WorldWideScience

Sample records for stochastic programming model

  1. Stochastic linear programming models, theory, and computation

    CERN Document Server

    Kall, Peter

    2011-01-01

    This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...

  2. Inexact Multistage Stochastic Chance Constrained Programming Model for Water Resources Management under Uncertainties

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2017-01-01

    Full Text Available In order to formulate water allocation schemes under uncertainties in the water resources management systems, an inexact multistage stochastic chance constrained programming (IMSCCP model is proposed. The model integrates stochastic chance constrained programming, multistage stochastic programming, and inexact stochastic programming within a general optimization framework to handle the uncertainties occurring in both constraints and objective. These uncertainties are expressed as probability distributions, interval with multiply distributed stochastic boundaries, dynamic features of the long-term water allocation plans, and so on. Compared with the existing inexact multistage stochastic programming, the IMSCCP can be used to assess more system risks and handle more complicated uncertainties in water resources management systems. The IMSCCP model is applied to a hypothetical case study of water resources management. In order to construct an approximate solution for the model, a hybrid algorithm, which incorporates stochastic simulation, back propagation neural network, and genetic algorithm, is proposed. The results show that the optimal value represents the maximal net system benefit achieved with a given confidence level under chance constraints, and the solutions provide optimal water allocation schemes to multiple users over a multiperiod planning horizon.

  3. Stochastic programming with integer recourse

    NARCIS (Netherlands)

    van der Vlerk, Maarten Hendrikus

    1995-01-01

    In this thesis we consider two-stage stochastic linear programming models with integer recourse. Such models are at the intersection of two different branches of mathematical programming. On the one hand some of the model parameters are random, which places the problem in the field of stochastic

  4. Introduction to stochastic dynamic programming

    CERN Document Server

    Ross, Sheldon M; Lukacs, E

    1983-01-01

    Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist-providing counterexamples where appropriate-and the

  5. Stochastic Fractional Programming Approach to a Mean and Variance Model of a Transportation Problem

    Directory of Open Access Journals (Sweden)

    V. Charles

    2011-01-01

    Full Text Available In this paper, we propose a stochastic programming model, which considers a ratio of two nonlinear functions and probabilistic constraints. In the former, only expected model has been proposed without caring variability in the model. On the other hand, in the variance model, the variability played a vital role without concerning its counterpart, namely, the expected model. Further, the expected model optimizes the ratio of two linear cost functions where as variance model optimize the ratio of two non-linear functions, that is, the stochastic nature in the denominator and numerator and considering expectation and variability as well leads to a non-linear fractional program. In this paper, a transportation model with stochastic fractional programming (SFP problem approach is proposed, which strikes the balance between previous models available in the literature.

  6. Optimal timing of joint replacement using mathematical programming and stochastic programming models.

    Science.gov (United States)

    Keren, Baruch; Pliskin, Joseph S

    2011-12-01

    The optimal timing for performing radical medical procedures as joint (e.g., hip) replacement must be seriously considered. In this paper we show that under deterministic assumptions the optimal timing for joint replacement is a solution of a mathematical programming problem, and under stochastic assumptions the optimal timing can be formulated as a stochastic programming problem. We formulate deterministic and stochastic models that can serve as decision support tools. The results show that the benefit from joint replacement surgery is heavily dependent on timing. Moreover, for a special case where the patient's remaining life is normally distributed along with a normally distributed survival of the new joint, the expected benefit function from surgery is completely solved. This enables practitioners to draw the expected benefit graph, to find the optimal timing, to evaluate the benefit for each patient, to set priorities among patients and to decide if joint replacement should be performed and when.

  7. Stochastic integer programming by dynamic programming

    NARCIS (Netherlands)

    Lageweg, B.J.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Stougie, L.; Ermoliev, Yu.; Wets, R.J.B.

    1988-01-01

    Stochastic integer programming is a suitable tool for modeling hierarchical decision situations with combinatorial features. In continuation of our work on the design and analysis of heuristics for such problems, we now try to find optimal solutions. Dynamic programming techniques can be used to

  8. Stochastic programming framework for Lithuanian pension payout modelling

    Directory of Open Access Journals (Sweden)

    Audrius Kabašinskas

    2014-12-01

    Full Text Available The paper provides a scientific approach to the problem of selecting a pension fund by taking into account some specific characteristics of the Lithuanian Republic (LR pension accumulation system. The decision making model, which can be used to plan a long-term pension accrual of the Lithuanian Republic (LR citizens, in an optimal way is presented. This model focuses on factors that influence the sustainability of the pension system selection under macroeconomic, social and demographic uncertainty. The model is formalized as a single stage stochastic optimization problem where the long-term optimal strategy can be obtained based on the possible scenarios generated for a particular participant. Stochastic programming methods allow including the pension fund rebalancing moment and direction of investment, and taking into account possible changes of personal income, changes of society and the global financial market. The collection of methods used to generate scenario trees was found useful to solve strategic planning problems.

  9. An inexact mixed risk-aversion two-stage stochastic programming model for water resources management under uncertainty.

    Science.gov (United States)

    Li, W; Wang, B; Xie, Y L; Huang, G H; Liu, L

    2015-02-01

    Uncertainties exist in the water resources system, while traditional two-stage stochastic programming is risk-neutral and compares the random variables (e.g., total benefit) to identify the best decisions. To deal with the risk issues, a risk-aversion inexact two-stage stochastic programming model is developed for water resources management under uncertainty. The model was a hybrid methodology of interval-parameter programming, conditional value-at-risk measure, and a general two-stage stochastic programming framework. The method extends on the traditional two-stage stochastic programming method by enabling uncertainties presented as probability density functions and discrete intervals to be effectively incorporated within the optimization framework. It could not only provide information on the benefits of the allocation plan to the decision makers but also measure the extreme expected loss on the second-stage penalty cost. The developed model was applied to a hypothetical case of water resources management. Results showed that that could help managers generate feasible and balanced risk-aversion allocation plans, and analyze the trade-offs between system stability and economy.

  10. Network interdiction and stochastic integer programming

    CERN Document Server

    2003-01-01

    On March 15, 2002 we held a workshop on network interdiction and the more general problem of stochastic mixed integer programming at the University of California, Davis. Jesús De Loera and I co-chaired the event, which included presentations of on-going research and discussion. At the workshop, we decided to produce a volume of timely work on the topics. This volume is the result. Each chapter represents state-of-the-art research and all of them were refereed by leading investigators in the respective fields. Problems - sociated with protecting and attacking computer, transportation, and social networks gain importance as the world becomes more dep- dent on interconnected systems. Optimization models that address the stochastic nature of these problems are an important part of the research agenda. This work relies on recent efforts to provide methods for - dressing stochastic mixed integer programs. The book is organized with interdiction papers first and the stochastic programming papers in the second part....

  11. Automated Flight Routing Using Stochastic Dynamic Programming

    Science.gov (United States)

    Ng, Hok K.; Morando, Alex; Grabbe, Shon

    2010-01-01

    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.

  12. A two-factor, stochastic programming model of Danish mortgage-backed securities

    DEFF Research Database (Denmark)

    Nielsen, Søren S.; Poulsen, Rolf

    2004-01-01

    -trivial, both in terms of deciding on an initial mortgage, and in terms of managing (rebalancing) it optimally.We propose a two-factor, arbitrage-free interest-rate model, calibrated to observable security prices, and implement on top of it a multi-stage, stochastic optimization program with the purpose...

  13. Multistage Stochastic Programming and its Applications in Energy Systems Modeling and Optimization

    Science.gov (United States)

    Golari, Mehdi

    Electric energy constitutes one of the most crucial elements to almost every aspect of life of people. The modern electric power systems face several challenges such as efficiency, economics, sustainability, and reliability. Increase in electrical energy demand, distributed generations, integration of uncertain renewable energy resources, and demand side management are among the main underlying reasons of such growing complexity. Additionally, the elements of power systems are often vulnerable to failures because of many reasons, such as system limits, weak conditions, unexpected events, hidden failures, human errors, terrorist attacks, and natural disasters. One common factor complicating the operation of electrical power systems is the underlying uncertainties from the demands, supplies and failures of system components. Stochastic programming provides a mathematical framework for decision making under uncertainty. It enables a decision maker to incorporate some knowledge of the intrinsic uncertainty into the decision making process. In this dissertation, we focus on application of two-stage and multistage stochastic programming approaches to electric energy systems modeling and optimization. Particularly, we develop models and algorithms addressing the sustainability and reliability issues in power systems. First, we consider how to improve the reliability of power systems under severe failures or contingencies prone to cascading blackouts by so called islanding operations. We present a two-stage stochastic mixed-integer model to find optimal islanding operations as a powerful preventive action against cascading failures in case of extreme contingencies. Further, we study the properties of this problem and propose efficient solution methods to solve this problem for large-scale power systems. We present the numerical results showing the effectiveness of the model and investigate the performance of the solution methods. Next, we address the sustainability issue

  14. Planning under uncertainty solving large-scale stochastic linear programs

    Energy Technology Data Exchange (ETDEWEB)

    Infanger, G. [Stanford Univ., CA (United States). Dept. of Operations Research]|[Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft

    1992-12-01

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  15. Can Household Benefit from Stochastic Programming Models?

    DEFF Research Database (Denmark)

    Rasmussen, Kourosh Marjani; Madsen, Claus A.; Poulsen, Rolf

    2014-01-01

    The Danish mortgage market is large and sophisticated. However, most Danish mortgage banks advise private home-owners based on simple, if sensible, rules of thumb. In recent years a number of papers (from Nielsen and Poulsen in J Econ Dyn Control 28:1267–1289, 2004 over Rasmussen and Zenios in J...... Risk 10:1–18, 2007 to Pedersen et al. in Ann Oper Res, 2013) have suggested a model-based, stochastic programming approach to mortgage choice. This paper gives an empirical comparison of performance over the period 2000–2010 of the rules of thumb to the model-based strategies. While the rules of thumb.......3–0.9 %-points (depending on the borrower’s level of conservatism) compared to the rules of thumb without increasing the risk. The answer to the question in the title is thus affirmative....

  16. Two-stage stochastic programming model for the regional-scale electricity planning under demand uncertainty

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Wu, Jung-Hua; Hsu, Yu-Ju

    2016-01-01

    Traditional electricity supply planning models regard the electricity demand as a deterministic parameter and require the total power output to satisfy the aggregate electricity demand. But in today's world, the electric system planners are facing tremendously complex environments full of uncertainties, where electricity demand is a key source of uncertainty. In addition, electricity demand patterns are considerably different for different regions. This paper developed a multi-region optimization model based on two-stage stochastic programming framework to incorporate the demand uncertainty. Furthermore, the decision tree method and Monte Carlo simulation approach are integrated into the model to simplify electricity demands in the form of nodes and determine the values and probabilities. The proposed model was successfully applied to a real case study (i.e. Taiwan's electricity sector) to show its applicability. Detail simulation results were presented and compared with those generated by a deterministic model. Finally, the long-term electricity development roadmap at a regional level could be provided on the basis of our simulation results. - Highlights: • A multi-region, two-stage stochastic programming model has been developed. • The decision tree and Monte Carlo simulation are integrated into the framework. • Taiwan's electricity sector is used to illustrate the applicability of the model. • The results under deterministic and stochastic cases are shown for comparison. • Optimal portfolios of regional generation technologies can be identified.

  17. Portfolio management of hydropower producer via stochastic programming

    International Nuclear Information System (INIS)

    Liu, Hongling; Jiang, Chuanwen; Zhang, Yan

    2009-01-01

    This paper presents a stochastic linear programming framework for the hydropower portfolio management problem with uncertainty in market prices and inflows on medium term. The uncertainty is modeled as a scenario tree using the Monte Carlo simulation method, and the objective is to maximize the expected revenue over the entire scenario tree. The portfolio decisions of the stochastic model are formulated as a tradeoff involving different scenarios. Numerical results illustrate the impact of uncertainty on the portfolio management decisions, and indicate the significant value of stochastic solution. (author)

  18. A stochastic programming approach to manufacturing flow control

    OpenAIRE

    Haurie, Alain; Moresino, Francesco

    2012-01-01

    This paper proposes and tests an approximation of the solution of a class of piecewise deterministic control problems, typically used in the modeling of manufacturing flow processes. This approximation uses a stochastic programming approach on a suitably discretized and sampled system. The method proceeds through two stages: (i) the Hamilton-Jacobi-Bellman (HJB) dynamic programming equations for the finite horizon continuous time stochastic control problem are discretized over a set of sample...

  19. A combined stochastic programming and optimal control approach to personal finance and pensions

    DEFF Research Database (Denmark)

    Konicz, Agnieszka Karolina; Pisinger, David; Rasmussen, Kourosh Marjani

    2015-01-01

    The paper presents a model that combines a dynamic programming (stochastic optimal control) approach and a multi-stage stochastic linear programming approach (SLP), integrated into one SLP formulation. Stochastic optimal control produces an optimal policy that is easy to understand and implement....

  20. Stochastic programming and market equilibrium analysis of microgrids energy management systems

    International Nuclear Information System (INIS)

    Hu, Ming-Che; Lu, Su-Ying; Chen, Yen-Haw

    2016-01-01

    Microgrids facilitate optimum utilization of distributed renewable energy, provides better local energy supply, and reduces transmission loss and greenhouse gas emission. Because the uncertainty in energy demand affects the energy demand and supply system, the aim of this research is to develop a stochastic optimization and its market equilibrium for microgrids in the electricity market. Therefore, a two-stage stochastic programming model for microgrids and the market competition model are derived in this paper. In the stochastic model, energy demand and supply uncertainties are considered. Furthermore, a case study of the stochastic model is conducted to simulate the uncertainties on the INER microgrids in Taiwanese market. The optimal investment of the generators and batteries installation and operating strategies are determined under energy demand and supply uncertainties for the INER microgrids. The results show optimal investment and operating strategies for the current INER microgrids are also determined by the proposed two-stage stochastic model in the market. In addition, trade-off between the battery capacity and microgrids performance is investigated. Battery usage and power trading between the microgrids and main grid systems are the functions of battery capacity. - Highlights: • A two-stage stochastic programming model is developed for microgrids. • Market equilibrium analysis of microgrids is conducted. • A case study of the stochastic model is conducted for INER microgrids.

  1. Yield curve event tree construction for multi stage stochastic programming models

    DEFF Research Database (Denmark)

    Rasmussen, Kourosh Marjani; Poulsen, Rolf

    Dynamic stochastic programming (DSP) provides an intuitive framework for modelling of financial portfolio choice problems where market frictions are present and dynamic re--balancing has a significant effect on initial decisions. The application of these models in practice, however, is limited....... Indeed defining a universal and tractable framework for fully ``appropriate'' event trees is in our opinion an impossible task. A problem specific approach to designing such event trees is the way ahead. In this paper we propose a number of desirable properties which should be present in an event tree...

  2. Gas contract portfolio management: a stochastic programming approach

    International Nuclear Information System (INIS)

    Haurie, A.; Smeers, Y.; Zaccour, G.

    1991-01-01

    This paper deals with a stochastic programming model which complements long range market simulation models generating scenarios concerning the evolution of demand and prices for gas in different market segments. Agas company has to negociate contracts with lengths going from one to twenty years. This stochastic model is designed to assess the risk associated with committing the gas production capacity of the company to these market segments. Different approaches are presented to overcome the difficulties associated with the very large size of the resulting optimization problem

  3. Fitting PAC spectra with stochastic models: PolyPacFit

    Energy Technology Data Exchange (ETDEWEB)

    Zacate, M. O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics and Geology (United States); Evenson, W. E. [Utah Valley University, College of Science and Health (United States); Newhouse, R.; Collins, G. S. [Washington State University, Department of Physics and Astronomy (United States)

    2010-04-15

    PolyPacFit is an advanced fitting program for time-differential perturbed angular correlation (PAC) spectroscopy. It incorporates stochastic models and provides robust options for customization of fits. Notable features of the program include platform independence and support for (1) fits to stochastic models of hyperfine interactions, (2) user-defined constraints among model parameters, (3) fits to multiple spectra simultaneously, and (4) any spin nuclear probe.

  4. Complementary programs for stochastic analysis of radionuclide transport

    International Nuclear Information System (INIS)

    Gomez Hernandez, J.J.

    1993-01-01

    The present programs will permit to analyze the risks using parametric and non parametric technic. The programs are presented in two groups: 1) variable estimation through indicator krigeaje and variable estimation by Cokrigeaje 2) variable simulation with multi gassiness stochastic model and non gassiness. This report includes new programs for the non parametric geostatistics

  5. An effective streamflow process model for optimal reservoir operation using stochastic dual dynamic programming

    OpenAIRE

    Raso , L.; Malaterre , P.O.; Bader , J.C.

    2017-01-01

    International audience; This article presents an innovative streamflow process model for use in reservoir operational rule design in stochastic dual dynamic programming (SDDP). Model features, which can be applied independently, are (1) a multiplicative process model for the forward phase and its linearized version for the backward phase; and (2) a nonuniform time-step length that is inversely proportional to seasonal variability. The advantages are (1) guaranteeing positive streamflow values...

  6. Some Remarks on Stochastic Versions of the Ramsey Growth Model

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2012-01-01

    Roč. 19, č. 29 (2012), s. 139-152 ISSN 1212-074X R&D Projects: GA ČR GAP402/10/1610; GA ČR GAP402/10/0956; GA ČR GAP402/11/0150 Institutional support: RVO:67985556 Keywords : Economic dynamics * Ramsey growth model with disturbance * stochastic dynamic programming * multistage stochastic programs Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/sladky-some remarks on stochastic versions of the ramsey growth model.pdf

  7. Stochastic hyperfine interactions modeling library

    Science.gov (United States)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  8. Dynamic electricity pricing for electric vehicles using stochastic programming

    International Nuclear Information System (INIS)

    Soares, João; Ghazvini, Mohammad Ali Fotouhi; Borges, Nuno; Vale, Zita

    2017-01-01

    Electric Vehicles (EVs) are an important source of uncertainty, due to their variable demand, departure time and location. In smart grids, the electricity demand can be controlled via Demand Response (DR) programs. Smart charging and vehicle-to-grid seem highly promising methods for EVs control. However, high capital costs remain a barrier to implementation. Meanwhile, incentive and price-based schemes that do not require high level of control can be implemented to influence the EVs' demand. Having effective tools to deal with the increasing level of uncertainty is increasingly important for players, such as energy aggregators. This paper formulates a stochastic model for day-ahead energy resource scheduling, integrated with the dynamic electricity pricing for EVs, to address the challenges brought by the demand and renewable sources uncertainty. The two-stage stochastic programming approach is used to obtain the optimal electricity pricing for EVs. A realistic case study projected for 2030 is presented based on Zaragoza network. The results demonstrate that it is more effective than the deterministic model and that the optimal pricing is preferable. This study indicates that adequate DR schemes like the proposed one are promising to increase the customers' satisfaction in addition to improve the profitability of the energy aggregation business. - Highlights: • A stochastic model for energy scheduling tackling several uncertainty sources. • A two-stage stochastic programming is used to tackle the developed model. • Optimal EV electricity pricing seems to improve the profits. • The propose results suggest to increase the customers' satisfaction.

  9. Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-05-23

    This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.

  10. Population stochastic modelling (PSM)-An R package for mixed-effects models based on stochastic differential equations

    DEFF Research Database (Denmark)

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode

    2009-01-01

    are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE1 approximation......The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model...... development, J. Pharmacokinet. Pharmacodyn. 32 (February(l)) (2005) 109-141; C.W. Tornoe, R.V Overgaard, H. Agerso, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8...

  11. An Interval-Parameter Fuzzy Linear Programming with Stochastic Vertices Model for Water Resources Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Yan Han

    2013-01-01

    Full Text Available An interval-parameter fuzzy linear programming with stochastic vertices (IFLPSV method is developed for water resources management under uncertainty by coupling interval-parameter fuzzy linear programming (IFLP with stochastic programming (SP. As an extension of existing interval parameter fuzzy linear programming, the developed IFLPSV approach has advantages in dealing with dual uncertainty optimization problems, which uncertainty presents as interval parameter with stochastic vertices in both of the objective functions and constraints. The developed IFLPSV method improves upon the IFLP method by allowing dual uncertainty parameters to be incorporated into the optimization processes. A hybrid intelligent algorithm based on genetic algorithm and artificial neural network is used to solve the developed model. The developed method is then applied to water resources allocation in Beijing city of China in 2020, where water resources shortage is a challenging issue. The results indicate that reasonable solutions have been obtained, which are helpful and useful for decision makers. Although the amount of water supply from Guanting and Miyun reservoirs is declining with rainfall reduction, water supply from the South-to-North Water Transfer project will have important impact on water supply structure of Beijing city, particularly in dry year and extraordinary dry year.

  12. Stochastic models of the Social Security trust funds.

    Science.gov (United States)

    Burdick, Clark; Manchester, Joyce

    Each year in March, the Board of Trustees of the Social Security trust funds reports on the current and projected financial condition of the Social Security programs. Those programs, which pay monthly benefits to retired workers and their families, to the survivors of deceased workers, and to disabled workers and their families, are financed through the Old-Age, Survivors, and Disability Insurance (OASDI) Trust Funds. In their 2003 report, the Trustees present, for the first time, results from a stochastic model of the combined OASDI trust funds. Stochastic modeling is an important new tool for Social Security policy analysis and offers the promise of valuable new insights into the financial status of the OASDI trust funds and the effects of policy changes. The results presented in this article demonstrate that several stochastic models deliver broadly consistent results even though they use very different approaches and assumptions. However, they also show that the variation in trust fund outcomes differs as the approach and assumptions are varied. Which approach and assumptions are best suited for Social Security policy analysis remains an open question. Further research is needed before the promise of stochastic modeling is fully realized. For example, neither parameter uncertainty nor variability in ultimate assumption values is recognized explicitly in the analyses. Despite this caveat, stochastic modeling results are already shedding new light on the range and distribution of trust fund outcomes that might occur in the future.

  13. Stochastic Watershed Models for Risk Based Decision Making

    Science.gov (United States)

    Vogel, R. M.

    2017-12-01

    Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation

  14. Stochastic models for turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  15. Stochastic Robust Mathematical Programming Model for Power System Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Changhyeok, Lee; Haoyong, Chen; Mehrotra, Sanjay

    2016-01-01

    This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.

  16. Mortgage Loan Portfolio Optimization Using Multi-Stage Stochastic Programming

    DEFF Research Database (Denmark)

    Rasmussen, Kourosh Marjani; Clausen, Jens

    2007-01-01

    We consider the dynamics of the Danish mortgage loan system and propose several models to reflect the choices of a mortgagor as well as his attitude towards risk. The models are formulated as multi stage stochastic integer programs, which are difficult to solve for more than 10 stages. Scenario...

  17. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.

    Science.gov (United States)

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik

    2009-06-01

    The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.

  18. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  19. A novel two-stage stochastic programming model for uncertainty characterization in short-term optimal strategy for a distribution company

    International Nuclear Information System (INIS)

    Ahmadi, Abdollah; Charwand, Mansour; Siano, Pierluigi; Nezhad, Ali Esmaeel; Sarno, Debora; Gitizadeh, Mohsen; Raeisi, Fatima

    2016-01-01

    In order to supply the demands of the end users in a competitive market, a distribution company purchases energy from the wholesale market while other options would be in access in the case of possessing distributed generation units and interruptible loads. In this regard, this study presents a two-stage stochastic programming model for a distribution company energy acquisition market model to manage the involvement of different electric energy resources characterized by uncertainties with the minimum cost. In particular, the distribution company operations planning over a day-ahead horizon is modeled as a stochastic mathematical optimization, with the objective of minimizing costs. By this, distribution company decisions on grid purchase, owned distributed generation units and interruptible load scheduling are determined. Then, these decisions are considered as boundary constraints to a second step, which deals with distribution company's operations in the hour-ahead market with the objective of minimizing the short-term cost. The uncertainties in spot market prices and wind speed are modeled by means of probability distribution functions of their forecast errors and the roulette wheel mechanism and lattice Monte Carlo simulation are used to generate scenarios. Numerical results show the capability of the proposed method. - Highlights: • Proposing a new a stochastic-based two-stage operations framework in retail competitive markets. • Proposing a Mixed Integer Non-Linear stochastic programming. • Employing roulette wheel mechanism and Lattice Monte Carlo Simulation.

  20. Designing time-of-use program based on stochastic security constrained unit commitment considering reliability index

    International Nuclear Information System (INIS)

    Nikzad, Mehdi; Mozafari, Babak; Bashirvand, Mahdi; Solaymani, Soodabeh; Ranjbar, Ali Mohamad

    2012-01-01

    Recently in electricity markets, a massive focus has been made on setting up opportunities for participating demand side. Such opportunities, also known as demand response (DR) options, are triggered by either a grid reliability problem or high electricity prices. Two important challenges that market operators are facing are appropriate designing and reasonable pricing of DR options. In this paper, time-of-use program (TOU) as a prevalent time-varying program is modeled linearly based on own and cross elasticity definition. In order to decide on TOU rates, a stochastic model is proposed in which the optimum TOU rates are determined based on grid reliability index set by the operator. Expected Load Not Supplied (ELNS) is used to evaluate reliability of the power system in each hour. The proposed stochastic model is formulated as a two-stage stochastic mixed-integer linear programming (SMILP) problem and solved using CPLEX solver. The validity of the method is tested over the IEEE 24-bus test system. In this regard, the impact of the proposed pricing method on system load profile; operational costs and required capacity of up- and down-spinning reserve as well as improvement of load factor is demonstrated. Also the sensitivity of the results to elasticity coefficients is investigated. -- Highlights: ► Time-of-use demand response program is linearly modeled. ► A stochastic model is proposed to determine the optimum TOU rates based on ELNS index set by the operator. ► The model is formulated as a short-term two-stage stochastic mixed-integer linear programming problem.

  1. Multiobjective Two-Stage Stochastic Programming Problems with Interval Discrete Random Variables

    Directory of Open Access Journals (Sweden)

    S. K. Barik

    2012-01-01

    Full Text Available Most of the real-life decision-making problems have more than one conflicting and incommensurable objective functions. In this paper, we present a multiobjective two-stage stochastic linear programming problem considering some parameters of the linear constraints as interval type discrete random variables with known probability distribution. Randomness of the discrete intervals are considered for the model parameters. Further, the concepts of best optimum and worst optimum solution are analyzed in two-stage stochastic programming. To solve the stated problem, first we remove the randomness of the problem and formulate an equivalent deterministic linear programming model with multiobjective interval coefficients. Then the deterministic multiobjective model is solved using weighting method, where we apply the solution procedure of interval linear programming technique. We obtain the upper and lower bound of the objective function as the best and the worst value, respectively. It highlights the possible risk involved in the decision-making tool. A numerical example is presented to demonstrate the proposed solution procedure.

  2. Dynamic optimization deterministic and stochastic models

    CERN Document Server

    Hinderer, Karl; Stieglitz, Michael

    2016-01-01

    This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.

  3. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    Science.gov (United States)

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Stochastic biomathematical models with applications to neuronal modeling

    CERN Document Server

    Batzel, Jerry; Ditlevsen, Susanne

    2013-01-01

    Stochastic biomathematical models are becoming increasingly important as new light is shed on the role of noise in living systems. In certain biological systems, stochastic effects may even enhance a signal, thus providing a biological motivation for the noise observed in living systems. Recent advances in stochastic analysis and increasing computing power facilitate the analysis of more biophysically realistic models, and this book provides researchers in computational neuroscience and stochastic systems with an overview of recent developments. Key concepts are developed in chapters written by experts in their respective fields. Topics include: one-dimensional homogeneous diffusions and their boundary behavior, large deviation theory and its application in stochastic neurobiological models, a review of mathematical methods for stochastic neuronal integrate-and-fire models, stochastic partial differential equation models in neurobiology, and stochastic modeling of spreading cortical depression.

  5. Generation Expansion Planning with Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    DEFF Research Database (Denmark)

    Zhan, Yiduo; Zheng, Qipeng; Wang, Jianhui

    2016-01-01

    , the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming......Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined...

  6. Distributed parallel computing in stochastic modeling of groundwater systems.

    Science.gov (United States)

    Dong, Yanhui; Li, Guomin; Xu, Haizhen

    2013-03-01

    Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  7. A two-stage stochastic programming model for the optimal design of distributed energy systems

    International Nuclear Information System (INIS)

    Zhou, Zhe; Zhang, Jianyun; Liu, Pei; Li, Zheng; Georgiadis, Michael C.; Pistikopoulos, Efstratios N.

    2013-01-01

    Highlights: ► The optimal design of distributed energy systems under uncertainty is studied. ► A stochastic model is developed using genetic algorithm and Monte Carlo method. ► The proposed system possesses inherent robustness under uncertainty. ► The inherent robustness is due to energy storage facilities and grid connection. -- Abstract: A distributed energy system is a multi-input and multi-output energy system with substantial energy, economic and environmental benefits. The optimal design of such a complex system under energy demand and supply uncertainty poses significant challenges in terms of both modelling and corresponding solution strategies. This paper proposes a two-stage stochastic programming model for the optimal design of distributed energy systems. A two-stage decomposition based solution strategy is used to solve the optimization problem with genetic algorithm performing the search on the first stage variables and a Monte Carlo method dealing with uncertainty in the second stage. The model is applied to the planning of a distributed energy system in a hotel. Detailed computational results are presented and compared with those generated by a deterministic model. The impacts of demand and supply uncertainty on the optimal design of distributed energy systems are systematically investigated using proposed modelling framework and solution approach.

  8. Stochastic models, estimation, and control

    CERN Document Server

    Maybeck, Peter S

    1982-01-01

    This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.

  9. Introduction to modeling and analysis of stochastic systems

    CERN Document Server

    Kulkarni, V G

    2011-01-01

    This is an introductory-level text on stochastic modeling. It is suited for undergraduate students in engineering, operations research, statistics, mathematics, actuarial science, business management, computer science, and public policy. It employs a large number of examples to teach the students to use stochastic models of real-life systems to predict their performance, and use this analysis to design better systems. The book is devoted to the study of important classes of stochastic processes: discrete and continuous time Markov processes, Poisson processes, renewal and regenerative processes, semi-Markov processes, queueing models, and diffusion processes. The book systematically studies the short-term and the long-term behavior, cost/reward models, and first passage times. All the material is illustrated with many examples, and case studies. The book provides a concise review of probability in the appendix. The book emphasizes numerical answers to the problems. A collection of MATLAB programs to accompany...

  10. Hybrid Semantics of Stochastic Programs with Dynamic Reconfiguration

    Directory of Open Access Journals (Sweden)

    Alberto Policriti

    2009-10-01

    Full Text Available We begin by reviewing a technique to approximate the dynamics of stochastic programs --written in a stochastic process algebra-- by a hybrid system, suitable to capture a mixed discrete/continuous evolution. In a nutshell, the discrete dynamics is kept stochastic while the continuous evolution is given in terms of ODEs, and the overall technique, therefore, naturally associates a Piecewise Deterministic Markov Process with a stochastic program. The specific contribution in this work consists in an increase of the flexibility of the translation scheme, obtained by allowing a dynamic reconfiguration of the degree of discreteness/continuity of the semantics. We also discuss the relationships of this approach with other hybrid simulation strategies for biochemical systems.

  11. A stochastic-programming approach to integrated asset and liability ...

    African Journals Online (AJOL)

    This increase in complexity has provided an impetus for the investigation into integrated asset- and liability-management frameworks that could realistically address dynamic portfolio allocation in a risk-controlled way. In this paper the authors propose a multi-stage dynamic stochastic-programming model for the integrated ...

  12. Using linear programming to analyze and optimize stochastic flow lines

    DEFF Research Database (Denmark)

    Helber, Stefan; Schimmelpfeng, Katja; Stolletz, Raik

    2011-01-01

    This paper presents a linear programming approach to analyze and optimize flow lines with limited buffer capacities and stochastic processing times. The basic idea is to solve a huge but simple linear program that models an entire simulation run of a multi-stage production process in discrete time...... programming and hence allows us to solve buffer allocation problems. We show under which conditions our method works well by comparing its results to exact values for two-machine models and approximate simulation results for longer lines....

  13. GillesPy: A Python Package for Stochastic Model Building and Simulation

    OpenAIRE

    Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.

    2016-01-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we descr...

  14. Stochastic Still Water Response Model

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager

    2002-01-01

    In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model is...... out that an important parameter of the stochastic cargo field model is the mean number of containers delivered by each customer.......In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model...... is to establish the stochastic load field conditional on a given draft and trim of the vessel. The model contributes to a realistic modelling of the stochastic load processes to be used in a reliability evaluation of the ship hull. Emphasis is given to container vessels. The formulation of the model for obtaining...

  15. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    Science.gov (United States)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-01-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  16. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    Science.gov (United States)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-06-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  17. Portfolio Optimization with Stochastic Dividends and Stochastic Volatility

    Science.gov (United States)

    Varga, Katherine Yvonne

    2015-01-01

    We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…

  18. Stochastic-field cavitation model

    International Nuclear Information System (INIS)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-01-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations

  19. Stochastic-field cavitation model

    Science.gov (United States)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-07-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  20. An SDP Approach for Multiperiod Mixed 0–1 Linear Programming Models with Stochastic Dominance Constraints for Risk Management

    DEFF Research Database (Denmark)

    Escudero, Laureano F.; Monge, Juan Francisco; Morales, Dolores Romero

    2015-01-01

    In this paper we consider multiperiod mixed 0–1 linear programming models under uncertainty. We propose a risk averse strategy using stochastic dominance constraints (SDC) induced by mixed-integer linear recourse as the risk measure. The SDC strategy extends the existing literature to the multist...

  1. A Stochastic Operational Planning Model for Smart Power Systems

    Directory of Open Access Journals (Sweden)

    Sh. Jadid

    2014-12-01

    Full Text Available Smart Grids are result of utilizing novel technologies such as distributed energy resources, and communication technologies in power system to compensate some of its defects. Various power resources provide some benefits for operation domain however, power system operator should use a powerful methodology to manage them. Renewable resources and load add uncertainty to the problem. So, independent system operator should use a stochastic method to manage them. A Stochastic unit commitment is presented in this paper to schedule various power resources such as distributed generation units, conventional thermal generation units, wind and PV farms, and demand response resources. Demand response resources, interruptible loads, distributed generation units, and conventional thermal generation units are used to provide required reserve for compensating stochastic nature of various resources and loads. In the presented model, resources connected to distribution network can participate in wholesale market through aggregators. Moreover, a novel three-program model which can be used by aggregators is presented in this article. Loads and distributed generation can contract with aggregators by these programs. A three-bus test system and the IEEE RTS are used to illustrate usefulness of the presented model. The results show that ISO can manage the system effectively by using this model

  2. VIDENTE 1.1: a graphical user interface and decision support system for stochastic modelling of water table fluctuations at a single location; includes documentation of the programs KALMAX, KALTFN, SSD and EMERALD and introductions to stochastic modelling; 2nd rev. ed

    NARCIS (Netherlands)

    Bierkens, M.F.P.; Bron, W.A.; Knotters, M.

    2002-01-01

    A description is given of the program VIDENTE. VIDENTE contains a decision support system to choose between different models for stochastic modelling of water-table depths and a graphical user interface to facilitate operating and running four implemented models: KALMAX, KALTFN, SSD and EMERALD. In

  3. Stochastic linear dynamical programming in order to apply it in energy modelling

    Energy Technology Data Exchange (ETDEWEB)

    El Hachem, S

    1995-11-01

    This thesis contributes to the development of new algorithms for the computation of stochastic dynamic problem and its mini-maxi variant for the case of imperfect knowledge on random data. The proposed algorithms are scenarios aggregation type. It also contributes to integrate these algorithms in a decision support approach and to discuss the stochastic modeling of two energy problems: the refining and the portfolio gas contracts. (author). 112 refs., 5 tabs.

  4. Research on nonlinear stochastic dynamical price model

    International Nuclear Information System (INIS)

    Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng

    2008-01-01

    In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies

  5. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  6. Stochasticity Modeling in Memristors

    KAUST Repository

    Naous, Rawan

    2015-10-26

    Diverse models have been proposed over the past years to explain the exhibiting behavior of memristors, the fourth fundamental circuit element. The models varied in complexity ranging from a description of physical mechanisms to a more generalized mathematical modeling. Nonetheless, stochasticity, a widespread observed phenomenon, has been immensely overlooked from the modeling perspective. This inherent variability within the operation of the memristor is a vital feature for the integration of this nonlinear device into the stochastic electronics realm of study. In this paper, experimentally observed innate stochasticity is modeled in a circuit compatible format. The model proposed is generic and could be incorporated into variants of threshold-based memristor models in which apparent variations in the output hysteresis convey the switching threshold shift. Further application as a noise injection alternative paves the way for novel approaches in the fields of neuromorphic engineering circuits design. On the other hand, extra caution needs to be paid to variability intolerant digital designs based on non-deterministic memristor logic.

  7. Stochasticity Modeling in Memristors

    KAUST Repository

    Naous, Rawan; Al-Shedivat, Maruan; Salama, Khaled N.

    2015-01-01

    Diverse models have been proposed over the past years to explain the exhibiting behavior of memristors, the fourth fundamental circuit element. The models varied in complexity ranging from a description of physical mechanisms to a more generalized mathematical modeling. Nonetheless, stochasticity, a widespread observed phenomenon, has been immensely overlooked from the modeling perspective. This inherent variability within the operation of the memristor is a vital feature for the integration of this nonlinear device into the stochastic electronics realm of study. In this paper, experimentally observed innate stochasticity is modeled in a circuit compatible format. The model proposed is generic and could be incorporated into variants of threshold-based memristor models in which apparent variations in the output hysteresis convey the switching threshold shift. Further application as a noise injection alternative paves the way for novel approaches in the fields of neuromorphic engineering circuits design. On the other hand, extra caution needs to be paid to variability intolerant digital designs based on non-deterministic memristor logic.

  8. Dynamic stochastic accumulation model with application to pension savings management

    Directory of Open Access Journals (Sweden)

    Melicherčik Igor

    2010-01-01

    Full Text Available We propose a dynamic stochastic accumulation model for determining optimal decision between stock and bond investments during accumulation of pension savings. Stock prices are assumed to be driven by the geometric Brownian motion. Interest rates are modeled by means of the Cox-Ingersoll-Ross model. The optimal decision as a solution to the corresponding dynamic stochastic program is a function of the duration of saving, the level of savings and the short rate. Qualitative and quantitative properties of the optimal solution are analyzed. The model is tested on the funded pillar of the Slovak pension system. The results are calculated for various risk preferences of a saver.

  9. VIDENTE: a graphical user interface and decision support system for stochastic modelling of water table fluctuations at a single location; includes documentation of the programs KALMAX, KALTFN, SSD and EMERALD and introductions to stochastic modellin

    NARCIS (Netherlands)

    Bierkens, M.F.P.; Bron, W.A.

    2000-01-01

    The VIDENTE program contains a decision support system (DSS) to choose between different models for stochastic modelling of water-table depths, and a graphical user interface to facilitate operating and running four implemented models: KALMAX, KALTFN,SSDS and EMERALD. In self-contained parts each of

  10. Environmental and Economic Optimization Model for Electric System Planning in Ningxia, China: Inexact Stochastic Risk-Aversion Programming Approach

    Directory of Open Access Journals (Sweden)

    L. Ji

    2015-01-01

    Full Text Available The main goal of this paper is to provide a novel risk aversion model for long-term electric power system planning from the manager’s perspective with the consideration of various uncertainties. In the proposed method, interval parameter programming and two-stage stochastic programming are integrated to deal with the technical, economics, and policy uncertainties. Moreover, downside risk theory is introduced to balance the trade-off between the profit and risk according to the decision-maker’s risk aversion attitude. To verify the effectiveness and practical application of this approach, an inexact stochastic risk aversion model is developed for regional electric system planning and management in Ningxia Hui Autonomous Region, China. The series of solutions provide the decision-maker with the optimal investment strategy and operation management under different future emission reduction scenarios and risk-aversion levels. The results indicated that pollution control devices are still the main measures to achieve the current mitigation goal and the adjustment of generation structure would play an important role in the future cleaner electricity system with the stricter environmental policy. In addition, the model can be used for generating decision alternatives and helping decision-makers identify desired energy structure adjustment and pollutants/carbon mitigation abatement policies under various economic and system-reliability constraints.

  11. Predicting population extinction or disease outbreaks with stochastic models

    Directory of Open Access Journals (Sweden)

    Linda J. S. Allen

    2017-01-01

    Full Text Available Models of exponential growth, logistic growth and epidemics are common applications in undergraduate differential equation courses. The corresponding stochastic models are not part of these courses, although when population sizes are small their behaviour is often more realistic and distinctly different from deterministic models. For example, the randomness associated with births and deaths may lead to population extinction even in an exponentially growing population. Some background in continuous-time Markov chains and applications to populations, epidemics and cancer are presented with a goal to introduce this topic into the undergraduate mathematics curriculum that will encourage further investigation into problems on conservation, infectious diseases and cancer therapy. MATLAB programs for graphing sample paths of stochastic models are provided in the Appendix.

  12. GillesPy: A Python Package for Stochastic Model Building and Simulation.

    Science.gov (United States)

    Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R

    2016-09-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.

  13. Stochastic models: theory and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  14. Thin and heavy tails in stochastic programming

    Czech Academy of Sciences Publication Activity Database

    Kaňková, Vlasta; Houda, Michal

    2015-01-01

    Roč. 51, č. 3 (2015), s. 433-456 ISSN 0023-5954 R&D Projects: GA ČR GA13-14445S Institutional support: RVO:67985556 Keywords : stochastic programming problems * stability * Wasserstein metric * L1 norm * Lipschitz property * empirical estimates * convergence rate * linear and nonlinear dependence * probability and risk constraints * stochastic dominance Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.628, year: 2015 http://library.utia.cas.cz/separaty/2015/E/kankova-0447994.pdf

  15. Stochastic Optimization of Wind Turbine Power Factor Using Stochastic Model of Wind Power

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic optimization algorithm that aims to minimize the expectation of the system power losses by controlling wind turbine (WT) power factors. This objective of the optimization is subject to the probability constraints of bus voltage and line current requirements....... The optimization algorithm utilizes the stochastic models of wind power generation (WPG) and load demand to take into account their stochastic variation. The stochastic model of WPG is developed on the basis of a limited autoregressive integrated moving average (LARIMA) model by introducing a crosscorrelation...... structure to the LARIMA model. The proposed stochastic optimization is carried out on a 69-bus distribution system. Simulation results confirm that, under various combinations of WPG and load demand, the system power losses are considerably reduced with the optimal setting of WT power factor as compared...

  16. Incorporating Daily Flood Control Objectives Into a Monthly Stochastic Dynamic Programing Model for a Hydroelectric Complex

    Science.gov (United States)

    Druce, Donald J.

    1990-01-01

    A monthly stochastic dynamic programing model was recently developed and implemented at British Columbia (B.C.) Hydro to provide decision support for short-term energy exports and, if necessary, for flood control on the Peace River in northern British Columbia. The model establishes the marginal cost of supplying energy from the B.C. Hydro system, as well as a monthly operating policy for the G.M. Shrum and Peace Canyon hydroelectric plants and the Williston Lake storage reservoir. A simulation model capable of following the operating policy then determines the probability of refilling Williston Lake and possible spill rates and volumes. Reservoir inflows are input to both models in daily and monthly formats. The results indicate that flood control can be accommodated without sacrificing significant export revenue.

  17. Incorporating daily flood control objectives into a monthly stochastic dynamic programming model for a hydroelectric complex

    Energy Technology Data Exchange (ETDEWEB)

    Druce, D.J. (British Columbia Hydro and Power Authority, Vancouver, British Columbia (Canada))

    1990-01-01

    A monthly stochastic dynamic programing model was recently developed and implemented at British Columbia (B.C.) Hydro to provide decision support for short-term energy exports and, if necessary, for flood control on the Peace River in northern British Columbia. The model established the marginal cost of supplying energy from the B.C. Hydro system, as well as a monthly operating policy for the G.M. Shrum and Peace Canyon hydroelectric plants and the Williston Lake storage reservoir. A simulation model capable of following the operating policy then determines the probability of refilling Williston Lake and possible spill rates and volumes. Reservoir inflows are input to both models in daily and monthly formats. The results indicate that flood control can be accommodated without sacrificing significant export revenue.

  18. Generation Expansion Planning With Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Yiduo; Zheng, Qipeng P.; Wang, Jianhui; Pinson, Pierre

    2017-07-01

    Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets' planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of wind power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning.

  19. Stochastic diffusion models for substitutable technological innovations

    NARCIS (Netherlands)

    Wang, L.; Hu, B.; Yu, X.

    2004-01-01

    Based on the analysis of firms' stochastic adoption behaviour, this paper first points out the necessity to build more practical stochastic models. And then, stochastic evolutionary models are built for substitutable innovation diffusion system. Finally, through the computer simulation of the

  20. Sequential neural models with stochastic layers

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich

    2016-01-01

    How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural...... generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model's posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over...

  1. The Dynamic Programming Method of Stochastic Differential Game for Functional Forward-Backward Stochastic System

    Directory of Open Access Journals (Sweden)

    Shaolin Ji

    2013-01-01

    Full Text Available This paper is devoted to a stochastic differential game (SDG of decoupled functional forward-backward stochastic differential equation (FBSDE. For our SDG, the associated upper and lower value functions of the SDG are defined through the solution of controlled functional backward stochastic differential equations (BSDEs. Applying the Girsanov transformation method introduced by Buckdahn and Li (2008, the upper and the lower value functions are shown to be deterministic. We also generalize the Hamilton-Jacobi-Bellman-Isaacs (HJBI equations to the path-dependent ones. By establishing the dynamic programming principal (DPP, we derive that the upper and the lower value functions are the viscosity solutions of the corresponding upper and the lower path-dependent HJBI equations, respectively.

  2. Numerical Simulation of the Heston Model under Stochastic Correlation

    Directory of Open Access Journals (Sweden)

    Long Teng

    2017-12-01

    Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.

  3. Stochastic control theory dynamic programming principle

    CERN Document Server

    Nisio, Makiko

    2015-01-01

    This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-ma...

  4. Transport properties of stochastic Lorentz models

    NARCIS (Netherlands)

    Beijeren, H. van

    Diffusion processes are considered for one-dimensional stochastic Lorentz models, consisting of randomly distributed fixed scatterers and one moving light particle. In waiting time Lorentz models the light particle makes instantaneous jumps between scatterers after a stochastically distributed

  5. Modeling and analysis of stochastic systems

    CERN Document Server

    Kulkarni, Vidyadhar G

    2011-01-01

    Based on the author's more than 25 years of teaching experience, Modeling and Analysis of Stochastic Systems, Second Edition covers the most important classes of stochastic processes used in the modeling of diverse systems, from supply chains and inventory systems to genetics and biological systems. For each class of stochastic process, the text includes its definition, characterization, applications, transient and limiting behavior, first passage times, and cost/reward models. Along with reorganizing the material, this edition revises and adds new exercises and examples. New to the second edi

  6. Modelling Cow Behaviour Using Stochastic Automata

    DEFF Research Database (Denmark)

    Jónsson, Ragnar Ingi

    This report covers an initial study on the modelling of cow behaviour using stochastic automata with the aim of detecting lameness. Lameness in cows is a serious problem that needs to be dealt with because it results in less profitable production units and in reduced quality of life...... for the affected livestock. By featuring training data consisting of measurements of cow activity, three different models are obtained, namely an autonomous stochastic automaton, a stochastic automaton with coinciding state and output and an autonomous stochastic automaton with coinciding state and output, all...... of which describe the cows' activity in the two regarded behavioural scenarios, non-lame and lame. Using the experimental measurement data the different behavioural relations for the two regarded behavioural scenarios are assessed. The three models comprise activity within last hour, activity within last...

  7. A Stochastic Programming Approach for a Multi-Site Supply Chain Planning in Textile and Apparel Industry under Demand Uncertainty

    Directory of Open Access Journals (Sweden)

    Houssem Felfel

    2015-11-01

    Full Text Available In this study, a new stochastic model is proposed to deal with a multi-product, multi-period, multi-stage, multi-site production and transportation supply chain planning problem under demand uncertainty. A two-stage stochastic linear programming approach is used to maximize the expected profit. Decisions such as the production amount, the inventory level of finished and semi-finished product, the amount of backorder and the quantity of products to be transported between upstream and downstream plants in each period are considered. The robustness of production supply chain plan is then evaluated using statistical and risk measures. A case study from a real textile and apparel industry is shown in order to compare the performances of the proposed stochastic programming model and the deterministic model.

  8. Electricity price modeling with stochastic time change

    International Nuclear Information System (INIS)

    Borovkova, Svetlana; Schmeck, Maren Diane

    2017-01-01

    In this paper, we develop a novel approach to electricity price modeling, based on the powerful technique of stochastic time change. This technique allows us to incorporate the characteristic features of electricity prices (such as seasonal volatility, time varying mean reversion and seasonally occurring price spikes) into the model in an elegant and economically justifiable way. The stochastic time change introduces stochastic as well as deterministic (e.g., seasonal) features in the price process' volatility and in the jump component. We specify the base process as a mean reverting jump diffusion and the time change as an absolutely continuous stochastic process with seasonal component. The activity rate of the stochastic time change can be related to the factors that influence supply and demand. Here we use the temperature as a proxy for the demand and hence, as the driving factor of the stochastic time change, and show that this choice leads to realistic price paths. We derive properties of the resulting price process and develop the model calibration procedure. We calibrate the model to the historical EEX power prices and apply it to generating realistic price paths by Monte Carlo simulations. We show that the simulated price process matches the distributional characteristics of the observed electricity prices in periods of both high and low demand. - Highlights: • We develop a novel approach to electricity price modeling, based on the powerful technique of stochastic time change. • We incorporate the characteristic features of electricity prices, such as seasonal volatility and spikes into the model. • We use the temperature as a proxy for the demand and hence, as the driving factor of the stochastic time change • We derive properties of the resulting price process and develop the model calibration procedure. • We calibrate the model to the historical EEX power prices and apply it to generating realistic price paths.

  9. Stochastic volatility and stochastic leverage

    DEFF Research Database (Denmark)

    Veraart, Almut; Veraart, Luitgard A. M.

    This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

  10. A Stochastic Integer Programming Model for Minimizing Cost in the Use of Rain Water Collectors for Firefighting

    Directory of Open Access Journals (Sweden)

    Luis A. Rivera-Morales

    2014-01-01

    Full Text Available In this paper we propose a stochastic integer programming optimization model to determine the optimal location and number of rain water collectors (RWCs for forest firefighting. The objective is to minimize expected total cost to control forest fires. The model is tested using a real case and several additional realistic scenarios. The impact on the solution of varying the limit on the number of RWCs, the RWC water capacity, the aircraft capacity, the water demands, and the aircraft operating cost is explored. Some observations are that the objective value improves with larger RWCs and with the use of aircraft with greater capacity.

  11. Using genetic algorithm to solve a new multi-period stochastic optimization model

    Science.gov (United States)

    Zhang, Xin-Li; Zhang, Ke-Cun

    2009-09-01

    This paper presents a new asset allocation model based on the CVaR risk measure and transaction costs. Institutional investors manage their strategic asset mix over time to achieve favorable returns subject to various uncertainties, policy and legal constraints, and other requirements. One may use a multi-period portfolio optimization model in order to determine an optimal asset mix. Recently, an alternative stochastic programming model with simulated paths was proposed by Hibiki [N. Hibiki, A hybrid simulation/tree multi-period stochastic programming model for optimal asset allocation, in: H. Takahashi, (Ed.) The Japanese Association of Financial Econometrics and Engineering, JAFFE Journal (2001) 89-119 (in Japanese); N. Hibiki A hybrid simulation/tree stochastic optimization model for dynamic asset allocation, in: B. Scherer (Ed.), Asset and Liability Management Tools: A Handbook for Best Practice, Risk Books, 2003, pp. 269-294], which was called a hybrid model. However, the transaction costs weren't considered in that paper. In this paper, we improve Hibiki's model in the following aspects: (1) The risk measure CVaR is introduced to control the wealth loss risk while maximizing the expected utility; (2) Typical market imperfections such as short sale constraints, proportional transaction costs are considered simultaneously. (3) Applying a genetic algorithm to solve the resulting model is discussed in detail. Numerical results show the suitability and feasibility of our methodology.

  12. Stochastic models of cell motility

    DEFF Research Database (Denmark)

    Gradinaru, Cristian

    2012-01-01

    Cell motility and migration are central to the development and maintenance of multicellular organisms, and errors during this process can lead to major diseases. Consequently, the mechanisms and phenomenology of cell motility are currently under intense study. In recent years, a new...... interdisciplinary field focusing on the study of biological processes at the nanoscale level, with a range of technological applications in medicine and biological research, has emerged. The work presented in this thesis is at the interface of cell biology, image processing, and stochastic modeling. The stochastic...... models introduced here are based on persistent random motion, which I apply to real-life studies of cell motility on flat and nanostructured surfaces. These models aim to predict the time-dependent position of cell centroids in a stochastic manner, and conversely determine directly from experimental...

  13. Stochastic Modelling of Hydrologic Systems

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa

    2007-01-01

    In this PhD project several stochastic modelling methods are studied and applied on various subjects in hydrology. The research was prepared at Informatics and Mathematical Modelling at the Technical University of Denmark. The thesis is divided into two parts. The first part contains...... an introduction and an overview of the papers published. Then an introduction to basic concepts in hydrology along with a description of hydrological data is given. Finally an introduction to stochastic modelling is given. The second part contains the research papers. In the research papers the stochastic methods...... are described, as at the time of publication these methods represent new contribution to hydrology. The second part also contains additional description of software used and a brief introduction to stiff systems. The system in one of the papers is stiff....

  14. Stochasticity and determinism in models of hematopoiesis.

    Science.gov (United States)

    Kimmel, Marek

    2014-01-01

    This chapter represents a novel view of modeling in hematopoiesis, synthesizing both deterministic and stochastic approaches. Whereas the stochastic models work in situations where chance dominates, for example when the number of cells is small, or under random mutations, the deterministic models are more important for large-scale, normal hematopoiesis. New types of models are on the horizon. These models attempt to account for distributed environments such as hematopoietic niches and their impact on dynamics. Mixed effects of such structures and chance events are largely unknown and constitute both a challenge and promise for modeling. Our discussion is presented under the separate headings of deterministic and stochastic modeling; however, the connections between both are frequently mentioned. Four case studies are included to elucidate important examples. We also include a primer of deterministic and stochastic dynamics for the reader's use.

  15. An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty

    International Nuclear Information System (INIS)

    Xie, Y.L.; Li, Y.P.; Huang, G.H.; Li, Y.F.

    2010-01-01

    In this study, an interval fixed-mix stochastic programming (IFSP) model is developed for greenhouse gas (GHG) emissions reduction management under uncertainties. In the IFSP model, methods of interval-parameter programming (IPP) and fixed-mix stochastic programming (FSP) are introduced into an integer programming framework, such that the developed model can tackle uncertainties described in terms of interval values and probability distributions over a multi-stage context. Moreover, it can reflect dynamic decisions for facility-capacity expansion during the planning horizon. The developed model is applied to a case of planning GHG-emission mitigation, demonstrating that IFSP is applicable to reflecting complexities of multi-uncertainty, dynamic and interactive energy management systems, and capable of addressing the problem of GHG-emission reduction. A number of scenarios corresponding to different GHG-emission mitigation levels are examined; the results suggest that reasonable solutions have been generated. They can be used for generating plans for energy resource/electricity allocation and capacity expansion and help decision makers identify desired GHG mitigation policies under various economic costs and environmental requirements.

  16. Chance-constrained/stochastic linear programming model for acid rain abatement. I. Complete colinearity and noncolinearity

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J H; McBean, E A; Farquhar, G J

    1985-01-01

    A Linear Programming model is presented for development of acid rain abatement strategies in eastern North America. For a system comprised of 235 large controllable point sources and 83 uncontrolled area sources, it determines the least-cost method of reducing SO/sub 2/ emissions to satisfy maximum wet sulfur deposition limits at 20 sensitive receptor locations. In this paper, the purely deterministic model is extended to a probabilistic form by incorporating the effects of meteorologic variability on the long-range pollutant transport processes. These processes are represented by source-receptor-specific transfer coefficients. Experiments for quantifying the spatial variability of transfer coefficients showed their distributions to be approximately lognormal with logarithmic standard deviations consistently about unity. Three methods of incorporating second-moment random variable uncertainty into the deterministic LP framework are described: Two-Stage Programming Under Uncertainty, Chance-Constrained Programming and Stochastic Linear Programming. A composite CCP-SLP model is developed which embodies the two-dimensional characteristics of transfer coefficient uncertainty. Two probabilistic formulations are described involving complete colinearity and complete noncolinearity for the transfer coefficient covariance-correlation structure. The completely colinear and noncolinear formulations are considered extreme bounds in a meteorologic sense and yield abatement strategies of largely didactic value. Such strategies can be characterized as having excessive costs and undesirable deposition results in the completely colinear case and absence of a clearly defined system risk level (other than expected-value) in the noncolinear formulation.

  17. Stochastic Models of Polymer Systems

    Science.gov (United States)

    2016-01-01

    Distribution Unlimited Final Report: Stochastic Models of Polymer Systems The views, opinions and/or findings contained in this report are those of the...ADDRESS. Princeton University PO Box 0036 87 Prospect Avenue - 2nd floor Princeton, NJ 08544 -2020 14-Mar-2014 ABSTRACT Number of Papers published in...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Stochastic Models of Polymer Systems Report Title

  18. CAM Stochastic Volatility Model for Option Pricing

    Directory of Open Access Journals (Sweden)

    Wanwan Huang

    2016-01-01

    Full Text Available The coupled additive and multiplicative (CAM noises model is a stochastic volatility model for derivative pricing. Unlike the other stochastic volatility models in the literature, the CAM model uses two Brownian motions, one multiplicative and one additive, to model the volatility process. We provide empirical evidence that suggests a nontrivial relationship between the kurtosis and skewness of asset prices and that the CAM model is able to capture this relationship, whereas the traditional stochastic volatility models cannot. We introduce a control variate method and Monte Carlo estimators for some of the sensitivities (Greeks of the model. We also derive an approximation for the characteristic function of the model.

  19. Sufficient Stochastic Maximum Principle in a Regime-Switching Diffusion Model

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Catherine, E-mail: C.Donnelly@hw.ac.uk [Heriot-Watt University, Department of Actuarial Mathematics and Statistics (United Kingdom)

    2011-10-15

    We prove a sufficient stochastic maximum principle for the optimal control of a regime-switching diffusion model. We show the connection to dynamic programming and we apply the result to a quadratic loss minimization problem, which can be used to solve a mean-variance portfolio selection problem.

  20. Sufficient Stochastic Maximum Principle in a Regime-Switching Diffusion Model

    International Nuclear Information System (INIS)

    Donnelly, Catherine

    2011-01-01

    We prove a sufficient stochastic maximum principle for the optimal control of a regime-switching diffusion model. We show the connection to dynamic programming and we apply the result to a quadratic loss minimization problem, which can be used to solve a mean-variance portfolio selection problem.

  1. Approximation in two-stage stochastic integer programming

    NARCIS (Netherlands)

    W. Romeijnders; L. Stougie (Leen); M. van der Vlerk

    2014-01-01

    htmlabstractApproximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solution value.

  2. Approximation in two-stage stochastic integer programming

    NARCIS (Netherlands)

    Romeijnders, W.; Stougie, L.; van der Vlerk, M.H.

    2014-01-01

    Approximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solution value. However,

  3. Stochastic population and epidemic models persistence and extinction

    CERN Document Server

    Allen, Linda J S

    2015-01-01

    This monograph provides a summary of the basic theory of branching processes for single-type and multi-type processes. Classic examples of population and epidemic models illustrate the probability of population or epidemic extinction obtained from the theory of branching processes. The first chapter develops the branching process theory, while in the second chapter two applications to population and epidemic processes of single-type branching process theory are explored. The last two chapters present multi-type branching process applications to epidemic models, and then continuous-time and continuous-state branching processes with applications. In addition, several MATLAB programs for simulating stochastic sample paths  are provided in an Appendix. These notes originated as part of a lecture series on Stochastics in Biological Systems at the Mathematical Biosciences Institute in Ohio, USA. Professor Linda Allen is a Paul Whitfield Horn Professor of Mathematics in the Department of Mathematics and Statistics ...

  4. Modeling stochasticity and robustness in gene regulatory networks.

    Science.gov (United States)

    Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis

    2009-06-15

    Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.

  5. Chemotherapy appointment scheduling under uncertainty using mean-risk stochastic integer programming.

    Science.gov (United States)

    Alvarado, Michelle; Ntaimo, Lewis

    2018-03-01

    Oncology clinics are often burdened with scheduling large volumes of cancer patients for chemotherapy treatments under limited resources such as the number of nurses and chairs. These cancer patients require a series of appointments over several weeks or months and the timing of these appointments is critical to the treatment's effectiveness. Additionally, the appointment duration, the acuity levels of each appointment, and the availability of clinic nurses are uncertain. The timing constraints, stochastic parameters, rising treatment costs, and increased demand of outpatient oncology clinic services motivate the need for efficient appointment schedules and clinic operations. In this paper, we develop three mean-risk stochastic integer programming (SIP) models, referred to as SIP-CHEMO, for the problem of scheduling individual chemotherapy patient appointments and resources. These mean-risk models are presented and an algorithm is devised to improve computational speed. Computational results were conducted using a simulation model and results indicate that the risk-averse SIP-CHEMO model with the expected excess mean-risk measure can decrease patient waiting times and nurse overtime when compared to deterministic scheduling algorithms by 42 % and 27 %, respectively.

  6. Stochastic models in reliability and maintenance

    CERN Document Server

    2002-01-01

    Our daily lives can be maintained by the high-technology systems. Computer systems are typical examples of such systems. We can enjoy our modern lives by using many computer systems. Much more importantly, we have to maintain such systems without failure, but cannot predict when such systems will fail and how to fix such systems without delay. A stochastic process is a set of outcomes of a random experiment indexed by time, and is one of the key tools needed to analyze the future behavior quantitatively. Reliability and maintainability technologies are of great interest and importance to the maintenance of such systems. Many mathematical models have been and will be proposed to describe reliability and maintainability systems by using the stochastic processes. The theme of this book is "Stochastic Models in Reliability and Main­ tainability. " This book consists of 12 chapters on the theme above from the different viewpoints of stochastic modeling. Chapter 1 is devoted to "Renewal Processes," under which cla...

  7. The multivariate supOU stochastic volatility model

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Stelzer, Robert

    Using positive semidefinite supOU (superposition of Ornstein-Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modelling long range dependence effects. The finiteness of moments and the second order...... structure of the volatility, the log returns, as well as their "squares" are discussed in detail. Moreover, we give several examples in which long memory effects occur and study how the model as well as the simple Ornstein-Uhlenbeck type stochastic volatility model behave under linear transformations....... In particular, the models are shown to be preserved under invertible linear transformations. Finally, we discuss how (sup)OU stochastic volatility models can be combined with a factor modelling approach....

  8. A Fractionally Integrated Wishart Stochastic Volatility Model

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2013-01-01

    textabstractThere has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of

  9. A stochastic SIS epidemic model with vaccination

    Science.gov (United States)

    Cao, Boqiang; Shan, Meijing; Zhang, Qimin; Wang, Weiming

    2017-11-01

    In this paper, we investigate the basic features of an SIS type infectious disease model with varying population size and vaccinations in presence of environment noise. By applying the Markov semigroup theory, we propose a stochastic reproduction number R0s which can be seen as a threshold parameter to utilize in identifying the stochastic extinction and persistence: If R0s disease-free absorbing set for the stochastic epidemic model, which implies that disease dies out with probability one; while if R0s > 1, under some mild extra conditions, the SDE model has an endemic stationary distribution which results in the stochastic persistence of the infectious disease. The most interesting finding is that large environmental noise can suppress the outbreak of the disease.

  10. Risk averse optimal operation of a virtual power plant using two stage stochastic programming

    International Nuclear Information System (INIS)

    Tajeddini, Mohammad Amin; Rahimi-Kian, Ashkan; Soroudi, Alireza

    2014-01-01

    VPP (Virtual Power Plant) is defined as a cluster of energy conversion/storage units which are centrally operated in order to improve the technical and economic performance. This paper addresses the optimal operation of a VPP considering the risk factors affecting its daily operation profits. The optimal operation is modelled in both day ahead and balancing markets as a two-stage stochastic mixed integer linear programming in order to maximize a GenCo (generation companies) expected profit. Furthermore, the CVaR (Conditional Value at Risk) is used as a risk measure technique in order to control the risk of low profit scenarios. The uncertain parameters, including the PV power output, wind power output and day-ahead market prices are modelled through scenarios. The proposed model is successfully applied to a real case study to show its applicability and the results are presented and thoroughly discussed. - Highlights: • Virtual power plant modelling considering a set of energy generating and conversion units. • Uncertainty modelling using two stage stochastic programming technique. • Risk modelling using conditional value at risk. • Flexible operation of renewable energy resources. • Electricity price uncertainty in day ahead energy markets

  11. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  12. Oriented stochastic data envelopment models: ranking comparison to stochastic frontier approach

    Czech Academy of Sciences Publication Activity Database

    Brázdik, František

    -, č. 271 (2005), s. 1-46 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : stochastic data envelopment analysis * linear programming * rice farm Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp271.pdf

  13. Stochastic Wake Modelling Based on POD Analysis

    Directory of Open Access Journals (Sweden)

    David Bastine

    2018-03-01

    Full Text Available In this work, large eddy simulation data is analysed to investigate a new stochastic modeling approach for the wake of a wind turbine. The data is generated by the large eddy simulation (LES model PALM combined with an actuator disk with rotation representing the turbine. After applying a proper orthogonal decomposition (POD, three different stochastic models for the weighting coefficients of the POD modes are deduced resulting in three different wake models. Their performance is investigated mainly on the basis of aeroelastic simulations of a wind turbine in the wake. Three different load cases and their statistical characteristics are compared for the original LES, truncated PODs and the stochastic wake models including different numbers of POD modes. It is shown that approximately six POD modes are enough to capture the load dynamics on large temporal scales. Modeling the weighting coefficients as independent stochastic processes leads to similar load characteristics as in the case of the truncated POD. To complete this simplified wake description, we show evidence that the small-scale dynamics can be captured by adding to our model a homogeneous turbulent field. In this way, we present a procedure to derive stochastic wake models from costly computational fluid dynamics (CFD calculations or elaborated experimental investigations. These numerically efficient models provide the added value of possible long-term studies. Depending on the aspects of interest, different minimalized models may be obtained.

  14. Smooth Solutions to Optimal Investment Models with Stochastic Volatilities and Portfolio Constraints

    International Nuclear Information System (INIS)

    Pham, H.

    2002-01-01

    This paper deals with an extension of Merton's optimal investment problem to a multidimensional model with stochastic volatility and portfolio constraints. The classical dynamic programming approach leads to a characterization of the value function as a viscosity solution of the highly nonlinear associated Bellman equation. A logarithmic transformation expresses the value function in terms of the solution to a semilinear parabolic equation with quadratic growth on the derivative term. Using a stochastic control representation and some approximations, we prove the existence of a smooth solution to this semilinear equation. An optimal portfolio is shown to exist, and is expressed in terms of the classical solution to this semilinear equation. This reduction is useful for studying numerical schemes for both the value function and the optimal portfolio. We illustrate our results with several examples of stochastic volatility models popular in the financial literature

  15. Multistage Stochastic Programming via Autoregressive Sequences

    Czech Academy of Sciences Publication Activity Database

    Kaňková, Vlasta

    2007-01-01

    Roč. 15, č. 4 (2007), s. 99-110 ISSN 0572-3043 R&D Projects: GA ČR GA402/07/1113; GA ČR(CZ) GA402/06/0990; GA ČR GD402/03/H057 Institutional research plan: CEZ:AV0Z10750506 Keywords : Economic proceses * Multistage stochastic programming * autoregressive sequences * individual probability constraints Subject RIV: BB - Applied Statistics, Operational Research

  16. Optimization of environmental management strategies through a dynamic stochastic possibilistic multiobjective program

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xiaodong.zhang@beg.utexas.edu [Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713 (United States); Huang, Gordon [Institute of Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada)

    2013-02-15

    Highlights: ► A dynamic stochastic possibilistic multiobjective programming model is developed. ► Greenhouse gas emission control is considered. ► Three planning scenarios are analyzed and compared. ► Optimal decision schemes under three scenarios and different p{sub i} levels are obtained. ► Tradeoffs between economics and environment are reflected. -- Abstract: Greenhouse gas (GHG) emissions from municipal solid waste (MSW) management facilities have become a serious environmental issue. In MSW management, not only economic objectives but also environmental objectives should be considered simultaneously. In this study, a dynamic stochastic possibilistic multiobjective programming (DSPMP) model is developed for supporting MSW management and associated GHG emission control. The DSPMP model improves upon the existing waste management optimization methods through incorporation of fuzzy possibilistic programming and chance-constrained programming into a general mixed-integer multiobjective linear programming (MOP) framework where various uncertainties expressed as fuzzy possibility distributions and probability distributions can be effectively reflected. Two conflicting objectives are integrally considered, including minimization of total system cost and minimization of total GHG emissions from waste management facilities. Three planning scenarios are analyzed and compared, representing different preferences of the decision makers for economic development and environmental-impact (i.e. GHG-emission) issues in integrated MSW management. Optimal decision schemes under three scenarios and different p{sub i} levels (representing the probability that the constraints would be violated) are generated for planning waste flow allocation and facility capacity expansions as well as GHG emission control. The results indicate that economic and environmental tradeoffs can be effectively reflected through the proposed DSPMP model. The generated decision variables can help

  17. Stochastic stability and bifurcation in a macroeconomic model

    International Nuclear Information System (INIS)

    Li Wei; Xu Wei; Zhao Junfeng; Jin Yanfei

    2007-01-01

    On the basis of the work of Goodwin and Puu, a new business cycle model subject to a stochastically parametric excitation is derived in this paper. At first, we reduce the model to a one-dimensional diffusion process by applying the stochastic averaging method of quasi-nonintegrable Hamiltonian system. Secondly, we utilize the methods of Lyapunov exponent and boundary classification associated with diffusion process respectively to analyze the stochastic stability of the trivial solution of system. The numerical results obtained illustrate that the trivial solution of system must be globally stable if it is locally stable in the state space. Thirdly, we explore the stochastic Hopf bifurcation of the business cycle model according to the qualitative changes in stationary probability density of system response. It is concluded that the stochastic Hopf bifurcation occurs at two critical parametric values. Finally, some explanations are given in a simply way on the potential applications of stochastic stability and bifurcation analysis

  18. Stochastic volatility models and Kelvin waves

    Science.gov (United States)

    Lipton, Alex; Sepp, Artur

    2008-08-01

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.

  19. Stochastic volatility models and Kelvin waves

    International Nuclear Information System (INIS)

    Lipton, Alex; Sepp, Artur

    2008-01-01

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics

  20. Stochastic volatility models and Kelvin waves

    Energy Technology Data Exchange (ETDEWEB)

    Lipton, Alex [Merrill Lynch, Mlfc Main, 2 King Edward Street, London EC1A 1HQ (United Kingdom); Sepp, Artur [Merrill Lynch, 4 World Financial Center, New York, NY 10080 (United States)], E-mail: Alex_Lipton@ml.com, E-mail: Artur_Sepp@ml.com

    2008-08-29

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.

  1. Stochastic Modelling Of The Repairable System

    Directory of Open Access Journals (Sweden)

    Andrzejczak Karol

    2015-11-01

    Full Text Available All reliability models consisting of random time factors form stochastic processes. In this paper we recall the definitions of the most common point processes which are used for modelling of repairable systems. Particularly this paper presents stochastic processes as examples of reliability systems for the support of the maintenance related decisions. We consider the simplest one-unit system with a negligible repair or replacement time, i.e., the unit is operating and is repaired or replaced at failure, where the time required for repair and replacement is negligible. When the repair or replacement is completed, the unit becomes as good as new and resumes operation. The stochastic modelling of recoverable systems constitutes an excellent method of supporting maintenance related decision-making processes and enables their more rational use.

  2. Hybrid approaches for multiple-species stochastic reaction–diffusion models

    International Nuclear Information System (INIS)

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen

    2015-01-01

    Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries

  3. Hybrid approaches for multiple-species stochastic reaction–diffusion models

    Energy Technology Data Exchange (ETDEWEB)

    Spill, Fabian, E-mail: fspill@bu.edu [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Guerrero, Pilar [Department of Mathematics, University College London, Gower Street, London WC1E 6BT (United Kingdom); Alarcon, Tomas [Centre de Recerca Matematica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona) (Spain); Departament de Matemàtiques, Universitat Atonòma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Maini, Philip K. [Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); Byrne, Helen [Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); Computational Biology Group, Department of Computer Science, University of Oxford, Oxford OX1 3QD (United Kingdom)

    2015-10-15

    Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries.

  4. Model selection for integrated pest management with stochasticity.

    Science.gov (United States)

    Akman, Olcay; Comar, Timothy D; Hrozencik, Daniel

    2018-04-07

    In Song and Xiang (2006), an integrated pest management model with periodically varying climatic conditions was introduced. In order to address a wider range of environmental effects, the authors here have embarked upon a series of studies resulting in a more flexible modeling approach. In Akman et al. (2013), the impact of randomly changing environmental conditions is examined by incorporating stochasticity into the birth pulse of the prey species. In Akman et al. (2014), the authors introduce a class of models via a mixture of two birth-pulse terms and determined conditions for the global and local asymptotic stability of the pest eradication solution. With this work, the authors unify the stochastic and mixture model components to create further flexibility in modeling the impacts of random environmental changes on an integrated pest management system. In particular, we first determine the conditions under which solutions of our deterministic mixture model are permanent. We then analyze the stochastic model to find the optimal value of the mixing parameter that minimizes the variance in the efficacy of the pesticide. Additionally, we perform a sensitivity analysis to show that the corresponding pesticide efficacy determined by this optimization technique is indeed robust. Through numerical simulations we show that permanence can be preserved in our stochastic model. Our study of the stochastic version of the model indicates that our results on the deterministic model provide informative conclusions about the behavior of the stochastic model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Optimal design of distributed energy resource systems based on two-stage stochastic programming

    International Nuclear Information System (INIS)

    Yang, Yun; Zhang, Shijie; Xiao, Yunhan

    2017-01-01

    Highlights: • A two-stage stochastic programming model is built to design DER systems under uncertainties. • Uncertain energy demands have a significant effect on the optimal design. • Uncertain energy prices and renewable energy intensity have little effect on the optimal design. • The economy is overestimated if the system is designed without considering the uncertainties. • The uncertainty in energy prices has the significant and greatest effect on the economy. - Abstract: Multiple uncertainties exist in the optimal design of distributed energy resource (DER) systems. The expected energy, economic, and environmental benefits may not be achieved and a deficit in energy supply may occur if the uncertainties are not handled properly. This study focuses on the optimal design of DER systems with consideration of the uncertainties. A two-stage stochastic programming model is built in consideration of the discreteness of equipment capacities, equipment partial load operation and output bounds as well as of the influence of ambient temperature on gas turbine performance. The stochastic model is then transformed into its deterministic equivalent and solved. For an illustrative example, the model is applied to a hospital in Lianyungang, China. Comparative studies are performed to evaluate the effect of the uncertainties in load demands, energy prices, and renewable energy intensity separately and simultaneously on the system’s economy and optimal design. Results show that the uncertainties in load demands have a significant effect on the optimal system design, whereas the uncertainties in energy prices and renewable energy intensity have almost no effect. Results regarding economy show that it is obviously overestimated if the system is designed without considering the uncertainties.

  6. Infinite-degree-corrected stochastic block model

    DEFF Research Database (Denmark)

    Herlau, Tue; Schmidt, Mikkel Nørgaard; Mørup, Morten

    2014-01-01

    In stochastic block models, which are among the most prominent statistical models for cluster analysis of complex networks, clusters are defined as groups of nodes with statistically similar link probabilities within and between groups. A recent extension by Karrer and Newman [Karrer and Newman...... corrected stochastic block model as a nonparametric Bayesian model, incorporating a parameter to control the amount of degree correction that can then be inferred from data. Additionally, our formulation yields principled ways of inferring the number of groups as well as predicting missing links...

  7. A Stochastic Model for Malaria Transmission Dynamics

    Directory of Open Access Journals (Sweden)

    Rachel Waema Mbogo

    2018-01-01

    Full Text Available Malaria is one of the three most dangerous infectious diseases worldwide (along with HIV/AIDS and tuberculosis. In this paper we compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in malaria transmission dynamics. Relationships between the basic reproduction number for malaria transmission dynamics between humans and mosquitoes and the extinction thresholds of corresponding continuous-time Markov chain models are derived under certain assumptions. The stochastic model is formulated using the continuous-time discrete state Galton-Watson branching process (CTDSGWbp. The reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or die out. Thresholds for disease extinction from stochastic models contribute crucial knowledge on disease control and elimination and mitigation of infectious diseases. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that malaria outbreak is more likely if the disease is introduced by infected mosquitoes as opposed to infected humans. These insights demonstrate the importance of a policy or intervention focusing on controlling the infected mosquito population if the control of malaria is to be realized.

  8. Stochastic modeling and analysis of telecoms networks

    CERN Document Server

    Decreusefond, Laurent

    2012-01-01

    This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an

  9. Empirical estimates in stochastic programs with probability and second order stochastic dominance constraints

    Czech Academy of Sciences Publication Activity Database

    Omelchenko, Vadym; Kaňková, Vlasta

    2015-01-01

    Roč. 84, č. 2 (2015), s. 267-281 ISSN 0862-9544 R&D Projects: GA ČR GA13-14445S Institutional support: RVO:67985556 Keywords : Stochastic programming problems * empirical estimates * light and heavy tailed distributions * quantiles Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2015/E/omelchenko-0454495.pdf

  10. An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation

    International Nuclear Information System (INIS)

    Niknam, Taher; Azizipanah-Abarghooee, Rasoul; Narimani, Mohammad Rasoul

    2012-01-01

    Highlights: ► Proposes a stochastic model for optimal energy management. ► Consider uncertainties related to the forecasted values for load demand. ► Consider uncertainties of forecasted values of output power of wind and photovoltaic units. ► Consider uncertainties of forecasted values of market price. ► Present an improved multi-objective teaching–learning-based optimization. -- Abstract: This paper proposes a stochastic model for optimal energy management with the goal of cost and emission minimization. In this model, the uncertainties related to the forecasted values for load demand, available output power of wind and photovoltaic units and market price are modeled by a scenario-based stochastic programming. In the presented method, scenarios are generated by a roulette wheel mechanism based on probability distribution functions of the input random variables. Through this method, the inherent stochastic nature of the proposed problem is released and the problem is decomposed into a deterministic problem. An improved multi-objective teaching–learning-based optimization is implemented to yield the best expected Pareto optimal front. In the proposed stochastic optimization method, a novel self adaptive probabilistic modification strategy is offered to improve the performance of the presented algorithm. Also, a set of non-dominated solutions are stored in a repository during the simulation process. Meanwhile, the size of the repository is controlled by usage of a fuzzy-based clustering technique. The best expected compromise solution stored in the repository is selected via the niching mechanism in a way that solutions are encouraged to seek the lesser explored regions. The proposed framework is applied in a typical grid-connected micro grid in order to verify its efficiency and feasibility.

  11. Stochastic line motion and stochastic flux conservation for nonideal hydromagnetic models

    International Nuclear Information System (INIS)

    Eyink, Gregory L.

    2009-01-01

    We prove that smooth solutions of nonideal (viscous and resistive) incompressible magnetohydrodynamic (MHD) equations satisfy a stochastic law of flux conservation. This property implies that the magnetic flux through a surface is equal to the average of the magnetic fluxes through an ensemble of surfaces advected backward in time by the plasma velocity perturbed with a random white noise. Our result is an analog of the well-known Alfven theorem of ideal MHD and is valid for any value of the magnetic Prandtl number. A second stochastic conservation law is shown to hold at unit Prandtl number, a random version of the generalized Kelvin theorem derived by Bekenstein and Oron for ideal MHD. These stochastic conservation laws are not only shown to be consequences of the nonideal MHD equations but are proved in fact to be equivalent to those equations. We derive similar results for two more refined hydromagnetic models, Hall MHD and the two-fluid plasma model, still assuming incompressible velocities and isotropic transport coefficients. Finally, we use these results to discuss briefly the infinite-Reynolds-number limit of hydromagnetic turbulence and to support the conjecture that flux conservation remains stochastic in that limit.

  12. Modeling Stochastic Energy and Water Consumption to Manage Residential Water Uses

    Science.gov (United States)

    Abdallah, A. M.; Rosenberg, D. E.; Water; Energy Conservation

    2011-12-01

    Water energy linkages have received growing attention from the water and energy utilities as utilities recognize that collaborative efforts can implement more effective conservation and efficiency improvement programs at lower cost with less effort. To date, limited energy-water household data has allowed only deterministic analysis for average, representative households and required coarse assumptions - like the water heater (the primary energy use in a home apart from heating and cooling) be a single end use. Here, we use recent available disaggregated hot and cold water household end-use data to estimate water and energy consumption for toilet, shower, faucet, dishwasher, laundry machine, leaks, and other household uses and savings from appliance retrofits. The disaggregated hot water and bulk water end-use data was previously collected by the USEPA for 96 single family households in Seattle WA and Oakland CA, and Tampa FL between the period from 2000 and 2003 for two weeks before and four weeks after each household was retrofitted with water efficient appliances. Using the disaggregated data, we developed a stochastic model that represents factors that influence water use for each appliance: behavioral (use frequency and duration), demographical (household size), and technological (use volume or flowrate). We also include stochastic factors that govern energy to heat hot water: hot water fraction (percentage of hot water volume to total water volume used in a certain end-use event), heater water intake and dispense temperatures, and energy source for the heater (gas, electric, etc). From the empirical household end-use data, we derive stochastic probability distributions for each water and energy factor where each distribution represents the range and likelihood of values that the factor may take. The uncertainty of the stochastic water and energy factors is propagated using Monte Carlo simulations to calculate the composite probability distribution for water

  13. A stochastic model of enzyme kinetics

    Science.gov (United States)

    Stefanini, Marianne; Newman, Timothy; McKane, Alan

    2003-10-01

    Enzyme kinetics is generally modeled by deterministic rate equations, and in the simplest case leads to the well-known Michaelis-Menten equation. It is plausible that stochastic effects will play an important role at low enzyme concentrations. We have addressed this by constructing a simple stochastic model which can be exactly solved in the steady-state. Throughout a wide range of parameter values Michaelis-Menten dynamics is replaced by a new and simple theoretical result.

  14. Stochastic Control - External Models

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2005-01-01

    This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...

  15. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    Science.gov (United States)

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-07

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Stochastic dynamic modeling of regular and slow earthquakes

    Science.gov (United States)

    Aso, N.; Ando, R.; Ide, S.

    2017-12-01

    Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal

  17. A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism

    International Nuclear Information System (INIS)

    Ghalelou, Afshin Najafi; Fakhri, Alireza Pashaei; Nojavan, Sayyad; Majidi, Majid; Hatami, Hojat

    2016-01-01

    Highlights: • Optimal stochastic energy management of renewable energy sources (RESs) is proposed. • The compressed air energy storage (CAES) besides RESs is used in the presence of DRP. • Determination charge and discharge of CAES in order to reduce the expected operation cost. • Moreover, demand response program (DRP) is proposed to minimize the operation cost. • The uncertainty modeling of input data are considered in the proposed stochastic framework. - Abstract: In this paper, a stochastic self-scheduling of renewable energy sources (RESs) considering compressed air energy storage (CAES) in the presence of a demand response program (DRP) is proposed. RESs include wind turbine (WT) and photovoltaic (PV) system. Other energy sources are thermal units and CAES. The time-of-use (TOU) rate of DRP is considered in this paper. This DRP shifts the percentage of load from the expensive period to the cheap one in order to flatten the load curve and minimize the operation cost, consequently. The proposed objective function includes minimizing the operation costs of thermal unit and CAES, considering technical and physical constraints. The proposed model is formulated as mixed integer linear programming (MILP) and it is been solved using General Algebraic Modeling System (GAMS) optimization package. Furthermore, CAES and DRP are incorporated in the stochastic self-scheduling problem by a decision maker to reduce the expected operation cost. Meanwhile, the uncertainty models of market price, load, wind speed, temperature and irradiance are considered in the formulation. Finally, to assess the effects of DRP and CAES on self-scheduling problem, four case studies are utilized, and significant results were obtained, which indicate the validity of the proposed stochastic program.

  18. Dynamics of a Stochastic Intraguild Predation Model

    Directory of Open Access Journals (Sweden)

    Zejing Xing

    2016-04-01

    Full Text Available Intraguild predation (IGP is a widespread ecological phenomenon which occurs when one predator species attacks another predator species with which it competes for a shared prey species. The objective of this paper is to study the dynamical properties of a stochastic intraguild predation model. We analyze stochastic persistence and extinction of the stochastic IGP model containing five cases and establish the sufficient criteria for global asymptotic stability of the positive solutions. This study shows that it is possible for the coexistence of three species under the influence of environmental noise, and that the noise may have a positive effect for IGP species. A stationary distribution of the stochastic IGP model is established and it has the ergodic property, suggesting that the time average of population size with the development of time is equal to the stationary distribution in space. Finally, we show that our results may be extended to two well-known biological systems: food chains and exploitative competition.

  19. Stochastic Modeling of Traffic Air Pollution

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2014-01-01

    In this paper, modeling of traffic air pollution is discussed with special reference to infrastructures. A number of subjects related to health effects of air pollution and the different types of pollutants are briefly presented. A simple model for estimating the social cost of traffic related air...... and using simple Monte Carlo techniques to obtain a stochastic estimate of the costs of traffic air pollution for infrastructures....... pollution is derived. Several authors have published papers on this very complicated subject, but no stochastic modelling procedure have obtained general acceptance. The subject is discussed basis of a deterministic model. However, it is straightforward to modify this model to include uncertain parameters...

  20. Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia

    2015-01-01

    of stochastic dynamic programming, to optimize water resources management in the Ziya River basin. Natural runoff from the upper basin was estimated with a rainfall-runoff model autocalibrated using in situ measured discharge. The runoff serial correlation was described by a Markov chain and used as input...

  1. Stochastic modelling of turbulence

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...

  2. Deterministic and Stochastic Study for an Infected Computer Network Model Powered by a System of Antivirus Programs

    Directory of Open Access Journals (Sweden)

    Youness El Ansari

    2017-01-01

    Full Text Available We investigate the various conditions that control the extinction and stability of a nonlinear mathematical spread model with stochastic perturbations. This model describes the spread of viruses into an infected computer network which is powered by a system of antivirus software. The system is analyzed by using the stability theory of stochastic differential equations and the computer simulations. First, we study the global stability of the virus-free equilibrium state and the virus-epidemic equilibrium state. Furthermore, we use the Itô formula and some other theoretical theorems of stochastic differential equation to discuss the extinction and the stationary distribution of our system. The analysis gives a sufficient condition for the infection to be extinct (i.e., the number of viruses tends exponentially to zero. The ergodicity of the solution and the stationary distribution can be obtained if the basic reproduction number Rp is bigger than 1, and the intensities of stochastic fluctuations are small enough. Numerical simulations are carried out to illustrate the theoretical results.

  3. Convergence of Sample Path Optimal Policies for Stochastic Dynamic Programming

    National Research Council Canada - National Science Library

    Fu, Michael C; Jin, Xing

    2005-01-01

    .... These results have practical implications for Monte Carlo simulation-based solution approaches to stochastic dynamic programming problems where it is impractical to extract the explicit transition...

  4. Stochastic quantization of a topological quantum mechanical model

    International Nuclear Information System (INIS)

    Antunes, Sergio; Krein, Gastao; Menezes, Gabriel; Svaiter, Nami Fux

    2011-01-01

    Full text: Stochastic quantization of complex actions has been extensively studied in the literature. In these models, a Markovian Langevin equation is used in order to study the quantization of such systems. In such papers, the advantages of the Markovian stochastic quantization method were explored and exposed. However, many drawbacks of the method were also pointed out, such as instability of the simulations with absence of convergence and sometimes convergence to the wrong limit. Indeed, although several alternative methods have been proposed to deal with interesting physical systems where the action is complex, these approaches do not suggest any general way of solving the particular difficulties that arise in each situation. Here, we wish to make contributions to the program of stochastic quantization of theories with imaginary action by investigating the consequences of a non-Markovian stochastic quantization in a particular situation, namely a quantum mechanical topological action. We analyze the Markovian stochastic quantization for a topological quantum mechanical action which is analog to a Maxwell-Chern-Simons action in the Weyl gauge. Afterwards we consider a Langevin equation with memory kernel and Einstein's relations with colored noise. We show that convergence towards equilibrium is achieved in both regimes. We also sketch a simple numerical analysis to investigate the possible advantages of non-Markovian procedure over the usual Markovian quantization. Both retarded Green's function for the diffusion problem are considered in such analysis. We show that, although the results indicated that the effect of memory kernel, as usually expected, is to delay the convergence to equilibrium, non-Markovian systems imply a faster decay compared to Markovian ones as well as smoother convergence to equilibrium. (author)

  5. Using metrics in stability of stochastic programming problems

    Czech Academy of Sciences Publication Activity Database

    Houda, Michal

    2005-01-01

    Roč. 13, č. 1 (2005), s. 128-134 ISSN 0572-3043 R&D Projects: GA ČR(CZ) GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : stochastic programming * quantitative stability * Wasserstein metrics * Kolmogorov metrics * simulation study Subject RIV: BB - Applied Statistics, Operational Research

  6. Approximate models for broken clouds in stochastic radiative transfer theory

    International Nuclear Information System (INIS)

    Doicu, Adrian; Efremenko, Dmitry S.; Loyola, Diego; Trautmann, Thomas

    2014-01-01

    This paper presents approximate models in stochastic radiative transfer theory. The independent column approximation and its modified version with a solar source computed in a full three-dimensional atmosphere are formulated in a stochastic framework and for arbitrary cloud statistics. The nth-order stochastic models describing the independent column approximations are equivalent to the nth-order stochastic models for the original radiance fields in which the gradient vectors are neglected. Fast approximate models are further derived on the basis of zeroth-order stochastic models and the independent column approximation. The so-called “internal mixing” models assume a combination of the optical properties of the cloud and the clear sky, while the “external mixing” models assume a combination of the radiances corresponding to completely overcast and clear skies. A consistent treatment of internal and external mixing models is provided, and a new parameterization of the closure coefficient in the effective thickness approximation is given. An efficient computation of the closure coefficient for internal mixing models, using a previously derived vector stochastic model as a reference, is also presented. Equipped with appropriate look-up tables for the closure coefficient, these models can easily be integrated into operational trace gas retrieval systems that exploit absorption features in the near-IR solar spectrum. - Highlights: • Independent column approximation in a stochastic setting. • Fast internal and external mixing models for total and diffuse radiances. • Efficient optimization of internal mixing models to match reference models

  7. Parameter estimation in stochastic rainfall-runoff models

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur

    2006-01-01

    A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...

  8. Test models for improving filtering with model errors through stochastic parameter estimation

    International Nuclear Information System (INIS)

    Gershgorin, B.; Harlim, J.; Majda, A.J.

    2010-01-01

    The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.

  9. An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand

    International Nuclear Information System (INIS)

    Ji, L.; Niu, D.X.; Huang, G.H.

    2014-01-01

    In this paper a stochastic robust optimization problem of residential micro-grid energy management is presented. Combined cooling, heating and electricity technology (CCHP) is introduced to satisfy various energy demands. Two-stage programming is utilized to find the optimal installed capacity investment and operation control of CCHP (combined cooling heating and power). Moreover, interval programming and robust stochastic optimization methods are exploited to gain interval robust solutions under different robustness levels which are feasible for uncertain data. The obtained results can help micro-grid managers minimizing the investment and operation cost with lower system failure risk when facing fluctuant energy market and uncertain technology parameters. The different robustness levels reflect the risk preference of micro-grid manager. The proposed approach is applied to residential area energy management in North China. Detailed computational results under different robustness level are presented and analyzed for providing investment decision and operation strategies. - Highlights: • An inexact two-stage stochastic robust programming model for CCHP management. • The energy market and technical parameters uncertainties were considered. • Investment decision, operation cost, and system safety were analyzed. • Uncertainties expressed as discrete intervals and probability distributions

  10. Stochastic Feedforward Control Technique

    Science.gov (United States)

    Halyo, Nesim

    1990-01-01

    Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.

  11. Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution

    Energy Technology Data Exchange (ETDEWEB)

    Hamadameen, Abdulqader Othman [Optimization, Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia); Zainuddin, Zaitul Marlizawati [Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia)

    2014-06-19

    This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.

  12. An inexact multistage fuzzy-stochastic programming for regional electric power system management constrained by environmental quality.

    Science.gov (United States)

    Fu, Zhenghui; Wang, Han; Lu, Wentao; Guo, Huaicheng; Li, Wei

    2017-12-01

    Electric power system involves different fields and disciplines which addressed the economic system, energy system, and environment system. Inner uncertainty of this compound system would be an inevitable problem. Therefore, an inexact multistage fuzzy-stochastic programming (IMFSP) was developed for regional electric power system management constrained by environmental quality. A model which concluded interval-parameter programming, multistage stochastic programming, and fuzzy probability distribution was built to reflect the uncertain information and dynamic variation in the case study, and the scenarios under different credibility degrees were considered. For all scenarios under consideration, corrective actions were allowed to be taken dynamically in accordance with the pre-regulated policies and the uncertainties in reality. The results suggest that the methodology is applicable to handle the uncertainty of regional electric power management systems and help the decision makers to establish an effective development plan.

  13. Modelling and application of stochastic processes

    CERN Document Server

    1986-01-01

    The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza­ tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef­ ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side,...

  14. 12th Workshop on Stochastic Models, Statistics and Their Applications

    CERN Document Server

    Rafajłowicz, Ewaryst; Szajowski, Krzysztof

    2015-01-01

    This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.

  15. Bonus algorithm for large scale stochastic nonlinear programming problems

    CERN Document Server

    Diwekar, Urmila

    2015-01-01

    This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...

  16. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    Science.gov (United States)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  17. Hybrid approaches for multiple-species stochastic reaction-diffusion models

    Science.gov (United States)

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen

    2015-10-01

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  18. Hybrid approaches for multiple-species stochastic reaction-diffusion models.

    KAUST Repository

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K; Byrne, Helen

    2015-01-01

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  19. Hybrid approaches for multiple-species stochastic reaction-diffusion models.

    KAUST Repository

    Spill, Fabian

    2015-10-01

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  20. A multi-stage stochastic program for supply chain network redesign problem with price-dependent uncertain demands

    DEFF Research Database (Denmark)

    Fattahi, Mohammad; Govindan, Kannan; Keyvanshokooh, Esmaeil

    2018-01-01

    In this paper, we address a multi-period supply chain network redesign problem in which customer zones have price-dependent stochastic demand for multiple products. A novel multi-stage stochastic program is proposed to simultaneously make tactical decisions including products' prices and strategic...... redesign decisions. Existing uncertainty in potential demands of customer zones is modeled through a finite set of scenarios, described in the form of a scenario tree. The scenarios are generated using a Latin Hypercube Sampling method and then a forward scenario construction technique is employed...

  1. Sea Outfall Design Based on a Stochastic Transport/Dispersion Model

    DEFF Research Database (Denmark)

    Larsen, Torben

    1983-01-01

    /dispersion phenomena can easily be modelled by the stochastic approach without going into advanced methods as finite differences or elements. The advantage of this approach is the simple programming and Iow need of computer memory. The disadvantage could be the need for excessive computing time.......This paper describes a numerical model of the dilution and disappearance of sewage discharged to the coastal zone. The model is based on the Monte Carlo (or random walk) principle. A cloud of particles is released at discrete time steps and the 3-dimensional path of every particle is simulated...

  2. Stochastic optimal control in infinite dimension dynamic programming and HJB equations

    CERN Document Server

    Fabbri, Giorgio; Święch, Andrzej

    2017-01-01

    Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite ...

  3. A stochastic modeling of recurrent measles epidemic | Kassem ...

    African Journals Online (AJOL)

    A simple stochastic mathematical model is developed and investigated for the dynamics of measles epidemic. The model, which is a multi-dimensional diffusion process, includes susceptible individuals, latent (exposed), infected and removed individuals. Stochastic effects are assumed to arise in the process of infection of ...

  4. A cavitation model based on Eulerian stochastic fields

    Science.gov (United States)

    Magagnato, F.; Dumond, J.

    2013-12-01

    Non-linear phenomena can often be described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and in particular to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. Firstly, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  5. Stochastic quantization for the axial model

    International Nuclear Information System (INIS)

    Farina, C.; Montani, H.; Albuquerque, L.C.

    1991-01-01

    We use bosonization ideas to solve the axial model in the stochastic quantization framework. We obtain the fermion propagator of the theory decoupling directly the Langevin equation, instead of the Fokker-Planck equation. In the Appendix we calculate explicitly the anomalous divergence of the axial-vector current by using a regularization that does not break the Markovian character of the stochastic process

  6. Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.

    Science.gov (United States)

    Caglar, Mehmet Umut; Pal, Ranadip

    2013-01-01

    Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.

  7. A chance-constrained stochastic approach to intermodal container routing problems.

    Science.gov (United States)

    Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony

    2018-01-01

    We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.

  8. Analysis of stochastic effects in Kaldor-type business cycle discrete model

    Science.gov (United States)

    Bashkirtseva, Irina; Ryashko, Lev; Sysolyatina, Anna

    2016-07-01

    We study nonlinear stochastic phenomena in the discrete Kaldor model of business cycles. A numerical parametric analysis of stochastically forced attractors (equilibria, closed invariant curves, discrete cycles) of this model is performed using the stochastic sensitivity functions technique. A spatial arrangement of random states in stochastic attractors is modeled by confidence domains. The phenomenon of noise-induced transitions ;chaos-order; is discussed.

  9. Stochastic Spectral Descent for Discrete Graphical Models

    International Nuclear Information System (INIS)

    Carlson, David; Hsieh, Ya-Ping; Collins, Edo; Carin, Lawrence; Cevher, Volkan

    2015-01-01

    Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted as gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.

  10. From complex to simple: interdisciplinary stochastic models

    International Nuclear Information System (INIS)

    Mazilu, D A; Zamora, G; Mazilu, I

    2012-01-01

    We present two simple, one-dimensional, stochastic models that lead to a qualitative understanding of very complex systems from biology, nanoscience and social sciences. The first model explains the complicated dynamics of microtubules, stochastic cellular highways. Using the theory of random walks in one dimension, we find analytical expressions for certain physical quantities, such as the time dependence of the length of the microtubules, and diffusion coefficients. The second one is a stochastic adsorption model with applications in surface deposition, epidemics and voter systems. We introduce the ‘empty interval method’ and show sample calculations for the time-dependent particle density. These models can serve as an introduction to the field of non-equilibrium statistical physics, and can also be used as a pedagogical tool to exemplify standard statistical physics concepts, such as random walks or the kinetic approach of the master equation. (paper)

  11. Mean-Variance stochastic goal programming for sustainable mutual funds' portfolio selection.

    Directory of Open Access Journals (Sweden)

    García-Bernabeu, Ana

    2015-11-01

    Full Text Available Mean-Variance Stochastic Goal Programming models (MV-SGP provide satisficing investment solutions in uncertain contexts. In this work, an MV-SGP model is proposed for portfolio selection which includes goals with regards to traditional and sustainable assets. The proposed approach is based on a two-step procedure. In the first step, sustainability and/or financial screens are applied to a set of assets (mutual funds previously evaluated with TOPSIS to determine the opportunity set. In a second step, satisficing portfolios of assets are obtained using a Goal Programming approach. Two different goals are considered. The first goal reflects only the purely financial side of the target while the second goal is referred to the sustainable side. Aversion to Risk Absolute (ARA coefficients are estimated and incorporated in our investment decision making approach using two different approaches.

  12. Stochastic fractional differential equations: Modeling, method and analysis

    International Nuclear Information System (INIS)

    Pedjeu, Jean-C.; Ladde, Gangaram S.

    2012-01-01

    By introducing a concept of dynamic process operating under multi-time scales in sciences and engineering, a mathematical model described by a system of multi-time scale stochastic differential equations is formulated. The classical Picard–Lindelöf successive approximations scheme is applied to the model validation problem, namely, existence and uniqueness of solution process. Naturally, this leads to the problem of finding closed form solutions of both linear and nonlinear multi-time scale stochastic differential equations of Itô–Doob type. Finally, to illustrate the scope of ideas and presented results, multi-time scale stochastic models for ecological and epidemiological processes in population dynamic are outlined.

  13. Tsunamis: stochastic models of occurrence and generation mechanisms

    Science.gov (United States)

    Geist, Eric L.; Oglesby, David D.

    2014-01-01

    The devastating consequences of the 2004 Indian Ocean and 2011 Japan tsunamis have led to increased research into many different aspects of the tsunami phenomenon. In this entry, we review research related to the observed complexity and uncertainty associated with tsunami generation, propagation, and occurrence described and analyzed using a variety of stochastic methods. In each case, seismogenic tsunamis are primarily considered. Stochastic models are developed from the physical theories that govern tsunami evolution combined with empirical models fitted to seismic and tsunami observations, as well as tsunami catalogs. These stochastic methods are key to providing probabilistic forecasts and hazard assessments for tsunamis. The stochastic methods described here are similar to those described for earthquakes (Vere-Jones 2013) and volcanoes (Bebbington 2013) in this encyclopedia.

  14. ARIMA-Based Time Series Model of Stochastic Wind Power Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Pedersen, Troels; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from...... the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation...... and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power...

  15. Modeling stochasticity in biochemical reaction networks

    International Nuclear Information System (INIS)

    Constantino, P H; Vlysidis, M; Smadbeck, P; Kaznessis, Y N

    2016-01-01

    Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts. (topical review)

  16. Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.

    Science.gov (United States)

    Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O

    2006-03-01

    The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.

  17. The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming

    International Nuclear Information System (INIS)

    Falsafi, Hananeh; Zakariazadeh, Alireza; Jadid, Shahram

    2014-01-01

    This paper focuses on using DR (Demand Response) as a means to provide reserve in order to cover uncertainty in wind power forecasting in SG (Smart Grid) environment. The proposed stochastic model schedules energy and reserves provided by both of generating units and responsive loads in power systems with high penetration of wind power. This model is formulated as a two-stage stochastic programming, where first-stage is associated with electricity market, its rules and constraints and the second-stage is related to actual operation of the power system and its physical limitations in each scenario. The discrete retail customer responses to incentive-based DR programs are aggregated by DRPs (Demand Response Providers) and are submitted as a load change price and amount offer package to ISO (Independent System Operator). Also, price-based DR program behavior and random nature of wind power are modeled by price elasticity concept of the demand and normal probability distribution function, respectively. In the proposed model, DRPs can participate in energy market as well as reserve market and submit their offers to the wholesale electricity market. This approach is implemented on a modified IEEE 30-bus test system over a daily time horizon. The simulation results are analyzed in six different case studies. The cost, emission and multiobjective functions are optimized in both without and with DR cases. The multiobjective generation scheduling model is solved using augmented epsilon constraint method and the best solution can be chosen by Entropy and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methods. The results indicate demand side participation in energy and reserve scheduling reduces the total operation costs and emissions. - Highlights: • Simultaneous participation of loads in both energy and reserve scheduling. • Environmental/economical scheduling of energy and reserve. • Using demand response for covering wind generation forecast

  18. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  19. STOCHASTIC CHARACTERISTICS AND MODELING OF RELATIVE ...

    African Journals Online (AJOL)

    Test

    Results are highly accurate and promising for all models based on Lewis' criteria. ... hydrological cycle. Future increases in ... STOCHASTIC CHARACTERISTICS AND MODELING OF RELATIVE HUMIDITY OF OGUN BASIN, NIGERIA. 71 ...

  20. A probabilistic graphical model based stochastic input model construction

    International Nuclear Information System (INIS)

    Wan, Jiang; Zabaras, Nicholas

    2014-01-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media

  1. Deterministic and stochastic CTMC models from Zika disease transmission

    Science.gov (United States)

    Zevika, Mona; Soewono, Edy

    2018-03-01

    Zika infection is one of the most important mosquito-borne diseases in the world. Zika virus (ZIKV) is transmitted by many Aedes-type mosquitoes including Aedes aegypti. Pregnant women with the Zika virus are at risk of having a fetus or infant with a congenital defect and suffering from microcephaly. Here, we formulate a Zika disease transmission model using two approaches, a deterministic model and a continuous-time Markov chain stochastic model. The basic reproduction ratio is constructed from a deterministic model. Meanwhile, the CTMC stochastic model yields an estimate of the probability of extinction and outbreaks of Zika disease. Dynamical simulations and analysis of the disease transmission are shown for the deterministic and stochastic models.

  2. Weather Derivatives and Stochastic Modelling of Temperature

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2011-01-01

    Full Text Available We propose a continuous-time autoregressive model for the temperature dynamics with volatility being the product of a seasonal function and a stochastic process. We use the Barndorff-Nielsen and Shephard model for the stochastic volatility. The proposed temperature dynamics is flexible enough to model temperature data accurately, and at the same time being analytically tractable. Futures prices for commonly traded contracts at the Chicago Mercantile Exchange on indices like cooling- and heating-degree days and cumulative average temperatures are computed, as well as option prices on them.

  3. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...... are needed for initial defects and damage accumulation. In this paper, stochastic models are formulated considering some of the failure modes observed in these components. The models are based on theoretical considerations, manufacturing uncertainties, size effects of different scales. It is illustrated how...

  4. Optimal Strategy for Integrated Dynamic Inventory Control and Supplier Selection in Unknown Environment via Stochastic Dynamic Programming

    International Nuclear Information System (INIS)

    Sutrisno; Widowati; Solikhin

    2016-01-01

    In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well. (paper)

  5. Applied stochastic modelling

    CERN Document Server

    Morgan, Byron JT; Tanner, Martin Abba; Carlin, Bradley P

    2008-01-01

    Introduction and Examples Introduction Examples of data sets Basic Model Fitting Introduction Maximum-likelihood estimation for a geometric model Maximum-likelihood for the beta-geometric model Modelling polyspermy Which model? What is a model for? Mechanistic models Function Optimisation Introduction MATLAB: graphs and finite differences Deterministic search methods Stochastic search methods Accuracy and a hybrid approach Basic Likelihood ToolsIntroduction Estimating standard errors and correlations Looking at surfaces: profile log-likelihoods Confidence regions from profiles Hypothesis testing in model selectionScore and Wald tests Classical goodness of fit Model selection biasGeneral Principles Introduction Parameterisation Parameter redundancy Boundary estimates Regression and influence The EM algorithm Alternative methods of model fitting Non-regular problemsSimulation Techniques Introduction Simulating random variables Integral estimation Verification Monte Carlo inference Estimating sampling distributi...

  6. On changes of measure in stochastic volatility models

    Directory of Open Access Journals (Sweden)

    Bernard Wong

    2006-01-01

    models. This had led many researchers to “assume the condition away,” even though the condition is not innocuous, and nonsensical results can occur if it is in fact not satisfied. We provide an applicable theorem to check the conditions for a general class of Markovian stochastic volatility models. As an example we will also provide a detailed analysis of the Stein and Stein and Heston stochastic volatility models.

  7. Gompertzian stochastic model with delay effect to cervical cancer growth

    International Nuclear Information System (INIS)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah

    2015-01-01

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits

  8. Gompertzian stochastic model with delay effect to cervical cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor and UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-02-03

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.

  9. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    Science.gov (United States)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  10. Decomposition and (importance) sampling techniques for multi-stage stochastic linear programs

    Energy Technology Data Exchange (ETDEWEB)

    Infanger, G.

    1993-11-01

    The difficulty of solving large-scale multi-stage stochastic linear programs arises from the sheer number of scenarios associated with numerous stochastic parameters. The number of scenarios grows exponentially with the number of stages and problems get easily out of hand even for very moderate numbers of stochastic parameters per stage. Our method combines dual (Benders) decomposition with Monte Carlo sampling techniques. We employ importance sampling to efficiently obtain accurate estimates of both expected future costs and gradients and right-hand sides of cuts. The method enables us to solve practical large-scale problems with many stages and numerous stochastic parameters per stage. We discuss the theory of sharing and adjusting cuts between different scenarios in a stage. We derive probabilistic lower and upper bounds, where we use importance path sampling for the upper bound estimation. Initial numerical results turned out to be promising.

  11. An Improvement for Fuzzy Stochastic Goal Programming Problems

    Directory of Open Access Journals (Sweden)

    Shu-Cheng Lin

    2017-01-01

    Full Text Available We examined the solution process for linear programming problems under a fuzzy and random environment to transform fuzzy stochastic goal programming problems into standard linear programming problems. A previous paper that revised the solution process with the lower-side attainment index motivated our work. In this paper, we worked on a revision for both-side attainment index to amend its definition and theorems. Two previous examples were used to examine and demonstrate our improvement over previous results. Our findings not only improve the previous paper with both-side attainment index, but also provide a theoretical extension from lower-side attainment index to the both-side attainment index.

  12. A Stochastic Multi-Objective Chance-Constrained Programming Model for Water Supply Management in Xiaoqing River Watershed

    Directory of Open Access Journals (Sweden)

    Ye Xu

    2017-05-01

    Full Text Available In this paper, a stochastic multi-objective chance-constrained programming model (SMOCCP was developed for tackling the water supply management problem. Two objectives were included in this model, which are the minimization of leakage loss amounts and total system cost, respectively. The traditional SCCP model required the random variables to be expressed in the normal distributions, although their statistical characteristics were suitably reflected by other forms. The SMOCCP model allows the random variables to be expressed in log-normal distributions, rather than general normal form. Possible solution deviation caused by irrational parameter assumption was avoided and the feasibility and accuracy of generated solutions were ensured. The water supply system in the Xiaoqing River watershed was used as a study case for demonstration. Under the context of various weight combinations and probabilistic levels, many types of solutions are obtained, which are expressed as a series of transferred amounts from water sources to treated plants, from treated plants to reservoirs, as well as from reservoirs to tributaries. It is concluded that the SMOCCP model could reflect the sketch of the studied region and generate desired water supply schemes under complex uncertainties. The successful application of the proposed model is expected to be a good example for water resource management in other watersheds.

  13. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  14. Electricity Market Stochastic Dynamic Model and Its Mean Stability Analysis

    Directory of Open Access Journals (Sweden)

    Zhanhui Lu

    2014-01-01

    Full Text Available Based on the deterministic dynamic model of electricity market proposed by Alvarado, a stochastic electricity market model, considering the random nature of demand sides, is presented in this paper on the assumption that generator cost function and consumer utility function are quadratic functions. The stochastic electricity market model is a generalization of the deterministic dynamic model. Using the theory of stochastic differential equations, stochastic process theory, and eigenvalue techniques, the determining conditions of the mean stability for this electricity market model under small Gauss type random excitation are provided and testified theoretically. That is, if the demand elasticity of suppliers is nonnegative and the demand elasticity of consumers is negative, then the stochastic electricity market model is mean stable. It implies that the stability can be judged directly by initial data without any computation. Taking deterministic electricity market data combined with small Gauss type random excitation as numerical samples to interpret random phenomena from a statistical perspective, the results indicate the conclusions above are correct, valid, and practical.

  15. Aspects if stochastic models for short-term hydropower scheduling and bidding

    Energy Technology Data Exchange (ETDEWEB)

    Belsnes, Michael Martin [Sintef Energy, Trondheim (Norway); Follestad, Turid [Sintef Energy, Trondheim (Norway); Wolfgang, Ove [Sintef Energy, Trondheim (Norway); Fosso, Olav B. [Dep. of electric power engineering NTNU, Trondheim (Norway)

    2012-07-01

    This report discusses challenges met when turning from deterministic to stochastic decision support models for short-term hydropower scheduling and bidding. The report describes characteristics of the short-term scheduling and bidding problem, different market and bidding strategies, and how a stochastic optimization model can be formulated. A review of approaches for stochastic short-term modelling and stochastic modelling for the input variables inflow and market prices is given. The report discusses methods for approximating the predictive distribution of uncertain variables by scenario trees. Benefits of using a stochastic over a deterministic model are illustrated by a case study, where increased profit is obtained to a varying degree depending on the reservoir filling and price structure. Finally, an approach for assessing the effect of using a size restricted scenario tree to approximate the predictive distribution for stochastic input variables is described. The report is a summary of the findings of Work package 1 of the research project #Left Double Quotation Mark#Optimal short-term scheduling of wind and hydro resources#Right Double Quotation Mark#. The project aims at developing a prototype for an operational stochastic short-term scheduling model. Based on the investigations summarized in the report, it is concluded that using a deterministic equivalent formulation of the stochastic optimization problem is convenient and sufficient for obtaining a working prototype. (author)

  16. Characterizing economic trends by Bayesian stochastic model specifi cation search

    OpenAIRE

    Grassi, Stefano; Proietti, Tommaso

    2010-01-01

    We apply a recently proposed Bayesian model selection technique, known as stochastic model specification search, for characterising the nature of the trend in macroeconomic time series. We illustrate that the methodology can be quite successfully applied to discriminate between stochastic and deterministic trends. In particular, we formulate autoregressive models with stochastic trends components and decide on whether a specific feature of the series, i.e. the underlying level and/or the rate...

  17. Index Option Pricing Models with Stochastic Volatility and Stochastic Interest Rates

    NARCIS (Netherlands)

    Jiang, G.J.; van der Sluis, P.J.

    2000-01-01

    This paper specifies a multivariate stochastic volatility (SV) model for the S&P500 index and spot interest rate processes. We first estimate the multivariate SV model via the efficient method of moments (EMM) technique based on observations of underlying state variables, and then investigate the

  18. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... velocity distributions that depend on height above the ground both with respect to standard deviation and skewness are substituted into the stationary Fokker/Planck equation. The particle position distribution is taken to be uniform *the well/mixed condition( and also a given dispersion coefficient...

  19. Hopf bifurcation of the stochastic model on business cycle

    International Nuclear Information System (INIS)

    Xu, J; Wang, H; Ge, G

    2008-01-01

    A stochastic model on business cycle was presented in thas paper. Simplifying the model through the quasi Hamiltonian theory, the Ito diffusion process was obtained. According to Oseledec multiplicative ergodic theory and singular boundary theory, the conditions of local and global stability were acquired. Solving the stationary FPK equation and analyzing the stationary probability density, the stochastic Hopf bifurcation was explained. The result indicated that the change of parameter awas the key factor to the appearance of the stochastic Hopf bifurcation

  20. Stochastic models for predicting pitting corrosion damage of HLRW containers

    International Nuclear Information System (INIS)

    Henshall, G.A.

    1991-10-01

    Stochastic models for predicting aqueous pitting corrosion damage of high-level radioactive-waste containers are described. These models could be used to predict the time required for the first pit to penetrate a container and the increase in the number of breaches at later times, both of which would be useful in the repository system performance analysis. Monte Carlo implementations of the stochastic models are described, and predictions of induction time, survival probability and pit depth distributions are presented. These results suggest that the pit nucleation probability decreases with exposure time and that pit growth may be a stochastic process. The advantages and disadvantages of the stochastic approach, methods for modeling the effects of environment, and plans for future work are discussed

  1. Brain-inspired Stochastic Models and Implementations

    KAUST Repository

    Al-Shedivat, Maruan

    2015-05-12

    One of the approaches to building artificial intelligence (AI) is to decipher the princi- ples of the brain function and to employ similar mechanisms for solving cognitive tasks, such as visual perception or natural language understanding, using machines. The recent breakthrough, named deep learning, demonstrated that large multi-layer networks of arti- ficial neural-like computing units attain remarkable performance on some of these tasks. Nevertheless, such artificial networks remain to be very loosely inspired by the brain, which rich structures and mechanisms may further suggest new algorithms or even new paradigms of computation. In this thesis, we explore brain-inspired probabilistic mechanisms, such as neural and synaptic stochasticity, in the context of generative models. The two questions we ask here are: (i) what kind of models can describe a neural learning system built of stochastic components? and (ii) how can we implement such systems e ̆ciently? To give specific answers, we consider two well known models and the corresponding neural architectures: the Naive Bayes model implemented with a winner-take-all spiking neural network and the Boltzmann machine implemented in a spiking or non-spiking fashion. We propose and analyze an e ̆cient neuromorphic implementation of the stochastic neu- ral firing mechanism and study the e ̄ects of synaptic unreliability on learning generative energy-based models implemented with neural networks.

  2. An inexact log-normal distribution-based stochastic chance-constrained model for agricultural water quality management

    Science.gov (United States)

    Wang, Yu; Fan, Jie; Xu, Ye; Sun, Wei; Chen, Dong

    2018-05-01

    In this study, an inexact log-normal-based stochastic chance-constrained programming model was developed for solving the non-point source pollution issues caused by agricultural activities. Compared to the general stochastic chance-constrained programming model, the main advantage of the proposed model is that it allows random variables to be expressed as a log-normal distribution, rather than a general normal distribution. Possible deviations in solutions caused by irrational parameter assumptions were avoided. The agricultural system management in the Erhai Lake watershed was used as a case study, where critical system factors, including rainfall and runoff amounts, show characteristics of a log-normal distribution. Several interval solutions were obtained under different constraint-satisfaction levels, which were useful in evaluating the trade-off between system economy and reliability. The applied results show that the proposed model could help decision makers to design optimal production patterns under complex uncertainties. The successful application of this model is expected to provide a good example for agricultural management in many other watersheds.

  3. Stochastic models to simulate paratuberculosis in dairy herds

    DEFF Research Database (Denmark)

    Nielsen, Søren Saxmose; Weber, M.F.; Kudahl, Anne Margrethe Braad

    2011-01-01

    Stochastic simulation models are widely accepted as a means of assessing the impact of changes in daily management and the control of different diseases, such as paratuberculosis, in dairy herds. This paper summarises and discusses the assumptions of four stochastic simulation models and their use...... the models are somewhat different in their underlying principles and do put slightly different values on the different strategies, their overall findings are similar. Therefore, simulation models may be useful in planning paratuberculosis strategies in dairy herds, although as with all models caution...

  4. Stochastic goal programming based groundwater remediation management under human-health-risk uncertainty

    International Nuclear Information System (INIS)

    Li, Jing; He, Li; Lu, Hongwei; Fan, Xing

    2014-01-01

    Highlights: • We propose an integrated optimal groundwater remediation design approach. • The approach can address stochasticity in carcinogenic risks. • Goal programming is used to make the system approaching to ideal operation and remediation effects. • The uncertainty in slope factor is evaluated under different confidence levels. • Optimal strategies are obtained to support remediation design under uncertainty. - Abstract: An optimal design approach for groundwater remediation is developed through incorporating numerical simulation, health risk assessment, uncertainty analysis and nonlinear optimization within a general framework. Stochastic analysis and goal programming are introduced into the framework to handle uncertainties in real-world groundwater remediation systems. Carcinogenic risks associated with remediation actions are further evaluated at four confidence levels. The differences between ideal and predicted constraints are minimized by goal programming. The approach is then applied to a contaminated site in western Canada for creating a set of optimal remediation strategies. Results from the case study indicate that factors including environmental standards, health risks and technical requirements mutually affected and restricted themselves. Stochastic uncertainty existed in the entire process of remediation optimization, which should to be taken into consideration in groundwater remediation design

  5. Stochastic population oscillations in spatial predator-prey models

    International Nuclear Information System (INIS)

    Taeuber, Uwe C

    2011-01-01

    It is well-established that including spatial structure and stochastic noise in models for predator-prey interactions invalidates the classical deterministic Lotka-Volterra picture of neutral population cycles. In contrast, stochastic models yield long-lived, but ultimately decaying erratic population oscillations, which can be understood through a resonant amplification mechanism for density fluctuations. In Monte Carlo simulations of spatial stochastic predator-prey systems, one observes striking complex spatio-temporal structures. These spreading activity fronts induce persistent correlations between predators and prey. In the presence of local particle density restrictions (finite prey carrying capacity), there exists an extinction threshold for the predator population. The accompanying continuous non-equilibrium phase transition is governed by the directed-percolation universality class. We employ field-theoretic methods based on the Doi-Peliti representation of the master equation for stochastic particle interaction models to (i) map the ensuing action in the vicinity of the absorbing state phase transition to Reggeon field theory, and (ii) to quantitatively address fluctuation-induced renormalizations of the population oscillation frequency, damping, and diffusion coefficients in the species coexistence phase.

  6. Linking agent-based models and stochastic models of financial markets.

    Science.gov (United States)

    Feng, Ling; Li, Baowen; Podobnik, Boris; Preis, Tobias; Stanley, H Eugene

    2012-05-29

    It is well-known that financial asset returns exhibit fat-tailed distributions and long-term memory. These empirical features are the main objectives of modeling efforts using (i) stochastic processes to quantitatively reproduce these features and (ii) agent-based simulations to understand the underlying microscopic interactions. After reviewing selected empirical and theoretical evidence documenting the behavior of traders, we construct an agent-based model to quantitatively demonstrate that "fat" tails in return distributions arise when traders share similar technical trading strategies and decisions. Extending our behavioral model to a stochastic model, we derive and explain a set of quantitative scaling relations of long-term memory from the empirical behavior of individual market participants. Our analysis provides a behavioral interpretation of the long-term memory of absolute and squared price returns: They are directly linked to the way investors evaluate their investments by applying technical strategies at different investment horizons, and this quantitative relationship is in agreement with empirical findings. Our approach provides a possible behavioral explanation for stochastic models for financial systems in general and provides a method to parameterize such models from market data rather than from statistical fitting.

  7. Stochastic differential equation model to Prendiville processes

    International Nuclear Information System (INIS)

    Granita; Bahar, Arifah

    2015-01-01

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution

  8. Stochastic differential equation model to Prendiville processes

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-10-22

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.

  9. Assessment model validity document - HYDRASTAR. A stochastic continuum program for groundwater flow

    Energy Technology Data Exchange (ETDEWEB)

    Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden); Eriksson, Lars [Equa Simulation AB, Sundbyberg (Sweden)

    2001-12-01

    The prevailing document addresses validation of the stochastic continuum model HYDRASTAR designed for Monte Carlo simulations of groundwater flow in fractured rocks. Here, validation is defined as a process to demonstrate that a model concept is fit for its purpose. Preferably, the validation is carried out by comparison of model predictions with independent field observations and experimental measurements. In addition, other sources can also be used to confirm that the model concept gives acceptable results. One method is to compare results with the ones achieved using other model concepts for the same set of input data. Another method is to compare model results with analytical solutions. The model concept HYDRASTAR has been used in several studies including performance assessments of hypothetical repositories for spent nuclear fuel. In the performance assessments, the main tasks for HYDRASTAR have been to calculate groundwater travel time distributions, repository flux distributions, path lines and their exit locations. The results have then been used by other model concepts to calculate the near field release and far field transport. The aim and framework for the validation process includes describing the applicability of the model concept for its purpose in order to build confidence in the concept. Preferably, this is made by comparisons of simulation results with the corresponding field experiments or field measurements. Here, two comparisons with experimental results are reported. In both cases the agreement was reasonably fair. In the broader and more general context of the validation process, HYDRASTAR results have been compared with other models and analytical solutions. Commonly, the approximation calculations agree well with the medians of model ensemble results. Additional indications that HYDRASTAR is suitable for its purpose were obtained from the comparisons with results from other model concepts. Several verification studies have been made for

  10. A model based on stochastic dynamic programming for determining China's optimal strategic petroleum reserve policy

    International Nuclear Information System (INIS)

    Zhang Xiaobing; Fan Ying; Wei Yiming

    2009-01-01

    China's Strategic Petroleum Reserve (SPR) is currently being prepared. But how large the optimal stockpile size for China should be, what the best acquisition strategies are, how to release the reserve if a disruption occurs, and other related issues still need to be studied in detail. In this paper, we develop a stochastic dynamic programming model based on a total potential cost function of establishing SPRs to evaluate the optimal SPR policy for China. Using this model, empirical results are presented for the optimal size of China's SPR and the best acquisition and drawdown strategies for a few specific cases. The results show that with comprehensive consideration, the optimal SPR size for China is around 320 million barrels. This size is equivalent to about 90 days of net oil import amount in 2006 and should be reached in the year 2017, three years earlier than the national goal, which implies that the need for China to fill the SPR is probably more pressing; the best stockpile release action in a disruption is related to the disruption levels and expected continuation probabilities. The information provided by the results will be useful for decision makers.

  11. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  12. Stochastic growth logistic model with aftereffect for batch fermentation process

    Science.gov (United States)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  13. Stochastic growth logistic model with aftereffect for batch fermentation process

    International Nuclear Information System (INIS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-01-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  14. Towards Model Checking Stochastic Process Algebra

    NARCIS (Netherlands)

    Hermanns, H.; Grieskamp, W.; Santen, T.; Katoen, Joost P.; Stoddart, B.; Meyer-Kayser, J.; Siegle, M.

    2000-01-01

    Stochastic process algebras have been proven useful because they allow behaviour-oriented performance and reliability modelling. As opposed to traditional performance modelling techniques, the behaviour- oriented style supports composition and abstraction in a natural way. However, analysis of

  15. Stochastic forward and inverse groundwater flow and solute transport modeling

    NARCIS (Netherlands)

    Janssen, G.M.C.M.

    2008-01-01

    Keywords: calibration, inverse modeling, stochastic modeling, nonlinear biodegradation, stochastic-convective, advective-dispersive, travel time, network design, non-Gaussian distribution, multimodal distribution, representers

    This thesis offers three new approaches that contribute

  16. Stochastic models for predicting environmental impact in aquatic ecosystems

    International Nuclear Information System (INIS)

    Stewart-Oaten, A.

    1986-01-01

    The purpose of stochastic predictions are discussed in relation to the environmental impacts of nuclear power plants on aquatic ecosystems. One purpose is to aid in making rational decisions about whether a power plant should be built, where, and how it should be designed. The other purpose is to check on the models themselves in the light of what eventually happens. The author discusses the role or statistical decision theory in the decision-making problem. Various types of stochastic models and their problems are presented. In addition some suggestions are made for generating usable stochastic models, and checking and improving on them. 12 references

  17. Stochastic Averaging and Stochastic Extremum Seeking

    CERN Document Server

    Liu, Shu-Jun

    2012-01-01

    Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering  and analysis of bacterial  convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...

  18. Fuzzy Stochastic Unit Commitment Model with Wind Power and Demand Response under Conditional Value-At-Risk Assessment

    Directory of Open Access Journals (Sweden)

    Jiafu Yin

    2018-02-01

    Full Text Available With the increasing penetration of wind power and demand response integrated into the grid, the combined uncertainties from wind power and demand response have been a challenging concern for system operators. It is necessary to develop an approach to accommodate the combined uncertainties in the source side and load side. In this paper, the fuzzy stochastic conditional value-at-risk criterions are proposed as the risk measure of the combination of both wind power uncertainty and demand response uncertainty. To improve the computational tractability without sacrificing the accuracy, the fuzzy stochastic chance-constrained goal programming is proposed to transfer the fuzzy stochastic conditional value-at-risk to a deterministic equivalent. The operational risk of forecast error under fuzzy stochastic conditional value-at-risk assessment is represented by the shortage of reserve resource, which can be further divided into the load-shedding risk and the wind curtailment risk. To identify different priority levels for the different objective functions, the three-stage day-ahead unit commitment model is proposed through preemptive goal programming, in which the reliability requirement has the priority over the economic operation. Finally, a case simulation is performed on the IEEE 39-bus system to verify the effectiveness and efficiency of the proposed model.

  19. Hybrid Differential Dynamic Programming with Stochastic Search

    Science.gov (United States)

    Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob

    2016-01-01

    Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.

  20. Predicting Footbridge Response using Stochastic Load Models

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2013-01-01

    Walking parameters such as step frequency, pedestrian mass, dynamic load factor, etc. are basically stochastic, although it is quite common to adapt deterministic models for these parameters. The present paper considers a stochastic approach to modeling the action of pedestrians, but when doing so...... decisions need to be made in terms of statistical distributions of walking parameters and in terms of the parameters describing the statistical distributions. The paper explores how sensitive computations of bridge response are to some of the decisions to be made in this respect. This is useful...

  1. Threshold Dynamics of a Stochastic Chemostat Model with Two Nutrients and One Microorganism

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2017-01-01

    Full Text Available A new stochastic chemostat model with two substitutable nutrients and one microorganism is proposed and investigated. Firstly, for the corresponding deterministic model, the threshold for extinction and permanence of the microorganism is obtained by analyzing the stability of the equilibria. Then, for the stochastic model, the threshold of the stochastic chemostat for extinction and permanence of the microorganism is explored. Difference of the threshold of the deterministic model and the stochastic model shows that a large stochastic disturbance can affect the persistence of the microorganism and is harmful to the cultivation of the microorganism. To illustrate this phenomenon, we give some computer simulations with different intensity of stochastic noise disturbance.

  2. Development of the Stochastic Lung Model for Asthma

    International Nuclear Information System (INIS)

    Dobos, E.; Borbely-Kiss, I.; Kertesz, Zs.; Balashazy, I.

    2005-01-01

    Complete text of publication follows. The Stochastic Lung Model is a state-of-the-art tool for the investigation of the health impact of atmospheric aerosols. This model has already been tested and applied to calculate the deposition fractions of aerosols in different regions of the human respiratory tract. The health effects of inhaled aerosols may strongly depend on the distribution of deposition within the respiratory tract. In the current study three Asthma Models have been incorporated into the Stochastic Lung Deposition Code. A common new feature of these models is that the breathing cycle may be asymmetric. It means that the inspiration time, the expiration time and the two breath hold times are independent. And the code can simulate the mucus blockage, too. The main characteristics of the models are the followings: a) ASTHMA MODEL I: One input bronchial asthma factor is applied for the whole tracheobronchial region. The code multiplies all tracheobroncial diameters with this single value. b) ASTHMA MODEL II: Bronchial asthma factors have to be given for each bronchial generation as input data (21 values). The program multiplies the diameter of bronchi with these factors. c) ASTHMA MODEL III: Here, only the range of bronchial asthma factors are presented as input data and the code selects randomly the exact factors in pre-described airway generations. In this case the stochastic character appears in the Asthma Model, as well. As an example, Figure 1 shows the deposition fractions in the tracheobronchial and acinar regions of the human lung in the case of healthy and asthmatic adults at sitting breathing conditions as a function of particle size computed by Asthma Model I where the bronchial asthma factor was 30%. These models have been tested and compared for different types of asthma at various breathing conditions and in a wide range of particle sizes. The distribution of deposition in the characteristic regions of the respiratory tract have been computed

  3. PROPAGATOR: a synchronous stochastic wildfire propagation model with distributed computation engine

    Science.gov (United States)

    D´Andrea, M.; Fiorucci, P.; Biondi, G.; Negro, D.

    2012-04-01

    PROPAGATOR is a stochastic model of forest fire spread, useful as a rapid method for fire risk assessment. The model is based on a 2D stochastic cellular automaton. The domain of simulation is discretized using a square regular grid with cell size of 20x20 meters. The model uses high-resolution information such as elevation and type of vegetation on the ground. Input parameters are wind direction, speed and the ignition point of fire. The simulation of fire propagation is done via a stochastic mechanism of propagation between a burning cell and a non-burning cell belonging to its neighbourhood, i.e. the 8 adjacent cells in the rectangular grid. The fire spreads from one cell to its neighbours with a certain base probability, defined using vegetation types of two adjacent cells, and modified by taking into account the slope between them, wind direction and speed. The simulation is synchronous, and takes into account the time needed by the burning fire to cross each cell. Vegetation cover, slope, wind speed and direction affect the fire-propagation speed from cell to cell. The model simulates several mutually independent realizations of the same stochastic fire propagation process. Each of them provides a map of the area burned at each simulation time step. Propagator simulates self-extinction of the fire, and the propagation process continues until at least one cell of the domain is burning in each realization. The output of the model is a series of maps representing the probability of each cell of the domain to be affected by the fire at each time-step: these probabilities are obtained by evaluating the relative frequency of ignition of each cell with respect to the complete set of simulations. Propagator is available as a module in the OWIS (Opera Web Interfaces) system. The model simulation runs on a dedicated server and it is remote controlled from the client program, NAZCA. Ignition points of the simulation can be selected directly in a high-resolution, three

  4. Generalized bounds for convex multistage stochastic programs

    CERN Document Server

    Künzi, H; Fandel, G; Trockel, W; Basile, A; Drexl, A; Dawid, H; Inderfurth, K; Kürsten, W; Schittko, U

    2005-01-01

    This work was completed during my tenure as a scientific assistant and d- toral student at the Institute for Operations Research at the University of St. Gallen. During that time, I was involved in several industry projects in the field of power management, on the occasion of which I was repeatedly c- fronted with complex decision problems under uncertainty. Although usually hard to solve, I quickly learned to appreciate the benefit of stochastic progr- ming models and developed a strong interest in their theoretical properties. Motivated both by practical questions and theoretical concerns, I became p- ticularly interested in the art of finding tight bounds on the optimal value of a given model. The present work attempts to make a contribution to this important branch of stochastic optimization theory. In particular, it aims at extending some classical bounding methods to broader problem classes of practical relevance. This book was accepted as a doctoral thesis by the University of St. Gallen in June 2004.1...

  5. The Asymptotic Behaviour of a Stochastic 3D LANS-α Model

    International Nuclear Information System (INIS)

    Caraballo, Tomas; Marquez-Duran, Antonio M.; Real, Jose

    2006-01-01

    The long-time behaviour of a stochastic 3D LANS-α model on a bounded domain is analysed. First, we reformulate the model as an abstract problem. Next, we establish sufficient conditions ensuring the existence of stationary (steady state) solutions of this abstract nonlinear stochastic evolution equation, and study the stability properties of the model. Finally, we analyse the effects produced by stochastic perturbations in the deterministic version of the system (persistence of exponential stability as well as possible stabilisation effects produced by the noise). The general results are applied to our stochastic LANS-α system throughout the paper

  6. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  7. Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Homem-de-Mello, Tito [University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, Chicago, IL (United States); Matos, Vitor L. de; Finardi, Erlon C. [Universidade Federal de Santa Catarina, LabPlan - Laboratorio de Planejamento de Sistemas de Energia Eletrica, Florianopolis (Brazil)

    2011-03-15

    The long-term hydrothermal scheduling is one of the most important problems to be solved in the power systems area. This problem aims to obtain an optimal policy, under water (energy) resources uncertainty, for hydro and thermal plants over a multi-annual planning horizon. It is natural to model the problem as a multi-stage stochastic program, a class of models for which algorithms have been developed. The original stochastic process is represented by a finite scenario tree and, because of the large number of stages, a sampling-based method such as the Stochastic Dual Dynamic Programming (SDDP) algorithm is required. The purpose of this paper is two-fold. Firstly, we study the application of two alternative sampling strategies to the standard Monte Carlo - namely, Latin hypercube sampling and randomized quasi-Monte Carlo - for the generation of scenario trees, as well as for the sampling of scenarios that is part of the SDDP algorithm. Secondly, we discuss the formulation of stopping criteria for the optimization algorithm in terms of statistical hypothesis tests, which allows us to propose an alternative criterion that is more robust than that originally proposed for the SDDP. We test these ideas on a problem associated with the whole Brazilian power system, with a three-year planning horizon. (orig.)

  8. A stochastic model for quantum measurement

    International Nuclear Information System (INIS)

    Budiyono, Agung

    2013-01-01

    We develop a statistical model of microscopic stochastic deviation from classical mechanics based on a stochastic process with a transition probability that is assumed to be given by an exponential distribution of infinitesimal stationary action. We apply the statistical model to stochastically modify a classical mechanical model for the measurement of physical quantities reproducing the prediction of quantum mechanics. The system+apparatus always has a definite configuration at all times, as in classical mechanics, fluctuating randomly following a continuous trajectory. On the other hand, the wavefunction and quantum mechanical Hermitian operator corresponding to the physical quantity arise formally as artificial mathematical constructs. During a single measurement, the wavefunction of the whole system+apparatus evolves according to a Schrödinger equation and the configuration of the apparatus acts as the pointer of the measurement so that there is no wavefunction collapse. We will also show that while the outcome of each single measurement event does not reveal the actual value of the physical quantity prior to measurement, its average in an ensemble of identical measurements is equal to the average of the actual value of the physical quantity prior to measurement over the distribution of the configuration of the system. (paper)

  9. The critical domain size of stochastic population models.

    Science.gov (United States)

    Reimer, Jody R; Bonsall, Michael B; Maini, Philip K

    2017-02-01

    Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.

  10. Trip-oriented stochastic optimal energy management strategy for plug-in hybrid electric bus

    International Nuclear Information System (INIS)

    Du, Yongchang; Zhao, Yue; Wang, Qinpu; Zhang, Yuanbo; Xia, Huaicheng

    2016-01-01

    A trip-oriented stochastic optimal energy management strategy for plug-in hybrid electric bus is presented in this paper, which includes the offline stochastic dynamic programming part and the online implementation part performed by equivalent consumption minimization strategy. In the offline part, historical driving cycles of the fixed route are divided into segments according to the position of bus stops, and then a segment-based stochastic driving condition model based on Markov chain is built. With the segment-based stochastic model obtained, the control set for real-time implemented equivalent consumption minimization strategy can be achieved by solving the offline stochastic dynamic programming problem. Results of stochastic dynamic programming are converted into a 3-dimensional lookup table of parameters for online implemented equivalent consumption minimization strategy. The proposed strategy is verified by both simulation and hardware-in-loop test of real-world driving cycle on an urban bus route. Simulation results show that the proposed method outperforms both the well-tuned equivalent consumption minimization strategy and the rule-based strategy in terms of fuel economy, and even proved to be close to the optimal result obtained by dynamic programming. Furthermore, the practical application potential of the proposed control method was proved by hardware-in-loop test. - Highlights: • A stochastic problem was formed based on a stochastic segment-based driving condition model. • Offline stochastic dynamic programming was employed to solve the stochastic problem. • The instant power split decision was made by the online equivalent consumption minimization strategy. • Good performance in fuel economy of the proposed method was verified by simulation results. • Practical application potential of the proposed method was verified by the hardware-in-loop test results.

  11. Alternative Approaches to Technical Efficiency Estimation in the Stochastic Frontier Model

    OpenAIRE

    Acquah, H. de-Graft; Onumah, E. E.

    2014-01-01

    Estimating the stochastic frontier model and calculating technical efficiency of decision making units are of great importance in applied production economic works. This paper estimates technical efficiency from the stochastic frontier model using Jondrow, and Battese and Coelli approaches. In order to compare alternative methods, simulated data with sample sizes of 60 and 200 are generated from stochastic frontier model commonly applied to agricultural firms. Simulated data is employed to co...

  12. Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty

    Directory of Open Access Journals (Sweden)

    Zhongwen Li

    2016-06-01

    Full Text Available Microgrids (MGs are presented as a cornerstone of smart grids. With the potential to integrate intermittent renewable energy sources (RES in a flexible and environmental way, the MG concept has gained even more attention. Due to the randomness of RES, load, and electricity price in MG, the forecast errors of MGs will affect the performance of the power scheduling and the operating cost of an MG. In this paper, a combined stochastic programming and receding horizon control (SPRHC strategy is proposed for microgrid energy management under uncertainty, which combines the advantages of two-stage stochastic programming (SP and receding horizon control (RHC strategy. With an SP strategy, a scheduling plan can be derived that minimizes the risk of uncertainty by involving the uncertainty of MG in the optimization model. With an RHC strategy, the uncertainty within the MG can be further compensated through a feedback mechanism with the lately updated forecast information. In our approach, a proper strategy is also proposed to maintain the SP model as a mixed integer linear constrained quadratic programming (MILCQP problem, which is solvable without resorting to any heuristics algorithms. The results of numerical experiments explicitly demonstrate the superiority of the proposed strategy for both island and grid-connected operating modes of an MG.

  13. Stochastic Modelling of Shiroro River Stream flow Process

    OpenAIRE

    Musa, J. J

    2013-01-01

    Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

  14. TIME-DEPENDENT STOCHASTIC ACCELERATION MODEL FOR FERMI BUBBLES

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kento; Asano, Katsuaki; Terasawa, Toshio, E-mail: kentos@icrr.u-tokyo.ac.jp, E-mail: asanok@icrr.u-tokyo.ac.jp, E-mail: terasawa@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan)

    2015-12-01

    We study stochastic acceleration models for the Fermi bubbles. Turbulence is excited just behind the shock front via Kelvin–Helmholtz, Rayleigh–Taylor, or Richtmyer–Meshkov instabilities, and plasma particles are continuously accelerated by the interaction with the turbulence. The turbulence gradually decays as it goes away from the shock fronts. Adopting a phenomenological model for the stochastic acceleration, we explicitly solve the temporal evolution of the particle energy distribution in the turbulence. Our results show that the spatial distribution of high-energy particles is different from those for a steady solution. We also show that the contribution of electrons that escaped from the acceleration regions significantly softens the photon spectrum. The photon spectrum and surface brightness profile are reproduced by our models. If the escape efficiency is very high, the radio flux from the escaped low-energy electrons can be comparable to that of the WMAP haze. We also demonstrate hadronic models with the stochastic acceleration, but they are unlikely in the viewpoint of the energy budget.

  15. Computer Aided Continuous Time Stochastic Process Modelling

    DEFF Research Database (Denmark)

    Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay

    2001-01-01

    A grey-box approach to process modelling that combines deterministic and stochastic modelling is advocated for identification of models for model-based control of batch and semi-batch processes. A computer-aided tool designed for supporting decision-making within the corresponding modelling cycle...

  16. Review of "Stochastic Modelling for Systems Biology" by Darren Wilkinson

    Directory of Open Access Journals (Sweden)

    Bullinger Eric

    2006-12-01

    Full Text Available Abstract "Stochastic Modelling for Systems Biology" by Darren Wilkinson introduces the peculiarities of stochastic modelling in biology. This book is particularly suited to as a textbook or for self-study, and for readers with a theoretical background.

  17. Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.

    Science.gov (United States)

    Schaff, James C; Gao, Fei; Li, Ye; Novak, Igor L; Slepchenko, Boris M

    2016-12-01

    Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium 'sparks' as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell.

  18. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  19. A fuzzy-stochastic power system planning model: Reflection of dual objectives and dual uncertainties

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Huang, G.H.; Zhu, H.; Li, Y.P.

    2017-01-01

    In this study, a fuzzy stochastic dynamic fractional programming (FSDFP) method is proposed for supporting sustainable management of electric power system (EPS) under dual uncertainties. As an improvement upon the mixed-integer linear fractional programming, FSDFP can not only tackle multi-objective issues effectively without setting weights, but also can deal with uncertain parameters which have both stochastic and fuzzy characteristics. Thus, the developed method can help provide valuable information for supporting capacity-expansion planning and in-depth policy analysis of EPS management problems. For demonstrating these advantages, FSDFP has been applied to a case study of a typical regional EPS planning, where the decision makers have to deal with conflicts between economic development that maximizes the system profit and environmental protection that minimizes the carbon dioxide emissions. The obtained results can be analyzed to generate several decision alternatives, and can then help decision makers make suitable decisions under different input scenarios. Furthermore, comparisons of the solution from FSDFP method with that from fuzzy stochastic dynamic linear programming, linear fractional programming and dynamic stochastic fractional programming methods are undertaken. The contrastive analysis reveals that FSDFP is a more effective approach that can better characterize the complexities and uncertainties of real EPS management problems. - Highlights: • A fuzzy stochastic dynamic fractional programming (FSDFP) method is proposed. • FSDFP can address multiple conflicting objectives without setting weights. • FSDFP can reflect dual uncertainties with both stochastic and fuzzy characteristics. • Some reasonable solutions for a case of power system sustainable planning are generated. • Comparisons of the solutions from FSDFP with other optimization methods are undertaken.

  20. Stochastic Volatility and DSGE Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper argues that a specification of stochastic volatility commonly used to analyze the Great Moderation in DSGE models may not be appropriate, because the level of a process with this specification does not have conditional or unconditional moments. This is unfortunate because agents may...

  1. Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate

    International Nuclear Information System (INIS)

    Wang Zhi-Gang; Gao Rui-Mei; Fan Xiao-Ming; Han Qi-Xing

    2014-01-01

    We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ 0 , a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ 0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ 0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ 0 , when the stochastic system obeys some conditions and ℛ 0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations. (general)

  2. Stochastic differential equations used to model conjugation

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo

    Stochastic differential equations (SDEs) are used to model horizontal transfer of antibiotic resis- tance by conjugation. The model describes the concentration of donor, recipient, transconjugants and substrate. The strength of the SDE model over the traditional ODE models is that the noise can...

  3. Stochastic programming problems with generalized integrated chance constraints

    Czech Academy of Sciences Publication Activity Database

    Branda, Martin

    2012-01-01

    Roč. 61, č. 8 (2012), s. 949-968 ISSN 0233-1934 R&D Projects: GA ČR GAP402/10/1610 Grant - others:SVV(CZ) 261315/2010 Institutional support: RVO:67985556 Keywords : chance constraints * integrated chance constraints * penalty functions * sample approximations * blending problem Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.707, year: 2012 http://library.utia.cas.cz/separaty/2012/E/branda-stochastic programming problems with generalized integrated.pdf

  4. Stochastic Differential Equation-Based Flexible Software Reliability Growth Model

    Directory of Open Access Journals (Sweden)

    P. K. Kapur

    2009-01-01

    Full Text Available Several software reliability growth models (SRGMs have been developed by software developers in tracking and measuring the growth of reliability. As the size of software system is large and the number of faults detected during the testing phase becomes large, so the change of the number of faults that are detected and removed through each debugging becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model the software fault detection process as a stochastic process with continuous state space. In this paper, we propose a new software reliability growth model based on Itô type of stochastic differential equation. We consider an SDE-based generalized Erlang model with logistic error detection function. The model is estimated and validated on real-life data sets cited in literature to show its flexibility. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP-based models.

  5. A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis

    Directory of Open Access Journals (Sweden)

    Linda J.S. Allen

    2017-05-01

    Full Text Available Some mathematical methods for formulation and numerical simulation of stochastic epidemic models are presented. Specifically, models are formulated for continuous-time Markov chains and stochastic differential equations. Some well-known examples are used for illustration such as an SIR epidemic model and a host-vector malaria model. Analytical methods for approximating the probability of a disease outbreak are also discussed. Keywords: Branching process, Continuous-time Markov chain, Minor outbreak, Stochastic differential equation, 2000 MSC: 60H10, 60J28, 92D30

  6. Economic analysis of energy system considering the uncertainties of crude oil, natural gas and nuclear utilization employing stochastic dynamic programming

    International Nuclear Information System (INIS)

    Hasegawa, Keita; Komiyama, Ryoichi; Fujii, Yasumasa

    2016-01-01

    The paper presents an economic rationality analysis of power generation mix by stochastic dynamic programming considering fuel price uncertainties and supply disruption risks such as import disruption and nuclear power plant shutdown risk. The situation revolving around Japan's energy security adopted the past statistics, it cannot be applied to a quantitative analysis of future uncertainties. Further objective and quantitative evaluation methods are required in order to analyze Japan's energy system and make it more resilient in sight of long time scale. In this paper, the authors firstly develop the cost minimization model considering oil and natural gas price respectively by stochastic dynamic programming. Then, the authors show several premises of model and an example of result with related to crude oil stockpile, liquefied natural gas stockpile and nuclear power plant capacity. (author)

  7. The Expected Loss in the Discretization of Multistage Stochastic Programming Problems - Estimation and Convergence Rate

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Martin

    2009-01-01

    Roč. 165, č. 1 (2009), s. 29-45 ISSN 0254-5330 R&D Projects: GA ČR GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : multistage stochastic programming problems * approximation * discretization * Monte Carlo Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.961, year: 2009 http://library.utia.cas.cz/separaty/2008/E/smid-the expected loss in the discretization of multistage stochastic programming problems - estimation and convergence rate.pdf

  8. Stochastic modeling of consumer preferences for health care institutions.

    Science.gov (United States)

    Malhotra, N K

    1983-01-01

    This paper proposes a stochastic procedure for modeling consumer preferences via LOGIT analysis. First, a simple, non-technical exposition of the use of a stochastic approach in health care marketing is presented. Second, a study illustrating the application of the LOGIT model in assessing consumer preferences for hospitals is given. The paper concludes with several implications of the proposed approach.

  9. A remark on empirical estimates in multistage stochastic programming

    Czech Academy of Sciences Publication Activity Database

    Kaňková, Vlasta

    2002-01-01

    Roč. 9, č. 17 (2002), s. 31-50 ISSN 1212-074X R&D Projects: GA ČR GA402/01/0539; GA ČR GA402/02/1015; GA ČR GA402/01/0034 Institutional research plan: CEZ:AV0Z1075907 Keywords : multistage stochastic programming * empirical estimates * Markov dependence Subject RIV: BB - Applied Statistics, Operational Research

  10. Stochastic modeling

    CERN Document Server

    Lanchier, Nicolas

    2017-01-01

    Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the ...

  11. Stochastic optimization: beyond mathematical programming

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Stochastic optimization, among which bio-inspired algorithms, is gaining momentum in areas where more classical optimization algorithms fail to deliver satisfactory results, or simply cannot be directly applied. This presentation will introduce baseline stochastic optimization algorithms, and illustrate their efficiency in different domains, from continuous non-convex problems to combinatorial optimization problem, to problems for which a non-parametric formulation can help exploring unforeseen possible solution spaces.

  12. Stochastic ontogenetic growth model

    Science.gov (United States)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  13. An inexact fuzzy two-stage stochastic model for quantifying the efficiency of nonpoint source effluent trading under uncertainty

    International Nuclear Information System (INIS)

    Luo, B.; Maqsood, I.; Huang, G.H.; Yin, Y.Y.; Han, D.J.

    2005-01-01

    Reduction of nonpoint source (NPS) pollution from agricultural lands is a major concern in most countries. One method to reduce NPS pollution is through land retirement programs. This method, however, may result in enormous economic costs especially when large sums of croplands need to be retired. To reduce the cost, effluent trading can be employed to couple with land retirement programs. However, the trading efforts can also become inefficient due to various uncertainties existing in stochastic, interval, and fuzzy formats in agricultural systems. Thus, it is desired to develop improved methods to effectively quantify the efficiency of potential trading efforts by considering those uncertainties. In this respect, this paper presents an inexact fuzzy two-stage stochastic programming model to tackle such problems. The proposed model can facilitate decision-making to implement trading efforts for agricultural NPS pollution reduction through land retirement programs. The applicability of the model is demonstrated through a hypothetical effluent trading program within a subcatchment of the Lake Tai Basin in China. The study results indicate that the efficiency of the trading program is significantly influenced by precipitation amount, agricultural activities, and level of discharge limits of pollutants. The results also show that the trading program will be more effective for low precipitation years and with stricter discharge limits

  14. Multivariate moment closure techniques for stochastic kinetic models

    International Nuclear Information System (INIS)

    Lakatos, Eszter; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.

    2015-01-01

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs

  15. Multivariate moment closure techniques for stochastic kinetic models

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H., E-mail: m.stumpf@imperial.ac.uk [Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-09-07

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.

  16. Comparison of stochastic models in Monte Carlo simulation of coated particle fuels

    International Nuclear Information System (INIS)

    Yu Hui; Nam Zin Cho

    2013-01-01

    There is growing interest worldwide in very high temperature gas cooled reactors as candidates for next generation reactor systems. For design and analysis of such reactors with double heterogeneity introduced by the coated particle fuels that are randomly distributed in graphite pebbles, stochastic transport models are becoming essential. Several models were reported in the literature, such as coarse lattice models, fine lattice stochastic (FLS) models, random sequential addition (RSA) models, metropolis models. The principles and performance of these stochastic models are described and compared in this paper. Compared with the usual fixed lattice methods, sub-FLS modeling allows more realistic stochastic distribution of fuel particles and thus results in more accurate criticality calculation. Compared with the basic RSA method, sub-FLS modeling requires simpler and more efficient overlapping checking procedure. (authors)

  17. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  18. Multi-scenario modelling of uncertainty in stochastic chemical systems

    International Nuclear Information System (INIS)

    Evans, R. David; Ricardez-Sandoval, Luis A.

    2014-01-01

    Uncertainty analysis has not been well studied at the molecular scale, despite extensive knowledge of uncertainty in macroscale systems. The ability to predict the effect of uncertainty allows for robust control of small scale systems such as nanoreactors, surface reactions, and gene toggle switches. However, it is difficult to model uncertainty in such chemical systems as they are stochastic in nature, and require a large computational cost. To address this issue, a new model of uncertainty propagation in stochastic chemical systems, based on the Chemical Master Equation, is proposed in the present study. The uncertain solution is approximated by a composite state comprised of the averaged effect of samples from the uncertain parameter distributions. This model is then used to study the effect of uncertainty on an isomerization system and a two gene regulation network called a repressilator. The results of this model show that uncertainty in stochastic systems is dependent on both the uncertain distribution, and the system under investigation. -- Highlights: •A method to model uncertainty on stochastic systems was developed. •The method is based on the Chemical Master Equation. •Uncertainty in an isomerization reaction and a gene regulation network was modelled. •Effects were significant and dependent on the uncertain input and reaction system. •The model was computationally more efficient than Kinetic Monte Carlo

  19. Identifiability in stochastic models

    CERN Document Server

    1992-01-01

    The problem of identifiability is basic to all statistical methods and data analysis, occurring in such diverse areas as Reliability Theory, Survival Analysis, and Econometrics, where stochastic modeling is widely used. Mathematics dealing with identifiability per se is closely related to the so-called branch of ""characterization problems"" in Probability Theory. This book brings together relevant material on identifiability as it occurs in these diverse fields.

  20. Study on individual stochastic model of GNSS observations for precise kinematic applications

    Science.gov (United States)

    Próchniewicz, Dominik; Szpunar, Ryszard

    2015-04-01

    The proper definition of mathematical positioning model, which is defined by functional and stochastic models, is a prerequisite to obtain the optimal estimation of unknown parameters. Especially important in this definition is realistic modelling of stochastic properties of observations, which are more receiver-dependent and time-varying than deterministic relationships. This is particularly true with respect to precise kinematic applications which are characterized by weakening model strength. In this case, incorrect or simplified definition of stochastic model causes that the performance of ambiguity resolution and accuracy of position estimation can be limited. In this study we investigate the methods of describing the measurement noise of GNSS observations and its impact to derive precise kinematic positioning model. In particular stochastic modelling of individual components of the variance-covariance matrix of observation noise performed using observations from a very short baseline and laboratory GNSS signal generator, is analyzed. Experimental test results indicate that the utilizing the individual stochastic model of observations including elevation dependency and cross-correlation instead of assumption that raw measurements are independent with the same variance improves the performance of ambiguity resolution as well as rover positioning accuracy. This shows that the proposed stochastic assessment method could be a important part in complex calibration procedure of GNSS equipment.

  1. Optimizing Water Allocation under Uncertain System Conditions for Water and Agriculture Future Scenarios in Alfeios River Basin (Greece—Part B: Fuzzy-Boundary Intervals Combined with Multi-Stage Stochastic Programming Model

    Directory of Open Access Journals (Sweden)

    Eleni Bekri

    2015-11-01

    Full Text Available Optimal water allocation within a river basin still remains a great modeling challenge for engineers due to various hydrosystem complexities, parameter uncertainties and their interactions. Conventional deterministic optimization approaches have given their place to stochastic, fuzzy and interval-parameter programming approaches and their hybrid combinations for overcoming these difficulties. In many countries, including Mediterranean countries, water resources management is characterized by uncertain, imprecise and limited data because of the absence of permanent measuring systems, inefficient river monitoring and fragmentation of authority responsibilities. A fuzzy-boundary-interval linear programming methodology developed by Li et al. (2010 is selected and applied in the Alfeios river basin (Greece for optimal water allocation under uncertain system conditions. This methodology combines an ordinary multi-stage stochastic programming with uncertainties expressed as fuzzy-boundary intervals. Upper- and lower-bound solution intervals for optimized water allocation targets and probabilistic water allocations and shortages are estimated under a baseline scenario and four water and agricultural policy future scenarios for an optimistic and a pessimistic attitude of the decision makers. In this work, the uncertainty of the random water inflows is incorporated through the simultaneous generation of stochastic equal-probability hydrologic scenarios at various inflow positions instead of using a scenario-tree approach in the original methodology.

  2. Modeling and identification of ARMG models for stochastic processes: application to on-line computation of the power spectral density

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles; Thabet, Gabriel.

    1977-01-01

    Control algorithms for components of nuclear power plants are currently based on external diagnostic methods. Modeling and identification techniques for autoregressive moving average models (ARMA) for stochastic processes are described. The identified models provide a means of estimating the power spectral density with improved accuracy and computer time compared with the classical methods. They are particularly will suited for on-line estimation of the power spectral density. The observable stochastic process y (t) is modeled assuming that it is the output of a linear filter driven by Gaussian while noise w (t). Two identification schemes were tested to find the orders m and n of the ARMA (m,n) models and to estimate the parameters of the recursion equation relating the input and output signals. The first scheme consists in transforming the ARMA model to an autoregressive model. The parameters of this AR model are obtained using least squares estimation techniques. The second scheme consists in finding the parameters of the ARMA by nonlinear programming techniques. The power spectral density of y(t) is instantaneously deduced from these ARMA models [fr

  3. Estimation of Stochastic Volatility Models by Nonparametric Filtering

    DEFF Research Database (Denmark)

    Kanaya, Shin; Kristensen, Dennis

    2016-01-01

    /estimated volatility process replacing the latent process. Our estimation strategy is applicable to both parametric and nonparametric stochastic volatility models, and can handle both jumps and market microstructure noise. The resulting estimators of the stochastic volatility model will carry additional biases...... and variances due to the first-step estimation, but under regularity conditions we show that these vanish asymptotically and our estimators inherit the asymptotic properties of the infeasible estimators based on observations of the volatility process. A simulation study examines the finite-sample properties...

  4. Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs

    International Nuclear Information System (INIS)

    Alipour, Manijeh; Mohammadi-Ivatloo, Behnam; Zare, Kazem

    2014-01-01

    Highlights: • Short-term self-scheduling problem of customers with CHP units is conducted. • Power demand and pool prices are forecasted using ARIMA models. • Risk management problem is conducted by implementing CVaR methodology. • The demand response program is implemented in self-scheduling problem of CHP units. • Non-convex feasible operation region in different types of CHP units is modeled. - Abstract: This paper presents a stochastic programming framework for solving the scheduling problem faced by an industrial customer with cogeneration facilities, conventional power production system, and heat only units. The power and heat demands of the customer are supplied considering demand response (DR) programs. In the proposed DR program, the responsive load can vary in different time intervals. In the paper, the heat-power dual dependency characteristic in different types of CHP units is taken into account. In addition, a heat buffer tank, with the ability of heat storage, has been incorporated in the proposed framework. The impact of the market and load uncertainties on the scheduling problem is characterized through a stochastic programming formulation. Autoregressive integrated moving average (ARIMA) technique is used to generate the electricity price and the customer demand scenarios. The daily and weekly seasonalities of demand and market prices are taken into account in the scenario generation procedure. The conditional value-at-risk (CVaR) methodology is implemented in order to limit the risk of expected profit due to market price and load forecast volatilities

  5. A Simulation-Based Dynamic Stochastic Route Choice Model for Evacuation

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2012-01-01

    Full Text Available This paper establishes a dynamic stochastic route choice model for evacuation to simulate the propagation process of traffic flow and estimate the stochastic route choice under evacuation situations. The model contains a lane-group-based cell transmission model (CTM which sets different traffic capacities for links with different turning movements to flow out in an evacuation situation, an actual impedance model which is to obtain the impedance of each route in time units at each time interval and a stochastic route choice model according to the probit-based stochastic user equilibrium. In this model, vehicles loading at each origin at each time interval are assumed to choose an evacuation route under determinate road network, signal design, and OD demand. As a case study, the proposed model is validated on the network nearby Nanjing Olympic Center after the opening ceremony of the 10th National Games of the People's Republic of China. The traffic volumes and clearing time at five exit points of the evacuation zone are calculated by the model to compare with survey data. The results show that this model can appropriately simulate the dynamic route choice and evolution process of the traffic flow on the network in an evacuation situation.

  6. On the small-time behavior of stochastic logistic models

    Directory of Open Access Journals (Sweden)

    Dung Tien Nguyen

    2017-09-01

    Full Text Available In this paper we investigate the small-time behaviors of the solution to  a stochastic logistic model. The obtained results allow us to estimate the number of individuals in the population and can be used to study stochastic prey-predator systems.

  7. Depandent samples in empirical estimation of stochastic programming problems

    Czech Academy of Sciences Publication Activity Database

    Kaňková, Vlasta; Houda, Michal

    2006-01-01

    Roč. 35, 2/3 (2006), s. 271-279 ISSN 1026-597X R&D Projects: GA ČR GA402/04/1294; GA ČR GD402/03/H057; GA ČR GA402/05/0115 Institutional research plan: CEZ:AV0Z10750506 Keywords : stochastic programming * stability * probability metrics * Wasserstein metric * Kolmogorov metric * simulations Subject RIV: BB - Applied Statistics , Operational Research

  8. Spatial stochastic regression modelling of urban land use

    International Nuclear Information System (INIS)

    Arshad, S H M; Jaafar, J; Abiden, M Z Z; Latif, Z A; Rasam, A R A

    2014-01-01

    Urbanization is very closely linked to industrialization, commercialization or overall economic growth and development. This results in innumerable benefits of the quantity and quality of the urban environment and lifestyle but on the other hand contributes to unbounded development, urban sprawl, overcrowding and decreasing standard of living. Regulation and observation of urban development activities is crucial. The understanding of urban systems that promotes urban growth are also essential for the purpose of policy making, formulating development strategies as well as development plan preparation. This study aims to compare two different stochastic regression modeling techniques for spatial structure models of urban growth in the same specific study area. Both techniques will utilize the same datasets and their results will be analyzed. The work starts by producing an urban growth model by using stochastic regression modeling techniques namely the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR). The two techniques are compared to and it is found that, GWR seems to be a more significant stochastic regression model compared to OLS, it gives a smaller AICc (Akaike's Information Corrected Criterion) value and its output is more spatially explainable

  9. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  10. Markov Chain Models for the Stochastic Modeling of Pitting Corrosion

    Directory of Open Access Journals (Sweden)

    A. Valor

    2013-01-01

    Full Text Available The stochastic nature of pitting corrosion of metallic structures has been widely recognized. It is assumed that this kind of deterioration retains no memory of the past, so only the current state of the damage influences its future development. This characteristic allows pitting corrosion to be categorized as a Markov process. In this paper, two different models of pitting corrosion, developed using Markov chains, are presented. Firstly, a continuous-time, nonhomogeneous linear growth (pure birth Markov process is used to model external pitting corrosion in underground pipelines. A closed-form solution of the system of Kolmogorov's forward equations is used to describe the transition probability function in a discrete pit depth space. The transition probability function is identified by correlating the stochastic pit depth mean with the empirical deterministic mean. In the second model, the distribution of maximum pit depths in a pitting experiment is successfully modeled after the combination of two stochastic processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time is simulated as the realization of a Weibull process. Pit growth is simulated using a nonhomogeneous Markov process. An analytical solution of Kolmogorov's system of equations is also found for the transition probabilities from the first Markov state. Extreme value statistics is employed to find the distribution of maximum pit depths.

  11. A stochastic model for the financial market with discontinuous prices

    Directory of Open Access Journals (Sweden)

    Leda D. Minkova

    1996-01-01

    Full Text Available This paper models some situations occurring in the financial market. The asset prices evolve according to a stochastic integral equation driven by a Gaussian martingale. A portfolio process is constrained in such a way that the wealth process covers some obligation. A solution to a linear stochastic integral equation is obtained in a class of cadlag stochastic processes.

  12. Stochastic higher spin six vertex model and Macdonald measures

    Science.gov (United States)

    Borodin, Alexei

    2018-02-01

    We prove an identity that relates the q-Laplace transform of the height function of a (higher spin inhomogeneous) stochastic six vertex model in a quadrant on one side and a multiplicative functional of a Macdonald measure on the other. The identity is used to prove the GUE Tracy-Widom asymptotics for two instances of the stochastic six vertex model via asymptotic analysis of the corresponding Schur measures.

  13. Improved ensemble-mean forecast skills of ENSO events by a zero-mean stochastic model-error model of an intermediate coupled model

    Science.gov (United States)

    Zheng, F.; Zhu, J.

    2015-12-01

    To perform an ensemble-based ENSO probabilistic forecast, the crucial issue is to design a reliable ensemble prediction strategy that should include the major uncertainties of a forecast system. In this study, we developed a new general ensemble perturbation technique to improve the ensemble-mean predictive skill of forecasting ENSO using an intermediate coupled model (ICM). The model uncertainties are first estimated and analyzed from EnKF analysis results through assimilating observed SST. Then, based on the pre-analyzed properties of the model errors, a zero-mean stochastic model-error model is developed to mainly represent the model uncertainties induced by some important physical processes missed in the coupled model (i.e., stochastic atmospheric forcing/MJO, extra-tropical cooling and warming, Indian Ocean Dipole mode, etc.). Each member of an ensemble forecast is perturbed by the stochastic model-error model at each step during the 12-month forecast process, and the stochastical perturbations are added into the modeled physical fields to mimic the presence of these high-frequency stochastic noises and model biases and their effect on the predictability of the coupled system. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr retrospective forecast experiments. The two forecast schemes are differentiated by whether they considered the model stochastic perturbations, with both initialized by the ensemble-mean analysis states from EnKF. The comparison results suggest that the stochastic model-error perturbations have significant and positive impacts on improving the ensemble-mean prediction skills during the entire 12-month forecast process. Because the nonlinear feature of the coupled model can induce the nonlinear growth of the added stochastic model errors with model integration, especially through the nonlinear heating mechanism with the vertical advection term of the model, the

  14. Scalable inference for stochastic block models

    KAUST Repository

    Peng, Chengbin; Zhang, Zhihua; Wong, Ka-Chun; Zhang, Xiangliang; Keyes, David E.

    2017-01-01

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference

  15. Stochastic Parametrisations and Regime Behaviour of Atmospheric Models

    Science.gov (United States)

    Arnold, Hannah; Moroz, Irene; Palmer, Tim

    2013-04-01

    The presence of regimes is a characteristic of non-linear, chaotic systems (Lorenz, 2006). In the atmosphere, regimes emerge as familiar circulation patterns such as the El-Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and Scandinavian Blocking events. In recent years there has been much interest in the problem of identifying and studying atmospheric regimes (Solomon et al, 2007). In particular, how do these regimes respond to an external forcing such as anthropogenic greenhouse gas emissions? The importance of regimes in observed trends over the past 50-100 years indicates that in order to predict anthropogenic climate change, our climate models must be able to represent accurately natural circulation regimes, their statistics and variability. It is well established that representing model uncertainty as well as initial condition uncertainty is important for reliable weather forecasts (Palmer, 2001). In particular, stochastic parametrisation schemes have been shown to improve the skill of weather forecast models (e.g. Berner et al., 2009; Frenkel et al., 2012; Palmer et al., 2009). It is possible that including stochastic physics as a representation of model uncertainty could also be beneficial in climate modelling, enabling the simulator to explore larger regions of the climate attractor including other flow regimes. An alternative representation of model uncertainty is a perturbed parameter scheme, whereby physical parameters in subgrid parametrisation schemes are perturbed about their optimal value. Perturbing parameters gives a greater control over the ensemble than multi-model or multiparametrisation ensembles, and has been used as a representation of model uncertainty in climate prediction (Stainforth et al., 2005; Rougier et al., 2009). We investigate the effect of including representations of model uncertainty on the regime behaviour of a simulator. A simple chaotic model of the atmosphere, the Lorenz '96 system, is used to study

  16. Model tracking dual stochastic controller design under irregular internal noises

    International Nuclear Information System (INIS)

    Lee, Jong Bok; Heo, Hoon; Cho, Yun Hyun; Ji, Tae Young

    2006-01-01

    Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and l/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation

  17. Simulation of nuclear plant operation into a stochastic energy production model

    International Nuclear Information System (INIS)

    Pacheco, R.L.

    1983-04-01

    A simulation model of nuclear plant operation is developed to fit into a stochastic energy production model. In order to improve the stochastic model used, and also reduce its computational time burdened by the aggregation of the model of nuclear plant operation, a study of tail truncation of the unsupplied demand distribution function has been performed. (E.G.) [pt

  18. A complementarity model for solving stochastic natural gas market equilibria

    International Nuclear Information System (INIS)

    Jifang Zhuang; Gabriel, S.A.

    2008-01-01

    This paper presents a stochastic equilibrium model for deregulated natural gas markets. Each market participant (pipeline operators, producers, etc.) solves a stochastic optimization problem whose optimality conditions, when combined with market-clearing conditions give rise to a certain mixed complementarity problem (MiCP). The stochastic aspects are depicted by a recourse problem for each player in which the first-stage decisions relate to long-term contracts and the second-stage decisions relate to spot market activities for three seasons. Besides showing that such a market model is an instance of a MiCP, we provide theoretical results concerning long-term and spot market prices and solve the resulting MiCP for a small yet representative market. We also note an interesting observation for the value of the stochastic solution for non-optimization problems. (author)

  19. A complementarity model for solving stochastic natural gas market equilibria

    International Nuclear Information System (INIS)

    Zhuang Jifang; Gabriel, Steven A.

    2008-01-01

    This paper presents a stochastic equilibrium model for deregulated natural gas markets. Each market participant (pipeline operators, producers, etc.) solves a stochastic optimization problem whose optimality conditions, when combined with market-clearing conditions give rise to a certain mixed complementarity problem (MiCP). The stochastic aspects are depicted by a recourse problem for each player in which the first-stage decisions relate to long-term contracts and the second-stage decisions relate to spot market activities for three seasons. Besides showing that such a market model is an instance of a MiCP, we provide theoretical results concerning long-term and spot market prices and solve the resulting MiCP for a small yet representative market. We also note an interesting observation for the value of the stochastic solution for non-optimization problems

  20. Deterministic and stochastic models for middle east respiratory syndrome (MERS)

    Science.gov (United States)

    Suryani, Dessy Rizki; Zevika, Mona; Nuraini, Nuning

    2018-03-01

    World Health Organization (WHO) data stated that since September 2012, there were 1,733 cases of Middle East Respiratory Syndrome (MERS) with 628 death cases that occurred in 27 countries. MERS was first identified in Saudi Arabia in 2012 and the largest cases of MERS outside Saudi Arabia occurred in South Korea in 2015. MERS is a disease that attacks the respiratory system caused by infection of MERS-CoV. MERS-CoV transmission occurs directly through direct contact between infected individual with non-infected individual or indirectly through contaminated object by the free virus. Suspected, MERS can spread quickly because of the free virus in environment. Mathematical modeling is used to illustrate the transmission of MERS disease using deterministic model and stochastic model. Deterministic model is used to investigate the temporal dynamic from the system to analyze the steady state condition. Stochastic model approach using Continuous Time Markov Chain (CTMC) is used to predict the future states by using random variables. From the models that were built, the threshold value for deterministic models and stochastic models obtained in the same form and the probability of disease extinction can be computed by stochastic model. Simulations for both models using several of different parameters are shown, and the probability of disease extinction will be compared with several initial conditions.

  1. Considerations when ranking stochastically modeled oil sands resource models for mining applications

    Energy Technology Data Exchange (ETDEWEB)

    Etris, E.L. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Petro-Canada, Calgary, AB (Canada); Idris, Y.; Hunter, A.C. [Petro-Canada, Calgary, AB (Canada)

    2008-10-15

    Alberta's Athabasca oil sands deposit has been targeted as a major resource for development. Bitumen recovery operations fall into 2 categories, namely mining and in situ operations. Mining recovery is done above ground level and consists of open pit digging, disaggregation of the bitumen-saturated sediment through crushing followed by pipeline transport in a water-based slurry and then separation of oil, water and sediment. In situ recovery consists of drilling wells and stimulating the oil sands in the subsurface with a thermal treatment to reduce the viscosity of the bitumen and allow it to come to the surface. Steam assisted gravity drainage (SAGD) is the most popular thermal treatment currently in use. Resource models that simulate the recovery process are needed for both mining and in situ recovery operations. Both types can benefit from the advantages of a stochastic modeling process for resource model building and uncertainty evaluation. Stochastic modeling provides a realistic geology and allows for multiple realizations, which mining operations can use to evaluate the variability of recoverable bitumen volumes and develop mine plans accordingly. This paper described the processes of stochastic modelling and of determining the appropriate single realization for mine planning as applied to the Fort Hills oil sands mine which is currently in the early planning stage. The modeling exercise was used to estimate the in-place resource and quantify the uncertainty in resource volumes. The stochastic models were checked against those generated from conventional methods to identify any differences and to make the appropriate adaptations. 13 refs., 3 tabs., 16 figs.

  2. A computer model of the biosphere, to estimate stochastic and non-stochastic effects of radionuclides on humans

    International Nuclear Information System (INIS)

    Laurens, J.M.

    1985-01-01

    A computer code was written to model food chains in order to estimate the internal and external doses, for stochastic and non-stochastic effects, on humans (adults and infants). Results are given for 67 radionuclides, for unit concentration in water (1 Bq/L) and in atmosphere (1 Bq/m 3 )

  3. A coupled stochastic rainfall-evapotranspiration model for hydrological impact analysis

    Science.gov (United States)

    Pham, Minh Tu; Vernieuwe, Hilde; De Baets, Bernard; Verhoest, Niko E. C.

    2018-02-01

    A hydrological impact analysis concerns the study of the consequences of certain scenarios on one or more variables or fluxes in the hydrological cycle. In such an exercise, discharge is often considered, as floods originating from extremely high discharges often cause damage. Investigating the impact of extreme discharges generally requires long time series of precipitation and evapotranspiration to be used to force a rainfall-runoff model. However, such kinds of data may not be available and one should resort to stochastically generated time series, even though the impact of using such data on the overall discharge, and especially on the extreme discharge events, is not well studied. In this paper, stochastically generated rainfall and corresponding evapotranspiration time series, generated by means of vine copulas, are used to force a simple conceptual hydrological model. The results obtained are comparable to the modelled discharge using observed forcing data. Yet, uncertainties in the modelled discharge increase with an increasing number of stochastically generated time series used. Notwithstanding this finding, it can be concluded that using a coupled stochastic rainfall-evapotranspiration model has great potential for hydrological impact analysis.

  4. Stochastic Modeling and Analysis of Power System with Renewable Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan

    Unlike traditional fossil-fuel based power generation, renewable generation such as wind power relies on uncontrollable prime sources such as wind speed. Wind speed varies stochastically, which to a large extent determines the stochastic behavior of power generation from wind farms...... that such a stochastic model can be used to simulate the effect of load management on the load duration curve. As CHP units are turned on and off by regulating power, CHP generation has discrete output and thus can be modeled by a transition matrix based discrete Markov chain. As the CHP generation has a strong diurnal...

  5. PERIODIC REVIEW SYSTEM FOR INVENTORY REPLENISHMENT CONTROL FOR A TWO-ECHELON LOGISTICS NETWORK UNDER DEMAND UNCERTAINTY: A TWO-STAGE STOCHASTIC PROGRAMING APPROACH

    OpenAIRE

    Cunha, P.S.A.; Oliveira, F.; Raupp, Fernanda M.P.

    2017-01-01

    ABSTRACT Here, we propose a novel methodology for replenishment and control systems for inventories of two-echelon logistics networks using a two-stage stochastic programming, considering periodic review and uncertain demands. In addition, to achieve better customer services, we introduce a variable rationing rule to address quantities of the item in short. The devised models are reformulated into their deterministic equivalent, resulting in nonlinear mixed-integer programming models, which a...

  6. A two-stage stochastic programming approach for operating multi-energy systems

    DEFF Research Database (Denmark)

    Zeng, Qing; Fang, Jiakun; Chen, Zhe

    2017-01-01

    This paper provides a two-stage stochastic programming approach for joint operating multi-energy systems under uncertainty. Simulation is carried out in a test system to demonstrate the feasibility and efficiency of the proposed approach. The test energy system includes a gas subsystem with a gas...

  7. Extinction in neutrally stable stochastic Lotka-Volterra models

    Science.gov (United States)

    Dobrinevski, Alexander; Frey, Erwin

    2012-05-01

    Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.

  8. Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming

    International Nuclear Information System (INIS)

    Shaban Boloukat, Mohammad Hadi; Akbari Foroud, Asghar

    2016-01-01

    This paper represents a stochastic approach for long-term optimal resource expansion planning of a grid-connected microgrid (MG) containing different technologies as intermittent renewable energy resources, energy storage systems and thermal resources. Maximizing profit and reliability, along with minimizing investment and operation costs, are major objectives which have been considered in this model. Also, the impacts of intermittency and uncertainty in renewable energy resources were investigated. The interval linear programming (ILP) was applied for modelling inherent stochastic nature of the renewable energy resources. ILP presents some superiority in modelling of uncertainties in MG planning. The problem was formulated as a mixed-integer linear programming. It has been demonstrated previously that the benders decomposition (BD) served as an effective tool for solving such problems. BD divides the original problem into a master (investment) problem and operation and reliability subproblems. In this paper a multiperiod MG planning is presented, considering life time, maximum penetration limit of each technology, interest rate, capital recovery factor and investment fund. Real-time energy exchange with the utility is covered, with a consideration of variable tariffs at different load blocks. The presented approach can help MG planners to adopt best decision under various uncertainty levels based on their budgetary policies. - Highlights: • Considering uncertain nature of the renewable resources with applying ILP. • Considering the effect of intermittency of renewable in MG planning. • Multiobjective MG planning problem which covers cost, profit and reliability. • Multiperiod approach for MG planning considering life time and MPL of technologies. • Presenting real-time energy exchange with the utility considering variable tariffs.

  9. Demand side management scheme in smart grid with cloud computing approach using stochastic dynamic programming

    Directory of Open Access Journals (Sweden)

    S. Sofana Reka

    2016-09-01

    Full Text Available This paper proposes a cloud computing framework in smart grid environment by creating small integrated energy hub supporting real time computing for handling huge storage of data. A stochastic programming approach model is developed with cloud computing scheme for effective demand side management (DSM in smart grid. Simulation results are obtained using GUI interface and Gurobi optimizer in Matlab in order to reduce the electricity demand by creating energy networks in a smart hub approach.

  10. Model predictive control classical, robust and stochastic

    CERN Document Server

    Kouvaritakis, Basil

    2016-01-01

    For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...

  11. A low-bias simulation scheme for the SABR stochastic volatility model

    NARCIS (Netherlands)

    B. Chen (Bin); C.W. Oosterlee (Cornelis); J.A.M. van der Weide

    2012-01-01

    htmlabstractThe Stochastic Alpha Beta Rho Stochastic Volatility (SABR-SV) model is widely used in the financial industry for the pricing of fixed income instruments. In this paper we develop an lowbias simulation scheme for the SABR-SV model, which deals efficiently with (undesired)

  12. PERFORMANCE COMPARISON OF SCENARIO-GENERATION METHODS APPLIED TO A STOCHASTIC OPTIMIZATION ASSET-LIABILITY MANAGEMENT MODEL

    Directory of Open Access Journals (Sweden)

    Alan Delgado de Oliveira

    Full Text Available ABSTRACT In this paper, we provide an empirical discussion of the differences among some scenario tree-generation approaches for stochastic programming. We consider the classical Monte Carlo sampling and Moment matching methods. Moreover, we test the Resampled average approximation, which is an adaptation of Monte Carlo sampling and Monte Carlo with naive allocation strategy as the benchmark. We test the empirical effects of each approach on the stability of the problem objective function and initial portfolio allocation, using a multistage stochastic chance-constrained asset-liability management (ALM model as the application. The Moment matching and Resampled average approximation are more stable than the other two strategies.

  13. Stochastic mixed-mode oscillations in a three-species predator-prey model

    Science.gov (United States)

    Sadhu, Susmita; Kuehn, Christian

    2018-03-01

    The effect of demographic stochasticity, in the form of Gaussian white noise, in a predator-prey model with one fast and two slow variables is studied. We derive the stochastic differential equations (SDEs) from a discrete model. For suitable parameter values, the deterministic drift part of the model admits a folded node singularity and exhibits a singular Hopf bifurcation. We focus on the parameter regime near the Hopf bifurcation, where small amplitude oscillations exist as stable dynamics in the absence of noise. In this regime, the stochastic model admits noise-driven mixed-mode oscillations (MMOs), which capture the intermediate dynamics between two cycles of population outbreaks. We perform numerical simulations to calculate the distribution of the random number of small oscillations between successive spikes for varying noise intensities and distance to the Hopf bifurcation. We also study the effect of noise on a suitable Poincaré map. Finally, we prove that the stochastic model can be transformed into a normal form near the folded node, which can be linked to recent results on the interplay between deterministic and stochastic small amplitude oscillations. The normal form can also be used to study the parameter influence on the noise level near folded singularities.

  14. A genetic-algorithm-aided stochastic optimization model for regional air quality management under uncertainty.

    Science.gov (United States)

    Qin, Xiaosheng; Huang, Guohe; Liu, Lei

    2010-01-01

    A genetic-algorithm-aided stochastic optimization (GASO) model was developed in this study for supporting regional air quality management under uncertainty. The model incorporated genetic algorithm (GA) and Monte Carlo simulation techniques into a general stochastic chance-constrained programming (CCP) framework and allowed uncertainties in simulation and optimization model parameters to be considered explicitly in the design of least-cost strategies. GA was used to seek the optimal solution of the management model by progressively evaluating the performances of individual solutions. Monte Carlo simulation was used to check the feasibility of each solution. A management problem in terms of regional air pollution control was studied to demonstrate the applicability of the proposed method. Results of the case study indicated the proposed model could effectively communicate uncertainties into the optimization process and generate solutions that contained a spectrum of potential air pollutant treatment options with risk and cost information. Decision alternatives could be obtained by analyzing tradeoffs between the overall pollutant treatment cost and the system-failure risk due to inherent uncertainties.

  15. Stochastic resonance in models of neuronal ensembles

    International Nuclear Information System (INIS)

    Chialvo, D.R.; Longtin, A.; Mueller-Gerkin, J.

    1997-01-01

    Two recently suggested mechanisms for the neuronal encoding of sensory information involving the effect of stochastic resonance with aperiodic time-varying inputs are considered. It is shown, using theoretical arguments and numerical simulations, that the nonmonotonic behavior with increasing noise of the correlation measures used for the so-called aperiodic stochastic resonance (ASR) scenario does not rely on the cooperative effect typical of stochastic resonance in bistable and excitable systems. Rather, ASR with slowly varying signals is more properly interpreted as linearization by noise. Consequently, the broadening of the open-quotes resonance curveclose quotes in the multineuron stochastic resonance without tuning scenario can also be explained by this linearization. Computation of the input-output correlation as a function of both signal frequency and noise for the model system further reveals conditions where noise-induced firing with aperiodic inputs will benefit from stochastic resonance rather than linearization by noise. Thus, our study clarifies the tuning requirements for the optimal transduction of subthreshold aperiodic signals. It also shows that a single deterministic neuron can perform as well as a network when biased into a suprathreshold regime. Finally, we show that the inclusion of a refractory period in the spike-detection scheme produces a better correlation between instantaneous firing rate and input signal. copyright 1997 The American Physical Society

  16. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors

    Directory of Open Access Journals (Sweden)

    Spiros Pagiatakis

    2009-10-01

    Full Text Available In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times. It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF. It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at −40 °C, −20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  17. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors.

    Science.gov (United States)

    El-Diasty, Mohammed; Pagiatakis, Spiros

    2009-01-01

    In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  18. Stochastic volatility and multi-dimensional modeling in the European energy market

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Linda

    2012-07-01

    In energy prices there is evidence for stochastic volatility. Stochastic volatility has effect on the price of path-dependent options and therefore has to be modeled properly. We introduced a multi-dimensional non-Gaussian stochastic volatility model with leverage which can be used in energy pricing. It captures special features of energy prices like price spikes, mean-reversion, stochastic volatility and inverse leverage. Moreover it allows modeling dependencies between different commodities.The derived forward price dynamics based on this multi-variate spot price model, provides a very flexible structure. It includes cotango, backwardation and hump shape forward curves.Alternatively energy prices could be modeled by a 2-factor model consisting of a non-Gaussian stable CARMA process and a non-stationary trend models by a Levy process. Also this model is able to capture special features like price spikes, mean reversion and the low frequency dynamics in the market. An robust L1-filter is introduced to filter out the states of the CARMA process. When applying to German electricity EEX exchange data an overall negative risk-premium is found. However close to delivery a positive risk-premium is observed.(Author)

  19. Stochastic Load Models and Footbridge Response

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2015-01-01

    Pedestrians may cause vibrations in footbridges and these vibrations may potentially be annoying. This calls for predictions of footbridge vibration levels and the paper considers a stochastic approach to modeling the action of pedestrians assuming walking parameters such as step frequency, pedes...

  20. On cross-currency models with stochastic volatility and correlated interest rates

    NARCIS (Netherlands)

    Grzelak, L.A.; Oosterlee, C.W.

    2010-01-01

    We construct multi-currency models with stochastic volatility and correlated stochastic interest rates with a full matrix of correlations. We first deal with a foreign exchange (FX) model of Heston-type, in which the domestic and foreign interest rates are generated by the short-rate process of

  1. On the Realistic Stochastic Model of GPS Observables: Implementation and Performance

    Science.gov (United States)

    Zangeneh-Nejad, F.; Amiri-Simkooei, A. R.; Sharifi, M. A.; Asgari, J.

    2015-12-01

    High-precision GPS positioning requires a realistic stochastic model of observables. A realistic GPS stochastic model of observables should take into account different variances for different observation types, correlations among different observables, the satellite elevation dependence of observables precision, and the temporal correlation of observables. Least-squares variance component estimation (LS-VCE) is applied to GPS observables using the geometry-based observation model (GBOM). To model the satellite elevation dependent of GPS observables precision, an exponential model depending on the elevation angles of the satellites are also employed. Temporal correlation of the GPS observables is modelled by using a first-order autoregressive noise model. An important step in the high-precision GPS positioning is double difference integer ambiguity resolution (IAR). The fraction or percentage of success among a number of integer ambiguity fixing is called the success rate. A realistic estimation of the GNSS observables covariance matrix plays an important role in the IAR. We consider the ambiguity resolution success rate for two cases, namely a nominal and a realistic stochastic model of the GPS observables using two GPS data sets collected by the Trimble R8 receiver. The results confirm that applying a more realistic stochastic model can significantly improve the IAR success rate on individual frequencies, either on L1 or on L2. An improvement of 20% was achieved to the empirical success rate results. The results also indicate that introducing the realistic stochastic model leads to a larger standard deviation for the baseline components by a factor of about 2.6 on the data sets considered.

  2. Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiao [ORNL; Dong, Jin [ORNL; Djouadi, Seddik M [ORNL; Nutaro, James J [ORNL; Kuruganti, Teja [ORNL

    2015-01-01

    The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, where the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.

  3. The Role of Stochastic Models in Interpreting the Origins of Biological Chirality

    Directory of Open Access Journals (Sweden)

    Gábor Lente

    2010-04-01

    Full Text Available This review summarizes recent stochastic modeling efforts in the theoretical research aimed at interpreting the origins of biological chirality. Stochastic kinetic models, especially those based on the continuous time discrete state approach, have great potential in modeling absolute asymmetric reactions, experimental examples of which have been reported in the past decade. An overview of the relevant mathematical background is given and several examples are presented to show how the significant numerical problems characteristic of the use of stochastic models can be overcome by non-trivial, but elementary algebra. In these stochastic models, a particulate view of matter is used rather than the concentration-based view of traditional chemical kinetics using continuous functions to describe the properties system. This has the advantage of giving adequate description of single-molecule events, which were probably important in the origin of biological chirality. The presented models can interpret and predict the random distribution of enantiomeric excess among repetitive experiments, which is the most striking feature of absolute asymmetric reactions. It is argued that the use of the stochastic kinetic approach should be much more widespread in the relevant literature.

  4. Moment Closure for the Stochastic Logistic Model

    National Research Council Canada - National Science Library

    Singh, Abhyudai; Hespanha, Joao P

    2006-01-01

    ..., which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model...

  5. Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage

    Science.gov (United States)

    Guo, Wenjuan; Cai, Yongli; Zhang, Qimin; Wang, Weiming

    2018-02-01

    This paper aims to study an SIS epidemic model with media coverage from a general deterministic model to a stochastic differential equation with environment fluctuation. Mathematically, we use the Markov semigroup theory to prove that the basic reproduction number R0s can be used to control the dynamics of stochastic system. Epidemiologically, we show that environment fluctuation can inhibit the occurrence of the disease, namely, in the case of disease persistence for the deterministic model, the disease still dies out with probability one for the stochastic model. So to a great extent the stochastic perturbation under media coverage affects the outbreak of the disease.

  6. Persistence and extinction for a stochastic logistic model with infinite delay

    Directory of Open Access Journals (Sweden)

    Chun Lu

    2013-11-01

    Full Text Available This article, studies a stochastic logistic model with infinite delay. Using a phase space, we establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and stochastic permanence. A threshold between weak persistence and extinction is obtained. Our results state that different types of environmental noises have different effects on the persistence and extinction, and that the delay has no impact on the persistence and extinction for the stochastic model in the autonomous case. Numerical simulations illustrate the theoretical results.

  7. Stochastic modeling for reliability shocks, burn-in and heterogeneous populations

    CERN Document Server

    Finkelstein, Maxim

    2013-01-01

    Focusing on shocks modeling, burn-in and heterogeneous populations, Stochastic Modeling for Reliability naturally combines these three topics in the unified stochastic framework and presents numerous practical examples that illustrate recent theoretical findings of the authors.  The populations of manufactured items in industry are usually heterogeneous. However, the conventional reliability analysis is performed under the implicit assumption of homogeneity, which can result in distortion of the corresponding reliability indices and various misconceptions. Stochastic Modeling for Reliability fills this gap and presents the basics and further developments of reliability theory for heterogeneous populations. Specifically, the authors consider burn-in as a method of elimination of ‘weak’ items from heterogeneous populations. The real life objects are operating in a changing environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stocha...

  8. Some recent developments in stochastic volatility modelling

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Nicolato, Elisa; Shephard, N.

    2002-01-01

    This paper reviews and puts in context some of our recent work on stochastic volatility (SV) modelling for financial economics. Here our main focus is on: (i) the relationship between subordination and SV, (ii) OU based volatility models, (iii) exact option pricing, (iv) realized power variation...

  9. Transcriptional regulation of lineage commitment--a stochastic model of cell fate decisions.

    Directory of Open Access Journals (Sweden)

    Jose Teles

    Full Text Available Molecular mechanisms employed by individual multipotent cells at the point of lineage commitment remain largely uncharacterized. Current paradigms span from instructive to noise-driven mechanisms. Of considerable interest is also whether commitment involves a limited set of genes or the entire transcriptional program, and to what extent gene expression configures multiple trajectories into commitment. Importantly, the transient nature of the commitment transition confounds the experimental capture of committing cells. We develop a computational framework that simulates stochastic commitment events, and affords mechanistic exploration of the fate transition. We use a combined modeling approach guided by gene expression classifier methods that infers a time-series of stochastic commitment events from experimental growth characteristics and gene expression profiling of individual hematopoietic cells captured immediately before and after commitment. We define putative regulators of commitment and probabilistic rules of transition through machine learning methods, and employ clustering and correlation analyses to interrogate gene regulatory interactions in multipotent cells. Against this background, we develop a Monte Carlo time-series stochastic model of transcription where the parameters governing promoter status, mRNA production and mRNA decay in multipotent cells are fitted to experimental static gene expression distributions. Monte Carlo time is converted to physical time using cell culture kinetic data. Probability of commitment in time is a function of gene expression as defined by a logistic regression model obtained from experimental single-cell expression data. Our approach should be applicable to similar differentiating systems where single cell data is available. Within our system, we identify robust model solutions for the multipotent population within physiologically reasonable values and explore model predictions with regard to

  10. Scalable inference for stochastic block models

    KAUST Repository

    Peng, Chengbin

    2017-12-08

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference algorithms for such a model are increasingly limited due to their high time complexity and poor scalability. In this paper, we propose a multi-stage maximum likelihood approach to recover the latent parameters of the stochastic block model, in time linear with respect to the number of edges. We also propose a parallel algorithm based on message passing. Our algorithm can overlap communication and computation, providing speedup without compromising accuracy as the number of processors grows. For example, to process a real-world graph with about 1.3 million nodes and 10 million edges, our algorithm requires about 6 seconds on 64 cores of a contemporary commodity Linux cluster. Experiments demonstrate that the algorithm can produce high quality results on both benchmark and real-world graphs. An example of finding more meaningful communities is illustrated consequently in comparison with a popular modularity maximization algorithm.

  11. Short-term hydropower production planning by stochastic programming

    DEFF Research Database (Denmark)

    Fleten, Stein-Erik; Kristoffersen, Trine

    2008-01-01

    -term production planning a matter of spatial distribution among the reservoirs of the plant. Day-ahead market prices and reservoir inflows are, however, uncertain beyond the current operation day and water must be allocated among the reservoirs in order to strike a balance between current profits and expected......Within the framework of multi-stage mixed-integer linear stochastic programming we develop a short-term production plan for a price-taking hydropower plant operating under uncertainty. Current production must comply with the day-ahead commitments of the previous day which makes short...

  12. A stochastic analysis for a phytoplankton-zooplankton model

    International Nuclear Information System (INIS)

    Ge, G; Wang, H-L; Xu, J

    2008-01-01

    A simple phytoplankton-zooplankton nonlinear dynamical model was proposed to study the coexistence of all the species and a Hopf bifurcation was observed. In order to study the effect of environmental robustness on this system, we have stochastically perturbed the system with respect to white noise around its positive interior equilibrium. We have observed that the system remains stochastically stable around the positive equilibrium for same parametric values in the deterministic situation

  13. ARMA modeling of stochastic processes in nuclear reactor with significant detection noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1992-01-01

    The theoretical basis of ARMA modelling of stochastic processes in nuclear reactor was presented in a previous paper, neglecting observational noise. The identification of real reactor data indicated that in some experiments the detection noise is significant. Thus a more rigorous theoretical modelling of stochastic processes in nuclear reactor is performed. Starting from the fundamental stochastic differential equations of the Langevin type for the interaction of the detector with neutron field, a new theoretical ARMA model is developed. preliminary identification results confirm the theoretical expectations. (author)

  14. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya

    2017-10-03

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  15. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya; Kalligiannaki, Evangelia; Tempone, Raul

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  16. Parameter discovery in stochastic biological models using simulated annealing and statistical model checking.

    Science.gov (United States)

    Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J

    2014-01-01

    Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.

  17. Stochastic modelling in design of mechanical properties of nanometals

    International Nuclear Information System (INIS)

    Tengen, T.B.; Wejrzanowski, T.; Iwankiewicz, R.; Kurzydlowski, K.J.

    2010-01-01

    Polycrystalline nanometals are being fabricated through different processing routes and conditions. The consequence is that nanometals having the same mean grain size may have different grain size dispersion and, hence, may have different material properties. This has often led to conflicting reports from both theoretical and experimental findings about the evolutions of the mechanical properties of nanomaterials. The present paper employs stochastic model to study the impact of microstructure evolution during grain growth on the mechanical properties of polycrystalline nanometals. The stochastic model for grain growth and the stochastic model for changes in mechanical properties of nanomaterials are proposed. The model for the mechanical properties developed is tested on aluminium samples.Many salient features of the mechanical properties of the aluminium samples are revealed. The results show that the different mechanisms of grain growth impart different nature of response to the material mechanical properties. The conventional, homologous and anomalous temperature dependences of the yield stress have also been revealed to be due to different nature of interactions of the microstructures during evolution.

  18. Bayesian inference for hybrid discrete-continuous stochastic kinetic models

    International Nuclear Information System (INIS)

    Sherlock, Chris; Golightly, Andrew; Gillespie, Colin S

    2014-01-01

    We consider the problem of efficiently performing simulation and inference for stochastic kinetic models. Whilst it is possible to work directly with the resulting Markov jump process (MJP), computational cost can be prohibitive for networks of realistic size and complexity. In this paper, we consider an inference scheme based on a novel hybrid simulator that classifies reactions as either ‘fast’ or ‘slow’ with fast reactions evolving as a continuous Markov process whilst the remaining slow reaction occurrences are modelled through a MJP with time-dependent hazards. A linear noise approximation (LNA) of fast reaction dynamics is employed and slow reaction events are captured by exploiting the ability to solve the stochastic differential equation driving the LNA. This simulation procedure is used as a proposal mechanism inside a particle MCMC scheme, thus allowing Bayesian inference for the model parameters. We apply the scheme to a simple application and compare the output with an existing hybrid approach and also a scheme for performing inference for the underlying discrete stochastic model. (paper)

  19. Fitting Social Network Models Using Varying Truncation Stochastic Approximation MCMC Algorithm

    KAUST Repository

    Jin, Ick Hoon

    2013-10-01

    The exponential random graph model (ERGM) plays a major role in social network analysis. However, parameter estimation for the ERGM is a hard problem due to the intractability of its normalizing constant and the model degeneracy. The existing algorithms, such as Monte Carlo maximum likelihood estimation (MCMLE) and stochastic approximation, often fail for this problem in the presence of model degeneracy. In this article, we introduce the varying truncation stochastic approximation Markov chain Monte Carlo (SAMCMC) algorithm to tackle this problem. The varying truncation mechanism enables the algorithm to choose an appropriate starting point and an appropriate gain factor sequence, and thus to produce a reasonable parameter estimate for the ERGM even in the presence of model degeneracy. The numerical results indicate that the varying truncation SAMCMC algorithm can significantly outperform the MCMLE and stochastic approximation algorithms: for degenerate ERGMs, MCMLE and stochastic approximation often fail to produce any reasonable parameter estimates, while SAMCMC can do; for nondegenerate ERGMs, SAMCMC can work as well as or better than MCMLE and stochastic approximation. The data and source codes used for this article are available online as supplementary materials. © 2013 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.

  20. Optimization of environmental management strategies through a dynamic stochastic possibilistic multiobjective program.

    Science.gov (United States)

    Zhang, Xiaodong; Huang, Gordon

    2013-02-15

    Greenhouse gas (GHG) emissions from municipal solid waste (MSW) management facilities have become a serious environmental issue. In MSW management, not only economic objectives but also environmental objectives should be considered simultaneously. In this study, a dynamic stochastic possibilistic multiobjective programming (DSPMP) model is developed for supporting MSW management and associated GHG emission control. The DSPMP model improves upon the existing waste management optimization methods through incorporation of fuzzy possibilistic programming and chance-constrained programming into a general mixed-integer multiobjective linear programming (MOP) framework where various uncertainties expressed as fuzzy possibility distributions and probability distributions can be effectively reflected. Two conflicting objectives are integrally considered, including minimization of total system cost and minimization of total GHG emissions from waste management facilities. Three planning scenarios are analyzed and compared, representing different preferences of the decision makers for economic development and environmental-impact (i.e. GHG-emission) issues in integrated MSW management. Optimal decision schemes under three scenarios and different p(i) levels (representing the probability that the constraints would be violated) are generated for planning waste flow allocation and facility capacity expansions as well as GHG emission control. The results indicate that economic and environmental tradeoffs can be effectively reflected through the proposed DSPMP model. The generated decision variables can help the decision makers justify and/or adjust their waste management strategies based on their implicit knowledge and preferences. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. AESS: Accelerated Exact Stochastic Simulation

    Science.gov (United States)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution

  2. GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2015-01-01

    The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran

  3. Double diffusivity model under stochastic forcing

    Science.gov (United States)

    Chattopadhyay, Amit K.; Aifantis, Elias C.

    2017-05-01

    The "double diffusivity" model was proposed in the late 1970s, and reworked in the early 1980s, as a continuum counterpart to existing discrete models of diffusion corresponding to high diffusivity paths, such as grain boundaries and dislocation lines. It was later rejuvenated in the 1990s to interpret experimental results on diffusion in polycrystalline and nanocrystalline specimens where grain boundaries and triple grain boundary junctions act as high diffusivity paths. Technically, the model pans out as a system of coupled Fick-type diffusion equations to represent "regular" and "high" diffusivity paths with "source terms" accounting for the mass exchange between the two paths. The model remit was extended by analogy to describe flow in porous media with double porosity, as well as to model heat conduction in media with two nonequilibrium local temperature baths, e.g., ion and electron baths. Uncoupling of the two partial differential equations leads to a higher-ordered diffusion equation, solutions of which could be obtained in terms of classical diffusion equation solutions. Similar equations could also be derived within an "internal length" gradient (ILG) mechanics formulation applied to diffusion problems, i.e., by introducing nonlocal effects, together with inertia and viscosity, in a mechanics based formulation of diffusion theory. While being remarkably successful in studies related to various aspects of transport in inhomogeneous media with deterministic microstructures and nanostructures, its implications in the presence of stochasticity have not yet been considered. This issue becomes particularly important in the case of diffusion in nanopolycrystals whose deterministic ILG-based theoretical calculations predict a relaxation time that is only about one-tenth of the actual experimentally verified time scale. This article provides the "missing link" in this estimation by adding a vital element in the ILG structure, that of stochasticity, that takes into

  4. Economic consequences of paratuberculosis control in dairy cattle: A stochastic modeling study.

    Science.gov (United States)

    Smith, R L; Al-Mamun, M A; Gröhn, Y T

    2017-03-01

    The cost of paratuberculosis to dairy herds, through decreased milk production, early culling, and poor reproductive performance, has been well-studied. The benefit of control programs, however, has been debated. A recent stochastic compartmental model for paratuberculosis transmission in US dairy herds was modified to predict herd net present value (NPV) over 25 years in herds of 100 and 1000 dairy cattle with endemic paratuberculosis at initial prevalence of 10% and 20%. Control programs were designed by combining 5 tests (none, fecal culture, ELISA, PCR, or calf testing), 3 test-related culling strategies (all test-positive, high-positive, or repeated positive), 2 test frequencies (annual and biannual), 3 hygiene levels (standard, moderate, or improved), and 2 cessation decisions (testing ceased after 5 negative whole-herd tests or testing continued). Stochastic dominance was determined for each herd scenario; no control program was fully dominant for maximizing herd NPV in any scenario. Use of the ELISA test was generally preferred in all scenarios, but no paratuberculosis control was highly preferred for the small herd with 10% initial prevalence and was frequently preferred in other herd scenarios. Based on their effect on paratuberculosis alone, hygiene improvements were not found to be as cost-effective as test-and-cull strategies in most circumstances. Global sensitivity analysis found that economic parameters, such as the price of milk, had more influence on NPV than control program-related parameters. We conclude that paratuberculosis control can be cost effective, and multiple control programs can be applied for equivalent economic results. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Stochastic modeling concepts in groundwater and risk assessment: potential application to marine problems

    International Nuclear Information System (INIS)

    Hamed, Maged M.

    2000-01-01

    Parameter uncertainty is ubiquitous in marine environmental processes. Failure to account for this uncertainty may lead to erroneous results, and may have significant environmental and economic ramifications. Stochastic modeling of oil spill transport and fate is, therefore, central in the development of an oil spill contingency plan for new oil and gas projects. Over the past twenty years, several stochastic modeling tools have been developed for modeling parameter uncertainty, including the spectral, perturbation, and simulation methods. In this work we explore the application of a new stochastic methodology, the first-order reliability method (FORM), in oil spill modeling. FORM was originally developed in the structural reliability field and has been recently applied to various environmental problems. The method has many appealing features that makes it a powerful tool for modeling complex environmental systems. The theory of FORM is presented, identifying the features that distinguish the method from other stochastic tools. Different formulations to the reliability-based stochastic oil spill modeling are presented in a decision-analytic context. (Author)

  6. Stochastic modeling analysis and simulation

    CERN Document Server

    Nelson, Barry L

    1995-01-01

    A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se

  7. Digital hardware implementation of a stochastic two-dimensional neuron model.

    Science.gov (United States)

    Grassia, F; Kohno, T; Levi, T

    2016-11-01

    This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein-Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model's computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Stochastic modelling of conjugate heat transfer in near-wall turbulence

    International Nuclear Information System (INIS)

    Pozorski, Jacek; Minier, Jean-Pierre

    2006-01-01

    The paper addresses the conjugate heat transfer in turbulent flows with temperature assumed to be a passive scalar. The Lagrangian approach is applied and the heat transfer is modelled with the use of stochastic particles. The intensity of thermal fluctuations in near-wall turbulence is determined from the scalar probability density function (PDF) with externally provided dynamical statistics. A stochastic model for the temperature field in the wall material is proposed and boundary conditions for stochastic particles at the solid-fluid interface are formulated. The heated channel flow with finite-thickness walls is considered as a validation case. Computation results for the mean temperature profiles and the variance of thermal fluctuations are presented and compared with available DNS data

  9. Stochastic modelling of conjugate heat transfer in near-wall turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Pozorski, Jacek [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80952 Gdansk (Poland)]. E-mail: jp@imp.gda.pl; Minier, Jean-Pierre [Research and Development Division, Electricite de France, 6 quai Watier, 78400 Chatou (France)

    2006-10-15

    The paper addresses the conjugate heat transfer in turbulent flows with temperature assumed to be a passive scalar. The Lagrangian approach is applied and the heat transfer is modelled with the use of stochastic particles. The intensity of thermal fluctuations in near-wall turbulence is determined from the scalar probability density function (PDF) with externally provided dynamical statistics. A stochastic model for the temperature field in the wall material is proposed and boundary conditions for stochastic particles at the solid-fluid interface are formulated. The heated channel flow with finite-thickness walls is considered as a validation case. Computation results for the mean temperature profiles and the variance of thermal fluctuations are presented and compared with available DNS data.

  10. Analysis and reconstruction of stochastic coupled map lattice models

    International Nuclear Information System (INIS)

    Coca, Daniel; Billings, Stephen A.

    2003-01-01

    The Letter introduces a general stochastic coupled lattice map model together with an algorithm to estimate the nodal equations involved based only on a small set of observable variables and in the presence of stochastic perturbations. More general forms of the Frobenius-Perron and the transfer operators, which describe the evolution of densities under the action of the CML transformation, are derived

  11. Stochastic Sizing of Energy Storage Systems for Wind Integration

    Directory of Open Access Journals (Sweden)

    D. D. Le

    2018-06-01

    Full Text Available In this paper, we present an optimal capacity decision model for energy storage systems (ESSs in combined operation with wind energy in power systems. We use a two-stage stochastic programming approach to take into account both wind and load uncertainties. The planning problem is formulated as an AC optimal power flow (OPF model with the objective of minimizing ESS installation cost and system operation cost. Stochastic wind and load inputs for the model are generated from historical data using clustering technique. The model is tested on the IEEE 39-bus system.

  12. Risk-Based Two-Stage Stochastic Optimization Problem of Micro-Grid Operation with Renewables and Incentive-Based Demand Response Programs

    Directory of Open Access Journals (Sweden)

    Pouria Sheikhahmadi

    2018-03-01

    Full Text Available The operation problem of a micro-grid (MG in grid-connected mode is an optimization one in which the main objective of the MG operator (MGO is to minimize the operation cost with optimal scheduling of resources and optimal trading energy with the main grid. The MGO can use incentive-based demand response programs (DRPs to pay an incentive to the consumers to change their demands in the peak hours. Moreover, the MGO forecasts the output power of renewable energy resources (RERs and models their uncertainties in its problem. In this paper, the operation problem of an MGO is modeled as a risk-based two-stage stochastic optimization problem. To model the uncertainties of RERs, two-stage stochastic programming is considered and conditional value at risk (CVaR index is used to manage the MGO’s risk-level. Moreover, the non-linear economic models of incentive-based DRPs are used by the MGO to change the peak load. The numerical studies are done to investigate the effect of incentive-based DRPs on the operation problem of the MGO. Moreover, to show the effect of the risk-averse parameter on MGO decisions, a sensitivity analysis is carried out.

  13. Stochastic bifurcation in a model of love with colored noise

    Science.gov (United States)

    Yue, Xiaokui; Dai, Honghua; Yuan, Jianping

    2015-07-01

    In this paper, we wish to examine the stochastic bifurcation induced by multiplicative Gaussian colored noise in a dynamical model of love where the random factor is used to describe the complexity and unpredictability of psychological systems. First, the dynamics in deterministic love-triangle model are considered briefly including equilibrium points and their stability, chaotic behaviors and chaotic attractors. Then, the influences of Gaussian colored noise with different parameters are explored such as the phase plots, top Lyapunov exponents, stationary probability density function (PDF) and stochastic bifurcation. The stochastic P-bifurcation through a qualitative change of the stationary PDF will be observed and bifurcation diagram on parameter plane of correlation time and noise intensity is presented to find the bifurcation behaviors in detail. Finally, the top Lyapunov exponent is computed to determine the D-bifurcation when the noise intensity achieves to a critical value. By comparison, we find there is no connection between two kinds of stochastic bifurcation.

  14. Analysis of novel stochastic switched SILI epidemic models with continuous and impulsive control

    Science.gov (United States)

    Gao, Shujing; Zhong, Deming; Zhang, Yan

    2018-04-01

    In this paper, we establish two new stochastic switched epidemic models with continuous and impulsive control. The stochastic perturbations are considered for the natural death rate in each equation of the models. Firstly, a stochastic switched SILI model with continuous control schemes is investigated. By using Lyapunov-Razumikhin method, the sufficient conditions for extinction in mean are established. Our result shows that the disease could be die out theoretically if threshold value R is less than one, regardless of whether the disease-free solutions of the corresponding subsystems are stable or unstable. Then, a stochastic switched SILI model with continuous control schemes and pulse vaccination is studied. The threshold value R is derived. The global attractivity of the model is also obtained. At last, numerical simulations are carried out to support our results.

  15. Stochastic Subspace Modelling of Turbulence

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.

    2009-01-01

    positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...

  16. Reflected stochastic differential equation models for constrained animal movement

    Science.gov (United States)

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  17. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement

    International Nuclear Information System (INIS)

    Luo, B.; Li, J.B.; Huang, G.H.; Li, H.L.

    2006-01-01

    This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural nonpoint source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and 'off-site' water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties

  18. Stochastic interest rates model in compounding | Galadima ...

    African Journals Online (AJOL)

    Stochastic interest rates model in compounding. ... in finance, real estate, insurance, accounting and other areas of business administration. The assumption that future rates are fixed and known with certainty at the beginning of an investment, ...

  19. A stochastic cloud model for cloud and ozone retrievals from UV measurements

    International Nuclear Information System (INIS)

    Efremenko, Dmitry S.; Schüssler, Olena; Doicu, Adrian; Loyola, Diego

    2016-01-01

    The new generation of satellite instruments provides measurements in and around the Oxygen A-band on a global basis and with a relatively high spatial resolution. These data are commonly used for the determination of cloud properties. A stochastic model and radiative transfer model, previously developed by the authors, is used as the forward model component in retrievals of cloud parameters and ozone total and partial columns. The cloud retrieval algorithm combines local and global optimization routines, and yields a retrieval accuracy of about 1% and a fast computational time. Retrieved parameters are the cloud optical thickness and the cloud-top height. It was found that the use of the independent pixel approximation instead of the stochastic cloud model leads to large errors in the retrieved cloud parameters, as well as, in the retrieved ozone height resolved partial columns. The latter can be reduced by using the stochastic cloud model to compute the optimal value of the regularization parameter in the framework of Tikhonov regularization. - Highlights: • A stochastic radiative transfer model for retrieving clouds/ozone is designed. • Errors of independent pixel approximation (IPA) for O3 total column are small. • The error of IPA for ozone profile retrieval may become large. • The use of stochastic model reduces the error of ozone profile retrieval.

  20. Dynamic and stochastic multi-project planning

    CERN Document Server

    Melchiors, Philipp

    2015-01-01

    This book deals with dynamic and stochastic methods for multi-project planning. Based on the idea of using queueing networks for the analysis of dynamic-stochastic multi-project environments this book addresses two problems: detailed scheduling of project activities, and integrated order acceptance and capacity planning. In an extensive simulation study, the book thoroughly investigates existing scheduling policies. To obtain optimal and near optimal scheduling policies new models and algorithms are proposed based on the theory of Markov decision processes and Approximate Dynamic programming.

  1. Threshold Dynamics in Stochastic SIRS Epidemic Models with Nonlinear Incidence and Vaccination

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available In this paper, the dynamical behaviors for a stochastic SIRS epidemic model with nonlinear incidence and vaccination are investigated. In the models, the disease transmission coefficient and the removal rates are all affected by noise. Some new basic properties of the models are found. Applying these properties, we establish a series of new threshold conditions on the stochastically exponential extinction, stochastic persistence, and permanence in the mean of the disease with probability one for the models. Furthermore, we obtain a sufficient condition on the existence of unique stationary distribution for the model. Finally, a series of numerical examples are introduced to illustrate our main theoretical results and some conjectures are further proposed.

  2. Models of the stochastic activity of neurones

    CERN Document Server

    Holden, Arun Vivian

    1976-01-01

    These notes have grown from a series of seminars given at Leeds between 1972 and 1975. They represent an attempt to gather together the different kinds of model which have been proposed to account for the stochastic activity of neurones, and to provide an introduction to this area of mathematical biology. A striking feature of the electrical activity of the nervous system is that it appears stochastic: this is apparent at all levels of recording, ranging from intracellular recordings to the electroencephalogram. The chapters start with fluctuations in membrane potential, proceed through single unit and synaptic activity and end with the behaviour of large aggregates of neurones: L have chgaen this seque~~e\\/~~';uggest that the interesting behaviourr~f :the nervous system - its individuality, variability and dynamic forms - may in part result from the stochastic behaviour of its components. I would like to thank Dr. Julio Rubio for reading and commenting on the drafts, Mrs. Doris Beighton for producing the fin...

  3. Stochastic modelling of avascular tumour growth and therapy

    International Nuclear Information System (INIS)

    Sahoo, S; Sahoo, A; Shearer, S F C

    2011-01-01

    In this paper, a generalized stochastic model for the growth of avascular tumours is presented. This model captures the dynamical evolution of avascular tumour cell subpopulations by incorporating Gaussian white noise into the growth rate of the mitotic function. This work generalizes the deterministic model proposed by Sherratt and Chaplain (2001 J. Math. Biol. 43 291) where they formulated a tumour model in an in vivo setting, in terms of continuum densities of proliferating, quiescent and necrotic cells. Detailed simulations of our model show that the inclusion of Gaussian noise in the original model of Sherratt and Chaplain substantially distorts the overall structure of the density profiles in addition to reducing the speed of tumour growth. Within this stochastic carcinogenesis framework the action of therapy is also investigated by replacing Gaussian white noise with a therapy term. We compare a constant therapy protocol with a logarithmic time-dependent protocol. Our results predict that a logarithmic therapy is more effective than the constant therapy protocol.

  4. Stochastic models of solute transport in highly heterogeneous geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, V.N.; Korotkin, I.A.; Pruess, K.; Goloviznin, V.M.; Sorokovikova, O.S.

    2009-09-15

    A stochastic model of anomalous diffusion was developed in which transport occurs by random motion of Brownian particles, described by distribution functions of random displacements with heavy (power-law) tails. One variant of an effective algorithm for random function generation with a power-law asymptotic and arbitrary factor of asymmetry is proposed that is based on the Gnedenko-Levy limit theorem and makes it possible to reproduce all known Levy {alpha}-stable fractal processes. A two-dimensional stochastic random walk algorithm has been developed that approximates anomalous diffusion with streamline-dependent and space-dependent parameters. The motivation for introducing such a type of dispersion model is the observed fact that tracers in natural aquifers spread at different super-Fickian rates in different directions. For this and other important cases, stochastic random walk models are the only known way to solve the so-called multiscaling fractional order diffusion equation with space-dependent parameters. Some comparisons of model results and field experiments are presented.

  5. A Regularization SAA Scheme for a Stochastic Mathematical Program with Complementarity Constraints

    Directory of Open Access Journals (Sweden)

    Yu-xin Li

    2014-01-01

    Full Text Available To reflect uncertain data in practical problems, stochastic versions of the mathematical program with complementarity constraints (MPCC have drawn much attention in the recent literature. Our concern is the detailed analysis of convergence properties of a regularization sample average approximation (SAA method for solving a stochastic mathematical program with complementarity constraints (SMPCC. The analysis of this regularization method is carried out in three steps: First, the almost sure convergence of optimal solutions of the regularized SAA problem to that of the true problem is established by the notion of epiconvergence in variational analysis. Second, under MPCC-MFCQ, which is weaker than MPCC-LICQ, we show that any accumulation point of Karash-Kuhn-Tucker points of the regularized SAA problem is almost surely a kind of stationary point of SMPCC as the sample size tends to infinity. Finally, some numerical results are reported to show the efficiency of the method proposed.

  6. A stochastic programming approach towards optimization of biofuel supply chain

    International Nuclear Information System (INIS)

    Azadeh, Ali; Vafa Arani, Hamed; Dashti, Hossein

    2014-01-01

    Bioenergy has been recognized as an important source of energy that will reduce dependency on petroleum. It would have a positive impact on the economy, environment, and society. Production of bioenergy is expected to increase. As a result, we foresee an increase in the number of biorefineries in the near future. This paper analyzes challenges with supplying biomass to a biorefinery and shipping biofuel to demand centers. A stochastic linear programming model is proposed within a multi-period planning framework to maximize the expected profit. The model deals with a time-staged, multi-commodity, production/distribution system, facility locations and capacities, technologies, and material flows. We illustrate the model outputs and discuss the results through numerical examples considering disruptions in biofuel supply chain. Finally, sensitivity analyses are performed to gain managerial insights on how profit changes due to existing uncertainties. - Highlights: • A robust model of biofuel SC is proposed and a sensitivity analysis implemented. • Demand of products is a function of price and GBM (Geometric Brownian Motion) is used for prices of biofuels. • Uncertainties in SC network are captured through defining probabilistic scenarios. • Both traditional feedstock and lignocellulosic biomass are considered for biofuel production. • Developed model is applicable to any related biofuel supply chain regardless of region

  7. Stochastic dynamics modeling solute transport in porous media modeling solute transport in porous media

    CERN Document Server

    Kulasiri, Don

    2002-01-01

    Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...

  8. Chance Constrained Input Relaxation to Congestion in Stochastic DEA. An Application to Iranian Hospitals.

    Science.gov (United States)

    Kheirollahi, Hooshang; Matin, Behzad Karami; Mahboubi, Mohammad; Alavijeh, Mehdi Mirzaei

    2015-01-01

    This article developed an approached model of congestion, based on relaxed combination of inputs, in stochastic data envelopment analysis (SDEA) with chance constrained programming approaches. Classic data envelopment analysis models with deterministic data have been used by many authors to identify congestion and estimate its levels; however, data envelopment analysis with stochastic data were rarely used to identify congestion. This article used chance constrained programming approaches to replace stochastic models with "deterministic equivalents". This substitution leads us to non-linear problems that should be solved. Finally, the proposed method based on relaxed combination of inputs was used to identify congestion input in six Iranian hospital with one input and two outputs in the period of 2009 to 2012.

  9. Methods and models in mathematical biology deterministic and stochastic approaches

    CERN Document Server

    Müller, Johannes

    2015-01-01

    This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and  branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.

  10. Stochastic description of heterogeneities of permeability within groundwater flow models

    International Nuclear Information System (INIS)

    Cacas, M.C.; Lachassagne, P.; Ledoux, E.; Marsily, G. de

    1991-01-01

    In order to model radionuclide migration in the geosphere realistically at the field scale, the hydrogeologist needs to be able to simulate groundwater flow in heterogeneous media. Heterogeneity of the medium can be described using a stochastic approach, that affects the way in which a flow model is formulated. In this paper, we discuss the problems that we have encountered in modelling both continuous and fractured media. The stochastic approach leads to a methodology that enables local measurements of permeability to be integrated into a model which gives a good prediction of groundwater flow on a regional scale. 5 Figs.; 8 Refs

  11. Optimization of stochastic discrete systems and control on complex networks computational networks

    CERN Document Server

    Lozovanu, Dmitrii

    2014-01-01

    This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...

  12. Doubly stochastic Poisson process models for precipitation at fine time-scales

    Science.gov (United States)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  13. A stochastic multiscale framework for modeling flow through random heterogeneous porous media

    International Nuclear Information System (INIS)

    Ganapathysubramanian, B.; Zabaras, N.

    2009-01-01

    Flow through porous media is ubiquitous, occurring from large geological scales down to the microscopic scales. Several critical engineering phenomena like contaminant spread, nuclear waste disposal and oil recovery rely on accurate analysis and prediction of these multiscale phenomena. Such analysis is complicated by inherent uncertainties as well as the limited information available to characterize the system. Any realistic modeling of these transport phenomena has to resolve two key issues: (i) the multi-length scale variations in permeability that these systems exhibit, and (ii) the inherently limited information available to quantify these property variations that necessitates posing these phenomena as stochastic processes. A stochastic variational multiscale formulation is developed to incorporate uncertain multiscale features. A stochastic analogue to a mixed multiscale finite element framework is used to formulate the physical stochastic multiscale process. Recent developments in linear and non-linear model reduction techniques are used to convert the limited information available about the permeability variation into a viable stochastic input model. An adaptive sparse grid collocation strategy is used to efficiently solve the resulting stochastic partial differential equations (SPDEs). The framework is applied to analyze flow through random heterogeneous media when only limited statistics about the permeability variation are given

  14. Stochastic Analysis 2010

    CERN Document Server

    Crisan, Dan

    2011-01-01

    "Stochastic Analysis" aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sa

  15. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Roh, Myung Sub

    2013-01-01

    There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors

  16. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors.

  17. Evaluation of Electric Power Procurement Strategies by Stochastic Dynamic Programming

    Science.gov (United States)

    Saisho, Yuichi; Hayashi, Taketo; Fujii, Yasumasa; Yamaji, Kenji

    In deregulated electricity markets, the role of a distribution company is to purchase electricity from the wholesale electricity market at randomly fluctuating prices and to provide it to its customers at a given fixed price. Therefore the company has to take risk stemming from the uncertainties of electricity prices and/or demand fluctuation instead of the customers. The way to avoid the risk is to make a bilateral contact with generating companies or install its own power generation facility. This entails the necessity to develop a certain method to make an optimal strategy for electric power procurement. In such a circumstance, this research has the purpose for proposing a mathematical method based on stochastic dynamic programming and additionally considering the characteristics of the start-up cost of electric power generation facility to evaluate strategies of combination of the bilateral contract and power auto-generation with its own facility for procuring electric power in deregulated electricity market. In the beginning we proposed two approaches to solve the stochastic dynamic programming, and they are a Monte Carlo simulation method and a finite difference method to derive the solution of a partial differential equation of the total procurement cost of electric power. Finally we discussed the influences of the price uncertainty on optimal strategies of power procurement.

  18. Predicting the Stochastic Properties of the Shallow Subsurface for Improved Geophysical Modeling

    Science.gov (United States)

    Stroujkova, A.; Vynne, J.; Bonner, J.; Lewkowicz, J.

    2005-12-01

    Strong ground motion data from numerous explosive field experiments and from moderate to large earthquakes show significant variations in amplitude and waveform shape with respect to both azimuth and range. Attempts to model these variations using deterministic models have often been unsuccessful. It has been hypothesized that a stochastic description of the geological medium is a more realistic approach. To estimate the stochastic properties of the shallow subsurface, we use Measurement While Drilling (MWD) data, which are routinely collected by mines in order to facilitate design of blast patterns. The parameters, such as rotation speed of the drill, torque, and penetration rate, are used to compute the rock's Specific Energy (SE), which is then related to a blastability index. We use values of SE measured at two different mines and calibrated to laboratory measurements of rock properties to determine correlation lengths of the subsurface rocks in 2D, needed to obtain 2D and 3D stochastic models. The stochastic models are then combined with the deterministic models and used to compute synthetic seismic waveforms.

  19. Stochastic Growth Models with No Discounting

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2007-01-01

    Roč. 15, č. 4 (2007), s. 88-98 ISSN 0572-3043 R&D Projects: GA ČR(CZ) GA402/06/0990; GA ČR GA402/05/0115 Institutional research plan: CEZ:AV0Z10750506 Keywords : economic dynamics * stochastic version of the Ramsey growth model * Markov decision processes Subject RIV: AH - Economics

  20. Stochastic Dynamic Programming for Three-Echelon Inventory System of Limited Shelf Life Products

    Directory of Open Access Journals (Sweden)

    Galal Noha M.

    2016-01-01

    Full Text Available Coordination of inventory decisions within the supply chain is one of the major determinants of its competitiveness in the global market. Products with limited shelf life impose additional challenges in managing the inventory across the supply chain because of the additional wastage costs incurred in case of being stored beyond product’s useful life. This paper presents a stochastic dynamic programming model for inventory replenishment in a serial multi-echelon distribution supply chain. The model considers uncertain stationary discrete demand at the retailer and zero lead time. The objective is to minimize expected total costs across the supply chain echelons, while maintaining a preset service level. The results illustrate that a cost saving of around 17% is achievable due to coordinating inventory decisions across the supply chain.

  1. Application of Stochastic Partial Differential Equations to Reservoir Property Modelling

    KAUST Repository

    Potsepaev, R.

    2010-09-06

    Existing algorithms of geostatistics for stochastic modelling of reservoir parameters require a mapping (the \\'uvt-transform\\') into the parametric space and reconstruction of a stratigraphic co-ordinate system. The parametric space can be considered to represent a pre-deformed and pre-faulted depositional environment. Existing approximations of this mapping in many cases cause significant distortions to the correlation distances. In this work we propose a coordinate free approach for modelling stochastic textures through the application of stochastic partial differential equations. By avoiding the construction of a uvt-transform and stratigraphic coordinates, one can generate realizations directly in the physical space in the presence of deformations and faults. In particular the solution of the modified Helmholtz equation driven by Gaussian white noise is a zero mean Gaussian stationary random field with exponential correlation function (in 3-D). This equation can be used to generate realizations in parametric space. In order to sample in physical space we introduce a stochastic elliptic PDE with tensor coefficients, where the tensor is related to correlation anisotropy and its variation is physical space.

  2. Stochastic modeling of friction force and vibration analysis of a mechanical system using the model

    International Nuclear Information System (INIS)

    Kang, Won Seok; Choi, Chan Kyu; Yoo, Hong Hee

    2015-01-01

    The squeal noise generated from a disk brake or chatter occurred in a machine tool primarily results from friction-induced vibration. Since friction-induced vibration is usually accompanied by abrasion and lifespan reduction of mechanical parts, it is necessary to develop a reliable analysis model by which friction-induced vibration phenomena can be accurately analyzed. The original Coulomb's friction model or the modified Coulomb friction model employed in most commercial programs employs deterministic friction coefficients. However, observing friction phenomena between two contact surfaces, one may observe that friction coefficients keep changing due to the unevenness of contact surface, temperature, lubrication and humidity. Therefore, in this study, friction coefficients are modeled as random parameters that keep changing during the motion of a mechanical system undergoing friction force. The integrity of the proposed stochastic friction model was validated by comparing the analysis results obtained by the proposed model with experimental results.

  3. Survival Analysis of a Nonautonomous Logistic Model with Stochastic Perturbation

    Directory of Open Access Journals (Sweden)

    Chun Lu

    2012-01-01

    Full Text Available Taking white noise into account, a stochastic nonautonomous logistic model is proposed and investigated. Sufficient conditions for extinction, nonpersistence in the mean, weak persistence, stochastic permanence, and global asymptotic stability are established. Moreover, the threshold between weak persistence and extinction is obtained. Finally, we introduce some numerical simulink graphics to illustrate our main results.

  4. Exercise effects in a virtual type 1 diabetes patient: Using stochastic differential equations for model extension

    DEFF Research Database (Denmark)

    Duun-Henriksen, Anne Katrine; Schmidt, S.; Nørgaard, K.

    2013-01-01

    extension incorporating exercise effects on insulin and glucose dynamics. Our model is constructed as a stochastic state space model consisting of a set of stochastic differential equations (SDEs). In a stochastic state space model, the residual error is split into random measurement error...

  5. Expansion or extinction: deterministic and stochastic two-patch models with Allee effects.

    Science.gov (United States)

    Kang, Yun; Lanchier, Nicolas

    2011-06-01

    We investigate the impact of Allee effect and dispersal on the long-term evolution of a population in a patchy environment. Our main focus is on whether a population already established in one patch either successfully invades an adjacent empty patch or undergoes a global extinction. Our study is based on the combination of analytical and numerical results for both a deterministic two-patch model and a stochastic counterpart. The deterministic model has either two, three or four attractors. The existence of a regime with exactly three attractors only appears when patches have distinct Allee thresholds. In the presence of weak dispersal, the analysis of the deterministic model shows that a high-density and a low-density populations can coexist at equilibrium in nearby patches, whereas the analysis of the stochastic model indicates that this equilibrium is metastable, thus leading after a large random time to either a global expansion or a global extinction. Up to some critical dispersal, increasing the intensity of the interactions leads to an increase of both the basin of attraction of the global extinction and the basin of attraction of the global expansion. Above this threshold, for both the deterministic and the stochastic models, the patches tend to synchronize as the intensity of the dispersal increases. This results in either a global expansion or a global extinction. For the deterministic model, there are only two attractors, while the stochastic model no longer exhibits a metastable behavior. In the presence of strong dispersal, the limiting behavior is entirely determined by the value of the Allee thresholds as the global population size in the deterministic and the stochastic models evolves as dictated by their single-patch counterparts. For all values of the dispersal parameter, Allee effects promote global extinction in terms of an expansion of the basin of attraction of the extinction equilibrium for the deterministic model and an increase of the

  6. Regulatory Impacts on Distributed Generation and Upstream Transmission Substation Expansion Planning: A Novel Stochastic Bi-level Model

    Directory of Open Access Journals (Sweden)

    F. Misaghi

    2017-06-01

    Full Text Available In this paper, a novel framework is proposed to study impacts of regulatory incentive on distributed generation (DG investment in sub-transmission substations, as well as upgrading of upstream transmission substations. Both conventional and wind power technologies are considered here. Investment incentives are fuel cost, firm contracts, capacity payment and investment subsidy relating to wind power. The problem is modelled as a bi-level stochastic optimization problem, where the upper level consists of investor's decisions maximizing its own profit. Both market clearing and decision on upgrading of transmission substation aiming at minimizing the total cost are considered in the lower level. Due to non-convexity of the lower level and impossibility of converting to single level problem (i.e. mathematical programming with equilibrium constraints (MPEC, an algorithm combing enumeration and mathematical optimization is used to tackle with the non-convexity. For each upgrading strategy of substations, a stochastic MPEC, converted to a mixed integer linear programming (MILP is solved. The proposed model is examined on a six-bus and an actual network. Numerical studies confirm that the proposed model can be used for analysing investment behaviour of DGs and substation expansion.

  7. Stochastic modeling of financial electricity contracts

    International Nuclear Information System (INIS)

    Benth, Fred Espen; Koekebakker, Steen

    2008-01-01

    We discuss the modeling of electricity contracts traded in many deregulated power markets. These forward/futures type contracts deliver (either physically or financially) electricity over a specified time period, and is frequently referred to as swaps since they in effect represent an exchange of fixed for floating electricity price. We propose to use the Heath-Jarrow-Morton approach to model swap prices since the notion of a spot price is not easily defined in these markets. For general stochastic dynamical models, we connect the spot price, the instantaneous-delivery forward price and the swap price, and analyze two different ways to apply the Heath-Jarrow-Morton approach to swap pricing: Either one specifies a dynamics for the non-existing instantaneous-delivery forwards and derives the implied swap dynamics, or one models directly on the swaps. The former is shown to lead to quite complicated stochastic models for the swap price, even when the forward dynamics is simple. The latter has some theoretical problems due to a no-arbitrage condition that has to be satisfied for swaps with overlapping delivery periods. To overcome this problem, a practical modeling approach is analyzed. The market is supposed only to consist of non-overlapping swaps, and these are modelled directly. A thorough empirical study is performed using data collected from Nord Pool. Our investigations demonstrate that it is possible to state reasonable models for the swap price dynamics which is analytically tractable for risk management and option pricing purposes, however, this is an area of further research. (author)

  8. Backward-stochastic-differential-equation approach to modeling of gene expression.

    Science.gov (United States)

    Shamarova, Evelina; Chertovskih, Roman; Ramos, Alexandre F; Aguiar, Paulo

    2017-03-01

    In this article, we introduce a backward method to model stochastic gene expression and protein-level dynamics. The protein amount is regarded as a diffusion process and is described by a backward stochastic differential equation (BSDE). Unlike many other SDE techniques proposed in the literature, the BSDE method is backward in time; that is, instead of initial conditions it requires the specification of end-point ("final") conditions, in addition to the model parametrization. To validate our approach we employ Gillespie's stochastic simulation algorithm (SSA) to generate (forward) benchmark data, according to predefined gene network models. Numerical simulations show that the BSDE method is able to correctly infer the protein-level distributions that preceded a known final condition, obtained originally from the forward SSA. This makes the BSDE method a powerful systems biology tool for time-reversed simulations, allowing, for example, the assessment of the biological conditions (e.g., protein concentrations) that preceded an experimentally measured event of interest (e.g., mitosis, apoptosis, etc.).

  9. Stochastic inequalities and applications to dynamics analysis of a novel SIVS epidemic model with jumps

    Directory of Open Access Journals (Sweden)

    Xiaona Leng

    2017-06-01

    Full Text Available Abstract This paper proposes a new nonlinear stochastic SIVS epidemic model with double epidemic hypothesis and Lévy jumps. The main purpose of this paper is to investigate the threshold dynamics of the stochastic SIVS epidemic model. By using the technique of a series of stochastic inequalities, we obtain sufficient conditions for the persistence in mean and extinction of the stochastic system and the threshold which governs the extinction and the spread of the epidemic diseases. Finally, this paper describes the results of numerical simulations investigating the dynamical effects of stochastic disturbance. Our results significantly improve and generalize the corresponding results in recent literatures. The developed theoretical methods and stochastic inequalities technique can be used to investigate the high-dimensional nonlinear stochastic differential systems.

  10. Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables

    Directory of Open Access Journals (Sweden)

    Hideki Katagiri

    2017-10-01

    Full Text Available This paper considers linear programming problems (LPPs where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables. New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments.

  11. Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility

    NARCIS (Netherlands)

    van Haastrecht, A.; Lord, R.; Pelsser, A.; Schrager, D.

    2009-01-01

    We consider the pricing of long-dated insurance contracts under stochastic interest rates and stochastic volatility. In particular, we focus on the valuation of insurance options with long-term equity or foreign exchange exposures. Our modeling framework extends the stochastic volatility model of

  12. Stochastic Modelling of the Diffusion Coefficient for Concrete

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In the paper, a new stochastic modelling of the diffusion coefficient D is presented. The modelling is based on physical understanding of the diffusion process and on some recent experimental results. The diffusion coefficients D is strongly dependent on the w/c ratio and the temperature....

  13. Stochastic models for transport in a fluidized bed

    NARCIS (Netherlands)

    Dehling, H.G; Hoffmann, A.C; Stuut, H.W.

    1999-01-01

    In this paper we study stochastic models for the transport of particles in a fluidized bed reactor and compute the associated residence time distribution (RTD). Our main model is basically a diffusion process in [0;A] with reflecting/absorbing boundary conditions, modified by allowing jumps to the

  14. Stochastic programming of drilling rigs supplies; Programacao estocastica de suprimentos de sondas

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Bruno Ferreira; Ferreira Filho, Virgilio Jose Martins [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil)

    2012-07-01

    The goal of this work is to use techniques of stochastic programming to reduce logistic costs regarding offshore drilling rigs. This theme is of great interest to Brazilian oil industry since there is an increasing number of wells that need to be perforated so that Brazilian oil production can reach its expected growth over the next ten years (PETROBRAS in particular has an ambitious strategy in this respect). Proper treatment of the uncertainties involved in the deliveries of supplies to offshore drilling rigs is essential, namely, these uncertainties need to be included in the models used in logistic models. Delays in the deliveries of products such as chemicals, perforation fluids and tubes may force drilling rigs to stop their operations what highly increases costs. The daily hiring rates of drilling rigs represent the highest cost in the perforation and completion of a well. (author)

  15. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    Science.gov (United States)

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  16. Stochastic dynamical models for ecological regime shifts

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Carstensen, Jacob; Madsen, Henrik

    the physical and biological knowledge of the system, and nonlinearities introduced here can generate regime shifts or enhance the probability of regime shifts in the case of stochastic models, typically characterized by a threshold value for the known driver. A simple model for light competition between...... definition and stability of regimes become less subtle. Ecological regime shifts and their modeling must be viewed in a probabilistic manner, particularly if such model results are to be used in ecosystem management....

  17. Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology

    CERN Document Server

    2017-01-01

    This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of s...

  18. The effect of workload constraints in linear programming models for production planning

    NARCIS (Netherlands)

    Jansen, M.M.; Kok, de A.G.; Adan, I.J.B.F.

    2011-01-01

    Linear programming (LP) models for production planning incorporate a model of the manufacturing system that is necessarily deterministic. Although these deterministic models are the current state-of-the-art, it should be recognized that they are used in an environment that is inherently stochastic.

  19. Stochastic Modeling of Past Volcanic Crises

    Science.gov (United States)

    Woo, Gordon

    2018-01-01

    The statistical foundation of disaster risk analysis is past experience. From a scientific perspective, history is just one realization of what might have happened, given the randomness and chaotic dynamics of Nature. Stochastic analysis of the past is an exploratory exercise in counterfactual history, considering alternative possible scenarios. In particular, the dynamic perturbations that might have transitioned a volcano from an unrest to an eruptive state need to be considered. The stochastic modeling of past volcanic crises leads to estimates of eruption probability that can illuminate historical volcanic crisis decisions. It can also inform future economic risk management decisions in regions where there has been some volcanic unrest, but no actual eruption for at least hundreds of years. Furthermore, the availability of a library of past eruption probabilities would provide benchmark support for estimates of eruption probability in future volcanic crises.

  20. A stochastic SIRS epidemic model with infectious force under intervention strategies

    Science.gov (United States)

    Cai, Yongli; Kang, Yun; Banerjee, Malay; Wang, Weiming

    2015-12-01

    In this paper, we extend a classical SIRS epidemic model with the infectious forces under intervention strategies from a deterministic framework to a stochastic differential equation (SDE) one through introducing random fluctuations. The value of our study lies in two aspects. Mathematically, by using the Markov semigroups theory, we prove that the reproduction number R0S can be used to govern the stochastic dynamics of SDE model. If R0S 1, under mild extra conditions, it has an endemic stationary distribution which leads to the stochastical persistence of the disease. Epidemiologically, we find that random fluctuations can suppress disease outbreak, which can provide us some useful control strategies to regulate disease dynamics.

  1. Mapping of the stochastic Lotka-Volterra model to models of population genetics and game theory

    Science.gov (United States)

    Constable, George W. A.; McKane, Alan J.

    2017-08-01

    The relationship between the M -species stochastic Lotka-Volterra competition (SLVC) model and the M -allele Moran model of population genetics is explored via timescale separation arguments. When selection for species is weak and the population size is large but finite, precise conditions are determined for the stochastic dynamics of the SLVC model to be mappable to the neutral Moran model, the Moran model with frequency-independent selection, and the Moran model with frequency-dependent selection (equivalently a game-theoretic formulation of the Moran model). We demonstrate how these mappings can be used to calculate extinction probabilities and the times until a species' extinction in the SLVC model.

  2. Characterizing economic trends by Bayesian stochastic model specification search

    DEFF Research Database (Denmark)

    Grassi, Stefano; Proietti, Tommaso

    We extend a recently proposed Bayesian model selection technique, known as stochastic model specification search, for characterising the nature of the trend in macroeconomic time series. In particular, we focus on autoregressive models with possibly time-varying intercept and slope and decide on ...

  3. Intimate Partner Violence: A Stochastic Model.

    Science.gov (United States)

    Guidi, Elisa; Meringolo, Patrizia; Guazzini, Andrea; Bagnoli, Franco

    2017-01-01

    Intimate partner violence (IPV) has been a well-studied problem in the past psychological literature, especially through its classical methodology such as qualitative, quantitative and mixed methods. This article introduces two basic stochastic models as an alternative approach to simulate the short and long-term dynamics of a couple at risk of IPV. In both models, the members of the couple may assume a finite number of states, updating them in a probabilistic way at discrete time steps. After defining the transition probabilities, we first analyze the evolution of the couple in isolation and then we consider the case in which the individuals modify their behavior depending on the perceived violence from other couples in their environment or based on the perceived informal social support. While high perceived violence in other couples may converge toward the own presence of IPV by means a gender-specific transmission, the gender differences fade-out in the case of received informal social support. Despite the simplicity of the two stochastic models, they generate results which compare well with past experimental studies about IPV and they give important practical implications for prevention intervention in this field. Copyright: © 2016 by Fabrizio Serra editore, Pisa · Roma.

  4. A stochastic-bayesian model for the fracture probability of PWR pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Alexandre S.; Duran, Jorge Alberto R., E-mail: afrancisco@metal.eeimvr.uff.br, E-mail: duran@metal.eeimvr.uff.br [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Dept. de Engenharia Mecanica

    2013-07-01

    Fracture probability of pressure vessels containing cracks can be obtained by methodologies of easy understanding, which require a deterministic treatment, complemented by statistical methods. However, more accurate results are required, methodologies need to be better formulated. This paper presents a new methodology to address this problem. First, a more rigorous methodology is obtained by means of the relationship of probability distributions that model crack incidence and nondestructive inspection efficiency using the Bayes' theorem. The result is an updated crack incidence distribution. Further, the accuracy of the methodology is improved by using a stochastic model for the crack growth. The stochastic model incorporates the statistical variability of the crack growth process, combining the stochastic theory with experimental data. Stochastic differential equations are derived by the randomization of empirical equations. From the solution of this equation, a distribution function related to the crack growth is derived. The fracture probability using both probability distribution functions is in agreement with theory, and presents realistic value for pressure vessels. (author)

  5. A stochastic-bayesian model for the fracture probability of PWR pressure vessels

    International Nuclear Information System (INIS)

    Francisco, Alexandre S.; Duran, Jorge Alberto R.

    2013-01-01

    Fracture probability of pressure vessels containing cracks can be obtained by methodologies of easy understanding, which require a deterministic treatment, complemented by statistical methods. However, more accurate results are required, methodologies need to be better formulated. This paper presents a new methodology to address this problem. First, a more rigorous methodology is obtained by means of the relationship of probability distributions that model crack incidence and nondestructive inspection efficiency using the Bayes' theorem. The result is an updated crack incidence distribution. Further, the accuracy of the methodology is improved by using a stochastic model for the crack growth. The stochastic model incorporates the statistical variability of the crack growth process, combining the stochastic theory with experimental data. Stochastic differential equations are derived by the randomization of empirical equations. From the solution of this equation, a distribution function related to the crack growth is derived. The fracture probability using both probability distribution functions is in agreement with theory, and presents realistic value for pressure vessels. (author)

  6. Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters

    Directory of Open Access Journals (Sweden)

    Wen Xu

    2016-10-01

    Full Text Available Time-varying volatility is common in macroeconomic data and has been incorporated into macroeconomic models in recent work. Dynamic panel data models have become increasingly popular in macroeconomics to study common relationships across countries or regions. This paper estimates dynamic panel data models with stochastic volatility by maximizing an approximate likelihood obtained via Rao-Blackwellized particle filters. Monte Carlo studies reveal the good and stable performance of our particle filter-based estimator. When the volatility of volatility is high, or when regressors are absent but stochastic volatility exists, our approach can be better than the maximum likelihood estimator which neglects stochastic volatility and generalized method of moments (GMM estimators.

  7. Stochastic processes

    CERN Document Server

    Parzen, Emanuel

    1962-01-01

    Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine

  8. Development of stochastic indicator models of lithology, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Rautman, C.A.; Robey, T.H.

    1994-01-01

    Indicator geostatistical techniques have been used to produce a number of fully three-dimensional stochastic simulations of large-scale lithologic categories at the Yucca Mountain site. Each realization reproduces the available drill hole data used to condition the simulation. Information is propagated away from each point of observation in accordance with a mathematical model of spatial continuity inferred through soft data taken from published geologic cross sections. Variations among the simulated models collectively represent uncertainty in the lithology at unsampled locations. These stochastic models succeed in capturing many major features of welded-nonwelded lithologic framework of Yucca Mountain. However, contacts between welded and nonwelded rock types for individual simulations appear more complex than suggested by field observation, and a number of probable numerical artifacts exist in these models. Many of the apparent discrepancies between the simulated models and the general geology of Yucca Mountain represent characterization uncertainty, and can be traced to the sparse site data used to condition the simulations. Several vertical stratigraphic columns have been extracted from the three-dimensional stochastic models for use in simplified total-system performance assessment exercises. Simple, manual adjustments are required to eliminate the more obvious simulation artifacts and to impose a secondary set of deterministic geologic features on the overall stratigraphic framework provided by the indictor models

  9. Modelling the stochastic behaviour of primary nucleation.

    Science.gov (United States)

    Maggioni, Giovanni Maria; Mazzotti, Marco

    2015-01-01

    We study the stochastic nature of primary nucleation and how it manifests itself in a crystallisation process at different scales and under different operating conditions. Such characteristics of nucleation are evident in many experiments where detection times of crystals are not identical, despite identical experimental conditions, but instead are distributed around an average value. While abundant experimental evidence has been reported in the literature, a clear theoretical understanding and an appropriate modelling of this feature is still missing. In this contribution, we present two models describing a batch cooling crystallisation, where the interplay between stochastic nucleation and deterministic crystal growth is described differently in each. The nucleation and growth rates of the two models are estimated by a comprehensive set of measurements of paracetamol crystallisation from aqueous solution in a 1 mL vessel [Kadam et al., Chemical Engineering Science, 2012, 72, 10-19]. Both models are applied to the cooling crystallisation process above under different operating conditions, i.e. different volumes, initial concentrations, cooling rates. The advantages and disadvantages of the two approaches are illustrated and discussed, with particular reference to their use across scales of nucleation rate measured in very small crystallisers.

  10. Persistence and extinction for stochastic logistic model with Levy noise and impulsive perturbation

    Directory of Open Access Journals (Sweden)

    Chun Lu

    2015-09-01

    Full Text Available This article investigates a stochastic logistic model with Levy noise and impulsive perturbation. In the model, the impulsive perturbation and Levy noise are taken into account simultaneously. This model is new and more feasible and more accordance with the actual. The definition of solution to a stochastic differential equation with Levy noise and impulsive perturbation is established. Based on this definition, we show that our model has a unique global positive solution and obtains its explicit expression. Sufficient conditions for extinction are established as well as nonpersistence in the mean, weak persistence and stochastic permanence. The threshold between weak persistence and extinction is obtained.

  11. Stochastic modeling of central apnea events in preterm infants

    International Nuclear Information System (INIS)

    Clark, Matthew T; Lake, Douglas E; Randall Moorman, J; Delos, John B; Lee, Hoshik; Fairchild, Karen D; Kattwinkel, John

    2016-01-01

    A near-ubiquitous pathology in very low birth weight infants is neonatal apnea, breathing pauses with slowing of the heart and falling blood oxygen. Events of substantial duration occasionally occur after an infant is discharged from the neonatal intensive care unit (NICU). It is not known whether apneas result from a predictable process or from a stochastic process, but the observation that they occur in seemingly random clusters justifies the use of stochastic models. We use a hidden-Markov model to analyze the distribution of durations of apneas and the distribution of times between apneas. The model suggests the presence of four breathing states, ranging from very stable (with an average lifetime of 12 h) to very unstable (with an average lifetime of 10 s). Although the states themselves are not visible, the mathematical analysis gives estimates of the transition rates among these states. We have obtained these transition rates, and shown how they change with post-menstrual age; as expected, the residence time in the more stable breathing states increases with age. We also extrapolated the model to predict the frequency of very prolonged apnea during the first year of life. This paradigm—stochastic modeling of cardiorespiratory control in neonatal infants to estimate risk for severe clinical events—may be a first step toward personalized risk assessment for life threatening apnea events after NICU discharge. (paper)

  12. Stochastic modeling of central apnea events in preterm infants.

    Science.gov (United States)

    Clark, Matthew T; Delos, John B; Lake, Douglas E; Lee, Hoshik; Fairchild, Karen D; Kattwinkel, John; Moorman, J Randall

    2016-04-01

    A near-ubiquitous pathology in very low birth weight infants is neonatal apnea, breathing pauses with slowing of the heart and falling blood oxygen. Events of substantial duration occasionally occur after an infant is discharged from the neonatal intensive care unit (NICU). It is not known whether apneas result from a predictable process or from a stochastic process, but the observation that they occur in seemingly random clusters justifies the use of stochastic models. We use a hidden-Markov model to analyze the distribution of durations of apneas and the distribution of times between apneas. The model suggests the presence of four breathing states, ranging from very stable (with an average lifetime of 12 h) to very unstable (with an average lifetime of 10 s). Although the states themselves are not visible, the mathematical analysis gives estimates of the transition rates among these states. We have obtained these transition rates, and shown how they change with post-menstrual age; as expected, the residence time in the more stable breathing states increases with age. We also extrapolated the model to predict the frequency of very prolonged apnea during the first year of life. This paradigm-stochastic modeling of cardiorespiratory control in neonatal infants to estimate risk for severe clinical events-may be a first step toward personalized risk assessment for life threatening apnea events after NICU discharge.

  13. Analysis of dynamic regimes in stochastically forced Kaldor model

    International Nuclear Information System (INIS)

    Bashkirtseva, Irina; Ryazanova, Tatyana; Ryashko, Lev

    2015-01-01

    We consider the business cycle Kaldor model forced by random noise. Detailed parametric analysis of deterministic system is carried out and zones of coexisting stable equilibrium and stable limit cycle are found. Noise-induced transitions between these attractors are studied using stochastic sensitivity function technique and confidence domains method. Critical values of noise intensity corresponding to noise-induced transitions “equilibrium → cycle” and “cycle → equilibrium” are estimated. Dominants in combined stochastic regimes are discussed.

  14. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    International Nuclear Information System (INIS)

    Bokanowski, Olivier; Picarelli, Athena; Zidani, Hasnaa

    2015-01-01

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach

  15. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    Energy Technology Data Exchange (ETDEWEB)

    Bokanowski, Olivier, E-mail: boka@math.jussieu.fr [Laboratoire Jacques-Louis Lions, Université Paris-Diderot (Paris 7) UFR de Mathématiques - Bât. Sophie Germain (France); Picarelli, Athena, E-mail: athena.picarelli@inria.fr [Projet Commands, INRIA Saclay & ENSTA ParisTech (France); Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr [Unité de Mathématiques appliquées (UMA), ENSTA ParisTech (France)

    2015-02-15

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.

  16. Modeling animal movements using stochastic differential equations

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  17. Modeling reliability of power systems substations by using stochastic automata networks

    International Nuclear Information System (INIS)

    Šnipas, Mindaugas; Radziukynas, Virginijus; Valakevičius, Eimutis

    2017-01-01

    In this paper, stochastic automata networks (SANs) formalism to model reliability of power systems substations is applied. The proposed strategy allows reducing the size of state space of Markov chain model and simplifying system specification. Two case studies of standard configurations of substations are considered in detail. SAN models with different assumptions were created. SAN approach is compared with exact reliability calculation by using a minimal path set method. Modeling results showed that total independence of automata can be assumed for relatively small power systems substations with reliable equipment. In this case, the implementation of Markov chain model by a using SAN method is a relatively easy task. - Highlights: • We present the methodology to apply stochastic automata network formalism to create Markov chain models of power systems. • The stochastic automata network approach is combined with minimal path sets and structural functions. • Two models of substation configurations with different model assumptions are presented to illustrate the proposed methodology. • Modeling results of system with independent automata and functional transition rates are similar. • The conditions when total independence of automata can be assumed are addressed.

  18. Development of a Stochastically-driven, Forward Predictive Performance Model for PEMFCs

    Science.gov (United States)

    Harvey, David Benjamin Paul

    A one-dimensional multi-scale coupled, transient, and mechanistic performance model for a PEMFC membrane electrode assembly has been developed. The model explicitly includes each of the 5 layers within a membrane electrode assembly and solves for the transport of charge, heat, mass, species, dissolved water, and liquid water. Key features of the model include the use of a multi-step implementation of the HOR reaction on the anode, agglomerate catalyst sub-models for both the anode and cathode catalyst layers, a unique approach that links the composition of the catalyst layer to key properties within the agglomerate model and the implementation of a stochastic input-based approach for component material properties. The model employs a new methodology for validation using statistically varying input parameters and statistically-based experimental performance data; this model represents the first stochastic input driven unit cell performance model. The stochastic input driven performance model was used to identify optimal ionomer content within the cathode catalyst layer, demonstrate the role of material variation in potential low performing MEA materials, provide explanation for the performance of low-Pt loaded MEAs, and investigate the validity of transient-sweep experimental diagnostic methods.

  19. An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-11-01

    Full Text Available In this study, an interval fuzzy-stochastic chance-constrained programming based energy-water nexus (IFSCP-WEN model is developed for planning electric power system (EPS. The IFSCP-WEN model can tackle uncertainties expressed as possibility and probability distributions, as well as interval values. Different credibility (i.e., γ levels and probability (i.e., qi levels are set to reflect relationships among water supply, electricity generation, system cost, and constraint-violation risk. Results reveal that different γ and qi levels can lead to a changed system cost, imported electricity, electricity generation, and water supply. Results also disclose that the study EPS would tend to the transition from coal-dominated into clean energy-dominated. Gas-fired would be the main electric utility to supply electricity at the end of the planning horizon, occupying [28.47, 30.34]% (where 28.47% and 30.34% present the lower bound and the upper bound of interval value, respectively of the total electricity generation. Correspondingly, water allocated to gas-fired would reach the highest, occupying [33.92, 34.72]% of total water supply. Surface water would be the main water source, accounting for more than [40.96, 43.44]% of the total water supply. The ratio of recycled water to total water supply would increase by about [11.37, 14.85]%. Results of the IFSCP-WEN model present its potential for sustainable EPS planning by co-optimizing energy and water resources.

  20. Information-theoretic model selection for optimal prediction of stochastic dynamical systems from data

    Science.gov (United States)

    Darmon, David

    2018-03-01

    In the absence of mechanistic or phenomenological models of real-world systems, data-driven models become necessary. The discovery of various embedding theorems in the 1980s and 1990s motivated a powerful set of tools for analyzing deterministic dynamical systems via delay-coordinate embeddings of observations of their component states. However, in many branches of science, the condition of operational determinism is not satisfied, and stochastic models must be brought to bear. For such stochastic models, the tool set developed for delay-coordinate embedding is no longer appropriate, and a new toolkit must be developed. We present an information-theoretic criterion, the negative log-predictive likelihood, for selecting the embedding dimension for a predictively optimal data-driven model of a stochastic dynamical system. We develop a nonparametric estimator for the negative log-predictive likelihood and compare its performance to a recently proposed criterion based on active information storage. Finally, we show how the output of the model selection procedure can be used to compare candidate predictors for a stochastic system to an information-theoretic lower bound.

  1. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    Directory of Open Access Journals (Sweden)

    Jae Sang Moon

    2017-12-01

    Full Text Available Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES. Stochastic characteristics of these LES waked wind velocity field, including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study’s overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.

  2. Stochastic modeling of thermal fatigue crack growth

    CERN Document Server

    Radu, Vasile

    2015-01-01

    The book describes a systematic stochastic modeling approach for assessing thermal-fatigue crack-growth in mixing tees, based on the power spectral density of temperature fluctuation at the inner pipe surface. It shows the development of a frequency-temperature response function in the framework of single-input, single-output (SISO) methodology from random noise/signal theory under sinusoidal input. The frequency response of stress intensity factor (SIF) is obtained by a polynomial fitting procedure of thermal stress profiles at various instants of time. The method, which takes into account the variability of material properties, and has been implemented in a real-world application, estimates the probabilities of failure by considering a limit state function and Monte Carlo analysis, which are based on the proposed stochastic model. Written in a comprehensive and accessible style, this book presents a new and effective method for assessing thermal fatigue crack, and it is intended as a concise and practice-or...

  3. Fuzzy Stochastic Optimization Theory, Models and Applications

    CERN Document Server

    Wang, Shuming

    2012-01-01

    Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies.   The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins...

  4. Powering stochastic reliability models by discrete event simulation

    DEFF Research Database (Denmark)

    Kozine, Igor; Wang, Xiaoyun

    2012-01-01

    it difficult to find a solution to the problem. The power of modern computers and recent developments in discrete-event simulation (DES) software enable to diminish some of the drawbacks of stochastic models. In this paper we describe the insights we have gained based on using both Markov and DES models...

  5. Response spectrum analysis of a stochastic seismic model

    International Nuclear Information System (INIS)

    Kimura, Koji; Sakata, Masaru; Takemoto, Shinichiro.

    1990-01-01

    The stochastic response spectrum approach is presented for predicting the dynamic behavior of structures to earthquake excitation expressed by a random process, one of whose sample functions can be regarded as a recorded strong-motion earthquake accelerogram. The approach consists of modeling recorded ground motion by a random process and the root-mean-square response (rms) analysis of a single-degree-of-freedom system by using the moment equations method. The stochastic response spectrum is obtained as a plot of the maximum rms response versus the natural period of the system and is compared with the conventional response spectrum. (author)

  6. Adaptive temperature regulation in the little bird in winter: predictions from a stochastic dynamic programming model.

    Science.gov (United States)

    Brodin, Anders; Nilsson, Jan-Åke; Nord, Andreas

    2017-09-01

    Several species of small birds are resident in boreal forests where environmental temperatures can be -20 to -30 °C, or even lower, in winter. As winter days are short, and food is scarce, winter survival is a challenge for small endothermic animals. A bird of this size will have to gain almost 10% of its lean body mass in fat every day to sustain overnight metabolism. Birds such as parids (titmice and chickadees) can use facultative hypothermia, a process in which body temperature is actively down-regulated to a specific level, to reduce heat loss and thus save energy. During cold winter nights, these birds may decrease body temperature from the normal from 42 ° down to 35 °C, or even lower in some species. However, birds are unable to move in this deep hypothermic state, making it a risky strategy if predators are around. Why, then, do small northern birds enter a potentially dangerous physiological state for a relatively small reduction in energy expenditure? We used stochastic dynamic programming to investigate this. Our model suggests that the use of nocturnal hypothermia at night is paramount in these biomes, as it would increase winter survival for a small northern bird by 58% over a winter of 100 days. Our model also explains the phenomenon known as winter fattening, and its relationship to thermoregulation, in northern birds.

  7. Stochastic programming the state of the art in honor of George B. Dantzig

    CERN Document Server

    2011-01-01

    From the Preface… The preparation of this book started in 2004, when George B. Dantzig and I, following a long-standing invitation by Fred Hillier to contribute a volume to his International Series in Operations Research and Management Science, decided finally to go ahead with editing a volume on stochastic programming. The field of stochastic programming (also referred to as optimization under uncertainty or planning under uncertainty) had advanced significantly in the last two decades, both theoretically and in practice. George Dantzig and I felt that it would be valuable to showcase some of these advances and to present what one might call the state-of- the-art of the field to a broader audience. We invited researchers whom we considered to be leading experts in various specialties of the field, including a few representatives of promising developments in the making, to write a chapter for the volume. Unfortunately, to the great loss of all of us, George Dantzig passed away on May 13, 2005. Encouraged by...

  8. Discrete stochastic analogs of Erlang epidemic models.

    Science.gov (United States)

    Getz, Wayne M; Dougherty, Eric R

    2018-12-01

    Erlang differential equation models of epidemic processes provide more realistic disease-class transition dynamics from susceptible (S) to exposed (E) to infectious (I) and removed (R) categories than the ubiquitous SEIR model. The latter is itself is at one end of the spectrum of Erlang SE[Formula: see text]I[Formula: see text]R models with [Formula: see text] concatenated E compartments and [Formula: see text] concatenated I compartments. Discrete-time models, however, are computationally much simpler to simulate and fit to epidemic outbreak data than continuous-time differential equations, and are also much more readily extended to include demographic and other types of stochasticity. Here we formulate discrete-time deterministic analogs of the Erlang models, and their stochastic extension, based on a time-to-go distributional principle. Depending on which distributions are used (e.g. discretized Erlang, Gamma, Beta, or Uniform distributions), we demonstrate that our formulation represents both a discretization of Erlang epidemic models and generalizations thereof. We consider the challenges of fitting SE[Formula: see text]I[Formula: see text]R models and our discrete-time analog to data (the recent outbreak of Ebola in Liberia). We demonstrate that the latter performs much better than the former; although confining fits to strict SEIR formulations reduces the numerical challenges, but sacrifices best-fit likelihood scores by at least 7%.

  9. Stochastic Optimisation of Battery System Operation Strategy under different Utility Tariff Structures

    OpenAIRE

    Erdal, Jørgen Sørgård

    2017-01-01

    This master thesis develops a stochastic optimisation software for household grid-connected batteries combined with PV-systems. The objective of the optimisation is to operate the battery system in order to minimise the costs of the consumer, and it was implemented in MATLAB using a self-written stochastic dynamic programming algorithm. Load was considered as a stochastic variable and modelled as a Markov Chain. Transition probabilities between time steps were calculated using historic load p...

  10. Stochastic modeling of oligodendrocyte generation in cell culture: model validation with time-lapse data

    Directory of Open Access Journals (Sweden)

    Noble Mark

    2006-05-01

    Full Text Available Abstract Background The purpose of this paper is two-fold. The first objective is to validate the assumptions behind a stochastic model developed earlier by these authors to describe oligodendrocyte generation in cell culture. The second is to generate time-lapse data that may help biomathematicians to build stochastic models of cell proliferation and differentiation under other experimental scenarios. Results Using time-lapse video recording it is possible to follow the individual evolutions of different cells within each clone. This experimental technique is very laborious and cannot replace model-based quantitative inference from clonal data. However, it is unrivalled in validating the structure of a stochastic model intended to describe cell proliferation and differentiation at the clonal level. In this paper, such data are reported and analyzed for oligodendrocyte precursor cells cultured in vitro. Conclusion The results strongly support the validity of the most basic assumptions underpinning the previously proposed model of oligodendrocyte development in cell culture. However, there are some discrepancies; the most important is that the contribution of progenitor cell death to cell kinetics in this experimental system has been underestimated.

  11. Bond and CDS Pricing via the Stochastic Recovery Black-Cox Model

    Directory of Open Access Journals (Sweden)

    Albert Cohen

    2017-04-01

    Full Text Available Building on recent work incorporating recovery risk into structural models by Cohen & Costanzino (2015, we consider the Black-Cox model with an added recovery risk driver. The recovery risk driver arises naturally in the context of imperfect information implicit in the structural framework. This leads to a two-factor structural model we call the Stochastic Recovery Black-Cox model, whereby the asset risk driver At defines the default trigger and the recovery risk driver Rt defines the amount recovered in the event of default. We then price zero-coupon bonds and credit default swaps under the Stochastic Recovery Black-Cox model. Finally, we compare our results with the classic Black-Cox model, give explicit expressions for the recovery risk premium in the Stochastic Recovery Black-Cox model, and detail how the introduction of separate but correlated risk drivers leads to a decoupling of the default and recovery risk premiums in the credit spread. We conclude this work by computing the effect of adding coupons that are paid continuously until default, and price perpetual (consol bonds in our two-factor firm value model, extending calculations in the seminal paper by Leland (1994.

  12. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits

    International Nuclear Information System (INIS)

    Valor, A.; Caleyo, F.; Alfonso, L.; Rivas, D.; Hallen, J.M.

    2007-01-01

    In this work, a new stochastic model capable of simulating pitting corrosion is developed and validated. Pitting corrosion is modeled as the combination of two stochastic processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time for pit initiation is simulated as the realization of a Weibull process. In this way, the exponential and Weibull distributions can be considered as the possible distributions for pit initiation time. Pit growth is simulated using a nonhomogeneous Markov process. Extreme value statistics is used to find the distribution of maximum pit depths resulting from the combination of the initiation and growth processes for multiple pits. The proposed model is validated using several published experiments on pitting corrosion. It is capable of reproducing the experimental observations with higher quality than the stochastic models available in the literature for pitting corrosion

  13. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits

    Energy Technology Data Exchange (ETDEWEB)

    Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado, 10400 Havana (Cuba); Caleyo, F. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)]. E-mail: fcaleyo@gmail.com; Alfonso, L. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico); Rivas, D. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico); Hallen, J.M. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2007-02-15

    In this work, a new stochastic model capable of simulating pitting corrosion is developed and validated. Pitting corrosion is modeled as the combination of two stochastic processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time for pit initiation is simulated as the realization of a Weibull process. In this way, the exponential and Weibull distributions can be considered as the possible distributions for pit initiation time. Pit growth is simulated using a nonhomogeneous Markov process. Extreme value statistics is used to find the distribution of maximum pit depths resulting from the combination of the initiation and growth processes for multiple pits. The proposed model is validated using several published experiments on pitting corrosion. It is capable of reproducing the experimental observations with higher quality than the stochastic models available in the literature for pitting corrosion.

  14. Solving stochastic programs with integer recourse by enumeration : a framework using Gröbner basis reductions

    NARCIS (Netherlands)

    Schultz, R.; Stougie, L.; Vlerk, van der M.H.

    1998-01-01

    In this paper we present a framework for solving stochastic programs with complete integer recourse and discretely distributed right-hand side vector, using Gröbner basis methods from computational algebra to solve the numerous second-stage integer programs. Using structural properties of the

  15. Modeling and Prediction Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp

    2016-01-01

    Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...

  16. Levy-Student processes for a stochastic model of beam halos

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, N. Cufaro [Department of Mathematics, University of Bari, and INFN Sezione di Bari, via E. Orabona 4, 70125 Bari (Italy)]. E-mail: cufaro@ba.infn.it; De Martino, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); De Siena, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); Illuminati, F. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy)

    2006-06-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

  17. Levy-Student processes for a stochastic model of beam halos

    International Nuclear Information System (INIS)

    Petroni, N. Cufaro; De Martino, S.; De Siena, S.; Illuminati, F.

    2006-01-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams

  18. Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures.

    Science.gov (United States)

    Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter; Sali, Andrej

    2017-12-05

    Modeling of macromolecular structures involves structural sampling guided by a scoring function, resulting in an ensemble of good-scoring models. By necessity, the sampling is often stochastic, and must be exhaustive at a precision sufficient for accurate modeling and assessment of model uncertainty. Therefore, the very first step in analyzing the ensemble is an estimation of the highest precision at which the sampling is exhaustive. Here, we present an objective and automated method for this task. As a proxy for sampling exhaustiveness, we evaluate whether two independently and stochastically generated sets of models are sufficiently similar. The protocol includes testing 1) convergence of the model score, 2) whether model scores for the two samples were drawn from the same parent distribution, 3) whether each structural cluster includes models from each sample proportionally to its size, and 4) whether there is sufficient structural similarity between the two model samples in each cluster. The evaluation also provides the sampling precision, defined as the smallest clustering threshold that satisfies the third, most stringent test. We validate the protocol with the aid of enumerated good-scoring models for five illustrative cases of binary protein complexes. Passing the proposed four tests is necessary, but not sufficient for thorough sampling. The protocol is general in nature and can be applied to the stochastic sampling of any set of models, not just structural models. In addition, the tests can be used to stop stochastic sampling as soon as exhaustiveness at desired precision is reached, thereby improving sampling efficiency; they may also help in selecting a model representation that is sufficiently detailed to be informative, yet also sufficiently coarse for sampling to be exhaustive. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. AUTOMATIC CALIBRATION OF A STOCHASTIC-LAGRANGIAN TRANSPORT MODEL (SLAM)

    Science.gov (United States)

    Numerical models are a useful tool in evaluating and designing NAPL remediation systems. Traditional constitutive finite difference and finite element models are complex and expensive to apply. For this reason, this paper presents the application of a simplified stochastic-Lagran...

  20. A planning model with a solution algorithm for ready mixed concrete production and truck dispatching under stochastic travel times

    Science.gov (United States)

    Yan, S.; Lin, H. C.; Jiang, X. Y.

    2012-04-01

    In this study the authors employ network flow techniques to construct a systematic model that helps ready mixed concrete carriers effectively plan production and truck dispatching schedules under stochastic travel times. The model is formulated as a mixed integer network flow problem with side constraints. Problem decomposition and relaxation techniques, coupled with the CPLEX mathematical programming solver, are employed to develop an algorithm that is capable of efficiently solving the problems. A simulation-based evaluation method is also proposed to evaluate the model, coupled with a deterministic model, and the method currently used in actual operations. Finally, a case study is performed using real operating data from a Taiwan RMC firm. The test results show that the system operating cost obtained using the stochastic model is a significant improvement over that obtained using the deterministic model or the manual approach. Consequently, the model and the solution algorithm could be useful for actual operations.

  1. Optimizing basin-scale coupled water quantity and water quality management with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth......-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water...... quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen...

  2. The threshold of a stochastic avian-human influenza epidemic model with psychological effect

    Science.gov (United States)

    Zhang, Fengrong; Zhang, Xinhong

    2018-02-01

    In this paper, a stochastic avian-human influenza epidemic model with psychological effect in human population and saturation effect within avian population is investigated. This model describes the transmission of avian influenza among avian population and human population in random environments. For stochastic avian-only system, persistence in the mean and extinction of the infected avian population are studied. For the avian-human influenza epidemic system, sufficient conditions for the existence of an ergodic stationary distribution are obtained. Furthermore, a threshold of this stochastic model which determines the outcome of the disease is obtained. Finally, numerical simulations are given to support the theoretical results.

  3. Deterministic and stochastic trends in the Lee-Carter mortality model

    DEFF Research Database (Denmark)

    Callot, Laurent; Haldrup, Niels; Kallestrup-Lamb, Malene

    The Lee and Carter (1992) model assumes that the deterministic and stochastic time series dynamics loads with identical weights when describing the development of age specific mortality rates. Effectively this means that the main characteristics of the model simplifies to a random walk model...... that characterizes mortality data. We find empirical evidence that this feature of the Lee-Carter model overly restricts the system dynamics and we suggest to separate the deterministic and stochastic time series components at the benefit of improved fit and forecasting performance. In fact, we find...... that the classical Lee-Carter model will otherwise over estimate the reduction of mortality for the younger age groups and will under estimate the reduction of mortality for the older age groups. In practice, our recommendation means that the Lee-Carter model instead of a one-factor model should be formulated...

  4. Inexact stochastic risk-aversion optimal day-ahead dispatch model for electricity system management with wind power under uncertainty

    International Nuclear Information System (INIS)

    Ji, Ling; Huang, Guo-He; Huang, Lu-Cheng; Xie, Yu-Lei; Niu, Dong-Xiao

    2016-01-01

    High penetration of wind power generation and deregulated electricity market brings a great challenge to the electricity system operators. It is crucial to make optimal strategy among various generation units and spinning reserve for supporting the system safety operation. By integrating interval two-stage programming and stochastic robust programming, this paper proposes a novel robust model for day-ahead dispatch and risk-aversion management under uncertainties. In the proposed model, the uncertainties are expressed as interval values with different scenario probability. The proposed method requires low computation, and still retains the complete information. A case study is to validate the effectiveness of this approach. Facing the uncertainties of future demand and electricity price, the system operators need to make optimal dispatch strategy for thermal power units and wind turbine, and arrange proper spinning reserve and flexible demand response program to mitigate wind power forecasting error. The optimal strategies provide the system operators with better trade-off between the maximum benefits and the minimum system risk. In additional, two different market rules are compared. The results show that extra financial penalty for the wind power dispatch deviation is another efficient way to enhance the risk consciousness of decision makers and lead to more conservative strategy. - Highlights: • An inexact two-stage stochastic robust programming model for electricity system with wind power penetration. • Uncertainties expressed as discrete intervals and probability distributions. • Demand response program was introduced to adjust the deviation in real-time market. • Financial penalty for imbalance risk from wind power generation was evaluated.

  5. Modeling stochastic frontier based on vine copulas

    Science.gov (United States)

    Constantino, Michel; Candido, Osvaldo; Tabak, Benjamin M.; da Costa, Reginaldo Brito

    2017-11-01

    This article models a production function and analyzes the technical efficiency of listed companies in the United States, Germany and England between 2005 and 2012 based on the vine copula approach. Traditional estimates of the stochastic frontier assume that data is multivariate normally distributed and there is no source of asymmetry. The proposed method based on vine copulas allow us to explore different types of asymmetry and multivariate distribution. Using data on product, capital and labor, we measure the relative efficiency of the vine production function and estimate the coefficient used in the stochastic frontier literature for comparison purposes. This production vine copula predicts the value added by firms with given capital and labor in a probabilistic way. It thereby stands in sharp contrast to the production function, where the output of firms is completely deterministic. The results show that, on average, S&P500 companies are more efficient than companies listed in England and Germany, which presented similar average efficiency coefficients. For comparative purposes, the traditional stochastic frontier was estimated and the results showed discrepancies between the coefficients obtained by the application of the two methods, traditional and frontier-vine, opening new paths of non-linear research.

  6. K-Minimax Stochastic Programming Problems

    Science.gov (United States)

    Nedeva, C.

    2007-10-01

    The purpose of this paper is a discussion of a numerical procedure based on the simplex method for stochastic optimization problems with partially known distribution functions. The convergence of this procedure is proved by the condition on dual problems.

  7. Evapotranspiration Estimates for a Stochastic Soil-Moisture Model

    Science.gov (United States)

    Chaleeraktrakoon, Chavalit; Somsakun, Somrit

    2009-03-01

    Potential evapotranspiration is information that is necessary for applying a widely used stochastic model of soil moisture (I. Rodriguez Iturbe, A. Porporato, L. Ridolfi, V. Isham and D. R. Cox, Probabilistic modelling of water balance at a point: The role of climate, soil and vegetation, Proc. Roy. Soc. London A455 (1999) 3789-3805). An objective of the present paper is thus to find a proper estimate of the evapotranspiration for the stochastic model. This estimate is obtained by comparing the calculated soil-moisture distribution resulting from various techniques, such as Thornthwaite, Makkink, Jensen-Haise, FAO Modified Penman, and Blaney-Criddle, with an observed one. The comparison results using five sequences of daily soil-moisture for a dry season from November 2003 to April 2004 (Udornthani Province, Thailand) have indicated that all methods can be used if the weather information required is available. This is because their soil-moisture distributions are alike. In addition, the model is shown to have its ability in approximately describing the phenomenon at a weekly or biweekly time scale which is desirable for agricultural engineering applications.

  8. Qualitative and Quantitative Integrated Modeling for Stochastic Simulation and Optimization

    Directory of Open Access Journals (Sweden)

    Xuefeng Yan

    2013-01-01

    Full Text Available The simulation and optimization of an actual physics system are usually constructed based on the stochastic models, which have both qualitative and quantitative characteristics inherently. Most modeling specifications and frameworks find it difficult to describe the qualitative model directly. In order to deal with the expert knowledge, uncertain reasoning, and other qualitative information, a qualitative and quantitative combined modeling specification was proposed based on a hierarchical model structure framework. The new modeling approach is based on a hierarchical model structure which includes the meta-meta model, the meta-model and the high-level model. A description logic system is defined for formal definition and verification of the new modeling specification. A stochastic defense simulation was developed to illustrate how to model the system and optimize the result. The result shows that the proposed method can describe the complex system more comprehensively, and the survival probability of the target is higher by introducing qualitative models into quantitative simulation.

  9. News Impact Curve for Stochastic Volatility Models

    OpenAIRE

    Makoto Takahashi; Yasuhiro Omori; Toshiaki Watanabe

    2012-01-01

    This paper proposes a new method to compute the news impact curve for stochastic volatility (SV) models. The new method incorporates the joint movement of return and volatility, which has been ignored by the extant literature, by simply adding a couple of steps to the Bayesian MCMC estimation procedures for SV models. This simple procedure is versatile and applicable to various SV type models. Contrary to the monotonic news impact functions in the extant literature, the new method gives a U-s...

  10. Stochastic model of energetic nuclear reactor

    International Nuclear Information System (INIS)

    Bojko, R.V.; Ryazanov, V.V.

    2002-01-01

    Behaviour of nuclear reactor was treated using the theory of branching processes. As mathematical model descriptive the neutron number in time the Markov occasional process is proposed. Application of branching occasional processes with variable regime to the description of neutron behaviour in the reactor makes possible conducting strong description of critical operation regime and demonstrates the severity of the process. Three regimes of the critical behaviour depending on the sign of manipulated variables and feedbacks were discovered. Probability regularities peculiar to the behaviour of the reactor are embodied to the suggested stochastic model [ru

  11. A primal-dual decomposition based interior point approach to two-stage stochastic linear programming

    NARCIS (Netherlands)

    A.B. Berkelaar (Arjan); C.L. Dert (Cees); K.P.B. Oldenkamp; S. Zhang (Shuzhong)

    1999-01-01

    textabstractDecision making under uncertainty is a challenge faced by many decision makers. Stochastic programming is a major tool developed to deal with optimization with uncertainties that has found applications in, e.g. finance, such as asset-liability and bond-portfolio management.

  12. Stochastic time-dependent vehicle routing problem: Mathematical models and ant colony algorithm

    Directory of Open Access Journals (Sweden)

    Zhengyu Duan

    2015-11-01

    Full Text Available This article addresses the stochastic time-dependent vehicle routing problem. Two mathematical models named robust optimal schedule time model and minimum expected schedule time model are proposed for stochastic time-dependent vehicle routing problem, which can guarantee delivery within the time windows of customers. The robust optimal schedule time model only requires the variation range of link travel time, which can be conveniently derived from historical traffic data. In addition, the robust optimal schedule time model based on robust optimization method can be converted into a time-dependent vehicle routing problem. Moreover, an ant colony optimization algorithm is designed to solve stochastic time-dependent vehicle routing problem. As the improvements in initial solution and transition probability, ant colony optimization algorithm has a good performance in convergence. Through computational instances and Monte Carlo simulation tests, robust optimal schedule time model is proved to be better than minimum expected schedule time model in computational efficiency and coping with the travel time fluctuations. Therefore, robust optimal schedule time model is applicable in real road network.

  13. The global dynamics for a stochastic SIS epidemic model with isolation

    Science.gov (United States)

    Chen, Yiliang; Wen, Buyu; Teng, Zhidong

    2018-02-01

    In this paper, we investigate the dynamical behavior for a stochastic SIS epidemic model with isolation which is as an important strategy for the elimination of infectious diseases. It is assumed that the stochastic effects manifest themselves mainly as fluctuation in the transmission coefficient, the death rate and the proportional coefficient of the isolation of infective. It is shown that the extinction and persistence in the mean of the model are determined by a threshold value R0S . That is, if R0S 1, then the disease is stochastic persistent in the means with probability one. Furthermore, the existence of a unique stationary distribution is discussed, and the sufficient conditions are established by using the Lyapunov function method. Finally, some numerical examples are carried out to confirm the analytical results.

  14. Reconstructing the hidden states in time course data of stochastic models.

    Science.gov (United States)

    Zimmer, Christoph

    2015-11-01

    Parameter estimation is central for analyzing models in Systems Biology. The relevance of stochastic modeling in the field is increasing. Therefore, the need for tailored parameter estimation techniques is increasing as well. Challenges for parameter estimation are partial observability, measurement noise, and the computational complexity arising from the dimension of the parameter space. This article extends the multiple shooting for stochastic systems' method, developed for inference in intrinsic stochastic systems. The treatment of extrinsic noise and the estimation of the unobserved states is improved, by taking into account the correlation between unobserved and observed species. This article demonstrates the power of the method on different scenarios of a Lotka-Volterra model, including cases in which the prey population dies out or explodes, and a Calcium oscillation system. Besides showing how the new extension improves the accuracy of the parameter estimates, this article analyzes the accuracy of the state estimates. In contrast to previous approaches, the new approach is well able to estimate states and parameters for all the scenarios. As it does not need stochastic simulations, it is of the same order of speed as conventional least squares parameter estimation methods with respect to computational time. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-04-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  16. Dynamic-stochastic modeling of snow cover formation on the European territory of Russia

    OpenAIRE

    A. N. Gelfan; V. M. Moreido

    2014-01-01

    A dynamic-stochastic model, which combines a deterministic model of snow cover formation with a stochastic weather generator, has been developed. The deterministic snow model describes temporal change of the snow depth, content of ice and liquid water, snow density, snowmelt, sublimation, re-freezing of melt water, and snow metamorphism. The model has been calibrated and validated against the long-term data of snow measurements over the territory of the European Russia. The model showed good ...

  17. A stochastic large deformation model for computational anatomy

    DEFF Research Database (Denmark)

    Arnaudon, Alexis; Holm, Darryl D.; Pai, Akshay Sadananda Uppinakudru

    2017-01-01

    In the study of shapes of human organs using computational anatomy, variations are found to arise from inter-subject anatomical differences, disease-specific effects, and measurement noise. This paper introduces a stochastic model for incorporating random variations into the Large Deformation...

  18. Two new algorithms to combine kriging with stochastic modelling

    Science.gov (United States)

    Venema, Victor; Lindau, Ralf; Varnai, Tamas; Simmer, Clemens

    2010-05-01

    Two main groups of statistical methods used in the Earth sciences are geostatistics and stochastic modelling. Geostatistical methods, such as various kriging algorithms, aim at estimating the mean value for every point as well as possible. In case of sparse measurements, such fields have less variability at small scales and a narrower distribution as the true field. This can lead to biases if a nonlinear process is simulated driven by such a kriged field. Stochastic modelling aims at reproducing the statistical structure of the data in space and time. One of the stochastic modelling methods, the so-called surrogate data approach, replicates the value distribution and power spectrum of a certain data set. While stochastic methods reproduce the statistical properties of the data, the location of the measurement is not considered. This requires the use of so-called constrained stochastic models. Because radiative transfer through clouds is a highly nonlinear process, it is essential to model the distribution (e.g. of optical depth, extinction, liquid water content or liquid water path) accurately. In addition, the correlations within the cloud field are important, especially because of horizontal photon transport. This explains the success of surrogate cloud fields for use in 3D radiative transfer studies. Up to now, however, we could only achieve good results for the radiative properties averaged over the field, but not for a radiation measurement located at a certain position. Therefore we have developed a new algorithm that combines the accuracy of stochastic (surrogate) modelling with the positioning capabilities of kriging. In this way, we can automatically profit from the large geostatistical literature and software. This algorithm is similar to the standard iterative amplitude adjusted Fourier transform (IAAFT) algorithm, but has an additional iterative step in which the surrogate field is nudged towards the kriged field. The nudging strength is gradually

  19. Robust nonlinear autoregressive moving average model parameter estimation using stochastic recurrent artificial neural networks

    DEFF Research Database (Denmark)

    Chon, K H; Hoyer, D; Armoundas, A A

    1999-01-01

    In this study, we introduce a new approach for estimating linear and nonlinear stochastic autoregressive moving average (ARMA) model parameters, given a corrupt signal, using artificial recurrent neural networks. This new approach is a two-step approach in which the parameters of the deterministic...... part of the stochastic ARMA model are first estimated via a three-layer artificial neural network (deterministic estimation step) and then reestimated using the prediction error as one of the inputs to the artificial neural networks in an iterative algorithm (stochastic estimation step). The prediction...... error is obtained by subtracting the corrupt signal of the estimated ARMA model obtained via the deterministic estimation step from the system output response. We present computer simulation examples to show the efficacy of the proposed stochastic recurrent neural network approach in obtaining accurate...

  20. An introduction to continuous-time stochastic processes theory, models, and applications to finance, biology, and medicine

    CERN Document Server

    Capasso, Vincenzo

    2015-01-01

    This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: * Markov processes * Stochastic differential equations * Arbitrage-free markets and financial derivatives * Insurance risk * Population dynamics, and epidemics * Agent-based models New to the Third Edition: * Infinitely divisible distributions * Random measures * Levy processes * Fractional Brownian motion * Ergodic theory * Karhunen-Loeve expansion * Additional applications * Additional  exercises * Smoluchowski  approximation of  Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Editio...

  1. Persistence and extinction for stochastic logistic model with Levy noise and impulsive perturbation

    OpenAIRE

    Chun Lu; Qiang Ma; Xiaohua Ding

    2015-01-01

    This article investigates a stochastic logistic model with Levy noise and impulsive perturbation. In the model, the impulsive perturbation and Levy noise are taken into account simultaneously. This model is new and more feasible and more accordance with the actual. The definition of solution to a stochastic differential equation with Levy noise and impulsive perturbation is established. Based on this definition, we show that our model has a unique global positive solut...

  2. Testing for Volatility Co-movement in Bivariate Stochastic Volatility Models

    OpenAIRE

    Chen, Jinghui; Kobayashi, Masahito; McAleer, Michael

    2017-01-01

    markdownabstractThe paper considers the problem of volatility co-movement, namely as to whether two financial returns have perfectly correlated common volatility process, in the framework of multivariate stochastic volatility models and proposes a test which checks the volatility co-movement. The proposed test is a stochastic volatility version of the co-movement test proposed by Engle and Susmel (1993), who investigated whether international equity markets have volatility co-movement using t...

  3. Estimation of stochastic volatility by using Ornstein-Uhlenbeck type models

    Science.gov (United States)

    Mariani, Maria C.; Bhuiyan, Md Al Masum; Tweneboah, Osei K.

    2018-02-01

    In this study, we develop a technique for estimating the stochastic volatility (SV) of a financial time series by using Ornstein-Uhlenbeck type models. Using the daily closing prices from developed and emergent stock markets, we conclude that the incorporation of stochastic volatility into the time varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. Furthermore, our estimation algorithm is feasible with large data sets and have good convergence properties.

  4. Deterministic and stochastic trends in the Lee-Carter mortality model

    DEFF Research Database (Denmark)

    Callot, Laurent; Haldrup, Niels; Kallestrup-Lamb, Malene

    2015-01-01

    The Lee and Carter (1992) model assumes that the deterministic and stochastic time series dynamics load with identical weights when describing the development of age-specific mortality rates. Effectively this means that the main characteristics of the model simplify to a random walk model with age...... mortality data. We find empirical evidence that this feature of the Lee–Carter model overly restricts the system dynamics and we suggest to separate the deterministic and stochastic time series components at the benefit of improved fit and forecasting performance. In fact, we find that the classical Lee......–Carter model will otherwise overestimate the reduction of mortality for the younger age groups and will underestimate the reduction of mortality for the older age groups. In practice, our recommendation means that the Lee–Carter model instead of a one-factor model should be formulated as a two- (or several...

  5. A stochastic model of hormesis

    International Nuclear Information System (INIS)

    Yakovlev, A.Yu.; Tsodikov, A.D.; Bass, L.

    1993-01-01

    In order to describe the life-prolonging effect of some agents that are harmful at higher doses, ionizing radiations in particular, a stochastic model is developed in terms of accumulation and progression of intracellular lesions caused by the environment and by the agent itself. The processes of lesion repair, operating at the molecular and cellular level, are assumed to be responsible for this hormesis effect within the framework of the proposed model. Properties of lifetime distributions, derived for analysis of animal experiments with prolonged and acute irradiation, are given special attention. The model provides efficient means of interpreting experimental findings, as evidenced by its application to analysis of some published data on the hormetic effects of prolonged irradiation and of procaine on animal longevity. 51 refs., 2 figs., 1 tabs

  6. Solvable stochastic dealer models for financial markets

    Science.gov (United States)

    Yamada, Kenta; Takayasu, Hideki; Ito, Takatoshi; Takayasu, Misako

    2009-05-01

    We introduce solvable stochastic dealer models, which can reproduce basic empirical laws of financial markets such as the power law of price change. Starting from the simplest model that is almost equivalent to a Poisson random noise generator, the model becomes fairly realistic by adding only two effects: the self-modulation of transaction intervals and a forecasting tendency, which uses a moving average of the latest market price changes. Based on the present microscopic model of markets, we find a quantitative relation with market potential forces, which have recently been discovered in the study of market price modeling based on random walks.

  7. Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2013-01-01

    The stochastic volatility model is one of volatility models which infer latent volatility of asset returns. The Bayesian inference of the stochastic volatility (SV) model is performed by the hybrid Monte Carlo (HMC) algorithm which is superior to other Markov Chain Monte Carlo methods in sampling volatility variables. We perform the HMC simulations of the SV model for two liquid stock returns traded on the Tokyo Stock Exchange and measure the volatilities of those stock returns. Then we calculate the accuracy of the volatility measurement using the realized volatility as a proxy of the true volatility and compare the SV model with the GARCH model which is one of other volatility models. Using the accuracy calculated with the realized volatility we find that empirically the SV model performs better than the GARCH model.

  8. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  9. Modelling of diesel spray flames under engine-like conditions using an accelerated Eulerian Stochastic Field method

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song

    2018-01-01

    This paper aims to simulate diesel spray flames across a wide range of engine-like conditions using the Eulerian Stochastic Field probability density function (ESF-PDF) model. The ESF model is coupled with the Chemistry Coordinate Mapping approach to expedite the calculation. A convergence study...... is carried out for a number of stochastic fields at five different conditions, covering both conventional diesel combustion and low-temperature combustion regimes. Ignition delay time, flame lift-off length as well as distributions of temperature and various combustion products are used to evaluate...... the performance of the model. The peak values of these properties generated using thirty-two stochastic fields are found to converge, with a maximum relative difference of 27% as compared to those from a greater number of stochastic fields. The ESF-PDF model with thirty-two stochastic fields performs reasonably...

  10. The threshold of a stochastic SIQS epidemic model

    Science.gov (United States)

    Zhang, Xiao-Bing; Huo, Hai-Feng; Xiang, Hong; Shi, Qihong; Li, Dungang

    2017-09-01

    In this paper, we present the threshold of a stochastic SIQS epidemic model which determines the extinction and persistence of the disease. Furthermore, we find that noise can suppress the disease outbreak. Numerical simulations are also carried out to confirm the analytical results.

  11. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  12. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  13. Resource allocation decision modeling for a Louisiana Public Benefit Fund program

    International Nuclear Information System (INIS)

    Kaiser, Mark J.; Pulsipher, Allan G.

    2003-01-01

    A simulation model is developed to value energy efficiency improvement programs in Louisiana proposed to be delivered through a Public Benefits Fund. A uniform 1 mill/kW h non-bypassable surcharge on the electric rates of all electricity users is proposed to be distributed for low-income bill assistance, low-income weatherization, and energy efficiency programs across the residential and commercial sector of Louisiana. The economic and environmental impact of the energy improvement programs is coupled to a stochastic linear program to specify the resource allocation subject to policy and system constraints. The model is illustrated through a realistic policy scenario. (Author)

  14. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    Science.gov (United States)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-06-01

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low

  15. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    International Nuclear Information System (INIS)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-01-01

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R n . An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R d (d<< n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology

  16. Lot Sizing Based on Stochastic Demand and Service Level Constraint

    Directory of Open Access Journals (Sweden)

    hajar shirneshan

    2012-06-01

    Full Text Available Considering its application, stochastic lot sizing is a significant subject in production planning. Also the concept of service level is more applicable than shortage cost from managers' viewpoint. In this paper, the stochastic multi period multi item capacitated lot sizing problem has been investigated considering service level constraint. First, the single item model has been developed considering service level and with no capacity constraint and then, it has been solved using dynamic programming algorithm and the optimal solution has been derived. Then the model has been generalized to multi item problem with capacity constraint. The stochastic multi period multi item capacitated lot sizing problem is NP-Hard, hence the model could not be solved by exact optimization approaches. Therefore, simulated annealing method has been applied for solving the problem. Finally, in order to evaluate the efficiency of the model, low level criterion has been used .

  17. Stochastic Power Control for Time-Varying Long-Term Fading Wireless Networks

    Directory of Open Access Journals (Sweden)

    Charalambous Charalambos D

    2006-01-01

    Full Text Available A new time-varying (TV long-term fading (LTF channel model which captures both the space and time variations of wireless systems is developed. The proposed TV LTF model is based on a stochastic differential equation driven by Brownian motion. This model is more realistic than the static models usually encountered in the literature. It allows viewing the wireless channel as a dynamical system, thus enabling well-developed tools of adaptive and nonadaptive estimation and identification techniques to be applied to this class of problems. In contrast with the traditional models, the statistics of the proposed model are shown to be TV, but converge in steady state to their static counterparts. Moreover, optimal power control algorithms (PCAs based on the new model are proposed. A centralized PCA is shown to reduce to a simple linear programming problem if predictable power control strategies (PPCS are used. In addition, an iterative distributed stochastic PCA is used to solve for the optimization problem using stochastic approximations. The latter solely requires each mobile to know its received signal-to-interference ratio. Generalizations of the power control problem based on convex optimization techniques are provided if PPCS are not assumed. Numerical results show that there are potentially large gains to be achieved by using TV stochastic models, and the distributed stochastic PCA provides better power stability and consumption than the distributed deterministic PCA.

  18. Integrated multiperiod power generation and transmission expansion planning with sustainability aspects in a stochastic environment

    International Nuclear Information System (INIS)

    Seddighi, Amir Hossein; Ahmadi-Javid, Amir

    2015-01-01

    This paper presents a multistage stochastic programming model to address sustainable power generation and transmission expansion planning. The model incorporates uncertainties about future electricity demand, fuel prices, greenhouse gas emissions, as well as possible disruptions to which the power system is subject. A number of sustainability regulations and policies are considered to establish a framework for the social responsibility of the power system. The proposed model is applied to a real-world case, and several sensitivity analyses are carried out to provide managerial insights into different aspects of the model. The results emphasize the important role played by sustainability policies on the configuration of the power grid. - Highlights: • This paper considers integrated power generation and transmission expansion planning. • Sustainability aspects are incorporated into a multiperiod stochastic setting. • A stochastic mathematical programming model is developed to address the problem. • The model is applied to a real-world case and numerical studies are carried out

  19. A stochastic model of nanoparticle self-assembly on Cayley trees

    International Nuclear Information System (INIS)

    Mazilu, I; Schwen, E M; Banks, W E; Pope, B K; Mazilu, D A

    2015-01-01

    Nanomedicine is an emerging area of medical research that uses innovative nanotechnologies to improve the delivery of therapeutic and diagnostic agents with maximum clinical benefit. We present a versatile stochastic model that can be used to capture the basic features of drug encapsulation of nanoparticles on tree-like synthetic polymers called dendrimers. The geometry of a dendrimer is described mathematically as a Cayley tree. We use our stochastic model to study the dynamics of deposition and release of monomers (simulating the drug molecules) on Cayley trees (simulating dendrimers). We present analytical and Monte Carlo simulation results for the particle density on Cayley trees of coordination number three and four

  20. Low-frequency scaling applied to stochastic finite-fault modeling

    Science.gov (United States)

    Crane, Stephen; Motazedian, Dariush

    2014-01-01

    Stochastic finite-fault modeling is an important tool for simulating moderate to large earthquakes. It has proven to be useful in applications that require a reliable estimation of ground motions, mostly in the spectral frequency range of 1 to 10 Hz, which is the range of most interest to engineers. However, since there can be little resemblance between the low-frequency spectra of large and small earthquakes, this portion can be difficult to simulate using stochastic finite-fault techniques. This paper introduces two different methods to scale low-frequency spectra for stochastic finite-fault modeling. One method multiplies the subfault source spectrum by an empirical function. This function has three parameters to scale the low-frequency spectra: the level of scaling and the start and end frequencies of the taper. This empirical function adjusts the earthquake spectra only between the desired frequencies, conserving seismic moment in the simulated spectra. The other method is an empirical low-frequency coefficient that is added to the subfault corner frequency. This new parameter changes the ratio between high and low frequencies. For each simulation, the entire earthquake spectra is adjusted, which may result in the seismic moment not being conserved for a simulated earthquake. These low-frequency scaling methods were used to reproduce recorded earthquake spectra from several earthquakes recorded in the Pacific Earthquake Engineering Research Center (PEER) Next Generation Attenuation Models (NGA) database. There were two methods of determining the stochastic parameters of best fit for each earthquake: a general residual analysis and an earthquake-specific residual analysis. Both methods resulted in comparable values for stress drop and the low-frequency scaling parameters; however, the earthquake-specific residual analysis obtained a more accurate distribution of the averaged residuals.

  1. A data driven nonlinear stochastic model for blood glucose dynamics.

    Science.gov (United States)

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Stochastic modeling for river pollution of Sungai Perlis

    International Nuclear Information System (INIS)

    Yunus, Nurul Izzaty Mohd.; Rahman, Haliza Abd.; Bahar, Arifah

    2015-01-01

    River pollution has been recognized as a contributor to a wide range of health problems and disorders in human. It can pose health dangers to humans who come into contact with it, either directly or indirectly. Therefore, it is most important to measure the concentration of Biochemical Oxygen Demand (BOD) as a water quality parameter since the parameter has long been the basic means for determining the degree of water pollution in rivers. In this study, BOD is used as a parameter to estimate the water quality at Sungai Perlis. It has been observed that Sungai Perlis is polluted due to lack of management and improper use of resources. Therefore, it is of importance to model the Sungai Perlis water quality in order to describe and predict the water quality systems. The BOD concentration secondary data set is used which was extracted from the Drainage and Irrigation Department Perlis State website. The first order differential equation from Streeter – Phelps model was utilized as a deterministic model. Then, the model was developed into a stochastic model. Results from this study shows that the stochastic model is more adequate to describe and predict the BOD concentration and the water quality systems in Sungai Perlis by having smaller value of mean squared error (MSE)

  3. Stochastic modeling for river pollution of Sungai Perlis

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, Nurul Izzaty Mohd.; Rahman, Haliza Abd. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia,81310 Johor Bahru, Johor (Malaysia); Bahar, Arifah [UTM-Centre of Industrial and Applied Mathematics (UTM-CIAM) Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-02-03

    River pollution has been recognized as a contributor to a wide range of health problems and disorders in human. It can pose health dangers to humans who come into contact with it, either directly or indirectly. Therefore, it is most important to measure the concentration of Biochemical Oxygen Demand (BOD) as a water quality parameter since the parameter has long been the basic means for determining the degree of water pollution in rivers. In this study, BOD is used as a parameter to estimate the water quality at Sungai Perlis. It has been observed that Sungai Perlis is polluted due to lack of management and improper use of resources. Therefore, it is of importance to model the Sungai Perlis water quality in order to describe and predict the water quality systems. The BOD concentration secondary data set is used which was extracted from the Drainage and Irrigation Department Perlis State website. The first order differential equation from Streeter – Phelps model was utilized as a deterministic model. Then, the model was developed into a stochastic model. Results from this study shows that the stochastic model is more adequate to describe and predict the BOD concentration and the water quality systems in Sungai Perlis by having smaller value of mean squared error (MSE)

  4. The Long Time Behavior of a Stochastic Logistic Model with Infinite Delay and Impulsive Perturbation

    OpenAIRE

    Lu, Chun; Wu, Kaining

    2016-01-01

    This paper considers a stochastic logistic model with infinite delay and impulsive perturbation. Firstly, with the space $C_{g}$ as phase space, the definition of solution to a stochastic functional differential equation with infinite delay and impulsive perturbation is established. According to this definition, we show that our model has an unique global positive solution. Then we establish the sufficient and necessary conditions for extinction and stochastic permanence of the...

  5. Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [Pacific Northwest National Laboratory (PNNL); Aziz, H M Abdul [ORNL; Young, Stan [National Renewable Energy Laboratory (NREL); Patil, Sagar [Pacific Northwest National Laboratory (PNNL)

    2017-10-01

    Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections. In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.

  6. Stochastic inverse problems: Models and metrics

    International Nuclear Information System (INIS)

    Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.

    2015-01-01

    In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds

  7. Stochastic inverse problems: Models and metrics

    Science.gov (United States)

    Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.

    2015-03-01

    In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.

  8. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2007-01-01

    of stochastic origin can be observed in experiments. The models include a new approach to the platinum phase transition, which allows for a unification of existing models for Pt(100) and Pt(110). The rich nonlinear dynamical behavior of the macroscopic reaction kinetics is investigated and shows good agreement...

  9. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  10. Developing stochastic model of thrust and flight dynamics for small UAVs

    Science.gov (United States)

    Tjhai, Chandra

    This thesis presents a stochastic thrust model and aerodynamic model for small propeller driven UAVs whose power plant is a small electric motor. First a model which relates thrust generated by a small propeller driven electric motor as a function of throttle setting and commanded engine RPM is developed. A perturbation of this model is then used to relate the uncertainty in throttle and engine RPM commanded to the error in the predicted thrust. Such a stochastic model is indispensable in the design of state estimation and control systems for UAVs where the performance requirements of the systems are specied in stochastic terms. It is shown that thrust prediction models for small UAVs are not a simple, explicit functions relating throttle input and RPM command to thrust generated. Rather they are non-linear, iterative procedures which depend on a geometric description of the propeller and mathematical model of the motor. A detailed derivation of the iterative procedure is presented and the impact of errors which arise from inaccurate propeller and motor descriptions are discussed. Validation results from a series of wind tunnel tests are presented. The results show a favorable statistical agreement between the thrust uncertainty predicted by the model and the errors measured in the wind tunnel. The uncertainty model of aircraft aerodynamic coefficients developed based on wind tunnel experiment will be discussed at the end of this thesis.

  11. The threshold of a stochastic delayed SIR epidemic model with vaccination

    Science.gov (United States)

    Liu, Qun; Jiang, Daqing

    2016-11-01

    In this paper, we study the threshold dynamics of a stochastic delayed SIR epidemic model with vaccination. We obtain sufficient conditions for extinction and persistence in the mean of the epidemic. The threshold between persistence in the mean and extinction of the stochastic system is also obtained. Compared with the corresponding deterministic model, the threshold affected by the white noise is smaller than the basic reproduction number Rbar0 of the deterministic system. Results show that time delay has important effects on the persistence and extinction of the epidemic.

  12. Stochastic analysis for finance with simulations

    CERN Document Server

    Choe, Geon Ho

    2016-01-01

    This book is an introduction to stochastic analysis and quantitative finance; it includes both theoretical and computational methods. Topics covered are stochastic calculus, option pricing, optimal portfolio investment, and interest rate models. Also included are simulations of stochastic phenomena, numerical solutions of the Black–Scholes–Merton equation, Monte Carlo methods, and time series. Basic measure theory is used as a tool to describe probabilistic phenomena. The level of familiarity with computer programming is kept to a minimum. To make the book accessible to a wider audience, some background mathematical facts are included in the first part of the book and also in the appendices. This work attempts to bridge the gap between mathematics and finance by using diagrams, graphs and simulations in addition to rigorous theoretical exposition. Simulations are not only used as the computational method in quantitative finance, but they can also facilitate an intuitive and deeper understanding of theoret...

  13. Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors

    Science.gov (United States)

    Mehanna Ismail, Mohammed Ali

    The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the

  14. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    Science.gov (United States)

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  15. Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment II.

    Science.gov (United States)

    Liu, Meng; Wang, Ke

    2010-12-07

    This is a continuation of our paper [Liu, M., Wang, K., 2010. Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment, J. Theor. Biol. 264, 934-944]. Taking both white noise and colored noise into account, a stochastic single-species model under regime switching in a polluted environment is studied. Sufficient conditions for extinction, stochastic nonpersistence in the mean, stochastic weak persistence and stochastic permanence are established. The threshold between stochastic weak persistence and extinction is obtained. The results show that a different type of noise has a different effect on the survival results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model

    International Nuclear Information System (INIS)

    Gutierrez, R.; Nafidi, A.; Gutierrez Sanchez, R.

    2005-01-01

    The principal objective of the present study is to examine the possibilities of using a Gompertz-type innovation diffusion process as a stochastic growth model of natural-gas consumption in Spain, and to compare our results with those obtained, on the one hand, by stochastic logistic innovation modelling and, on the other, by using a stochastic lognormal growth model based on a non-innovation diffusion process. Such a comparison is carried out taking into account the macroeconomic characteristics and natural-gas consumption patterns in Spain, both of which reflect the current expansive situation characterizing the Spanish economy. From the technical standpoint a contribution is also made to the theory of the stochastic Gompertz Innovation diffusion process (SGIDP), as applied to the case in question. (author)

  17. On the Radio-emitting Particles of the Crab Nebula: Stochastic Acceleration Model

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shuta J. [Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501 (Japan); Asano, Katsuaki, E-mail: sjtanaka@center.konan-u.ac.jp [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa City, Chiba, 277-8582 (Japan)

    2017-06-01

    The broadband emission of pulsar wind nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the standard shock acceleration model of PWNe does not account for the hard spectrum in radio wavelengths. The origin of the radio-emitting particles is also important to determine the pair production efficiency in the pulsar magnetosphere. Here, we propose a possible resolution for the particle energy distribution in PWNe; the radio-emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside PWNe. We upgrade our past one-zone spectral evolution model to include the energy diffusion, i.e., the stochastic acceleration, and apply the model to the Crab Nebula. A fairly simple form of the energy diffusion coefficient is assumed for this demonstrative study. For a particle injection to the stochastic acceleration process, we consider the continuous injection from the supernova ejecta or the impulsive injection associated with supernova explosion. The observed broadband spectrum and the decay of the radio flux are reproduced by tuning the amount of the particle injected to the stochastic acceleration process. The acceleration timescale and the duration of the acceleration are required to be a few decades and a few hundred years, respectively. Our results imply that some unveiled mechanisms, such as back reaction to the turbulence, are required to make the energies of stochastically and shock-accelerated particles comparable.

  18. An Empirical Application of a Two-Factor Model of Stochastic Volatility

    Czech Academy of Sciences Publication Activity Database

    Kuchyňka, Alexandr

    2008-01-01

    Roč. 17, č. 3 (2008), s. 243-253 ISSN 1210-0455 R&D Projects: GA ČR GA402/07/1113; GA MŠk(CZ) LC06075 Institutional research plan: CEZ:AV0Z10750506 Keywords : stochastic volatility * Kalman filter Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2008/E/kuchynka-an empirical application of a two-factor model of stochastic volatility.pdf

  19. Optically levitated nanoparticle as a model system for stochastic bistable dynamics.

    Science.gov (United States)

    Ricci, F; Rica, R A; Spasenović, M; Gieseler, J; Rondin, L; Novotny, L; Quidant, R

    2017-05-09

    Nano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum. We demonstrate how it can lead to efficient signal amplification schemes, including stochastic resonance. This work contributes to showing the use of levitated nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide variety of fields.

  20. Stochastic Model for Population Exposed to Low Level Risk

    International Nuclear Information System (INIS)

    Merkle, J.M.

    1996-01-01

    In this paper the stochastic model for population size, i.e. calculation of the number of deaths due to lethal stochastic health effects caused by the exposure to low level ionising radiation is presented. The model is defined for subpopulation with parameter (a, b) being fixed. Using the corresponding density function, it is possible to find all the quantities of interest by averaging over whole possible values for (a, l). All processes ar at first defined for one radionuclide, exposure pathway and the health effect under consideration. The results obtained in this paper are the basic quantities in the risk assessment, loss of life expectancy etc. The results presented in this paper are also applicable to the other sources of low level risk, not only the radiation risk

  1. Quantitative sociodynamics stochastic methods and models of social interaction processes

    CERN Document Server

    Helbing, Dirk

    1995-01-01

    Quantitative Sociodynamics presents a general strategy for interdisciplinary model building and its application to a quantitative description of behavioural changes based on social interaction processes. Originally, the crucial methods for the modeling of complex systems (stochastic methods and nonlinear dynamics) were developed in physics but they have very often proved their explanatory power in chemistry, biology, economics and the social sciences. Quantitative Sociodynamics provides a unified and comprehensive overview of the different stochastic methods, their interrelations and properties. In addition, it introduces the most important concepts from nonlinear dynamics (synergetics, chaos theory). The applicability of these fascinating concepts to social phenomena is carefully discussed. By incorporating decision-theoretical approaches a very fundamental dynamic model is obtained which seems to open new perspectives in the social sciences. It includes many established models as special cases, e.g. the log...

  2. Quantitative Sociodynamics Stochastic Methods and Models of Social Interaction Processes

    CERN Document Server

    Helbing, Dirk

    2010-01-01

    This new edition of Quantitative Sociodynamics presents a general strategy for interdisciplinary model building and its application to a quantitative description of behavioral changes based on social interaction processes. Originally, the crucial methods for the modeling of complex systems (stochastic methods and nonlinear dynamics) were developed in physics and mathematics, but they have very often proven their explanatory power in chemistry, biology, economics and the social sciences as well. Quantitative Sociodynamics provides a unified and comprehensive overview of the different stochastic methods, their interrelations and properties. In addition, it introduces important concepts from nonlinear dynamics (e.g. synergetics, chaos theory). The applicability of these fascinating concepts to social phenomena is carefully discussed. By incorporating decision-theoretical approaches, a fundamental dynamic model is obtained, which opens new perspectives in the social sciences. It includes many established models a...

  3. Stochastic climate theory

    NARCIS (Netherlands)

    Gottwald, G.A.; Crommelin, D.T.; Franzke, C.L.E.; Franzke, C.L.E.; O'Kane, T.J.

    2017-01-01

    In this chapter we review stochastic modelling methods in climate science. First we provide a conceptual framework for stochastic modelling of deterministic dynamical systems based on the Mori-Zwanzig formalism. The Mori-Zwanzig equations contain a Markov term, a memory term and a term suggestive of

  4. Stochastic models in risk theory and management accounting

    NARCIS (Netherlands)

    Brekelmans, R.C.M.

    2000-01-01

    This thesis deals with stochastic models in two fields: risk theory and management accounting. Firstly, two extensions of the classical risk process are analyzed. A method is developed that computes bounds of the probability of ruin for the classical risk rocess extended with a constant interest

  5. Stochastic energy procurement of large electricity consumer considering photovoltaic, wind-turbine, micro-turbines, energy storage system in the presence of demand response program

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Aalami, Habib allah

    2015-01-01

    Highlights: • A stochastic energy procurement cost function in presence of DRP is proposed. • The load, price and output power of PV and wind uncertainties are modeled. • Four case studies are used to assess the effects of ESS and DRP on SEPP. • Case 4 is considered the effects of ESS and DRP simultaneously. • The expected energy procurement cost of case 4 is lower than cases 1, 2 and 3. - Abstract: This paper proposes a stochastic energy procurement problem (SEPP) for large electricity consumer (LEC) with multiple energy procurement sources (EPSs) considering the effects of demand response program (DRP) and energy storage system (ESS). The EPSs contain power market (PM), bilateral contracts (BCs), micro-turbines (MTs), and renewable energy sources (RESs). Moreover, the RESs include photovoltaic (PV) systems and wind-turbines (WT). The ESS and DRP are incorporated in the SEPP by the LEC’s decision-maker to reduce the expected energy procurement cost (EEPC). Meanwhile, the uncertainty models of market price, load and RES output power are considered in the SEPP formulation. The error of forecasting of market price, load, temperature and radiation of PV systems are modeled using the normal distribution for generating the related scenarios. Also, the weibull distribution is used to generate variable wind speed scenarios for WT output power uncertainty modeling. Furthermore, the fast forward selection based on Kantorovich distance approach is used for the scenarios reduction. Finally, the influences of ESS and DRP on EEPC are investigated, and four case studies are used to illustrate the capability of the proposed SEPP. The obtained results demonstrate the efficiency of the proposed stochastic program

  6. On stochastic modeling of the modernized global positioning system (GPS) L2C signal

    International Nuclear Information System (INIS)

    Elsobeiey, Mohamed; El-Rabbany, Ahmed

    2010-01-01

    In order to take full advantage of the modernized GPS L2C signal, it is essential that its stochastic characteristics and code bias be rigorously determined. In this paper, long sessions of GPS measurements are used to study the stochastic characteristics of the modernized GPS L2C signal. As a byproduct, the stochastic characteristics of the legacy GPS signals, namely C/A and P2 codes, are also determined, which are used to verify the developed stochastic model of the modernized signal. The differential code biases between P2 and C2, DCB P2-C2 , are also estimated using the Bernese GPS software. It is shown that the developed models improved the precise point positioning (PPP) solution and convergence time

  7. Stochastic modeling of the hypothalamic pulse generator activity.

    Science.gov (United States)

    Camproux, A C; Thalabard, J C; Thomas, G

    1994-11-01

    Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.

  8. Maximum likelihood approach for several stochastic volatility models

    International Nuclear Information System (INIS)

    Camprodon, Jordi; Perelló, Josep

    2012-01-01

    Volatility measures the amplitude of price fluctuations. Despite it being one of the most important quantities in finance, volatility is not directly observable. Here we apply a maximum likelihood method which assumes that price and volatility follow a two-dimensional diffusion process where volatility is the stochastic diffusion coefficient of the log-price dynamics. We apply this method to the simplest versions of the expOU, the OU and the Heston stochastic volatility models and we study their performance in terms of the log-price probability, the volatility probability, and its Mean First-Passage Time. The approach has some predictive power on the future returns amplitude by only knowing the current volatility. The assumed models do not consider long-range volatility autocorrelation and the asymmetric return-volatility cross-correlation but the method still yields very naturally these two important stylized facts. We apply the method to different market indices and with a good performance in all cases. (paper)

  9. Calibration of a stochastic health evolution model using NHIS data

    Science.gov (United States)

    Gupta, Aparna; Li, Zhisheng

    2011-10-01

    This paper presents and calibrates an individual's stochastic health evolution model. In this health evolution model, the uncertainty of health incidents is described by a stochastic process with a finite number of possible outcomes. We construct a comprehensive health status index (HSI) to describe an individual's health status, as well as a health risk factor system (RFS) to classify individuals into different risk groups. Based on the maximum likelihood estimation (MLE) method and the method of nonlinear least squares fitting, model calibration is formulated in terms of two mixed-integer nonlinear optimization problems. Using the National Health Interview Survey (NHIS) data, the model is calibrated for specific risk groups. Longitudinal data from the Health and Retirement Study (HRS) is used to validate the calibrated model, which displays good validation properties. The end goal of this paper is to provide a model and methodology, whose output can serve as a crucial component of decision support for strategic planning of health related financing and risk management.

  10. A termination criterion for parameter estimation in stochastic models in systems biology.

    Science.gov (United States)

    Zimmer, Christoph; Sahle, Sven

    2015-11-01

    Parameter estimation procedures are a central aspect of modeling approaches in systems biology. They are often computationally expensive, especially when the models take stochasticity into account. Typically parameter estimation involves the iterative optimization of an objective function that describes how well the model fits some measured data with a certain set of parameter values. In order to limit the computational expenses it is therefore important to apply an adequate stopping criterion for the optimization process, so that the optimization continues at least until a reasonable fit is obtained, but not much longer. In the case of stochastic modeling, at least some parameter estimation schemes involve an objective function that is itself a random variable. This means that plain convergence tests are not a priori suitable as stopping criteria. This article suggests a termination criterion suited to optimization problems in parameter estimation arising from stochastic models in systems biology. The termination criterion is developed for optimization algorithms that involve populations of parameter sets, such as particle swarm or evolutionary algorithms. It is based on comparing the variance of the objective function over the whole population of parameter sets with the variance of repeated evaluations of the objective function at the best parameter set. The performance is demonstrated for several different algorithms. To test the termination criterion we choose polynomial test functions as well as systems biology models such as an Immigration-Death model and a bistable genetic toggle switch. The genetic toggle switch is an especially challenging test case as it shows a stochastic switching between two steady states which is qualitatively different from the model behavior in a deterministic model. Copyright © 2015. Published by Elsevier Ireland Ltd.

  11. Drift Scale Modeling: Study of Unsaturated Flow into a Drift Using a Stochastic Continuum Model

    International Nuclear Information System (INIS)

    Birkholzer, J.T.; Tsang, C.F.; Tsang, Y.W.; Wang, J.S

    1996-01-01

    Unsaturated flow in heterogeneous fractured porous rock was simulated using a stochastic continuum model (SCM). In this model, both the more conductive fractures and the less permeable matrix are generated within the framework of a single continuum stochastic approach, based on non-parametric indicator statistics. High-permeable fracture zones are distinguished from low-permeable matrix zones in that they have assigned a long range correlation structure in prescribed directions. The SCM was applied to study small-scale flow in the vicinity of an access tunnel, which is currently being drilled in the unsaturated fractured tuff formations at Yucca Mountain, Nevada. Extensive underground testing is underway in this tunnel to investigate the suitability of Yucca Mountain as an underground nuclear waste repository. Different flow scenarios were studied in the present paper, considering the flow conditions before and after the tunnel emplacement, and assuming steady-state net infiltration as well as episodic pulse infiltration. Although the capability of the stochastic continuum model has not yet been fully explored, it has been demonstrated that the SCM is a good alternative model feasible of describing heterogeneous flow processes in unsaturated fractured tuff at Yucca Mountain

  12. Handbook of EOQ inventory problems stochastic and deterministic models and applications

    CERN Document Server

    Choi, Tsan-Ming

    2013-01-01

    This book explores deterministic and stochastic EOQ-model based problems and applications, presenting technical analyses of single-echelon EOQ model based inventory problems, and applications of the EOQ model for multi-echelon supply chain inventory analysis.

  13. Model reduction for slow–fast stochastic systems with metastable behaviour

    International Nuclear Information System (INIS)

    Bruna, Maria; Chapman, S. Jonathan; Smith, Matthew J.

    2014-01-01

    The quasi-steady-state approximation (or stochastic averaging principle) is a useful tool in the study of multiscale stochastic systems, giving a practical method by which to reduce the number of degrees of freedom in a model. The method is extended here to slow–fast systems in which the fast variables exhibit metastable behaviour. The key parameter that determines the form of the reduced model is the ratio of the timescale for the switching of the fast variables between metastable states to the timescale for the evolution of the slow variables. The method is illustrated with two examples: one from biochemistry (a fast-species-mediated chemical switch coupled to a slower varying species), and one from ecology (a predator–prey system). Numerical simulations of each model reduction are compared with those of the full system

  14. A stochastic security approach to energy and spinning reserve scheduling considering demand response program

    International Nuclear Information System (INIS)

    Partovi, Farzad; Nikzad, Mehdi; Mozafari, Babak; Ranjbar, Ali Mohamad

    2011-01-01

    In this paper a new algorithm for allocating energy and determining the optimum amount of network active power reserve capacity and the share of generating units and demand side contribution in providing reserve capacity requirements for day-ahead market is presented. In the proposed method, the optimum amount of reserve requirement is determined based on network security set by operator. In this regard, Expected Load Not Supplied (ELNS) is used to evaluate system security in each hour. The proposed method has been implemented over the IEEE 24-bus test system and the results are compared with a deterministic security approach, which considers certain and fixed amount of reserve capacity in each hour. This comparison is done from economic and technical points of view. The promising results show the effectiveness of the proposed model which is formulated as mixed integer linear programming (MILP) and solved by GAMS software. -- Highlights: → Determination of optimal spinning reserve capacity requirement in order to satisfy desired security level set by system operator based on stochastic approach. → Scheduling energy and spinning reserve markets simultaneously. → Comparing the stochastic approach with deterministic approach to determine the advantages and disadvantages of each. → Examine the effect of demand response participation in reserve market to provide spinning reserve.

  15. A stochastic MILP energy planning model incorporating power market dynamics

    International Nuclear Information System (INIS)

    Koltsaklis, Nikolaos E.; Nazos, Konstantinos

    2017-01-01

    Highlights: •Stochastic MILP model for the optimal energy planning of a power system. •Power market dynamics (offers/bids) are incorporated in the proposed model. •Monte Carlo method for capturing the uncertainty of some key parameters. •Analytical supply cost composition per power producer and activity. •Clean dark and spark spreads are calculated for each power unit. -- Abstract: This paper presents an optimization-based methodological approach to address the problem of the optimal planning of a power system at an annual level in competitive and uncertain power markets. More specifically, a stochastic mixed integer linear programming model (MILP) has been developed, combining advanced optimization techniques with Monte Carlo method in order to deal with uncertainty issues. The main focus of the proposed framework is the dynamic formulation of the strategy followed by all market participants in volatile market conditions, as well as detailed economic assessment of the power system’s operation. The applicability of the proposed approach has been tested on a real case study of the interconnected Greek power system, quantifying in detail all the relevant technical and economic aspects of the system’s operation. The proposed work identifies in the form of probability distributions the optimal power generation mix, electricity trade at a regional level, carbon footprint, as well as detailed total supply cost composition, according to the assumed market structure. The paper demonstrates that the proposed optimization approach is able to provide important insights into the appropriate energy strategies designed by market participants, as well as on the strategic long-term decisions to be made by investors and/or policy makers at a national and/or regional level, underscoring potential risks and providing appropriate price signals on critical energy projects under real market operating conditions.

  16. Stochastic modeling of reinforced concrete structures exposed to chloride attack

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Frier, Christian

    2004-01-01

    For many reinforced concrete structures corrosion of reinforcement is an important problem since it can result in expensive maintenance and repair actions. Further, a significant reduction of the load-bearing capacity can occur. One mode of corrosion initiation is that the chloride content around...... concentration and reinforcement cover depth are modeled by stochastic fields. The paper contains a description of the parameters to be included in a stochastic model and a proposal for the information needed to obtain values for the parameters in order to be able to perform reliability investigations....... The distribution of the time to initiation of corrosion is estimated by simulation. As an example a bridge pier in a marine environment is considered....

  17. Stochastic Modeling of Reinforced Concrete Structures Exposed to Chloride Attack

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Frier, Christian

    2003-01-01

    For many reinforced concrete structures corrosion of reinforcement is an important problem since it can result in expensive maintenance and repair actions. Further, a significant reduction of the load-bearing capacity can occur. One mode of corrosion initiation is that the chloride content around...... concentration and reinforcement cover depth are modeled by stochastic fields. The paper contains a description of the parameters to be included in a stochastic model and a proposal for the information needed to obtain values for the parameters in order to be ab le to perform reliability investigations....... The distribution of the time to initiation of corrosion is estimated by simulation. As an example a bridge pier in a marine environment is considered....

  18. SR 97. Alternative models project. Stochastic continuum modelling of Aberg

    International Nuclear Information System (INIS)

    Widen, H.; Walker, D.

    1999-08-01

    As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modelling approaches to bedrock performance assessment for a single hypothetical repository, arbitrarily named Aberg. The Aberg repository will adopt input parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The models are restricted to an explicit domain, boundary conditions and canister location to facilitate the comparison. The boundary conditions are based on the regional groundwater model provided in digital format. This study is the application of HYDRASTAR, a stochastic continuum groundwater flow and transport-modelling program. The study uses 34 realisations of 945 canister locations in the hypothetical repository to evaluate the uncertainty of the advective travel time, canister flux (Darcy velocity at a canister) and F-ratio. Several comparisons of variability are constructed between individual canister locations and individual realisations. For the ensemble of all realisations with all canister locations, the study found a median travel time of 27 years, a median canister flux of 7.1 x 10 -4 m/yr and a median F-ratio of 3.3 x 10 5 yr/m. The overall pattern of regional flow is preserved in the site-scale model, as is reflected in flow paths and exit locations. The site-scale model slightly over-predicts the boundary fluxes from the single realisation of the regional model. The explicitly prescribed domain was seen to be slightly restrictive, with 6% of the stream tubes failing to exit the upper surface of the model. Sensitivity analysis and calibration are suggested as possible extensions of the modelling study

  19. Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk

    Directory of Open Access Journals (Sweden)

    Khaled Halteh

    2018-05-01

    Full Text Available Credit risk is a critical issue that affects banks and companies on a global scale. Possessing the ability to accurately predict the level of credit risk has the potential to help the lender and borrower. This is achieved by alleviating the number of loans provided to borrowers with poor financial health, thereby reducing the number of failed businesses, and, in effect, preventing economies from collapsing. This paper uses state-of-the-art stochastic models, namely: Decision trees, random forests, and stochastic gradient boosting to add to the current literature on credit-risk modelling. The Australian mining industry has been selected to test our methodology. Mining in Australia generates around $138 billion annually, making up more than half of the total goods and services. This paper uses publicly-available financial data from 750 risky and not risky Australian mining companies as variables in our models. Our results indicate that stochastic gradient boosting was the superior model at correctly classifying the good and bad credit-rated companies within the mining sector. Our model showed that ‘Property, Plant, & Equipment (PPE turnover’, ‘Invested Capital Turnover’, and ‘Price over Earnings Ratio (PER’ were the variables with the best explanatory power pertaining to predicting credit risk in the Australian mining sector.

  20. Price-Dynamics of Shares and Bohmian Mechanics: Deterministic or Stochastic Model?

    Science.gov (United States)

    Choustova, Olga

    2007-02-01

    We apply the mathematical formalism of Bohmian mechanics to describe dynamics of shares. The main distinguishing feature of the financial Bohmian model is the possibility to take into account market psychology by describing expectations of traders by the pilot wave. We also discuss some objections (coming from conventional financial mathematics of stochastic processes) against the deterministic Bohmian model. In particular, the objection that such a model contradicts to the efficient market hypothesis which is the cornerstone of the modern market ideology. Another objection is of pure mathematical nature: it is related to the quadratic variation of price trajectories. One possibility to reply to this critique is to consider the stochastic Bohm-Vigier model, instead of the deterministic one. We do this in the present note.