Stochastic programming with integer recourse
van der Vlerk, Maarten Hendrikus
1995-01-01
In this thesis we consider two-stage stochastic linear programming models with integer recourse. Such models are at the intersection of two different branches of mathematical programming. On the one hand some of the model parameters are random, which places the problem in the field of stochastic
Introduction to stochastic dynamic programming
Ross, Sheldon M; Lukacs, E
1983-01-01
Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist-providing counterexamples where appropriate-and the
Stochastic integer programming by dynamic programming
Lageweg, B.J.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Stougie, L.; Ermoliev, Yu.; Wets, R.J.B.
1988-01-01
Stochastic integer programming is a suitable tool for modeling hierarchical decision situations with combinatorial features. In continuation of our work on the design and analysis of heuristics for such problems, we now try to find optimal solutions. Dynamic programming techniques can be used to
Stochastic optimization: beyond mathematical programming
CERN. Geneva
2015-01-01
Stochastic optimization, among which bio-inspired algorithms, is gaining momentum in areas where more classical optimization algorithms fail to deliver satisfactory results, or simply cannot be directly applied. This presentation will introduce baseline stochastic optimization algorithms, and illustrate their efficiency in different domains, from continuous non-convex problems to combinatorial optimization problem, to problems for which a non-parametric formulation can help exploring unforeseen possible solution spaces.
Automated Flight Routing Using Stochastic Dynamic Programming
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
Thin and heavy tails in stochastic programming
Czech Academy of Sciences Publication Activity Database
Kaňková, Vlasta; Houda, Michal
2015-01-01
Roč. 51, č. 3 (2015), s. 433-456 ISSN 0023-5954 R&D Projects: GA ČR GA13-14445S Institutional support: RVO:67985556 Keywords : stochastic programming problems * stability * Wasserstein metric * L1 norm * Lipschitz property * empirical estimates * convergence rate * linear and nonlinear dependence * probability and risk constraints * stochastic dominance Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.628, year: 2015 http://library.utia.cas.cz/separaty/2015/E/kankova-0447994.pdf
Network interdiction and stochastic integer programming
2003-01-01
On March 15, 2002 we held a workshop on network interdiction and the more general problem of stochastic mixed integer programming at the University of California, Davis. Jesús De Loera and I co-chaired the event, which included presentations of on-going research and discussion. At the workshop, we decided to produce a volume of timely work on the topics. This volume is the result. Each chapter represents state-of-the-art research and all of them were refereed by leading investigators in the respective fields. Problems - sociated with protecting and attacking computer, transportation, and social networks gain importance as the world becomes more dep- dent on interconnected systems. Optimization models that address the stochastic nature of these problems are an important part of the research agenda. This work relies on recent efforts to provide methods for - dressing stochastic mixed integer programs. The book is organized with interdiction papers first and the stochastic programming papers in the second part....
Stochastic control theory dynamic programming principle
Nisio, Makiko
2015-01-01
This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-ma...
Stochastic linear programming models, theory, and computation
Kall, Peter
2011-01-01
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...
Multistage Stochastic Programming via Autoregressive Sequences
Czech Academy of Sciences Publication Activity Database
Kaňková, Vlasta
2007-01-01
Roč. 15, č. 4 (2007), s. 99-110 ISSN 0572-3043 R&D Projects: GA ČR GA402/07/1113; GA ČR(CZ) GA402/06/0990; GA ČR GD402/03/H057 Institutional research plan: CEZ:AV0Z10750506 Keywords : Economic proceses * Multistage stochastic programming * autoregressive sequences * individual probability constraints Subject RIV: BB - Applied Statistics, Operational Research
Hybrid Differential Dynamic Programming with Stochastic Search
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Convergence of Sample Path Optimal Policies for Stochastic Dynamic Programming
National Research Council Canada - National Science Library
Fu, Michael C; Jin, Xing
2005-01-01
.... These results have practical implications for Monte Carlo simulation-based solution approaches to stochastic dynamic programming problems where it is impractical to extract the explicit transition...
Can Household Benefit from Stochastic Programming Models?
DEFF Research Database (Denmark)
Rasmussen, Kourosh Marjani; Madsen, Claus A.; Poulsen, Rolf
2014-01-01
The Danish mortgage market is large and sophisticated. However, most Danish mortgage banks advise private home-owners based on simple, if sensible, rules of thumb. In recent years a number of papers (from Nielsen and Poulsen in J Econ Dyn Control 28:1267–1289, 2004 over Rasmussen and Zenios in J...... Risk 10:1–18, 2007 to Pedersen et al. in Ann Oper Res, 2013) have suggested a model-based, stochastic programming approach to mortgage choice. This paper gives an empirical comparison of performance over the period 2000–2010 of the rules of thumb to the model-based strategies. While the rules of thumb.......3–0.9 %-points (depending on the borrower’s level of conservatism) compared to the rules of thumb without increasing the risk. The answer to the question in the title is thus affirmative....
Planning under uncertainty solving large-scale stochastic linear programs
Energy Technology Data Exchange (ETDEWEB)
Infanger, G. [Stanford Univ., CA (United States). Dept. of Operations Research]|[Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft
1992-12-01
For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.
K-Minimax Stochastic Programming Problems
Nedeva, C.
2007-10-01
The purpose of this paper is a discussion of a numerical procedure based on the simplex method for stochastic optimization problems with partially known distribution functions. The convergence of this procedure is proved by the condition on dual problems.
A stochastic programming approach to manufacturing flow control
Haurie, Alain; Moresino, Francesco
2012-01-01
This paper proposes and tests an approximation of the solution of a class of piecewise deterministic control problems, typically used in the modeling of manufacturing flow processes. This approximation uses a stochastic programming approach on a suitably discretized and sampled system. The method proceeds through two stages: (i) the Hamilton-Jacobi-Bellman (HJB) dynamic programming equations for the finite horizon continuous time stochastic control problem are discretized over a set of sample...
Complementary programs for stochastic analysis of radionuclide transport
International Nuclear Information System (INIS)
Gomez Hernandez, J.J.
1993-01-01
The present programs will permit to analyze the risks using parametric and non parametric technic. The programs are presented in two groups: 1) variable estimation through indicator krigeaje and variable estimation by Cokrigeaje 2) variable simulation with multi gassiness stochastic model and non gassiness. This report includes new programs for the non parametric geostatistics
Portfolio management of hydropower producer via stochastic programming
International Nuclear Information System (INIS)
Liu, Hongling; Jiang, Chuanwen; Zhang, Yan
2009-01-01
This paper presents a stochastic linear programming framework for the hydropower portfolio management problem with uncertainty in market prices and inflows on medium term. The uncertainty is modeled as a scenario tree using the Monte Carlo simulation method, and the objective is to maximize the expected revenue over the entire scenario tree. The portfolio decisions of the stochastic model are formulated as a tradeoff involving different scenarios. Numerical results illustrate the impact of uncertainty on the portfolio management decisions, and indicate the significant value of stochastic solution. (author)
Hybrid Semantics of Stochastic Programs with Dynamic Reconfiguration
Directory of Open Access Journals (Sweden)
Alberto Policriti
2009-10-01
Full Text Available We begin by reviewing a technique to approximate the dynamics of stochastic programs --written in a stochastic process algebra-- by a hybrid system, suitable to capture a mixed discrete/continuous evolution. In a nutshell, the discrete dynamics is kept stochastic while the continuous evolution is given in terms of ODEs, and the overall technique, therefore, naturally associates a Piecewise Deterministic Markov Process with a stochastic program. The speciﬁc contribution in this work consists in an increase of the ﬂexibility of the translation scheme, obtained by allowing a dynamic reconﬁguration of the degree of discreteness/continuity of the semantics. We also discuss the relationships of this approach with other hybrid simulation strategies for biochemical systems.
Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution
Energy Technology Data Exchange (ETDEWEB)
Hamadameen, Abdulqader Othman [Optimization, Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia); Zainuddin, Zaitul Marlizawati [Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia)
2014-06-19
This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.
Czech Academy of Sciences Publication Activity Database
Omelchenko, Vadym; Kaňková, Vlasta
2015-01-01
Roč. 84, č. 2 (2015), s. 267-281 ISSN 0862-9544 R&D Projects: GA ČR GA13-14445S Institutional support: RVO:67985556 Keywords : Stochastic programming problems * empirical estimates * light and heavy tailed distributions * quantiles Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2015/E/omelchenko-0454495.pdf
Directory of Open Access Journals (Sweden)
Shaolin Ji
2013-01-01
Full Text Available This paper is devoted to a stochastic differential game (SDG of decoupled functional forward-backward stochastic differential equation (FBSDE. For our SDG, the associated upper and lower value functions of the SDG are defined through the solution of controlled functional backward stochastic differential equations (BSDEs. Applying the Girsanov transformation method introduced by Buckdahn and Li (2008, the upper and the lower value functions are shown to be deterministic. We also generalize the Hamilton-Jacobi-Bellman-Isaacs (HJBI equations to the path-dependent ones. By establishing the dynamic programming principal (DPP, we derive that the upper and the lower value functions are the viscosity solutions of the corresponding upper and the lower path-dependent HJBI equations, respectively.
Generalized bounds for convex multistage stochastic programs
Künzi, H; Fandel, G; Trockel, W; Basile, A; Drexl, A; Dawid, H; Inderfurth, K; Kürsten, W; Schittko, U
2005-01-01
This work was completed during my tenure as a scientific assistant and d- toral student at the Institute for Operations Research at the University of St. Gallen. During that time, I was involved in several industry projects in the field of power management, on the occasion of which I was repeatedly c- fronted with complex decision problems under uncertainty. Although usually hard to solve, I quickly learned to appreciate the benefit of stochastic progr- ming models and developed a strong interest in their theoretical properties. Motivated both by practical questions and theoretical concerns, I became p- ticularly interested in the art of finding tight bounds on the optimal value of a given model. The present work attempts to make a contribution to this important branch of stochastic optimization theory. In particular, it aims at extending some classical bounding methods to broader problem classes of practical relevance. This book was accepted as a doctoral thesis by the University of St. Gallen in June 2004.1...
Mortgage Loan Portfolio Optimization Using Multi-Stage Stochastic Programming
DEFF Research Database (Denmark)
Rasmussen, Kourosh Marjani; Clausen, Jens
2007-01-01
We consider the dynamics of the Danish mortgage loan system and propose several models to reflect the choices of a mortgagor as well as his attitude towards risk. The models are formulated as multi stage stochastic integer programs, which are difficult to solve for more than 10 stages. Scenario...
Approximation in two-stage stochastic integer programming
W. Romeijnders; L. Stougie (Leen); M. van der Vlerk
2014-01-01
htmlabstractApproximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solution value.
Approximation in two-stage stochastic integer programming
Romeijnders, W.; Stougie, L.; van der Vlerk, M.H.
2014-01-01
Approximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solution value. However,
A stochastic-programming approach to integrated asset and liability ...
African Journals Online (AJOL)
This increase in complexity has provided an impetus for the investigation into integrated asset- and liability-management frameworks that could realistically address dynamic portfolio allocation in a risk-controlled way. In this paper the authors propose a multi-stage dynamic stochastic-programming model for the integrated ...
Using metrics in stability of stochastic programming problems
Czech Academy of Sciences Publication Activity Database
Houda, Michal
2005-01-01
Roč. 13, č. 1 (2005), s. 128-134 ISSN 0572-3043 R&D Projects: GA ČR(CZ) GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : stochastic programming * quantitative stability * Wasserstein metrics * Kolmogorov metrics * simulation study Subject RIV: BB - Applied Statistics, Operational Research
Gas contract portfolio management: a stochastic programming approach
International Nuclear Information System (INIS)
Haurie, A.; Smeers, Y.; Zaccour, G.
1991-01-01
This paper deals with a stochastic programming model which complements long range market simulation models generating scenarios concerning the evolution of demand and prices for gas in different market segments. Agas company has to negociate contracts with lengths going from one to twenty years. This stochastic model is designed to assess the risk associated with committing the gas production capacity of the company to these market segments. Different approaches are presented to overcome the difficulties associated with the very large size of the resulting optimization problem
Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming
Energy Technology Data Exchange (ETDEWEB)
Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo
2013-05-23
This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.
Dynamic electricity pricing for electric vehicles using stochastic programming
International Nuclear Information System (INIS)
Soares, João; Ghazvini, Mohammad Ali Fotouhi; Borges, Nuno; Vale, Zita
2017-01-01
Electric Vehicles (EVs) are an important source of uncertainty, due to their variable demand, departure time and location. In smart grids, the electricity demand can be controlled via Demand Response (DR) programs. Smart charging and vehicle-to-grid seem highly promising methods for EVs control. However, high capital costs remain a barrier to implementation. Meanwhile, incentive and price-based schemes that do not require high level of control can be implemented to influence the EVs' demand. Having effective tools to deal with the increasing level of uncertainty is increasingly important for players, such as energy aggregators. This paper formulates a stochastic model for day-ahead energy resource scheduling, integrated with the dynamic electricity pricing for EVs, to address the challenges brought by the demand and renewable sources uncertainty. The two-stage stochastic programming approach is used to obtain the optimal electricity pricing for EVs. A realistic case study projected for 2030 is presented based on Zaragoza network. The results demonstrate that it is more effective than the deterministic model and that the optimal pricing is preferable. This study indicates that adequate DR schemes like the proposed one are promising to increase the customers' satisfaction in addition to improve the profitability of the energy aggregation business. - Highlights: • A stochastic model for energy scheduling tackling several uncertainty sources. • A two-stage stochastic programming is used to tackle the developed model. • Optimal EV electricity pricing seems to improve the profits. • The propose results suggest to increase the customers' satisfaction.
Using linear programming to analyze and optimize stochastic flow lines
DEFF Research Database (Denmark)
Helber, Stefan; Schimmelpfeng, Katja; Stolletz, Raik
2011-01-01
This paper presents a linear programming approach to analyze and optimize flow lines with limited buffer capacities and stochastic processing times. The basic idea is to solve a huge but simple linear program that models an entire simulation run of a multi-stage production process in discrete time...... programming and hence allows us to solve buffer allocation problems. We show under which conditions our method works well by comparing its results to exact values for two-machine models and approximate simulation results for longer lines....
Bonus algorithm for large scale stochastic nonlinear programming problems
Diwekar, Urmila
2015-01-01
This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...
Depandent samples in empirical estimation of stochastic programming problems
Czech Academy of Sciences Publication Activity Database
Kaňková, Vlasta; Houda, Michal
2006-01-01
Roč. 35, 2/3 (2006), s. 271-279 ISSN 1026-597X R&D Projects: GA ČR GA402/04/1294; GA ČR GD402/03/H057; GA ČR GA402/05/0115 Institutional research plan: CEZ:AV0Z10750506 Keywords : stochastic programming * stability * probability metrics * Wasserstein metric * Kolmogorov metric * simulations Subject RIV: BB - Applied Statistics , Operational Research
A remark on empirical estimates in multistage stochastic programming
Czech Academy of Sciences Publication Activity Database
Kaňková, Vlasta
2002-01-01
Roč. 9, č. 17 (2002), s. 31-50 ISSN 1212-074X R&D Projects: GA ČR GA402/01/0539; GA ČR GA402/02/1015; GA ČR GA402/01/0034 Institutional research plan: CEZ:AV0Z1075907 Keywords : multistage stochastic programming * empirical estimates * Markov dependence Subject RIV: BB - Applied Statistics, Operational Research
A combined stochastic programming and optimal control approach to personal finance and pensions
DEFF Research Database (Denmark)
Konicz, Agnieszka Karolina; Pisinger, David; Rasmussen, Kourosh Marjani
2015-01-01
The paper presents a model that combines a dynamic programming (stochastic optimal control) approach and a multi-stage stochastic linear programming approach (SLP), integrated into one SLP formulation. Stochastic optimal control produces an optimal policy that is easy to understand and implement....
Stochastic programming framework for Lithuanian pension payout modelling
Directory of Open Access Journals (Sweden)
Audrius Kabašinskas
2014-12-01
Full Text Available The paper provides a scientific approach to the problem of selecting a pension fund by taking into account some specific characteristics of the Lithuanian Republic (LR pension accumulation system. The decision making model, which can be used to plan a long-term pension accrual of the Lithuanian Republic (LR citizens, in an optimal way is presented. This model focuses on factors that influence the sustainability of the pension system selection under macroeconomic, social and demographic uncertainty. The model is formalized as a single stage stochastic optimization problem where the long-term optimal strategy can be obtained based on the possible scenarios generated for a particular participant. Stochastic programming methods allow including the pension fund rebalancing moment and direction of investment, and taking into account possible changes of personal income, changes of society and the global financial market. The collection of methods used to generate scenario trees was found useful to solve strategic planning problems.
Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach
Energy Technology Data Exchange (ETDEWEB)
Ma, Xiao [ORNL; Dong, Jin [ORNL; Djouadi, Seddik M [ORNL; Nutaro, James J [ORNL; Kuruganti, Teja [ORNL
2015-01-01
The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, where the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.
Stochastic programming problems with generalized integrated chance constraints
Czech Academy of Sciences Publication Activity Database
Branda, Martin
2012-01-01
Roč. 61, č. 8 (2012), s. 949-968 ISSN 0233-1934 R&D Projects: GA ČR GAP402/10/1610 Grant - others:SVV(CZ) 261315/2010 Institutional support: RVO:67985556 Keywords : chance constraints * integrated chance constraints * penalty functions * sample approximations * blending problem Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.707, year: 2012 http://library.utia.cas.cz/separaty/2012/E/branda-stochastic programming problems with generalized integrated.pdf
Short-term hydropower production planning by stochastic programming
DEFF Research Database (Denmark)
Fleten, Stein-Erik; Kristoffersen, Trine
2008-01-01
-term production planning a matter of spatial distribution among the reservoirs of the plant. Day-ahead market prices and reservoir inflows are, however, uncertain beyond the current operation day and water must be allocated among the reservoirs in order to strike a balance between current profits and expected......Within the framework of multi-stage mixed-integer linear stochastic programming we develop a short-term production plan for a price-taking hydropower plant operating under uncertainty. Current production must comply with the day-ahead commitments of the previous day which makes short...
An Improvement for Fuzzy Stochastic Goal Programming Problems
Directory of Open Access Journals (Sweden)
Shu-Cheng Lin
2017-01-01
Full Text Available We examined the solution process for linear programming problems under a fuzzy and random environment to transform fuzzy stochastic goal programming problems into standard linear programming problems. A previous paper that revised the solution process with the lower-side attainment index motivated our work. In this paper, we worked on a revision for both-side attainment index to amend its definition and theorems. Two previous examples were used to examine and demonstrate our improvement over previous results. Our findings not only improve the previous paper with both-side attainment index, but also provide a theoretical extension from lower-side attainment index to the both-side attainment index.
Evaluation of Electric Power Procurement Strategies by Stochastic Dynamic Programming
Saisho, Yuichi; Hayashi, Taketo; Fujii, Yasumasa; Yamaji, Kenji
In deregulated electricity markets, the role of a distribution company is to purchase electricity from the wholesale electricity market at randomly fluctuating prices and to provide it to its customers at a given fixed price. Therefore the company has to take risk stemming from the uncertainties of electricity prices and/or demand fluctuation instead of the customers. The way to avoid the risk is to make a bilateral contact with generating companies or install its own power generation facility. This entails the necessity to develop a certain method to make an optimal strategy for electric power procurement. In such a circumstance, this research has the purpose for proposing a mathematical method based on stochastic dynamic programming and additionally considering the characteristics of the start-up cost of electric power generation facility to evaluate strategies of combination of the bilateral contract and power auto-generation with its own facility for procuring electric power in deregulated electricity market. In the beginning we proposed two approaches to solve the stochastic dynamic programming, and they are a Monte Carlo simulation method and a finite difference method to derive the solution of a partial differential equation of the total procurement cost of electric power. Finally we discussed the influences of the price uncertainty on optimal strategies of power procurement.
Keren, Baruch; Pliskin, Joseph S
2011-12-01
The optimal timing for performing radical medical procedures as joint (e.g., hip) replacement must be seriously considered. In this paper we show that under deterministic assumptions the optimal timing for joint replacement is a solution of a mathematical programming problem, and under stochastic assumptions the optimal timing can be formulated as a stochastic programming problem. We formulate deterministic and stochastic models that can serve as decision support tools. The results show that the benefit from joint replacement surgery is heavily dependent on timing. Moreover, for a special case where the patient's remaining life is normally distributed along with a normally distributed survival of the new joint, the expected benefit function from surgery is completely solved. This enables practitioners to draw the expected benefit graph, to find the optimal timing, to evaluate the benefit for each patient, to set priorities among patients and to decide if joint replacement should be performed and when.
The sequence relay selection strategy based on stochastic dynamic programming
Zhu, Rui; Chen, Xihao; Huang, Yangchao
2017-07-01
Relay-assisted (RA) network with relay node selection is a kind of effective method to improve the channel capacity and convergence performance. However, most of the existing researches about the relay selection did not consider the statically channel state information and the selection cost. This shortage limited the performance and application of RA network in practical scenarios. In order to overcome this drawback, a sequence relay selection strategy (SRSS) was proposed. And the performance upper bound of SRSS was also analyzed in this paper. Furthermore, in order to make SRSS more practical, a novel threshold determination algorithm based on the stochastic dynamic program (SDP) was given to work with SRSS. Numerical results are also presented to exhibit the performance of SRSS with SDP.
A stochastic programming approach towards optimization of biofuel supply chain
International Nuclear Information System (INIS)
Azadeh, Ali; Vafa Arani, Hamed; Dashti, Hossein
2014-01-01
Bioenergy has been recognized as an important source of energy that will reduce dependency on petroleum. It would have a positive impact on the economy, environment, and society. Production of bioenergy is expected to increase. As a result, we foresee an increase in the number of biorefineries in the near future. This paper analyzes challenges with supplying biomass to a biorefinery and shipping biofuel to demand centers. A stochastic linear programming model is proposed within a multi-period planning framework to maximize the expected profit. The model deals with a time-staged, multi-commodity, production/distribution system, facility locations and capacities, technologies, and material flows. We illustrate the model outputs and discuss the results through numerical examples considering disruptions in biofuel supply chain. Finally, sensitivity analyses are performed to gain managerial insights on how profit changes due to existing uncertainties. - Highlights: • A robust model of biofuel SC is proposed and a sensitivity analysis implemented. • Demand of products is a function of price and GBM (Geometric Brownian Motion) is used for prices of biofuels. • Uncertainties in SC network are captured through defining probabilistic scenarios. • Both traditional feedstock and lignocellulosic biomass are considered for biofuel production. • Developed model is applicable to any related biofuel supply chain regardless of region
Directory of Open Access Journals (Sweden)
Hong Zhang
2017-01-01
Full Text Available In order to formulate water allocation schemes under uncertainties in the water resources management systems, an inexact multistage stochastic chance constrained programming (IMSCCP model is proposed. The model integrates stochastic chance constrained programming, multistage stochastic programming, and inexact stochastic programming within a general optimization framework to handle the uncertainties occurring in both constraints and objective. These uncertainties are expressed as probability distributions, interval with multiply distributed stochastic boundaries, dynamic features of the long-term water allocation plans, and so on. Compared with the existing inexact multistage stochastic programming, the IMSCCP can be used to assess more system risks and handle more complicated uncertainties in water resources management systems. The IMSCCP model is applied to a hypothetical case study of water resources management. In order to construct an approximate solution for the model, a hybrid algorithm, which incorporates stochastic simulation, back propagation neural network, and genetic algorithm, is proposed. The results show that the optimal value represents the maximal net system benefit achieved with a given confidence level under chance constraints, and the solutions provide optimal water allocation schemes to multiple users over a multiperiod planning horizon.
Stochastic optimal control in infinite dimension dynamic programming and HJB equations
Fabbri, Giorgio; Święch, Andrzej
2017-01-01
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite ...
Stochastic programming and market equilibrium analysis of microgrids energy management systems
International Nuclear Information System (INIS)
Hu, Ming-Che; Lu, Su-Ying; Chen, Yen-Haw
2016-01-01
Microgrids facilitate optimum utilization of distributed renewable energy, provides better local energy supply, and reduces transmission loss and greenhouse gas emission. Because the uncertainty in energy demand affects the energy demand and supply system, the aim of this research is to develop a stochastic optimization and its market equilibrium for microgrids in the electricity market. Therefore, a two-stage stochastic programming model for microgrids and the market competition model are derived in this paper. In the stochastic model, energy demand and supply uncertainties are considered. Furthermore, a case study of the stochastic model is conducted to simulate the uncertainties on the INER microgrids in Taiwanese market. The optimal investment of the generators and batteries installation and operating strategies are determined under energy demand and supply uncertainties for the INER microgrids. The results show optimal investment and operating strategies for the current INER microgrids are also determined by the proposed two-stage stochastic model in the market. In addition, trade-off between the battery capacity and microgrids performance is investigated. Battery usage and power trading between the microgrids and main grid systems are the functions of battery capacity. - Highlights: • A two-stage stochastic programming model is developed for microgrids. • Market equilibrium analysis of microgrids is conducted. • A case study of the stochastic model is conducted for INER microgrids.
FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.
Li, Pu; Chen, Bing
2011-04-01
Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.
Stochastic Robust Mathematical Programming Model for Power System Optimization
Energy Technology Data Exchange (ETDEWEB)
Liu, Cong; Changhyeok, Lee; Haoyong, Chen; Mehrotra, Sanjay
2016-01-01
This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.
Decomposition and (importance) sampling techniques for multi-stage stochastic linear programs
Energy Technology Data Exchange (ETDEWEB)
Infanger, G.
1993-11-01
The difficulty of solving large-scale multi-stage stochastic linear programs arises from the sheer number of scenarios associated with numerous stochastic parameters. The number of scenarios grows exponentially with the number of stages and problems get easily out of hand even for very moderate numbers of stochastic parameters per stage. Our method combines dual (Benders) decomposition with Monte Carlo sampling techniques. We employ importance sampling to efficiently obtain accurate estimates of both expected future costs and gradients and right-hand sides of cuts. The method enables us to solve practical large-scale problems with many stages and numerous stochastic parameters per stage. We discuss the theory of sharing and adjusting cuts between different scenarios in a stage. We derive probabilistic lower and upper bounds, where we use importance path sampling for the upper bound estimation. Initial numerical results turned out to be promising.
Stochastic Fractional Programming Approach to a Mean and Variance Model of a Transportation Problem
Directory of Open Access Journals (Sweden)
V. Charles
2011-01-01
Full Text Available In this paper, we propose a stochastic programming model, which considers a ratio of two nonlinear functions and probabilistic constraints. In the former, only expected model has been proposed without caring variability in the model. On the other hand, in the variance model, the variability played a vital role without concerning its counterpart, namely, the expected model. Further, the expected model optimizes the ratio of two linear cost functions where as variance model optimize the ratio of two non-linear functions, that is, the stochastic nature in the denominator and numerator and considering expectation and variability as well leads to a non-linear fractional program. In this paper, a transportation model with stochastic fractional programming (SFP problem approach is proposed, which strikes the balance between previous models available in the literature.
DEFF Research Database (Denmark)
Zhan, Yiduo; Zheng, Qipeng; Wang, Jianhui
2016-01-01
, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming......Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined...
Czech Academy of Sciences Publication Activity Database
Šmíd, Martin
2009-01-01
Roč. 165, č. 1 (2009), s. 29-45 ISSN 0254-5330 R&D Projects: GA ČR GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : multistage stochastic programming problems * approximation * discretization * Monte Carlo Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.961, year: 2009 http://library.utia.cas.cz/separaty/2008/E/smid-the expected loss in the discretization of multistage stochastic programming problems - estimation and convergence rate.pdf
A primal-dual decomposition based interior point approach to two-stage stochastic linear programming
A.B. Berkelaar (Arjan); C.L. Dert (Cees); K.P.B. Oldenkamp; S. Zhang (Shuzhong)
1999-01-01
textabstractDecision making under uncertainty is a challenge faced by many decision makers. Stochastic programming is a major tool developed to deal with optimization with uncertainties that has found applications in, e.g. finance, such as asset-liability and bond-portfolio management.
Directory of Open Access Journals (Sweden)
Jingtao Shi
2013-01-01
Full Text Available This paper is concerned with the relationship between maximum principle and dynamic programming for stochastic recursive optimal control problems. Under certain differentiability conditions, relations among the adjoint processes, the generalized Hamiltonian function, and the value function are given. A linear quadratic recursive utility portfolio optimization problem in the financial engineering is discussed as an explicitly illustrated example of the main result.
DEFF Research Database (Denmark)
Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia
2015-01-01
of stochastic dynamic programming, to optimize water resources management in the Ziya River basin. Natural runoff from the upper basin was estimated with a rainfall-runoff model autocalibrated using in situ measured discharge. The runoff serial correlation was described by a Markov chain and used as input...
A two-factor, stochastic programming model of Danish mortgage-backed securities
DEFF Research Database (Denmark)
Nielsen, Søren S.; Poulsen, Rolf
2004-01-01
-trivial, both in terms of deciding on an initial mortgage, and in terms of managing (rebalancing) it optimally.We propose a two-factor, arbitrage-free interest-rate model, calibrated to observable security prices, and implement on top of it a multi-stage, stochastic optimization program with the purpose...
A two-stage stochastic programming approach for operating multi-energy systems
DEFF Research Database (Denmark)
Zeng, Qing; Fang, Jiakun; Chen, Zhe
2017-01-01
This paper provides a two-stage stochastic programming approach for joint operating multi-energy systems under uncertainty. Simulation is carried out in a test system to demonstrate the feasibility and efficiency of the proposed approach. The test energy system includes a gas subsystem with a gas...
International Nuclear Information System (INIS)
Nikzad, Mehdi; Mozafari, Babak; Bashirvand, Mahdi; Solaymani, Soodabeh; Ranjbar, Ali Mohamad
2012-01-01
Recently in electricity markets, a massive focus has been made on setting up opportunities for participating demand side. Such opportunities, also known as demand response (DR) options, are triggered by either a grid reliability problem or high electricity prices. Two important challenges that market operators are facing are appropriate designing and reasonable pricing of DR options. In this paper, time-of-use program (TOU) as a prevalent time-varying program is modeled linearly based on own and cross elasticity definition. In order to decide on TOU rates, a stochastic model is proposed in which the optimum TOU rates are determined based on grid reliability index set by the operator. Expected Load Not Supplied (ELNS) is used to evaluate reliability of the power system in each hour. The proposed stochastic model is formulated as a two-stage stochastic mixed-integer linear programming (SMILP) problem and solved using CPLEX solver. The validity of the method is tested over the IEEE 24-bus test system. In this regard, the impact of the proposed pricing method on system load profile; operational costs and required capacity of up- and down-spinning reserve as well as improvement of load factor is demonstrated. Also the sensitivity of the results to elasticity coefficients is investigated. -- Highlights: ► Time-of-use demand response program is linearly modeled. ► A stochastic model is proposed to determine the optimum TOU rates based on ELNS index set by the operator. ► The model is formulated as a short-term two-stage stochastic mixed-integer linear programming problem.
Program SYVAC, for stochastic assessment of nuclear fuel waste disposal
International Nuclear Information System (INIS)
Sherman, G.R.; Hoffman, K.J.; Donahue, D.C.
1985-01-01
In this paper, the computer program SYVAC, used to assess concepts for the disposal of nuclear fuel waste, is described with regard to the development approach, the basic program structure, and quality assurance. The interrelationships of these aspects are illustrated by detailed descriptions of two concepts of fundamental importance to the program: the method of selecting parameter values from input probability density functions, and the numerical evaluation of the convolution integral. Quality assurance procedures, including different types of comparisons and peer review, are presented
A Regularization SAA Scheme for a Stochastic Mathematical Program with Complementarity Constraints
Directory of Open Access Journals (Sweden)
Yu-xin Li
2014-01-01
Full Text Available To reflect uncertain data in practical problems, stochastic versions of the mathematical program with complementarity constraints (MPCC have drawn much attention in the recent literature. Our concern is the detailed analysis of convergence properties of a regularization sample average approximation (SAA method for solving a stochastic mathematical program with complementarity constraints (SMPCC. The analysis of this regularization method is carried out in three steps: First, the almost sure convergence of optimal solutions of the regularized SAA problem to that of the true problem is established by the notion of epiconvergence in variational analysis. Second, under MPCC-MFCQ, which is weaker than MPCC-LICQ, we show that any accumulation point of Karash-Kuhn-Tucker points of the regularized SAA problem is almost surely a kind of stationary point of SMPCC as the sample size tends to infinity. Finally, some numerical results are reported to show the efficiency of the method proposed.
Directory of Open Access Journals (Sweden)
S. Sofana Reka
2016-09-01
Full Text Available This paper proposes a cloud computing framework in smart grid environment by creating small integrated energy hub supporting real time computing for handling huge storage of data. A stochastic programming approach model is developed with cloud computing scheme for effective demand side management (DSM in smart grid. Simulation results are obtained using GUI interface and Gurobi optimizer in Matlab in order to reduce the electricity demand by creating energy networks in a smart hub approach.
Raso , L.; Malaterre , P.O.; Bader , J.C.
2017-01-01
International audience; This article presents an innovative streamflow process model for use in reservoir operational rule design in stochastic dual dynamic programming (SDDP). Model features, which can be applied independently, are (1) a multiplicative process model for the forward phase and its linearized version for the backward phase; and (2) a nonuniform time-step length that is inversely proportional to seasonal variability. The advantages are (1) guaranteeing positive streamflow values...
International Nuclear Information System (INIS)
Li, Jing; He, Li; Lu, Hongwei; Fan, Xing
2014-01-01
Highlights: • We propose an integrated optimal groundwater remediation design approach. • The approach can address stochasticity in carcinogenic risks. • Goal programming is used to make the system approaching to ideal operation and remediation effects. • The uncertainty in slope factor is evaluated under different confidence levels. • Optimal strategies are obtained to support remediation design under uncertainty. - Abstract: An optimal design approach for groundwater remediation is developed through incorporating numerical simulation, health risk assessment, uncertainty analysis and nonlinear optimization within a general framework. Stochastic analysis and goal programming are introduced into the framework to handle uncertainties in real-world groundwater remediation systems. Carcinogenic risks associated with remediation actions are further evaluated at four confidence levels. The differences between ideal and predicted constraints are minimized by goal programming. The approach is then applied to a contaminated site in western Canada for creating a set of optimal remediation strategies. Results from the case study indicate that factors including environmental standards, health risks and technical requirements mutually affected and restricted themselves. Stochastic uncertainty existed in the entire process of remediation optimization, which should to be taken into consideration in groundwater remediation design
International Nuclear Information System (INIS)
Huang, Yun-Hsun; Wu, Jung-Hua; Hsu, Yu-Ju
2016-01-01
Traditional electricity supply planning models regard the electricity demand as a deterministic parameter and require the total power output to satisfy the aggregate electricity demand. But in today's world, the electric system planners are facing tremendously complex environments full of uncertainties, where electricity demand is a key source of uncertainty. In addition, electricity demand patterns are considerably different for different regions. This paper developed a multi-region optimization model based on two-stage stochastic programming framework to incorporate the demand uncertainty. Furthermore, the decision tree method and Monte Carlo simulation approach are integrated into the model to simplify electricity demands in the form of nodes and determine the values and probabilities. The proposed model was successfully applied to a real case study (i.e. Taiwan's electricity sector) to show its applicability. Detail simulation results were presented and compared with those generated by a deterministic model. Finally, the long-term electricity development roadmap at a regional level could be provided on the basis of our simulation results. - Highlights: • A multi-region, two-stage stochastic programming model has been developed. • The decision tree and Monte Carlo simulation are integrated into the framework. • Taiwan's electricity sector is used to illustrate the applicability of the model. • The results under deterministic and stochastic cases are shown for comparison. • Optimal portfolios of regional generation technologies can be identified.
Energy Technology Data Exchange (ETDEWEB)
Zhan, Yiduo; Zheng, Qipeng P.; Wang, Jianhui; Pinson, Pierre
2017-07-01
Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets' planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of wind power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning.
Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost
International Nuclear Information System (INIS)
Bokanowski, Olivier; Picarelli, Athena; Zidani, Hasnaa
2015-01-01
This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach
Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost
Energy Technology Data Exchange (ETDEWEB)
Bokanowski, Olivier, E-mail: boka@math.jussieu.fr [Laboratoire Jacques-Louis Lions, Université Paris-Diderot (Paris 7) UFR de Mathématiques - Bât. Sophie Germain (France); Picarelli, Athena, E-mail: athena.picarelli@inria.fr [Projet Commands, INRIA Saclay & ENSTA ParisTech (France); Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr [Unité de Mathématiques appliquées (UMA), ENSTA ParisTech (France)
2015-02-15
This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.
Multistage Stochastic Programming and its Applications in Energy Systems Modeling and Optimization
Golari, Mehdi
Electric energy constitutes one of the most crucial elements to almost every aspect of life of people. The modern electric power systems face several challenges such as efficiency, economics, sustainability, and reliability. Increase in electrical energy demand, distributed generations, integration of uncertain renewable energy resources, and demand side management are among the main underlying reasons of such growing complexity. Additionally, the elements of power systems are often vulnerable to failures because of many reasons, such as system limits, weak conditions, unexpected events, hidden failures, human errors, terrorist attacks, and natural disasters. One common factor complicating the operation of electrical power systems is the underlying uncertainties from the demands, supplies and failures of system components. Stochastic programming provides a mathematical framework for decision making under uncertainty. It enables a decision maker to incorporate some knowledge of the intrinsic uncertainty into the decision making process. In this dissertation, we focus on application of two-stage and multistage stochastic programming approaches to electric energy systems modeling and optimization. Particularly, we develop models and algorithms addressing the sustainability and reliability issues in power systems. First, we consider how to improve the reliability of power systems under severe failures or contingencies prone to cascading blackouts by so called islanding operations. We present a two-stage stochastic mixed-integer model to find optimal islanding operations as a powerful preventive action against cascading failures in case of extreme contingencies. Further, we study the properties of this problem and propose efficient solution methods to solve this problem for large-scale power systems. We present the numerical results showing the effectiveness of the model and investigate the performance of the solution methods. Next, we address the sustainability issue
Multiobjective Two-Stage Stochastic Programming Problems with Interval Discrete Random Variables
Directory of Open Access Journals (Sweden)
S. K. Barik
2012-01-01
Full Text Available Most of the real-life decision-making problems have more than one conflicting and incommensurable objective functions. In this paper, we present a multiobjective two-stage stochastic linear programming problem considering some parameters of the linear constraints as interval type discrete random variables with known probability distribution. Randomness of the discrete intervals are considered for the model parameters. Further, the concepts of best optimum and worst optimum solution are analyzed in two-stage stochastic programming. To solve the stated problem, first we remove the randomness of the problem and formulate an equivalent deterministic linear programming model with multiobjective interval coefficients. Then the deterministic multiobjective model is solved using weighting method, where we apply the solution procedure of interval linear programming technique. We obtain the upper and lower bound of the objective function as the best and the worst value, respectively. It highlights the possible risk involved in the decision-making tool. A numerical example is presented to demonstrate the proposed solution procedure.
DEFF Research Database (Denmark)
Davidsen, Claus; Liu, Suxia; Mo, Xinguo
2014-01-01
. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due...... to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment...
Yield curve event tree construction for multi stage stochastic programming models
DEFF Research Database (Denmark)
Rasmussen, Kourosh Marjani; Poulsen, Rolf
Dynamic stochastic programming (DSP) provides an intuitive framework for modelling of financial portfolio choice problems where market frictions are present and dynamic re--balancing has a significant effect on initial decisions. The application of these models in practice, however, is limited....... Indeed defining a universal and tractable framework for fully ``appropriate'' event trees is in our opinion an impossible task. A problem specific approach to designing such event trees is the way ahead. In this paper we propose a number of desirable properties which should be present in an event tree...
SLFP: a stochastic linear fractional programming approach for sustainable waste management.
Zhu, H; Huang, G H
2011-12-01
A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optimal design of distributed energy resource systems based on two-stage stochastic programming
International Nuclear Information System (INIS)
Yang, Yun; Zhang, Shijie; Xiao, Yunhan
2017-01-01
Highlights: • A two-stage stochastic programming model is built to design DER systems under uncertainties. • Uncertain energy demands have a significant effect on the optimal design. • Uncertain energy prices and renewable energy intensity have little effect on the optimal design. • The economy is overestimated if the system is designed without considering the uncertainties. • The uncertainty in energy prices has the significant and greatest effect on the economy. - Abstract: Multiple uncertainties exist in the optimal design of distributed energy resource (DER) systems. The expected energy, economic, and environmental benefits may not be achieved and a deficit in energy supply may occur if the uncertainties are not handled properly. This study focuses on the optimal design of DER systems with consideration of the uncertainties. A two-stage stochastic programming model is built in consideration of the discreteness of equipment capacities, equipment partial load operation and output bounds as well as of the influence of ambient temperature on gas turbine performance. The stochastic model is then transformed into its deterministic equivalent and solved. For an illustrative example, the model is applied to a hospital in Lianyungang, China. Comparative studies are performed to evaluate the effect of the uncertainties in load demands, energy prices, and renewable energy intensity separately and simultaneously on the system’s economy and optimal design. Results show that the uncertainties in load demands have a significant effect on the optimal system design, whereas the uncertainties in energy prices and renewable energy intensity have almost no effect. Results regarding economy show that it is obviously overestimated if the system is designed without considering the uncertainties.
Schultz, R.; Stougie, L.; Vlerk, van der M.H.
1998-01-01
In this paper we present a framework for solving stochastic programs with complete integer recourse and discretely distributed right-hand side vector, using Gröbner basis methods from computational algebra to solve the numerous second-stage integer programs. Using structural properties of the
Stochastic programming the state of the art in honor of George B. Dantzig
2011-01-01
From the Preface… The preparation of this book started in 2004, when George B. Dantzig and I, following a long-standing invitation by Fred Hillier to contribute a volume to his International Series in Operations Research and Management Science, decided finally to go ahead with editing a volume on stochastic programming. The field of stochastic programming (also referred to as optimization under uncertainty or planning under uncertainty) had advanced significantly in the last two decades, both theoretically and in practice. George Dantzig and I felt that it would be valuable to showcase some of these advances and to present what one might call the state-of- the-art of the field to a broader audience. We invited researchers whom we considered to be leading experts in various specialties of the field, including a few representatives of promising developments in the making, to write a chapter for the volume. Unfortunately, to the great loss of all of us, George Dantzig passed away on May 13, 2005. Encouraged by...
Risk averse optimal operation of a virtual power plant using two stage stochastic programming
International Nuclear Information System (INIS)
Tajeddini, Mohammad Amin; Rahimi-Kian, Ashkan; Soroudi, Alireza
2014-01-01
VPP (Virtual Power Plant) is defined as a cluster of energy conversion/storage units which are centrally operated in order to improve the technical and economic performance. This paper addresses the optimal operation of a VPP considering the risk factors affecting its daily operation profits. The optimal operation is modelled in both day ahead and balancing markets as a two-stage stochastic mixed integer linear programming in order to maximize a GenCo (generation companies) expected profit. Furthermore, the CVaR (Conditional Value at Risk) is used as a risk measure technique in order to control the risk of low profit scenarios. The uncertain parameters, including the PV power output, wind power output and day-ahead market prices are modelled through scenarios. The proposed model is successfully applied to a real case study to show its applicability and the results are presented and thoroughly discussed. - Highlights: • Virtual power plant modelling considering a set of energy generating and conversion units. • Uncertainty modelling using two stage stochastic programming technique. • Risk modelling using conditional value at risk. • Flexible operation of renewable energy resources. • Electricity price uncertainty in day ahead energy markets
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiaodong, E-mail: xiaodong.zhang@beg.utexas.edu [Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713 (United States); Huang, Gordon [Institute of Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada)
2013-02-15
Highlights: ► A dynamic stochastic possibilistic multiobjective programming model is developed. ► Greenhouse gas emission control is considered. ► Three planning scenarios are analyzed and compared. ► Optimal decision schemes under three scenarios and different p{sub i} levels are obtained. ► Tradeoffs between economics and environment are reflected. -- Abstract: Greenhouse gas (GHG) emissions from municipal solid waste (MSW) management facilities have become a serious environmental issue. In MSW management, not only economic objectives but also environmental objectives should be considered simultaneously. In this study, a dynamic stochastic possibilistic multiobjective programming (DSPMP) model is developed for supporting MSW management and associated GHG emission control. The DSPMP model improves upon the existing waste management optimization methods through incorporation of fuzzy possibilistic programming and chance-constrained programming into a general mixed-integer multiobjective linear programming (MOP) framework where various uncertainties expressed as fuzzy possibility distributions and probability distributions can be effectively reflected. Two conflicting objectives are integrally considered, including minimization of total system cost and minimization of total GHG emissions from waste management facilities. Three planning scenarios are analyzed and compared, representing different preferences of the decision makers for economic development and environmental-impact (i.e. GHG-emission) issues in integrated MSW management. Optimal decision schemes under three scenarios and different p{sub i} levels (representing the probability that the constraints would be violated) are generated for planning waste flow allocation and facility capacity expansions as well as GHG emission control. The results indicate that economic and environmental tradeoffs can be effectively reflected through the proposed DSPMP model. The generated decision variables can help
Mean-Variance stochastic goal programming for sustainable mutual funds' portfolio selection.
Directory of Open Access Journals (Sweden)
García-Bernabeu, Ana
2015-11-01
Full Text Available Mean-Variance Stochastic Goal Programming models (MV-SGP provide satisficing investment solutions in uncertain contexts. In this work, an MV-SGP model is proposed for portfolio selection which includes goals with regards to traditional and sustainable assets. The proposed approach is based on a two-step procedure. In the first step, sustainability and/or financial screens are applied to a set of assets (mutual funds previously evaluated with TOPSIS to determine the opportunity set. In a second step, satisficing portfolios of assets are obtained using a Goal Programming approach. Two different goals are considered. The first goal reflects only the purely financial side of the target while the second goal is referred to the sustainable side. Aversion to Risk Absolute (ARA coefficients are estimated and incorporated in our investment decision making approach using two different approaches.
A two-stage stochastic programming model for the optimal design of distributed energy systems
International Nuclear Information System (INIS)
Zhou, Zhe; Zhang, Jianyun; Liu, Pei; Li, Zheng; Georgiadis, Michael C.; Pistikopoulos, Efstratios N.
2013-01-01
Highlights: ► The optimal design of distributed energy systems under uncertainty is studied. ► A stochastic model is developed using genetic algorithm and Monte Carlo method. ► The proposed system possesses inherent robustness under uncertainty. ► The inherent robustness is due to energy storage facilities and grid connection. -- Abstract: A distributed energy system is a multi-input and multi-output energy system with substantial energy, economic and environmental benefits. The optimal design of such a complex system under energy demand and supply uncertainty poses significant challenges in terms of both modelling and corresponding solution strategies. This paper proposes a two-stage stochastic programming model for the optimal design of distributed energy systems. A two-stage decomposition based solution strategy is used to solve the optimization problem with genetic algorithm performing the search on the first stage variables and a Monte Carlo method dealing with uncertainty in the second stage. The model is applied to the planning of a distributed energy system in a hotel. Detailed computational results are presented and compared with those generated by a deterministic model. The impacts of demand and supply uncertainty on the optimal design of distributed energy systems are systematically investigated using proposed modelling framework and solution approach.
International Nuclear Information System (INIS)
Partovi, Farzad; Nikzad, Mehdi; Mozafari, Babak; Ranjbar, Ali Mohamad
2011-01-01
In this paper a new algorithm for allocating energy and determining the optimum amount of network active power reserve capacity and the share of generating units and demand side contribution in providing reserve capacity requirements for day-ahead market is presented. In the proposed method, the optimum amount of reserve requirement is determined based on network security set by operator. In this regard, Expected Load Not Supplied (ELNS) is used to evaluate system security in each hour. The proposed method has been implemented over the IEEE 24-bus test system and the results are compared with a deterministic security approach, which considers certain and fixed amount of reserve capacity in each hour. This comparison is done from economic and technical points of view. The promising results show the effectiveness of the proposed model which is formulated as mixed integer linear programming (MILP) and solved by GAMS software. -- Highlights: → Determination of optimal spinning reserve capacity requirement in order to satisfy desired security level set by system operator based on stochastic approach. → Scheduling energy and spinning reserve markets simultaneously. → Comparing the stochastic approach with deterministic approach to determine the advantages and disadvantages of each. → Examine the effect of demand response participation in reserve market to provide spinning reserve.
Alvarado, Michelle; Ntaimo, Lewis
2018-03-01
Oncology clinics are often burdened with scheduling large volumes of cancer patients for chemotherapy treatments under limited resources such as the number of nurses and chairs. These cancer patients require a series of appointments over several weeks or months and the timing of these appointments is critical to the treatment's effectiveness. Additionally, the appointment duration, the acuity levels of each appointment, and the availability of clinic nurses are uncertain. The timing constraints, stochastic parameters, rising treatment costs, and increased demand of outpatient oncology clinic services motivate the need for efficient appointment schedules and clinic operations. In this paper, we develop three mean-risk stochastic integer programming (SIP) models, referred to as SIP-CHEMO, for the problem of scheduling individual chemotherapy patient appointments and resources. These mean-risk models are presented and an algorithm is devised to improve computational speed. Computational results were conducted using a simulation model and results indicate that the risk-averse SIP-CHEMO model with the expected excess mean-risk measure can decrease patient waiting times and nurse overtime when compared to deterministic scheduling algorithms by 42 % and 27 %, respectively.
Directory of Open Access Journals (Sweden)
Houssem Felfel
2015-11-01
Full Text Available In this study, a new stochastic model is proposed to deal with a multi-product, multi-period, multi-stage, multi-site production and transportation supply chain planning problem under demand uncertainty. A two-stage stochastic linear programming approach is used to maximize the expected profit. Decisions such as the production amount, the inventory level of finished and semi-finished product, the amount of backorder and the quantity of products to be transported between upstream and downstream plants in each period are considered. The robustness of production supply chain plan is then evaluated using statistical and risk measures. A case study from a real textile and apparel industry is shown in order to compare the performances of the proposed stochastic programming model and the deterministic model.
Li, W; Wang, B; Xie, Y L; Huang, G H; Liu, L
2015-02-01
Uncertainties exist in the water resources system, while traditional two-stage stochastic programming is risk-neutral and compares the random variables (e.g., total benefit) to identify the best decisions. To deal with the risk issues, a risk-aversion inexact two-stage stochastic programming model is developed for water resources management under uncertainty. The model was a hybrid methodology of interval-parameter programming, conditional value-at-risk measure, and a general two-stage stochastic programming framework. The method extends on the traditional two-stage stochastic programming method by enabling uncertainties presented as probability density functions and discrete intervals to be effectively incorporated within the optimization framework. It could not only provide information on the benefits of the allocation plan to the decision makers but also measure the extreme expected loss on the second-stage penalty cost. The developed model was applied to a hypothetical case of water resources management. Results showed that that could help managers generate feasible and balanced risk-aversion allocation plans, and analyze the trade-offs between system stability and economy.
Stochastic Dynamic Programming for Three-Echelon Inventory System of Limited Shelf Life Products
Directory of Open Access Journals (Sweden)
Galal Noha M.
2016-01-01
Full Text Available Coordination of inventory decisions within the supply chain is one of the major determinants of its competitiveness in the global market. Products with limited shelf life impose additional challenges in managing the inventory across the supply chain because of the additional wastage costs incurred in case of being stored beyond product’s useful life. This paper presents a stochastic dynamic programming model for inventory replenishment in a serial multi-echelon distribution supply chain. The model considers uncertain stationary discrete demand at the retailer and zero lead time. The objective is to minimize expected total costs across the supply chain echelons, while maintaining a preset service level. The results illustrate that a cost saving of around 17% is achievable due to coordinating inventory decisions across the supply chain.
Druce, Donald J.
1990-01-01
A monthly stochastic dynamic programing model was recently developed and implemented at British Columbia (B.C.) Hydro to provide decision support for short-term energy exports and, if necessary, for flood control on the Peace River in northern British Columbia. The model establishes the marginal cost of supplying energy from the B.C. Hydro system, as well as a monthly operating policy for the G.M. Shrum and Peace Canyon hydroelectric plants and the Williston Lake storage reservoir. A simulation model capable of following the operating policy then determines the probability of refilling Williston Lake and possible spill rates and volumes. Reservoir inflows are input to both models in daily and monthly formats. The results indicate that flood control can be accommodated without sacrificing significant export revenue.
Energy Technology Data Exchange (ETDEWEB)
Druce, D.J. (British Columbia Hydro and Power Authority, Vancouver, British Columbia (Canada))
1990-01-01
A monthly stochastic dynamic programing model was recently developed and implemented at British Columbia (B.C.) Hydro to provide decision support for short-term energy exports and, if necessary, for flood control on the Peace River in northern British Columbia. The model established the marginal cost of supplying energy from the B.C. Hydro system, as well as a monthly operating policy for the G.M. Shrum and Peace Canyon hydroelectric plants and the Williston Lake storage reservoir. A simulation model capable of following the operating policy then determines the probability of refilling Williston Lake and possible spill rates and volumes. Reservoir inflows are input to both models in daily and monthly formats. The results indicate that flood control can be accommodated without sacrificing significant export revenue.
DEFF Research Database (Denmark)
Davidsen, Claus; Liu, Suxia; Mo, Xingguo
2015-01-01
Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth......-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water...... quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen...
Stochastic programming of drilling rigs supplies; Programacao estocastica de suprimentos de sondas
Energy Technology Data Exchange (ETDEWEB)
Vieira, Bruno Ferreira; Ferreira Filho, Virgilio Jose Martins [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil)
2012-07-01
The goal of this work is to use techniques of stochastic programming to reduce logistic costs regarding offshore drilling rigs. This theme is of great interest to Brazilian oil industry since there is an increasing number of wells that need to be perforated so that Brazilian oil production can reach its expected growth over the next ten years (PETROBRAS in particular has an ambitious strategy in this respect). Proper treatment of the uncertainties involved in the deliveries of supplies to offshore drilling rigs is essential, namely, these uncertainties need to be included in the models used in logistic models. Delays in the deliveries of products such as chemicals, perforation fluids and tubes may force drilling rigs to stop their operations what highly increases costs. The daily hiring rates of drilling rigs represent the highest cost in the perforation and completion of a well. (author)
Energy Technology Data Exchange (ETDEWEB)
Ellis, J H; McBean, E A; Farquhar, G J
1985-01-01
A Linear Programming model is presented for development of acid rain abatement strategies in eastern North America. For a system comprised of 235 large controllable point sources and 83 uncontrolled area sources, it determines the least-cost method of reducing SO/sub 2/ emissions to satisfy maximum wet sulfur deposition limits at 20 sensitive receptor locations. In this paper, the purely deterministic model is extended to a probabilistic form by incorporating the effects of meteorologic variability on the long-range pollutant transport processes. These processes are represented by source-receptor-specific transfer coefficients. Experiments for quantifying the spatial variability of transfer coefficients showed their distributions to be approximately lognormal with logarithmic standard deviations consistently about unity. Three methods of incorporating second-moment random variable uncertainty into the deterministic LP framework are described: Two-Stage Programming Under Uncertainty, Chance-Constrained Programming and Stochastic Linear Programming. A composite CCP-SLP model is developed which embodies the two-dimensional characteristics of transfer coefficient uncertainty. Two probabilistic formulations are described involving complete colinearity and complete noncolinearity for the transfer coefficient covariance-correlation structure. The completely colinear and noncolinear formulations are considered extreme bounds in a meteorologic sense and yield abatement strategies of largely didactic value. Such strategies can be characterized as having excessive costs and undesirable deposition results in the completely colinear case and absence of a clearly defined system risk level (other than expected-value) in the noncolinear formulation.
Zhang, Xiaodong; Huang, Gordon
2013-02-15
Greenhouse gas (GHG) emissions from municipal solid waste (MSW) management facilities have become a serious environmental issue. In MSW management, not only economic objectives but also environmental objectives should be considered simultaneously. In this study, a dynamic stochastic possibilistic multiobjective programming (DSPMP) model is developed for supporting MSW management and associated GHG emission control. The DSPMP model improves upon the existing waste management optimization methods through incorporation of fuzzy possibilistic programming and chance-constrained programming into a general mixed-integer multiobjective linear programming (MOP) framework where various uncertainties expressed as fuzzy possibility distributions and probability distributions can be effectively reflected. Two conflicting objectives are integrally considered, including minimization of total system cost and minimization of total GHG emissions from waste management facilities. Three planning scenarios are analyzed and compared, representing different preferences of the decision makers for economic development and environmental-impact (i.e. GHG-emission) issues in integrated MSW management. Optimal decision schemes under three scenarios and different p(i) levels (representing the probability that the constraints would be violated) are generated for planning waste flow allocation and facility capacity expansions as well as GHG emission control. The results indicate that economic and environmental tradeoffs can be effectively reflected through the proposed DSPMP model. The generated decision variables can help the decision makers justify and/or adjust their waste management strategies based on their implicit knowledge and preferences. Copyright © 2012 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Shaban Boloukat, Mohammad Hadi; Akbari Foroud, Asghar
2016-01-01
This paper represents a stochastic approach for long-term optimal resource expansion planning of a grid-connected microgrid (MG) containing different technologies as intermittent renewable energy resources, energy storage systems and thermal resources. Maximizing profit and reliability, along with minimizing investment and operation costs, are major objectives which have been considered in this model. Also, the impacts of intermittency and uncertainty in renewable energy resources were investigated. The interval linear programming (ILP) was applied for modelling inherent stochastic nature of the renewable energy resources. ILP presents some superiority in modelling of uncertainties in MG planning. The problem was formulated as a mixed-integer linear programming. It has been demonstrated previously that the benders decomposition (BD) served as an effective tool for solving such problems. BD divides the original problem into a master (investment) problem and operation and reliability subproblems. In this paper a multiperiod MG planning is presented, considering life time, maximum penetration limit of each technology, interest rate, capital recovery factor and investment fund. Real-time energy exchange with the utility is covered, with a consideration of variable tariffs at different load blocks. The presented approach can help MG planners to adopt best decision under various uncertainty levels based on their budgetary policies. - Highlights: • Considering uncertain nature of the renewable resources with applying ILP. • Considering the effect of intermittency of renewable in MG planning. • Multiobjective MG planning problem which covers cost, profit and reliability. • Multiperiod approach for MG planning considering life time and MPL of technologies. • Presenting real-time energy exchange with the utility considering variable tariffs.
DEFF Research Database (Denmark)
Escudero, Laureano F.; Monge, Juan Francisco; Morales, Dolores Romero
2015-01-01
In this paper we consider multiperiod mixed 0–1 linear programming models under uncertainty. We propose a risk averse strategy using stochastic dominance constraints (SDC) induced by mixed-integer linear recourse as the risk measure. The SDC strategy extends the existing literature to the multist...
DEFF Research Database (Denmark)
Fattahi, Mohammad; Govindan, Kannan; Keyvanshokooh, Esmaeil
2018-01-01
In this paper, we address a multi-period supply chain network redesign problem in which customer zones have price-dependent stochastic demand for multiple products. A novel multi-stage stochastic program is proposed to simultaneously make tactical decisions including products' prices and strategic...... redesign decisions. Existing uncertainty in potential demands of customer zones is modeled through a finite set of scenarios, described in the form of a scenario tree. The scenarios are generated using a Latin Hypercube Sampling method and then a forward scenario construction technique is employed...
National Research Council Canada - National Science Library
Khoo, Wai
1999-01-01
.... These problems model stochastic portfolio optimization problems (SPOPs) which assume deterministic unit weight, and normally distributed unit return with known mean and variance for each item type...
A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem
Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao
A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.
Fu, Zhenghui; Wang, Han; Lu, Wentao; Guo, Huaicheng; Li, Wei
2017-12-01
Electric power system involves different fields and disciplines which addressed the economic system, energy system, and environment system. Inner uncertainty of this compound system would be an inevitable problem. Therefore, an inexact multistage fuzzy-stochastic programming (IMFSP) was developed for regional electric power system management constrained by environmental quality. A model which concluded interval-parameter programming, multistage stochastic programming, and fuzzy probability distribution was built to reflect the uncertain information and dynamic variation in the case study, and the scenarios under different credibility degrees were considered. For all scenarios under consideration, corrective actions were allowed to be taken dynamically in accordance with the pre-regulated policies and the uncertainties in reality. The results suggest that the methodology is applicable to handle the uncertainty of regional electric power management systems and help the decision makers to establish an effective development plan.
Directory of Open Access Journals (Sweden)
Yan Han
2013-01-01
Full Text Available An interval-parameter fuzzy linear programming with stochastic vertices (IFLPSV method is developed for water resources management under uncertainty by coupling interval-parameter fuzzy linear programming (IFLP with stochastic programming (SP. As an extension of existing interval parameter fuzzy linear programming, the developed IFLPSV approach has advantages in dealing with dual uncertainty optimization problems, which uncertainty presents as interval parameter with stochastic vertices in both of the objective functions and constraints. The developed IFLPSV method improves upon the IFLP method by allowing dual uncertainty parameters to be incorporated into the optimization processes. A hybrid intelligent algorithm based on genetic algorithm and artificial neural network is used to solve the developed model. The developed method is then applied to water resources allocation in Beijing city of China in 2020, where water resources shortage is a challenging issue. The results indicate that reasonable solutions have been obtained, which are helpful and useful for decision makers. Although the amount of water supply from Guanting and Miyun reservoirs is declining with rainfall reduction, water supply from the South-to-North Water Transfer project will have important impact on water supply structure of Beijing city, particularly in dry year and extraordinary dry year.
Brodin, Anders; Nilsson, Jan-Åke; Nord, Andreas
2017-09-01
Several species of small birds are resident in boreal forests where environmental temperatures can be -20 to -30 °C, or even lower, in winter. As winter days are short, and food is scarce, winter survival is a challenge for small endothermic animals. A bird of this size will have to gain almost 10% of its lean body mass in fat every day to sustain overnight metabolism. Birds such as parids (titmice and chickadees) can use facultative hypothermia, a process in which body temperature is actively down-regulated to a specific level, to reduce heat loss and thus save energy. During cold winter nights, these birds may decrease body temperature from the normal from 42 ° down to 35 °C, or even lower in some species. However, birds are unable to move in this deep hypothermic state, making it a risky strategy if predators are around. Why, then, do small northern birds enter a potentially dangerous physiological state for a relatively small reduction in energy expenditure? We used stochastic dynamic programming to investigate this. Our model suggests that the use of nocturnal hypothermia at night is paramount in these biomes, as it would increase winter survival for a small northern bird by 58% over a winter of 100 days. Our model also explains the phenomenon known as winter fattening, and its relationship to thermoregulation, in northern birds.
Directory of Open Access Journals (Sweden)
Fatemeh Rastegaripour
2010-09-01
Full Text Available The present study investigates water allocation of Kardeh Reservoir to domestic and agricultural users using an Interval Parameter, Multi-stage, Stochastic Programming (IMSLP under uncertainty. The advantages of the method include its dynamics nature, use of a pre-defined policy in its optimization process, and the use of interval parameter and probability under uncertainty conditions. Additionally, it offers different decision-making alternatives for different scenarios of water shortage. The required data were collected from Khorasan Razavi Regional Water Organization and from the Water and Wastewater Co. for the period 1988-2007. Results showed that, under the worst conditions, the water deficits expected to occur for each of the next 3 years will be 1.9, 2.55, and 3.11 million cubic meters for the domestic use and 0.22, 0.32, 0.75 million cubic meters for irrigation. Approximate reductions of 0.5, 0.7, and 1 million cubic meters in the monthly consumption of the urban community and enhanced irrigation efficiencies of about 6, 11, and 20% in the agricultural sector are recommended as approaches for combating the water shortage over the next 3 years.
International Nuclear Information System (INIS)
Zhang Xiaobing; Fan Ying; Wei Yiming
2009-01-01
China's Strategic Petroleum Reserve (SPR) is currently being prepared. But how large the optimal stockpile size for China should be, what the best acquisition strategies are, how to release the reserve if a disruption occurs, and other related issues still need to be studied in detail. In this paper, we develop a stochastic dynamic programming model based on a total potential cost function of establishing SPRs to evaluate the optimal SPR policy for China. Using this model, empirical results are presented for the optimal size of China's SPR and the best acquisition and drawdown strategies for a few specific cases. The results show that with comprehensive consideration, the optimal SPR size for China is around 320 million barrels. This size is equivalent to about 90 days of net oil import amount in 2006 and should be reached in the year 2017, three years earlier than the national goal, which implies that the need for China to fill the SPR is probably more pressing; the best stockpile release action in a disruption is related to the disruption levels and expected continuation probabilities. The information provided by the results will be useful for decision makers.
International Nuclear Information System (INIS)
Hasegawa, Keita; Komiyama, Ryoichi; Fujii, Yasumasa
2016-01-01
The paper presents an economic rationality analysis of power generation mix by stochastic dynamic programming considering fuel price uncertainties and supply disruption risks such as import disruption and nuclear power plant shutdown risk. The situation revolving around Japan's energy security adopted the past statistics, it cannot be applied to a quantitative analysis of future uncertainties. Further objective and quantitative evaluation methods are required in order to analyze Japan's energy system and make it more resilient in sight of long time scale. In this paper, the authors firstly develop the cost minimization model considering oil and natural gas price respectively by stochastic dynamic programming. Then, the authors show several premises of model and an example of result with related to crude oil stockpile, liquefied natural gas stockpile and nuclear power plant capacity. (author)
International Nuclear Information System (INIS)
Ji, L.; Niu, D.X.; Huang, G.H.
2014-01-01
In this paper a stochastic robust optimization problem of residential micro-grid energy management is presented. Combined cooling, heating and electricity technology (CCHP) is introduced to satisfy various energy demands. Two-stage programming is utilized to find the optimal installed capacity investment and operation control of CCHP (combined cooling heating and power). Moreover, interval programming and robust stochastic optimization methods are exploited to gain interval robust solutions under different robustness levels which are feasible for uncertain data. The obtained results can help micro-grid managers minimizing the investment and operation cost with lower system failure risk when facing fluctuant energy market and uncertain technology parameters. The different robustness levels reflect the risk preference of micro-grid manager. The proposed approach is applied to residential area energy management in North China. Detailed computational results under different robustness level are presented and analyzed for providing investment decision and operation strategies. - Highlights: • An inexact two-stage stochastic robust programming model for CCHP management. • The energy market and technical parameters uncertainties were considered. • Investment decision, operation cost, and system safety were analyzed. • Uncertainties expressed as discrete intervals and probability distributions
Stochastic linear dynamical programming in order to apply it in energy modelling
Energy Technology Data Exchange (ETDEWEB)
El Hachem, S
1995-11-01
This thesis contributes to the development of new algorithms for the computation of stochastic dynamic problem and its mini-maxi variant for the case of imperfect knowledge on random data. The proposed algorithms are scenarios aggregation type. It also contributes to integrate these algorithms in a decision support approach and to discuss the stochastic modeling of two energy problems: the refining and the portfolio gas contracts. (author). 112 refs., 5 tabs.
International Nuclear Information System (INIS)
Niknam, Taher; Azizipanah-Abarghooee, Rasoul; Narimani, Mohammad Rasoul
2012-01-01
Highlights: ► Proposes a stochastic model for optimal energy management. ► Consider uncertainties related to the forecasted values for load demand. ► Consider uncertainties of forecasted values of output power of wind and photovoltaic units. ► Consider uncertainties of forecasted values of market price. ► Present an improved multi-objective teaching–learning-based optimization. -- Abstract: This paper proposes a stochastic model for optimal energy management with the goal of cost and emission minimization. In this model, the uncertainties related to the forecasted values for load demand, available output power of wind and photovoltaic units and market price are modeled by a scenario-based stochastic programming. In the presented method, scenarios are generated by a roulette wheel mechanism based on probability distribution functions of the input random variables. Through this method, the inherent stochastic nature of the proposed problem is released and the problem is decomposed into a deterministic problem. An improved multi-objective teaching–learning-based optimization is implemented to yield the best expected Pareto optimal front. In the proposed stochastic optimization method, a novel self adaptive probabilistic modification strategy is offered to improve the performance of the presented algorithm. Also, a set of non-dominated solutions are stored in a repository during the simulation process. Meanwhile, the size of the repository is controlled by usage of a fuzzy-based clustering technique. The best expected compromise solution stored in the repository is selected via the niching mechanism in a way that solutions are encouraged to seek the lesser explored regions. The proposed framework is applied in a typical grid-connected micro grid in order to verify its efficiency and feasibility.
Cottrell, Paul Edward
There is a lack of research in the area of hedging future contracts, especially in illiquid or very volatile market conditions. It is important to understand the volatility of the oil and currency markets because reduced fluctuations in these markets could lead to better hedging performance. This study compared different hedging methods by using a hedging error metric, supplementing the Receding Horizontal Control and Stochastic Programming (RHCSP) method by utilizing the London Interbank Offered Rate with the Levy process. The RHCSP hedging method was investigated to determine if improved hedging error was accomplished compared to the Black-Scholes, Leland, and Whalley and Wilmott methods when applied on simulated, oil, and currency futures markets. A modified RHCSP method was also investigated to determine if this method could significantly reduce hedging error under extreme market illiquidity conditions when applied on simulated, oil, and currency futures markets. This quantitative study used chaos theory and emergence for its theoretical foundation. An experimental research method was utilized for this study with a sample size of 506 hedging errors pertaining to historical and simulation data. The historical data were from January 1, 2005 through December 31, 2012. The modified RHCSP method was found to significantly reduce hedging error for the oil and currency market futures by the use of a 2-way ANOVA with a t test and post hoc Tukey test. This study promotes positive social change by identifying better risk controls for investment portfolios and illustrating how to benefit from high volatility in markets. Economists, professional investment managers, and independent investors could benefit from the findings of this study.
Energy Technology Data Exchange (ETDEWEB)
Homem-de-Mello, Tito [University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, Chicago, IL (United States); Matos, Vitor L. de; Finardi, Erlon C. [Universidade Federal de Santa Catarina, LabPlan - Laboratorio de Planejamento de Sistemas de Energia Eletrica, Florianopolis (Brazil)
2011-03-15
The long-term hydrothermal scheduling is one of the most important problems to be solved in the power systems area. This problem aims to obtain an optimal policy, under water (energy) resources uncertainty, for hydro and thermal plants over a multi-annual planning horizon. It is natural to model the problem as a multi-stage stochastic program, a class of models for which algorithms have been developed. The original stochastic process is represented by a finite scenario tree and, because of the large number of stages, a sampling-based method such as the Stochastic Dual Dynamic Programming (SDDP) algorithm is required. The purpose of this paper is two-fold. Firstly, we study the application of two alternative sampling strategies to the standard Monte Carlo - namely, Latin hypercube sampling and randomized quasi-Monte Carlo - for the generation of scenario trees, as well as for the sampling of scenarios that is part of the SDDP algorithm. Secondly, we discuss the formulation of stopping criteria for the optimization algorithm in terms of statistical hypothesis tests, which allows us to propose an alternative criterion that is more robust than that originally proposed for the SDDP. We test these ideas on a problem associated with the whole Brazilian power system, with a three-year planning horizon. (orig.)
International Nuclear Information System (INIS)
Sutrisno; Widowati; Solikhin
2016-01-01
In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well. (paper)
International Nuclear Information System (INIS)
Alipour, Manijeh; Mohammadi-Ivatloo, Behnam; Zare, Kazem
2014-01-01
Highlights: • Short-term self-scheduling problem of customers with CHP units is conducted. • Power demand and pool prices are forecasted using ARIMA models. • Risk management problem is conducted by implementing CVaR methodology. • The demand response program is implemented in self-scheduling problem of CHP units. • Non-convex feasible operation region in different types of CHP units is modeled. - Abstract: This paper presents a stochastic programming framework for solving the scheduling problem faced by an industrial customer with cogeneration facilities, conventional power production system, and heat only units. The power and heat demands of the customer are supplied considering demand response (DR) programs. In the proposed DR program, the responsive load can vary in different time intervals. In the paper, the heat-power dual dependency characteristic in different types of CHP units is taken into account. In addition, a heat buffer tank, with the ability of heat storage, has been incorporated in the proposed framework. The impact of the market and load uncertainties on the scheduling problem is characterized through a stochastic programming formulation. Autoregressive integrated moving average (ARIMA) technique is used to generate the electricity price and the customer demand scenarios. The daily and weekly seasonalities of demand and market prices are taken into account in the scenario generation procedure. The conditional value-at-risk (CVaR) methodology is implemented in order to limit the risk of expected profit due to market price and load forecast volatilities
Stochastic models, estimation, and control
Maybeck, Peter S
1982-01-01
This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.
Eichhorn, Ralf; Aurell, Erik
2014-04-01
theory for small deviations from equilibrium, in which a general framework is constructed from the analysis of non-equilibrium states close to equilibrium. In a next step, Prigogine and others developed linear irreversible thermodynamics, which establishes relations between transport coefficients and entropy production on a phenomenological level in terms of thermodynamic forces and fluxes. However, beyond the realm of linear response no general theoretical results were available for quite a long time. This situation has changed drastically over the last 20 years with the development of stochastic thermodynamics, revealing that the range of validity of thermodynamic statements can indeed be extended deep into the non-equilibrium regime. Early developments in that direction trace back to the observations of symmetry relations between the probabilities for entropy production and entropy annihilation in non-equilibrium steady states [5-8] (nowadays categorized in the class of so-called detailed fluctuation theorems), and the derivations of the Bochkov-Kuzovlev [9, 10] and Jarzynski relations [11] (which are now classified as so-called integral fluctuation theorems). Apart from its fundamental theoretical interest, the developments in stochastic thermodynamics have experienced an additional boost from the recent experimental progress in fabricating, manipulating, controlling and observing systems on the micro- and nano-scale. These advances are not only of formidable use for probing and monitoring biological processes on the cellular, sub-cellular and molecular level, but even include the realization of a microscopic thermodynamic heat engine [12] or the experimental verification of Landauer's principle in a colloidal system [13]. The scientific program Stochastic Thermodynamics held between 4 and 15 March 2013, and hosted by The Nordic Institute for Theoretical Physics (Nordita), was attended by more than 50 scientists from the Nordic countries and elsewhere, amongst them
International Nuclear Information System (INIS)
Falsafi, Hananeh; Zakariazadeh, Alireza; Jadid, Shahram
2014-01-01
This paper focuses on using DR (Demand Response) as a means to provide reserve in order to cover uncertainty in wind power forecasting in SG (Smart Grid) environment. The proposed stochastic model schedules energy and reserves provided by both of generating units and responsive loads in power systems with high penetration of wind power. This model is formulated as a two-stage stochastic programming, where first-stage is associated with electricity market, its rules and constraints and the second-stage is related to actual operation of the power system and its physical limitations in each scenario. The discrete retail customer responses to incentive-based DR programs are aggregated by DRPs (Demand Response Providers) and are submitted as a load change price and amount offer package to ISO (Independent System Operator). Also, price-based DR program behavior and random nature of wind power are modeled by price elasticity concept of the demand and normal probability distribution function, respectively. In the proposed model, DRPs can participate in energy market as well as reserve market and submit their offers to the wholesale electricity market. This approach is implemented on a modified IEEE 30-bus test system over a daily time horizon. The simulation results are analyzed in six different case studies. The cost, emission and multiobjective functions are optimized in both without and with DR cases. The multiobjective generation scheduling model is solved using augmented epsilon constraint method and the best solution can be chosen by Entropy and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methods. The results indicate demand side participation in energy and reserve scheduling reduces the total operation costs and emissions. - Highlights: • Simultaneous participation of loads in both energy and reserve scheduling. • Environmental/economical scheduling of energy and reserve. • Using demand response for covering wind generation forecast
International Nuclear Information System (INIS)
Xie, Y.L.; Li, Y.P.; Huang, G.H.; Li, Y.F.
2010-01-01
In this study, an interval fixed-mix stochastic programming (IFSP) model is developed for greenhouse gas (GHG) emissions reduction management under uncertainties. In the IFSP model, methods of interval-parameter programming (IPP) and fixed-mix stochastic programming (FSP) are introduced into an integer programming framework, such that the developed model can tackle uncertainties described in terms of interval values and probability distributions over a multi-stage context. Moreover, it can reflect dynamic decisions for facility-capacity expansion during the planning horizon. The developed model is applied to a case of planning GHG-emission mitigation, demonstrating that IFSP is applicable to reflecting complexities of multi-uncertainty, dynamic and interactive energy management systems, and capable of addressing the problem of GHG-emission reduction. A number of scenarios corresponding to different GHG-emission mitigation levels are examined; the results suggest that reasonable solutions have been generated. They can be used for generating plans for energy resource/electricity allocation and capacity expansion and help decision makers identify desired GHG mitigation policies under various economic costs and environmental requirements.
Bierkens, M.F.P.; Bron, W.A.
2000-01-01
The VIDENTE program contains a decision support system (DSS) to choose between different models for stochastic modelling of water-table depths, and a graphical user interface to facilitate operating and running four implemented models: KALMAX, KALTFN,SSDS and EMERALD. In self-contained parts each of
Using stochastic dynamic programming to support catchment-scale water resources management in China
Davidsen, Claus; Pereira-Cardenal, Silvio Javier; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter
2013-04-01
A hydro-economic modelling approach is used to optimize reservoir management at river basin level. We demonstrate the potential of this integrated approach on the Ziya River basin, a complex basin on the North China Plain south-east of Beijing. The area is subject to severe water scarcity due to low and extremely seasonal precipitation, and the intense agricultural production is highly dependent on irrigation. Large reservoirs provide water storage for dry months while groundwater and the external South-to-North Water Transfer Project are alternative sources of water. An optimization model based on stochastic dynamic programming has been developed. The objective function is to minimize the total cost of supplying water to the users, while satisfying minimum ecosystem flow constraints. Each user group (agriculture, domestic and industry) is characterized by fixed demands, fixed water allocation costs for the different water sources (surface water, groundwater and external water) and fixed costs of water supply curtailment. The multiple reservoirs in the basin are aggregated into a single reservoir to reduce the dimensions of decisions. Water availability is estimated using a hydrological model. The hydrological model is based on the Budyko framework and is forced with 51 years of observed daily rainfall and temperature data. 23 years of observed discharge from an in-situ station located downstream a remote mountainous catchment is used for model calibration. Runoff serial correlation is described by a Markov chain that is used to generate monthly runoff scenarios to the reservoir. The optimal costs at a given reservoir state and stage were calculated as the minimum sum of immediate and future costs. Based on the total costs for all states and stages, water value tables were generated which contain the marginal value of stored water as a function of the month, the inflow state and the reservoir state. The water value tables are used to guide allocation decisions in
Turner, Sean; Galelli, Stefano; Wilcox, Karen
2015-04-01
Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating
International Nuclear Information System (INIS)
Tabar, Vahid Sohrabi; Jirdehi, Mehdi Ahmadi; Hemmati, Reza
2017-01-01
Renewable energy resources are often known as cost-effective and lucrative resources and have been widely developed due to environmental-economic issues. Renewable energy utilization even in small scale (e.g., microgrid networks) has attracted significant attention. Energy management in microgrid can be carried out based on the generating side management or demand side management. In this paper, portable renewable energy resource are modeled and included in microgrid energy management as a demand response option. Utilizing such resources could supply the load when microgrid cannot serve the demand. This paper addresses energy management and scheduling in microgrid including thermal and electrical loads, renewable energy sources (solar and wind), CHP, conventional energy sources (boiler and micro turbine), energy storage systems (thermal and electrical ones), and portable renewable energy resource (PRER). Operational cost of microgrid and air pollution are considered as objective functions. Uncertainties related to the parameters are incorporated to make a stochastic programming. The proposed problem is expressed as a constrained, multi-objective, linear, and mixed-integer programing. Augmented Epsilon-constraint method is used to solve the problem. Final results and calculations are achieved using GAMS24.1.3/CPLEX12.5.1. Simulation results demonstrate the viability and effectiveness of the proposed method in microgrid energy management. - Highlights: • Introducing portable renewable energy resource (PRER) and considering effect of them. • Considering reserve margin and sensitivity analysis for validate robustness. • Multi objective and stochastic management with considering various loads and sources. • Using augmented Epsilon-constraint method to solve multi objective program. • Highly decreasing total cost and pollution with PRER in stochastic state.
Directory of Open Access Journals (Sweden)
Luis A. Rivera-Morales
2014-01-01
Full Text Available In this paper we propose a stochastic integer programming optimization model to determine the optimal location and number of rain water collectors (RWCs for forest firefighting. The objective is to minimize expected total cost to control forest fires. The model is tested using a real case and several additional realistic scenarios. The impact on the solution of varying the limit on the number of RWCs, the RWC water capacity, the aircraft capacity, the water demands, and the aircraft operating cost is explored. Some observations are that the objective value improves with larger RWCs and with the use of aircraft with greater capacity.
Directory of Open Access Journals (Sweden)
Zhongwen Li
2016-06-01
Full Text Available Microgrids (MGs are presented as a cornerstone of smart grids. With the potential to integrate intermittent renewable energy sources (RES in a flexible and environmental way, the MG concept has gained even more attention. Due to the randomness of RES, load, and electricity price in MG, the forecast errors of MGs will affect the performance of the power scheduling and the operating cost of an MG. In this paper, a combined stochastic programming and receding horizon control (SPRHC strategy is proposed for microgrid energy management under uncertainty, which combines the advantages of two-stage stochastic programming (SP and receding horizon control (RHC strategy. With an SP strategy, a scheduling plan can be derived that minimizes the risk of uncertainty by involving the uncertainty of MG in the optimization model. With an RHC strategy, the uncertainty within the MG can be further compensated through a feedback mechanism with the lately updated forecast information. In our approach, a proper strategy is also proposed to maintain the SP model as a mixed integer linear constrained quadratic programming (MILCQP problem, which is solvable without resorting to any heuristics algorithms. The results of numerical experiments explicitly demonstrate the superiority of the proposed strategy for both island and grid-connected operating modes of an MG.
Energy Technology Data Exchange (ETDEWEB)
Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)
2009-10-09
We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.
Directory of Open Access Journals (Sweden)
L. Ji
2015-01-01
Full Text Available The main goal of this paper is to provide a novel risk aversion model for long-term electric power system planning from the manager’s perspective with the consideration of various uncertainties. In the proposed method, interval parameter programming and two-stage stochastic programming are integrated to deal with the technical, economics, and policy uncertainties. Moreover, downside risk theory is introduced to balance the trade-off between the profit and risk according to the decision-maker’s risk aversion attitude. To verify the effectiveness and practical application of this approach, an inexact stochastic risk aversion model is developed for regional electric system planning and management in Ningxia Hui Autonomous Region, China. The series of solutions provide the decision-maker with the optimal investment strategy and operation management under different future emission reduction scenarios and risk-aversion levels. The results indicated that pollution control devices are still the main measures to achieve the current mitigation goal and the adjustment of generation structure would play an important role in the future cleaner electricity system with the stricter environmental policy. In addition, the model can be used for generating decision alternatives and helping decision-makers identify desired energy structure adjustment and pollutants/carbon mitigation abatement policies under various economic and system-reliability constraints.
Stochastic volatility and stochastic leverage
DEFF Research Database (Denmark)
Veraart, Almut; Veraart, Luitgard A. M.
This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...
Stochastic Programming for Fuel Supply Planning of Combined Heat and Power Plants
DEFF Research Database (Denmark)
Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel
The consumption of biomass to produce power and heat has increased due to the carbon neutral policies. Combined heat and power (CHP) plants often combine biomass with other fuels, e.g., natural gas. The negotiation process for supply contracts involves many uncertainties due to the long planning...... horizon. The demand for biomass is uncertain, and heat demand and electricity prices vary during the planning period. We propose a method using stochastic optimization to support the biomass and natural gas supply planning for CHP plants including short-term decisions for optimal market participation....
Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.
2010-01-01
Structural design generated by traditional method, optimization method and the stochastic design concept are compared. In the traditional method, the constraints are manipulated to obtain the design and weight is back calculated. In design optimization, the weight of a structure becomes the merit function with constraints imposed on failure modes and an optimization algorithm is used to generate the solution. Stochastic design concept accounts for uncertainties in loads, material properties, and other parameters and solution is obtained by solving a design optimization problem for a specified reliability. Acceptable solutions were produced by all the three methods. The variation in the weight calculated by the methods was modest. Some variation was noticed in designs calculated by the methods. The variation may be attributed to structural indeterminacy. It is prudent to develop design by all three methods prior to its fabrication. The traditional design method can be improved when the simplified sensitivities of the behavior constraint is used. Such sensitivity can reduce design calculations and may have a potential to unify the traditional and optimization methods. Weight versus reliabilitytraced out an inverted-S-shaped graph. The center of the graph corresponded to mean valued design. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure. Weight can be reduced to a small value for a most failure-prone design. Probabilistic modeling of load and material properties remained a challenge.
Biomass Supply Planning for Combined Heat and Power Plants using Stochastic Programming
DEFF Research Database (Denmark)
Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel
method using stochastic optimization to support the biomass supply planning for combined heat and power plants. Our two-phase approach combines mid-term decisions about biomass supply contracts with the short-term decisions regarding the optimal market participation of the producer to ensure......During the last years, the consumption of biomass to produce power and heat has increased due to the new carbon neutral policies. Nowadays, many district heating systems operate their combined heat and power (CHP) plants using different types of biomass instead of fossil fuel, especially to produce......, and heat demand and electricity prices vary drastically during the planning period. Furthermore, the optimal operation of combined heat and power plants has to consider the existing synergies between the power and heating systems while always fulfilling the heat demand of the system. We propose a solution...
Urselmann, Maren; Emmerich, Michael T. M.; Till, Jochen; Sand, Guido; Engell, Sebastian
2007-07-01
Engineering optimization often deals with large, mixed-integer search spaces with a rigid structure due to the presence of a large number of constraints. Metaheuristics, such as evolutionary algorithms (EAs), are frequently suggested as solution algorithms in such cases. In order to exploit the full potential of these algorithms, it is important to choose an adequate representation of the search space and to integrate expert-knowledge into the stochastic search operators, without adding unnecessary bias to the search. Moreover, hybridisation with mathematical programming techniques such as mixed-integer programming (MIP) based on a problem decomposition can be considered for improving algorithmic performance. In order to design problem-specific EAs it is desirable to have a set of design guidelines that specify properties of search operators and representations. Recently, a set of guidelines has been proposed that gives rise to so-called Metric-based EAs (MBEAs). Extended by the minimal moves mutation they allow for a generalization of EA with self-adaptive mutation strength in discrete search spaces. In this article, a problem-specific EA for process engineering task is designed, following the MBEA guidelines and minimal moves mutation. On the background of the application, the usefulness of the design framework is discussed, and further extensions and corrections proposed. As a case-study, a two-stage stochastic programming problem in chemical batch process scheduling is considered. The algorithm design problem can be viewed as the choice of a hierarchical decision structure, where on different layers of the decision process symmetries and similarities can be exploited for the design of minimal moves. After a discussion of the design approach and its instantiation for the case-study, the resulting problem-specific EA/MIP is compared to a straightforward application of a canonical EA/MIP and to a monolithic mathematical programming algorithm. In view of the
Assessment model validity document - HYDRASTAR. A stochastic continuum program for groundwater flow
Energy Technology Data Exchange (ETDEWEB)
Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden); Eriksson, Lars [Equa Simulation AB, Sundbyberg (Sweden)
2001-12-01
The prevailing document addresses validation of the stochastic continuum model HYDRASTAR designed for Monte Carlo simulations of groundwater flow in fractured rocks. Here, validation is defined as a process to demonstrate that a model concept is fit for its purpose. Preferably, the validation is carried out by comparison of model predictions with independent field observations and experimental measurements. In addition, other sources can also be used to confirm that the model concept gives acceptable results. One method is to compare results with the ones achieved using other model concepts for the same set of input data. Another method is to compare model results with analytical solutions. The model concept HYDRASTAR has been used in several studies including performance assessments of hypothetical repositories for spent nuclear fuel. In the performance assessments, the main tasks for HYDRASTAR have been to calculate groundwater travel time distributions, repository flux distributions, path lines and their exit locations. The results have then been used by other model concepts to calculate the near field release and far field transport. The aim and framework for the validation process includes describing the applicability of the model concept for its purpose in order to build confidence in the concept. Preferably, this is made by comparisons of simulation results with the corresponding field experiments or field measurements. Here, two comparisons with experimental results are reported. In both cases the agreement was reasonably fair. In the broader and more general context of the validation process, HYDRASTAR results have been compared with other models and analytical solutions. Commonly, the approximation calculations agree well with the medians of model ensemble results. Additional indications that HYDRASTAR is suitable for its purpose were obtained from the comparisons with results from other model concepts. Several verification studies have been made for
Lanchier, Nicolas
2017-01-01
Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the ...
Do Farm Programs Explain Mean and Variance of Technical Efficiency? Stochastic Frontier Analysis
Ranjan, Rahul; Shaik, Saleem; Mishra, Ashok K.
2010-01-01
Past literature has examined the importance of farm programs on the volatility and returns on general and agriculture economic growth. The objective of this study was to assess the impact of farm program payments on technical efficiency. The study used aggregate state level panel data from the U.S agricultural sector. Results indicate production increasing with increasing units of inputs. Results from this study indicate that farm program payments play an important role in technical efficienc...
Energy Technology Data Exchange (ETDEWEB)
Andrus, Jason P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pope, Chad [Idaho State Univ., Pocatello, ID (United States); Toston, Mary [Idaho State Univ., Pocatello, ID (United States); Maas, Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-12-01
Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculates the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an
Cunha, P.S.A.; Oliveira, F.; Raupp, Fernanda M.P.
2017-01-01
ABSTRACT Here, we propose a novel methodology for replenishment and control systems for inventories of two-echelon logistics networks using a two-stage stochastic programming, considering periodic review and uncertain demands. In addition, to achieve better customer services, we introduce a variable rationing rule to address quantities of the item in short. The devised models are reformulated into their deterministic equivalent, resulting in nonlinear mixed-integer programming models, which a...
Micosoft Excel Sensitivity Analysis for Linear and Stochastic Program Feed Formulation
Sensitivity analysis is a part of mathematical programming solutions and is used in making nutritional and economic decisions for a given feed formulation problem. The terms, shadow price and reduced cost, are familiar linear program (LP) terms to feed formulators. Because of the nonlinear nature of...
International Nuclear Information System (INIS)
Ghalelou, Afshin Najafi; Fakhri, Alireza Pashaei; Nojavan, Sayyad; Majidi, Majid; Hatami, Hojat
2016-01-01
Highlights: • Optimal stochastic energy management of renewable energy sources (RESs) is proposed. • The compressed air energy storage (CAES) besides RESs is used in the presence of DRP. • Determination charge and discharge of CAES in order to reduce the expected operation cost. • Moreover, demand response program (DRP) is proposed to minimize the operation cost. • The uncertainty modeling of input data are considered in the proposed stochastic framework. - Abstract: In this paper, a stochastic self-scheduling of renewable energy sources (RESs) considering compressed air energy storage (CAES) in the presence of a demand response program (DRP) is proposed. RESs include wind turbine (WT) and photovoltaic (PV) system. Other energy sources are thermal units and CAES. The time-of-use (TOU) rate of DRP is considered in this paper. This DRP shifts the percentage of load from the expensive period to the cheap one in order to flatten the load curve and minimize the operation cost, consequently. The proposed objective function includes minimizing the operation costs of thermal unit and CAES, considering technical and physical constraints. The proposed model is formulated as mixed integer linear programming (MILP) and it is been solved using General Algebraic Modeling System (GAMS) optimization package. Furthermore, CAES and DRP are incorporated in the stochastic self-scheduling problem by a decision maker to reduce the expected operation cost. Meanwhile, the uncertainty models of market price, load, wind speed, temperature and irradiance are considered in the formulation. Finally, to assess the effects of DRP and CAES on self-scheduling problem, four case studies are utilized, and significant results were obtained, which indicate the validity of the proposed stochastic program.
Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam
2015-04-01
In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.
Macian-Sorribes, Hector; Pulido-Velazquez, Manuel
2016-04-01
This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to
International Nuclear Information System (INIS)
Ahmadi, Abdollah; Charwand, Mansour; Siano, Pierluigi; Nezhad, Ali Esmaeel; Sarno, Debora; Gitizadeh, Mohsen; Raeisi, Fatima
2016-01-01
In order to supply the demands of the end users in a competitive market, a distribution company purchases energy from the wholesale market while other options would be in access in the case of possessing distributed generation units and interruptible loads. In this regard, this study presents a two-stage stochastic programming model for a distribution company energy acquisition market model to manage the involvement of different electric energy resources characterized by uncertainties with the minimum cost. In particular, the distribution company operations planning over a day-ahead horizon is modeled as a stochastic mathematical optimization, with the objective of minimizing costs. By this, distribution company decisions on grid purchase, owned distributed generation units and interruptible load scheduling are determined. Then, these decisions are considered as boundary constraints to a second step, which deals with distribution company's operations in the hour-ahead market with the objective of minimizing the short-term cost. The uncertainties in spot market prices and wind speed are modeled by means of probability distribution functions of their forecast errors and the roulette wheel mechanism and lattice Monte Carlo simulation are used to generate scenarios. Numerical results show the capability of the proposed method. - Highlights: • Proposing a new a stochastic-based two-stage operations framework in retail competitive markets. • Proposing a Mixed Integer Non-Linear stochastic programming. • Employing roulette wheel mechanism and Lattice Monte Carlo Simulation.
Directory of Open Access Journals (Sweden)
Ye Xu
2017-05-01
Full Text Available In this paper, a stochastic multi-objective chance-constrained programming model (SMOCCP was developed for tackling the water supply management problem. Two objectives were included in this model, which are the minimization of leakage loss amounts and total system cost, respectively. The traditional SCCP model required the random variables to be expressed in the normal distributions, although their statistical characteristics were suitably reflected by other forms. The SMOCCP model allows the random variables to be expressed in log-normal distributions, rather than general normal form. Possible solution deviation caused by irrational parameter assumption was avoided and the feasibility and accuracy of generated solutions were ensured. The water supply system in the Xiaoqing River watershed was used as a study case for demonstration. Under the context of various weight combinations and probabilistic levels, many types of solutions are obtained, which are expressed as a series of transferred amounts from water sources to treated plants, from treated plants to reservoirs, as well as from reservoirs to tributaries. It is concluded that the SMOCCP model could reflect the sketch of the studied region and generate desired water supply schemes under complex uncertainties. The successful application of the proposed model is expected to be a good example for water resource management in other watersheds.
Directory of Open Access Journals (Sweden)
Alfred J. Hildreth
2013-01-01
Full Text Available Smart grids enable a two-way energy demand response capability through which a utility company offers its industrial customers various call options for energy load curtailment. If a customer has the capability to accurately determine whether to accept an offer or not, then in the case of accepting an offer, the customer can earn both an option premium to participate, and a strike price for load curtailments if requested. However, today most manufacturing companies lack the capability to make the correct contract decisions for given offers. This paper proposes a novel decision model based on activity-based costing (ABC and stochastic programming, developed to accurately evaluate the impact of load curtailments and determine as to whether or not to accept an energy load curtailment offer. The proposed model specifically targets state-transition flexible and Quality-of-Service (QoS flexible energy use activities to reduce the peak energy demand rate. An illustrative example with the proposed decision model under a call-option based energy demand response scenario is presented. As shown from the example results, the proposed decision model can be used with emerging smart grid opportunities to provide a competitive advantage to the manufacturing industry.
International Nuclear Information System (INIS)
Zhang, Xiaodong; Huang, Guo H.; Nie, Xianghui
2009-01-01
Nonpoint source (NPS) water pollution is one of serious environmental issues, especially within an agricultural system. This study aims to propose a robust chance-constrained fuzzy possibilistic programming (RCFPP) model for water quality management within an agricultural system, where solutions for farming area, manure/fertilizer application amount, and livestock husbandry size under different scenarios are obtained and interpreted. Through improving upon the existing fuzzy possibilistic programming, fuzzy robust programming and chance-constrained programming approaches, the RCFPP can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original fuzzy constraints, the RCFPP enhances the robustness of the optimization processes and resulting solutions. The results of the case study indicate that useful information can be obtained through the proposed RCFPP model for providing feasible decision schemes for different agricultural activities under different scenarios (combinations of different p-necessity and p i levels). A p-necessity level represents the certainty or necessity degree of the imprecise objective function, while a p i level means the probabilities at which the constraints will be violated. A desire to acquire high agricultural income would decrease the certainty degree of the event that maximization of the objective be satisfied, and potentially violate water management standards; willingness to accept low agricultural income will run into the risk of potential system failure. The decision variables under combined p-necessity and p i levels were useful for the decision makers to justify and/or adjust the decision schemes for the agricultural activities through incorporation of their implicit knowledge. The results also suggest that
Portfolio Optimization with Stochastic Dividends and Stochastic Volatility
Varga, Katherine Yvonne
2015-01-01
We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…
Stochastic Feedforward Control Technique
Halyo, Nesim
1990-01-01
Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.
Directory of Open Access Journals (Sweden)
Massimiliano Kaucic
2015-09-01
Full Text Available In the paper, we introduce a multi-objective scenario-based optimization approach for chance-constrained portfolio selection problems. More specifically, a modified version of the normal constraint method is implemented with a global solver in order to generate a dotted approximation of the Pareto frontier for bi- and tri-objective programming problems. Numerical experiments are carried out on a set of portfolios to be optimized for an EU-based non-life insurance company. Both performance indicators and risk measures are managed as objectives. Results show that this procedure is effective and readily applicable to achieve suitable risk-reward tradeoff analysis.
Parzen, Emanuel
1962-01-01
Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine
International Nuclear Information System (INIS)
Chen, Xin; Mu, Hailin; Li, Huanan; Gui, Shusen
2014-01-01
There has been much attention paid to oil security in China in recent years. Although China has begun to establish its own strategic petroleum reserve (SPR) to prevent potential losses caused by oil supply interruptions, the system aiming to ensure China's oil security is still incomplete. This paper describes and provides evidence for the benefits of an auxiliary strategic oil policy choice, which aims to strengthen China's oil supply security and offer a solution for strategic oil operations with different holding costs. In this paper, we develop a multi-dimension stochastic dynamic programming model to analyze the oil stockpile delegation policy, which is an intermediate policy between public and private oil stockpiles and is appropriate for the Chinese immature private oil stockpile sector. The model examines the effects of the oil stockpile delegation policy in the context of several distinct situations, including normal world oil market conditions, slight oil supply interruption, and serious oil supply interruption. Operating strategies that respond to different oil supply situations for both the SPR and the delegated oil stockpile were obtained. Different time horizons, interruption times and holding costs of delegated oil stockpiles were examined. The construction process of China's SPR was also taken into account. - Highlights: • We provided an auxiliary strategic oil policy rooted in Chinese local conditions. • The policy strengthen China's capability for preventing oil supply interruption. • We model to obtain the managing strategies for China's strategic petroleum reserve. • Both of the public and delegated oil stockpile were taken into consideration. • The three phase's construction process of China's SPR was taken into account
Directory of Open Access Journals (Sweden)
Jing Liu
2017-11-01
Full Text Available In this study, an interval fuzzy-stochastic chance-constrained programming based energy-water nexus (IFSCP-WEN model is developed for planning electric power system (EPS. The IFSCP-WEN model can tackle uncertainties expressed as possibility and probability distributions, as well as interval values. Different credibility (i.e., γ levels and probability (i.e., qi levels are set to reflect relationships among water supply, electricity generation, system cost, and constraint-violation risk. Results reveal that different γ and qi levels can lead to a changed system cost, imported electricity, electricity generation, and water supply. Results also disclose that the study EPS would tend to the transition from coal-dominated into clean energy-dominated. Gas-fired would be the main electric utility to supply electricity at the end of the planning horizon, occupying [28.47, 30.34]% (where 28.47% and 30.34% present the lower bound and the upper bound of interval value, respectively of the total electricity generation. Correspondingly, water allocated to gas-fired would reach the highest, occupying [33.92, 34.72]% of total water supply. Surface water would be the main water source, accounting for more than [40.96, 43.44]% of the total water supply. The ratio of recycled water to total water supply would increase by about [11.37, 14.85]%. Results of the IFSCP-WEN model present its potential for sustainable EPS planning by co-optimizing energy and water resources.
Zolfaghari, Mohammad R; Peyghaleh, Elnaz
2015-03-01
This article presents a new methodology to implement the concept of equity in regional earthquake risk mitigation programs using an optimization framework. It presents a framework that could be used by decisionmakers (government and authorities) to structure budget allocation strategy toward different seismic risk mitigation measures, i.e., structural retrofitting for different building structural types in different locations and planning horizons. A two-stage stochastic model is developed here to seek optimal mitigation measures based on minimizing mitigation expenditures, reconstruction expenditures, and especially large losses in highly seismically active countries. To consider fairness in the distribution of financial resources among different groups of people, the equity concept is incorporated using constraints in model formulation. These constraints limit inequity to the user-defined level to achieve the equity-efficiency tradeoff in the decision-making process. To present practical application of the proposed model, it is applied to a pilot area in Tehran, the capital city of Iran. Building stocks, structural vulnerability functions, and regional seismic hazard characteristics are incorporated to compile a probabilistic seismic risk model for the pilot area. Results illustrate the variation of mitigation expenditures by location and structural type for buildings. These expenditures are sensitive to the amount of available budget and equity consideration for the constant risk aversion. Most significantly, equity is more easily achieved if the budget is unlimited. Conversely, increasing equity where the budget is limited decreases the efficiency. The risk-return tradeoff, equity-reconstruction expenditures tradeoff, and variation of per-capita expected earthquake loss in different income classes are also presented. © 2015 Society for Risk Analysis.
International Nuclear Information System (INIS)
Klauder, J.R.
1983-01-01
The author provides an introductory survey to stochastic quantization in which he outlines this new approach for scalar fields, gauge fields, fermion fields, and condensed matter problems such as electrons in solids and the statistical mechanics of quantum spins. (Auth.)
STOCHASTIC ASSESSMENT OF NIGERIAN STOCHASTIC ...
African Journals Online (AJOL)
eobe
STOCHASTIC ASSESSMENT OF NIGERIAN WOOD FOR BRIDGE DECKS ... abandoned bridges with defects only in their decks in both rural and urban locations can be effectively .... which can be seen as the detection of rare physical.
DEFF Research Database (Denmark)
Maurico-Iglesias, Miguel; Castro, Ignacio Montero; Mollerup, Ane Loft
2015-01-01
. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current......The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems...
Fuzzy stochastic multiobjective programming
Sakawa, Masatoshi; Katagiri, Hideki
2011-01-01
With a stress on interactive decision-making, this work breaks new ground by covering both the random nature of events related to environments, and the fuzziness of human judgements. The text runs from mathematical preliminaries to future research directions.
Directory of Open Access Journals (Sweden)
Hao Yu
2016-12-01
Full Text Available Today, the increased public concern about sustainable development and more stringent environmental regulations have become important driving forces for value recovery from end-of-life and end-of use products through reverse logistics. Waste electrical and electronic equipment (WEEE contains both valuable components that need to be recycled and hazardous substances that have to be properly treated or disposed of, so the design of a reverse logistics system for sustainable treatment of WEEE is of paramount importance. This paper presents a stochastic mixed integer programming model for designing and planning a generic multi-source, multi-echelon, capacitated, and sustainable reverse logistics network for WEEE management under uncertainty. The model takes into account both economic efficiency and environmental impacts in decision-making, and the environmental impacts are evaluated in terms of carbon emissions. A multi-criteria two-stage scenario-based solution method is employed and further developed in this study for generating the optimal solution for the stochastic optimization problem. The proposed model and solution method are validated through a numerical experiment and sensitivity analyses presented later in this paper, and an analysis of the results is also given to provide a deep managerial insight into the application of the proposed stochastic optimization model.
Directory of Open Access Journals (Sweden)
Youness El Ansari
2017-01-01
Full Text Available We investigate the various conditions that control the extinction and stability of a nonlinear mathematical spread model with stochastic perturbations. This model describes the spread of viruses into an infected computer network which is powered by a system of antivirus software. The system is analyzed by using the stability theory of stochastic differential equations and the computer simulations. First, we study the global stability of the virus-free equilibrium state and the virus-epidemic equilibrium state. Furthermore, we use the Itô formula and some other theoretical theorems of stochastic differential equation to discuss the extinction and the stationary distribution of our system. The analysis gives a sufficient condition for the infection to be extinct (i.e., the number of viruses tends exponentially to zero. The ergodicity of the solution and the stationary distribution can be obtained if the basic reproduction number Rp is bigger than 1, and the intensities of stochastic fluctuations are small enough. Numerical simulations are carried out to illustrate the theoretical results.
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Mauricio-Iglesias, Miguel; Montero-Castro, Ignacio; Mollerup, Ane L; Sin, Gürkan
2015-05-15
The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current rain event as well as the expected overflow given the probability of a future rain event. The methodology is successfully applied to design an optimising control strategy for a subcatchment area in Copenhagen. The results are promising and expected to contribute to the advance of the operation and control problem of sewer systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Nojavan, Sayyad; Aalami, Habib allah
2015-01-01
Highlights: • A stochastic energy procurement cost function in presence of DRP is proposed. • The load, price and output power of PV and wind uncertainties are modeled. • Four case studies are used to assess the effects of ESS and DRP on SEPP. • Case 4 is considered the effects of ESS and DRP simultaneously. • The expected energy procurement cost of case 4 is lower than cases 1, 2 and 3. - Abstract: This paper proposes a stochastic energy procurement problem (SEPP) for large electricity consumer (LEC) with multiple energy procurement sources (EPSs) considering the effects of demand response program (DRP) and energy storage system (ESS). The EPSs contain power market (PM), bilateral contracts (BCs), micro-turbines (MTs), and renewable energy sources (RESs). Moreover, the RESs include photovoltaic (PV) systems and wind-turbines (WT). The ESS and DRP are incorporated in the SEPP by the LEC’s decision-maker to reduce the expected energy procurement cost (EEPC). Meanwhile, the uncertainty models of market price, load and RES output power are considered in the SEPP formulation. The error of forecasting of market price, load, temperature and radiation of PV systems are modeled using the normal distribution for generating the related scenarios. Also, the weibull distribution is used to generate variable wind speed scenarios for WT output power uncertainty modeling. Furthermore, the fast forward selection based on Kantorovich distance approach is used for the scenarios reduction. Finally, the influences of ESS and DRP on EEPC are investigated, and four case studies are used to illustrate the capability of the proposed SEPP. The obtained results demonstrate the efficiency of the proposed stochastic program
Directory of Open Access Journals (Sweden)
Farid Chighoub
2014-01-01
the stochastic calculus of jump diffusions and some properties of singular controls. Then, we give, under smoothness conditions, a useful verification theorem and we show that the solution of the adjoint equation coincides with the spatial gradient of the value function, evaluated along the optimal trajectory of the state equation. Finally, using these theoretical results, we solve explicitly an example, on optimal harvesting strategy, for a geometric Brownian motion with jumps.
International Nuclear Information System (INIS)
Bisognano, J.; Leemann, C.
1982-03-01
Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron
Directory of Open Access Journals (Sweden)
Pouria Sheikhahmadi
2018-03-01
Full Text Available The operation problem of a micro-grid (MG in grid-connected mode is an optimization one in which the main objective of the MG operator (MGO is to minimize the operation cost with optimal scheduling of resources and optimal trading energy with the main grid. The MGO can use incentive-based demand response programs (DRPs to pay an incentive to the consumers to change their demands in the peak hours. Moreover, the MGO forecasts the output power of renewable energy resources (RERs and models their uncertainties in its problem. In this paper, the operation problem of an MGO is modeled as a risk-based two-stage stochastic optimization problem. To model the uncertainties of RERs, two-stage stochastic programming is considered and conditional value at risk (CVaR index is used to manage the MGO’s risk-level. Moreover, the non-linear economic models of incentive-based DRPs are used by the MGO to change the peak load. The numerical studies are done to investigate the effect of incentive-based DRPs on the operation problem of the MGO. Moreover, to show the effect of the risk-averse parameter on MGO decisions, a sensitivity analysis is carried out.
Directory of Open Access Journals (Sweden)
P.S.A. Cunha
Full Text Available ABSTRACT Here, we propose a novel methodology for replenishment and control systems for inventories of two-echelon logistics networks using a two-stage stochastic programming, considering periodic review and uncertain demands. In addition, to achieve better customer services, we introduce a variable rationing rule to address quantities of the item in short. The devised models are reformulated into their deterministic equivalent, resulting in nonlinear mixed-integer programming models, which are then approximately linearized. To deal with the uncertain nature of the item demand levels, we apply a Monte Carlo simulation-based method to generate finite and discrete sets of scenarios. Moreover, the proposed approach does not require restricted assumptions to the behavior of the probabilistic phenomena, as does several existing methods in the literature. Numerical experiments with the proposed approach for randomly generated instances of the problem show results with errors around 1%.
Crisan, Dan
2011-01-01
"Stochastic Analysis" aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sa
Borodin, Andrei N
2017-01-01
This book provides a rigorous yet accessible introduction to the theory of stochastic processes. A significant part of the book is devoted to the classic theory of stochastic processes. In turn, it also presents proofs of well-known results, sometimes together with new approaches. Moreover, the book explores topics not previously covered elsewhere, such as distributions of functionals of diffusions stopped at different random times, the Brownian local time, diffusions with jumps, and an invariance principle for random walks and local times. Supported by carefully selected material, the book showcases a wealth of examples that demonstrate how to solve concrete problems by applying theoretical results. It addresses a broad range of applications, focusing on concrete computational techniques rather than on abstract theory. The content presented here is largely self-contained, making it suitable for researchers and graduate students alike.
Bierkens, M.F.P.; Bron, W.A.; Knotters, M.
2002-01-01
A description is given of the program VIDENTE. VIDENTE contains a decision support system to choose between different models for stochastic modelling of water-table depths and a graphical user interface to facilitate operating and running four implemented models: KALMAX, KALTFN, SSD and EMERALD. In
Chiavico, Mattia; Raso, Luciano; Dorchies, David; Malaterre, Pierre-Olivier
2015-04-01
Seine river region is an extremely important logistic and economic junction for France and Europe. The hydraulic protection of most part of the region relies on four controlled reservoirs, managed by EPTB Seine-Grands Lacs. Presently, reservoirs operation is not centrally coordinated, and release rules are based on empirical filling curves. In this study, we analyze how a centralized release policy can face flood and drought risks, optimizing water system efficiency. The optimal and centralized decisional problem is solved by Stochastic Dual Dynamic Programming (SDDP) method, minimizing an operational indicator for each planning objective. SDDP allows us to include into the system: 1) the hydrological discharge, specifically a stochastic semi-distributed auto-regressive model, 2) the hydraulic transfer model, represented by a linear lag and route model, and 3) reservoirs and diversions. The novelty of this study lies on the combination of reservoir and hydraulic models in SDDP for flood and drought protection problems. The study case covers the Seine basin until the confluence with Aube River: this system includes two reservoirs, the city of Troyes, and the Nuclear power plant of Nogent-Sur-Seine. The conflict between the interests of flood protection, drought protection, water use and ecology leads to analyze the environmental system in a Multi-Objective perspective.
International Nuclear Information System (INIS)
Nojavan, Sayyad; Zare, Kazem; Mohammadi-Ivatloo, Behnam
2017-01-01
Highlights: • Stochastic energy management of retailer under smart grid environment is proposed. • Optimal selling price is determined in the smart grid environment. • Fixed, time-of-use and real-time pricing are determined for selling to customers. • Charge/discharge of ESS is determined to increase the expected profit of retailer. • Demand response program is proposed to increase the expected profit of retailer. - Abstract: In this paper, bilateral contracting and selling price determination problems for an electricity retailer in the smart grid environment under uncertainties have been considered. Multiple energy procurement sources containing pool market (PM), bilateral contracts (BCs), distributed generation (DG) units, renewable energy sources (photovoltaic (PV) system and wind turbine (WT)) and energy storage system (ESS) as well as demand response program (DRP) as virtual generation unit are considered. The scenario-based stochastic framework is used for uncertainty modeling of pool market prices, client group demand and variable climate condition containing temperature, irradiation and wind speed. In the proposed model, the selling price is determined and compared by the retailer in the smart grid in three cases containing fixed pricing, time-of-use (TOU) pricing and real-time pricing (RTP). It is shown that the selling price determination based on RTP by the retailer leads to higher expected profit. Furthermore, demand response program (DRP) has been implemented to flatten the load profile to minimize the cost for end-user customers as well as increasing the retailer profit. To validate the proposed model, three case studies are used and the results are compared.
International Nuclear Information System (INIS)
Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.
1975-01-01
A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)
Directory of Open Access Journals (Sweden)
Romanu Ekaterini
2006-01-01
Full Text Available This article shows the similarities between Claude Debussy’s and Iannis Xenakis’ philosophy of music and work, in particular the formers Jeux and the latter’s Metastasis and the stochastic works succeeding it, which seem to proceed parallel (with no personal contact to what is perceived as the evolution of 20th century Western music. Those two composers observed the dominant (German tradition as outsiders, and negated some of its elements considered as constant or natural by "traditional" innovators (i.e. serialists: the linearity of musical texture, its form and rhythm.
Wang, Jun-Sheng; Yang, Guang-Hong
2017-07-25
This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.
Mateo, Jordi; Pla, Lluis M; Solsona, Francesc; Pagès, Adela
2016-01-01
Production planning models are achieving more interest for being used in the primary sector of the economy. The proposed model relies on the formulation of a location model representing a set of farms susceptible of being selected by a grocery shop brand to supply local fresh products under seasonal contracts. The main aim is to minimize overall procurement costs and meet future demand. This kind of problem is rather common in fresh vegetable supply chains where producers are located in proximity either to processing plants or retailers. The proposed two-stage stochastic model determines which suppliers should be selected for production contracts to ensure high quality products and minimal time from farm-to-table. Moreover, Lagrangian relaxation and parallel computing algorithms are proposed to solve these instances efficiently in a reasonable computational time. The results obtained show computational gains from our algorithmic proposals in front of the usage of plain CPLEX solver. Furthermore, the results ensure the competitive advantages of using the proposed model by purchase managers in the fresh vegetables industry.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stochastic diffeomorphism induced by the strong solutions of stochastic differential equations.
Stochastic Averaging and Stochastic Extremum Seeking
Liu, Shu-Jun
2012-01-01
Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering and analysis of bacterial convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...
Hoskins, Aaron B.
Forest fires cause a significant amount of damage and destruction each year. Optimally dispatching resources reduces the amount of damage a forest fire can cause. Models predict the fire spread to provide the data required to optimally dispatch resources. However, the models are only as accurate as the data used to build them. Satellites are one valuable tool in the collection of data for the forest fire models. Satellites provide data on the types of vegetation, the wind speed and direction, the soil moisture content, etc. The current operating paradigm is to passively collect data when possible. However, images from directly overhead provide better resolution and are easier to process. Maneuvering a constellation of satellites to fly directly over the forest fire provides higher quality data than is achieved with the current operating paradigm. Before launch, the location of the forest fire is unknown. Therefore, it is impossible to optimize the initial orbits for the satellites. Instead, the expected cost of maneuvering to observe the forest fire determines the optimal initial orbits. A two-stage stochastic programming approach is well suited for this class of problem where initial decisions are made with an uncertain future and then subsequent decisions are made once a scenario is realized. A repeat ground track orbit provides a non-maneuvering, natural solution providing a daily flyover of the forest fire. However, additional maneuvers provide a second daily flyover of the forest fire. The additional maneuvering comes at a significant cost in terms of additional fuel, but provides more data collection opportunities. After data are collected, ground stations receive the data for processing. Optimally selecting the ground station locations reduce the number of built ground stations and reduces the data fusion issues. However, the location of the forest fire alters the optimal ground station sites. A two-stage stochastic programming approach optimizes the
International Nuclear Information System (INIS)
Wellens, Thomas; Shatokhin, Vyacheslav; Buchleitner, Andreas
2004-01-01
We are taught by conventional wisdom that the transmission and detection of signals is hindered by noise. However, during the last two decades, the paradigm of stochastic resonance (SR) proved this assertion wrong: indeed, addition of the appropriate amount of noise can boost a signal and hence facilitate its detection in a noisy environment. Due to its simplicity and robustness, SR has been implemented by mother nature on almost every scale, thus attracting interdisciplinary interest from physicists, geologists, engineers, biologists and medical doctors, who nowadays use it as an instrument for their specific purposes. At the present time, there exist a lot of diversified models of SR. Taking into account the progress achieved in both theoretical understanding and practical application of this phenomenon, we put the focus of the present review not on discussing in depth technical details of different models and approaches but rather on presenting a general and clear physical picture of SR on a pedagogical level. Particular emphasis will be given to the implementation of SR in generic quantum systems-an issue that has received limited attention in earlier review papers on the topic. The major part of our presentation relies on the two-state model of SR (or on simple variants thereof), which is general enough to exhibit the main features of SR and, in fact, covers many (if not most) of the examples of SR published so far. In order to highlight the diversity of the two-state model, we shall discuss several examples from such different fields as condensed matter, nonlinear and quantum optics and biophysics. Finally, we also discuss some situations that go beyond the generic SR scenario but are still characterized by a constructive role of noise
Zeng, X T; Huang, G H; Li, Y P; Zhang, J L; Cai, Y P; Liu, Z P; Liu, L R
2016-12-01
This study developed a fuzzy-stochastic programming with Green Z-score criterion (FSGZ) method for water resources allocation and water quality management with a trading-mechanism (WAQT) under uncertainties. FSGZ can handle uncertainties expressed as probability distributions, and it can also quantify objective/subjective fuzziness in the decision-making process. Risk-averse attitudes and robustness coefficient are joined to express the relationship between the expected target and outcome under various risk preferences of decision makers and systemic robustness. The developed method is applied to a real-world case of WAQT in the Kaidu-Kongque River Basin in northwest China, where an effective mechanism (e.g., market trading) to simultaneously confront severely diminished water availability and degraded water quality is required. Results of water transaction amounts, water allocation patterns, pollution mitigation schemes, and system benefits under various scenarios are analyzed, which indicate that a trading-mechanism is a more sustainable method to manage water-environment crisis in the study region. Additionally, consideration of anthropogenic (e.g., a risk-averse attitude) and systemic factors (e.g., the robustness coefficient) can support the generation of a robust plan associated with risk control for WAQT when uncertainty is present. These findings assist local policy and decision makers to gain insights into water-environment capacity planning to balance the basin's social and economic growth with protecting the region's ecosystems.
Directory of Open Access Journals (Sweden)
Eleni Bekri
2015-11-01
Full Text Available Optimal water allocation within a river basin still remains a great modeling challenge for engineers due to various hydrosystem complexities, parameter uncertainties and their interactions. Conventional deterministic optimization approaches have given their place to stochastic, fuzzy and interval-parameter programming approaches and their hybrid combinations for overcoming these difficulties. In many countries, including Mediterranean countries, water resources management is characterized by uncertain, imprecise and limited data because of the absence of permanent measuring systems, inefficient river monitoring and fragmentation of authority responsibilities. A fuzzy-boundary-interval linear programming methodology developed by Li et al. (2010 is selected and applied in the Alfeios river basin (Greece for optimal water allocation under uncertain system conditions. This methodology combines an ordinary multi-stage stochastic programming with uncertainties expressed as fuzzy-boundary intervals. Upper- and lower-bound solution intervals for optimized water allocation targets and probabilistic water allocations and shortages are estimated under a baseline scenario and four water and agricultural policy future scenarios for an optimistic and a pessimistic attitude of the decision makers. In this work, the uncertainty of the random water inflows is incorporated through the simultaneous generation of stochastic equal-probability hydrologic scenarios at various inflow positions instead of using a scenario-tree approach in the original methodology.
Stochastic tools in turbulence
Lumey, John L
2012-01-01
Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the
AESS: Accelerated Exact Stochastic Simulation
Jenkins, David D.; Peterson, Gregory D.
2011-12-01
The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution
Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong
2013-09-01
Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 109 was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.
Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong
2013-09-01
Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 10(9) $ was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.
Ogawa, Shigeyoshi
2017-01-01
This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but ...
Elitism and Stochastic Dominance
Bazen, Stephen; Moyes, Patrick
2011-01-01
Stochastic dominance has typically been used with a special emphasis on risk and inequality reduction something captured by the concavity of the utility function in the expected utility model. We claim that the applicability of the stochastic dominance approach goes far beyond risk and inequality measurement provided suitable adpations be made. We apply in the paper the stochastic dominance approach to the measurment of elitism which may be considered the opposite of egalitarianism. While the...
Singular stochastic differential equations
Cherny, Alexander S
2005-01-01
The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.
Stochastic analytic regularization
International Nuclear Information System (INIS)
Alfaro, J.
1984-07-01
Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)
Instantaneous stochastic perturbation theory
International Nuclear Information System (INIS)
Lüscher, Martin
2015-01-01
A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.
Gottwald, G.A.; Crommelin, D.T.; Franzke, C.L.E.; Franzke, C.L.E.; O'Kane, T.J.
2017-01-01
In this chapter we review stochastic modelling methods in climate science. First we provide a conceptual framework for stochastic modelling of deterministic dynamical systems based on the Mori-Zwanzig formalism. The Mori-Zwanzig equations contain a Markov term, a memory term and a term suggestive of
Meyer, Joerg M.
2018-01-01
The contrary of stochastic independence splits up into two cases: pairs of events being favourable or being unfavourable. Examples show that both notions have quite unexpected properties, some of them being opposite to intuition. For example, transitivity does not hold. Stochastic dependence is also useful to explain cases of Simpson's paradox.
Stochastic quantization and gravity
International Nuclear Information System (INIS)
Rumpf, H.
1984-01-01
We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)
Greenwood, Priscilla E
2016-01-01
This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...
Sequential stochastic optimization
Cairoli, Renzo
1996-01-01
Sequential Stochastic Optimization provides mathematicians and applied researchers with a well-developed framework in which stochastic optimization problems can be formulated and solved. Offering much material that is either new or has never before appeared in book form, it lucidly presents a unified theory of optimal stopping and optimal sequential control of stochastic processes. This book has been carefully organized so that little prior knowledge of the subject is assumed; its only prerequisites are a standard graduate course in probability theory and some familiarity with discrete-paramet
Remarks on stochastic acceleration
International Nuclear Information System (INIS)
Graeff, P.
1982-12-01
Stochastic acceleration and turbulent diffusion are strong turbulence problems since no expansion parameter exists. Hence the problem of finding rigorous results is of major interest both for checking approximations and for reference models. Since we have found a way of constructing such models in the turbulent diffusion case the question of the extension to stochastic acceleration now arises. The paper offers some possibilities illustrated by the case of 'stochastic free fall' which may be particularly interesting in the context of linear response theory. (orig.)
Stochastic processes inference theory
Rao, Malempati M
2014-01-01
This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.
Introduction to stochastic calculus
Karandikar, Rajeeva L
2018-01-01
This book sheds new light on stochastic calculus, the branch of mathematics that is most widely applied in financial engineering and mathematical finance. The first book to introduce pathwise formulae for the stochastic integral, it provides a simple but rigorous treatment of the subject, including a range of advanced topics. The book discusses in-depth topics such as quadratic variation, Ito formula, and Emery topology. The authors briefly address continuous semi-martingales to obtain growth estimates and study solution of a stochastic differential equation (SDE) by using the technique of random time change. Later, by using Metivier–Pellumail inequality, the solutions to SDEs driven by general semi-martingales are discussed. The connection of the theory with mathematical finance is briefly discussed and the book has extensive treatment on the representation of martingales as stochastic integrals and a second fundamental theorem of asset pricing. Intended for undergraduate- and beginning graduate-level stud...
Doberkat, Ernst-Erich
2009-01-01
Combining coalgebraic reasoning, stochastic systems and logic, this volume presents the principles of coalgebraic logic from a categorical perspective. Modal logics are also discussed, including probabilistic interpretations and an analysis of Kripke models.
Approximating Preemptive Stochastic Scheduling
Megow Nicole; Vredeveld Tjark
2009-01-01
We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...
The stochastic goodwill problem
Marinelli, Carlo
2003-01-01
Stochastic control problems related to optimal advertising under uncertainty are considered. In particular, we determine the optimal strategies for the problem of maximizing the utility of goodwill at launch time and minimizing the disutility of a stream of advertising costs that extends until the launch time for some classes of stochastic perturbations of the classical Nerlove-Arrow dynamics. We also consider some generalizations such as problems with constrained budget and with discretionar...
International Nuclear Information System (INIS)
Hueffel, H.
1990-01-01
After a brief review of the BRST formalism and of the Parisi-Wu stochastic quantization method we introduce the BRST stochastic quantization scheme. It allows the second quantization of constrained Hamiltonian systems in a manifestly gauge symmetry preserving way. The examples of the relativistic particle, the spinning particle and the bosonic string are worked out in detail. The paper is closed by a discussion on the interacting field theory associated to the relativistic point particle system. 58 refs. (Author)
Ep for efficient stochastic control with obstacles
Mensink, T.; Verbeek, J.; Kappen, H.J.
2010-01-01
Abstract. We address the problem of continuous stochastic optimal control in the presence of hard obstacles. Due to the non-smooth character of the obstacles, the traditional approach using dynamic programming in combination with function approximation tends to fail. We consider a recently
Stochastic models for turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
Dynamic and stochastic multi-project planning
Melchiors, Philipp
2015-01-01
This book deals with dynamic and stochastic methods for multi-project planning. Based on the idea of using queueing networks for the analysis of dynamic-stochastic multi-project environments this book addresses two problems: detailed scheduling of project activities, and integrated order acceptance and capacity planning. In an extensive simulation study, the book thoroughly investigates existing scheduling policies. To obtain optimal and near optimal scheduling policies new models and algorithms are proposed based on the theory of Markov decision processes and Approximate Dynamic programming.
Some Remarks on Stochastic Versions of the Ramsey Growth Model
Czech Academy of Sciences Publication Activity Database
Sladký, Karel
2012-01-01
Roč. 19, č. 29 (2012), s. 139-152 ISSN 1212-074X R&D Projects: GA ČR GAP402/10/1610; GA ČR GAP402/10/0956; GA ČR GAP402/11/0150 Institutional support: RVO:67985556 Keywords : Economic dynamics * Ramsey growth model with disturbance * stochastic dynamic programming * multistage stochastic programs Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/sladky-some remarks on stochastic versions of the ramsey growth model.pdf
Stochastic analysis for finance with simulations
Choe, Geon Ho
2016-01-01
This book is an introduction to stochastic analysis and quantitative finance; it includes both theoretical and computational methods. Topics covered are stochastic calculus, option pricing, optimal portfolio investment, and interest rate models. Also included are simulations of stochastic phenomena, numerical solutions of the Black–Scholes–Merton equation, Monte Carlo methods, and time series. Basic measure theory is used as a tool to describe probabilistic phenomena. The level of familiarity with computer programming is kept to a minimum. To make the book accessible to a wider audience, some background mathematical facts are included in the first part of the book and also in the appendices. This work attempts to bridge the gap between mathematics and finance by using diagrams, graphs and simulations in addition to rigorous theoretical exposition. Simulations are not only used as the computational method in quantitative finance, but they can also facilitate an intuitive and deeper understanding of theoret...
Stochastic hyperfine interactions modeling library
Zacate, Matthew O.; Evenson, William E.
2011-04-01
The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When
Fitting PAC spectra with stochastic models: PolyPacFit
Energy Technology Data Exchange (ETDEWEB)
Zacate, M. O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics and Geology (United States); Evenson, W. E. [Utah Valley University, College of Science and Health (United States); Newhouse, R.; Collins, G. S. [Washington State University, Department of Physics and Astronomy (United States)
2010-04-15
PolyPacFit is an advanced fitting program for time-differential perturbed angular correlation (PAC) spectroscopy. It incorporates stochastic models and provides robust options for customization of fits. Notable features of the program include platform independence and support for (1) fits to stochastic models of hyperfine interactions, (2) user-defined constraints among model parameters, (3) fits to multiple spectra simultaneously, and (4) any spin nuclear probe.
International Nuclear Information System (INIS)
Haran, O.; Shvarts, D.; Thieberger, R.
1998-01-01
Classical transport of neutral particles in a binary, scattering, stochastic media is discussed. It is assumed that the cross-sections of the constituent materials and their volume fractions are known. The inner structure of the media is stochastic, but there exist a statistical knowledge about the lump sizes, shapes and arrangement. The transmission through the composite media depends on the specific heterogeneous realization of the media. The current research focuses on the averaged transmission through an ensemble of realizations, frm which an effective cross-section for the media can be derived. The problem of one dimensional transport in stochastic media has been studied extensively [1]. In the one dimensional description of the problem, particles are transported along a line populated with alternating material segments of random lengths. The current work discusses transport in two-dimensional stochastic media. The phenomenon that is unique to the multi-dimensional description of the problem is obstacle bypassing. Obstacle bypassing tends to reduce the opacity of the media, thereby reducing its effective cross-section. The importance of this phenomenon depends on the manner in which the obstacles are arranged in the media. Results of transport simulations in multi-dimensional stochastic media are presented. Effective cross-sections derived from the simulations are compared against those obtained for the one-dimensional problem, and against those obtained from effective multi-dimensional models, which are partially based on a Markovian assumption
Stochastic approach to microphysics
Energy Technology Data Exchange (ETDEWEB)
Aron, J.C.
1987-01-01
The presently widespread idea of ''vacuum population'', together with the quantum concept of vacuum fluctuations leads to assume a random level below that of matter. This stochastic approach starts by a reminder of the author's previous work, first on the relation of diffusion laws with the foundations of microphysics, and then on hadron spectrum. Following the latter, a random quark model is advanced; it gives to quark pairs properties similar to those of a harmonic oscillator or an elastic string, imagined as an explanation to their asymptotic freedom and their confinement. The stochastic study of such interactions as electron-nucleon, jets in e/sup +/e/sup -/ collisions, or pp -> ..pi../sup 0/ + X, gives form factors closely consistent with experiment. The conclusion is an epistemological comment (complementarity between stochastic and quantum domains, E.P.R. paradox, etc...).
Stochastic dynamics and irreversibility
Tomé, Tânia
2015-01-01
This textbook presents an exposition of stochastic dynamics and irreversibility. It comprises the principles of probability theory and the stochastic dynamics in continuous spaces, described by Langevin and Fokker-Planck equations, and in discrete spaces, described by Markov chains and master equations. Special concern is given to the study of irreversibility, both in systems that evolve to equilibrium and in nonequilibrium stationary states. Attention is also given to the study of models displaying phase transitions and critical phenomema both in thermodynamic equilibrium and out of equilibrium. These models include the linear Glauber model, the Glauber-Ising model, lattice models with absorbing states such as the contact process and those used in population dynamic and spreading of epidemic, probabilistic cellular automata, reaction-diffusion processes, random sequential adsorption and dynamic percolation. A stochastic approach to chemical reaction is also presented.The textbook is intended for students of ...
Stochastic optimization methods
Marti, Kurt
2005-01-01
Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Deterministic and stochastic approximation methods and their analytical properties are provided: Taylor expansion, regression and response surface methods, probability inequalities, First Order Reliability Methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation methods, differentiation of probability and mean value functions. Convergence results of the resulting iterative solution procedures are given.
International Nuclear Information System (INIS)
Rumpf, H.
1987-01-01
We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)
Separable quadratic stochastic operators
International Nuclear Information System (INIS)
Rozikov, U.A.; Nazir, S.
2009-04-01
We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)
Stochastic cooling at Fermilab
International Nuclear Information System (INIS)
Marriner, J.
1986-08-01
The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system
Markov stochasticity coordinates
International Nuclear Information System (INIS)
Eliazar, Iddo
2017-01-01
Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.
DEFF Research Database (Denmark)
Simonsen, Maria
This thesis treats stochastic systems with switching dynamics. Models with these characteristics are studied from several perspectives. Initially in a simple framework given in the form of stochastic differential equations and, later, in an extended form which fits into the framework of sliding...... mode control. It is investigated how to understand and interpret solutions to models of switched systems, which are exposed to discontinuous dynamics and uncertainties (primarily) in the form of white noise. The goal is to gain knowledge about the performance of the system by interpreting the solution...
Stochastic dynamics and control
Sun, Jian-Qiao; Zaslavsky, George
2006-01-01
This book is a result of many years of author's research and teaching on random vibration and control. It was used as lecture notes for a graduate course. It provides a systematic review of theory of probability, stochastic processes, and stochastic calculus. The feedback control is also reviewed in the book. Random vibration analyses of SDOF, MDOF and continuous structural systems are presented in a pedagogical order. The application of the random vibration theory to reliability and fatigue analysis is also discussed. Recent research results on fatigue analysis of non-Gaussian stress proc
CSIR Research Space (South Africa)
Roux, FS
2013-09-01
Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic... of vortices: topological charge ±1 (higher order are unstable). Positive and negative vortex densities np(x, y, z) and nn(x, y, z) ⊲ Vortex density: V = np + nn ⊲ Topological charge density: T = np − nn – p. 4/24 Subfields of SSO ⊲ Homogeneous, normally...
Foundations of stochastic analysis
Rao, M M; Lukacs, E
1981-01-01
Foundations of Stochastic Analysis deals with the foundations of the theory of Kolmogorov and Bochner and its impact on the growth of stochastic analysis. Topics covered range from conditional expectations and probabilities to projective and direct limits, as well as martingales and likelihood ratios. Abstract martingales and their applications are also discussed. Comprised of five chapters, this volume begins with an overview of the basic Kolmogorov-Bochner theorem, followed by a discussion on conditional expectations and probabilities containing several characterizations of operators and mea
Markov stochasticity coordinates
Energy Technology Data Exchange (ETDEWEB)
Eliazar, Iddo, E-mail: iddo.eliazar@intel.com
2017-01-15
Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.
Stochastic quantisation: theme and variation
International Nuclear Information System (INIS)
Klauder, J.R.; Kyoto Univ.
1987-01-01
The paper on stochastic quantisation is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. Stochastic quantisation reformulates Euclidean quantum field theory in the language of Langevin equations. The generalised free field is discussed from the viewpoint of stochastic quantisation. An artificial family of highly singular model theories wherein the space-time derivatives are dropped altogether is also examined. Finally a modified form of stochastic quantisation is considered. (U.K.)
Stochastic quantization of Proca field
International Nuclear Information System (INIS)
Lim, S.C.
1981-03-01
We discuss the complications that arise in the application of Nelson's stochastic quantization scheme to classical Proca field. One consistent way to obtain spin-one massive stochastic field is given. It is found that the result of Guerra et al on the connection between ground state stochastic field and the corresponding Euclidean-Markov field extends to the spin-one case. (author)
Stochastic Estimation via Polynomial Chaos
2015-10-01
AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic
Energy Technology Data Exchange (ETDEWEB)
Tollestrup, A.V.; Dugan, G
1983-12-01
Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)
Schrager, D.F.
2006-01-01
We propose a new model for stochastic mortality. The model is based on the literature on affine term structure models. It satisfies three important requirements for application in practice: analytical tractibility, clear interpretation of the factors and compatibility with financial option pricing
Composite stochastic processes
Kampen, N.G. van
Certain problems in physics and chemistry lead to the definition of a class of stochastic processes. Although they are not Markovian they can be treated explicitly to some extent. In particular, the probability distribution for large times can be found. It is shown to obey a master equation. This
Entropy Production in Stochastics
Directory of Open Access Journals (Sweden)
Demetris Koutsoyiannis
2017-10-01
Full Text Available While the modern definition of entropy is genuinely probabilistic, in entropy production the classical thermodynamic definition, as in heat transfer, is typically used. Here we explore the concept of entropy production within stochastics and, particularly, two forms of entropy production in logarithmic time, unconditionally (EPLT or conditionally on the past and present having been observed (CEPLT. We study the theoretical properties of both forms, in general and in application to a broad set of stochastic processes. A main question investigated, related to model identification and fitting from data, is how to estimate the entropy production from a time series. It turns out that there is a link of the EPLT with the climacogram, and of the CEPLT with two additional tools introduced here, namely the differenced climacogram and the climacospectrum. In particular, EPLT and CEPLT are related to slopes of log-log plots of these tools, with the asymptotic slopes at the tails being most important as they justify the emergence of scaling laws of second-order characteristics of stochastic processes. As a real-world application, we use an extraordinary long time series of turbulent velocity and show how a parsimonious stochastic model can be identified and fitted using the tools developed.
Stochastic modelling of turbulence
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...
Research in Stochastic Processes.
1982-10-31
Office of Scientific Research Grant AFOSR F49620 82 C 0009 Period: 1 Noveber 1981 through 31 October 1982 Title: Research in Stochastic Processes Co...STA4ATIS CAMBANIS The work briefly described here was developed in connection with problems arising from and related to the statistical comunication
Stochastic Control - External Models
DEFF Research Database (Denmark)
Poulsen, Niels Kjølstad
2005-01-01
This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...
Stochastic nonlinear beam equations
Czech Academy of Sciences Publication Activity Database
Brzezniak, Z.; Maslowski, Bohdan; Seidler, Jan
2005-01-01
Roč. 132, č. 1 (2005), s. 119-149 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA201/01/1197 Institutional research plan: CEZ:AV0Z10190503 Keywords : stochastic beam equation * stability Subject RIV: BA - General Mathematics Impact factor: 0.896, year: 2005
Oriented stochastic data envelopment models: ranking comparison to stochastic frontier approach
Czech Academy of Sciences Publication Activity Database
Brázdik, František
-, č. 271 (2005), s. 1-46 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : stochastic data envelopment analysis * linear programming * rice farm Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp271.pdf
Stochastic processes in cell biology
Bressloff, Paul C
2014-01-01
This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods. This text is primarily...
Stochastic calculus and applications
Cohen, Samuel N
2015-01-01
Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to wo...
Some illustrations of stochasticity
International Nuclear Information System (INIS)
Laslett, L.J.
1977-01-01
A complex, and apparently stochastic, character frequently can be seen to occur in the solutions to simple Hamiltonian problems. Such behavior is of interest, and potentially of importance, to designers of particle accelerators--as well as to workers in other fields of physics and related disciplines. Even a slow development of disorder in the motion of particles in a circular accelerator or storage ring could be troublesome, because a practical design requires the beam particles to remain confined in an orderly manner within a narrow beam tube for literally tens of billions of revolutions. The material presented is primarily the result of computer calculations made to investigate the occurrence of ''stochasticity,'' and is organized in a manner similar to that adopted for presentation at a 1974 accelerator conference
Stochastic ice stream dynamics.
Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca
2016-08-09
Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.
Fractional Stochastic Field Theory
Honkonen, Juha
2018-02-01
Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.
Essentials of stochastic processes
Durrett, Richard
2016-01-01
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatm...
Dynamic stochastic optimization
Ermoliev, Yuri; Pflug, Georg
2004-01-01
Uncertainties and changes are pervasive characteristics of modern systems involving interactions between humans, economics, nature and technology. These systems are often too complex to allow for precise evaluations and, as a result, the lack of proper management (control) may create significant risks. In order to develop robust strategies we need approaches which explic itly deal with uncertainties, risks and changing conditions. One rather general approach is to characterize (explicitly or implicitly) uncertainties by objec tive or subjective probabilities (measures of confidence or belief). This leads us to stochastic optimization problems which can rarely be solved by using the standard deterministic optimization and optimal control methods. In the stochastic optimization the accent is on problems with a large number of deci sion and random variables, and consequently the focus ofattention is directed to efficient solution procedures rather than to (analytical) closed-form solu tions. Objective an...
Stochastic porous media equations
Barbu, Viorel; Röckner, Michael
2016-01-01
Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.
Stochastic stacking without filters
International Nuclear Information System (INIS)
Johnson, R.P.; Marriner, J.
1982-12-01
The rate of accumulation of antiprotons is a critical factor in the design of p anti p colliders. A design of a system to accumulate higher anti p fluxes is presented here which is an alternative to the schemes used at the CERN AA and in the Fermilab Tevatron I design. Contrary to these stacking schemes, which use a system of notch filters to protect the dense core of antiprotons from the high power of the stack tail stochastic cooling, an eddy current shutter is used to protect the core in the region of the stack tail cooling kicker. Without filters one can have larger cooling bandwidths, better mixing for stochastic cooling, and easier operational criteria for the power amplifiers. In the case considered here a flux of 1.4 x 10 8 per sec is achieved with a 4 to 8 GHz bandwidth
Multistage stochastic optimization
Pflug, Georg Ch
2014-01-01
Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book
Dynamics of stochastic systems
Klyatskin, Valery I
2005-01-01
Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''''oil slicks''''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of ...
Ahmadi, T.; Karimi, H.; Davoudpour, H.
2015-01-01
The stochastic location-allocation p-hub median problems are related to long-term decisions made in risky situations. Due to the importance of this type of problems in real-world applications, the authors were motivated to propose an approach to obtain more reliable policies in stochastic
Identifiability in stochastic models
1992-01-01
The problem of identifiability is basic to all statistical methods and data analysis, occurring in such diverse areas as Reliability Theory, Survival Analysis, and Econometrics, where stochastic modeling is widely used. Mathematics dealing with identifiability per se is closely related to the so-called branch of ""characterization problems"" in Probability Theory. This book brings together relevant material on identifiability as it occurs in these diverse fields.
Stochastic split determinant algorithms
International Nuclear Information System (INIS)
Horvatha, Ivan
2000-01-01
I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed
Stochasticity Modeling in Memristors
Naous, Rawan; Al-Shedivat, Maruan; Salama, Khaled N.
2015-01-01
Diverse models have been proposed over the past years to explain the exhibiting behavior of memristors, the fourth fundamental circuit element. The models varied in complexity ranging from a description of physical mechanisms to a more generalized mathematical modeling. Nonetheless, stochasticity, a widespread observed phenomenon, has been immensely overlooked from the modeling perspective. This inherent variability within the operation of the memristor is a vital feature for the integration of this nonlinear device into the stochastic electronics realm of study. In this paper, experimentally observed innate stochasticity is modeled in a circuit compatible format. The model proposed is generic and could be incorporated into variants of threshold-based memristor models in which apparent variations in the output hysteresis convey the switching threshold shift. Further application as a noise injection alternative paves the way for novel approaches in the fields of neuromorphic engineering circuits design. On the other hand, extra caution needs to be paid to variability intolerant digital designs based on non-deterministic memristor logic.
Stochasticity Modeling in Memristors
Naous, Rawan
2015-10-26
Diverse models have been proposed over the past years to explain the exhibiting behavior of memristors, the fourth fundamental circuit element. The models varied in complexity ranging from a description of physical mechanisms to a more generalized mathematical modeling. Nonetheless, stochasticity, a widespread observed phenomenon, has been immensely overlooked from the modeling perspective. This inherent variability within the operation of the memristor is a vital feature for the integration of this nonlinear device into the stochastic electronics realm of study. In this paper, experimentally observed innate stochasticity is modeled in a circuit compatible format. The model proposed is generic and could be incorporated into variants of threshold-based memristor models in which apparent variations in the output hysteresis convey the switching threshold shift. Further application as a noise injection alternative paves the way for novel approaches in the fields of neuromorphic engineering circuits design. On the other hand, extra caution needs to be paid to variability intolerant digital designs based on non-deterministic memristor logic.
Stochastic quantization of instantons
International Nuclear Information System (INIS)
Grandati, Y.; Berard, A.; Grange, P.
1996-01-01
The method of Parisi and Wu to quantize classical fields is applied to instanton solutions var-phi I of euclidian non-linear theory in one dimension. The solution var-phi var-epsilon of the corresponding Langevin equation is built through a singular perturbative expansion in var-epsilon=h 1/2 in the frame of the center of the mass of the instanton, where the difference var-phi var-epsilon -var-phi I carries only fluctuations of the instanton form. The relevance of the method is shown for the stochastic K dV equation with uniform noise in space: the exact solution usually obtained by the inverse scattering method is retrieved easily by the singular expansion. A general diagrammatic representation of the solution is then established which makes a thorough use of regrouping properties of stochastic diagrams derived in scalar field theory. Averaging over the noise and in the limit of infinite stochastic time, the authors obtain explicit expressions for the first two orders in var-epsilon of the pertrubed instanton of its Green function. Specializing to the Sine-Gordon and var-phi 4 models, the first anaharmonic correction is obtained analytically. The calculation is carried to second order for the var-phi 4 model, showing good convergence. 21 refs., 5 fig
International Nuclear Information System (INIS)
Majidi, Majid; Nojavan, Sayyad; Zare, Kazem
2017-01-01
Highlights: • On-grid photovoltaic/battery/fuel cell system is considered as hybrid system. • Thermal and electrical operation of hybrid energy system is studied. • Hybrid energy system is used to reduce dependency on upstream grid for load serving. • Demand response program is proposed to manage the electrical load. • Demand response program is proposed to reduce hybrid energy system’s operation cost. - Abstract: In this paper, cost-efficient operation problem of photovoltaic/battery/fuel cell hybrid energy system has been evaluated in the presence of demand response program. Each load curve has off-peak, mid and peak time periods in which the energy prices are different. Demand response program transfers some amount of load from peak periods to other periods to flatten the load curve and minimize total cost. So, the main goal is to meet the energy demand and propose a cost-efficient approach to minimize system’s total cost including system’s electrical cost and thermal cost and the revenue from exporting power to the upstream grid. A battery has been utilized as an electrical energy storage system and a heat storage tank is used as a thermal energy storage system to save energy in off-peak and mid-peak hours and then supply load in peak hours which leads to reduction of cost. The proposed cost-efficient operation problem of photovoltaic/battery/fuel cell hybrid energy system is modeled by a mixed-integer linear program and solved by General algebraic modeling system optimization software under CPLEX solver. Two case studies are investigated to show the effects of demand response program on reduction of total cost.
Stochastic and non-stochastic effects - a conceptual analysis
International Nuclear Information System (INIS)
Karhausen, L.R.
1980-01-01
The attempt to divide radiation effects into stochastic and non-stochastic effects is discussed. It is argued that radiation or toxicological effects are contingently related to radiation or chemical exposure. Biological effects in general can be described by general laws but these laws never represent a necessary connection. Actually stochastic effects express contingent, or empirical, connections while non-stochastic effects represent semantic and non-factual connections. These two expressions stem from two different levels of discourse. The consequence of this analysis for radiation biology and radiation protection is discussed. (author)
DEFF Research Database (Denmark)
Vahedipour-Dahraie, Mostafa; Najafi, Hamid Reza; Anvari-Moghaddam, Amjad
2017-01-01
In recent deregulated power systems, demand response (DR) has become one of the most cost-effective and efficient solutions for smoothing the load profile when the system is under stress. By participating in DR programs, customers are able to change their energy consumption habits in response...
A retrodictive stochastic simulation algorithm
International Nuclear Information System (INIS)
Vaughan, T.G.; Drummond, P.D.; Drummond, A.J.
2010-01-01
In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.
Stochastic processes and quantum theory
International Nuclear Information System (INIS)
Klauder, J.R.
1975-01-01
The author analyses a variety of stochastic processes, namely real time diffusion phenomena, which are analogues of imaginary time quantum theory and convariant imaginary time quantum field theory. He elaborates some standard properties involving probability measures and stochastic variables and considers a simple class of examples. Finally he develops the fact that certain stochastic theories actually exhibit divergences that simulate those of covariant quantum field theory and presents examples of both renormaizable and unrenormalizable behavior. (V.J.C.)
Stochastic Analysis with Financial Applications
Kohatsu-Higa, Arturo; Sheu, Shuenn-Jyi
2011-01-01
Stochastic analysis has a variety of applications to biological systems as well as physical and engineering problems, and its applications to finance and insurance have bloomed exponentially in recent times. The goal of this book is to present a broad overview of the range of applications of stochastic analysis and some of its recent theoretical developments. This includes numerical simulation, error analysis, parameter estimation, as well as control and robustness properties for stochastic equations. This book also covers the areas of backward stochastic differential equations via the (non-li
Stochastic Watershed Models for Risk Based Decision Making
Vogel, R. M.
2017-12-01
Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation
A Stochastic Multiobjective Optimization Framework for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Shibo He
2010-01-01
Full Text Available In wireless sensor networks (WSNs, there generally exist many different objective functions to be optimized. In this paper, we propose a stochastic multiobjective optimization approach to solve such kind of problem. We first formulate a general multiobjective optimization problem. We then decompose the optimization formulation through Lagrange dual decomposition and adopt the stochastic quasigradient algorithm to solve the primal-dual problem in a distributed way. We show theoretically that our algorithm converges to the optimal solution of the primal problem by using the knowledge of stochastic programming. Furthermore, the formulation provides a general stochastic multiobjective optimization framework for WSNs. We illustrate how the general framework works by considering an example of the optimal rate allocation problem in multipath WSNs with time-varying channel. Extensive simulation results are given to demonstrate the effectiveness of our algorithm.
MONTE CARLO SIMULATION OF MULTIFOCAL STOCHASTIC SCANNING SYSTEM
Directory of Open Access Journals (Sweden)
LIXIN LIU
2014-01-01
Full Text Available Multifocal multiphoton microscopy (MMM has greatly improved the utilization of excitation light and imaging speed due to parallel multiphoton excitation of the samples and simultaneous detection of the signals, which allows it to perform three-dimensional fast fluorescence imaging. Stochastic scanning can provide continuous, uniform and high-speed excitation of the sample, which makes it a suitable scanning scheme for MMM. In this paper, the graphical programming language — LabVIEW is used to achieve stochastic scanning of the two-dimensional galvo scanners by using white noise signals to control the x and y mirrors independently. Moreover, the stochastic scanning process is simulated by using Monte Carlo method. Our results show that MMM can avoid oversampling or subsampling in the scanning area and meet the requirements of uniform sampling by stochastically scanning the individual units of the N × N foci array. Therefore, continuous and uniform scanning in the whole field of view is implemented.
Stochastic learning in oxide binary synaptic device for neuromorphic computing.
Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H-S Philip
2013-01-01
Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.
Energy Technology Data Exchange (ETDEWEB)
Hardwick, Robert J.; Vennin, Vincent; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Byrnes, Christian T.; Torrado, Jesús, E-mail: robert.hardwick@port.ac.uk, E-mail: vincent.vennin@port.ac.uk, E-mail: c.byrnes@sussex.ac.uk, E-mail: jesus.torrado@sussex.ac.uk, E-mail: david.wands@port.ac.uk [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom)
2017-10-01
We study the stochastic distribution of spectator fields predicted in different slow-roll inflation backgrounds. Spectator fields have a negligible energy density during inflation but may play an important dynamical role later, even giving rise to primordial density perturbations within our observational horizon today. During de-Sitter expansion there is an equilibrium solution for the spectator field which is often used to estimate the stochastic distribution during slow-roll inflation. However slow roll only requires that the Hubble rate varies slowly compared to the Hubble time, while the time taken for the stochastic distribution to evolve to the de-Sitter equilibrium solution can be much longer than a Hubble time. We study both chaotic (monomial) and plateau inflaton potentials, with quadratic, quartic and axionic spectator fields. We give an adiabaticity condition for the spectator field distribution to relax to the de-Sitter equilibrium, and find that the de-Sitter approximation is never a reliable estimate for the typical distribution at the end of inflation for a quadratic spectator during monomial inflation. The existence of an adiabatic regime at early times can erase the dependence on initial conditions of the final distribution of field values. In these cases, spectator fields acquire sub-Planckian expectation values. Otherwise spectator fields may acquire much larger field displacements than suggested by the de-Sitter equilibrium solution. We quantify the information about initial conditions that can be obtained from the final field distribution. Our results may have important consequences for the viability of spectator models for the origin of structure, such as the simplest curvaton models.
International Nuclear Information System (INIS)
Hardwick, Robert J.; Vennin, Vincent; Wands, David; Byrnes, Christian T.; Torrado, Jesús
2017-01-01
We study the stochastic distribution of spectator fields predicted in different slow-roll inflation backgrounds. Spectator fields have a negligible energy density during inflation but may play an important dynamical role later, even giving rise to primordial density perturbations within our observational horizon today. During de-Sitter expansion there is an equilibrium solution for the spectator field which is often used to estimate the stochastic distribution during slow-roll inflation. However slow roll only requires that the Hubble rate varies slowly compared to the Hubble time, while the time taken for the stochastic distribution to evolve to the de-Sitter equilibrium solution can be much longer than a Hubble time. We study both chaotic (monomial) and plateau inflaton potentials, with quadratic, quartic and axionic spectator fields. We give an adiabaticity condition for the spectator field distribution to relax to the de-Sitter equilibrium, and find that the de-Sitter approximation is never a reliable estimate for the typical distribution at the end of inflation for a quadratic spectator during monomial inflation. The existence of an adiabatic regime at early times can erase the dependence on initial conditions of the final distribution of field values. In these cases, spectator fields acquire sub-Planckian expectation values. Otherwise spectator fields may acquire much larger field displacements than suggested by the de-Sitter equilibrium solution. We quantify the information about initial conditions that can be obtained from the final field distribution. Our results may have important consequences for the viability of spectator models for the origin of structure, such as the simplest curvaton models.
Stochastic ontogenetic growth model
West, B. J.; West, D.
2012-02-01
An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.
Stochastic calculus in physics
International Nuclear Information System (INIS)
Fox, R.F.
1987-01-01
The relationship of Ito-Stratonovich stochastic calculus to studies of weakly colored noise is explained. A functional calculus approach is used to obtain an effective Fokker-Planck equation for the weakly colored noise regime. In a smooth limit, this representation produces the Stratonovich version of the Ito-Stratonovich calculus for white noise. It also provides an approach to steady state behavior for strongly colored noise. Numerical simulation algorithms are explored, and a novel suggestion is made for efficient and accurate simulation of white noise equations
The stochastic quality calculus
DEFF Research Database (Denmark)
Zeng, Kebin; Nielson, Flemming; Nielson, Hanne Riis
2014-01-01
We introduce the Stochastic Quality Calculus in order to model and reason about distributed processes that rely on each other in order to achieve their overall behaviour. The calculus supports broadcast communication in a truly concurrent setting. Generally distributed delays are associated...... with the outputs and at the same time the inputs impose constraints on the waiting times. Consequently, the expected inputs may not be available when needed and therefore the calculus allows to express the absence of data.The communication delays are expressed by general distributions and the resulting semantics...
Stochastic conditional intensity processes
DEFF Research Database (Denmark)
Bauwens, Luc; Hautsch, Nikolaus
2006-01-01
model allows for a wide range of (cross-)autocorrelation structures in multivariate point processes. The model is estimated by simulated maximum likelihood (SML) using the efficient importance sampling (EIS) technique. By modeling price intensities based on NYSE trading, we provide significant evidence......In this article, we introduce the so-called stochastic conditional intensity (SCI) model by extending Russell’s (1999) autoregressive conditional intensity (ACI) model by a latent common dynamic factor that jointly drives the individual intensity components. We show by simulations that the proposed...... for a joint latent factor and show that its inclusion allows for an improved and more parsimonious specification of the multivariate intensity process...
Stochastic cooling for beginners
International Nuclear Information System (INIS)
Moehl, D.
1984-01-01
These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)
Dynamic optimization deterministic and stochastic models
Hinderer, Karl; Stieglitz, Michael
2016-01-01
This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.
Erdal, Jørgen Sørgård
2017-01-01
This master thesis develops a stochastic optimisation software for household grid-connected batteries combined with PV-systems. The objective of the optimisation is to operate the battery system in order to minimise the costs of the consumer, and it was implemented in MATLAB using a self-written stochastic dynamic programming algorithm. Load was considered as a stochastic variable and modelled as a Markov Chain. Transition probabilities between time steps were calculated using historic load p...
McEwan, Phil; Bergenheim, Klas; Yuan, Yong; Tetlow, Anthony P; Gordon, Jason P
2010-01-01
Simulation techniques are well suited to modelling diseases yet can be computationally intensive. This study explores the relationship between modelled effect size, statistical precision, and efficiency gains achieved using variance reduction and an executable programming language. A published simulation model designed to model a population with type 2 diabetes mellitus based on the UKPDS 68 outcomes equations was coded in both Visual Basic for Applications (VBA) and C++. Efficiency gains due to the programming language were evaluated, as was the impact of antithetic variates to reduce variance, using predicted QALYs over a 40-year time horizon. The use of C++ provided a 75- and 90-fold reduction in simulation run time when using mean and sampled input values, respectively. For a series of 50 one-way sensitivity analyses, this would yield a total run time of 2 minutes when using C++, compared with 155 minutes for VBA when using mean input values. The use of antithetic variates typically resulted in a 53% reduction in the number of simulation replications and run time required. When drawing all input values to the model from distributions, the use of C++ and variance reduction resulted in a 246-fold improvement in computation time compared with VBA - for which the evaluation of 50 scenarios would correspondingly require 3.8 hours (C++) and approximately 14.5 days (VBA). The choice of programming language used in an economic model, as well as the methods for improving precision of model output can have profound effects on computation time. When constructing complex models, more computationally efficient approaches such as C++ and variance reduction should be considered; concerns regarding model transparency using compiled languages are best addressed via thorough documentation and model validation.
Trajectory averaging for stochastic approximation MCMC algorithms
Liang, Faming
2010-01-01
to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic
Stochastic Blind Motion Deblurring
Xiao, Lei
2015-05-13
Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.
Schilstra, Maria J; Martin, Stephen R
2009-01-01
Stochastic simulations may be used to describe changes with time of a reaction system in a way that explicitly accounts for the fact that molecules show a significant degree of randomness in their dynamic behavior. The stochastic approach is almost invariably used when small numbers of molecules or molecular assemblies are involved because this randomness leads to significant deviations from the predictions of the conventional deterministic (or continuous) approach to the simulation of biochemical kinetics. Advances in computational methods over the three decades that have elapsed since the publication of Daniel Gillespie's seminal paper in 1977 (J. Phys. Chem. 81, 2340-2361) have allowed researchers to produce highly sophisticated models of complex biological systems. However, these models are frequently highly specific for the particular application and their description often involves mathematical treatments inaccessible to the nonspecialist. For anyone completely new to the field to apply such techniques in their own work might seem at first sight to be a rather intimidating prospect. However, the fundamental principles underlying the approach are in essence rather simple, and the aim of this article is to provide an entry point to the field for a newcomer. It focuses mainly on these general principles, both kinetic and computational, which tend to be not particularly well covered in specialist literature, and shows that interesting information may even be obtained using very simple operations in a conventional spreadsheet.
AA, stochastic precooling pickup
CERN PhotoLab
1980-01-01
The freshly injected antiprotons were subjected to fast stochastic "precooling". In this picture of a precooling pickup, the injection orbit is to the left, the stack orbit to the far right. After several seconds of precooling with the system's kickers (in momentum and in the vertical plane), the precooled antiprotons were transferred, by means of RF, to the stack tail, where they were subjected to further stochastic cooling in momentum and in both transverse planes, until they ended up, deeply cooled, in the stack core. During precooling, a shutter near the central orbit shielded the pickups from the signals emanating from the stack-core, whilst the stack-core was shielded from the violent action of the precooling kickers by a shutter on these. All shutters were opened briefly during transfer of the precooled antiprotons to the stack tail. Here, the shutter is not yet mounted. Precooling pickups and kickers had the same design, except that the kickers had cooling circuits and the pickups had none. Peering th...
Behavioral Stochastic Resonance
Freund, Jan A.; Schimansky-Geier, Lutz; Beisner, Beatrix; Neiman, Alexander; Russell, David F.; Yakusheva, Tatyana; Moss, Frank
2001-03-01
Zooplankton emit weak electric fields into the surrounding water that originate from their own muscular activities associated with swimming and feeding. Juvenile paddlefish prey upon single zooplankton by detecting and tracking these weak electric signatures. The passive electric sense in the fish is provided by an elaborate array of electroreceptors, Ampullae Lorenzini, spread over the surface of an elongated rostrum. We have previously shown that the fish use stochastic resonance to enhance prey capture near the detection threshold of their sensory system. But stochastic resonance requires an external source of electrical noise in order to function. The required noise can be provided by a swarm of plankton, for example Daphnia. Thus juvenile paddlefish can detect and attack single Daphnia as outliers in the vicinity of the swarm by making use of noise from the swarm itself. From the power spectral density of the noise plus the weak signal from a single Daphnia we calculate the signal-to-noise ratio and the Fisher information at the surface of the paddlefish's rostrum. The results predict a specific attack pattern for the paddlefish that appears to be experimentally testable.
Thermal mixtures in stochastic mechanics
Energy Technology Data Exchange (ETDEWEB)
Guerra, F [Rome Univ. (Italy). Ist. di Matematica; Loffredo, M I [Salerno Univ. (Italy). Ist. di Fisica
1981-01-17
Stochastic mechanics is extended to systems in thermal equilibrium. The resulting stochastic processes are mixtures of Nelson processes. Their Markov property is investigated in some simple cases. It is found that in order to inforce Markov property the algebra of observable associated to the present must be suitably enlarged.
Stochastic Pi-calculus Revisited
DEFF Research Database (Denmark)
Cardelli, Luca; Mardare, Radu Iulian
2013-01-01
We develop a version of stochastic Pi-calculus with a semantics based on measure theory. We dene the behaviour of a process in a rate environment using measures over the measurable space of processes induced by structural congruence. We extend the stochastic bisimulation to include the concept of...
Alternative Asymmetric Stochastic Volatility Models
M. Asai (Manabu); M.J. McAleer (Michael)
2010-01-01
textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is
Stochastic ferromagnetism analysis and numerics
Brzezniak, Zdzislaw; Neklyudov, Mikhail; Prohl, Andreas
2013-01-01
This monograph examines magnetization dynamics at elevated temperatures which can be described by the stochastic Landau-Lifshitz-Gilbert equation (SLLG). Comparative computational studies with the stochastic model are included. Constructive tools such as e.g. finite element methods are used to derive the theoretical results, which are then used for computational studies.
Variance decomposition in stochastic simulators.
Le Maître, O P; Knio, O M; Moraes, A
2015-06-28
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Variance decomposition in stochastic simulators
Le Maître, O. P.; Knio, O. M.; Moraes, A.
2015-06-01
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Brownian motion and stochastic calculus
Karatzas, Ioannis
1998-01-01
This book is designed as a text for graduate courses in stochastic processes. It is written for readers familiar with measure-theoretic probability and discrete-time processes who wish to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed. The power of this calculus is illustrated by results concerning representations of martingales and change of measure on Wiener space, and these in turn permit a presentation of recent advances in financial economics (option pricing and consumption/investment optimization). This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large num...
Variance decomposition in stochastic simulators
Energy Technology Data Exchange (ETDEWEB)
Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)
2015-06-28
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Variance decomposition in stochastic simulators
Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro
2015-01-01
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Stochastic Simulation of Process Calculi for Biology
Directory of Open Access Journals (Sweden)
Andrew Phillips
2010-10-01
Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.
Symbolic Computing in Probabilistic and Stochastic Analysis
Directory of Open Access Journals (Sweden)
Kamiński Marcin
2015-12-01
Full Text Available The main aim is to present recent developments in applications of symbolic computing in probabilistic and stochastic analysis, and this is done using the example of the well-known MAPLE system. The key theoretical methods discussed are (i analytical derivations, (ii the classical Monte-Carlo simulation approach, (iii the stochastic perturbation technique, as well as (iv some semi-analytical approaches. It is demonstrated in particular how to engage the basic symbolic tools implemented in any system to derive the basic equations for the stochastic perturbation technique and how to make an efficient implementation of the semi-analytical methods using an automatic differentiation and integration provided by the computer algebra program itself. The second important illustration is probabilistic extension of the finite element and finite difference methods coded in MAPLE, showing how to solve boundary value problems with random parameters in the environment of symbolic computing. The response function method belongs to the third group, where interference of classical deterministic software with the non-linear fitting numerical techniques available in various symbolic environments is displayed. We recover in this context the probabilistic structural response in engineering systems and show how to solve partial differential equations including Gaussian randomness in their coefficients.
Morgan, Byron JT; Tanner, Martin Abba; Carlin, Bradley P
2008-01-01
Introduction and Examples Introduction Examples of data sets Basic Model Fitting Introduction Maximum-likelihood estimation for a geometric model Maximum-likelihood for the beta-geometric model Modelling polyspermy Which model? What is a model for? Mechanistic models Function Optimisation Introduction MATLAB: graphs and finite differences Deterministic search methods Stochastic search methods Accuracy and a hybrid approach Basic Likelihood ToolsIntroduction Estimating standard errors and correlations Looking at surfaces: profile log-likelihoods Confidence regions from profiles Hypothesis testing in model selectionScore and Wald tests Classical goodness of fit Model selection biasGeneral Principles Introduction Parameterisation Parameter redundancy Boundary estimates Regression and influence The EM algorithm Alternative methods of model fitting Non-regular problemsSimulation Techniques Introduction Simulating random variables Integral estimation Verification Monte Carlo inference Estimating sampling distributi...
Stochastic population theories
Ludwig, Donald
1974-01-01
These notes serve as an introduction to stochastic theories which are useful in population biology; they are based on a course given at the Courant Institute, New York, in the Spring of 1974. In order to make the material. accessible to a wide audience, it is assumed that the reader has only a slight acquaintance with probability theory and differential equations. The more sophisticated topics, such as the qualitative behavior of nonlinear models, are approached through a succession of simpler problems. Emphasis is placed upon intuitive interpretations, rather than upon formal proofs. In most cases, the reader is referred elsewhere for a rigorous development. On the other hand, an attempt has been made to treat simple, useful models in some detail. Thus these notes complement the existing mathematical literature, and there appears to be little duplication of existing works. The authors are indebted to Miss Jeanette Figueroa for her beautiful and speedy typing of this work. The research was supported by the Na...
Propagator of stochastic electrodynamics
International Nuclear Information System (INIS)
Cavalleri, G.
1981-01-01
The ''elementary propagator'' for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density proportionalω 3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to psipsi* where psi is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics
RES: Regularized Stochastic BFGS Algorithm
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
Stochastic estimation of electricity consumption
International Nuclear Information System (INIS)
Kapetanovic, I.; Konjic, T.; Zahirovic, Z.
1999-01-01
Electricity consumption forecasting represents a part of the stable functioning of the power system. It is very important because of rationality and increase of control process efficiency and development planning of all aspects of society. On a scientific basis, forecasting is a possible way to solve problems. Among different models that have been used in the area of forecasting, the stochastic aspect of forecasting as a part of quantitative models takes a very important place in applications. ARIMA models and Kalman filter as stochastic estimators have been treated together for electricity consumption forecasting. Therefore, the main aim of this paper is to present the stochastic forecasting aspect using short time series. (author)
Linear stochastic neutron transport theory
International Nuclear Information System (INIS)
Lewins, J.
1978-01-01
A new and direct derivation of the Bell-Pal fundamental equation for (low power) neutron stochastic behaviour in the Boltzmann continuum model is given. The development includes correlation of particle emission direction in induced and spontaneous fission. This leads to generalizations of the backward and forward equations for the mean and variance of neutron behaviour. The stochastic importance for neutron transport theory is introduced and related to the conventional deterministic importance. Defining equations and moment equations are derived and shown to be related to the backward fundamental equation with the detector distribution of the operational definition of stochastic importance playing the role of an adjoint source. (author)
Stochasticity in the Josephson map
International Nuclear Information System (INIS)
Nomura, Y.; Ichikawa, Y.H.; Filippov, A.T.
1996-04-01
The Josephson map describes nonlinear dynamics of systems characterized by standard map with the uniform external bias superposed. The intricate structures of the phase space portrait of the Josephson map are examined on the basis of the tangent map associated with the Josephson map. Numerical observation of the stochastic diffusion in the Josephson map is examined in comparison with the renormalized diffusion coefficient calculated by the method of characteristic function. The global stochasticity of the Josephson map occurs at the values of far smaller stochastic parameter than the case of the standard map. (author)
Functional Abstraction of Stochastic Hybrid Systems
Bujorianu, L.M.; Blom, Henk A.P.; Hermanns, H.
2006-01-01
The verification problem for stochastic hybrid systems is quite difficult. One method to verify these systems is stochastic reachability analysis. Concepts of abstractions for stochastic hybrid systems are needed to ease the stochastic reachability analysis. In this paper, we set up different ways
An introduction to probability and stochastic processes
Melsa, James L
2013-01-01
Geared toward college seniors and first-year graduate students, this text is designed for a one-semester course in probability and stochastic processes. Topics covered in detail include probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.
Stochastic congestion management in power markets using efficient scenario approaches
International Nuclear Information System (INIS)
Esmaili, Masoud; Amjady, Nima; Shayanfar, Heidar Ali
2010-01-01
Congestion management in electricity markets is traditionally performed using deterministic values of system parameters assuming a fixed network configuration. In this paper, a stochastic programming framework is proposed for congestion management considering the power system uncertainties comprising outage of generating units and transmission branches. The Forced Outage Rate of equipment is employed in the stochastic programming. Using the Monte Carlo simulation, possible scenarios of power system operating states are generated and a probability is assigned to each scenario. The performance of the ordinary as well as Lattice rank-1 and rank-2 Monte Carlo simulations is evaluated in the proposed congestion management framework. As a tradeoff between computation time and accuracy, scenario reduction based on the standard deviation of accepted scenarios is adopted. The stochastic congestion management solution is obtained by aggregating individual solutions of accepted scenarios. Congestion management using the proposed stochastic framework provides a more realistic solution compared with traditional deterministic solutions. Results of testing the proposed stochastic congestion management on the 24-bus reliability test system indicate the efficiency of the proposed framework.
Stochastic models of the Social Security trust funds.
Burdick, Clark; Manchester, Joyce
Each year in March, the Board of Trustees of the Social Security trust funds reports on the current and projected financial condition of the Social Security programs. Those programs, which pay monthly benefits to retired workers and their families, to the survivors of deceased workers, and to disabled workers and their families, are financed through the Old-Age, Survivors, and Disability Insurance (OASDI) Trust Funds. In their 2003 report, the Trustees present, for the first time, results from a stochastic model of the combined OASDI trust funds. Stochastic modeling is an important new tool for Social Security policy analysis and offers the promise of valuable new insights into the financial status of the OASDI trust funds and the effects of policy changes. The results presented in this article demonstrate that several stochastic models deliver broadly consistent results even though they use very different approaches and assumptions. However, they also show that the variation in trust fund outcomes differs as the approach and assumptions are varied. Which approach and assumptions are best suited for Social Security policy analysis remains an open question. Further research is needed before the promise of stochastic modeling is fully realized. For example, neither parameter uncertainty nor variability in ultimate assumption values is recognized explicitly in the analyses. Despite this caveat, stochastic modeling results are already shedding new light on the range and distribution of trust fund outcomes that might occur in the future.
Trip-oriented stochastic optimal energy management strategy for plug-in hybrid electric bus
International Nuclear Information System (INIS)
Du, Yongchang; Zhao, Yue; Wang, Qinpu; Zhang, Yuanbo; Xia, Huaicheng
2016-01-01
A trip-oriented stochastic optimal energy management strategy for plug-in hybrid electric bus is presented in this paper, which includes the offline stochastic dynamic programming part and the online implementation part performed by equivalent consumption minimization strategy. In the offline part, historical driving cycles of the fixed route are divided into segments according to the position of bus stops, and then a segment-based stochastic driving condition model based on Markov chain is built. With the segment-based stochastic model obtained, the control set for real-time implemented equivalent consumption minimization strategy can be achieved by solving the offline stochastic dynamic programming problem. Results of stochastic dynamic programming are converted into a 3-dimensional lookup table of parameters for online implemented equivalent consumption minimization strategy. The proposed strategy is verified by both simulation and hardware-in-loop test of real-world driving cycle on an urban bus route. Simulation results show that the proposed method outperforms both the well-tuned equivalent consumption minimization strategy and the rule-based strategy in terms of fuel economy, and even proved to be close to the optimal result obtained by dynamic programming. Furthermore, the practical application potential of the proposed control method was proved by hardware-in-loop test. - Highlights: • A stochastic problem was formed based on a stochastic segment-based driving condition model. • Offline stochastic dynamic programming was employed to solve the stochastic problem. • The instant power split decision was made by the online equivalent consumption minimization strategy. • Good performance in fuel economy of the proposed method was verified by simulation results. • Practical application potential of the proposed method was verified by the hardware-in-loop test results.
Stochastic backgrounds of gravitational waves
International Nuclear Information System (INIS)
Maggiore, M.
2001-01-01
We review the motivations for the search for stochastic backgrounds of gravitational waves and we compare the experimental sensitivities that can be reached in the near future with the existing bounds and with the theoretical predictions. (author)
Stochastic theories of quantum mechanics
International Nuclear Information System (INIS)
De la Pena, L.; Cetto, A.M.
1991-01-01
The material of this article is organized into five sections. In Sect. I the basic characteristics of quantum systems are briefly discussed, with emphasis on their stochastic properties. In Sect. II a version of stochastic quantum mechanics is presented, to conclude that the quantum formalism admits an interpretation in terms of stochastic processes. In Sect. III the elements of stochastic electrodynamics are described, and its possibilities and limitations as a fundamental theory of quantum systems are discussed. Section IV contains a recent reformulation that overcomes the limitations of the theory discussed in the foregoing section. Finally, in Sect. V the theorems of EPR, Von Neumann and Bell are discussed briefly. The material is pedagogically presented and includes an ample list of references, but the details of the derivations are generally omitted. (Author)
International Nuclear Information System (INIS)
Faris, W.G.
1981-01-01
Dankel has shown how to incorporate spin into stochastic mechanics. The resulting non-local hidden variable theory gives an appealing picture of spin correlation experiments in which Bell's inequality is violated. (orig.)
Statistical inference for stochastic processes
National Research Council Canada - National Science Library
Basawa, Ishwar V; Prakasa Rao, B. L. S
1980-01-01
The aim of this monograph is to attempt to reduce the gap between theory and applications in the area of stochastic modelling, by directing the interest of future researchers to the inference aspects...
Stochastic singular optics (Conference paper)
CSIR Research Space (South Africa)
Roux, FS
2014-09-01
Full Text Available The study of optical vortices in stochastic optical fields involves various quantities, including the vortex density and topological charge density, that are defined in terms of local expectation values of distributions of optical vortices...
Stochastic massless fields I: Integer spin
International Nuclear Information System (INIS)
Lim, S.C.
1981-04-01
Nelson's stochastic quantization scheme is applied to classical massless tensor potential in ''Coulomb'' gauge. The relationship between stochastic potential field in various gauges is discussed using the case of vector potential as an illustration. It is possible to identify the Euclidean tensor potential with the corresponding stochastic field in physical Minkowski space-time. Stochastic quantization of massless fields can also be carried out in terms of field strength tensors. An example of linearized stochastic gravitational field in vacuum is given. (author)
Stochastic theory of fatigue corrosion
Hu, Haiyun
1999-10-01
A stochastic theory of corrosion has been constructed. The stochastic equations are described giving the transportation corrosion rate and fluctuation corrosion coefficient. In addition the pit diameter distribution function, the average pit diameter and the most probable pit diameter including other related empirical formula have been derived. In order to clarify the effect of stress range on the initiation and growth behaviour of pitting corrosion, round smooth specimen were tested under cyclic loading in 3.5% NaCl solution.
Stochastic quantization and gauge theories
International Nuclear Information System (INIS)
Kolck, U. van.
1987-01-01
Stochastic quantization is presented taking the Flutuation-Dissipation Theorem as a guide. It is shown that the original approach of Parisi and Wu to gauge theories fails to give the right results to gauge invariant quantities when dimensional regularization is used. Although there is a simple solution in an abelian theory, in the non-abelian case it is probably necessary to start from a BRST invariant action instead of a gauge invariant one. Stochastic regularizations are also discussed. (author) [pt
Stochasticity induced by coherent wavepackets
International Nuclear Information System (INIS)
Fuchs, V.; Krapchev, V.; Ram, A.; Bers, A.
1983-02-01
We consider the momentum transfer and diffusion of electrons periodically interacting with a coherent longitudinal wavepacket. Such a problem arises, for example, in lower-hybrid current drive. We establish the stochastic threshold, the stochastic region δv/sub stoch/ in velocity space, the associated momentum transfer j, and the diffusion coefficient D. We concentrate principally on the weak-field regime, tau/sub autocorrelation/ < tau/sub bounce/
Stochastic runaway of dynamical systems
International Nuclear Information System (INIS)
Pfirsch, D.; Graeff, P.
1984-10-01
One-dimensional, stochastic, dynamical systems are well studied with respect to their stability properties. Less is known for the higher dimensional case. This paper derives sufficient and necessary criteria for the asymptotic divergence of the entropy (runaway) and sufficient ones for the moments of n-dimensional, stochastic, dynamical systems. The crucial implication is the incompressibility of their flow defined by the equations of motion in configuration space. Two possible extensions to compressible flow systems are outlined. (orig.)
Stochastic Models of Polymer Systems
2016-01-01
Distribution Unlimited Final Report: Stochastic Models of Polymer Systems The views, opinions and/or findings contained in this report are those of the...ADDRESS. Princeton University PO Box 0036 87 Prospect Avenue - 2nd floor Princeton, NJ 08544 -2020 14-Mar-2014 ABSTRACT Number of Papers published in...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Stochastic Models of Polymer Systems Report Title
Stochastic efficiency: five case studies
International Nuclear Information System (INIS)
Proesmans, Karel; Broeck, Christian Van den
2015-01-01
Stochastic efficiency is evaluated in five case studies: driven Brownian motion, effusion with a thermo-chemical and thermo-velocity gradient, a quantum dot and a model for information to work conversion. The salient features of stochastic efficiency, including the maximum of the large deviation function at the reversible efficiency, are reproduced. The approach to and extrapolation into the asymptotic time regime are documented. (paper)
Optimal Liquidation under Stochastic Liquidity
Becherer, Dirk; Bilarev, Todor; Frentrup, Peter
2016-01-01
We solve explicitly a two-dimensional singular control problem of finite fuel type for infinite time horizon. The problem stems from the optimal liquidation of an asset position in a financial market with multiplicative and transient price impact. Liquidity is stochastic in that the volume effect process, which determines the inter-temporal resilience of the market in spirit of Predoiu, Shaikhet and Shreve (2011), is taken to be stochastic, being driven by own random noise. The optimal contro...
Memory effects on stochastic resonance
Neiman, Alexander; Sung, Wokyung
1996-02-01
We study the phenomenon of stochastic resonance (SR) in a bistable system with internal colored noise. In this situation the system possesses time-dependent memory friction connected with noise via the fluctuation-dissipation theorem, so that in the absence of periodic driving the system approaches the thermodynamic equilibrium state. For this non-Markovian case we find that memory usually suppresses stochastic resonance. However, for a large memory time SR can be enhanced by the memory.
Stochastic quantization and gauge invariance
International Nuclear Information System (INIS)
Viana, R.L.
1987-01-01
A survey of the fundamental ideas about Parisi-Wu's Stochastic Quantization Method, with applications to Scalar, Gauge and Fermionic theories, is done. In particular, the Analytic Stochastic Regularization Scheme is used to calculate the polarization tensor for Quantum Electrodynamics with Dirac bosons or Fermions. The regularization influence is studied for both theories and an extension of this method for some supersymmetrical models is suggested. (author)
Stochastic Analysis and Related Topics
Ustunel, Ali
1988-01-01
The Silvri Workshop was divided into a short summer school and a working conference, producing lectures and research papers on recent developments in stochastic analysis on Wiener space. The topics treated in the lectures relate to the Malliavin calculus, the Skorohod integral and nonlinear functionals of white noise. Most of the research papers are applications of these subjects. This volume addresses researchers and graduate students in stochastic processes and theoretical physics.
Phenomenology of stochastic exponential growth
Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya
2017-06-01
Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.
Stochastic Effects in Microstructure
Directory of Open Access Journals (Sweden)
Glicksman M.E.
2002-01-01
Full Text Available We are currently studying microstructural responses to diffusion-limited coarsening in two-phase materials. A mathematical solution to late-stage multiparticle diffusion in finite systems is formulated with account taken of particle-particle interactions and their microstructural correlations, or "locales". The transition from finite system behavior to that for an infinite microstructure is established analytically. Large-scale simulations of late-stage phase coarsening dynamics show increased fluctuations with increasing volume fraction, Vv, of the mean flux entering or leaving particles of a given size class. Fluctuations about the mean flux were found to depend on the scaled particle size, R/, where R is the radius of a particle and is the radius of the dispersoid averaged over the population within the microstructure. Specifically, small (shrinking particles tend to display weak fluctuations about their mean flux, whereas particles of average, or above average size, exhibit strong fluctuations. Remarkably, even in cases of microstructures with a relatively small volume fraction (Vv ~ 10-4, the particle size distribution is broader than that for the well-known Lifshitz-Slyozov limit predicted at zero volume fraction. The simulation results reported here provide some additional surprising insights into the effect of diffusion interactions and stochastic effects during evolution of a microstructure, as it approaches its thermodynamic end-state.
Adaptation in stochastic environments
Clark, Colib
1993-01-01
The classical theory of natural selection, as developed by Fisher, Haldane, and 'Wright, and their followers, is in a sense a statistical theory. By and large the classical theory assumes that the underlying environment in which evolution transpires is both constant and stable - the theory is in this sense deterministic. In reality, on the other hand, nature is almost always changing and unstable. We do not yet possess a complete theory of natural selection in stochastic environ ments. Perhaps it has been thought that such a theory is unimportant, or that it would be too difficult. Our own view is that the time is now ripe for the development of a probabilistic theory of natural selection. The present volume is an attempt to provide an elementary introduction to this probabilistic theory. Each author was asked to con tribute a simple, basic introduction to his or her specialty, including lively discussions and speculation. We hope that the book contributes further to the understanding of the roles of "Cha...
Kallianpur, Gopinath; Hida, Takeyuki
1987-01-01
The use of probabilistic methods in the biological sciences has been so well established by now that mathematical biology is regarded by many as a distinct dis cipline with its own repertoire of techniques. The purpose of the Workshop on sto chastic methods in biology held at Nagoya University during the week of July 8-12, 1985, was to enable biologists and probabilists from Japan and the U. S. to discuss the latest developments in their respective fields and to exchange ideas on the ap plicability of the more recent developments in stochastic process theory to problems in biology. Eighteen papers were presented at the Workshop and have been grouped under the following headings: I. Population genetics (five papers) II. Measure valued diffusion processes related to population genetics (three papers) III. Neurophysiology (two papers) IV. Fluctuation in living cells (two papers) V. Mathematical methods related to other problems in biology, epidemiology, population dynamics, etc. (six papers) An important f...
Stochastic partial differential equations
Lototsky, Sergey V
2017-01-01
Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected ...
AA, stochastic precooling kicker
CERN PhotoLab
1980-01-01
The freshly injected antiprotons were subjected to fast stochastic "precooling", while a shutter shielded the deeply cooled antiproton stack from the violent action of the precooling kicker. In this picture, the injection orbit is to the left, the stack orbit to the far right, the separating shutter is in open position. After several seconds of precooling (in momentum and in the vertical plane), the shutter was opened briefly, so that by means of RF the precooled antiprotons could be transferred to the stack tail, where they were subjected to further cooling in momentum and both transverse planes, until they ended up, deeply cooled, in the stack core. The fast shutter, which had to open and close in a fraction of a second was an essential item of the cooling scheme and a mechanical masterpiece. Here the shutter is in the open position. The precooling pickups were of the same design, with the difference that the kickers had cooling circuits and the pickups not. 8401150 shows a precooling pickup with the shutte...
Stochastic dynamic programming model for optimal resource ...
Indian Academy of Sciences (India)
M Bhuvaneswari
2018-04-11
Apr 11, 2018 ... handover in VANET; because of high dynamics in net- work topology, collaboration ... containers, doctors, nurses, cash and stocks. Similarly, ... GTBA does not take the resource types and availability into consideration.
Markov Decision Processes Discrete Stochastic Dynamic Programming
Puterman, Martin L
2005-01-01
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet
Asset liability management using stochastic programming
Pirbhai, M; Mitra, G; Kyriakis, T
2003-01-01
This chapter sets out to explain an important financial planning model called asset liability management (ALM); in particular, it discusses why in practice, optimum planning models are used. The ability to build an integrated approach that combines liability models with that of asset allocation decisions has proved to be desirable and more efficient in that it can lead to better ALM decisions. The role of uncertainty and quantification of risk in these planning models is con...
International Nuclear Information System (INIS)
Zhu, Zhiwen; Zhang, Qingxin; Xu, Jia
2014-01-01
Stochastic bifurcation and fractal and chaos control of a giant magnetostrictive film–shape memory alloy (GMF–SMA) composite cantilever plate subjected to in-plane harmonic and stochastic excitation were studied. Van der Pol items were improved to interpret the hysteretic phenomena of both GMF and SMA, and the nonlinear dynamic model of a GMF–SMA composite cantilever plate subjected to in-plane harmonic and stochastic excitation was developed. The probability density function of the dynamic response of the system was obtained, and the conditions of stochastic Hopf bifurcation were analyzed. The conditions of noise-induced chaotic response were obtained in the stochastic Melnikov integral method, and the fractal boundary of the safe basin of the system was provided. Finally, the chaos control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that stochastic Hopf bifurcation and chaos appear in the parameter variation process. The boundary of the safe basin of the system has fractal characteristics, and its area decreases when the noise intensifies. The system reliability was improved through stochastic optimal control, and the safe basin area of the system increased
Dynamic stochastic accumulation model with application to pension savings management
Directory of Open Access Journals (Sweden)
Melicherčik Igor
2010-01-01
Full Text Available We propose a dynamic stochastic accumulation model for determining optimal decision between stock and bond investments during accumulation of pension savings. Stock prices are assumed to be driven by the geometric Brownian motion. Interest rates are modeled by means of the Cox-Ingersoll-Ross model. The optimal decision as a solution to the corresponding dynamic stochastic program is a function of the duration of saving, the level of savings and the short rate. Qualitative and quantitative properties of the optimal solution are analyzed. The model is tested on the funded pillar of the Slovak pension system. The results are calculated for various risk preferences of a saver.
Stochastic Sizing of Energy Storage Systems for Wind Integration
Directory of Open Access Journals (Sweden)
D. D. Le
2018-06-01
Full Text Available In this paper, we present an optimal capacity decision model for energy storage systems (ESSs in combined operation with wind energy in power systems. We use a two-stage stochastic programming approach to take into account both wind and load uncertainties. The planning problem is formulated as an AC optimal power flow (OPF model with the objective of minimizing ESS installation cost and system operation cost. Stochastic wind and load inputs for the model are generated from historical data using clustering technique. The model is tested on the IEEE 39-bus system.
Application of Stochastic Sensitivity Analysis to Integrated Force Method
Directory of Open Access Journals (Sweden)
X. F. Wei
2012-01-01
Full Text Available As a new formulation in structural analysis, Integrated Force Method has been successfully applied to many structures for civil, mechanical, and aerospace engineering due to the accurate estimate of forces in computation. Right now, it is being further extended to the probabilistic domain. For the assessment of uncertainty effect in system optimization and identification, the probabilistic sensitivity analysis of IFM was further investigated in this study. A set of stochastic sensitivity analysis formulation of Integrated Force Method was developed using the perturbation method. Numerical examples are presented to illustrate its application. Its efficiency and accuracy were also substantiated with direct Monte Carlo simulations and the reliability-based sensitivity method. The numerical algorithm was shown to be readily adaptable to the existing program since the models of stochastic finite element and stochastic design sensitivity are almost identical.
LP formulation of asymmetric zero-sum stochastic games
Li, Lichun
2014-12-15
This paper provides an efficient linear programming (LP) formulation of asymmetric two player zero-sum stochastic games with finite horizon. In these stochastic games, only one player is informed of the state at each stage, and the transition law is only controlled by the informed player. Compared with the LP formulation of extensive stochastic games whose size grows polynomially with respect to the size of the state and the size of the uninformed player\\'s actions, our proposed LP formulation has its size to be linear with respect to the size of the state and the size of the uninformed player, and hence greatly reduces the computational complexity. A travelling inspector problem is used to demonstrate the efficiency of the proposed LP formulation.
Electricity market clearing with improved dispatch of stochastic production
DEFF Research Database (Denmark)
Morales González, Juan Miguel; Zugno, Marco; Pineda, Salvador
2014-01-01
In this paper, we consider an electricity market that consists of a day-ahead and a balancing settlement, and includes a number of stochastic producers. We first introduce two reference procedures for scheduling and pricing energy in the day-ahead market: on the one hand, a conventional network...... attains higher market efficiency in expectation than the conventional day-ahead auction, it suffers from fundamental drawbacks with a view to its practical implementation. In particular, it requires flexible producers (those that make up for the lack or surplus of stochastic generation) to accept losses...... in some scenarios. Using a bilevel programming framework, we then show that the conventional auction, if combined with a suitable day-ahead dispatch of stochastic producers (generally different from their expected production), can substantially increase market efficiency and emulate the advantageous...
Introduction to modeling and analysis of stochastic systems
Kulkarni, V G
2011-01-01
This is an introductory-level text on stochastic modeling. It is suited for undergraduate students in engineering, operations research, statistics, mathematics, actuarial science, business management, computer science, and public policy. It employs a large number of examples to teach the students to use stochastic models of real-life systems to predict their performance, and use this analysis to design better systems. The book is devoted to the study of important classes of stochastic processes: discrete and continuous time Markov processes, Poisson processes, renewal and regenerative processes, semi-Markov processes, queueing models, and diffusion processes. The book systematically studies the short-term and the long-term behavior, cost/reward models, and first passage times. All the material is illustrated with many examples, and case studies. The book provides a concise review of probability in the appendix. The book emphasizes numerical answers to the problems. A collection of MATLAB programs to accompany...
Lot Sizing Based on Stochastic Demand and Service Level Constraint
Directory of Open Access Journals (Sweden)
hajar shirneshan
2012-06-01
Full Text Available Considering its application, stochastic lot sizing is a significant subject in production planning. Also the concept of service level is more applicable than shortage cost from managers' viewpoint. In this paper, the stochastic multi period multi item capacitated lot sizing problem has been investigated considering service level constraint. First, the single item model has been developed considering service level and with no capacity constraint and then, it has been solved using dynamic programming algorithm and the optimal solution has been derived. Then the model has been generalized to multi item problem with capacity constraint. The stochastic multi period multi item capacitated lot sizing problem is NP-Hard, hence the model could not be solved by exact optimization approaches. Therefore, simulated annealing method has been applied for solving the problem. Finally, in order to evaluate the efficiency of the model, low level criterion has been used .
Probabilistic DHP adaptive critic for nonlinear stochastic control systems.
Herzallah, Randa
2013-06-01
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.
LP formulation of asymmetric zero-sum stochastic games
Li, Lichun; Shamma, Jeff S.
2014-01-01
This paper provides an efficient linear programming (LP) formulation of asymmetric two player zero-sum stochastic games with finite horizon. In these stochastic games, only one player is informed of the state at each stage, and the transition law is only controlled by the informed player. Compared with the LP formulation of extensive stochastic games whose size grows polynomially with respect to the size of the state and the size of the uninformed player's actions, our proposed LP formulation has its size to be linear with respect to the size of the state and the size of the uninformed player, and hence greatly reduces the computational complexity. A travelling inspector problem is used to demonstrate the efficiency of the proposed LP formulation.
Distributed parallel computing in stochastic modeling of groundwater systems.
Dong, Yanhui; Li, Guomin; Xu, Haizhen
2013-03-01
Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
Stochastic models: theory and simulation.
Energy Technology Data Exchange (ETDEWEB)
Field, Richard V., Jr.
2008-03-01
Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.
Stochastic Still Water Response Model
DEFF Research Database (Denmark)
Friis-Hansen, Peter; Ditlevsen, Ove Dalager
2002-01-01
In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model is...... out that an important parameter of the stochastic cargo field model is the mean number of containers delivered by each customer.......In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model...... is to establish the stochastic load field conditional on a given draft and trim of the vessel. The model contributes to a realistic modelling of the stochastic load processes to be used in a reliability evaluation of the ship hull. Emphasis is given to container vessels. The formulation of the model for obtaining...
Stochastic quantization and topological theories
International Nuclear Information System (INIS)
Fainberg, V.Y.; Subbotin, A.V.; Kuznetsov, A.N.
1992-01-01
In the last two years topological quantum field theories (TQFT) have attached much attention. This paper reports that from the very beginning it was realized that due to a peculiar BRST-like symmetry these models admitted so-called Nicolai mapping: the Nicolai variables, in terms of which actions of the theories become gaussian, are nothing but (anti-) selfduality conditions or their generalizations. This fact became a starting point in the quest of possible stochastic interpretation to topological field theories. The reasons behind were quite simple and included, in particular, the well-known relations between stochastic processes and supersymmetry. The main goal would have been achieved, if it were possible to construct stochastic processes governed by Langevin or Fokker-Planck equations in a real Euclidean time leading to TQFT's path integrals (equivalently: to reformulate TQFTs as non-equilibrium phase dynamics of stochastic processes). Further on, if it would appear that these processes correspond to the stochastic quantization of theories of some definite kind, one could expect (d + 1)-dimensional TQFTs to share some common properties with d-dimensional ones
Stochastic quantization of Einstein gravity
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
We determine a one-parameter family of covariant Langevin equations for the metric tensor of general relativity corresponding to DeWitt's one-parameter family of supermetrics. The stochastic source term in these equations can be expressed in terms of a Gaussian white noise upon the introduction of a stochastic tetrad field. The only physically acceptable resolution of a mathematical ambiguity in the ansatz for the source term is the adoption of Ito's calculus. By taking the formal equilibrium limit of the stochastic metric a one-parameter family of covariant path-integral measures for general relativity is obtained. There is a unique parameter value, distinguished by any one of the following three properties: (i) the metric is harmonic with respect to the supermetric, (ii) the path-integral measure is that of DeWitt, (iii) the supermetric governs the linearized Einstein dynamics. Moreover the Feynman propagator corresponding to this parameter is causal. Finally we show that a consistent stochastic perturbation theory gives rise to a new type of diagram containing ''stochastic vertices.''
DEFF Research Database (Denmark)
Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode
2009-01-01
are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE1 approximation......The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model...... development, J. Pharmacokinet. Pharmacodyn. 32 (February(l)) (2005) 109-141; C.W. Tornoe, R.V Overgaard, H. Agerso, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8...
Campo, M. A.; Lopez, J. J.; Rebole, J. P.
2012-04-01
This work was carried out in north of Spain. San Sebastian A meteorological station, where there are available precipitation records every ten minutes was selected. Precipitation data covers from October of 1927 to September of 1997. Pulse models describe the temporal process of rainfall as a succession of rainy cells, main storm, whose origins are distributed in time according to a Poisson process and a secondary process that generates a random number of cells of rain within each storm. Among different pulse models, the Bartlett-Lewis was used. On the other hand, alternative renewal processes and Markov chains describe the way in which the process will evolve in the future depending only on the current state. Therefore they are nor dependant on past events. Two basic processes are considered when describing the occurrence of rain: the alternation of wet and dry periods and temporal distribution of rainfall in each rain event, which determines the rainwater collected in each of the intervals that make up the rain. This allows the introduction of alternative renewal processes and Markov chains of three states, where interstorm time is given by either of the two dry states, short or long. Thus, the stochastic model of Markov chains tries to reproduce the basis of pulse models: the succession of storms, each one composed for a series of rain, separated by a short interval of time without theoretical complexity of these. In a first step, we analyzed all variables involved in the sequential process of the rain: rain event duration, event duration of non-rain, average rainfall intensity in rain events, and finally, temporal distribution of rainfall within the rain event. Additionally, for pulse Bartlett-Lewis model calibration, main descriptive statistics were calculated for each month, considering the process of seasonal rainfall in each month. In a second step, both models were calibrated. Finally, synthetic series were simulated with calibration parameters; series
Stacking with stochastic cooling
Energy Technology Data Exchange (ETDEWEB)
Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter
2004-10-11
Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some
Fundamentals of stochastic nature sciences
Klyatskin, Valery I
2017-01-01
This book addresses the processes of stochastic structure formation in two-dimensional geophysical fluid dynamics based on statistical analysis of Gaussian random fields, as well as stochastic structure formation in dynamic systems with parametric excitation of positive random fields f(r,t) described by partial differential equations. Further, the book considers two examples of stochastic structure formation in dynamic systems with parametric excitation in the presence of Gaussian pumping. In dynamic systems with parametric excitation in space and time, this type of structure formation either happens – or doesn’t! However, if it occurs in space, then this almost always happens (exponentially quickly) in individual realizations with a unit probability. In the case considered, clustering of the field f(r,t) of any nature is a general feature of dynamic fields, and one may claim that structure formation is the Law of Nature for arbitrary random fields of such type. The study clarifies the conditions under wh...
Stochastic models of cell motility
DEFF Research Database (Denmark)
Gradinaru, Cristian
2012-01-01
Cell motility and migration are central to the development and maintenance of multicellular organisms, and errors during this process can lead to major diseases. Consequently, the mechanisms and phenomenology of cell motility are currently under intense study. In recent years, a new...... interdisciplinary field focusing on the study of biological processes at the nanoscale level, with a range of technological applications in medicine and biological research, has emerged. The work presented in this thesis is at the interface of cell biology, image processing, and stochastic modeling. The stochastic...... models introduced here are based on persistent random motion, which I apply to real-life studies of cell motility on flat and nanostructured surfaces. These models aim to predict the time-dependent position of cell centroids in a stochastic manner, and conversely determine directly from experimental...
Stochastic Modelling of Hydrologic Systems
DEFF Research Database (Denmark)
Jonsdottir, Harpa
2007-01-01
In this PhD project several stochastic modelling methods are studied and applied on various subjects in hydrology. The research was prepared at Informatics and Mathematical Modelling at the Technical University of Denmark. The thesis is divided into two parts. The first part contains...... an introduction and an overview of the papers published. Then an introduction to basic concepts in hydrology along with a description of hydrological data is given. Finally an introduction to stochastic modelling is given. The second part contains the research papers. In the research papers the stochastic methods...... are described, as at the time of publication these methods represent new contribution to hydrology. The second part also contains additional description of software used and a brief introduction to stiff systems. The system in one of the papers is stiff....
Stochastic quantization of general relativity
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
Following an elementary exposition of the basic mathematical concepts used in the theory of stochastic relaxation processes the stochastic quantization method of Parisi and Wu is briefly reviewed. The method is applied to Einstein's theory of gravitation using a formalism that is manifestly covariant with respect to field redefinitions. This requires the adoption of Ito's calculus and the introduction of a metric in field configuration space, for which there is a unique candidate. Due to the indefiniteness of the Euclidean Einstein-Hilbert action stochastic quantization is generalized to the pseudo-Riemannian case. It is formally shown to imply the DeWitt path integral measure. Finally a new type of perturbation theory is developed. (Author)
Applied probability and stochastic processes
Sumita, Ushio
1999-01-01
Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...
Stochastic geometry for image analysis
Descombes, Xavier
2013-01-01
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Stochastic methods in quantum mechanics
Gudder, Stanley P
2005-01-01
Practical developments in such fields as optical coherence, communication engineering, and laser technology have developed from the applications of stochastic methods. This introductory survey offers a broad view of some of the most useful stochastic methods and techniques in quantum physics, functional analysis, probability theory, communications, and electrical engineering. Starting with a history of quantum mechanics, it examines both the quantum logic approach and the operational approach, with explorations of random fields and quantum field theory.The text assumes a basic knowledge of fun
STOCHASTIC METHODS IN RISK ANALYSIS
Directory of Open Access Journals (Sweden)
Vladimíra OSADSKÁ
2017-06-01
Full Text Available In this paper, we review basic stochastic methods which can be used to extend state-of-the-art deterministic analytical methods for risk analysis. We can conclude that the standard deterministic analytical methods highly depend on the practical experience and knowledge of the evaluator and therefore, the stochastic methods should be introduced. The new risk analysis methods should consider the uncertainties in input values. We present how large is the impact on the results of the analysis solving practical example of FMECA with uncertainties modelled using Monte Carlo sampling.
Stochastic dynamics of new inflation
International Nuclear Information System (INIS)
Nakao, Ken-ichi; Nambu, Yasusada; Sasaki, Misao.
1988-07-01
We investigate thoroughly the dynamics of an inflation-driving scalar field in terms of an extended version of the stochastic approach proposed by Starobinsky and discuss the spacetime structure of the inflationary universe. To avoid any complications which might arise due to quantum gravity, we concentrate our discussions on the new inflationary universe scenario in which all the energy scales involved are well below the planck mass. The investigation is done both analytically and numerically. In particular, we present a full numerical analysis of the stochastic scalar field dynamics on the phase space. Then implications of the results are discussed. (author)
Stochastic mechanics and quantum theory
International Nuclear Information System (INIS)
Goldstein, S.
1987-01-01
Stochastic mechanics may be regarded as both generalizing classical mechanics to processes with intrinsic randomness, as well as providing the sort of detailed description of microscopic events declared impossible under the traditional interpretation of quantum mechanics. It avoids the many conceptual difficulties which arise from the assumption that quantum mechanics, i.e., the wave function, provides a complete description of (microscopic) physical reality. Stochastic mechanics presents a unified treatment of the microscopic and macroscopic domains, in which the process of measurement plays no special physical role and which reduces to Newtonian mechanics in the macroscopic limit
Probability, Statistics, and Stochastic Processes
Olofsson, Peter
2011-01-01
A mathematical and intuitive approach to probability, statistics, and stochastic processes This textbook provides a unique, balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. This text combines a rigorous, calculus-based development of theory with a more intuitive approach that appeals to readers' sense of reason and logic, an approach developed through the author's many years of classroom experience. The text begins with three chapters that d
QB1 - Stochastic Gene Regulation
Energy Technology Data Exchange (ETDEWEB)
Munsky, Brian [Los Alamos National Laboratory
2012-07-23
Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.
Stochastic geometry and its applications
Chiu, Sung Nok; Kendall, Wilfrid S; Mecke, Joseph
2013-01-01
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital a
Algebraic and stochastic coding theory
Kythe, Dave K
2012-01-01
Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.
Stochastic and infinite dimensional analysis
Carpio-Bernido, Maria; Grothaus, Martin; Kuna, Tobias; Oliveira, Maria; Silva, José
2016-01-01
This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.
A Fractionally Integrated Wishart Stochastic Volatility Model
M. Asai (Manabu); M.J. McAleer (Michael)
2013-01-01
textabstractThere has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of
Exact Algorithms for Solving Stochastic Games
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels
2012-01-01
Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....
Transport properties of stochastic Lorentz models
Beijeren, H. van
Diffusion processes are considered for one-dimensional stochastic Lorentz models, consisting of randomly distributed fixed scatterers and one moving light particle. In waiting time Lorentz models the light particle makes instantaneous jumps between scatterers after a stochastically distributed
Theory, technology, and technique of stochastic cooling
International Nuclear Information System (INIS)
Marriner, J.
1993-10-01
The theory and technological implementation of stochastic cooling is described. Theoretical and technological limitations are discussed. Data from existing stochastic cooling systems are shown to illustrate some useful techniques
MCdevelop - a universal framework for Stochastic Simulations
Slawinska, M.; Jadach, S.
2011-03-01
We present MCdevelop, a universal computer framework for developing and exploiting the wide class of Stochastic Simulations (SS) software. This powerful universal SS software development tool has been derived from a series of scientific projects for precision calculations in high energy physics (HEP), which feature a wide range of functionality in the SS software needed for advanced precision Quantum Field Theory calculations for the past LEP experiments and for the ongoing LHC experiments at CERN, Geneva. MCdevelop is a "spin-off" product of HEP to be exploited in other areas, while it will still serve to develop new SS software for HEP experiments. Typically SS involve independent generation of large sets of random "events", often requiring considerable CPU power. Since SS jobs usually do not share memory it makes them easy to parallelize. The efficient development, testing and running in parallel SS software requires a convenient framework to develop software source code, deploy and monitor batch jobs, merge and analyse results from multiple parallel jobs, even before the production runs are terminated. Throughout the years of development of stochastic simulations for HEP, a sophisticated framework featuring all the above mentioned functionality has been implemented. MCdevelop represents its latest version, written mostly in C++ (GNU compiler gcc). It uses Autotools to build binaries (optionally managed within the KDevelop 3.5.3 Integrated Development Environment (IDE)). It uses the open-source ROOT package for histogramming, graphics and the mechanism of persistency for the C++ objects. MCdevelop helps to run multiple parallel jobs on any computer cluster with NQS-type batch system. Program summaryProgram title:MCdevelop Catalogue identifier: AEHW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http
Stochastic modeling and analysis of telecoms networks
Decreusefond, Laurent
2012-01-01
This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an
Dynamical and hamiltonian dilations of stochastic processes
International Nuclear Information System (INIS)
Baumgartner, B.; Gruemm, H.-R.
1982-01-01
This is a study of the problem, which stochastic processes could arise from dynamical systems by loss of information. The notions of ''dilation'' and ''approximate dilation'' of a stochastic process are introduced to give exact definitions of this particular relationship. It is shown that every generalized stochastic process is approximately dilatable by a sequence of dynamical systems, but for stochastic processes in full generality one needs nets. (Author)
XI Symposium on Probability and Stochastic Processes
Pardo, Juan; Rivero, Víctor; Bravo, Gerónimo
2015-01-01
This volume features lecture notes and a collection of contributed articles from the XI Symposium on Probability and Stochastic Processes, held at CIMAT Mexico in September 2013. Since the symposium was part of the activities organized in Mexico to celebrate the International Year of Statistics, the program included topics from the interface between statistics and stochastic processes. The book starts with notes from the mini-course given by Louigi Addario-Berry with an accessible description of some features of the multiplicative coalescent and its connection with random graphs and minimum spanning trees. It includes a number of exercises and a section on unanswered questions. Further contributions provide the reader with a broad perspective on the state-of-the art of active areas of research. Contributions by: Louigi Addario-Berry Octavio Arizmendi Fabrice Baudoin Jochen Blath Loïc Chaumont J. Armando Domínguez-Molina Bjarki Eldon Shui Feng Tulio Gaxiola Adrián González Casanova Evgueni Gordienko Daniel...
Environmental vs Demographic Stochasticity in Population Growth
Braumann, C. A.
2010-01-01
Compares the effect on population growth of envinonmental stochasticity (random environmental variations described by stochastic differential equations) with demographic stochasticity (random variations in births and deaths described by branching processes and birth-and-death processes), in the density-independent and the density-dependent cases.
Stochastic diffusion models for substitutable technological innovations
Wang, L.; Hu, B.; Yu, X.
2004-01-01
Based on the analysis of firms' stochastic adoption behaviour, this paper first points out the necessity to build more practical stochastic models. And then, stochastic evolutionary models are built for substitutable innovation diffusion system. Finally, through the computer simulation of the
Perturbation theory from stochastic quantization
International Nuclear Information System (INIS)
Hueffel, H.
1984-01-01
By using a diagrammatical method it is shown that in scalar theories the stochastic quantization method of Parisi and Wu gives the usual perturbation series in Feynman diagrams. It is further explained how to apply the diagrammatical method to gauge theories, discussing the origin of ghost effects. (Author)
Stochastic Modelling of River Geometry
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Schaarup-Jensen, K.
1996-01-01
Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....
Stochastic Processes in Epidemic Theory
Lefèvre, Claude; Picard, Philippe
1990-01-01
This collection of papers gives a representative cross-selectional view of recent developments in the field. After a survey paper by C. Lefèvre, 17 other research papers look at stochastic modeling of epidemics, both from a theoretical and a statistical point of view. Some look more specifically at a particular disease such as AIDS, malaria, schistosomiasis and diabetes.
Stochastic theory of grain growth
International Nuclear Information System (INIS)
Hu Haiyun; Xing Xiusan.
1990-11-01
The purpose of this note is to set up a stochastic theory of grain growth and to derive the statistical distribution function and the average value of the grain radius so as to match them with the experiment further. 8 refs, 1 fig
Stochastic vehicle routing with recourse
DEFF Research Database (Denmark)
Gørtz, Inge Li; Nagarajan, Viswanath; Saket, Rishi
2012-01-01
instantiations, a recourse route is computed - but costs here become more expensive by a factor λ. We present an O(log2n ·log(nλ))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular...
Universality in stochastic exponential growth.
Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R
2014-07-11
Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.
Stochastic control of traffic patterns
DEFF Research Database (Denmark)
Gaididei, Yuri B.; Gorria, Carlos; Berkemer, Rainer
2013-01-01
A stochastic modulation of the safety distance can reduce traffic jams. It is found that the effect of random modulation on congestive flow formation depends on the spatial correlation of the noise. Jam creation is suppressed for highly correlated noise. The results demonstrate the advantage of h...
The fermion stochastic calculus I
International Nuclear Information System (INIS)
Streater, R.F.
1984-01-01
The author describes the stochastic calculus of quantum processes with fermions. After a description of the Clifford algebra as the csup(*)-algebra generated by spinor fields the damped harmonic oscillator with quantum noise is considered as example. Then the Clifford process is described. Finally the Ito-Clifford integral and the Ito-Clifford isometry are presented. (HSI)
Stochastic and Chaotic Relaxation Oscillations
Grasman, J.; Roerdink, J.B.T.M.
1988-01-01
For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a
Stochastic processes in mechanical engineering
Brouwers, J.J.H.
2006-01-01
Stochastic or random vibrations occur in a variety of applications of mechanicalengineering. Examples are: the dynamics of a vehicle on an irregular roadsurface; the variation in time of thermodynamic variables in municipal wasteincinerators due to fluctuations in heating value of the waste; the
Testing for Stochastic Dominance Efficiency
G.T. Post (Thierry); O. Linton; Y-J. Whang
2005-01-01
textabstractWe propose a new test of the stochastic dominance efficiency of a given portfolio over a class of portfolios. We establish its null and alternative asymptotic properties, and define a method for consistently estimating critical values. We present some numerical evidence that our
Network Analysis with Stochastic Grammars
2015-09-17
rules N = 0 //non-terminal index clusters = cluster(W) //number of clusters drive the number S productions //cluster function described in text...Essa, “Recognizing multitasked activities from video using stochastic context-free grammar,” AAAI/IAAI, pp. 770–776, 2002. [18] R. Nevatia, T. Zhao
Stochastic Volatility and DSGE Models
DEFF Research Database (Denmark)
Andreasen, Martin Møller
This paper argues that a specification of stochastic volatility commonly used to analyze the Great Moderation in DSGE models may not be appropriate, because the level of a process with this specification does not have conditional or unconditional moments. This is unfortunate because agents may...
American options under stochastic volatility
Chockalingam, A.; Muthuraman, K.
2011-01-01
The problem of pricing an American option written on an underlying asset with constant price volatility has been studied extensively in literature. Real-world data, however, demonstrate that volatility is not constant, and stochastic volatility models are used to account for dynamic volatility
Stochastic cooling system in COSY
International Nuclear Information System (INIS)
Brittner, P.; Hacker, H.U.; Prasuhn, D.; Schug, G.; Singer, H.; Spiess, W.; Stassen, R.
1994-01-01
The stochastic cooler system in COSY is designed for proton kinetic energies between 0.8 and 2.5 GeV. Fabrication of the mechanical parts of the system is going on. Test results of the prototype measurements as well as data of the active RF-compontens are presented. (orig.)
Stochastic cooling system in COSY
Energy Technology Data Exchange (ETDEWEB)
Brittner, P [Forschungszentrum Juelich GmbH (Germany); Hacker, H U [Forschungszentrum Juelich GmbH (Germany); Prasuhn, D [Forschungszentrum Juelich GmbH (Germany); Schug, G [Forschungszentrum Juelich GmbH (Germany); Singer, H [Forschungszentrum Juelich GmbH (Germany); Spiess, W [Forschungszentrum Juelich GmbH (Germany); Stassen, R [Forschungszentrum Juelich GmbH (Germany)
1994-09-01
The stochastic cooler system in COSY is designed for proton kinetic energies between 0.8 and 2.5 GeV. Fabrication of the mechanical parts of the system is going on. Test results of the prototype measurements as well as data of the active RF-compontens are presented. (orig.)
Stochastic-field cavitation model
International Nuclear Information System (INIS)
Dumond, J.; Magagnato, F.; Class, A.
2013-01-01
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations
Stochastic-field cavitation model
Dumond, J.; Magagnato, F.; Class, A.
2013-07-01
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.
Distance covariance for stochastic processes
DEFF Research Database (Denmark)
Matsui, Muneya; Mikosch, Thomas Valentin; Samorodnitsky, Gennady
2017-01-01
The distance covariance of two random vectors is a measure of their dependence. The empirical distance covariance and correlation can be used as statistical tools for testing whether two random vectors are independent. We propose an analog of the distance covariance for two stochastic processes...
Research on nonlinear stochastic dynamical price model
International Nuclear Information System (INIS)
Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng
2008-01-01
In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies
Stochastic volatility of volatility in continuous time
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole; Veraart, Almut
This paper introduces the concept of stochastic volatility of volatility in continuous time and, hence, extends standard stochastic volatility (SV) models to allow for an additional source of randomness associated with greater variability in the data. We discuss how stochastic volatility...... of volatility can be defined both non-parametrically, where we link it to the quadratic variation of the stochastic variance process, and parametrically, where we propose two new SV models which allow for stochastic volatility of volatility. In addition, we show that volatility of volatility can be estimated...
Stochastic Reachability Analysis of Hybrid Systems
Bujorianu, Luminita Manuela
2012-01-01
Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then...
Momentum Maps and Stochastic Clebsch Action Principles
Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.
2018-01-01
We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.
Stochastic Analysis : A Series of Lectures
Dozzi, Marco; Flandoli, Franco; Russo, Francesco
2015-01-01
This book presents in thirteen refereed survey articles an overview of modern activity in stochastic analysis, written by leading international experts. The topics addressed include stochastic fluid dynamics and regularization by noise of deterministic dynamical systems; stochastic partial differential equations driven by Gaussian or Lévy noise, including the relationship between parabolic equations and particle systems, and wave equations in a geometric framework; Malliavin calculus and applications to stochastic numerics; stochastic integration in Banach spaces; porous media-type equations; stochastic deformations of classical mechanics and Feynman integrals and stochastic differential equations with reflection. The articles are based on short courses given at the Centre Interfacultaire Bernoulli of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, from January to June 2012. They offer a valuable resource not only for specialists, but also for other researchers and Ph.D. students in the fields o...
Stochastic biological response to radiation. Comprehensive analysis of gene expression
International Nuclear Information System (INIS)
Inoue, Tohru; Hirabayashi, Yoko
2012-01-01
Authors explain that the radiation effect on biological system is stochastic along the law of physics, differing from chemical effect, using instances of Cs-137 gamma-ray (GR) and benzene (BZ) exposures to mice and of resultant comprehensive analyses of gene expression. Single GR irradiation is done with Gamma Cell 40 (CSR) to C57BL/6 or C3H/He mouse at 0, 0.6 and 3 Gy. BE is given orally at 150 mg/kg/day for 5 days x 2 weeks. Bone marrow cells are sampled 1 month after the exposure. Comprehensive gene expression is analyzed by Gene Chip Mouse Genome 430 2.0 Array (Affymetrix) and data are processed by programs like case normalization, statistics, network generation, functional analysis etc. GR irradiation brings about changes of gene expression, which are classifiable in common genes variable commonly on the dose change and stochastic genes variable stochastically within each dose: e.g., with Welch-t-test, significant differences are between 0/3 Gy (dose-specific difference, 455 pbs (probe set), in stochastic 2113 pbs), 0/0.6 Gy (267 in 1284 pbs) and 0.6/3 Gy (532 pbs); and with one-way analysis of variation (ANOVA) and hierarchial/dendrographic analyses, 520 pbs are shown to involve the dose-dependent 226 and dose-specific 294 pbs. It is also shown that at 3 Gy, expression of common genes are rather suppressed, including those related to the proliferation/apoptosis of B/T cells, and of stochastic genes, related to cell division/signaling. Ven diagram of the common genes of above 520 pbs, stochastic 2113 pbs at 3 Gy and 1284 pbs at 0.6 Gy shows the overlapping genes 29, 2 and 4, respectively, indicating only 35 pbs are overlapping in total. Network analysis of changes by GR shows the rather high expression of genes around hub of cAMP response element binding protein (CREB) at 0.6 Gy, and rather variable expression around CREB hub/suppressed expression of kinesin hub at 3 Gy; in the network by BZ exposure, unchanged or low expression around p53 hub and suppression
Optimization of stochastic discrete systems and control on complex networks computational networks
Lozovanu, Dmitrii
2014-01-01
This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...
A chance-constrained stochastic approach to intermodal container routing problems.
Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.
Czech Academy of Sciences Publication Activity Database
Kaňková, Vlasta
2017-01-01
Roč. 53, č. 6 (2017), s. 1026-1046 ISSN 0023-5954 R&D Projects: GA ČR GA15-10331S Institutional support: RVO:67985556 Keywords : stochastic programming * stochastic dominance * empirical estimates * financial applications Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2017/E/kankova-0485151.pdf
GillesPy: A Python Package for Stochastic Model Building and Simulation
Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.
2016-01-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we descr...
Multiscale Hy3S: Hybrid stochastic simulation for supercomputers
Directory of Open Access Journals (Sweden)
Kaznessis Yiannis N
2006-02-01
Full Text Available Abstract Background Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Results Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users
Dynamic asset allocation for bank under stochastic interest rates.
Chakroun, Fatma; Abid, Fathi
2014-01-01
This paper considers the optimal asset allocation strategy for bank with stochastic interest rates when there are three types of asset: Bank account, loans and securities. The asset allocation problem is to maximize the expected utility from terminal wealth of a bank's shareholders over a finite time horizon. As a consequence, we apply a dynamic programming principle to solve the Hamilton-Jacobi-Bellman (HJB) equation explicitly in the case of the CRRA utility function. A case study is given ...
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
Verification of Stochastic Process Calculi
DEFF Research Database (Denmark)
Skrypnyuk, Nataliya
algorithms for constructing bisimulation relations, computing (overapproximations of) sets of reachable states and computing the expected time reachability, the last for a linear fragment of IMC. In all the cases we have the complexities of algorithms which are low polynomial in the size of the syntactic....... In support of this claim we have developed analysis methods that belong to a particular type of Static Analysis { Data Flow / Pathway Analysis. These methods have previously been applied to a number of non-stochastic process calculi. In this thesis we are lifting them to the stochastic calculus...... of Interactive Markov Chains (IMC). We have devised the Pathway Analysis of IMC that is not only correct in the sense of overapproximating all possible behaviour scenarios, as is usual for Static Analysis methods, but is also precise. This gives us the possibility to explicitly decide on the trade-o between...
Fourier analysis and stochastic processes
Brémaud, Pierre
2014-01-01
This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). A careful review of the prerequisites (integration and probability theory in the appendix, Hilbert spa...
Stochastic integration and differential equations
Protter, Philip E
2003-01-01
It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, t...
The dynamics of stochastic processes
DEFF Research Database (Denmark)
Basse-O'Connor, Andreas
In the present thesis the dynamics of stochastic processes is studied with a special attention to the semimartingale property. This is mainly motivated by the fact that semimartingales provide the class of the processes for which it is possible to define a reasonable stochastic calculus due...... to the Bichteler-Dellacherie Theorem. The semimartingale property of Gaussian processes is characterized in terms of their covariance function, spectral measure and spectral representation. In addition, representation and expansion of filtration results are provided as well. Special attention is given to moving...... average processes, and when the driving process is a Lévy or a chaos process the semimartingale property is characterized in the filtration spanned by the driving process and in the natural filtration when the latter is a Brownian motion. To obtain some of the above results an integrability of seminorm...
Modular invariance and stochastic quantization
International Nuclear Information System (INIS)
Ordonez, C.R.; Rubin, M.A.; Zwanziger, D.
1989-01-01
In Polyakov path integrals and covariant closed-string field theory, integration over Teichmueller parameters must be restricted by hand to a single modular region. This problem has an analog in Yang-Mills gauge theory---namely, the Gribov problem, which can be resolved by the method of stochastic gauge fixing. This method is here employed to quantize a simple modular-invariant system: the Polyakov point particle. In the limit of a large gauge-fixing force, it is shown that suitable choices for the functional form of the gauge-fixing force can lead to a restriction of Teichmueller integration to a single modular region. Modifications which arise when applying stochastic quantization to a system in which the volume of the orbits of the gauge group depends on a dynamical variable, such as a Teichmueller parameter, are pointed out, and the extension to Polyakov strings and covariant closed-string field theory is discussed
Stochastic models for atmospheric dispersion
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
2003-01-01
Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... velocity distributions that depend on height above the ground both with respect to standard deviation and skewness are substituted into the stationary Fokker/Planck equation. The particle position distribution is taken to be uniform *the well/mixed condition( and also a given dispersion coefficient...
Stochastic Generalized Method of Moments
Yin, Guosheng; Ma, Yanyuan; Liang, Faming; Yuan, Ying
2011-01-01
The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.
Stochastic problems in population genetics
Maruyama, Takeo
1977-01-01
These are" notes based on courses in Theoretical Population Genetics given at the University of Texas at Houston during the winter quarter, 1974, and at the University of Wisconsin during the fall semester, 1976. These notes explore problems of population genetics and evolution involving stochastic processes. Biological models and various mathematical techniques are discussed. Special emphasis is given to the diffusion method and an attempt is made to emphasize the underlying unity of various problems based on the Kolmogorov backward equation. A particular effort was made to make the subject accessible to biology students who are not familiar with stochastic processes. The references are not exhaustive but were chosen to provide a starting point for the reader interested in pursuing the subject further. Acknowledgement I would like to use this opportunity to express my thanks to Drs. J. F. Crow, M. Nei and W. J. Schull for their hospitality during my stays at their universities. I am indebted to Dr. M. Kimura...
Stochastic Generalized Method of Moments
Yin, Guosheng
2011-08-16
The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.
Limits for Stochastic Reaction Networks
DEFF Research Database (Denmark)
Cappelletti, Daniele
Reaction systems have been introduced in the 70s to model biochemical systems. Nowadays their range of applications has increased and they are fruitfully used in dierent elds. The concept is simple: some chemical species react, the set of chemical reactions form a graph and a rate function...... is associated with each reaction. Such functions describe the speed of the dierent reactions, or their propensities. Two modelling regimes are then available: the evolution of the dierent species concentrations can be deterministically modelled through a system of ODE, while the counts of the dierent species...... at a certain time are stochastically modelled by means of a continuous-time Markov chain. Our work concerns primarily stochastic reaction systems, and their asymptotic properties. In Paper I, we consider a reaction system with intermediate species, i.e. species that are produced and fast degraded along a path...
Some Topics in Stochastic Control
2010-10-14
assimilation problems. (a) Papers published in peer-reviewed journals (N/A for none) 1. R. Atar and A. Budhiraja. A stochastic differential game for...the inhomogeneous infinity-Laplace equation. Ann. Prob., 38 (2010), no. 2, 498--531. 2. R. Atar and A. Budhiraja. On near optimal trajectories for a...G. Aronsson. A mathematical model in sand mechanics: presentation and analysis. SIAM J. Appl. Math., 22 (1972), 437-458 [3] R. Atar and A. Budhiraja
Stochastic background of atmospheric cascades
International Nuclear Information System (INIS)
Wilk, G.; Wlodarczyk, Z.
1993-01-01
Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions
Foundations of infinitesimal stochastic analysis
Stroyan, KD
2011-01-01
This book gives a complete and elementary account of fundamental results on hyperfinite measures and their application to stochastic processes, including the *-finite Stieltjes sum approximation of martingale integrals. Many detailed examples, not found in the literature, are included. It begins with a brief chapter on tools from logic and infinitesimal (or non-standard) analysis so that the material is accessible to beginning graduate students.
Optimal Advertising with Stochastic Demand
George E. Monahan
1983-01-01
A stochastic, sequential model is developed to determine optimal advertising expenditures as a function of product maturity and past advertising. Random demand for the product depends upon an aggregate measure of current and past advertising called "goodwill," and the position of the product in its life cycle measured by sales-to-date. Conditions on the parameters of the model are established that insure that it is optimal to advertise less as the product matures. Additional characteristics o...
Stochastic cooling technology at Fermilab
Energy Technology Data Exchange (ETDEWEB)
Pasquinelli, R.J. E-mail: pasquin@fnal.gov
2004-10-11
The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.
Stochastic cooling technology at Fermilab
Pasquinelli, Ralph J.
2004-10-01
The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.
Stochastic cooling technology at Fermilab
International Nuclear Information System (INIS)
Pasquinelli, R.J.
2004-01-01
The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2008-05-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out
Stochastic processes and filtering theory
Jazwinski, Andrew H
1970-01-01
This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab
Multiple fields in stochastic inflation
Energy Technology Data Exchange (ETDEWEB)
Assadullahi, Hooshyar [Institute of Cosmology & Gravitation, University of Portsmouth,Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Firouzjahi, Hassan [School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Noorbala, Mahdiyar [Department of Physics, University of Tehran,P.O. Box 14395-547, Tehran (Iran, Islamic Republic of); School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Vennin, Vincent; Wands, David [Institute of Cosmology & Gravitation, University of Portsmouth,Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom)
2016-06-24
Stochastic effects in multi-field inflationary scenarios are investigated. A hierarchy of diffusion equations is derived, the solutions of which yield moments of the numbers of inflationary e-folds. Solving the resulting partial differential equations in multi-dimensional field space is more challenging than the single-field case. A few tractable examples are discussed, which show that the number of fields is, in general, a critical parameter. When more than two fields are present for instance, the probability to explore arbitrarily large-field regions of the potential, otherwise inaccessible to single-field dynamics, becomes non-zero. In some configurations, this gives rise to an infinite mean number of e-folds, regardless of the initial conditions. Another difference with respect to single-field scenarios is that multi-field stochastic effects can be large even at sub-Planckian energy. This opens interesting new possibilities for probing quantum effects in inflationary dynamics, since the moments of the numbers of e-folds can be used to calculate the distribution of primordial density perturbations in the stochastic-δN formalism.
Stochastic processes, slaves and supersymmetry
International Nuclear Information System (INIS)
Drummond, I T; Horgan, R R
2012-01-01
We extend the work of Tănase-Nicola and Kurchan on the structure of diffusion processes and the associated supersymmetry algebra by examining the responses of a simple statistical system to external disturbances of various kinds. We consider both the stochastic differential equations (SDEs) for the process and the associated diffusion equation. The influence of the disturbances can be understood by augmenting the original SDE with an equation for slave variables. The evolution of the slave variables describes the behaviour of line elements carried along in the stochastic flow. These line elements, together with the associated surface and volume elements constructed from them, provide the basis of the supersymmetry properties of the theory. For ease of visualization, and in order to emphasize a helpful electromagnetic analogy, we work in three dimensions. The results are all generalizable to higher dimensions and can be specialized to one and two dimensions. The electromagnetic analogy is a useful starting point for calculating asymptotic results at low temperature that can be compared with direct numerical evaluations. We also examine the problems that arise in a direct numerical simulation of the stochastic equation together with the slave equations. We pay special attention to the dependence of the slave variable statistics on temperature. We identify in specific models the critical temperature below which the slave variable distribution ceases to have a variance and consider the effect on estimates of susceptibilities. (paper)
Stochastic cooling in muon colliders
International Nuclear Information System (INIS)
Barletta, W.A.; Sessler, A.M.
1993-09-01
Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10 30 cm -2 s -1 as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to ∼10 3 for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW
Stochastic analysis of biochemical systems
Anderson, David F
2015-01-01
This book focuses on counting processes and continuous-time Markov chains motivated by examples and applications drawn from chemical networks in systems biology. The book should serve well as a supplement for courses in probability and stochastic processes. While the material is presented in a manner most suitable for students who have studied stochastic processes up to and including martingales in continuous time, much of the necessary background material is summarized in the Appendix. Students and Researchers with a solid understanding of calculus, differential equations, and elementary probability and who are well-motivated by the applications will find this book of interest. David F. Anderson is Associate Professor in the Department of Mathematics at the University of Wisconsin and Thomas G. Kurtz is Emeritus Professor in the Departments of Mathematics and Statistics at that university. Their research is focused on probability and stochastic processes with applications in biology and other ar...
Stochastic inflation and nonlinear gravity
International Nuclear Information System (INIS)
Salopek, D.S.; Bond, J.R.
1991-01-01
We show how nonlinear effects of the metric and scalar fields may be included in stochastic inflation. Our formalism can be applied to non-Gaussian fluctuation models for galaxy formation. Fluctuations with wavelengths larger than the horizon length are governed by a network of Langevin equations for the physical fields. Stochastic noise terms arise from quantum fluctuations that are assumed to become classical at horizon crossing and that then contribute to the background. Using Hamilton-Jacobi methods, we solve the Arnowitt-Deser-Misner constraint equations which allows us to separate the growing modes from the decaying ones in the drift phase following each stochastic impulse. We argue that the most reasonable choice of time hypersurfaces for the Langevin system during inflation is T=ln(Ha), where H and a are the local values of the Hubble parameter and the scale factor, since T is the natural time for evolving the short-wavelength scalar field fluctuations in an inhomogeneous background
Brownian motion, martingales, and stochastic calculus
Le Gall, Jean-François
2016-01-01
This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested i...
Stochastic synaptic plasticity with memristor crossbar arrays
Naous, Rawan
2016-11-01
Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.
Stochastic synaptic plasticity with memristor crossbar arrays
Naous, Rawan; Al-Shedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.
2016-01-01
Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.
Stochastic quantization of a topological quantum mechanical model
International Nuclear Information System (INIS)
Antunes, Sergio; Krein, Gastao; Menezes, Gabriel; Svaiter, Nami Fux
2011-01-01
Full text: Stochastic quantization of complex actions has been extensively studied in the literature. In these models, a Markovian Langevin equation is used in order to study the quantization of such systems. In such papers, the advantages of the Markovian stochastic quantization method were explored and exposed. However, many drawbacks of the method were also pointed out, such as instability of the simulations with absence of convergence and sometimes convergence to the wrong limit. Indeed, although several alternative methods have been proposed to deal with interesting physical systems where the action is complex, these approaches do not suggest any general way of solving the particular difficulties that arise in each situation. Here, we wish to make contributions to the program of stochastic quantization of theories with imaginary action by investigating the consequences of a non-Markovian stochastic quantization in a particular situation, namely a quantum mechanical topological action. We analyze the Markovian stochastic quantization for a topological quantum mechanical action which is analog to a Maxwell-Chern-Simons action in the Weyl gauge. Afterwards we consider a Langevin equation with memory kernel and Einstein's relations with colored noise. We show that convergence towards equilibrium is achieved in both regimes. We also sketch a simple numerical analysis to investigate the possible advantages of non-Markovian procedure over the usual Markovian quantization. Both retarded Green's function for the diffusion problem are considered in such analysis. We show that, although the results indicated that the effect of memory kernel, as usually expected, is to delay the convergence to equilibrium, non-Markovian systems imply a faster decay compared to Markovian ones as well as smoother convergence to equilibrium. (author)
Stochastic Modeling of Radioactive Material Releases
Energy Technology Data Exchange (ETDEWEB)
Andrus, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pope, Chad [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculates the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was
Stochastic Modeling of Radioactive Material Releases
International Nuclear Information System (INIS)
Andrus, Jason; Pope, Chad
2015-01-01
Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculates the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was
SATA II - Stochastic Algebraic Topology and Applications
2017-01-30
AFRL-AFOSR-UK-TR-2017-0018 SATA II - Stochastic Algebraic Topology and Applications 150032 Robert Adler TECHNION ISRAEL INSTITUTE OF TECHNOLOGY Final...REPORT TYPE Final 3. DATES COVERED (From - To) 15 Dec 2014 to 14 Dec 2016 4. TITLE AND SUBTITLE SATA II - Stochastic Algebraic Topology and Applications... Topology and Applications Continuation of, and associated with SATA: Stochastic Algebraic Topology and Applications FA8655-11-1-3039, 09/1/2011–08/31/2014
Stochastic deformation of a thermodynamic symplectic structure
Kazinski, P. O.
2008-01-01
A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transform...
Stochastic temperature and the Nicolai map
International Nuclear Information System (INIS)
Hueffel, H.
1989-01-01
Just as standard temperature can be related to the time coordinate of Euclidean space, a new concept of 'stochastic temperature' may be introduced by associating it to the Parisi-Wu time of stochastic quantization. The perturbative equilibrium limit for a self-interacting scalar field is studied, and a 'thermal' mass shift to one loop is shown. In addition one may interpret the underlying stochastic process as a Nicolai map at nonzero 'temperature'. 22 refs. (Author)
On Lipschitzian quantum stochastic differential inclusions
International Nuclear Information System (INIS)
Ekhaguere, G.O.S.
1990-12-01
Quantum stochastic differential inclusions are introduced and studied within the framework of the Hudson-Parthasarathy formulation of quantum stochastic calculus. Results concerning the existence of solutions of a Lipschitzian quantum stochastic differential inclusion and the relationship between the solutions of such an inclusion and those of its convexification are presented. These generalize the Filippov existence theorem and the Filippov-Wazewski Relaxation Theorem for classical differential inclusions to the present noncommutative setting. (author). 9 refs
Ambit processes and stochastic partial differential equations
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole; Benth, Fred Espen; Veraart, Almut
Ambit processes are general stochastic processes based on stochastic integrals with respect to Lévy bases. Due to their flexible structure, they have great potential for providing realistic models for various applications such as in turbulence and finance. This papers studies the connection betwe...... ambit processes and solutions to stochastic partial differential equations. We investigate this relationship from two angles: from the Walsh theory of martingale measures and from the viewpoint of the Lévy noise analysis....
The Robustness of Stochastic Switching Networks
Loh, Po-Ling; Zhou, Hongchao; Bruck, Jehoshua
2009-01-01
Many natural systems, including chemical and biological systems, can be modeled using stochastic switching circuits. These circuits consist of stochastic switches, called pswitches, which operate with a fixed probability of being open or closed. We study the effect caused by introducing an error of size ∈ to each pswitch in a stochastic circuit. We analyze two constructions – simple series-parallel and general series-parallel circuits – and prove that simple series-parallel circuits are robus...
Sequential neural models with stochastic layers
DEFF Research Database (Denmark)
Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich
2016-01-01
How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural...... generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model's posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over...
Stochastic Linear Quadratic Optimal Control Problems
International Nuclear Information System (INIS)
Chen, S.; Yong, J.
2001-01-01
This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well
Stochastic Model Checking of the Stochastic Quality Calculus
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis; Zeng, Kebin
2015-01-01
The Quality Calculus uses quality binders for input to express strategies for continuing the computation even when the desired input has not been received. The Stochastic Quality Calculus adds generally distributed delays for output actions and real-time constraints on the quality binders for input....... This gives rise to Generalised Semi-Markov Decision Processes for which few analytical techniques are available. We restrict delays on output actions to be exponentially distributed while still admitting real-time constraints on the quality binders. This facilitates developing analytical techniques based...
Stochastic quantization of gravity and string fields
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
The stochastic quantization method of Parisi and Wu is generalized so as to make it applicable to Einstein's theory of gravitation. The generalization is based on the existence of a preferred metric in field configuration space, involves Ito's calculus, and introduces a complex stochastic process adapted to Lorentzian spacetime. It implies formally the path integral measure of DeWitt, a causual Feynman propagator, and a consistent stochastic perturbation theory. The lineraized version of the theory is also obtained from the stochastic quantization of the free string field theory of Siegel and Zwiebach. (Author)
Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik
2009-06-01
The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.
HEALTH - module for assessment of stochastic health effects after nuclear accidents
International Nuclear Information System (INIS)
Raicevic, J.J.; Gajic, M.; Popovic, Z.
2003-01-01
In this paper the program module HEALTH for assessment of stochastic health effects in the case of nuclear accidents is presented. Program module HEALTH is a part of the new European real-time computer system RODOS for nuclear emergency and preparedness. Some of the key features of module HEALTH are presented, and some possible further improvements are discussed (author)
Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility
van Haastrecht, A.; Lord, R.; Pelsser, A.; Schrager, D.
2009-01-01
We consider the pricing of long-dated insurance contracts under stochastic interest rates and stochastic volatility. In particular, we focus on the valuation of insurance options with long-term equity or foreign exchange exposures. Our modeling framework extends the stochastic volatility model of
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole E.; Benth, Fred Espen; Veraart, Almut
Ambit stochastics is the name for the theory and applications of ambit fields and ambit processes and constitutes a new research area in stochastics for tempo-spatial phenomena. This paper gives an overview of the main findings in ambit stochastics up to date and establishes new results on genera...
Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows
Gay-Balmaz, François; Holm, Darryl D.
2018-01-01
Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.
Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows
Gay-Balmaz, François; Holm, Darryl D.
2018-06-01
Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.
Initiating stochastic maintenance optimization at Candu Power Plants
International Nuclear Information System (INIS)
Doyle, E.K.
2003-01-01
As previously reported at ICONE 6 in New Orleans (1996), the use of various innovative maintenance optimization techniques at Bruce has lead to cost effective preventive maintenance applications for complex systems. Further cost refinement of the station maintenance strategy is being evaluated via the applicability of statistical analysis of historical failure data. Since the statistical evaluation was initiated in 1999 significant progress has been made in demonstrating the viability of stochastic methods in Candu maintenance. Some of the relevant results were presented at ICONE 10 in Washington DC (2002). Success with the graphical displays and the relatively easy to implement stochastic computer programs was sufficient to move the program along to the next significant phase. This next phase consists of investigating the validity of using subjective elicitation techniques to obtain component lifetime distributions. This technique provides access to the elusive failure statistics, the lack of which is often referred to in the literature as the principle impediment preventing the use of stochastic methods in large industry. At the same time the technique allows very valuable information to be captured from the fast retiring 'baby boom generation'. Initial indications have been quite positive. (author)
Distributed EMPC of multiple microgrids for coordinated stochastic energy management
International Nuclear Information System (INIS)
Kou, Peng; Liang, Deliang; Gao, Lin
2017-01-01
Highlights: • Reducing the system wide operating cost compared to the no-cooperation energy management strategy. • Maintaining the supply and demand balance within each microgrid. • Handling the uncertainties in both supply and demand. • Converting the stochastic optimization problems to standard quadratic and linear programming problems. • Achieving a good balance between control performance and computationally feasibility. - Abstract: The concept of multi-microgrids has the potential to improve the reliability and economic performance of a distribution system. To realize this potential, a coordination among multiple microgrids is needed. In this context, this paper presents a new distributed economic model predictive control scheme for the coordinated stochastic energy management of multi-microgrids. By optimally coordinating the operation of individual microgrids, this scheme maintains the system-wide supply and demand balance in an economical manner. Based on the probabilistic forecasts of renewable power generation and microgrid load, this scheme effectively handles the uncertainties in both supply and demand. Using the Chebyshev inequality and the Delta method, the corresponding stochastic optimization problems have been converted to quadratic and linear programs. The proposed scheme is evaluated on a large-scale case that includes ten interconnected microgrids. The results indicated that the proposed scheme successfully reduces the system wide operating cost, achieves the supply-demand balance in each microgrid, and brings the energy exchange between DNO and main grid to a predefined trajectory.
A Stochastic Operational Planning Model for Smart Power Systems
Directory of Open Access Journals (Sweden)
Sh. Jadid
2014-12-01
Full Text Available Smart Grids are result of utilizing novel technologies such as distributed energy resources, and communication technologies in power system to compensate some of its defects. Various power resources provide some benefits for operation domain however, power system operator should use a powerful methodology to manage them. Renewable resources and load add uncertainty to the problem. So, independent system operator should use a stochastic method to manage them. A Stochastic unit commitment is presented in this paper to schedule various power resources such as distributed generation units, conventional thermal generation units, wind and PV farms, and demand response resources. Demand response resources, interruptible loads, distributed generation units, and conventional thermal generation units are used to provide required reserve for compensating stochastic nature of various resources and loads. In the presented model, resources connected to distribution network can participate in wholesale market through aggregators. Moreover, a novel three-program model which can be used by aggregators is presented in this article. Loads and distributed generation can contract with aggregators by these programs. A three-bus test system and the IEEE RTS are used to illustrate usefulness of the presented model. The results show that ISO can manage the system effectively by using this model
Spectral representation in stochastic quantization
International Nuclear Information System (INIS)
Nakazato, Hiromichi.
1988-10-01
A spectral representation of stationary 2-point functions is investigated based on the operator formalism in stochastic quantization. Assuming the existence of asymptotic non-interacting fields, we can diagonalize the total Hamiltonian in terms of asymptotic fields and show that the correlation length along the fictious time is proportional to the physical mass expected in the usual field theory. A relation between renormalization factors in the operator formalism is derived as a byproduct and its validity is checked with the perturbative results calculated in this formalism. (orig.)
Stochastic modeling analysis and simulation
Nelson, Barry L
1995-01-01
A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se
Probability, Statistics, and Stochastic Processes
Olofsson, Peter
2012-01-01
This book provides a unique and balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. The Second Edition features new coverage of analysis of variance (ANOVA), consistency and efficiency of estimators, asymptotic theory for maximum likelihood estimators, empirical distribution function and the Kolmogorov-Smirnov test, general linear models, multiple comparisons, Markov chain Monte Carlo (MCMC), Brownian motion, martingales, and
Excited states in stochastic electrodynamics
International Nuclear Information System (INIS)
Franca, H.M.; Marshall, T.W.
1987-12-01
It is shown that the set of Wigner functions associated with the excited states of the harmonic oscillator constitute a complete set of functions over the phase space. An arbitraty distribution can be expanded in terms of these Wigner functions. By studying the time evolution, according to Stochastic Electrodynamics, of the expansion coefficients, becomes feasible to separate explicity the contributionsof the radiative reaction and the vaccuum field to the Einsten. A coefficients for this system. A simple semiclassical explanation of the Weisskopf-Heitler phenomenon in resonance fluorescence is also supplied. (author) [pt
Stochastic mechanics of mixed states
International Nuclear Information System (INIS)
Jaekel, M.T.; Pignon, D.
1984-01-01
Nelson's stochastic interpretation of quantum mechanics is extended from the case of pure states to that of mixed states. It is shown that a pure probabilistic formalism, which applies the Newton-Nelson Law to the initial position and velocity distributions, does not reproduce the time evolution predicted by quantum mechanics. In order to recover the latter, a new notion must be introduced, that of pure quantum states, over which the mixture has to be decomposed, and which then satisfy the Newton-Nelson Law independently. (author)
Mathematical statistics and stochastic processes
Bosq, Denis
2013-01-01
Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today's practitioners.Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and rob
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2004-01-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction
Stochastic resonance for exploration geophysics
Omerbashich, Mensur
2008-01-01
Stochastic resonance (SR) is a phenomenon in which signal to noise (SN) ratio gets improved by noise addition rather than removal as envisaged classically. SR was first claimed in climatology a few decades ago and then in other disciplines as well. The same as it is observed in natural systems, SR is used also for allowable SN enhancements at will. Here I report a proof of principle that SR can be useful in exploration geophysics. For this I perform high frequency GaussVanicek variance spectr...
Predicting population extinction or disease outbreaks with stochastic models
Directory of Open Access Journals (Sweden)
Linda J. S. Allen
2017-01-01
Full Text Available Models of exponential growth, logistic growth and epidemics are common applications in undergraduate differential equation courses. The corresponding stochastic models are not part of these courses, although when population sizes are small their behaviour is often more realistic and distinctly different from deterministic models. For example, the randomness associated with births and deaths may lead to population extinction even in an exponentially growing population. Some background in continuous-time Markov chains and applications to populations, epidemics and cancer are presented with a goal to introduce this topic into the undergraduate mathematics curriculum that will encourage further investigation into problems on conservation, infectious diseases and cancer therapy. MATLAB programs for graphing sample paths of stochastic models are provided in the Appendix.
Stochastic optimal control of single neuron spike trains
DEFF Research Database (Denmark)
Iolov, Alexandre; Ditlevsen, Susanne; Longtin, Andrë
2014-01-01
stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue. Approach. We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic...... origin. In particular, we allow for the noise to be of arbitrary intensity. The optimal control problem is solved using dynamic programming when the controller has access to the voltage (closed-loop control), and using a maximum principle for the transition density when the controller only has access...... to the spike times (open-loop control). Main results. We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy...
Stochastic population and epidemic models persistence and extinction
Allen, Linda J S
2015-01-01
This monograph provides a summary of the basic theory of branching processes for single-type and multi-type processes. Classic examples of population and epidemic models illustrate the probability of population or epidemic extinction obtained from the theory of branching processes. The first chapter develops the branching process theory, while in the second chapter two applications to population and epidemic processes of single-type branching process theory are explored. The last two chapters present multi-type branching process applications to epidemic models, and then continuous-time and continuous-state branching processes with applications. In addition, several MATLAB programs for simulating stochastic sample paths are provided in an Appendix. These notes originated as part of a lecture series on Stochastics in Biological Systems at the Mathematical Biosciences Institute in Ohio, USA. Professor Linda Allen is a Paul Whitfield Horn Professor of Mathematics in the Department of Mathematics and Statistics ...
Stochastic numerical methods an introduction for students and scientists
Toral, Raul
2014-01-01
Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability ConceptsMonte Carlo IntegrationGeneration of Uniform and Non-uniformRandom Numbers: Non-correlated ValuesDynamical MethodsApplications to Statistical MechanicsIn...
Synthetic Computation: Chaos Computing, Logical Stochastic Resonance, and Adaptive Computing
Kia, Behnam; Murali, K.; Jahed Motlagh, Mohammad-Reza; Sinha, Sudeshna; Ditto, William L.
Nonlinearity and chaos can illustrate numerous behaviors and patterns, and one can select different patterns from this rich library of patterns. In this paper we focus on synthetic computing, a field that engineers and synthesizes nonlinear systems to obtain computation. We explain the importance of nonlinearity, and describe how nonlinear systems can be engineered to perform computation. More specifically, we provide an overview of chaos computing, a field that manually programs chaotic systems to build different types of digital functions. Also we briefly describe logical stochastic resonance (LSR), and then extend the approach of LSR to realize combinational digital logic systems via suitable concatenation of existing logical stochastic resonance blocks. Finally we demonstrate how a chaotic system can be engineered and mated with different machine learning techniques, such as artificial neural networks, random searching, and genetic algorithm, to design different autonomous systems that can adapt and respond to environmental conditions.
Sensory optimization by stochastic tuning.
Jurica, Peter; Gepshtein, Sergei; Tyukin, Ivan; van Leeuwen, Cees
2013-10-01
Individually, visual neurons are each selective for several aspects of stimulation, such as stimulus location, frequency content, and speed. Collectively, the neurons implement the visual system's preferential sensitivity to some stimuli over others, manifested in behavioral sensitivity functions. We ask how the individual neurons are coordinated to optimize visual sensitivity. We model synaptic plasticity in a generic neural circuit and find that stochastic changes in strengths of synaptic connections entail fluctuations in parameters of neural receptive fields. The fluctuations correlate with uncertainty of sensory measurement in individual neurons: The higher the uncertainty the larger the amplitude of fluctuation. We show that this simple relationship is sufficient for the stochastic fluctuations to steer sensitivities of neurons toward a characteristic distribution, from which follows a sensitivity function observed in human psychophysics and which is predicted by a theory of optimal allocation of receptive fields. The optimal allocation arises in our simulations without supervision or feedback about system performance and independently of coupling between neurons, making the system highly adaptive and sensitive to prevailing stimulation. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Quantum noise and stochastic reduction
International Nuclear Information System (INIS)
Brody, Dorje C; Hughston, Lane P
2006-01-01
In standard nonrelativistic quantum mechanics the expectation of the energy is a conserved quantity. It is possible to extend the dynamical law associated with the evolution of a quantum state consistently to include a nonlinear stochastic component, while respecting the conservation law. According to the dynamics thus obtained, referred to as the energy-based stochastic Schroedinger equation, an arbitrary initial state collapses spontaneously to one of the energy eigenstates, thus describing the phenomenon of quantum state reduction. In this paper, two such models are investigated: one that achieves state reduction in infinite time and the other in finite time. The properties of the associated energy expectation process and the energy variance process are worked out in detail. By use of a novel application of a nonlinear filtering method, closed-form solutions-algebraic in character and involving no integration-are obtained of both these models. In each case, the solution is expressed in terms of a random variable representing the terminal energy of the system and an independent noise process. With these solutions at hand it is possible to simulate explicitly the dynamics of the quantum states of complicated physical systems
Stochastic geometry in PRIZMA code
International Nuclear Information System (INIS)
Malyshkin, G. N.; Kashaeva, E. A.; Mukhamadiev, R. F.
2007-01-01
The paper describes a method used to simulate radiation transport through random media - randomly placed grains in a matrix material. The method models the medium consequently from one grain crossed by particle trajectory to another. Like in the Limited Chord Length Sampling (LCLS) method, particles in grains are tracked in the actual grain geometry, but unlike LCLS, the medium is modeled using only Matrix Chord Length Sampling (MCLS) from the exponential distribution and it is not necessary to know the grain chord length distribution. This helped us extend the method to media with randomly oriented arbitrarily shaped convex grains. Other extensions include multicomponent media - grains of several sorts, and polydisperse media - grains of different sizes. Sort and size distributions of crossed grains were obtained and an algorithm was developed for sampling grain orientations and positions. Special consideration was given to medium modeling at the boundary of the stochastic region. The method was implemented in the universal 3D Monte Carlo code PRIZMA. The paper provides calculated results for a model problem where we determine volume fractions of modeled components crossed by particle trajectories. It also demonstrates the use of biased sampling techniques implemented in PRIZMA for solving a problem of deep penetration in model random media. Described are calculations for the spectral response of a capacitor dose detector whose anode was modeled with account for its stochastic structure. (authors)
Single-Molecule Stochastic Resonance
Directory of Open Access Journals (Sweden)
K. Hayashi
2012-08-01
Full Text Available Stochastic resonance (SR is a well-known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic (random or probabilistic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively transitions from folded to unfolded configurations under the action of an oscillating mechanical force applied with optical tweezers. By varying the frequency of the force oscillation, we investigate the folding and unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measure several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that a good quantifier of the SR is the signal-to-noise ratio (SNR of the spectral density of measured fluctuations in molecular extension of the DNA hairpins. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance-matching condition. Finally, we carry out experiments on short hairpins that show how SR might be useful for enhancing the detection of conformational molecular transitions of low SNR.
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-05
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
The Owen Value of Stochastic Cooperative Game
Directory of Open Access Journals (Sweden)
Cheng-Guo E
2014-01-01
Full Text Available We consider stochastic cooperative game and give it the definition of the Owen value, which is obtained by extending the classical case. Then we provide explicit expression for the Owen value of the stochastic cooperative game and discuss its existence and uniqueness.
Safety Analysis of Stochastic Dynamical Systems
DEFF Research Database (Denmark)
Sloth, Christoffer; Wisniewski, Rafael
2015-01-01
This paper presents a method for verifying the safety of a stochastic system. In particular, we show how to compute the largest set of initial conditions such that a given stochastic system is safe with probability p. To compute the set of initial conditions we rely on the moment method that via...... that shows how the p-safe initial set is computed numerically....
Multivariate Discrete First Order Stochastic Dominance
DEFF Research Database (Denmark)
Tarp, Finn; Østerdal, Lars Peter
This paper characterizes the principle of first order stochastic dominance in a multivariate discrete setting. We show that a distribution f first order stochastic dominates distribution g if and only if f can be obtained from g by iteratively shifting density from one outcome to another...
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-01
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
History-dependent stochastic Petri nets
Schonenberg, H.; Sidorova, N.; Aalst, van der W.M.P.; Hee, van K.M.; Pnueli, A.; Virbitskaite, I.; Voronkov, A.
2010-01-01
Stochastic Petri Nets are a useful and well-known tool for performance analysis. However, an implicit assumption in the different types of Stochastic Petri Nets is the Markov property. It is assumed that a choice in the Petri net only depends on the current state and not on earlier choices. For many
Stochasticity and transport in Hamiltonian systems
International Nuclear Information System (INIS)
MacKay, R.S.; Meiss, J.D.; Percival, I.C.
1983-08-01
The theory of transport in nonlinear dynamics is developed in terms of leaky barriers which remain when invariant tori are destroyed. We describe the organization of stochastic motion by these barriers and give an explanation of long-time correlations in the stochastic regime
Analytic stochastic regularization and gange invariance
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Lima-Santos, A.
1986-05-01
A proof that analytic stochastic regularization breaks gauge invariance is presented. This is done by an explicit one loop calculation of the vaccum polarization tensor in scalar electrodynamics, which turns out not to be transversal. The counterterm structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization, are also analysed. (Author) [pt
Stochastic properties of the Friedman dynamical system
International Nuclear Information System (INIS)
Szydlowski, M.; Heller, M.; Golda, Z.
1985-01-01
Some mathematical aspects of the stochastic cosmology are discussed in the corresponding ordinary Friedman world models. In particulare, it is shown that if the strong and Lorentz energy conditions are known, or the potential function is given, or a stochastic measure is suitably defined then the structure of the phase plane of the Friedman dynamical system is determined. 11 refs., 2 figs. (author)
High-speed Stochastic Fatigue Testing
DEFF Research Database (Denmark)
Brincker, Rune; Sørensen, John Dalsgaard
1990-01-01
Good stochastic fatigue tests are difficult to perform. One of the major reasons is that ordinary servohydraulic loading systems realize the prescribed load history accurately at very low testing speeds only. If the speeds used for constant amplitude testing are applied to stochastic fatigue...
Optimal Control for Stochastic Delay Evolution Equations
Energy Technology Data Exchange (ETDEWEB)
Meng, Qingxin, E-mail: mqx@hutc.zj.cn [Huzhou University, Department of Mathematical Sciences (China); Shen, Yang, E-mail: skyshen87@gmail.com [York University, Department of Mathematics and Statistics (Canada)
2016-08-15
In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.
Stochastic quantization for the axial model
International Nuclear Information System (INIS)
Farina, C.; Montani, H.; Albuquerque, L.C.
1991-01-01
We use bosonization ideas to solve the axial model in the stochastic quantization framework. We obtain the fermion propagator of the theory decoupling directly the Langevin equation, instead of the Fokker-Planck equation. In the Appendix we calculate explicitly the anomalous divergence of the axial-vector current by using a regularization that does not break the Markovian character of the stochastic process
Consistent Stochastic Modelling of Meteocean Design Parameters
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Sterndorff, M. J.
2000-01-01
Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...
On the stochastic stability of MHD equilibria
International Nuclear Information System (INIS)
Teichmann, J.
1979-07-01
The stochastic stability in the large of stationary equilibria of ideal and dissipative magnetohydrodynamics under the influence of stationary random fluctuations is studied using the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian systems are given. The destabilizing effect of stochastic fluctuations is demonstrated. (orig.)
A fuzzy-stochastic power system planning model: Reflection of dual objectives and dual uncertainties
International Nuclear Information System (INIS)
Zhang, X.Y.; Huang, G.H.; Zhu, H.; Li, Y.P.
2017-01-01
In this study, a fuzzy stochastic dynamic fractional programming (FSDFP) method is proposed for supporting sustainable management of electric power system (EPS) under dual uncertainties. As an improvement upon the mixed-integer linear fractional programming, FSDFP can not only tackle multi-objective issues effectively without setting weights, but also can deal with uncertain parameters which have both stochastic and fuzzy characteristics. Thus, the developed method can help provide valuable information for supporting capacity-expansion planning and in-depth policy analysis of EPS management problems. For demonstrating these advantages, FSDFP has been applied to a case study of a typical regional EPS planning, where the decision makers have to deal with conflicts between economic development that maximizes the system profit and environmental protection that minimizes the carbon dioxide emissions. The obtained results can be analyzed to generate several decision alternatives, and can then help decision makers make suitable decisions under different input scenarios. Furthermore, comparisons of the solution from FSDFP method with that from fuzzy stochastic dynamic linear programming, linear fractional programming and dynamic stochastic fractional programming methods are undertaken. The contrastive analysis reveals that FSDFP is a more effective approach that can better characterize the complexities and uncertainties of real EPS management problems. - Highlights: • A fuzzy stochastic dynamic fractional programming (FSDFP) method is proposed. • FSDFP can address multiple conflicting objectives without setting weights. • FSDFP can reflect dual uncertainties with both stochastic and fuzzy characteristics. • Some reasonable solutions for a case of power system sustainable planning are generated. • Comparisons of the solutions from FSDFP with other optimization methods are undertaken.
Numerical Simulation of the Heston Model under Stochastic Correlation
Directory of Open Access Journals (Sweden)
Long Teng
2017-12-01
Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.
Modelling and application of stochastic processes
1986-01-01
The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side,...
Stochastic spin-one massive field
International Nuclear Information System (INIS)
Lim, S.C.
1984-01-01
Stochastic quantization schemes of Nelson and Parisi and Wu are applied to a spin-one massive field. Unlike the scalar case Nelson's stochastic spin-one massive field cannot be identified with the corresponding euclidean field even if the fourth component of the euclidean coordinate is taken as equal to the real physical time. In the Parisi-Wu quantization scheme the stochastic Proca vector field has a similar property as the scalar field; which has an asymptotically stationary part and a transient part. The large equal-time limit of the expectation values of the stochastic Proca field are equal to the expectation values of the corresponding euclidean field. In the Stueckelberg formalism the Parisi-Wu scheme gives rise to a stochastic vector field which differs from the massless gauge field in that the gauge cannot be fixed by the choice of boundary condition. (orig.)
Turbulent response in a stochastic regime
International Nuclear Information System (INIS)
Molvig, K.; Freidberg, J.P.; Potok, R.; Hirshman, S.P.; Whitson, J.C.; Tajima, T.
1981-06-01
The theory for the non-linear, turbulent response in a system with intrinsic stochasticity is considered. It is argued that perturbative Eulerian theories, such as the Direct Interaction Approximation (DIA), are inherently unsuited to describe such a system. The exponentiation property that characterizes stochasticity appears in the Lagrangian picture and cannot even be defined in the Eulerian representation. An approximation for stochastic systems - the Normal Stochastic Approximation - is developed and states that the perturbed orbit functions (Lagrangian fluctuations) behave as normally distributed random variables. This is independent of the Eulerian statistics and, in fact, we treat the Eulerian fluctuations as fixed. A simple model problem (appropriate for the electron response in the drift wave) is subjected to a series of computer experiments. To within numerical noise the results are in agreement with the Normal Stochastic Approximation. The predictions of the DIA for this mode show substantial qualitative and quantitative departures from the observations
FERN - a Java framework for stochastic simulation and evaluation of reaction networks.
Erhard, Florian; Friedel, Caroline C; Zimmer, Ralf
2008-08-29
Stochastic simulation can be used to illustrate the development of biological systems over time and the stochastic nature of these processes. Currently available programs for stochastic simulation, however, are limited in that they either a) do not provide the most efficient simulation algorithms and are difficult to extend, b) cannot be easily integrated into other applications or c) do not allow to monitor and intervene during the simulation process in an easy and intuitive way. Thus, in order to use stochastic simulation in innovative high-level modeling and analysis approaches more flexible tools are necessary. In this article, we present FERN (Framework for Evaluation of Reaction Networks), a Java framework for the efficient simulation of chemical reaction networks. FERN is subdivided into three layers for network representation, simulation and visualization of the simulation results each of which can be easily extended. It provides efficient and accurate state-of-the-art stochastic simulation algorithms for well-mixed chemical systems and a powerful observer system, which makes it possible to track and control the simulation progress on every level. To illustrate how FERN can be easily integrated into other systems biology applications, plugins to Cytoscape and CellDesigner are included. These plugins make it possible to run simulations and to observe the simulation progress in a reaction network in real-time from within the Cytoscape or CellDesigner environment. FERN addresses shortcomings of currently available stochastic simulation programs in several ways. First, it provides a broad range of efficient and accurate algorithms both for exact and approximate stochastic simulation and a simple interface for extending to new algorithms. FERN's implementations are considerably faster than the C implementations of gillespie2 or the Java implementations of ISBJava. Second, it can be used in a straightforward way both as a stand-alone program and within new
Fuzzy stochastic damage mechanics (FSDM based on fuzzy auto-adaptive control theory
Directory of Open Access Journals (Sweden)
Ya-jun Wang
2012-06-01
Full Text Available In order to fully interpret and describe damage mechanics, the origin and development of fuzzy stochastic damage mechanics were introduced based on the analysis of the harmony of damage, probability, and fuzzy membership in the interval of [0,1]. In a complete normed linear space, it was proven that a generalized damage field can be simulated through β probability distribution. Three kinds of fuzzy behaviors of damage variables were formulated and explained through analysis of the generalized uncertainty of damage variables and the establishment of a fuzzy functional expression. Corresponding fuzzy mapping distributions, namely, the half-depressed distribution, swing distribution, and combined swing distribution, which can simulate varying fuzzy evolution in diverse stochastic damage situations, were set up. Furthermore, through demonstration of the generalized probabilistic characteristics of damage variables, the cumulative distribution function and probability density function of fuzzy stochastic damage variables, which show β probability distribution, were modified according to the expansion principle. The three-dimensional fuzzy stochastic damage mechanical behaviors of the Longtan rolled-concrete dam were examined with the self-developed fuzzy stochastic damage finite element program. The statistical correlation and non-normality of random field parameters were considered comprehensively in the fuzzy stochastic damage model described in this paper. The results show that an initial damage field based on the comprehensive statistical evaluation helps to avoid many difficulties in the establishment of experiments and numerical algorithms for damage mechanics analysis.
Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective
Energy Technology Data Exchange (ETDEWEB)
Wang, Hong [Pacific Northwest National Laboratory (PNNL); Aziz, H M Abdul [ORNL; Young, Stan [National Renewable Energy Laboratory (NREL); Patil, Sagar [Pacific Northwest National Laboratory (PNNL)
2017-10-01
Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections. In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.
Redesign of a supply network by considering stochastic demand
Directory of Open Access Journals (Sweden)
Juan Camilo Paz
2015-09-01
Full Text Available This paper presents the problem of redesigning a supply network of large scale by considering variability of the demand. The central problematic takes root in determining strategic decisions of closing and adjusting of capacity of some network echelons and the tactical decisions concerning to the distribution channels used for transporting products. We have formulated a deterministic Mixed Integer Linear Programming Model (MILP and a stochastic MILP model (SMILP whose objective functions are the maximization of the EBITDA (Earnings before Interest, Taxes, Depreciation and Amortization. The decisions of Network Design on stochastic model as capacities, number of warehouses in operation, material and product flows between echelons, are determined in a single stage by defining an objective function that penalizes unsatisfied demand and surplus of demand due to demand changes. The solution strategy adopted for the stochastic model is a scheme denominated as Sample Average Approximation (SAA. The model is based on the case of a Colombian company dedicated to production and marketing of foodstuffs and supplies for the bakery industry. The results show that the proposed methodology was a solid reference for decision support regarding to the supply networks redesign by considering the expected economic contribution of products and variability of the demand.
Stochastic effects in hybrid inflation
Martin, Jérôme; Vennin, Vincent
2012-02-01
Hybrid inflation is a two-field model where inflation ends due to an instability. In the neighborhood of the instability point, the potential is very flat and the quantum fluctuations dominate over the classical motion of the inflaton and waterfall fields. In this article, we study this regime in the framework of stochastic inflation. We numerically solve the two coupled Langevin equations controlling the evolution of the fields and compute the probability distributions of the total number of e-folds and of the inflation exit point. Then, we discuss the physical consequences of our results, in particular, the question of how the quantum diffusion can affect the observable predictions of hybrid inflation.
Stochastic incompleteness of quantum mechanics
International Nuclear Information System (INIS)
Suppes, P.; Zanotti, M.
1976-01-01
This article brings out in as conceptually clear terms as possible what seems to be a major incompleteness in the probability theory of particles offered by classical quantum mechanics. The exact nature of this incompleteness is illustrated by consideration of some simple quantum-mechanical examples. In addition, these examples are contrasted with the fundamental assumptions of Brownian motion in classical physics on the one hand, and with a controversey of a deecade ago in mathematical physchology. The central claim is that clasical quantum mechanics is radically incomplete in its probabilistic account of the motion of particles. In the last part of the article the time-dependent joint distribution of position and momentum of the linear harmonic oscillator is derived, and it is shown how the apparently physically paradoxical statistical independence of position and momentum has a natural explanation. The explanation is given within the framework of the non-quantum-mechanical stochastic theory constructed for such oscillators. (Auth.)
A stochastic model of hormesis
International Nuclear Information System (INIS)
Yakovlev, A.Yu.; Tsodikov, A.D.; Bass, L.
1993-01-01
In order to describe the life-prolonging effect of some agents that are harmful at higher doses, ionizing radiations in particular, a stochastic model is developed in terms of accumulation and progression of intracellular lesions caused by the environment and by the agent itself. The processes of lesion repair, operating at the molecular and cellular level, are assumed to be responsible for this hormesis effect within the framework of the proposed model. Properties of lifetime distributions, derived for analysis of animal experiments with prolonged and acute irradiation, are given special attention. The model provides efficient means of interpreting experimental findings, as evidenced by its application to analysis of some published data on the hormetic effects of prolonged irradiation and of procaine on animal longevity. 51 refs., 2 figs., 1 tabs
Stochastic control with rough paths
International Nuclear Information System (INIS)
Diehl, Joscha; Friz, Peter K.; Gassiat, Paul
2017-01-01
We study a class of controlled differential equations driven by rough paths (or rough path realizations of Brownian motion) in the sense of Lyons. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We make the link to old work of Davis and Burstein (Stoch Stoch Rep 40:203–256, 1992) and then prove a continuous-time generalization of Roger’s duality formula [SIAM J Control Optim 46:1116–1132, 2007]. The generic case of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations also relates to work of Mazliak and Nourdin (Stoch Dyn 08:23, 2008).
Stochastic models for tumoral growth
Escudero, Carlos
2006-02-01
Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border and the surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stochastic partial differential equations are reported in this paper in order to correctly model the physical properties of tumoral growth in (1+1) and (2+1) dimensions. The advantage of these models is that they reproduce the correct geometry of the tumor and are defined in terms of polar variables. An analysis of these models allows us to quantitatively estimate the response of the tumor to an unfavorable perturbation during growth.
Discrete stochastic processes and applications
Collet, Jean-François
2018-01-01
This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.
Stochastic control with rough paths
Energy Technology Data Exchange (ETDEWEB)
Diehl, Joscha [University of California San Diego (United States); Friz, Peter K., E-mail: friz@math.tu-berlin.de [TU & WIAS Berlin (Germany); Gassiat, Paul [CEREMADE, Université Paris-Dauphine, PSL Research University (France)
2017-04-15
We study a class of controlled differential equations driven by rough paths (or rough path realizations of Brownian motion) in the sense of Lyons. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We make the link to old work of Davis and Burstein (Stoch Stoch Rep 40:203–256, 1992) and then prove a continuous-time generalization of Roger’s duality formula [SIAM J Control Optim 46:1116–1132, 2007]. The generic case of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations also relates to work of Mazliak and Nourdin (Stoch Dyn 08:23, 2008).
The propagator of stochastic electrodynamics
Cavalleri, G.
1981-01-01
The "elementary propagator" for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density ~ω3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to ψψ* where ψ is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics.
Stochastic dynamics of dengue epidemics.
de Souza, David R; Tomé, Tânia; Pinho, Suani T R; Barreto, Florisneide R; de Oliveira, Mário J
2013-01-01
We use a stochastic Markovian dynamics approach to describe the spreading of vector-transmitted diseases, such as dengue, and the threshold of the disease. The coexistence space is composed of two structures representing the human and mosquito populations. The human population follows a susceptible-infected-recovered (SIR) type dynamics and the mosquito population follows a susceptible-infected-susceptible (SIS) type dynamics. The human infection is caused by infected mosquitoes and vice versa, so that the SIS and SIR dynamics are interconnected. We develop a truncation scheme to solve the evolution equations from which we get the threshold of the disease and the reproductive ratio. The threshold of the disease is also obtained by performing numerical simulations. We found that for certain values of the infection rates the spreading of the disease is impossible, for any death rate of infected mosquitoes.
Stochastic Subspace Modelling of Turbulence
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.
2009-01-01
positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...
Loizou, Nicolas
2017-12-27
In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.
Loizou, Nicolas; Richtarik, Peter
2017-01-01
In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.
Stochastic modeling of soil salinity
Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.
2010-12-01
A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-08-01
This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.
International Nuclear Information System (INIS)
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-01-01
This third part extends the theory of Generalized Poisson–Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker–Planck–Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed. (paper)
Stochastic dynamics of genetic broadcasting networks
Potoyan, Davit A.; Wolynes, Peter G.
2017-11-01
The complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a "time-scale crisis" for master genes that broadcast their signals to a large number of binding sites. We demonstrate that this time-scale crisis for clearance in a large broadcasting network can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying a model of the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκ B which broadcasts its signals to many downstream genes that regulate immune response, apoptosis, etc.
Space-time-modulated stochastic processes
Giona, Massimiliano
2017-10-01
Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.
International Nuclear Information System (INIS)
Rougé, Charles; Mathias, Jean-Denis; Deffuant, Guillaume
2014-01-01
The goal of this paper is twofold: (1) to show that time-variant reliability and a branch of control theory called stochastic viability address similar problems with different points of view, and (2) to demonstrate the relevance of concepts and methods from stochastic viability in reliability problems. On the one hand, reliability aims at evaluating the probability of failure of a system subjected to uncertainty and stochasticity. On the other hand, viability aims at maintaining a controlled dynamical system within a survival set. When the dynamical system is stochastic, this work shows that a viability problem belongs to a specific class of design and maintenance problems in time-variant reliability. Dynamic programming, which is used for solving Markovian stochastic viability problems, then yields the set of design states for which there exists a maintenance strategy which guarantees reliability with a confidence level β for a given period of time T. Besides, it leads to a straightforward computation of the date of the first outcrossing, informing on when the system is most likely to fail. We illustrate this approach with a simple example of population dynamics, including a case where load increases with time. - Highlights: • Time-variant reliability tools cannot devise complex maintenance strategies. • Stochastic viability is a control theory that computes a probability of failure. • Some design and maintenance problems are stochastic viability problems. • Used in viability, dynamic programming can find reliable maintenance actions. • Confronting reliability and control theories such as viability is promising