and IEEE-RTS96 demonstrated the effectiveness and accuracy of the proposed model....

  5. Benefits of an ultra large and multiresolution ensemble for estimating available wind power

    Science.gov (United States)

    Berndt, Jonas; Hoppe, Charlotte; Elbern, Hendrik

    2016-04-01

    In this study we investigate the benefits of an ultra large ensemble with up to 1000 members including multiple nesting with a target horizontal resolution of 1 km. The ensemble shall be used as a basis to detect events of extreme errors in wind power forecasting. Forecast value is the wind vector at wind turbine hub height (~ 100 m) in the short range (1 to 24 hour). Current wind power forecast systems rest already on NWP ensemble models. However, only calibrated ensembles from meteorological institutions serve as input so far, with limited spatial resolution (˜10 - 80 km) and member number (˜ 50). Perturbations related to the specific merits of wind power production are yet missing. Thus, single extreme error events which are not detected by such ensemble power forecasts occur infrequently. The numerical forecast model used in this study is the Weather Research and Forecasting Model (WRF). Model uncertainties are represented by stochastic parametrization of sub-grid processes via stochastically perturbed parametrization tendencies and in conjunction via the complementary stochastic kinetic-energy backscatter scheme already provided by WRF. We perform continuous ensemble updates by comparing each ensemble member with available observations using a sequential importance resampling filter to improve the model accuracy while maintaining ensemble spread. Additionally, we use different ensemble systems from global models (ECMWF and GFS) as input and boundary conditions to capture different synoptic conditions. Critical weather situations which are connected to extreme error events are located and corresponding perturbation techniques are applied. The demanding computational effort is overcome by utilising the supercomputer JUQUEEN at the Forschungszentrum Juelich.

  6. The influence of roughness and obstacle on wind power map

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Mohd Fadhil Abas; Mohd Hafiz Ismail

    2006-01-01

    In the development of wind energy in Malaysia, the need for wind power map of Peninsular Malaysia has aroused. The map is needed to help in determining the potential areas where low wind speed wind turbines could operate optimally. In establishing the wind power map the effects of roughness and obstacles have been investigated. Wind data from 24 meteorological stations around the country have been utilized in conjunction with the respective local roughness and obstacles. Two sets of wind power maps have been developed i.e. the wind power maps with and without roughness and obstacles. These two sets of wind power maps exhibit great significant amount of difference in the wind power values especially in the inland areas where the wind power map without roughness and obstacles gives much lower values than those with roughness and obstacles. This paper outlines the process of establishing the two sets of wind power map as well as discussing the influence of roughness and obstacles based on the results obtained

  7. Wind Power: A Turning Point. Worldwatch Paper 45.

    Science.gov (United States)

    Flavin, Christopher

    Recent studies have shown wind power to be an eminently practical and potentially substantial source of electricity and direct mechanical power. Wind machines range from simple water-pumping devices made of wood and cloth to large electricity producing turbines with fiberglass blades nearly 300 feet long. Wind is in effect a form of solar…

  8. Power Electronics as key technology in wind turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede

    2005-01-01

    This paper discuss the development in wind turbines in a two-decade perspective looking at the technology based on track records. Different power electronic topologies for interfacing the wind turbine to the grid are discussed and related to the possibility for the wind turbine to act as a power...

  9. Assessment and analysis of wind energy generation and power ...

    African Journals Online (AJOL)

    This study concerns the evaluation of wind power potential and the choice of a wind turbine to be installed near Rabah Bitat international airport of Annaba. Furthermore, the performances of power control of this turbine are developed. For this, the wind speed data measured by meteorological station of th e airport are used.

  10. Introducing Wind Power: Essentials for Bringing It into the Classroom

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    As a renewable source of energy, wind energy will play a significant role in the future. Public, commercial, and privately owned organizations are increasingly finding the value and profits in wind power. Including wind power in a technology and engineering education curriculum teaches students about an important technology that may effect their…

  11. Modeling of wind turbines for power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Petru, T.

    2001-05-01

    When wind turbines are installed into the electric grid, the power quality is affected. Today, strict installation recommendations often prevail due to a lack of knowledge on this subject. Consequently, it is important to predict the impact of wind turbines on the electric grid before the turbines are installed. The thesis describes relevant power quality issues, discusses different configurations of wind turbines with respect to power quality and draw requirements regarding wind turbine modeling. A model of a stall-regulated, fixed-speed wind turbine system is introduced and its power quality impact on the electric grid is evaluated. The model is verified with field measurements.

  12. Using ensemble forecasting for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G.; Landberg, L.; Badger, J. [Risoe National Lab., Roskilde (Denmark); Sattler, K.

    2003-07-01

    Short-term prediction of wind power has a long tradition in Denmark. It is an essential tool for the operators to keep the grid from becoming unstable in a region like Jutland, where more than 27% of the electricity consumption comes from wind power. This means that the minimum load is already lower than the maximum production from wind energy alone. Danish utilities have therefore used short-term prediction of wind energy since the mid-90ies. However, the accuracy is still far from being sufficient in the eyes of the utilities (used to have load forecasts accurate to within 5% on a one-week horizon). The Ensemble project tries to alleviate the dependency of the forecast quality on one model by using multiple models, and also will investigate the possibilities of using the model spread of multiple models or of dedicated ensemble runs for a prediction of the uncertainty of the forecast. Usually, short-term forecasting works (especially for the horizon beyond 6 hours) by gathering input from a Numerical Weather Prediction (NWP) model. This input data is used together with online data in statistical models (this is the case eg in Zephyr/WPPT) to yield the output of the wind farms or of a whole region for the next 48 hours (only limited by the NWP model horizon). For the accuracy of the final production forecast, the accuracy of the NWP prediction is paramount. While many efforts are underway to increase the accuracy of the NWP forecasts themselves (which ultimately are limited by the amount of computing power available, the lack of a tight observational network on the Atlantic and limited physics modelling), another approach is to use ensembles of different models or different model runs. This can be either an ensemble of different models output for the same area, using different data assimilation schemes and different model physics, or a dedicated ensemble run by a large institution, where the same model is run with slight variations in initial conditions and

  13. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, R. C.; Gifford, J.

    2010-01-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  14. System and market integration of wind power in Denmark

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Alberg Østergaard, Poul

    2013-01-01

    Denmark has more than 10 years’ of experience with a wind share of approximately 20 per cent. During these 10 years, electricity markets have been subject to developments with a key focus on integrating wind power as well as trading electricity with neighbouring countries. This article introduces...... a methodology to analyse and understand the current market integration of wind power and concludes that the majority of Danish wind power in the period 2004e2008 was used to meet the domestic demand. Based on a physical analysis, at least 63 per cent of Danish wind power was used domestically in 2008....... To analyse the remaining 37 per cent, we must apply a market model to identify cause-effect relationships. The Danish case does not illustrate any upper limit for wind power integration, as also illustrated by Danish political targets to integrate 50 per cent by 2020. In recent years, Danish wind power has...

  15. SERVICE MAINTENANCE OF HIGHWAYS WHILE USING WIND POWER

    Directory of Open Access Journals (Sweden)

    Y. N. Kovalev

    2011-01-01

    Full Text Available The paper considers possible provision of electric power to motorway service stations on the basis of comparison of a diesel power station and a wind power plant. Arguments in favour of wind power plants that prove an economic and technical efficiency of their application are given in the paper.

  16. Wind/photovoltaic power indicators. Third quarter 2011

    International Nuclear Information System (INIS)

    Thienard, Helene

    2011-11-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  17. Wind/photovoltaic power indicators. Second quarter 2009

    International Nuclear Information System (INIS)

    2009-09-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  18. Wind/photovoltaic power indicators. Second quarter 2011

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  19. Wind/photovoltaic power indicators. First quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  20. Wind/photovoltaic power indicators. Fourth quarter 2011

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)