#### Sample records for stochastic point processes

1. Stochastic processes

CERN Document Server

Parzen, Emanuel

1962-01-01

Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine

2. Stochastic processes

CERN Document Server

Borodin, Andrei N

2017-01-01

This book provides a rigorous yet accessible introduction to the theory of stochastic processes. A significant part of the book is devoted to the classic theory of stochastic processes. In turn, it also presents proofs of well-known results, sometimes together with new approaches. Moreover, the book explores topics not previously covered elsewhere, such as distributions of functionals of diffusions stopped at different random times, the Brownian local time, diffusions with jumps, and an invariance principle for random walks and local times. Supported by carefully selected material, the book showcases a wealth of examples that demonstrate how to solve concrete problems by applying theoretical results. It addresses a broad range of applications, focusing on concrete computational techniques rather than on abstract theory. The content presented here is largely self-contained, making it suitable for researchers and graduate students alike.

3. A customizable stochastic state point process filter (SSPPF) for neural spiking activity.

Science.gov (United States)

Xin, Yao; Li, Will X Y; Min, Biao; Han, Yan; Cheung, Ray C C

2013-01-01

Stochastic State Point Process Filter (SSPPF) is effective for adaptive signal processing. In particular, it has been successfully applied to neural signal coding/decoding in recent years. Recent work has proven its efficiency in non-parametric coefficients tracking in modeling of mammal nervous system. However, existing SSPPF has only been realized in commercial software platforms which limit their computational capability. In this paper, the first hardware architecture of SSPPF has been designed and successfully implemented on field-programmable gate array (FPGA), proving a more efficient means for coefficient tracking in a well-established generalized Laguerre-Volterra model for mammalian hippocampal spiking activity research. By exploring the intrinsic parallelism of the FPGA, the proposed architecture is able to process matrices or vectors with random size, and is efficiently scalable. Experimental result shows its superior performance comparing to the software implementation, while maintaining the numerical precision. This architecture can also be potentially utilized in the future hippocampal cognitive neural prosthesis design.

4. On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs.

Science.gov (United States)

Gerhard, Felipe; Deger, Moritz; Truccolo, Wilson

2017-02-01

Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a

5. Stochastic analysis for Poisson point processes Malliavin calculus, Wiener-Itô chaos expansions and stochastic geometry

CERN Document Server

Peccati, Giovanni

2016-01-01

Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolvi...

6. Stochastic dynamical model of a growing citation network based on a self-exciting point process.

Science.gov (United States)

Golosovsky, Michael; Solomon, Sorin

2012-08-31

We put under experimental scrutiny the preferential attachment model that is commonly accepted as a generating mechanism of the scale-free complex networks. To this end we chose a citation network of physics papers and traced the citation history of 40,195 papers published in one year. Contrary to common belief, we find that the citation dynamics of the individual papers follows the superlinear preferential attachment, with the exponent α=1.25-1.3. Moreover, we show that the citation process cannot be described as a memoryless Markov chain since there is a substantial correlation between the present and recent citation rates of a paper. Based on our findings we construct a stochastic growth model of the citation network, perform numerical simulations based on this model and achieve an excellent agreement with the measured citation distributions.

7. Stochastic conditional intensity processes

DEFF Research Database (Denmark)

Bauwens, Luc; Hautsch, Nikolaus

2006-01-01

model allows for a wide range of (cross-)autocorrelation structures in multivariate point processes. The model is estimated by simulated maximum likelihood (SML) using the efficient importance sampling (EIS) technique. By modeling price intensities based on NYSE trading, we provide significant evidence......In this article, we introduce the so-called stochastic conditional intensity (SCI) model by extending Russell’s (1999) autoregressive conditional intensity (ACI) model by a latent common dynamic factor that jointly drives the individual intensity components. We show by simulations that the proposed...... for a joint latent factor and show that its inclusion allows for an improved and more parsimonious specification of the multivariate intensity process...

8. Analysis of the stochastic channel model by Saleh & Valenzuela via the theory of point processes

DEFF Research Database (Denmark)

Jakobsen, Morten Lomholt; Pedersen, Troels; Fleury, Bernard Henri

2012-01-01

and underlying features, like the intensity function of the component delays and the delaypower intensity. The flexibility and clarity of the mathematical instruments utilized to obtain these results lead us to conjecture that the theory of spatial point processes provides a unifying mathematical framework...

9. Fourier analysis and stochastic processes

CERN Document Server

Brémaud, Pierre

2014-01-01

This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). A careful review of the prerequisites (integration and probability theory in the appendix, Hilbert spa...

10. Stochastic processes inference theory

CERN Document Server

Rao, Malempati M

2014-01-01

This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.

11. A geometric stochastic approach based on marked point processes for road mark detection from high resolution aerial images

Science.gov (United States)

Tournaire, O.; Paparoditis, N.

Road detection has been a topic of great interest in the photogrammetric and remote sensing communities since the end of the 70s. Many approaches dealing with various sensor resolutions, the nature of the scene or the wished accuracy of the extracted objects have been presented. This topic remains challenging today as the need for accurate and up-to-date data is becoming more and more important. Based on this context, we will study in this paper the road network from a particular point of view, focusing on road marks, and in particular dashed lines. Indeed, they are very useful clues, for evidence of a road, but also for tasks of a higher level. For instance, they can be used to enhance quality and to improve road databases. It is also possible to delineate the different circulation lanes, their width and functionality (speed limit, special lanes for buses or bicycles...). In this paper, we propose a new robust and accurate top-down approach for dashed line detection based on stochastic geometry. Our approach is automatic in the sense that no intervention from a human operator is necessary to initialise the algorithm or to track errors during the process. The core of our approach relies on defining geometric, radiometric and relational models for dashed lines objects. The model also has to deal with the interactions between the different objects making up a line, meaning that it introduces external knowledge taken from specifications. Our strategy is based on a stochastic method, and in particular marked point processes. Our goal is to find the objects configuration minimising an energy function made-up of a data attachment term measuring the consistency of the image with respect to the objects and a regularising term managing the relationship between neighbouring objects. To sample the energy function, we use Green algorithm's; coupled with a simulated annealing to find its minimum. Results from aerial images at various resolutions are presented showing that our

12. Composite stochastic processes

NARCIS (Netherlands)

Kampen, N.G. van

Certain problems in physics and chemistry lead to the definition of a class of stochastic processes. Although they are not Markovian they can be treated explicitly to some extent. In particular, the probability distribution for large times can be found. It is shown to obey a master equation. This

13. Research in Stochastic Processes.

Science.gov (United States)

1982-10-31

Office of Scientific Research Grant AFOSR F49620 82 C 0009 Period: 1 Noveber 1981 through 31 October 1982 Title: Research in Stochastic Processes Co...STA4ATIS CAMBANIS The work briefly described here was developed in connection with problems arising from and related to the statistical comunication

14. Essentials of stochastic processes

CERN Document Server

Durrett, Richard

2016-01-01

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatm...

15. Stochastic processes in cell biology

CERN Document Server

Bressloff, Paul C

2014-01-01

This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

16. Spatial Stochastic Point Models for Reservoir Characterization

Energy Technology Data Exchange (ETDEWEB)

Syversveen, Anne Randi

1997-12-31

The main part of this thesis discusses stochastic modelling of geology in petroleum reservoirs. A marked point model is defined for objects against a background in a two-dimensional vertical cross section of the reservoir. The model handles conditioning on observations from more than one well for each object and contains interaction between objects, and the objects have the correct length distribution when penetrated by wells. The model is developed in a Bayesian setting. The model and the simulation algorithm are demonstrated by means of an example with simulated data. The thesis also deals with object recognition in image analysis, in a Bayesian framework, and with a special type of spatial Cox processes called log-Gaussian Cox processes. In these processes, the logarithm of the intensity function is a Gaussian process. The class of log-Gaussian Cox processes provides flexible models for clustering. The distribution of such a process is completely characterized by the intensity and the pair correlation function of the Cox process. 170 refs., 37 figs., 5 tabs.

17. Stochastic processes, slaves and supersymmetry

International Nuclear Information System (INIS)

Drummond, I T; Horgan, R R

2012-01-01

We extend the work of Tănase-Nicola and Kurchan on the structure of diffusion processes and the associated supersymmetry algebra by examining the responses of a simple statistical system to external disturbances of various kinds. We consider both the stochastic differential equations (SDEs) for the process and the associated diffusion equation. The influence of the disturbances can be understood by augmenting the original SDE with an equation for slave variables. The evolution of the slave variables describes the behaviour of line elements carried along in the stochastic flow. These line elements, together with the associated surface and volume elements constructed from them, provide the basis of the supersymmetry properties of the theory. For ease of visualization, and in order to emphasize a helpful electromagnetic analogy, we work in three dimensions. The results are all generalizable to higher dimensions and can be specialized to one and two dimensions. The electromagnetic analogy is a useful starting point for calculating asymptotic results at low temperature that can be compared with direct numerical evaluations. We also examine the problems that arise in a direct numerical simulation of the stochastic equation together with the slave equations. We pay special attention to the dependence of the slave variable statistics on temperature. We identify in specific models the critical temperature below which the slave variable distribution ceases to have a variance and consider the effect on estimates of susceptibilities. (paper)

18. Poisson branching point processes

International Nuclear Information System (INIS)

Matsuo, K.; Teich, M.C.; Saleh, B.E.A.

1984-01-01

We investigate the statistical properties of a special branching point process. The initial process is assumed to be a homogeneous Poisson point process (HPP). The initiating events at each branching stage are carried forward to the following stage. In addition, each initiating event independently contributes a nonstationary Poisson point process (whose rate is a specified function) located at that point. The additional contributions from all points of a given stage constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the initiating point process at that stage. The process studied is a generalization of a Poisson branching process in which random time delays are permitted in the generation of events. Particular attention is given to the limit in which the number of branching stages is infinite while the average number of added events per event of the previous stage is infinitesimal. In the special case when the branching is instantaneous this limit of continuous branching corresponds to the well-known Yule--Furry process with an initial Poisson population. The Poisson branching point process provides a useful description for many problems in various scientific disciplines, such as the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers

19. Stochastic processes and quantum theory

International Nuclear Information System (INIS)

Klauder, J.R.

1975-01-01

The author analyses a variety of stochastic processes, namely real time diffusion phenomena, which are analogues of imaginary time quantum theory and convariant imaginary time quantum field theory. He elaborates some standard properties involving probability measures and stochastic variables and considers a simple class of examples. Finally he develops the fact that certain stochastic theories actually exhibit divergences that simulate those of covariant quantum field theory and presents examples of both renormaizable and unrenormalizable behavior. (V.J.C.)

20. An introduction to probability and stochastic processes

CERN Document Server

Melsa, James L

2013-01-01

Geared toward college seniors and first-year graduate students, this text is designed for a one-semester course in probability and stochastic processes. Topics covered in detail include probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

1. Applied probability and stochastic processes

CERN Document Server

Sumita, Ushio

1999-01-01

Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...

2. Stochastic Processes in Epidemic Theory

CERN Document Server

Lefèvre, Claude; Picard, Philippe

1990-01-01

This collection of papers gives a representative cross-selectional view of recent developments in the field. After a survey paper by C. Lefèvre, 17 other research papers look at stochastic modeling of epidemics, both from a theoretical and a statistical point of view. Some look more specifically at a particular disease such as AIDS, malaria, schistosomiasis and diabetes.

3. Probability, Statistics, and Stochastic Processes

CERN Document Server

Olofsson, Peter

2011-01-01

A mathematical and intuitive approach to probability, statistics, and stochastic processes This textbook provides a unique, balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. This text combines a rigorous, calculus-based development of theory with a more intuitive approach that appeals to readers' sense of reason and logic, an approach developed through the author's many years of classroom experience. The text begins with three chapters that d

4. Three-point statistics of cosmological stochastic gravitational waves

International Nuclear Information System (INIS)

2010-01-01

We consider the three-point function (i.e. the bispectrum or non-Gaussianity) for stochastic backgrounds of gravitational waves. We estimate the amplitude of this signal for the primordial inflationary background, gravitational waves generated during preheating, and for gravitational waves produced by self-ordering scalar fields following a global phase transition. To assess detectability, we describe how to extract the three-point signal from an idealized interferometric experiment and compute the signal to noise ratio as a function of integration time. The three-point signal for the stochastic gravitational wave background generated by inflation is unsurprisingly tiny. For gravitational radiation generated by purely causal, classical mechanisms we find that, no matter how nonlinear the process is, the three-point correlations produced vanish in direct detection experiments. On the other hand, we show that in scenarios where the B-mode of the cosmic microwave background is sourced by gravitational waves generated by a global phase transition, a strong three-point signal among the polarization modes is also produced. This may provide another method of distinguishing inflationary B-modes. To carry out this computation, we have developed a diagrammatic approach to the calculation of stochastic gravitational waves sourced by scalar fluids, which has applications beyond the present scenario.

5. The dynamics of stochastic processes

DEFF Research Database (Denmark)

Basse-O'Connor, Andreas

In the present thesis the dynamics of stochastic processes is studied with a special attention to the semimartingale property. This is mainly motivated by the fact that semimartingales provide the class of the processes for which it is possible to define a reasonable stochastic calculus due...... to the Bichteler-Dellacherie Theorem. The semimartingale property of Gaussian processes is characterized in terms of their covariance function, spectral measure and spectral representation. In addition, representation and expansion of filtration results are provided as well. Special attention is given to moving...... average processes, and when the driving process is a Lévy or a chaos process the semimartingale property is characterized in the filtration spanned by the driving process and in the natural filtration when the latter is a Brownian motion. To obtain some of the above results an integrability of seminorm...

6. Distance covariance for stochastic processes

DEFF Research Database (Denmark)

Matsui, Muneya; Mikosch, Thomas Valentin; Samorodnitsky, Gennady

2017-01-01

The distance covariance of two random vectors is a measure of their dependence. The empirical distance covariance and correlation can be used as statistical tools for testing whether two random vectors are independent. We propose an analog of the distance covariance for two stochastic processes...

7. Introduction to stochastic processes

CERN Document Server

Cinlar, Erhan

2013-01-01

Clear presentation employs methods that recognize computer-related aspects of theory. Topics include expectations and independence, Bernoulli processes and sums of independent random variables, Markov chains, renewal theory, more. 1975 edition.

8. Dynamical and hamiltonian dilations of stochastic processes

International Nuclear Information System (INIS)

Baumgartner, B.; Gruemm, H.-R.

1982-01-01

This is a study of the problem, which stochastic processes could arise from dynamical systems by loss of information. The notions of ''dilation'' and ''approximate dilation'' of a stochastic process are introduced to give exact definitions of this particular relationship. It is shown that every generalized stochastic process is approximately dilatable by a sequence of dynamical systems, but for stochastic processes in full generality one needs nets. (Author)

9. Stochastic processes and filtering theory

CERN Document Server

Jazwinski, Andrew H

1970-01-01

This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab

10. Explore Stochastic Instabilities of Periodic Points by Transition Path Theory

Science.gov (United States)

Cao, Yu; Lin, Ling; Zhou, Xiang

2016-06-01

We consider the noise-induced transitions from a linearly stable periodic orbit consisting of T periodic points in randomly perturbed discrete logistic map. Traditional large deviation theory and asymptotic analysis at small noise limit cannot distinguish the quantitative difference in noise-induced stochastic instabilities among the T periodic points. To attack this problem, we generalize the transition path theory to the discrete-time continuous-space stochastic process. In our first criterion to quantify the relative instability among T periodic points, we use the distribution of the last passage location related to the transitions from the whole periodic orbit to a prescribed disjoint set. This distribution is related to individual contributions to the transition rate from each periodic points. The second criterion is based on the competency of the transition paths associated with each periodic point. Both criteria utilize the reactive probability current in the transition path theory. Our numerical results for the logistic map reveal the transition mechanism of escaping from the stable periodic orbit and identify which periodic point is more prone to lose stability so as to make successful transitions under random perturbations.

11. Verification of Stochastic Process Calculi

DEFF Research Database (Denmark)

Skrypnyuk, Nataliya

algorithms for constructing bisimulation relations, computing (overapproximations of) sets of reachable states and computing the expected time reachability, the last for a linear fragment of IMC. In all the cases we have the complexities of algorithms which are low polynomial in the size of the syntactic....... In support of this claim we have developed analysis methods that belong to a particular type of Static Analysis { Data Flow / Pathway Analysis. These methods have previously been applied to a number of non-stochastic process calculi. In this thesis we are lifting them to the stochastic calculus...... of Interactive Markov Chains (IMC). We have devised the Pathway Analysis of IMC that is not only correct in the sense of overapproximating all possible behaviour scenarios, as is usual for Static Analysis methods, but is also precise. This gives us the possibility to explicitly decide on the trade-o between...

12. Mathematical statistics and stochastic processes

CERN Document Server

Bosq, Denis

2013-01-01

Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today's practitioners.Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and rob

13. The solution of the neutron point kinetics equation with stochastic extension: an analysis of two moments

Energy Technology Data Exchange (ETDEWEB)

Silva, Milena Wollmann da; Vilhena, Marco Tullio M.B.; Bodmann, Bardo Ernst J.; Vasques, Richard, E-mail: milena.wollmann@ufrgs.br, E-mail: vilhena@mat.ufrgs.br, E-mail: bardobodmann@ufrgs.br, E-mail: richard.vasques@fulbrightmail.org [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

2015-07-01

The neutron point kinetics equation, which models the time-dependent behavior of nuclear reactors, is often used to understand the dynamics of nuclear reactor operations. It consists of a system of coupled differential equations that models the interaction between (i) the neutron population; and (II) the concentration of the delayed neutron precursors, which are radioactive isotopes formed in the fission process that decay through neutron emission. These equations are deterministic in nature, and therefore can provide only average values of the modeled populations. However, the actual dynamical process is stochastic: the neutron density and the delayed neutron precursor concentrations vary randomly with time. To address this stochastic behavior, Hayes and Allen have generalized the standard deterministic point kinetics equation. They derived a system of stochastic differential equations that can accurately model the random behavior of the neutron density and the precursor concentrations in a point reactor. Due to the stiffness of these equations, this system was numerically implemented using a stochastic piecewise constant approximation method (Stochastic PCA). Here, we present a study of the influence of stochastic fluctuations on the results of the neutron point kinetics equation. We reproduce the stochastic formulation introduced by Hayes and Allen and compute Monte Carlo numerical results for examples with constant and time-dependent reactivity, comparing these results with stochastic and deterministic methods found in the literature. Moreover, we introduce a modified version of the stochastic method to obtain a non-stiff solution, analogue to a previously derived deterministic approach. (author)

14. The solution of the neutron point kinetics equation with stochastic extension: an analysis of two moments

International Nuclear Information System (INIS)

Silva, Milena Wollmann da; Vilhena, Marco Tullio M.B.; Bodmann, Bardo Ernst J.; Vasques, Richard

2015-01-01

The neutron point kinetics equation, which models the time-dependent behavior of nuclear reactors, is often used to understand the dynamics of nuclear reactor operations. It consists of a system of coupled differential equations that models the interaction between (i) the neutron population; and (II) the concentration of the delayed neutron precursors, which are radioactive isotopes formed in the fission process that decay through neutron emission. These equations are deterministic in nature, and therefore can provide only average values of the modeled populations. However, the actual dynamical process is stochastic: the neutron density and the delayed neutron precursor concentrations vary randomly with time. To address this stochastic behavior, Hayes and Allen have generalized the standard deterministic point kinetics equation. They derived a system of stochastic differential equations that can accurately model the random behavior of the neutron density and the precursor concentrations in a point reactor. Due to the stiffness of these equations, this system was numerically implemented using a stochastic piecewise constant approximation method (Stochastic PCA). Here, we present a study of the influence of stochastic fluctuations on the results of the neutron point kinetics equation. We reproduce the stochastic formulation introduced by Hayes and Allen and compute Monte Carlo numerical results for examples with constant and time-dependent reactivity, comparing these results with stochastic and deterministic methods found in the literature. Moreover, we introduce a modified version of the stochastic method to obtain a non-stiff solution, analogue to a previously derived deterministic approach. (author)

15. Probability, Statistics, and Stochastic Processes

CERN Document Server

Olofsson, Peter

2012-01-01

This book provides a unique and balanced approach to probability, statistics, and stochastic processes.   Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area.  The Second Edition features new coverage of analysis of variance (ANOVA), consistency and efficiency of estimators, asymptotic theory for maximum likelihood estimators, empirical distribution function and the Kolmogorov-Smirnov test, general linear models, multiple comparisons, Markov chain Monte Carlo (MCMC), Brownian motion, martingales, and

16. Detecting determinism from point processes.

Science.gov (United States)

Andrzejak, Ralph G; Mormann, Florian; Kreuz, Thomas

2014-12-01

The detection of a nonrandom structure from experimental data can be crucial for the classification, understanding, and interpretation of the generating process. We here introduce a rank-based nonlinear predictability score to detect determinism from point process data. Thanks to its modular nature, this approach can be adapted to whatever signature in the data one considers indicative of deterministic structure. After validating our approach using point process signals from deterministic and stochastic model dynamics, we show an application to neuronal spike trains recorded in the brain of an epilepsy patient. While we illustrate our approach in the context of temporal point processes, it can be readily applied to spatial point processes as well.

17. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

KAUST Repository

Loizou, Nicolas

2017-12-27

In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

18. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

KAUST Repository

Loizou, Nicolas; Richtarik, Peter

2017-01-01

In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

19. Ambit processes and stochastic partial differential equations

DEFF Research Database (Denmark)

Barndorff-Nielsen, Ole; Benth, Fred Espen; Veraart, Almut

Ambit processes are general stochastic processes based on stochastic integrals with respect to Lévy bases. Due to their flexible structure, they have great potential for providing realistic models for various applications such as in turbulence and finance. This papers studies the connection betwe...... ambit processes and solutions to stochastic partial differential equations. We investigate this relationship from two angles: from the Walsh theory of martingale measures and from the viewpoint of the Lévy noise analysis....

20. Discrete stochastic processes and applications

CERN Document Server

Collet, Jean-François

2018-01-01

This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.

1. Statistical inference for stochastic processes

National Research Council Canada - National Science Library

Basawa, Ishwar V; Prakasa Rao, B. L. S

1980-01-01

The aim of this monograph is to attempt to reduce the gap between theory and applications in the area of stochastic modelling, by directing the interest of future researchers to the inference aspects...

2. Space-time-modulated stochastic processes

Science.gov (United States)

Giona, Massimiliano

2017-10-01

Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

3. Simulation and inference for stochastic processes with YUIMA a comprehensive R framework for SDEs and other stochastic processes

CERN Document Server

Iacus, Stefano M

2018-01-01

The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these ...

4. Stochastic differential equation model to Prendiville processes

Energy Technology Data Exchange (ETDEWEB)

Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)

2015-10-22

The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.

5. Stochastic differential equation model to Prendiville processes

International Nuclear Information System (INIS)

Granita; Bahar, Arifah

2015-01-01

The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution

6. Modelling and application of stochastic processes

CERN Document Server

1986-01-01

The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza­ tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef­ ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side,...

7. Stochastic processes in mechanical engineering

NARCIS (Netherlands)

Brouwers, J.J.H.

2006-01-01

Stochastic or random vibrations occur in a variety of applications of mechanicalengineering. Examples are: the dynamics of a vehicle on an irregular roadsurface; the variation in time of thermodynamic variables in municipal wasteincinerators due to fluctuations in heating value of the waste; the

8. Towards Model Checking Stochastic Process Algebra

NARCIS (Netherlands)

Hermanns, H.; Grieskamp, W.; Santen, T.; Katoen, Joost P.; Stoddart, B.; Meyer-Kayser, J.; Siegle, M.

2000-01-01

Stochastic process algebras have been proven useful because they allow behaviour-oriented performance and reliability modelling. As opposed to traditional performance modelling techniques, the behaviour- oriented style supports composition and abstraction in a natural way. However, analysis of

9. Selected papers on noise and stochastic processes

CERN Document Server

1954-01-01

Six classic papers on stochastic process, selected to meet the needs of physicists, applied mathematicians, and engineers. Contents: 1.Chandrasekhar, S.: Stochastic Problems in Physics and Astronomy. 2. Uhlenbeck, G. E. and Ornstein, L. S.: On the Theory of the Browninan Motion. 3. Ming Chen Wang and Uhlenbeck, G. E.: On the Theory of the Browninan Motion II. 4. Rice, S. O.: Mathematical Analysis of Random Noise. 5. Kac, Mark: Random Walk and the Theory of Brownian Motion. 6. Doob, J. L.: The Brownian Movement and Stochastic Equations. Unabridged republication of the Dover reprint (1954). Pre

10. Is human failure a stochastic process?

International Nuclear Information System (INIS)

Dougherty, Ed M.

1997-01-01

Human performance results in failure events that occur with a risk-significant frequency. System analysts have taken for granted the random (stochastic) nature of these events in engineering assessments such as risk assessment. However, cognitive scientists and error technologists, at least those who have interest in human reliability, have, over the recent years, claimed that human error does not need this stochastic framework. Yet they still use the language appropriate to stochastic processes. This paper examines the potential for the stochastic nature of human failure production as the basis for human reliability analysis. It distinguishes and leaves to others, however, the epistemic uncertainties over the possible probability models for the real variability of human performance

11. Learning stochastic reward distributions in a speeded pointing task.

Science.gov (United States)

Seydell, Anna; McCann, Brian C; Trommershäuser, Julia; Knill, David C

2008-04-23

Recent studies have shown that humans effectively take into account task variance caused by intrinsic motor noise when planning fast hand movements. However, previous evidence suggests that humans have greater difficulty accounting for arbitrary forms of stochasticity in their environment, both in economic decision making and sensorimotor tasks. We hypothesized that humans can learn to optimize movement strategies when environmental randomness can be experienced and thus implicitly learned over several trials, especially if it mimics the kinds of randomness for which subjects might have generative models. We tested the hypothesis using a task in which subjects had to rapidly point at a target region partly covered by three stochastic penalty regions introduced as "defenders." At movement completion, each defender jumped to a new position drawn randomly from fixed probability distributions. Subjects earned points when they hit the target, unblocked by a defender, and lost points otherwise. Results indicate that after approximately 600 trials, subjects approached optimal behavior. We further tested whether subjects simply learned a set of stimulus-contingent motor plans or the statistics of defenders' movements by training subjects with one penalty distribution and then testing them on a new penalty distribution. Subjects immediately changed their strategy to achieve the same average reward as subjects who had trained with the second penalty distribution. These results indicate that subjects learned the parameters of the defenders' jump distributions and used this knowledge to optimally plan their hand movements under conditions involving stochastic rewards and penalties.

12. Study of the stochastic point reactor kinetic equation

International Nuclear Information System (INIS)

Gotoh, Yorio

1980-01-01

Diagrammatic technique is used to solve the stochastic point reactor kinetic equation. The method gives exact results which are derived from Fokker-Plank theory. A Green's function dressed with the clouds of noise is defined, which is a transfer function of point reactor with fluctuating reactivity. An integral equation for the correlation function of neutron power is derived using the following assumptions: 1) Green's funntion should be dressed with noise, 2) The ladder type diagrams only contributes to the correlation function. For a white noise and the one delayed neutron group approximation, the norm of the integral equation and the variance to mean-squared ratio are analytically obtained. (author)

13. Lectures on Topics in Spatial Stochastic Processes

CERN Document Server

Capasso, Vincenzo; Ivanoff, B Gail; Dozzi, Marco; Dalang, Robert C; Mountford, Thomas S

2003-01-01

The theory of stochastic processes indexed by a partially ordered set has been the subject of much research over the past twenty years. The objective of this CIME International Summer School was to bring to a large audience of young probabilists the general theory of spatial processes, including the theory of set-indexed martingales and to present the different branches of applications of this theory, including stochastic geometry, spatial statistics, empirical processes, spatial estimators and survival analysis. This theory has a broad variety of applications in environmental sciences, social sciences, structure of material and image analysis. In this volume, the reader will find different approaches which foster the development of tools to modelling the spatial aspects of stochastic problems.

14. Stochastic processes and long range dependence

CERN Document Server

2016-01-01

This monograph is a gateway for researchers and graduate students to explore the profound, yet subtle, world of long-range dependence (also known as long memory). The text is organized around the probabilistic properties of stationary processes that are important for determining the presence or absence of long memory. The first few chapters serve as an overview of the general theory of stochastic processes which gives the reader sufficient background, language, and models for the subsequent discussion of long memory. The later chapters devoted to long memory begin with an introduction to the subject along with a brief history of its development, followed by a presentation of what is currently the best known approach, applicable to stationary processes with a finite second moment. The book concludes with a chapter devoted to the author’s own, less standard, point of view of long memory as a phase transition, and even includes some novel results. Most of the material in the book has not previously been publis...

15. Computer Aided Continuous Time Stochastic Process Modelling

DEFF Research Database (Denmark)

Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay

2001-01-01

A grey-box approach to process modelling that combines deterministic and stochastic modelling is advocated for identification of models for model-based control of batch and semi-batch processes. A computer-aided tool designed for supporting decision-making within the corresponding modelling cycle...

16. Topological superposition of abstractions of stochastic processes

NARCIS (Netherlands)

Bujorianu, L.M.; Bujorianu, M.C.

2008-01-01

In this paper, we present a sound integration mechanism for Markov processes that are abstractions of stochastic hybrid systems (SHS). In a previous work, we have defined a very general model of SHS and we proved that the realization of an SHS is a Markov process. Moreover, we have developed a

17. Quantization by stochastic relaxation processes and supersymmetry

International Nuclear Information System (INIS)

Kirschner, R.

1984-01-01

We show the supersymmetry mechanism resposible for the quantization by stochastic relaxation processes and for the effective cancellation of the additional time dimension against the two Grassmann dimensions. We give a non-perturbative proof of the validity of this quantization procedure. (author)

18. ON REGRESSION REPRESENTATIONS OF STOCHASTIC-PROCESSES

NARCIS (Netherlands)

RUSCHENDORF, L; DEVALK, [No Value

We construct a.s. nonlinear regression representations of general stochastic processes (X(n))n is-an-element-of N. As a consequence we obtain in particular special regression representations of Markov chains and of certain m-dependent sequences. For m-dependent sequences we obtain a constructive

19. Methods for solving the stochastic point reactor kinetic equations

International Nuclear Information System (INIS)

Quabili, E.R.; Karasulu, M.

1979-01-01

Two new methods are presented for analysis of the statistical properties of nonlinear outputs of a point reactor to stochastic non-white reactivity inputs. They are Bourret's approximation and logarithmic linearization. The results have been compared with the exact results, previously obtained in the case of Gaussian white reactivity input. It was found that when the reactivity noise has short correlation time, Bourret's approximation should be recommended because it yields results superior to those yielded by logarithmic linearization. When the correlation time is long, Bourret's approximation is not valid, but in that case, if one can assume the reactivity noise to be Gaussian, one may use the logarithmic linearization. (author)

20. Stochastic transport processes in discrete biological systems

CERN Document Server

Frehland, Eckart

1982-01-01

These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

1. Stationary stochastic processes theory and applications

CERN Document Server

Lindgren, Georg

2012-01-01

Some Probability and Process BackgroundSample space, sample function, and observablesRandom variables and stochastic processesStationary processes and fieldsGaussian processesFour historical landmarksSample Function PropertiesQuadratic mean propertiesSample function continuityDerivatives, tangents, and other characteristicsStochastic integrationAn ergodic resultExercisesSpectral RepresentationsComplex-valued stochastic processesBochner's theorem and the spectral distributionSpectral representation of a stationary processGaussian processesStationary counting processesExercisesLinear Filters - General PropertiesLinear time invariant filtersLinear filters and differential equationsWhite noise in linear systemsLong range dependence, non-integrable spectra, and unstable systemsThe ARMA-familyLinear Filters - Special TopicsThe Hilbert transform and the envelopeThe sampling theoremKarhunen-Loève expansionClassical Ergodic Theory and MixingThe basic ergodic theorem in L2Stationarity and transformationsThe ergodic th...

2. Magnetic X-points, edge localized modes, and stochasticity

International Nuclear Information System (INIS)

Sugiyama, L. E.; Strauss, H. R.

2010-01-01

Edge localized modes (ELMs) near the boundary of a high temperature, magnetically confined toroidal plasma represent a new type of nonlinear magnetohydrodynamic (MHD) plasma instability that grows through a coherent plasma interaction with part of a chaotic magnetic field. Under perturbation, the freely moving magnetic boundary surface with an X-point splits into two different limiting asymptotic surfaces (manifolds), similar to the behavior of a hyperbolic saddle point in Hamiltonian dynamics. Numerical simulation using the extended MHD code M3D shows that field-aligned plasma instabilities, such as ballooning modes, can couple to the ''unstable'' manifold that forms helical, field-following lobes around the original surface. Large type I ELMs proceed in stages. Initially, a rapidly growing ballooning outburst involves the entire outboard side. Large plasma fingers grow well off the midplane, while low density regions penetrate deeply into the plasma. The magnetic field becomes superficially stochastic. A secondary inboard edge instability causes inboard plasma loss. The plasma gradually relaxes back toward axisymmetry, with diminishing cycles of edge instability. Poloidal rotation of the interior and edge plasma may be driven. The magnetic tangle constrains the early nonlinear ballooning, but may encourage the later inward penetration. Equilibrium toroidal rotation and two-fluid diamagnetic drifts have relatively small effects on a strong MHD instability. Intrinsic magnetic stochasticity may help explain the wide range of experimentally observed ELMs and ELM-free behavior in fusion plasmas, as well as properties of the H-mode and plasma edge.

3. Probability of stochastic processes and spacetime geometry

International Nuclear Information System (INIS)

Canessa, E.

2007-01-01

We made a first attempt to associate a probabilistic description of stochastic processes like birth-death processes with spacetime geometry in the Schwarzschild metrics on distance scales from the macro- to the micro-domains. We idealize an ergodic system in which system states communicate through a curved path composed of transition arrows where each arrow corresponds to a positive, analogous birth or death rate. (author)

4. Stochastic Processes in Finance and Behavioral Finance

OpenAIRE

Steinbacher, Matjaz

2008-01-01

In the paper, we put some foundations for studying asset pricing and finance as a stochastic and behavioral process. In such process, preferences and psychology of agents represent the most important factor in the decision-making of people. Individuals have their own ways of acquiring the information they need, how to deal with them and how to make predictions and decisions. People usually also do not behave consistent in time, but learn. Therefore, in order to understand the behavior on the ...

5. Periodic linear differential stochastic processes

NARCIS (Netherlands)

Kwakernaak, H.

1975-01-01

Periodic linear differential processes are defined and their properties are analyzed. Equivalent representations are discussed, and the solutions of related optimal estimation problems are given. An extension is presented of Kailath and Geesey’s [1] results concerning the innovations representation

6. Irreversible stochastic processes on lattices

International Nuclear Information System (INIS)

Nord, R.S.

1986-01-01

Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed

7. Soil Erosion as a stochastic process

Science.gov (United States)

Casper, Markus C.

2015-04-01

The main tools to provide estimations concerning risk and amount of erosion are different types of soil erosion models: on the one hand, there are empirically based model concepts on the other hand there are more physically based or process based models. However, both types of models have substantial weak points. All empirical model concepts are only capable of providing rough estimates over larger temporal and spatial scales, they do not account for many driving factors that are in the scope of scenario related analysis. In addition, the physically based models contain important empirical parts and hence, the demand for universality and transferability is not given. As a common feature, we find, that all models rely on parameters and input variables, which are to certain, extend spatially and temporally averaged. A central question is whether the apparent heterogeneity of soil properties or the random nature of driving forces needs to be better considered in our modelling concepts. Traditionally, researchers have attempted to remove spatial and temporal variability through homogenization. However, homogenization has been achieved through physical manipulation of the system, or by statistical averaging procedures. The price for obtaining this homogenized (average) model concepts of soils and soil related processes has often been a failure to recognize the profound importance of heterogeneity in many of the properties and processes that we study. Especially soil infiltrability and the resistance (also called "critical shear stress" or "critical stream power") are the most important empirical factors of physically based erosion models. The erosion resistance is theoretically a substrate specific parameter, but in reality, the threshold where soil erosion begins is determined experimentally. The soil infiltrability is often calculated with empirical relationships (e.g. based on grain size distribution). Consequently, to better fit reality, this value needs to be

8. Stochastic Simulation of Process Calculi for Biology

Directory of Open Access Journals (Sweden)

Andrew Phillips

2010-10-01

Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.

9. Uncertainty Reduction for Stochastic Processes on Complex Networks

Science.gov (United States)

2018-05-01

Many real-world systems are characterized by stochastic dynamical rules where a complex network of interactions among individual elements probabilistically determines their state. Even with full knowledge of the network structure and of the stochastic rules, the ability to predict system configurations is generally characterized by a large uncertainty. Selecting a fraction of the nodes and observing their state may help to reduce the uncertainty about the unobserved nodes. However, choosing these points of observation in an optimal way is a highly nontrivial task, depending on the nature of the stochastic process and on the structure of the underlying interaction pattern. In this paper, we introduce a computationally efficient algorithm to determine quasioptimal solutions to the problem. The method leverages network sparsity to reduce computational complexity from exponential to almost quadratic, thus allowing the straightforward application of the method to mid-to-large-size systems. Although the method is exact only for equilibrium stochastic processes defined on trees, it turns out to be effective also for out-of-equilibrium processes on sparse loopy networks.

10. Stochastic transformation of points in polygons according to the Voronoi tessellation: microstructural description.

Science.gov (United States)

Di Vito, Alessia; Fanfoni, Massimo; Tomellini, Massimo

2010-12-01

Starting from a stochastic two-dimensional process we studied the transformation of points in disks and squares following a protocol according to which at any step the island size increases proportionally to the corresponding Voronoi tessera. Two interaction mechanisms among islands have been dealt with: coalescence and impingement. We studied the evolution of the island density and of the island size distribution functions, in dependence on island collision mechanisms for both Poissonian and correlated spatial distributions of points. The island size distribution functions have been found to be invariant with the fraction of transformed phase for a given stochastic process. The n(Θ) curve describing the island decay has been found to be independent of the shape (apart from high correlation degrees) and interaction mechanism.

11. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

Science.gov (United States)

Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

1994-01-01

We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

12. Doubly stochastic Poisson processes in artificial neural learning.

Science.gov (United States)

Card, H C

1998-01-01

This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

13. A first course in stochastic processes

CERN Document Server

Karlin, Samuel

1975-01-01

The purpose, level, and style of this new edition conform to the tenets set forth in the original preface. The authors continue with their tack of developing simultaneously theory and applications, intertwined so that they refurbish and elucidate each other.The authors have made three main kinds of changes. First, they have enlarged on the topics treated in the first edition. Second, they have added many exercises and problems at the end of each chapter. Third, and most important, they have supplied, in new chapters, broad introductory discussions of several classes of stochastic processe

14. Stationary stochastic processes for scientists and engineers

CERN Document Server

Lindgren, Georg; Sandsten, Maria

2013-01-01

""This book is designed for a first course in stationary stochastic processes in science and engineering and does a very good job in introducing many concepts and ideas to students in these fields. … the book has probably been tested in the classroom many times, which also manifests itself in its virtual lack of typos. … Another great feature of the book is that it contains a wealth of worked example from many different fields. These help clarify concepts and theorems and I believe students will appreciate them-I certainly did. … The book is well suited for a one-semester course as it contains

15. Diffusive processes in a stochastic magnetic field

International Nuclear Information System (INIS)

Wang, H.; Vlad, M.; Vanden Eijnden, E.; Spineanu, F.; Misguich, J.H.; Balescu, R.

1995-01-01

The statistical representation of a fluctuating (stochastic) magnetic field configuration is studied in detail. The Eulerian correlation functions of the magnetic field are determined, taking into account all geometrical constraints: these objects form a nondiagonal matrix. The Lagrangian correlations, within the reasonable Corrsin approximation, are reduced to a single scalar function, determined by an integral equation. The mean square perpendicular deviation of a geometrical point moving along a perturbed field line is determined by a nonlinear second-order differential equation. The separation of neighboring field lines in a stochastic magnetic field is studied. We find exponentiation lengths of both signs describing, in particular, a decay (on the average) of any initial anisotropy. The vanishing sum of these exponentiation lengths ensures the existence of an invariant which was overlooked in previous works. Next, the separation of a particle's trajectory from the magnetic field line to which it was initially attached is studied by a similar method. Here too an initial phase of exponential separation appears. Assuming the existence of a final diffusive phase, anomalous diffusion coefficients are found for both weakly and strongly collisional limits. The latter is identical to the well known Rechester-Rosenbluth coefficient, which is obtained here by a more quantitative (though not entirely deductive) treatment than in earlier works

16. Stochastic processes dominate during boreal bryophyte community assembly.

Science.gov (United States)

Fenton, Nicole J; Bergeron, Yves

2013-09-01

Why are plant species found in certain locations and not in others? The study of community assembly rules has attempted to answer this question, and many studies articulate the historic dichotomy of deterministic (predictable niches) vs. stochastic (random or semi-random processes). The study of successional sequences to determine whether they converge, as would be expected by deterministic theory, or diverge, as stochastic theory would suggest, has been one method used to investigate this question. In this article we ask the question: Do similar boreal bryophyte communities develop in the similar habitat created by convergent succession after fires of different severities? Or do the stochastic processes generated by fires of different severity lead to different communities? Specifically we predict that deterministic structure will be more important for large forest-floor species than stochastic processes, and that the inverse will be true for small bryophyte species. We used multivariate regression trees and model selection to determine the relative weight of structure (forest structure, substrates, soil structure) and processes (fire severity) for two groups of bryophyte species sampled in 12 sites (seven high-severity and five low-severity fires). Contrary to our first hypothesis, processes were as important for large forest-floor bryophytes as for small pocket species. Fire severity, its interaction with the quality of available habitat, and its impact on the creation of biological legacies played dominant roles in determining community structure. In this study, sites with nearly identical forest structure, generated via convergent succession after high- and low-severity fire, were compared to see whether these sites supported similar bryophyte communities. While similar to some degree, both the large forest-floor species and the pocket species differed after high-severity fire compared to low-severity fire. This result suggests that the "how," or process of

17. Tail estimates for stochastic fixed point equations via nonlinear renewal theory

DEFF Research Database (Denmark)

Collamore, Jeffrey F.; Vidyashankar, Anand N.

2013-01-01

estimate P(V>u)~Cu^{-r} as u tends to infinity, and also present a corresponding Lundberg-type upper bound. To this end, we introduce a novel dual change of measure on a random time interval and analyze the path properties, using nonlinear renewal theory, of the Markov chain resulting from the forward...... iteration of the given stochastic fixed point equation. In the process, we establish several new results in the realm of nonlinear renewal theory for these processes. As a consequence of our techniques, we also establish a new characterization of the extremal index. Finally, we provide some extensions...... of our methods to Markov-driven processes....

18. XI Symposium on Probability and Stochastic Processes

CERN Document Server

Pardo, Juan; Rivero, Víctor; Bravo, Gerónimo

2015-01-01

This volume features lecture notes and a collection of contributed articles from the XI Symposium on Probability and Stochastic Processes, held at CIMAT Mexico in September 2013. Since the symposium was part of the activities organized in Mexico to celebrate the International Year of Statistics, the program included topics from the interface between statistics and stochastic processes. The book starts with notes from the mini-course given by Louigi Addario-Berry with an accessible description of some features of the multiplicative coalescent and its connection with random graphs and minimum spanning trees. It includes a number of exercises and a section on unanswered questions. Further contributions provide the reader with a broad perspective on the state-of-the art of active areas of research. Contributions by: Louigi Addario-Berry Octavio Arizmendi Fabrice Baudoin Jochen Blath Loïc Chaumont J. Armando Domínguez-Molina Bjarki Eldon Shui Feng Tulio Gaxiola Adrián González Casanova Evgueni Gordienko Daniel...

19. Stochastic processes from physics to finance

CERN Document Server

Paul, Wolfgang

2013-01-01

This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given.

20. Extreme values, regular variation and point processes

CERN Document Server

Resnick, Sidney I

1987-01-01

Extremes Values, Regular Variation and Point Processes is a readable and efficient account of the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors It presents a coherent treatment of the distributional and sample path fundamental properties of extremes and records It emphasizes the core primacy of three topics necessary for understanding extremes the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces The book is self-contained and requires an introductory measure-theoretic course in probability as a prerequisite Almost all sections have an extensive list of exercises which extend developments in the text, offer alternate approaches, test mastery and provide for enj...

1. Applied probability and stochastic processes. 2. ed.

Energy Technology Data Exchange (ETDEWEB)

Feldman, Richard M. [Texas A and M Univ., College Station, TX (United States). Industrial and Systems Engineering Dept.; Valdez-Flores, Ciriaco [Sielken and Associates Consulting, Inc., Bryan, TX (United States)

2010-07-01

This book presents applied probability and stochastic processes in an elementary but mathematically precise manner, with numerous examples and exercises to illustrate the range of engineering and science applications of the concepts. The book is designed to give the reader an intuitive understanding of probabilistic reasoning, in addition to an understanding of mathematical concepts and principles. The initial chapters present a summary of probability and statistics and then Poisson processes, Markov chains, Markov processes and queuing processes are introduced. Advanced topics include simulation, inventory theory, replacement theory, Markov decision theory, and the use of matrix geometric procedures in the analysis of queues. Included in the second edition are appendices at the end of several chapters giving suggestions for the use of Excel in solving the problems of the chapter. Also new in this edition are an introductory chapter on statistics and a chapter on Poisson processes that includes some techniques used in risk assessment. The old chapter on queues has been expanded and broken into two new chapters: one for simple queuing processes and one for queuing networks. Support is provided through the web site http://apsp.tamu.edu where students will have the answers to odd numbered problems and instructors will have access to full solutions and Excel files for homework. (orig.)

2. An introduction to stochastic processes with applications to biology

CERN Document Server

Allen, Linda J S

2010-01-01

An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes.New to the Second EditionA new chapter on stochastic differential equations th

3. Mapping stochastic processes onto complex networks

International Nuclear Information System (INIS)

Shirazi, A H; Reza Jafari, G; Davoudi, J; Peinke, J; Reza Rahimi Tabar, M; Sahimi, Muhammad

2009-01-01

We introduce a method by which stochastic processes are mapped onto complex networks. As examples, we construct the networks for such time series as those for free-jet and low-temperature helium turbulence, the German stock market index (the DAX), and white noise. The networks are further studied by contrasting their geometrical properties, such as the mean length, diameter, clustering, and average number of connections per node. By comparing the network properties of the original time series investigated with those for the shuffled and surrogate series, we are able to quantify the effect of the long-range correlations and the fatness of the probability distribution functions of the series on the networks constructed. Most importantly, we demonstrate that the time series can be reconstructed with high precision by means of a simple random walk on their corresponding networks

4. Chemical kinetics, stochastic processes, and irreversible thermodynamics

CERN Document Server

Santillán, Moisés

2014-01-01

This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

5. Reversibility in Quantum Models of Stochastic Processes

Science.gov (United States)

Gier, David; Crutchfield, James; Mahoney, John; James, Ryan

Natural phenomena such as time series of neural firing, orientation of layers in crystal stacking and successive measurements in spin-systems are inherently probabilistic. The provably minimal classical models of such stochastic processes are ɛ-machines, which consist of internal states, transition probabilities between states and output values. The topological properties of the ɛ-machine for a given process characterize the structure, memory and patterns of that process. However ɛ-machines are often not ideal because their statistical complexity (Cμ) is demonstrably greater than the excess entropy (E) of the processes they represent. Quantum models (q-machines) of the same processes can do better in that their statistical complexity (Cq) obeys the relation Cμ >= Cq >= E. q-machines can be constructed to consider longer lengths of strings, resulting in greater compression. With code-words of sufficiently long length, the statistical complexity becomes time-symmetric - a feature apparently novel to this quantum representation. This result has ramifications for compression of classical information in quantum computing and quantum communication technology.

6. Rare event simulation for stochastic fixed point equations related to the smoothing transform

DEFF Research Database (Denmark)

Collamore, Jeffrey F.; Vidyashankar, Anand N.; Xu, Jie

2013-01-01

In several applications arising in computer science, cascade theory, and other applied areas, it is of interest to evaluate the tail probabilities of non-homogeneous stochastic fixed point equations. Recently, techniques have been developed for the related linear recursions, yielding tail estimates...... and importance sampling methods for these recursions. However, such methods do not routinely generalize to non-homogeneous recursions. Drawing on techniques from the weighted branching process literature, we present a consistent, strongly efficient importance sampling algorithm for estimating the tail...

7. Large deviation tail estimates and related limit laws for stochastic fixed point equations

DEFF Research Database (Denmark)

Collamore, Jeffrey F.; Vidyashankar, Anand N.

2013-01-01

We study the forward and backward recursions generated by a stochastic fixed point equation (SFPE) of the form $V \\stackrel{d}{=} A\\max\\{V, D\\}+B$, where $(A, B, D) \\in (0, \\infty)\\times {\\mathbb R}^2$, for both the stationary and explosive cases. In the stationary case (when ${\\bf E} [\\log \\: A......] explosive case (when${\\bf E} [\\log \\: A] > 0)$, we establish a central limit theorem for the forward recursion generated by the SFPE, namely the process$V_n= A_n \\max\\{V_{n-1...

8. Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations

Directory of Open Access Journals (Sweden)

Shaikhet Leonid

2008-01-01

Full Text Available It is supposed that the fractional difference equation , has an equilibrium point and is exposed to additive stochastic perturbations type of that are directly proportional to the deviation of the system state from the equilibrium point . It is shown that known results in the theory of stability of stochastic difference equations that were obtained via V. Kolmanovskii and L. Shaikhet general method of Lyapunov functionals construction can be successfully used for getting of sufficient conditions for stability in probability of equilibrium points of the considered stochastic fractional difference equation. Numerous graphical illustrations of stability regions and trajectories of solutions are plotted.

9. Process theory for supervisory control of stochastic systems with data

NARCIS (Netherlands)

Markovski, J.

2012-01-01

We propose a process theory for supervisory control of stochastic nondeterministic plants with data-based observations. The Markovian process theory with data relies on the notion of Markovian partial bisimulation to capture controllability of stochastic nondeterministic systems. It presents a

10. Stochastic differential equations and diffusion processes

CERN Document Server

Ikeda, N

1989-01-01

Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sectio

11. Thinning spatial point processes into Poisson processes

DEFF Research Database (Denmark)

Møller, Jesper; Schoenberg, Frederic Paik

2010-01-01

are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and......In this paper we describe methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points......, thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....

12. Thinning spatial point processes into Poisson processes

DEFF Research Database (Denmark)

Møller, Jesper; Schoenberg, Frederic Paik

, and where one simulates backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and thus can......This paper describes methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points are identified...... be used as a diagnostic for assessing the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....

13. American option pricing with stochastic volatility processes

Directory of Open Access Journals (Sweden)

Ping LI

2017-12-01

Full Text Available In order to solve the problem of option pricing more perfectly, the option pricing problem with Heston stochastic volatility model is considered. The optimal implementation boundary of American option and the conditions for its early execution are analyzed and discussed. In view of the fact that there is no analytical American option pricing formula, through the space discretization parameters, the stochastic partial differential equation satisfied by American options with Heston stochastic volatility is transformed into the corresponding differential equations, and then using high order compact finite difference method, numerical solutions are obtained for the option price. The numerical experiments are carried out to verify the theoretical results and simulation. The two kinds of optimal exercise boundaries under the conditions of the constant volatility and the stochastic volatility are compared, and the results show that the optimal exercise boundary also has stochastic volatility. Under the setting of parameters, the behavior and the nature of volatility are analyzed, the volatility curve is simulated, the calculation results of high order compact difference method are compared, and the numerical option solution is obtained, so that the method is verified. The research result provides reference for solving the problems of option pricing under stochastic volatility such as multiple underlying asset option pricing and barrier option pricing.

14. Stochastic resonance during a polymer translocation process

International Nuclear Information System (INIS)

Mondal, Debasish; Muthukumar, M.

2016-01-01

We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

15. Visualisation for Stochastic Process Algebras: The Graphic Truth

DEFF Research Database (Denmark)

Smith, Michael James Andrew; Gilmore, Stephen

2011-01-01

and stochastic activity networks provide an automaton-based view of the model, which may be easier to visualise, at the expense of portability. In this paper, we argue that we can achieve the benefits of both approaches by generating a graphical view of a stochastic process algebra model, which is synchronised...

16. 100 years after Smoluchowski: stochastic processes in cell biology

International Nuclear Information System (INIS)

Holcman, D; Schuss, Z

2017-01-01

100 years after Smoluchowski introduced his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from a large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here Smoluchowski’s approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation. (topical review)

17. Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor

International Nuclear Information System (INIS)

Saha Ray, S.

2012-01-01

Highlights: ► In this paper stochastic neutron point kinetic equations have been analyzed. ► Euler–Maruyama method and Strong Taylor 1.5 order method have been discussed. ► These methods are applied for the solution of stochastic point kinetic equations. ► Comparison between the results of these methods and others are presented in tables. ► Graphs for neutron and precursor sample paths are also presented. -- Abstract: In the present paper, the numerical approximation methods, applied to efficiently calculate the solution for stochastic point kinetic equations () in nuclear reactor dynamics, are investigated. A system of Itô stochastic differential equations has been analyzed to model the neutron density and the delayed neutron precursors in a point nuclear reactor. The resulting system of Itô stochastic differential equations are solved over each time-step size. The methods are verified by considering different initial conditions, experimental data and over constant reactivities. The computational results indicate that the methods are simple and suitable for solving stochastic point kinetic equations. In this article, a numerical investigation is made in order to observe the random oscillations in neutron and precursor population dynamics in subcritical and critical reactors.

18. Introduction to probability and stochastic processes with applications

CERN Document Server

Castañ, Blanco; Arunachalam, Viswanathan; Dharmaraja, Selvamuthu

2012-01-01

An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic t

19. Stochastic Fixed Points and Nonlinear Perron-Frobenius Theorem

OpenAIRE

Babaei, E.; Evstigneev, I. V.; Pirogov, S. A.

2016-01-01

We provide conditions for the existence of measurable solutions to the equation $\\xi(T\\omega)=f(\\omega,\\xi(\\omega))$, where $T:\\Omega \\rightarrow\\Omega$ is an automorphism of the probability space $\\Omega$ and $f(\\omega,\\cdot)$ is a strictly non-expansive mapping. We use results of this kind to establish a stochastic nonlinear analogue of the Perron-Frobenius theorem on eigenvalues and eigenvectors of a positive matrix. We consider a random mapping $D(\\omega)$ of a random closed cone $K(\\omeg... 20. Expansion of a stochastic stationary optical field at a fixed point International Nuclear Information System (INIS) Martinez-Herrero, R.; Mejias, P.M. 1984-01-01 An important problem in single and multifold photoelectron statistics is to determine the statistical properties of a totally polarized optical field at some point →r from the photoelectron counts registered by the detector. The solution to this problem may be found in the determination of the statistical properties of an integral over a stochastic process; a complicated and formidable task. This problem can be solved in some cases of interest by expanding the process V(t) (which represents the field at →r) in a set of complete orthonormal deterministic functions, resulting in the so-called Karhunen-Loeve expansion of V(t). Two disadvantages are that the process must be defined over a finite time interval, and that each term of the series does not represent any special optical field. Taking into account these limitations of the expansion, the purpose of this work is to find another alternative expansion of stationary optical fields defined over the infinite time interval, and whose terms represent stochastic fields 1. Verification and Planning for Stochastic Processes with Asynchronous Events National Research Council Canada - National Science Library Younes, Hakan L 2005-01-01 .... The most common assumption is that of history-independence: the Markov assumption. In this thesis, the author considers the problems of verification and planning for stochastic processes with asynchronous events, without relying on the Markov assumption... 2. Bibliography on the stochastic processes in plasma and related problems International Nuclear Information System (INIS) Polovin, R.V. 1976-01-01 Stochastic processes in plasma and related matters. The bibliography contains 500 references and was compiled from the open literature only. Some references are annotated or completed with short abstracts. There are subject and authors indexes 3. Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points Science.gov (United States) Jia, Bing; Gu, Huaguang 2017-06-01 Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise. 4. Stationary distributions of stochastic processes described by a linear neutral delay differential equation International Nuclear Information System (INIS) Frank, T D 2005-01-01 Stationary distributions of processes are derived that involve a time delay and are defined by a linear stochastic neutral delay differential equation. The distributions are Gaussian distributions. The variances of the Gaussian distributions are either monotonically increasing or decreasing functions of the time delays. The variances become infinite when fixed points of corresponding deterministic processes become unstable. (letter to the editor) 5. A measure theoretical approach to quantum stochastic processes Energy Technology Data Exchange (ETDEWEB) Waldenfels, Wilhelm von 2014-04-01 Authored by a leading researcher in the field. Self-contained presentation of the subject matter. Examines a number of worked examples in detail. This monograph takes as starting point that abstract quantum stochastic processes can be understood as a quantum field theory in one space and in one time coordinate. As a result it is appropriate to represent operators as power series of creation and annihilation operators in normal-ordered form, which can be achieved using classical measure theory. Considering in detail four basic examples (e.g. a two-level atom coupled to a heat bath of oscillators), in each case the Hamiltonian of the associated one-parameter strongly continuous group is determined and the spectral decomposition is explicitly calculated in the form of generalized eigen-vectors. Advanced topics include the theory of the Hudson-Parthasarathy equation and the amplified oscillator problem. To that end, a chapter on white noise calculus has also been included. 6. A measure theoretical approach to quantum stochastic processes CERN Document Server Von Waldenfels, Wilhelm 2014-01-01 This monograph takes as starting point that abstract quantum stochastic processes can be understood as a quantum field theory in one space and in one time coordinate. As a result it is appropriate to represent operators as power series of creation and annihilation operators in normal-ordered form, which can be achieved using classical measure theory. Considering in detail four basic examples (e.g. a two-level atom coupled to a heat bath of oscillators), in each case the Hamiltonian of the associated one-parameter strongly continuous group is determined and the spectral decomposition is explicitly calculated in the form of generalized eigen-vectors. Advanced topics include the theory of the Hudson-Parthasarathy equation and the amplified oscillator problem. To that end, a chapter on white noise calculus has also been included. 7. Bidirectional Classical Stochastic Processes with Measurements and Feedback Science.gov (United States) Hahne, G. E. 2005-01-01 A measurement on a quantum system is said to cause the "collapse" of the quantum state vector or density matrix. An analogous collapse occurs with measurements on a classical stochastic process. This paper addresses the question of describing the response of a classical stochastic process when there is feedback from the output of a measurement to the input, and is intended to give a model for quantum-mechanical processes that occur along a space-like reaction coordinate. The classical system can be thought of in physical terms as two counterflowing probability streams, which stochastically exchange probability currents in a way that the net probability current, and hence the overall probability, suitably interpreted, is conserved. The proposed formalism extends the . mathematics of those stochastic processes describable with linear, single-step, unidirectional transition probabilities, known as Markov chains and stochastic matrices. It is shown that a certain rearrangement and combination of the input and output of two stochastic matrices of the same order yields another matrix of the same type. Each measurement causes the partial collapse of the probability current distribution in the midst of such a process, giving rise to calculable, but non-Markov, values for the ensuing modification of the system's output probability distribution. The paper concludes with an analysis of a classical probabilistic version of the so-called grandfather paradox. 8. Forecasting financial asset processes: stochastic dynamics via learning neural networks. Science.gov (United States) Giebel, S; Rainer, M 2010-01-01 Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each. 9. Convergence of trajectories in fractal interpolation of stochastic processes International Nuclear Information System (INIS) MaIysz, Robert 2006-01-01 The notion of fractal interpolation functions (FIFs) can be applied to stochastic processes. Such construction is especially useful for the class of α-self-similar processes with stationary increments and for the class of α-fractional Brownian motions. For these classes, convergence of the Minkowski dimension of the graphs in fractal interpolation of the Hausdorff dimension of the graph of original process was studied in [Herburt I, MaIysz R. On convergence of box dimensions of fractal interpolation stochastic processes. Demonstratio Math 2000;4:873-88.], [MaIysz R. A generalization of fractal interpolation stochastic processes to higher dimension. Fractals 2001;9:415-28.], and [Herburt I. Box dimension of interpolations of self-similar processes with stationary increments. Probab Math Statist 2001;21:171-8.]. We prove that trajectories of fractal interpolation stochastic processes converge to the trajectory of the original process. We also show that convergence of the trajectories in fractal interpolation of stochastic processes is equivalent to the convergence of trajectories in linear interpolation 10. Stochastic Analysis of Gaussian Processes via Fredholm Representation Directory of Open Access Journals (Sweden) Tommi Sottinen 2016-01-01 Full Text Available We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations. 11. Fixed-point signal processing CERN Document Server Padgett, Wayne T 2009-01-01 This book is intended to fill the gap between the ""ideal precision"" digital signal processing (DSP) that is widely taught, and the limited precision implementation skills that are commonly required in fixed-point processors and field programmable gate arrays (FPGAs). These skills are often neglected at the university level, particularly for undergraduates. We have attempted to create a resource both for a DSP elective course and for the practicing engineer with a need to understand fixed-point implementation. Although we assume a background in DSP, Chapter 2 contains a review of basic theory 12. Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes Science.gov (United States) Williams Colin P. 1999-01-01 Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art. 13. Investigation of Random Switching Driven by a Poisson Point Process DEFF Research Database (Denmark) Simonsen, Maria; Schiøler, Henrik; Leth, John-Josef 2015-01-01 This paper investigates the switching mechanism of a two-dimensional switched system, when the switching events are generated by a Poisson point process. A model, in the shape of a stochastic process, for such a system is derived and the distribution of the trajectory's position is developed...... together with marginal density functions for the coordinate functions. Furthermore, the joint probability distribution is given explicitly.... 14. Stochastic process corrosion growth models for pipeline reliability International Nuclear Information System (INIS) Bazán, Felipe Alexander Vargas; Beck, André Teófilo 2013-01-01 Highlights: •Novel non-linear stochastic process corrosion growth model is proposed. •Corrosion rate modeled as random Poisson pulses. •Time to corrosion initiation and inherent time-variability properly represented. •Continuous corrosion growth histories obtained. •Model is shown to precisely fit actual corrosion data at two time points. -- Abstract: Linear random variable corrosion models are extensively employed in reliability analysis of pipelines. However, linear models grossly neglect well-known characteristics of the corrosion process. Herein, a non-linear model is proposed, where corrosion rate is represented as a Poisson square wave process. The resulting model represents inherent time-variability of corrosion growth, produces continuous growth and leads to mean growth at less-than-one power of time. Different corrosion models are adjusted to the same set of actual corrosion data for two inspections. The proposed non-linear random process corrosion growth model leads to the best fit to the data, while better representing problem physics 15. Processing Terrain Point Cloud Data KAUST Repository DeVore, Ronald 2013-01-10 Terrain point cloud data are typically acquired through some form of Light Detection And Ranging sensing. They form a rich resource that is important in a variety of applications including navigation, line of sight, and terrain visualization. Processing terrain data has not received the attention of other forms of surface reconstruction or of image processing. The goal of terrain data processing is to convert the point cloud into a succinct representation system that is amenable to the various application demands. The present paper presents a platform for terrain processing built on the following principles: (i) measuring distortion in the Hausdorff metric, which we argue is a good match for the application demands, (ii) a multiscale representation based on tree approximation using local polynomial fitting. The basic elements held in the nodes of the tree can be efficiently encoded, transmitted, visualized, and utilized for the various target applications. Several challenges emerge because of the variable resolution of the data, missing data, occlusions, and noise. Techniques for identifying and handling these challenges are developed. © 2013 Society for Industrial and Applied Mathematics. 16. Doubly stochastic Poisson process models for precipitation at fine time-scales Science.gov (United States) Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao 2012-09-01 This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales. 17. Estimating Function Approaches for Spatial Point Processes Science.gov (United States) Deng, Chong Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting 18. Classical and spatial stochastic processes with applications to biology CERN Document Server Schinazi, Rinaldo B 2014-01-01 The revised and expanded edition of this textbook presents the concepts and applications of random processes with the same illuminating simplicity as its first edition, but with the notable addition of substantial modern material on biological modeling. While still treating many important problems in fields such as engineering and mathematical physics, the book also focuses on the highly relevant topics of cancerous mutations, influenza evolution, drug resistance, and immune response. The models used elegantly apply various classical stochastic models presented earlier in the text, and exercises are included throughout to reinforce essential concepts. The second edition of Classical and Spatial Stochastic Processes is suitable as a textbook for courses in stochastic processes at the advanced-undergraduate and graduate levels, or as a self-study resource for researchers and practitioners in mathematics, engineering, physics, and mathematical biology. Reviews of the first edition: An appetizing textbook for a f... 19. Analyzing Properties of Stochastic Business Processes By Model Checking DEFF Research Database (Denmark) Herbert, Luke Thomas; Sharp, Robin 2013-01-01 This chapter presents an approach to precise formal analysis of business processes with stochastic properties. The method presented here allows for both qualitative and quantitative properties to be individually analyzed at design time without requiring a full specification. This provides...... an effective means to explore possible designs for a business process and to debug any flaws.... 20. ? filtering for stochastic systems driven by Poisson processes Science.gov (United States) Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya 2015-01-01 This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme. 1. Distribution of return point memory states for systems with stochastic inputs International Nuclear Information System (INIS) Amann, A; Brokate, M; Rachinskii, D; Temnov, G 2011-01-01 We consider the long term effect of stochastic inputs on the state of an open loop system which exhibits the so-called return point memory. An example of such a system is the Preisach model; more generally, systems with the Preisach type input-state relationship, such as in spin-interaction models, are considered. We focus on the characterisation of the expected memory configuration after the system has been effected by the input for sufficiently long period of time. In the case where the input is given by a discrete time random walk process, or the Wiener process, simple closed form expressions for the probability density of the vector of the main input extrema recorded by the memory state, and scaling laws for the dimension of this vector, are derived. If the input is given by a general continuous Markov process, we show that the distribution of previous memory elements can be obtained from a Markov chain scheme which is derived from the solution of an associated one-dimensional escape type problem. Formulas for transition probabilities defining this Markov chain scheme are presented. Moreover, explicit formulas for the conditional probability densities of previous main extrema are obtained for the Ornstein-Uhlenbeck input process. The analytical results are confirmed by numerical experiments. 2. Anomalous scaling of stochastic processes and the Moses effect. Science.gov (United States) Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H 2017-04-01 The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis. 3. Anomalous scaling of stochastic processes and the Moses effect Science.gov (United States) Chen, Lijian; Bassler, Kevin E.; McCauley, Joseph L.; Gunaratne, Gemunu H. 2017-04-01 The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t1/2. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis. 4. A Constructive Sharp Approach to Functional Quantization of Stochastic Processes OpenAIRE Junglen, Stefan; Luschgy, Harald 2010-01-01 We present a constructive approach to the functional quantization problem of stochastic processes, with an emphasis on Gaussian processes. The approach is constructive, since we reduce the infinite-dimensional functional quantization problem to a finite-dimensional quantization problem that can be solved numerically. Our approach achieves the sharp rate of the minimal quantization error and can be used to quantize the path space for Gaussian processes and also, for example, Lévy processes. 5. Learning Theory Estimates with Observations from General Stationary Stochastic Processes. Science.gov (United States) Hang, Hanyuan; Feng, Yunlong; Steinwart, Ingo; Suykens, Johan A K 2016-12-01 This letter investigates the supervised learning problem with observations drawn from certain general stationary stochastic processes. Here by general, we mean that many stationary stochastic processes can be included. We show that when the stochastic processes satisfy a generalized Bernstein-type inequality, a unified treatment on analyzing the learning schemes with various mixing processes can be conducted and a sharp oracle inequality for generic regularized empirical risk minimization schemes can be established. The obtained oracle inequality is then applied to derive convergence rates for several learning schemes such as empirical risk minimization (ERM), least squares support vector machines (LS-SVMs) using given generic kernels, and SVMs using gaussian kernels for both least squares and quantile regression. It turns out that for independent and identically distributed (i.i.d.) processes, our learning rates for ERM recover the optimal rates. For non-i.i.d. processes, including geometrically [Formula: see text]-mixing Markov processes, geometrically [Formula: see text]-mixing processes with restricted decay, [Formula: see text]-mixing processes, and (time-reversed) geometrically [Formula: see text]-mixing processes, our learning rates for SVMs with gaussian kernels match, up to some arbitrarily small extra term in the exponent, the optimal rates. For the remaining cases, our rates are at least close to the optimal rates. As a by-product, the assumed generalized Bernstein-type inequality also provides an interpretation of the so-called effective number of observations for various mixing processes. 6. Stochastic analysis in production process and ecology under uncertainty CERN Document Server Bieda, Bogusław 2014-01-01 The monograph addresses a problem of stochastic analysis based on the uncertainty assessment by simulation and application of this method in ecology and steel industry under uncertainty. The first chapter defines the Monte Carlo (MC) method and random variables in stochastic models. Chapter two deals with the contamination transport in porous media. Stochastic approach for Municipal Solid Waste transit time contaminants modeling using MC simulation has been worked out. The third chapter describes the risk analysis of the waste to energy facility proposal for Konin city, including the financial aspects. Environmental impact assessment of the ArcelorMittal Steel Power Plant, in Kraków - in the chapter four - is given. Thus, four scenarios of the energy mix production processes were studied. Chapter five contains examples of using ecological Life Cycle Assessment (LCA) - a relatively new method of environmental impact assessment - which help in preparing pro-ecological strategy, and which can lead to reducing t... 7. Counting statistics of non-markovian quantum stochastic processes DEFF Research Database (Denmark) Flindt, Christian; Novotny, T.; Braggio, A. 2008-01-01 We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole of the resolvent of the memory kernel from which we extract the zero-frequency cumulants... 8. Gene regulation and noise reduction by coupling of stochastic processes Science.gov (United States) Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John 2015-02-01 Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. 9. Gene regulation and noise reduction by coupling of stochastic processes. Science.gov (United States) Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John 2015-02-01 Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. 10. Conditional Stochastic Processes Applied to Wave Load Predictions DEFF Research Database (Denmark) Jensen, Jørgen Juncher 2015-01-01 The concept of conditional stochastic processes provides a powerful tool for evaluation and estimation of wave loads on ships and offshore structures. This article first considers conditional waves with a focus on critical wave episodes. Then the inherent uncertainty in the results is illustrated... 11. Stochastic evolution of the Universe: A possible dynamical process ... Indian Academy of Sciences (India) C Sivakumar 2017-12-11 Dec 11, 2017 ... https://doi.org/10.1007/s12043-017-1491-z. Stochastic evolution of the Universe: A possible dynamical process leading to fractal structures. C SIVAKUMAR. Department of Physics, Maharaja's College, Ernakulam 682 011, India. E-mail: thrisivc@yahoo.com. MS received 6 July 2016; revised 26 June 2017; ... 12. Stochastic processes and applications diffusion processes, the Fokker-Planck and Langevin equations CERN Document Server Pavliotis, Grigorios A 2014-01-01 This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to eq... 13. Neural network connectivity and response latency modelled by stochastic processes DEFF Research Database (Denmark) Tamborrino, Massimiliano is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas... 14. Expectation propagation for continuous time stochastic processes International Nuclear Information System (INIS) Cseke, Botond; Schnoerr, David; Sanguinetti, Guido; Opper, Manfred 2016-01-01 We consider the inverse problem of reconstructing the posterior measure over the trajectories of a diffusion process from discrete time observations and continuous time constraints. We cast the problem in a Bayesian framework and derive approximations to the posterior distributions of single time marginals using variational approximate inference, giving rise to an expectation propagation type algorithm. For non-linear diffusion processes, this is achieved by leveraging moment closure approximations. We then show how the approximation can be extended to a wide class of discrete-state Markov jump processes by making use of the chemical Langevin equation. Our empirical results show that the proposed method is computationally efficient and provides good approximations for these classes of inverse problems. (paper) 15. Deterministic geologic processes and stochastic modeling International Nuclear Information System (INIS) Rautman, C.A.; Flint, A.L. 1992-01-01 This paper reports that recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. consideration of the spatial variability indicates that her are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. Because the geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling 16. Option Pricing with Stochastic Volatility and Jump Diffusion Processes Directory of Open Access Journals (Sweden) Radu Lupu 2006-03-01 Full Text Available Option pricing by the use of Black Scholes Merton (BSM model is based on the assumption that asset prices have a lognormal distribution. In spite of the use of these models on a large scale, both by practioners and academics, the assumption of lognormality is rejected by the history of returns. The objective of this article is to present the methods that developed after the Black Scholes Merton environment and deals with the option pricing model adjustment to the empirical properties of asset returns. The main models that appeared after BSM allowed for special changes of the returns that materialized in jump-diffusion and stochastic volatility processes. The article presents the foundations of risk neutral options evaluation and the empirical evidence that fed the amendment of the lognormal assumption in the first part and shows the evaluation procedure under the assumption of stock prices following the jump-diffusion process and the stochastic volatility process. 17. Stochasticity in processes fundamentals and applications to chemistry and biology CERN Document Server Schuster, Peter 2016-01-01 This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed t... 18. Stochastic Models in the Identification Process Czech Academy of Sciences Publication Activity Database Slovák, Dalibor; Zvárová, Jana 2011-01-01 Roč. 7, č. 1 (2011), s. 44-50 ISSN 1801-5603 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : identification process * weight-of evidence formula * coancestry coefficient * beta-binomial sampling formula * DNA mixtures Subject RIV: IN - Informatics, Computer Science http://www.ejbi.eu/images/2011-1/Slovak_en.pdf 19. Comments on the use of stochastic processes in the field of the ionizing radiations International Nuclear Information System (INIS) Alvarez Romero, Jose T. 2008-01-01 . Although models exist for the former one with stochastic processes such as birth-death, Poisson, two state or mixed states methods (Tan 1991), the conventional literature in radiobiology does not go beyond traditional target models of the Poisson or exponential type. Such approaches are dealt with by Rossi, Zaider, Goodhead, etc. in microdosimetry and radiobiology. Finally, in radiation protection the dose-effect projection models which back-up the recommendations of ICRP or from BEIR, probability functions, projection of regression time dependent models appear, buy very little, if any, is mentioned about their properties from the point of view of stochastic processes. Summing up, very little has been said about the nature of the stochastic background describing physical, chemical, biological and risk phenomena which are present in the field of ionizing radiations. In short, it would be nice to learn if there are processes such as: Gauss, Markov, branching, birth-death, Weiner, Poisson, stationary state methods or other ones to deal with these questions and further, to clarify the mathematical conditions they satisfy together with their significance and phenomenological consequences. (author) 20. 5th Seminar on Stochastic Processes, Random Fields and Applications CERN Document Server Russo, Francesco; Dozzi, Marco 2008-01-01 This volume contains twenty-eight refereed research or review papers presented at the 5th Seminar on Stochastic Processes, Random Fields and Applications, which took place at the Centro Stefano Franscini (Monte Verità) in Ascona, Switzerland, from May 30 to June 3, 2005. The seminar focused mainly on stochastic partial differential equations, random dynamical systems, infinite-dimensional analysis, approximation problems, and financial engineering. The book will be a valuable resource for researchers in stochastic analysis and professionals interested in stochastic methods in finance. Contributors: Y. Asai, J.-P. Aubin, C. Becker, M. Benaïm, H. Bessaih, S. Biagini, S. Bonaccorsi, N. Bouleau, N. Champagnat, G. Da Prato, R. Ferrière, F. Flandoli, P. Guasoni, V.B. Hallulli, D. Khoshnevisan, T. Komorowski, R. Léandre, P. Lescot, H. Lisei, J.A. López-Mimbela, V. Mandrekar, S. Méléard, A. Millet, H. Nagai, A.D. Neate, V. Orlovius, M. Pratelli, N. Privault, O. Raimond, M. Röckner, B. Rüdiger, W.J. Runggaldi... 1. Discrete stochastic processes and optimal filtering CERN Document Server Bertein, Jean-Claude 2012-01-01 Optimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which ar 2. Processing Terrain Point Cloud Data KAUST Repository DeVore, Ronald; Petrova, Guergana; Hielsberg, Matthew; Owens, Luke; Clack, Billy; Sood, Alok 2013-01-01 Terrain point cloud data are typically acquired through some form of Light Detection And Ranging sensing. They form a rich resource that is important in a variety of applications including navigation, line of sight, and terrain visualization 3. Hermite-Hadamard type inequality for φ{sub h}-convex stochastic processes Energy Technology Data Exchange (ETDEWEB) Sarıkaya, Mehmet Zeki, E-mail: sarikayamz@gmail.com [Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce (Turkey); Kiriş, Mehmet Eyüp, E-mail: kiris@aku.edu.tr [Department of Mathematics, Institute of Science and Arts, Afyon Kocatepe University, Afyonkarahisar (Turkey); Çelik, Nuri, E-mail: ncelik@bartin.edu.tr [Department of Statistics, Faculty of Science, Bartın University, Bartın-Turkey (Turkey) 2016-04-18 The main aim of the present paper is to introduce φ{sub h}-convex stochastic processes and we investigate main properties of these mappings. Moreover, we prove the Hadamard-type inequalities for φ{sub h}-convex stochastic processes. We also give some new general inequalities for φ{sub h}-convex stochastic processes. 4. Inhomogeneous Markov point processes by transformation DEFF Research Database (Denmark) Jensen, Eva B. Vedel; Nielsen, Linda Stougaard 2000-01-01 We construct parametrized models for point processes, allowing for both inhomogeneity and interaction. The inhomogeneity is obtained by applying parametrized transformations to homogeneous Markov point processes. An interesting model class, which can be constructed by this transformation approach......, is that of exponential inhomogeneous Markov point processes. Statistical inference For such processes is discussed in some detail.... 5. Simulation of anaerobic digestion processes using stochastic algorithm. Science.gov (United States) Palanichamy, Jegathambal; Palani, Sundarambal 2014-01-01 The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value. 6. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras Energy Technology Data Exchange (ETDEWEB) Dobay, M. P. D., E-mail: maria.pamela.david@physik.uni-muenchen.de; Alberola, A. Piera; Mendoza, E. R.; Raedler, J. O., E-mail: joachim.raedler@physik.uni-muenchen.de [Ludwig-Maximilians University, Faculty of Physics, Center for NanoScience (Germany) 2012-03-15 Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery. 7. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras International Nuclear Information System (INIS) Dobay, M. P. D.; Alberola, A. Piera; Mendoza, E. R.; Rädler, J. O. 2012-01-01 Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery. 8. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras Science.gov (United States) Dobay, M. P. D.; Alberola, A. Piera; Mendoza, E. R.; Rädler, J. O. 2012-03-01 Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery. 9. Testing Local Independence between Two Point Processes DEFF Research Database (Denmark) Allard, Denis; Brix, Anders; Chadæuf, Joël 2001-01-01 Independence test, Inhomogeneous point processes, Local test, Monte Carlo, Nonstationary, Rotations, Spatial pattern, Tiger bush......Independence test, Inhomogeneous point processes, Local test, Monte Carlo, Nonstationary, Rotations, Spatial pattern, Tiger bush... 10. Detection and localization of change points in temporal networks with the aid of stochastic block models Science.gov (United States) De Ridder, Simon; Vandermarliere, Benjamin; Ryckebusch, Jan 2016-11-01 A framework based on generalized hierarchical random graphs (GHRGs) for the detection of change points in the structure of temporal networks has recently been developed by Peel and Clauset (2015 Proc. 29th AAAI Conf. on Artificial Intelligence). We build on this methodology and extend it to also include the versatile stochastic block models (SBMs) as a parametric family for reconstructing the empirical networks. We use five different techniques for change point detection on prototypical temporal networks, including empirical and synthetic ones. We find that none of the considered methods can consistently outperform the others when it comes to detecting and locating the expected change points in empirical temporal networks. With respect to the precision and the recall of the results of the change points, we find that the method based on a degree-corrected SBM has better recall properties than other dedicated methods, especially for sparse networks and smaller sliding time window widths. 11. Random migration processes between two stochastic epidemic centers. Science.gov (United States) Sazonov, Igor; Kelbert, Mark; Gravenor, Michael B 2016-04-01 We consider the epidemic dynamics in stochastic interacting population centers coupled by random migration. Both the epidemic and the migration processes are modeled by Markov chains. We derive explicit formulae for the probability distribution of the migration process, and explore the dependence of outbreak patterns on initial parameters, population sizes and coupling parameters, using analytical and numerical methods. We show the importance of considering the movement of resident and visitor individuals separately. The mean field approximation for a general migration process is derived and an approximate method that allows the computation of statistical moments for networks with highly populated centers is proposed and tested numerically. Copyright © 2016 Elsevier Inc. All rights reserved. 12. Quantitative Sociodynamics Stochastic Methods and Models of Social Interaction Processes CERN Document Server Helbing, Dirk 2010-01-01 This new edition of Quantitative Sociodynamics presents a general strategy for interdisciplinary model building and its application to a quantitative description of behavioral changes based on social interaction processes. Originally, the crucial methods for the modeling of complex systems (stochastic methods and nonlinear dynamics) were developed in physics and mathematics, but they have very often proven their explanatory power in chemistry, biology, economics and the social sciences as well. Quantitative Sociodynamics provides a unified and comprehensive overview of the different stochastic methods, their interrelations and properties. In addition, it introduces important concepts from nonlinear dynamics (e.g. synergetics, chaos theory). The applicability of these fascinating concepts to social phenomena is carefully discussed. By incorporating decision-theoretical approaches, a fundamental dynamic model is obtained, which opens new perspectives in the social sciences. It includes many established models a... 13. Quantitative sociodynamics stochastic methods and models of social interaction processes CERN Document Server Helbing, Dirk 1995-01-01 Quantitative Sociodynamics presents a general strategy for interdisciplinary model building and its application to a quantitative description of behavioural changes based on social interaction processes. Originally, the crucial methods for the modeling of complex systems (stochastic methods and nonlinear dynamics) were developed in physics but they have very often proved their explanatory power in chemistry, biology, economics and the social sciences. Quantitative Sociodynamics provides a unified and comprehensive overview of the different stochastic methods, their interrelations and properties. In addition, it introduces the most important concepts from nonlinear dynamics (synergetics, chaos theory). The applicability of these fascinating concepts to social phenomena is carefully discussed. By incorporating decision-theoretical approaches a very fundamental dynamic model is obtained which seems to open new perspectives in the social sciences. It includes many established models as special cases, e.g. the log... 14. A new stochastic model considering satellite clock interpolation errors in precise point positioning Science.gov (United States) Wang, Shengli; Yang, Fanlin; Gao, Wang; Yan, Lizi; Ge, Yulong 2018-03-01 Precise clock products are typically interpolated based on the sampling interval of the observational data when they are used for in precise point positioning. However, due to the occurrence of white noise in atomic clocks, a residual component of such noise will inevitable reside within the observations when clock errors are interpolated, and such noise will affect the resolution of the positioning results. In this paper, which is based on a twenty-one-week analysis of the atomic clock noise characteristics of numerous satellites, a new stochastic observation model that considers satellite clock interpolation errors is proposed. First, the systematic error of each satellite in the IGR clock product was extracted using a wavelet de-noising method to obtain the empirical characteristics of atomic clock noise within each clock product. Then, based on those empirical characteristics, a stochastic observation model was structured that considered the satellite clock interpolation errors. Subsequently, the IGR and IGS clock products at different time intervals were used for experimental validation. A verification using 179 stations worldwide from the IGS showed that, compared with the conventional model, the convergence times using the stochastic model proposed in this study were respectively shortened by 4.8% and 4.0% when the IGR and IGS 300-s-interval clock products were used and by 19.1% and 19.4% when the 900-s-interval clock products were used. Furthermore, the disturbances during the initial phase of the calculation were also effectively improved. 15. Different seeds to solve the equations of stochastic point kinetics using the Euler-Maruyama method International Nuclear Information System (INIS) Suescun D, D.; Oviedo T, M. 2017-09-01 In this paper, a numerical study of stochastic differential equations that describe the kinetics in a nuclear reactor is presented. These equations, known as the stochastic equations of punctual kinetics they model temporal variations in neutron population density and concentrations of deferred neutron precursors. Because these equations are probabilistic in nature (since random oscillations in the neutrons and population of precursors were considered to be approximately normally distributed, and these equations also possess strong coupling and stiffness properties) the proposed method for the numerical simulations is the Euler-Maruyama scheme that provides very good approximations for calculating the neutron population and concentrations of deferred neutron precursors. The method proposed for this work was computationally tested for different seeds, initial conditions, experimental data and forms of reactivity for a group of precursors and then for six groups of deferred neutron precursors at each time step with 5000 Brownian movements per seed. In a paper reported in the literature, the Euler-Maruyama method was proposed, but there are many doubts about the reported values, in addition to not reporting the seed used, so in this work is expected to rectify the reported values. After taking the average of the different seeds used to generate the pseudo-random numbers the results provided by the Euler-Maruyama scheme will be compared in mean and standard deviation with other methods reported in the literature and results of the deterministic model of the equations of the punctual kinetics. This comparison confirms in particular that the Euler-Maruyama scheme is an efficient method to solve the equations of stochastic point kinetics but different from the values found and reported by another author. The Euler-Maruyama method is simple and easy to implement, provides acceptable results for neutron population density and concentration of deferred neutron precursors and 16. Multiple-scale stochastic processes: Decimation, averaging and beyond Energy Technology Data Exchange (ETDEWEB) Bo, Stefano, E-mail: stefano.bo@nordita.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Celani, Antonio [Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 - Trieste (Italy) 2017-02-07 The recent experimental progresses in handling microscopic systems have allowed to probe them at levels where fluctuations are prominent, calling for stochastic modeling in a large number of physical, chemical and biological phenomena. This has provided fruitful applications for established stochastic methods and motivated further developments. These systems often involve processes taking place on widely separated time scales. For an efficient modeling one usually focuses on the slower degrees of freedom and it is of great importance to accurately eliminate the fast variables in a controlled fashion, carefully accounting for their net effect on the slower dynamics. This procedure in general requires to perform two different operations: decimation and coarse-graining. We introduce the asymptotic methods that form the basis of this procedure and discuss their application to a series of physical, biological and chemical examples. We then turn our attention to functionals of the stochastic trajectories such as residence times, counting statistics, fluxes, entropy production, etc. which have been increasingly studied in recent years. For such functionals, the elimination of the fast degrees of freedom can present additional difficulties and naive procedures can lead to blatantly inconsistent results. Homogenization techniques for functionals are less covered in the literature and we will pedagogically present them here, as natural extensions of the ones employed for the trajectories. We will also discuss recent applications of these techniques to the thermodynamics of small systems and their interpretation in terms of information-theoretic concepts. 17. Approximate Dual Averaging Method for Multiagent Saddle-Point Problems with Stochastic Subgradients Directory of Open Access Journals (Sweden) Deming Yuan 2014-01-01 Full Text Available This paper considers the problem of solving the saddle-point problem over a network, which consists of multiple interacting agents. The global objective function of the problem is a combination of local convex-concave functions, each of which is only available to one agent. Our main focus is on the case where the projection steps are calculated approximately and the subgradients are corrupted by some stochastic noises. We propose an approximate version of the standard dual averaging method and show that the standard convergence rate is preserved, provided that the projection errors decrease at some appropriate rate and the noises are zero-mean and have bounded variance. 18. Residual analysis for spatial point processes DEFF Research Database (Denmark) Baddeley, A.; Turner, R.; Møller, Jesper We define residuals for point process models fitted to spatial point pattern data, and propose diagnostic plots based on these residuals. The techniques apply to any Gibbs point process model, which may exhibit spatial heterogeneity, interpoint interaction and dependence on spatial covariates. Ou...... or covariate effects. Q-Q plots of the residuals are effective in diagnosing interpoint interaction. Some existing ad hoc statistics of point patterns (quadrat counts, scan statistic, kernel smoothed intensity, Berman's diagnostic) are recovered as special cases.... 19. Population density equations for stochastic processes with memory kernels Science.gov (United States) Lai, Yi Ming; de Kamps, Marc 2017-06-01 We present a method for solving population density equations (PDEs)-a mean-field technique describing homogeneous populations of uncoupled neurons—where the populations can be subject to non-Markov noise for arbitrary distributions of jump sizes. The method combines recent developments in two different disciplines that traditionally have had limited interaction: computational neuroscience and the theory of random networks. The method uses a geometric binning scheme, based on the method of characteristics, to capture the deterministic neurodynamics of the population, separating the deterministic and stochastic process cleanly. We can independently vary the choice of the deterministic model and the model for the stochastic process, leading to a highly modular numerical solution strategy. We demonstrate this by replacing the master equation implicit in many formulations of the PDE formalism by a generalization called the generalized Montroll-Weiss equation—a recent result from random network theory—describing a random walker subject to transitions realized by a non-Markovian process. We demonstrate the method for leaky- and quadratic-integrate and fire neurons subject to spike trains with Poisson and gamma-distributed interspike intervals. We are able to model jump responses for both models accurately to both excitatory and inhibitory input under the assumption that all inputs are generated by one renewal process. 20. Lévy based Cox point processes DEFF Research Database (Denmark) Hellmund, Gunnar; Prokesová, Michaela; Jensen, Eva Bjørn Vedel 2008-01-01 In this paper we introduce Lévy-driven Cox point processes (LCPs) as Cox point processes with driving intensity function Λ defined by a kernel smoothing of a Lévy basis (an independently scattered, infinitely divisible random measure). We also consider log Lévy-driven Cox point processes (LLCPs......) with Λ equal to the exponential of such a kernel smoothing. Special cases are shot noise Cox processes, log Gaussian Cox processes, and log shot noise Cox processes. We study the theoretical properties of Lévy-based Cox processes, including moment properties described by nth-order product densities... 1. Simulation of Stochastic Processes by Coupled ODE-PDE Science.gov (United States) Zak, Michail 2008-01-01 A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator. 2. Nuclear criticality safety: general. 3. Tokaimura Criticality Accident: Point Model Stochastic Neutronic Interpretation International Nuclear Information System (INIS) Mechitoua, Boukhmes 2001-01-01 step is based on the knowledge of the reactivity insertion. 2. Initiation probability for one neutron P(t). 3. Initiation probability with the neutron source P S (t). Japanese specialists told us that the accident happened during the seventh batch pouring. They estimated the k eff before and at the end of this operation: After the sixth batch, K=0.981, and at the end of the seventh batch, K=1.030. When the accident happened (neutron burst), 3$ was inserted in 15 s, so if we suppose a linear insertion, we have a slope equal to 20 c/s. We may write K(t) = 1 + wt with w = 0.2 β = 0.00160/s. During the accident, there was between 14 and 16 kg of uranium with an enrichment of 18.8%. We have calculated P S (t) and we have taken into account six internal source levels: 1. spontaneous fission: 150 to 170 to 200 n/s; 2. (α, n) reactions and others of this type, and amplification of the internal source during the delayed critical phase: 500 to 1000 to 2000 n/s. In Fig. 2, we can see that the initiation occurred almost surely before 7 s and with a probability close to 0.46 before 2 s with a source of 200 n/s. With a source of 2000 n/s, we have higher initiation probabilities; for example, the initiation occurred almost surely before 2 s and with a probability close to 0.77 before 1 s after the critical time. These results are interesting because they show that a supercritical system does not lead immediately to initiation. One may have short supercritical excursion with no neutron production. The point model approach is useful for gaining a good understanding of what can be the stochastic neutronic contribution for the interpretation of criticality accidents. The results described in this paper may be useful for the interpretation of the time delay between the critical state time and the neutron burst. The thought process we have described may be used in the 'real world', that is, with multigroup or continuous-energy simulations

3. State estimation for temporal point processes

NARCIS (Netherlands)

van Lieshout, Maria Nicolette Margaretha

2015-01-01

This paper is concerned with combined inference for point processes on the real line observed in a broken interval. For such processes, the classic history-based approach cannot be used. Instead, we adapt tools from sequential spatial point processes. For a range of models, the marginal and

4. Bayesian analysis of Markov point processes

DEFF Research Database (Denmark)

Berthelsen, Kasper Klitgaard; Møller, Jesper

2006-01-01

Recently Møller, Pettitt, Berthelsen and Reeves introduced a new MCMC methodology for drawing samples from a posterior distribution when the likelihood function is only specified up to a normalising constant. We illustrate the method in the setting of Bayesian inference for Markov point processes...... a partially ordered Markov point process as the auxiliary variable. As the method requires simulation from the "unknown" likelihood, perfect simulation algorithms for spatial point processes become useful....

5. An extension of clarke's model with stochastic amplitude flip processes

KAUST Repository

Hoel, Hakon

2014-07-01

Stochastic modeling is an essential tool for studying statistical properties of wireless channels. In multipath fading channel (MFC) models, the signal reception is modeled by a sum of wave path contributions, and Clarke\\'s model is an important example of such which has been widely accepted in many wireless applications. However, since Clarke\\'s model is temporally deterministic, Feng and Field noted that it does not model real wireless channels with time-varying randomness well. Here, we extend Clarke\\'s model to a novel time-varying stochastic MFC model with scatterers randomly flipping on and off. Statistical properties of the MFC model are analyzed and shown to fit well with real signal measurements, and a limit Gaussian process is derived from the model when the number of active wave paths tends to infinity. A second focus of this work is a comparison study of the error and computational cost of generating signal realizations from the MFC model and from its limit Gaussian process. By rigorous analysis and numerical studies, we show that in many settings, signal realizations are generated more efficiently by Gaussian process algorithms than by the MFC model\\'s algorithm. Numerical examples that strengthen these observations are also presented. © 2014 IEEE.

6. Energy risk management through self-exciting marked point process

International Nuclear Information System (INIS)

Herrera, Rodrigo

2013-01-01

Crude oil is a dynamically traded commodity that affects many economies. We propose a collection of marked self-exciting point processes with dependent arrival rates for extreme events in oil markets and related risk measures. The models treat the time among extreme events in oil markets as a stochastic process. The main advantage of this approach is its capability to capture the short, medium and long-term behavior of extremes without involving an arbitrary stochastic volatility model or a prefiltration of the data, as is common in extreme value theory applications. We make use of the proposed model in order to obtain an improved estimate for the Value at Risk in oil markets. Empirical findings suggest that the reliability and stability of Value at Risk estimates improve as a result of finer modeling approach. This is supported by an empirical application in the representative West Texas Intermediate (WTI) and Brent crude oil markets. - Highlights: • We propose marked self-exciting point processes for extreme events in oil markets. • This approach captures the short and long-term behavior of extremes. • We improve the estimates for the VaR in the WTI and Brent crude oil markets

7. Reliability and maintenance in European nuclear power plants: A structural analysis of a controlled stochastic process

International Nuclear Information System (INIS)

Sturm, R.

1991-01-01

Two aspects of performance are of main concern: plant availability and plant reliability (defined as the conditional probability of an unplanned shutdown). The goal of the research is a unified framework that combines behavioral models of optimizing agents with models of complex technical systems that take into account the dynamic and stochastic features of the system. In order to achieve this synthesis, two liens of work are necessary. One line requires a deeper understanding of complex production systems and the type of data they give rise to; the other line involves the specification and estimation of a rigorously specified behavioral model. Plant operations are modeled as a controlled stochastic process, and the sequence of up and downtime spells is analyzed during failure time and point process models. Similar to work on rational expectations and structural econometric models, the behavior model of how the plant process is controlled is formulated at the level of basic processes, i.e., the objective function of the plant manager, technical constraints, and stochastic disturbances

8. Time Series, Stochastic Processes and Completeness of Quantum Theory

International Nuclear Information System (INIS)

Kupczynski, Marian

2011-01-01

Most of physical experiments are usually described as repeated measurements of some random variables. Experimental data registered by on-line computers form time series of outcomes. The frequencies of different outcomes are compared with the probabilities provided by the algorithms of quantum theory (QT). In spite of statistical predictions of QT a claim was made that it provided the most complete description of the data and of the underlying physical phenomena. This claim could be easily rejected if some fine structures, averaged out in the standard descriptive statistical analysis, were found in time series of experimental data. To search for these structures one has to use more subtle statistical tools which were developed to study time series produced by various stochastic processes. In this talk we review some of these tools. As an example we show how the standard descriptive statistical analysis of the data is unable to reveal a fine structure in a simulated sample of AR (2) stochastic process. We emphasize once again that the violation of Bell inequalities gives no information on the completeness or the non locality of QT. The appropriate way to test the completeness of quantum theory is to search for fine structures in time series of the experimental data by means of the purity tests or by studying the autocorrelation and partial autocorrelation functions.

9. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.

Science.gov (United States)

García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G

2017-08-01

The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.

10. Evolution and mass extinctions as lognormal stochastic processes

Science.gov (United States)

Maccone, Claudio

2014-10-01

In a series of recent papers and in a book, this author put forward a mathematical model capable of embracing the search for extra-terrestrial intelligence (SETI), Darwinian Evolution and Human History into a single, unified statistical picture, concisely called Evo-SETI. The relevant mathematical tools are: (1) Geometric Brownian motion (GBM), the stochastic process representing evolution as the stochastic increase of the number of species living on Earth over the last 3.5 billion years. This GBM is well known in the mathematics of finances (Black-Sholes models). Its main features are that its probability density function (pdf) is a lognormal pdf, and its mean value is either an increasing or, more rarely, decreasing exponential function of the time. (2) The probability distributions known as b-lognormals, i.e. lognormals starting at a certain positive instant b>0 rather than at the origin. These b-lognormals were then forced by us to have their peak value located on the exponential mean-value curve of the GBM (Peak-Locus theorem). In the framework of Darwinian Evolution, the resulting mathematical construction was shown to be what evolutionary biologists call Cladistics. (3) The (Shannon) entropy of such b-lognormals is then seen to represent the degree of progress' reached by each living organism or by each big set of living organisms, like historic human civilizations. Having understood this fact, human history may then be cast into the language of b-lognormals that are more and more organized in time (i.e. having smaller and smaller entropy, or smaller and smaller chaos'), and have their peaks on the increasing GBM exponential. This exponential is thus the trend of progress' in human history. (4) All these results also match with SETI in that the statistical Drake equation (generalization of the ordinary Drake equation to encompass statistics) leads just to the lognormal distribution as the probability distribution for the number of extra

11. Model reduction method using variable-separation for stochastic saddle point problems

Science.gov (United States)

Jiang, Lijian; Li, Qiuqi

2018-02-01

In this paper, we consider a variable-separation (VS) method to solve the stochastic saddle point (SSP) problems. The VS method is applied to obtain the solution in tensor product structure for stochastic partial differential equations (SPDEs) in a mixed formulation. The aim of such a technique is to construct a reduced basis approximation of the solution of the SSP problems. The VS method attempts to get a low rank separated representation of the solution for SSP in a systematic enrichment manner. No iteration is performed at each enrichment step. In order to satisfy the inf-sup condition in the mixed formulation, we enrich the separated terms for the primal system variable at each enrichment step. For the SSP problems by regularization or penalty, we propose a more efficient variable-separation (VS) method, i.e., the variable-separation by penalty method. This can avoid further enrichment of the separated terms in the original mixed formulation. The computation of the variable-separation method decomposes into offline phase and online phase. Sparse low rank tensor approximation method is used to significantly improve the online computation efficiency when the number of separated terms is large. For the applications of SSP problems, we present three numerical examples to illustrate the performance of the proposed methods.

12. Suprathreshold stochastic resonance in neural processing tuned by correlation.

Science.gov (United States)

Durrant, Simon; Kang, Yanmei; Stocks, Nigel; Feng, Jianfeng

2011-07-01

Suprathreshold stochastic resonance (SSR) is examined in the context of integrate-and-fire neurons, with an emphasis on the role of correlation in the neuronal firing. We employed a model based on a network of spiking neurons which received synaptic inputs modeled by Poisson processes stimulated by a stepped input signal. The smoothed ensemble firing rate provided an output signal, and the mutual information between this signal and the input was calculated for networks with different noise levels and different numbers of neurons. It was found that an SSR effect was present in this context. We then examined a more biophysically plausible scenario where the noise was not controlled directly, but instead was tuned by the correlation between the inputs. The SSR effect remained present in this scenario with nonzero noise providing improved information transmission, and it was found that negative correlation between the inputs was optimal. Finally, an examination of SSR in the context of this model revealed its connection with more traditional stochastic resonance and showed a trade-off between supratheshold and subthreshold components. We discuss these results in the context of existing empirical evidence concerning correlations in neuronal firing.

13. Stochastic investigation of precipitation process for climatic variability identification

Science.gov (United States)

Sotiriadou, Alexia; Petsiou, Amalia; Feloni, Elisavet; Kastis, Paris; Iliopoulou, Theano; Markonis, Yannis; Tyralis, Hristos; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris

2016-04-01

The precipitation process is important not only to hydrometeorology but also to renewable energy resources management. We use a dataset consisting of daily and hourly records around the globe to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e., mean process variance vs. scale). Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

14. Time-variant reliability assessment through equivalent stochastic process transformation

International Nuclear Information System (INIS)

Wang, Zequn; Chen, Wei

2016-01-01

Time-variant reliability measures the probability that an engineering system successfully performs intended functions over a certain period of time under various sources of uncertainty. In practice, it is computationally prohibitive to propagate uncertainty in time-variant reliability assessment based on expensive or complex numerical models. This paper presents an equivalent stochastic process transformation approach for cost-effective prediction of reliability deterioration over the life cycle of an engineering system. To reduce the high dimensionality, a time-independent reliability model is developed by translating random processes and time parameters into random parameters in order to equivalently cover all potential failures that may occur during the time interval of interest. With the time-independent reliability model, an instantaneous failure surface is attained by using a Kriging-based surrogate model to identify all potential failure events. To enhance the efficacy of failure surface identification, a maximum confidence enhancement method is utilized to update the Kriging model sequentially. Then, the time-variant reliability is approximated using Monte Carlo simulations of the Kriging model where system failures over a time interval are predicted by the instantaneous failure surface. The results of two case studies demonstrate that the proposed approach is able to accurately predict the time evolution of system reliability while requiring much less computational efforts compared with the existing analytical approach. - Highlights: • Developed a new approach for time-variant reliability analysis. • Proposed a novel stochastic process transformation procedure to reduce the dimensionality. • Employed Kriging models with confidence-based adaptive sampling scheme to enhance computational efficiency. • The approach is effective for handling random process in time-variant reliability analysis. • Two case studies are used to demonstrate the efficacy

15. Stochastic approach for round-off error analysis in computing application to signal processing algorithms

International Nuclear Information System (INIS)

Vignes, J.

1986-01-01

Any result of algorithms provided by a computer always contains an error resulting from floating-point arithmetic round-off error propagation. Furthermore signal processing algorithms are also generally performed with data containing errors. The permutation-perturbation method, also known under the name CESTAC (controle et estimation stochastique d'arrondi de calcul) is a very efficient practical method for evaluating these errors and consequently for estimating the exact significant decimal figures of any result of algorithms performed on a computer. The stochastic approach of this method, its probabilistic proof, and the perfect agreement between the theoretical and practical aspects are described in this paper [fr

16. QUANTUM STOCHASTIC PROCESSES: BOSON AND FERMION BROWNIAN MOTION

Directory of Open Access Journals (Sweden)

A.E.Kobryn

2003-01-01

Full Text Available Dynamics of quantum systems which are stochastically perturbed by linear coupling to the reservoir can be studied in terms of quantum stochastic differential equations (for example, quantum stochastic Liouville equation and quantum Langevin equation. In order to work it out one needs to define the quantum Brownian motion. As far as only its boson version has been known until recently, in the present paper we present the definition which makes it possible to consider the fermion Brownian motion as well.

17. Stochastic calculus for fractional Brownian motion and related processes

CERN Document Server

Mishura, Yuliya S

2008-01-01

The theory of fractional Brownian motion and other long-memory processes are addressed in this volume. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. Among these are results about Levy characterization of fractional Brownian motion, maximal moment inequalities for Wiener integrals including the values 0

18. Kolmogorov's refined similarity hypotheses for turbulence and general stochastic processes

International Nuclear Information System (INIS)

Stolovitzky, G.; Sreenivasan, K.R.

1994-01-01

Kolmogorov's refined similarity hypotheses are shown to hold true for a variety of stochastic processes besides high-Reynolds-number turbulent flows, for which they were originally proposed. In particular, just as hypothesized for turbulence, there exists a variable V whose probability density function attains a universal form. Analytical expressions for the probability density function of V are obtained for Brownian motion as well as for the general case of fractional Brownian motion---the latter under some mild assumptions justified a posteriori. The properties of V for the case of antipersistent fractional Brownian motion with the Hurst exponent of 1/3 are similar in many details to those of high-Reynolds-number turbulence in atmospheric boundary layers a few meters above the ground. The one conspicuous difference between turbulence and the antipersistent fractional Brownian motion is that the latter does not possess the required skewness. Broad implications of these results are discussed

19. Spent Fuel Pool Dose Rate Calculations Using Point Kernel and Hybrid Deterministic-Stochastic Shielding Methods

International Nuclear Information System (INIS)

Matijevic, M.; Grgic, D.; Jecmenica, R.

2016-01-01

This paper presents comparison of the Krsko Power Plant simplified Spent Fuel Pool (SFP) dose rates using different computational shielding methodologies. The analysis was performed to estimate limiting gamma dose rates on wall mounted level instrumentation in case of significant loss of cooling water. The SFP was represented with simple homogenized cylinders (point kernel and Monte Carlo (MC)) or cuboids (MC) using uranium, iron, water, and dry-air as bulk region materials. The pool is divided on the old and new section where the old one has three additional subsections representing fuel assemblies (FAs) with different burnup/cooling time (60 days, 1 year and 5 years). The new section represents the FAs with the cooling time of 10 years. The time dependent fuel assembly isotopic composition was calculated using ORIGEN2 code applied to the depletion of one of the fuel assemblies present in the pool (AC-29). The source used in Microshield calculation is based on imported isotopic activities. The time dependent photon spectra with total source intensity from Microshield multigroup point kernel calculations was then prepared for two hybrid deterministic-stochastic sequences. One is based on SCALE/MAVRIC (Monaco and Denovo) methodology and another uses Monte Carlo code MCNP6.1.1b and ADVANTG3.0.1. code. Even though this model is a fairly simple one, the layers of shielding materials are thick enough to pose a significant shielding problem for MC method without the use of effective variance reduction (VR) technique. For that purpose the ADVANTG code was used to generate VR parameters (SB cards in SDEF and WWINP file) for MCNP fixed-source calculation using continuous energy transport. ADVATNG employs a deterministic forward-adjoint transport solver Denovo which implements CADIS/FW-CADIS methodology. Denovo implements a structured, Cartesian-grid SN solver based on the Koch-Baker-Alcouffe parallel transport sweep algorithm across x-y domain blocks. This was first

20. Poisson point processes imaging, tracking, and sensing

CERN Document Server

Streit, Roy L

2010-01-01

This overview of non-homogeneous and multidimensional Poisson point processes and their applications features mathematical tools and applications from emission- and transmission-computed tomography to multiple target tracking and distributed sensor detection.

1. Statistical aspects of determinantal point processes

DEFF Research Database (Denmark)

Lavancier, Frédéric; Møller, Jesper; Rubak, Ege

The statistical aspects of determinantal point processes (DPPs) seem largely unexplored. We review the appealing properties of DDPs, demonstrate that they are useful models for repulsiveness, detail a simulation procedure, and provide freely available software for simulation and statistical infer...

2. Modeling fixation locations using spatial point processes.

Science.gov (United States)

Barthelmé, Simon; Trukenbrod, Hans; Engbert, Ralf; Wichmann, Felix

2013-10-01

Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.

3. SUPERPOSITION OF STOCHASTIC PROCESSES AND THE RESULTING PARTICLE DISTRIBUTIONS

International Nuclear Information System (INIS)

Schwadron, N. A.; Dayeh, M. A.; Desai, M.; Fahr, H.; Jokipii, J. R.; Lee, M. A.

2010-01-01

Many observations of suprathermal and energetic particles in the solar wind and the inner heliosheath show that distribution functions scale approximately with the inverse of particle speed (v) to the fifth power. Although there are exceptions to this behavior, there is a growing need to understand why this type of distribution function appears so frequently. This paper develops the concept that a superposition of exponential and Gaussian distributions with different characteristic speeds and temperatures show power-law tails. The particular type of distribution function, f ∝ v -5 , appears in a number of different ways: (1) a series of Poisson-like processes where entropy is maximized with the rates of individual processes inversely proportional to the characteristic exponential speed, (2) a series of Gaussian distributions where the entropy is maximized with the rates of individual processes inversely proportional to temperature and the density of individual Gaussian distributions proportional to temperature, and (3) a series of different diffusively accelerated energetic particle spectra with individual spectra derived from observations (1997-2002) of a multiplicity of different shocks. Thus, we develop a proof-of-concept for the superposition of stochastic processes that give rise to power-law distribution functions.

4. MODELLING AND SIMULATION OF A NEUROPHYSIOLOGICAL EXPERIMENT BY SPATIO-TEMPORAL POINT PROCESSES

Directory of Open Access Journals (Sweden)

Viktor Beneš

2011-05-01

Full Text Available We present a stochastic model of an experimentmonitoring the spiking activity of a place cell of hippocampus of an experimental animal moving in an arena. Doubly stochastic spatio-temporal point process is used to model and quantify overdispersion. Stochastic intensity is modelled by a Lévy based random field while the animal path is simplified to a discrete random walk. In a simulation study first a method suggested previously is used. Then it is shown that a solution of the filtering problem yields the desired inference to the random intensity. Two approaches are suggested and the new one based on finite point process density is applied. Using Markov chain Monte Carlo we obtain numerical results from the simulated model. The methodology is discussed.

5. Profiles of the stochastic star formation process in spiral galaxies

International Nuclear Information System (INIS)

Comins, N.

1981-01-01

The formation of spiral arms in disc galaxies is generally attributed to the effects of spiral density waves. These relatively small (i.e. 5 per cent) non-axisymmetric perturbations of the interstellar medium cause spiral arms highlighted by O and B type stars to be created. In this paper another mechanism for spiral arm formation, the stochastic self-propagating star formation (SSPSF) process is examined. The SSPSF process combines the theory that shock waves from supernovae will compress the interstellar medium to create new stars, some of which will be massive enough to also supernova, with a disc galaxy's differential rotation to create spiral arms. The present work extends this process to the case where the probability of star formation from supernova shocks decreases with galactic radius. Where this work and previous investigations overlap (namely the uniform probability case), the agreement is very good, pretty spirals with various numbers of arms are generated. The decreasing probability cases, taken to vary as rsup(-j), still form spiral arms for 0 1.5 the spiral structure is essentially non-existent. (author)

6. Heterogeneous recurrence monitoring and control of nonlinear stochastic processes

Energy Technology Data Exchange (ETDEWEB)

Yang, Hui, E-mail: huiyang@usf.edu; Chen, Yun [Complex Systems Monitoring, Modeling and Analysis Laboratory, University of South Florida, Tampa, Florida 33620 (United States)

2014-03-15

Recurrence is one of the most common phenomena in natural and engineering systems. Process monitoring of dynamic transitions in nonlinear and nonstationary systems is more concerned with aperiodic recurrences and recurrence variations. However, little has been done to investigate the heterogeneous recurrence variations and link with the objectives of process monitoring and anomaly detection. Notably, nonlinear recurrence methodologies are based on homogeneous recurrences, which treat all recurrence states in the same way as black dots, and non-recurrence is white in recurrence plots. Heterogeneous recurrences are more concerned about the variations of recurrence states in terms of state properties (e.g., values and relative locations) and the evolving dynamics (e.g., sequential state transitions). This paper presents a novel approach of heterogeneous recurrence analysis that utilizes a new fractal representation to delineate heterogeneous recurrence states in multiple scales, including the recurrences of both single states and multi-state sequences. Further, we developed a new set of heterogeneous recurrence quantifiers that are extracted from fractal representation in the transformed space. To that end, we integrated multivariate statistical control charts with heterogeneous recurrence analysis to simultaneously monitor two or more related quantifiers. Experimental results on nonlinear stochastic processes show that the proposed approach not only captures heterogeneous recurrence patterns in the fractal representation but also effectively monitors the changes in the dynamics of a complex system.

7. Stochastic simulation of destruction processes in self-irradiated materials

Directory of Open Access Journals (Sweden)

T. Patsahan

2017-09-01

Full Text Available Self-irradiation damages resulting from fission processes are common phenomena observed in nuclear fuel containing (NFC materials. Numerous α-decays lead to local structure transformations in NFC materials. The damages appearing due to the impacts of heavy nuclear recoils in the subsurface layer can cause detachments of material particles. Such a behaviour is similar to sputtering processes observed during a bombardment of the material surface by a flux of energetic particles. However, in the NFC material, the impacts are initiated from the bulk. In this work we propose a two-dimensional mesoscopic model to perform a stochastic simulation of the destruction processes occurring in a subsurface region of NFC material. We describe the erosion of the material surface, the evolution of its roughness and predict the detachment of the material particles. Size distributions of the emitted particles are obtained in this study. The simulation results of the model are in a qualitative agreement with the size histogram of particles produced from the material containing lava-like fuel formed during the Chernobyl nuclear power plant disaster.

8. Stochastic model of template-directed elongation processes in biology.

Science.gov (United States)

Schilstra, Maria J; Nehaniv, Chrystopher L

2010-10-01

We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

9. Stochastic growth logistic model with aftereffect for batch fermentation process

Science.gov (United States)

Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

2014-06-01

In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

10. Stochastic growth logistic model with aftereffect for batch fermentation process

International Nuclear Information System (INIS)

Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

2014-01-01

In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

11. Stochastic growth logistic model with aftereffect for batch fermentation process

Energy Technology Data Exchange (ETDEWEB)

Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

2014-06-19

In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

12. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

Science.gov (United States)

Turner, Douglas C.; Ladde, Gangaram S.

2018-03-01

Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

13. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

Science.gov (United States)

Lei, Youming; Zheng, Fan

2016-12-01

Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

14. Stochastic volatility and stochastic leverage

DEFF Research Database (Denmark)

Veraart, Almut; Veraart, Luitgard A. M.

This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

15. A Comparison of Deterministic and Stochastic Modeling Approaches for Biochemical Reaction Systems: On Fixed Points, Means, and Modes.

Science.gov (United States)

Hahl, Sayuri K; Kremling, Andreas

2016-01-01

In the mathematical modeling of biochemical reactions, a convenient standard approach is to use ordinary differential equations (ODEs) that follow the law of mass action. However, this deterministic ansatz is based on simplifications; in particular, it neglects noise, which is inherent to biological processes. In contrast, the stochasticity of reactions is captured in detail by the discrete chemical master equation (CME). Therefore, the CME is frequently applied to mesoscopic systems, where copy numbers of involved components are small and random fluctuations are thus significant. Here, we compare those two common modeling approaches, aiming at identifying parallels and discrepancies between deterministic variables and possible stochastic counterparts like the mean or modes of the state space probability distribution. To that end, a mathematically flexible reaction scheme of autoregulatory gene expression is translated into the corresponding ODE and CME formulations. We show that in the thermodynamic limit, deterministic stable fixed points usually correspond well to the modes in the stationary probability distribution. However, this connection might be disrupted in small systems. The discrepancies are characterized and systematically traced back to the magnitude of the stoichiometric coefficients and to the presence of nonlinear reactions. These factors are found to synergistically promote large and highly asymmetric fluctuations. As a consequence, bistable but unimodal, and monostable but bimodal systems can emerge. This clearly challenges the role of ODE modeling in the description of cellular signaling and regulation, where some of the involved components usually occur in low copy numbers. Nevertheless, systems whose bimodality originates from deterministic bistability are found to sustain a more robust separation of the two states compared to bimodal, but monostable systems. In regulatory circuits that require precise coordination, ODE modeling is thus still

16. Stochastic Modelling of Shiroro River Stream flow Process

OpenAIRE

Musa, J. J

2013-01-01

Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

17. Simulating biological processes: stochastic physics from whole cells to colonies

Science.gov (United States)

Earnest, Tyler M.; Cole, John A.; Luthey-Schulten, Zaida

2018-05-01

The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.

18. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications

Science.gov (United States)

Weiss, Charles J.

2017-01-01

An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…

19. Quantum learning of classical stochastic processes: The completely positive realization problem

Science.gov (United States)

Monràs, Alex; Winter, Andreas

2016-01-01

Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651-664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine

20. Quantum learning of classical stochastic processes: The completely positive realization problem

Energy Technology Data Exchange (ETDEWEB)

Monràs, Alex [Física Teòrica: Informació i Fenòmens Quàntics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Winter, Andreas [Física Teòrica: Informació i Fenòmens Quàntics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); ICREA—Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys, 23, 08010 Barcelona (Spain)

2016-01-15

Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine

1. Quantum learning of classical stochastic processes: The completely positive realization problem

International Nuclear Information System (INIS)

Monràs, Alex; Winter, Andreas

2016-01-01

Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine

2. A criterion for testing hypotheses about the covariance function of a stationary Gaussian stochastic process

OpenAIRE

Kozachenko, Yuriy; Troshki, Viktor

2015-01-01

We consider a measurable stationary Gaussian stochastic process. A criterion for testing hypotheses about the covariance function of such a process using estimates for its norm in the space $L_p(\\mathbb {T}),\\,p\\geq1$, is constructed.

3. Modified stochastic fragmentation of an interval as an ageing process

Science.gov (United States)

Fortin, Jean-Yves

2018-02-01

We study a stochastic model based on modified fragmentation of a finite interval. The mechanism consists of cutting the interval at a random location and substituting a unique fragment on the right of the cut to regenerate and preserve the interval length. This leads to a set of segments of random sizes, with the accumulation of small fragments near the origin. This model is an example of record dynamics, with the presence of ‘quakes’ and slow dynamics. The fragment size distribution is a universal inverse power law with logarithmic corrections. The exact distribution for the fragment number as function of time is simply related to the unsigned Stirling numbers of the first kind. Two-time correlation functions are defined, and computed exactly. They satisfy scaling relations, and exhibit aging phenomena. In particular, the probability that the same number of fragments is found at two different times t>s is asymptotically equal to [4πlog(s)]-1/2 when s\\gg 1 and the ratio t/s is fixed, in agreement with the numerical simulations. The same process with a reset impedes the aging phenomenon-beyond a typical time scale defined by the reset parameter.

4. Analysis methods of stochastic transient electro–magnetic processes in electric traction system

Directory of Open Access Journals (Sweden)

T. M. Mishchenko

2013-04-01

Full Text Available Purpose. The essence and basic characteristics of calculation methods of transient electromagnetic processes in the elements and devices of non–linear dynamic electric traction systems taking into account the stochastic changes of voltages and currents in traction networks of power supply subsystem and power circuits of electric rolling stock are developed. Methodology. Classical methods and the methods of non–linear electric engineering, as well as probability theory method, especially the methods of stationary ergodic and non–stationary stochastic processes application are used in the research. Findings. Using the above-mentioned methods an equivalent circuit and the system of nonlinear integra–differential equations for electromagnetic condition of the double–track inter-substation zone of alternating current electric traction system are drawn up. Calculations allow obtaining electric traction current distribution in the areas of feeder zones. Originality. First of all the paper is interesting and important from scientific point of view due to the methods, which allow taking into account probabilistic character of change for traction voltages and electric traction system currents. On the second hand the researches develop the most efficient methods of nonlinear circuits’ analysis. Practical value. The practical value of the research is presented in application of the methods to the analysis of electromagnetic and electric energy processes in the traction power supply system in the case of high-speed train traffic.

5. Fingerprint Analysis with Marked Point Processes

DEFF Research Database (Denmark)

Forbes, Peter G. M.; Lauritzen, Steffen; Møller, Jesper

We present a framework for fingerprint matching based on marked point process models. An efficient Monte Carlo algorithm is developed to calculate the marginal likelihood ratio for the hypothesis that two observed prints originate from the same finger against the hypothesis that they originate from...... different fingers. Our model achieves good performance on an NIST-FBI fingerprint database of 258 matched fingerprint pairs....

6. Modern Statistics for Spatial Point Processes

DEFF Research Database (Denmark)

Møller, Jesper; Waagepetersen, Rasmus

2007-01-01

We summarize and discuss the current state of spatial point process theory and directions for future research, making an analogy with generalized linear models and random effect models, and illustrating the theory with various examples of applications. In particular, we consider Poisson, Gibbs...

7. Modern statistics for spatial point processes

DEFF Research Database (Denmark)

Møller, Jesper; Waagepetersen, Rasmus

We summarize and discuss the current state of spatial point process theory and directions for future research, making an analogy with generalized linear models and random effect models, and illustrating the theory with various examples of applications. In particular, we consider Poisson, Gibbs...

8. Probabilistic safety assessment and optimal control of hazardous technological systems. A marked point process approach

International Nuclear Information System (INIS)

Holmberg, J.

1997-04-01

The thesis models risk management as an optimal control problem for a stochastic process. The approach classes the decisions made by management into three categories according to the control methods of a point process: (1) planned process lifetime, (2) modification of the design, and (3) operational decisions. The approach is used for optimization of plant shutdown criteria and surveillance test strategies of a hypothetical nuclear power plant

9. Probabilistic safety assessment and optimal control of hazardous technological systems. A marked point process approach

Energy Technology Data Exchange (ETDEWEB)

Holmberg, J [VTT Automation, Espoo (Finland)

1997-04-01

The thesis models risk management as an optimal control problem for a stochastic process. The approach classes the decisions made by management into three categories according to the control methods of a point process: (1) planned process lifetime, (2) modification of the design, and (3) operational decisions. The approach is used for optimization of plant shutdown criteria and surveillance test strategies of a hypothetical nuclear power plant. 62 refs. The thesis includes also five previous publications by author.

10. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

International Nuclear Information System (INIS)

Granita; Bahar, A.

2015-01-01

This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found

11. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

Energy Technology Data Exchange (ETDEWEB)

Granita, E-mail: granitafc@gmail.com [Dept. Mathematical Education, State Islamic University of Sultan Syarif Kasim Riau, 28293 Indonesia and Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor (Malaysia); Bahar, A. [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor Malaysia and UTM Center for Industrial and Applied Mathematics (UTM-CIAM) (Malaysia)

2015-03-09

This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

12. Determinantal point process models on the sphere

DEFF Research Database (Denmark)

Møller, Jesper; Nielsen, Morten; Porcu, Emilio

defined on Sd × Sd . We review the appealing properties of such processes, including their specific moment properties, density expressions and simulation procedures. Particularly, we characterize and construct isotropic DPPs models on Sd , where it becomes essential to specify the eigenvalues......We consider determinantal point processes on the d-dimensional unit sphere Sd . These are finite point processes exhibiting repulsiveness and with moment properties determined by a certain determinant whose entries are specified by a so-called kernel which we assume is a complex covariance function...... and eigenfunctions in a spectral representation for the kernel, and we figure out how repulsive isotropic DPPs can be. Moreover, we discuss the shortcomings of adapting existing models for isotropic covariance functions and consider strategies for developing new models, including a useful spectral approach....

13. Stochastic stability of mechanical systems under renewal jump process parametric excitation

DEFF Research Database (Denmark)

Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

2005-01-01

independent, negative exponential distributed variables; hence, the arrival process may be termed as a generalized Erlang renewal process. The excitation process is governed by the stochastic equation driven by two independent Poisson processes, with different parameters. If the response in a single mode...... is investigated, the problem is governed in the state space by two stochastic equations, because the stochastic equation for the excitation process is autonomic. However due to the parametric nature of the excitation, the nonlinear term appears at the right-hand sides of the equations. The equations become linear...... of the stochastic equation governing the natural logarithm of the hyperspherical amplitude process and using the modification of the method wherein the time averaging of the pertinent expressions is replaced by ensemble averaging. It is found that the direct simulation is more suitable and that the asymptotic mean...

14. Stochastic modeling and analysis of telecoms networks

CERN Document Server

Decreusefond, Laurent

2012-01-01

This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an

15. Stochastic Management of Non-Point Source Contamination: Joint Impact of Aquifer Heterogeneity and Well Characteristics

Science.gov (United States)

Henri, C. V.; Harter, T.

2017-12-01

Agricultural activities are recognized as the preeminent origin of non-point source (NPS) contamination of water bodies through the leakage of nitrate, salt and agrochemicals. A large fraction of world agricultural activities and therefore NPS contamination occurs over unconsolidated alluvial deposit basins offering soil composition and topography favorable to productive farming. These basins represent also important groundwater reservoirs. The over-exploitation of aquifers coupled with groundwater pollution by agriculture-related NPS contaminant has led to a rapid deterioration of the quality of these groundwater basins. The management of groundwater contamination from NPS is challenged by the inherent complexity of aquifers systems. Contaminant transport dynamics are highly uncertain due to the heterogeneity of hydraulic parameters controlling groundwater flow. Well characteristics are also key uncertain elements affecting pollutant transport and NPS management but quantifying uncertainty in NPS management under these conditions is not well documented. Our work focuses on better understanding the joint impact of aquifer heterogeneity and pumping well characteristics (extraction rate and depth) on (1) the transport of contaminants from NPS and (2) the spatio-temporal extension of the capture zone. To do so, we generate a series of geostatistically equivalent 3D heterogeneous aquifers and simulate the flow and non-reactive solute transport from NPS to extraction wells within a stochastic framework. The propagation of the uncertainty on the hydraulic conductivity field is systematically analyzed. A sensitivity analysis of the impact of extraction well characteristics (pumping rate and screen depth) is also conducted. Results highlight the significant role that heterogeneity and well characteristics plays on management metrics. We finally show that, in case of NPS contamination, the joint impact of regional longitudinal and transverse vertical hydraulic gradients and

16. Point cloud processing for smart systems

Directory of Open Access Journals (Sweden)

Jaromír Landa

2013-01-01

Full Text Available High population as well as the economical tension emphasises the necessity of effective city management – from land use planning to urban green maintenance. The management effectiveness is based on precise knowledge of the city environment. Point clouds generated by mobile and terrestrial laser scanners provide precise data about objects in the scanner vicinity. From these data pieces the state of the roads, buildings, trees and other objects important for this decision-making process can be obtained. Generally, they can support the idea of “smart” or at least “smarter” cities.Unfortunately the point clouds do not provide this type of information automatically. It has to be extracted. This extraction is done by expert personnel or by object recognition software. As the point clouds can represent large areas (streets or even cities, usage of expert personnel to identify the required objects can be very time-consuming, therefore cost ineffective. Object recognition software allows us to detect and identify required objects semi-automatically or automatically.The first part of the article reviews and analyses the state of current art point cloud object recognition techniques. The following part presents common formats used for point cloud storage and frequently used software tools for point cloud processing. Further, a method for extraction of geospatial information about detected objects is proposed. Therefore, the method can be used not only to recognize the existence and shape of certain objects, but also to retrieve their geospatial properties. These objects can be later directly used in various GIS systems for further analyses.

17. Marked point process for modelling seismic activity (case study in Sumatra and Java)

Science.gov (United States)

Pratiwi, Hasih; Sulistya Rini, Lia; Wayan Mangku, I.

2018-05-01

Earthquake is a natural phenomenon that is random, irregular in space and time. Until now the forecast of earthquake occurrence at a location is still difficult to be estimated so that the development of earthquake forecast methodology is still carried out both from seismology aspect and stochastic aspect. To explain the random nature phenomena, both in space and time, a point process approach can be used. There are two types of point processes: temporal point process and spatial point process. The temporal point process relates to events observed over time as a sequence of time, whereas the spatial point process describes the location of objects in two or three dimensional spaces. The points on the point process can be labelled with additional information called marks. A marked point process can be considered as a pair (x, m) where x is the point of location and m is the mark attached to the point of that location. This study aims to model marked point process indexed by time on earthquake data in Sumatra Island and Java Island. This model can be used to analyse seismic activity through its intensity function by considering the history process up to time before t. Based on data obtained from U.S. Geological Survey from 1973 to 2017 with magnitude threshold 5, we obtained maximum likelihood estimate for parameters of the intensity function. The estimation of model parameters shows that the seismic activity in Sumatra Island is greater than Java Island.

18. Parametric methods for spatial point processes

DEFF Research Database (Denmark)

Møller, Jesper

is studied in Section 4, and Bayesian inference in Section 5. On one hand, as the development in computer technology and computational statistics continues,computationally-intensive simulation-based methods for likelihood inference probably will play a increasing role for statistical analysis of spatial...... inference procedures for parametric spatial point process models. The widespread use of sensible but ad hoc methods based on summary statistics of the kind studied in Chapter 4.3 have through the last two decades been supplied by likelihood based methods for parametric spatial point process models......(This text is submitted for the volume ‘A Handbook of Spatial Statistics' edited by A.E. Gelfand, P. Diggle, M. Fuentes, and P. Guttorp, to be published by Chapmand and Hall/CRC Press, and planned to appear as Chapter 4.4 with the title ‘Parametric methods'.) 1 Introduction This chapter considers...

19. Statistical aspects of determinantal point processes

DEFF Research Database (Denmark)

Lavancier, Frédéric; Møller, Jesper; Rubak, Ege Holger

The statistical aspects of determinantal point processes (DPPs) seem largely unexplored. We review the appealing properties of DDPs, demonstrate that they are useful models for repulsiveness, detail a simulation procedure, and provide freely available software for simulation and statistical...... inference. We pay special attention to stationary DPPs, where we give a simple condition ensuring their existence, construct parametric models, describe how they can be well approximated so that the likelihood can be evaluated and realizations can be simulated, and discuss how statistical inference...

20. ARMA modeling of stochastic processes in nuclear reactor with significant detection noise

International Nuclear Information System (INIS)

Zavaljevski, N.

1992-01-01

The theoretical basis of ARMA modelling of stochastic processes in nuclear reactor was presented in a previous paper, neglecting observational noise. The identification of real reactor data indicated that in some experiments the detection noise is significant. Thus a more rigorous theoretical modelling of stochastic processes in nuclear reactor is performed. Starting from the fundamental stochastic differential equations of the Langevin type for the interaction of the detector with neutron field, a new theoretical ARMA model is developed. preliminary identification results confirm the theoretical expectations. (author)

1. Stochastic processes analysis in nuclear reactor using ARMA models

International Nuclear Information System (INIS)

Zavaljevski, N.

1990-01-01

The analysis of ARMA model derived from general stochastic state equations of nuclear reactor is given. The dependence of ARMA model parameters on the main physical characteristics of RB nuclear reactor in Vinca is presented. Preliminary identification results are presented, observed discrepancies between theory and experiment are explained and the possibilities of identification improvement are anticipated. (author)

2. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

DEFF Research Database (Denmark)

Starke, Jens; Reichert, Christian; Eiswirth, Markus

2007-01-01

of stochastic origin can be observed in experiments. The models include a new approach to the platinum phase transition, which allows for a unification of existing models for Pt(100) and Pt(110). The rich nonlinear dynamical behavior of the macroscopic reaction kinetics is investigated and shows good agreement...

3. Stochastic process variation in deep-submicron CMOS circuits and algorithms

CERN Document Server

Zjajo, Amir

2014-01-01

One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key device parameters affecting performance of integrated circuits. The growth of variability can be attributed to multiple factors, including the difficulty of manufacturing control, the emergence of new systematic variation-generating mechanisms, and most importantly, the increase in atomic-scale randomness, where device operation must be described as a stochastic process. In addition to wide-sense stationary stochastic device variability and temperature variation, existence of non-stationary stochastic electrical noise associated with fundamental processes in integrated-circuit devices represents an elementary limit on the performance of electronic circuits. In an attempt to address these issues, Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms offers unique combination of mathematical treatment of random process variation, electrical noise and temperature and ne...

4. Transforming spatial point processes into Poisson processes using random superposition

DEFF Research Database (Denmark)

Møller, Jesper; Berthelsen, Kasper Klitgaaard

with a complementary spatial point process Y  to obtain a Poisson process X∪Y  with intensity function β. Underlying this is a bivariate spatial birth-death process (Xt,Yt) which converges towards the distribution of (X,Y). We study the joint distribution of X and Y, and their marginal and conditional distributions....... In particular, we introduce a fast and easy simulation procedure for Y conditional on X. This may be used for model checking: given a model for the Papangelou intensity of the original spatial point process, this model is used to generate the complementary process, and the resulting superposition is a Poisson...... process with intensity function β if and only if the true Papangelou intensity is used. Whether the superposition is actually such a Poisson process can easily be examined using well known results and fast simulation procedures for Poisson processes. We illustrate this approach to model checking...

5. Stochastic Dynamics of Discrete Curves and Exclusion Processes. Part 1: Hydrodynamic Limit of the ASEP System

CERN Document Server

Fayolle, G; Fayolle, Guy; Furtlehner, Cyril

2006-01-01

This report is the foreword of a series of stochastic deformations of curves. Problems are set in terms of exclusion processes, the ultimate goal being to derive hydrodynamic limits for these systems after proper scalings. In this study, solely the basic texts system on the torus is analyzed. The usual sequence of empirical measures, converges in probability to a deterministic measure, which is the unique weak solution of a Cauchy problem. The method presents some new features, letting hope for extensions to higher dimension. It relies on the analysis of a family of parabolic differential operators, involving variational calculus. Namely, the variables are the values of functions at given points, their number being possibly infinite.

6. A stochastic version of the Price equation reveals the interplay of deterministic and stochastic processes in evolution

Directory of Open Access Journals (Sweden)

Rice Sean H

2008-09-01

Full Text Available Abstract Background Evolution involves both deterministic and random processes, both of which are known to contribute to directional evolutionary change. A number of studies have shown that when fitness is treated as a random variable, meaning that each individual has a distribution of possible fitness values, then both the mean and variance of individual fitness distributions contribute to directional evolution. Unfortunately the most general mathematical description of evolution that we have, the Price equation, is derived under the assumption that both fitness and offspring phenotype are fixed values that are known exactly. The Price equation is thus poorly equipped to study an important class of evolutionary processes. Results I present a general equation for directional evolutionary change that incorporates both deterministic and stochastic processes and applies to any evolving system. This is essentially a stochastic version of the Price equation, but it is derived independently and contains terms with no analog in Price's formulation. This equation shows that the effects of selection are actually amplified by random variation in fitness. It also generalizes the known tendency of populations to be pulled towards phenotypes with minimum variance in fitness, and shows that this is matched by a tendency to be pulled towards phenotypes with maximum positive asymmetry in fitness. This equation also contains a term, having no analog in the Price equation, that captures cases in which the fitness of parents has a direct effect on the phenotype of their offspring. Conclusion Directional evolution is influenced by the entire distribution of individual fitness, not just the mean and variance. Though all moments of individuals' fitness distributions contribute to evolutionary change, the ways that they do so follow some general rules. These rules are invisible to the Price equation because it describes evolution retrospectively. An equally general

7. Susceptibility of optimal train schedules to stochastic disturbances of process times

DEFF Research Database (Denmark)

Larsen, Rune; Pranzo, Marco; D’Ariano, Andrea

2013-01-01

study, an advanced branch and bound algorithm, on average, outperforms a First In First Out scheduling rule both in deterministic and stochastic traffic scenarios. However, the characteristic of the stochastic processes and the way a stochastic instance is handled turn out to have a serious impact...... and dwell times). In fact, the objective of railway traffic management is to reduce delay propagation and to increase disturbance robustness of train schedules at a network scale. We present a quantitative study of traffic disturbances and their effects on the schedules computed by simple and advanced...

8. A primal-dual decomposition based interior point approach to two-stage stochastic linear programming

NARCIS (Netherlands)

A.B. Berkelaar (Arjan); C.L. Dert (Cees); K.P.B. Oldenkamp; S. Zhang (Shuzhong)

1999-01-01

textabstractDecision making under uncertainty is a challenge faced by many decision makers. Stochastic programming is a major tool developed to deal with optimization with uncertainties that has found applications in, e.g. finance, such as asset-liability and bond-portfolio management.

9. Stochastic Optimal Control of a Heave Point Wave Energy Converter Based on a Modified LQG Approach

DEFF Research Database (Denmark)

Sun, Tao; Nielsen, Søren R. K.

2018-01-01

and actuator force are approximately considered by counteracting the absorbed power in the objective quadratic functional. Based on rational approximations to the radiation force and the wave load, the integrated dynamic system can be reformulated as a linear stochastic differential equation which is driven...

10. An introduction to continuous-time stochastic processes theory, models, and applications to finance, biology, and medicine

CERN Document Server

Capasso, Vincenzo

2015-01-01

This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: * Markov processes * Stochastic differential equations * Arbitrage-free markets and financial derivatives * Insurance risk * Population dynamics, and epidemics * Agent-based models New to the Third Edition: * Infinitely divisible distributions * Random measures * Levy processes * Fractional Brownian motion * Ergodic theory * Karhunen-Loeve expansion * Additional applications * Additional  exercises * Smoluchowski  approximation of  Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Editio...

11. Mean-field inference of Hawkes point processes

International Nuclear Information System (INIS)

Bacry, Emmanuel; Gaïffas, Stéphane; Mastromatteo, Iacopo; Muzy, Jean-François

2016-01-01

We propose a fast and efficient estimation method that is able to accurately recover the parameters of a d-dimensional Hawkes point-process from a set of observations. We exploit a mean-field approximation that is valid when the fluctuations of the stochastic intensity are small. We show that this is notably the case in situations when interactions are sufficiently weak, when the dimension of the system is high or when the fluctuations are self-averaging due to the large number of past events they involve. In such a regime the estimation of a Hawkes process can be mapped on a least-squares problem for which we provide an analytic solution. Though this estimator is biased, we show that its precision can be comparable to the one of the maximum likelihood estimator while its computation speed is shown to be improved considerably. We give a theoretical control on the accuracy of our new approach and illustrate its efficiency using synthetic datasets, in order to assess the statistical estimation error of the parameters. (paper)

12. Stochastic stability of mechanical systems under renewal jump process parametric excitation

DEFF Research Database (Denmark)

Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

2005-01-01

independent, negative exponential distributed variables; hence, the arrival process may be termed as a generalized Erlang renewal process. The excitation process is governed by the stochastic equation driven by two independent Poisson processes, with different parameters. If the response in a single mode...

13. Description of quantum-mechanical motion by using the formalism of non-Markov stochastic process

International Nuclear Information System (INIS)

Skorobogatov, G.A.; Svertilov, S.I.

1999-01-01

The principle possibilities of mathematical modeling of quantum mechanical motion by the theory of a real stochastic processes is considered. The set of equations corresponding to the simplest case of a two-level system undergoing transitions under the influence of electromagnetic field are obtained. It is shown that quantum-mechanical processes are purely discrete processes of non-Markovian type. They are continuous processes in the space of probability amplitudes and posses the properties of quantum Markovity. The formulation of quantum mechanics in terms of the theory of stochastic processes is necessary for its generalization on small space-time intervals [ru

14. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

DEFF Research Database (Denmark)

Starke, Jens; Reichert, Christian; Eiswirth, Markus

2007-01-01

Three levels of modeling, microscopic, mesoscopic and macroscopic are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. It can......, such that in contrast to the microscopic model the spatial resolution is reduced. The derivation of deterministic limit equations is in correspondence with the successful description of experiments under low-pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena...

15. ARMA modelling of neutron stochastic processes with large measurement noise

International Nuclear Information System (INIS)

Zavaljevski, N.; Kostic, Lj.; Pesic, M.

1994-01-01

An autoregressive moving average (ARMA) model of the neutron fluctuations with large measurement noise is derived from langevin stochastic equations and validated using time series data obtained during prompt neutron decay constant measurements at the zero power reactor RB in Vinca. Model parameters are estimated using the maximum likelihood (ML) off-line algorithm and an adaptive pole estimation algorithm based on the recursive prediction error method (RPE). The results show that subcriticality can be determined from real data with high measurement noise using much shorter statistical sample than in standard methods. (author)

16. Effect of multiplicative noise on stationary stochastic process

Science.gov (United States)

Kargovsky, A. V.; Chikishev, A. Yu.; Chichigina, O. A.

2018-03-01

An open system that can be analyzed using the Langevin equation with multiplicative noise is considered. The stationary state of the system results from a balance of deterministic damping and random pumping simulated as noise with controlled periodicity. The dependence of statistical moments of the variable that characterizes the system on parameters of the problem is studied. A nontrivial decrease in the mean value of the main variable with an increase in noise stochasticity is revealed. Applications of the results in several physical, chemical, biological, and technical problems of natural and humanitarian sciences are discussed.

17. Unifying three perspectives on information processing in stochastic thermodynamics.

Science.gov (United States)

Barato, A C; Seifert, U

2014-03-07

So far, feedback-driven systems have been discussed using (i) measurement and control, (ii) a tape interacting with a system, or (iii) by identifying an implicit Maxwell demon in steady-state transport. We derive the corresponding second laws from one master fluctuation theorem and discuss their relationship. In particular, we show that both the entropy production involving mutual information between system and controller and the one involving a Shannon entropy difference of an information reservoir like a tape carry an extra term different from the usual current times affinity. We, thus, generalize stochastic thermodynamics to the presence of an information reservoir.

18. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

Directory of Open Access Journals (Sweden)

Xuefeng Li

2014-04-01

Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

19. Consensus states of local majority rule in stochastic process

Energy Technology Data Exchange (ETDEWEB)

Luo, Yu-Pin [Department of Electronic Engineering, National Formosa University, Huwei, 63201, Taiwan (China); Tang, Chia-Wei; Xu, Hong-Yuan [Department of Physics, Chung-Yuan Christian University, Chungli, 32023, Taiwan (China); Wu, Jinn-Wen [Department of Applied Mathematics, Chung-Yuan Christian University, Chungli, 32023, Taiwan (China); Huang, Ming-Chang, E-mail: mchuang@cycu.edu.tw [Center for Theoretical Science and Department of Physics, Chung-Yuan Christian University, Chungli, 32023, Taiwan (China)

2015-04-03

A sufficient condition for a network system to reach a consensus state of the local majority rule is shown. The influence of interpersonal environment on the occurrence probability of consensus states for Watts–Strogatz and scale-free networks with random initial states is analyzed by numerical method. We also propose a stochastic local majority rule to study the mean first passage time from a random state to a consensus and the escape rate from a consensus state for systems in a noisy environment. Our numerical results show that there exists a window of fluctuation strengths for which the mean first passage time from a random to a consensus state reduces greatly, and the escape rate of consensus states obeys the Arrhenius equation in the window. - Highlights: • A sufficient condition for reaching a consensus. • The relation between the geometry of networks and the reachability of a consensus. • Stochastic local majority rule. • The mean first-passage time and the escape rate of consensus states.

20. Consensus states of local majority rule in stochastic process

International Nuclear Information System (INIS)

Luo, Yu-Pin; Tang, Chia-Wei; Xu, Hong-Yuan; Wu, Jinn-Wen; Huang, Ming-Chang

2015-01-01

A sufficient condition for a network system to reach a consensus state of the local majority rule is shown. The influence of interpersonal environment on the occurrence probability of consensus states for Watts–Strogatz and scale-free networks with random initial states is analyzed by numerical method. We also propose a stochastic local majority rule to study the mean first passage time from a random state to a consensus and the escape rate from a consensus state for systems in a noisy environment. Our numerical results show that there exists a window of fluctuation strengths for which the mean first passage time from a random to a consensus state reduces greatly, and the escape rate of consensus states obeys the Arrhenius equation in the window. - Highlights: • A sufficient condition for reaching a consensus. • The relation between the geometry of networks and the reachability of a consensus. • Stochastic local majority rule. • The mean first-passage time and the escape rate of consensus states

1. Effect of the Potential Shape on the Stochastic Resonance Processes

Science.gov (United States)

Kenmoé, G. Djuidjé; Ngouongo, Y. J. Wadop; Kofané, T. C.

2015-10-01

The stochastic resonance (SR) induced by periodic signal and white noises in a periodic nonsinusoidal potential is investigated. This phenomenon is studied as a function of the friction coefficient as well as the shape of the potential. It is done through an investigation of the hysteresis loop area which is equivalent to the input energy lost by the system to the environment per period of the external force. SR is evident in some range of the shape parameter of the potential, but cannot be observed in the other range. Specially, variation of the shape potential affects significantly and not trivially the heigh of the potential barrier in the Kramers rate as well as the occurrence of SR. The finding results show crucial dependence of the temperature of occurrence of SR on the shape of the potential. It is noted that the maximum of the input energy generally decreases when the friction coefficient is increased.

2. Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient.

Science.gov (United States)

Måren, Inger Elisabeth; Kapfer, Jutta; Aarrestad, Per Arild; Grytnes, John-Arvid; Vandvik, Vigdis

2018-01-01

Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more

3. Multiplicative point process as a model of trading activity

Science.gov (United States)

Gontis, V.; Kaulakys, B.

2004-11-01

Signals consisting of a sequence of pulses show that inherent origin of the 1/ f noise is a Brownian fluctuation of the average interevent time between subsequent pulses of the pulse sequence. In this paper, we generalize the model of interevent time to reproduce a variety of self-affine time series exhibiting power spectral density S( f) scaling as a power of the frequency f. Furthermore, we analyze the relation between the power-law correlations and the origin of the power-law probability distribution of the signal intensity. We introduce a stochastic multiplicative model for the time intervals between point events and analyze the statistical properties of the signal analytically and numerically. Such model system exhibits power-law spectral density S( f)∼1/ fβ for various values of β, including β= {1}/{2}, 1 and {3}/{2}. Explicit expressions for the power spectra in the low-frequency limit and for the distribution density of the interevent time are obtained. The counting statistics of the events is analyzed analytically and numerically, as well. The specific interest of our analysis is related with the financial markets, where long-range correlations of price fluctuations largely depend on the number of transactions. We analyze the spectral density and counting statistics of the number of transactions. The model reproduces spectral properties of the real markets and explains the mechanism of power-law distribution of trading activity. The study provides evidence that the statistical properties of the financial markets are enclosed in the statistics of the time interval between trades. A multiplicative point process serves as a consistent model generating this statistics.

4. Levy-Student processes for a stochastic model of beam halos

Energy Technology Data Exchange (ETDEWEB)

Petroni, N. Cufaro [Department of Mathematics, University of Bari, and INFN Sezione di Bari, via E. Orabona 4, 70125 Bari (Italy)]. E-mail: cufaro@ba.infn.it; De Martino, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); De Siena, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); Illuminati, F. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy)

2006-06-01

We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

5. Levy-Student processes for a stochastic model of beam halos

International Nuclear Information System (INIS)

Petroni, N. Cufaro; De Martino, S.; De Siena, S.; Illuminati, F.

2006-01-01

We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams

6. Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology

CERN Document Server

2017-01-01

This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of s...

7. Stochastic Lorentz forces on a point charge moving near the conducting plate

International Nuclear Information System (INIS)

Hsiang, J.-T.; Wu, T.-H.; Lee, D.-S.

2008-01-01

The influence of quantized electromagnetic fields on a nonrelativistic charged particle moving near a conducting plate is studied. We give a field-theoretic derivation of the nonlinear, non-Markovian Langevin equation of the particle by the method of Feynman-Vernon influence functional. This stochastic approach incorporates not only the stochastic noise manifested from electromagnetic vacuum fluctuations, but also dissipation backreaction on a charge in the form of the retarded Lorentz forces. Since the imposition of the boundary is expected to anisotropically modify the effects of the fields on the evolution of the particle, we consider the motion of a charge undergoing small-amplitude oscillations in the direction either parallel or normal to the plane boundary. Under the dipole approximation for nonrelativistic motion, velocity fluctuations of the charge are found to grow linearly with time in the early stage of the evolution at the rather different rate, revealing strong anisotropic behavior. They are then asymptotically saturated as a result of the fluctuation-dissipation relation, and the same saturated value is found for the motion in both directions. The observational consequences are discussed

8. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession

NARCIS (Netherlands)

Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan Dirk; Salles, Joana Falcao

2015-01-01

Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with

9. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model

Science.gov (United States)

Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

2016-12-01

The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

10. A Family of Poisson Processes for Use in Stochastic Models of Precipitation

Science.gov (United States)

Penland, C.

2013-12-01

Both modified Poisson processes and compound Poisson processes can be relevant to stochastic parameterization of precipitation. This presentation compares the dynamical properties of these systems and discusses the physical situations in which each might be appropriate. If the parameters describing either class of systems originate in hydrodynamics, then proper consideration of stochastic calculus is required during numerical implementation of the parameterization. It is shown here that an improper numerical treatment can have severe implications for estimating rainfall distributions, particularly in the tails of the distributions and, thus, on the frequency of extreme events.

11. Continuous strong Markov processes in dimension one a stochastic calculus approach

CERN Document Server

Assing, Sigurd

1998-01-01

The book presents an in-depth study of arbitrary one-dimensional continuous strong Markov processes using methods of stochastic calculus. Departing from the classical approaches, a unified investigation of regular as well as arbitrary non-regular diffusions is provided. A general construction method for such processes, based on a generalization of the concept of a perfect additive functional, is developed. The intrinsic decomposition of a continuous strong Markov semimartingale is discovered. The book also investigates relations to stochastic differential equations and fundamental examples of irregular diffusions.

12. Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection

Directory of Open Access Journals (Sweden)

Gabriel Martos

2018-01-01

Full Text Available We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are relevant to detect anomalous or outlier functional data. A numerical experiment illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality rate curves as an interesting application in a real-data context to explore functional anomaly detection.

13. A New Stochastic Modeling of 3-D Mud Drapes Inside Point Bar Sands in Meandering River Deposits

Energy Technology Data Exchange (ETDEWEB)

Yin, Yanshu, E-mail: yys6587@126.com [Yangtze University, School of Geosciences (China)

2013-12-15

The environment of major sediments of eastern China oilfields is a meandering river where mud drapes inside point bar sand occur and are recognized as important factors for underground fluid flow and distribution of the remaining oil. The present detailed architectural analysis, and the related mud drapes' modeling inside a point bar, is practical work to enhance oil recovery. This paper illustrates a new stochastic modeling of mud drapes inside point bars. The method is a hierarchical strategy and composed of three nested steps. Firstly, the model of meandering channel bodies is established using the Fluvsim method. Each channel centerline obtained from the Fluvsim is preserved for the next simulation. Secondly, the curvature ratios of each meandering river at various positions are calculated to determine the occurrence of each point bar. The abandoned channel is used to characterize the geometry of each defined point bar. Finally, mud drapes inside each point bar are predicted through random sampling of various parameters, such as number, horizontal intervals, dip angle, and extended distance of mud drapes. A dataset, collected from a reservoir in the Shengli oilfield of China, was used to illustrate the mud drapes' building procedure proposed in this paper. The results show that the inner architectural elements of the meandering river are depicted fairly well in the model. More importantly, the high prediction precision from the cross validation of five drilled wells shows the practical value and significance of the proposed method.

14. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race.

Science.gov (United States)

Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M

2017-10-01

Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.

15. Stochastic Analysis 2010

CERN Document Server

Crisan, Dan

2011-01-01

"Stochastic Analysis" aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sa

16. Stochastic evolutionary voluntary public goods game with punishment in a Quasi-birth-and-death process.

Science.gov (United States)

Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

2017-11-23

Traditional replication dynamic model and the corresponding concept of evolutionary stable strategy (ESS) only takes into account whether the system can return to the equilibrium after being subjected to a small disturbance. In the real world, due to continuous noise, the ESS of the system may not be stochastically stable. In this paper, a model of voluntary public goods game with punishment is studied in a stochastic situation. Unlike the existing model, we describe the evolutionary process of strategies in the population as a generalized quasi-birth-and-death process. And we investigate the stochastic stable equilibrium (SSE) instead. By numerical experiments, we get all possible SSEs of the system for any combination of parameters, and investigate the influence of parameters on the probabilities of the system to select different equilibriums. It is found that in the stochastic situation, the introduction of the punishment and non-participation strategies can change the evolutionary dynamics of the system and equilibrium of the game. There is a large range of parameters that the system selects the cooperative states as its SSE with a high probability. This result provides us an insight and control method for the evolution of cooperation in the public goods game in stochastic situations.

17. Stochastic light-cone CTMRG: a new DMRG approach to stochastic models 02.50.Ey Stochastic processes; 64.60.Ht Dynamic critical phenomena; 02.70.-c Computational techniques; 05.10.Cc Renormalization group methods;

CERN Document Server

Kemper, A; Nishino, T; Schadschneider, A; Zittartz, J

2003-01-01

We develop a new variant of the recently introduced stochastic transfer matrix DMRG which we call stochastic light-cone corner-transfer-matrix DMRG (LCTMRG). It is a numerical method to compute dynamic properties of one-dimensional stochastic processes. As suggested by its name, the LCTMRG is a modification of the corner-transfer-matrix DMRG, adjusted by an additional causality argument. As an example, two reaction-diffusion models, the diffusion-annihilation process and the branch-fusion process are studied and compared with exact data and Monte Carlo simulations to estimate the capability and accuracy of the new method. The number of possible Trotter steps of more than 10 sup 5 shows a considerable improvement on the old stochastic TMRG algorithm.

18. Deterministic flows of order-parameters in stochastic processes of quantum Monte Carlo method

International Nuclear Information System (INIS)

Inoue, Jun-ichi

2010-01-01

In terms of the stochastic process of quantum-mechanical version of Markov chain Monte Carlo method (the MCMC), we analytically derive macroscopically deterministic flow equations of order parameters such as spontaneous magnetization in infinite-range (d(= ∞)-dimensional) quantum spin systems. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding (d + 1)-dimensional classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. In the steady state, we show that the equations are identical to the saddle point equations for the equilibrium state of the same system. The equation for the dynamical Ising model is recovered in the classical limit. We also check the validity of the static approximation by making use of computer simulations for finite size systems and discuss several possible extensions of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we shall use our procedure to evaluate the decoding process of Bayesian image restoration. With the assistance of the concept of dynamical replica theory (the DRT), we derive the zero-temperature flow equation of image restoration measure showing some 'non-monotonic' behaviour in its time evolution.

19. Modelling on optimal portfolio with exchange rate based on discontinuous stochastic process

Science.gov (United States)

Yan, Wei; Chang, Yuwen

2016-12-01

Considering the stochastic exchange rate, this paper is concerned with the dynamic portfolio selection in financial market. The optimal investment problem is formulated as a continuous-time mathematical model under mean-variance criterion. These processes follow jump-diffusion processes (Weiner process and Poisson process). Then the corresponding Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and its efferent frontier is obtained. Moreover, the optimal strategy is also derived under safety-first criterion.

20. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures

Science.gov (United States)

Liu, Zhangjun; Liu, Zenghui

2018-06-01

This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.

1. ℋ∞ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process

Directory of Open Access Journals (Sweden)

E. K. Boukas

2004-01-01

Full Text Available This paper considers the stabilization problem of the class of continuous-time linear stochastic hybrid systems with Wiener process. The ℋ∞ state feedback stabilization problem is treated. A state feedback controller with constant gain that does not require access to the system mode is designed. LMI-based conditions are developed to design the state feedback controller with constant gain that stochastically stabilizes the studied class of systems and, at the same time, achieve the disturbance rejection of a desired level. The minimum disturbance rejection is also determined. Numerical examples are given to show the usefulness of the proposed results.

2. Stochastic processes and functional analysis a volume of recent advances in honor of M. M. Rao

CERN Document Server

Krinik, Alan C

2004-01-01

This extraordinary compilation is an expansion of the recent American Mathematical Society Special Session celebrating M. M. Rao's distinguished career and includes most of the presented papers as well as ancillary contributions from session invitees. This book shows the effectiveness of abstract analysis for solving fundamental problems of stochastic theory, specifically the use of functional analytic methods for elucidating stochastic processes, as made manifest in M. M. Rao's prolific research achievements. Featuring a biography of M. M. Rao, a complete bibliography of his published works,

3. Information transfer with rate-modulated Poisson processes: a simple model for nonstationary stochastic resonance.

Science.gov (United States)

Goychuk, I

2001-08-01

Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.

4. Strategy Complexity of Finite-Horizon Markov Decision Processes and Simple Stochastic Games

DEFF Research Database (Denmark)

Ibsen-Jensen, Rasmus; Chatterjee, Krishnendu

2012-01-01

Markov decision processes (MDPs) and simple stochastic games (SSGs) provide a rich mathematical framework to study many important problems related to probabilistic systems. MDPs and SSGs with finite-horizon objectives, where the goal is to maximize the probability to reach a target state in a given...

5. Using Max-Plus Algebra for the Evaluation of Stochastic Process Algebra Prefixes

NARCIS (Netherlands)

Cloth, L.; de Alfaro, L.; Gilmore, S.; Bohnenkamp, H.C.; Haverkort, Boudewijn R.H.M.

2001-01-01

In this paper, the concept of complete finite prefixes for process algebra expressions is extended to stochastic models. Events are supposed to happen after a delay that is determined by random variables assigned to the preceding conditions. Max-plus algebra expressions are shown to provide an

6. Explicit calibration and simulation of stochastic fields by low-order ARMA processes

DEFF Research Database (Denmark)

Krenk, Steen

2011-01-01

A simple framework for autoregressive simulation of stochastic fields is presented. The autoregressive format leads to a simple exponential correlation structure in the time-dimension. In the case of scalar processes a more detailed correlation structure can be obtained by adding memory...... to the process via an extension to autoregressive moving average (ARMA) processes. The ARMA format incorporates a more detailed correlation structure by including previous values of the simulated process. Alternatively, a more detailed correlation structure can be obtained by including additional 'state......-space' variables in the simulation. For a scalar process this would imply an increase of the dimension of the process to be simulated. In the case of a stochastic field the correlation in the time-dimension is represented, although indirectly, in the simultaneous spatial correlation. The model with the shortest...

7. Kinetic theory of age-structured stochastic birth-death processes

Science.gov (United States)

Greenman, Chris D.; Chou, Tom

2016-01-01

Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but are unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Stochastic theories that treat semi-Markov age-dependent processes using, e.g., the Bellman-Harris equation do not resolve a population's age structure and are unable to quantify population-size dependencies. Conversely, current theories that include size-dependent population dynamics (e.g., mathematical models that include carrying capacity such as the logistic equation) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new, fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a Bogoliubov--Born--Green--Kirkwood--Yvon-like hierarchy. Explicit solutions are derived in three limits: no birth, no death, and steady state. These are then compared with their corresponding mean-field results. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution.

8. A Doubly Stochastic Change Point Detection Algorithm for Noisy Biological Signals

Directory of Open Access Journals (Sweden)

Nathan Gold

2018-01-01

Full Text Available Experimentally and clinically collected time series data are often contaminated with significant confounding noise, creating short, noisy time series. This noise, due to natural variability and measurement error, poses a challenge to conventional change point detection methods. We propose a novel and robust statistical method for change point detection for noisy biological time sequences. Our method is a significant improvement over traditional change point detection methods, which only examine a potential anomaly at a single time point. In contrast, our method considers all suspected anomaly points and considers the joint probability distribution of the number of change points and the elapsed time between two consecutive anomalies. We validate our method with three simulated time series, a widely accepted benchmark data set, two geological time series, a data set of ECG recordings, and a physiological data set of heart rate variability measurements of fetal sheep model of human labor, comparing it to three existing methods. Our method demonstrates significantly improved performance over the existing point-wise detection methods.

9. The complexity of interior point methods for solving discounted turn-based stochastic games

DEFF Research Database (Denmark)

Hansen, Thomas Dueholm; Ibsen-Jensen, Rasmus

2013-01-01

for general 2TBSGs. This implies that a number of interior point methods can be used to solve 2TBSGs. We consider two such algorithms: the unified interior point method of Kojima, Megiddo, Noma, and Yoshise, and the interior point potential reduction algorithm of Kojima, Megiddo, and Ye. The algorithms run...... states and discount factor γ we get κ=Θ(n(1−γ)2) , −δ=Θ(n√1−γ) , and 1/θ=Θ(n(1−γ)2) in the worst case. The lower bounds for κ, − δ, and 1/θ are all obtained using the same family of deterministic games....

10. Some probabilistic properties of fractional point processes

KAUST Repository

Garra, Roberto

2017-05-16

In this article, the first hitting times of generalized Poisson processes N-f (t), related to Bernstein functions f are studied. For the spacefractional Poisson processes, N alpha (t), t > 0 ( corresponding to f = x alpha), the hitting probabilities P{T-k(alpha) < infinity} are explicitly obtained and analyzed. The processes N-f (t) are time-changed Poisson processes N( H-f (t)) with subordinators H-f (t) and here we study N(Sigma H-n(j= 1)f j (t)) and obtain probabilistic features of these extended counting processes. A section of the paper is devoted to processes of the form N( G(H,v) (t)) where G(H,v) (t) are generalized grey Brownian motions. This involves the theory of time-dependent fractional operators of the McBride form. While the time-fractional Poisson process is a renewal process, we prove that the space-time Poisson process is no longer a renewal process.

11. A logistic regression estimating function for spatial Gibbs point processes

DEFF Research Database (Denmark)

We propose a computationally efficient logistic regression estimating function for spatial Gibbs point processes. The sample points for the logistic regression consist of the observed point pattern together with a random pattern of dummy points. The estimating function is closely related to the p......We propose a computationally efficient logistic regression estimating function for spatial Gibbs point processes. The sample points for the logistic regression consist of the observed point pattern together with a random pattern of dummy points. The estimating function is closely related...

12. Some probabilistic properties of fractional point processes

KAUST Repository

Garra, Roberto; Orsingher, Enzo; Scavino, Marco

2017-01-01

P{T-k(alpha) < infinity} are explicitly obtained and analyzed. The processes N-f (t) are time-changed Poisson processes N( H-f (t)) with subordinators H-f (t) and here we study N(Sigma H-n(j= 1)f j (t)) and obtain probabilistic features

13. On statistical analysis of compound point process

Czech Academy of Sciences Publication Activity Database

Volf, Petr

2006-01-01

Roč. 35, 2-3 (2006), s. 389-396 ISSN 1026-597X R&D Projects: GA ČR(CZ) GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : counting process * compound process * hazard function * Cox -model Subject RIV: BB - Applied Statistics, Operational Research

14. Intensity-dependent point spread image processing

International Nuclear Information System (INIS)

Cornsweet, T.N.; Yellott, J.I.

1984-01-01

There is ample anatomical, physiological and psychophysical evidence that the mammilian retina contains networks that mediate interactions among neighboring receptors, resulting in intersecting transformations between input images and their corresponding neural output patterns. The almost universally accepted view is that the principal form of interaction involves lateral inhibition, resulting in an output pattern that is the convolution of the input with a ''Mexican hat'' or difference-of-Gaussians spread function, having a positive center and a negative surround. A closely related process is widely applied in digital image processing, and in photography as ''unsharp masking''. The authors show that a simple and fundamentally different process, involving no inhibitory or subtractive terms can also account for the physiological and psychophysical findings that have been attributed to lateral inhibition. This process also results in a number of fundamental effects that occur in mammalian vision and that would be of considerable significance in robotic vision, but which cannot be explained by lateral inhibitory interaction

15. An extension of clarke's model with stochastic amplitude flip processes

KAUST Repository

Hoel, Hakon; Nyberg, Henrik

2014-01-01

. By rigorous analysis and numerical studies, we show that in many settings, signal realizations are generated more efficiently by Gaussian process algorithms than by the MFC model's algorithm. Numerical examples that strengthen these observations are also

16. A stochastic model of multiple scattering of charged particles: process, transport equation and solutions

International Nuclear Information System (INIS)

Papiez, L.; Moskvin, V.; Tulovsky, V.

2001-01-01

The process of angular-spatial evolution of multiple scattering of charged particles can be described by a special case of Boltzmann integro-differential equation called Lewis equation. The underlying stochastic process for this evolution is the compound Poisson process on the surface of the unit sphere. The significant portion of events that constitute compound Poisson process that describes multiple scattering have diffusional character. This property allows to analyze the process of angular-spatial evolution of multiple scattering of charged particles as combination of soft and hard collision processes and compute appropriately its transition densities. These computations provide a method of the approximate solution to the Lewis equation. (orig.)

17. Stochastic modelling for biodosimetry: Predicting the chromosomal response to radiation at different time points after exposure

Science.gov (United States)

Deperas-Standylo, Joanna; Gudowska-Nowak, Ewa; Ritter, Sylvia

2014-07-01

Cytogenetic data accumulated from the experiments with peripheral blood lymphocytes exposed to densely ionizing radiation clearly demonstrate that for particles with linear energy transfer (LET) >100 keV/ μm the derived relative biological effectiveness (RBE) will strongly depend on the time point chosen for the analysis. A reasonable prediction of radiation-induced chromosome damage and its distribution among cells can be achieved by exploiting Monte Carlo methodology along with the information about the radius of the penetrating ion-track and the LET of the ion beam. In order to examine the relationship between the track structure and the distribution of aberrations induced in human lymphocytes and to clarify the correlation between delays in the cell cycle progression and the aberration burden visible at the first post-irradiation mitosis, we have analyzed chromosome aberrations in lymphocytes exposed to Fe-ions with LET values of 335 keV/ μm and formulated a Monte Carlo model which reflects time-delay in mitosis of aberrant cells. Within the model the frequency distributions of aberrations among cells follow the pattern of local energy distribution and are well approximated by a time-dependent compound Poisson statistics. The cell-division cycle of undamaged and aberrant cells and chromosome aberrations are modelled as a renewal process represented by a random sum of (independent and identically distributed) random elements S N = ∑ N i=0 X i . Here N stands for the number of particle traversals of cell nucleus, each leading to a statistically independent formation of X i aberrations. The parameter N is itself a random variable and reflects the cell cycle delay of heavily damaged cells. The probability distribution of S N follows a general law for which the moment generating function satisfies the relation Φ S N = Φ N ( Φ X i ). Formulation of the Monte Carlo model which allows to predict expected fluxes of aberrant and non-aberrant cells has been based

18. An effective streamflow process model for optimal reservoir operation using stochastic dual dynamic programming

OpenAIRE

Raso , L.; Malaterre , P.O.; Bader , J.C.

2017-01-01

International audience; This article presents an innovative streamflow process model for use in reservoir operational rule design in stochastic dual dynamic programming (SDDP). Model features, which can be applied independently, are (1) a multiplicative process model for the forward phase and its linearized version for the backward phase; and (2) a nonuniform time-step length that is inversely proportional to seasonal variability. The advantages are (1) guaranteeing positive streamflow values...

19. Stochastic Analysis of a Queue Length Model Using a Graphics Processing Unit

Czech Academy of Sciences Publication Activity Database

Přikryl, Jan; Kocijan, J.

2012-01-01

Roč. 5, č. 2 (2012), s. 55-62 ISSN 1802-971X R&D Projects: GA MŠk(CZ) MEB091015 Institutional support: RVO:67985556 Keywords : graphics processing unit * GPU * Monte Carlo simulation * computer simulation * modeling Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/prikryl-stochastic analysis of a queue length model using a graphics processing unit.pdf

20. Modeling laser velocimeter signals as triply stochastic Poisson processes

Science.gov (United States)

Mayo, W. T., Jr.

1976-01-01

Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.

1. Learning process mapping heuristics under stochastic sampling overheads

Science.gov (United States)

Ieumwananonthachai, Arthur; Wah, Benjamin W.

1991-01-01

A statistical method was developed previously for improving process mapping heuristics. The method systematically explores the space of possible heuristics under a specified time constraint. Its goal is to get the best possible heuristics while trading between the solution quality of the process mapping heuristics and their execution time. The statistical selection method is extended to take into consideration the variations in the amount of time used to evaluate heuristics on a problem instance. The improvement in performance is presented using the more realistic assumption along with some methods that alleviate the additional complexity.

2. Statistical properties of several models of fractional random point processes

Science.gov (United States)

Bendjaballah, C.

2011-08-01

Statistical properties of several models of fractional random point processes have been analyzed from the counting and time interval statistics points of view. Based on the criterion of the reduced variance, it is seen that such processes exhibit nonclassical properties. The conditions for these processes to be treated as conditional Poisson processes are examined. Numerical simulations illustrate part of the theoretical calculations.

3. Stochastic model of milk homogenization process using Markov's chain

Directory of Open Access Journals (Sweden)

A. A. Khvostov

2016-01-01

Full Text Available The process of development of a mathematical model of the process of homogenization of dairy products is considered in the work. The theory of Markov's chains was used in the development of the mathematical model, Markov's chain with discrete states and continuous parameter for which the homogenisation pressure is taken, being the basis for the model structure. Machine realization of the model is implemented in the medium of structural modeling MathWorks Simulink™. Identification of the model parameters was carried out by minimizing the standard deviation calculated from the experimental data for each fraction of dairy products fat phase. As the set of experimental data processing results of the micrographic images of fat globules of whole milk samples distribution which were subjected to homogenization at different pressures were used. Pattern Search method was used as optimization method with the Latin Hypercube search algorithm from Global Optimization Тoolbox library. The accuracy of calculations averaged over all fractions of 0.88% (the relative share of units, the maximum relative error was 3.7% with the homogenization pressure of 30 MPa, which may be due to the very abrupt change in properties from the original milk in the particle size distribution at the beginning of the homogenization process and the lack of experimental data at homogenization pressures of below the specified value. The mathematical model proposed allows to calculate the profile of volume and mass distribution of the fat phase (fat globules in the product, depending on the homogenization pressure and can be used in the laboratory and research of dairy products composition, as well as in the calculation, design and modeling of the process equipment of the dairy industry enterprises.

4. Effects of stochastic interest rates in decision making under risk: A Markov decision process model for forest management

Science.gov (United States)

Mo Zhou; Joseph Buongiorno

2011-01-01

Most economic studies of forest decision making under risk assume a fixed interest rate. This paper investigated some implications of this stochastic nature of interest rates. Markov decision process (MDP) models, used previously to integrate stochastic stand growth and prices, can be extended to include variable interest rates as well. This method was applied to...

5. Stochastic behavior of cooling processes in hot nuclei

International Nuclear Information System (INIS)

de Oliveira, P.M.; Sa Martins, J.S.; Szanto de Toledo, A.

1997-01-01

The collapse of structure effects observed in hot nuclei is interpreted in terms of a dynamic lattice model which describes the process of nucleon (clusters) evaporation from a hot nucleus, predicting the final mass distribution. Results are compared with experimental data for the 10 B+ 9 Be and 10 B+ 10 B reactions, and indicate that the structures observed in the low-energy mass distributions in both simulation and experiment are a consequence of the competition between the residual interactions and the thermalization dissipative process. As a characteristic feature of complex evolving systems, this competition leads to long term memory during the dissipative path, the observables becoming thus insensitive to the actual microscopic interactions. copyright 1997 The American Physical Society

6. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

Science.gov (United States)

Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

2013-04-01

Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

7. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

Science.gov (United States)

Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

2013-04-01

Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

8. Microbial profile and critical control points during processing of 'robo ...

African Journals Online (AJOL)

Microbial profile and critical control points during processing of 'robo' snack from ... the relevant critical control points especially in relation to raw materials and ... to the quality of the various raw ingredients used were the roasting using earthen

9. Reflection Positive Stochastic Processes Indexed by Lie Groups

Science.gov (United States)

Jorgensen, Palle E. T.; Neeb, Karl-Hermann; Ólafsson, Gestur

2016-06-01

Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.

10. Tempered stable distributions stochastic models for multiscale processes

CERN Document Server

Grabchak, Michael

2015-01-01

This brief is concerned with tempered stable distributions and their associated Levy processes. It is a good text for researchers interested in learning about tempered stable distributions.  A tempered stable distribution is one which takes a stable distribution and modifies its tails to make them lighter. The motivation for this class comes from the fact that infinite variance stable distributions appear to provide a good fit to data in a variety of situations, but the extremely heavy tails of these models are not realistic for most real world applications. The idea of using distributions that modify the tails of stable models to make them lighter seems to have originated in the influential paper of Mantegna and Stanley (1994). Since then, these distributions have been extended and generalized in a variety of ways. They have been applied to a wide variety of areas including mathematical finance, biostatistics,computer science, and physics.

11. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles

Science.gov (United States)

Katsoulakis, Markos A.; Vlachos, Dionisios G.

2003-11-01

We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.

12. Mutual information as a two-point correlation function in stochastic lattice models

International Nuclear Information System (INIS)

Müller, Ulrich; Hinrichsen, Haye

2013-01-01

In statistical physics entropy is usually introduced as a global quantity which expresses the amount of information that would be needed to specify the microscopic configuration of a system. However, for lattice models with infinitely many possible configurations per lattice site it is also meaningful to introduce entropy as a local observable that describes the information content of a single lattice site. Likewise, the mutual information between two sites can be interpreted as a two-point correlation function which quantifies how much information a lattice site has about the state of another one and vice versa. Studying a particular growth model we demonstrate that the mutual information exhibits scaling properties that are consistent with the established phenomenological scaling picture. (paper)

13. An adaptive algorithm for simulation of stochastic reaction-diffusion processes

International Nuclear Information System (INIS)

Ferm, Lars; Hellander, Andreas; Loetstedt, Per

2010-01-01

We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the timesteps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.

14. Correlation techniques for the improvement of signal-to-noise ratio in measurements with stochastic processes

CERN Document Server

Reddy, V R; Reddy, T G; Reddy, P Y; Reddy, K R

2003-01-01

An AC modulation technique is described to convert stochastic signal variations into an amplitude variation and its retrieval through Fourier analysis. It is shown that this AC detection of signals of stochastic processes when processed through auto- and cross-correlation techniques improve the signal-to-noise ratio; the correlation techniques serve a similar purpose of frequency and phase filtering as that of phase-sensitive detection. A few model calculations applied to nuclear spectroscopy measurements such as Angular Correlations, Mossbauer spectroscopy and Pulse Height Analysis reveal considerable improvement in the sensitivity of signal detection. Experimental implementation of the technique is presented in terms of amplitude variations of harmonics representing the derivatives of normal spectra. Improved detection sensitivity to spectral variations is shown to be significant. These correlation techniques are general and can be made applicable to all the fields of particle counting where measurements ar...

15. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process.

Science.gov (United States)

Portugues, Ruben; Haesemeyer, Martin; Blum, Mirella L; Engert, Florian

2015-05-01

Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models. © 2015. Published by The Company of Biologists Ltd.

16. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times.

Science.gov (United States)

Yang, Xin; Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

2016-01-01

This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.

17. A study on stochastic resonance of one-dimensional bistable system in the neighborhood of bifurcation point with the moment method

Energy Technology Data Exchange (ETDEWEB)

Zhang Guangjun [State Key Laboratory of Mechanical Structural Strength and Vibration, School of Architectural Engineering and Mechanics, Xi' an Jiaotong University, Xi' an, Shaanxi (China); Xu Jianxue [State Key Laboratory of Mechanical Structural Strength and Vibration, School of Architectural Engineering and Mechanics, Xi' an Jiaotong University, Xi' an, Shaanxi (China)] e-mail: jxxu@mail.xjtu.edu.cn

2006-02-01

This paper analyzes the stochastic resonance induced by a novel transition of one-dimensional bistable system in the neighborhood of bifurcation point with the method of moment, which refer to the transition of system motion among a potential well of stable fixed point before bifurcation of original system and double-well potential of two coexisting stable fixed points after original system bifurcation at the presence of internal noise. The results show: the semi-analytical result of stochastic resonance of one-dimensional bistable system in the neighborhood of bifurcation point may be obtained, and the semi-analytical result is in accord with the one of Monte Carlo simulation qualitatively, the occurrence of stochastic resonance is related to the bifurcation of noisy nonlinear dynamical system moment equations, which induce the transfer of energy of ensemble average (Ex) of system response in each frequency component and make the energy of ensemble average of system response concentrate on the frequency of input signal, stochastic resonance occurs.

18. A study on stochastic resonance of one-dimensional bistable system in the neighborhood of bifurcation point with the moment method

International Nuclear Information System (INIS)

Zhang Guangjun; Xu Jianxue

2006-01-01

This paper analyzes the stochastic resonance induced by a novel transition of one-dimensional bistable system in the neighborhood of bifurcation point with the method of moment, which refer to the transition of system motion among a potential well of stable fixed point before bifurcation of original system and double-well potential of two coexisting stable fixed points after original system bifurcation at the presence of internal noise. The results show: the semi-analytical result of stochastic resonance of one-dimensional bistable system in the neighborhood of bifurcation point may be obtained, and the semi-analytical result is in accord with the one of Monte Carlo simulation qualitatively, the occurrence of stochastic resonance is related to the bifurcation of noisy nonlinear dynamical system moment equations, which induce the transfer of energy of ensemble average (Ex) of system response in each frequency component and make the energy of ensemble average of system response concentrate on the frequency of input signal, stochastic resonance occurs

19. Stationary and related stochastic processes sample function properties and their applications

CERN Document Server

Cramér, Harald

2004-01-01

This graduate-level text offers a comprehensive account of the general theory of stationary processes, with special emphasis on the properties of sample functions. Assuming a familiarity with the basic features of modern probability theory, the text develops the foundations of the general theory of stochastic processes, examines processes with a continuous-time parameter, and applies the general theory to procedures key to the study of stationary processes. Additional topics include analytic properties of the sample functions and the problem of time distribution of the intersections between a

20. Low Variance Couplings for Stochastic Models of Intracellular Processes with Time-Dependent Rate Functions.

Science.gov (United States)

Anderson, David F; Yuan, Chaojie

2018-04-18

A number of coupling strategies are presented for stochastically modeled biochemical processes with time-dependent parameters. In particular, the stacked coupling is introduced and is shown via a number of examples to provide an exceptionally low variance between the generated paths. This coupling will be useful in the numerical computation of parametric sensitivities and the fast estimation of expectations via multilevel Monte Carlo methods. We provide the requisite estimators in both cases.

1. A decision dependent stochastic process model for repairable systems with applications

Directory of Open Access Journals (Sweden)

Paul F. Zantek

2015-12-01

This paper mathematically formalizes the notion of how management actions impact the functioning of a repairable system over time by developing a new stochastic process model for such systems. The proposed model is illustrated using both simulated and real data. The proposed model compares favorably to other models for well-known data on Boeing airplanes. The model is further illustrated and compared to other models on failure time and maintenance data stemming from the South Texas Project nuclear power plant.

2. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

Science.gov (United States)

Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão

2015-03-17

Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.

3. Model-free stochastic processes studied with q-wavelet-based informational tools

International Nuclear Information System (INIS)

Perez, D.G.; Zunino, L.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.

2007-01-01

We undertake a model-free investigation of stochastic processes employing q-wavelet based quantifiers, that constitute a generalization of their Shannon counterparts. It is shown that (i) interesting physical information becomes accessible in such a way (ii) for special q values the quantifiers are more sensitive than the Shannon ones and (iii) there exist an implicit relationship between the Hurst parameter H and q within this wavelet framework

4. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

OpenAIRE

Li, Shilong; Yin, Chuancun; Zhao, Xia; Dai, Hongshuai

2017-01-01

Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigat...

5. Stochastic processes, optimization, and control theory a volume in honor of Suresh Sethi

CERN Document Server

Yan, Houmin

2006-01-01

This edited volume contains 16 research articles. It presents recent and pressing issues in stochastic processes, control theory, differential games, optimization, and their applications in finance, manufacturing, queueing networks, and climate control. One of the salient features is that the book is highly multi-disciplinary. The book is dedicated to Professor Suresh Sethi on the occasion of his 60th birthday, in view of his distinguished career.

6. Point processes and the position distribution of infinite boson systems

International Nuclear Information System (INIS)

Fichtner, K.H.; Freudenberg, W.

1987-01-01

It is shown that to each locally normal state of a boson system one can associate a point process that can be interpreted as the position distribution of the state. The point process contains all information one can get by position measurements and is determined by the latter. On the other hand, to each so-called Σ/sup c/-point process Q they relate a locally normal state with position distribution Q

7. Self-exciting point process in modeling earthquake occurrences

International Nuclear Information System (INIS)

Pratiwi, H.; Slamet, I.; Respatiwulan; Saputro, D. R. S.

2017-01-01

In this paper, we present a procedure for modeling earthquake based on spatial-temporal point process. The magnitude distribution is expressed as truncated exponential and the event frequency is modeled with a spatial-temporal point process that is characterized uniquely by its associated conditional intensity process. The earthquakes can be regarded as point patterns that have a temporal clustering feature so we use self-exciting point process for modeling the conditional intensity function. The choice of main shocks is conducted via window algorithm by Gardner and Knopoff and the model can be fitted by maximum likelihood method for three random variables. (paper)

8. Modelling estimation and analysis of dynamic processes from image sequences using temporal random closed sets and point processes with application to the cell exocytosis and endocytosis

OpenAIRE

Díaz Fernández, Ester

2010-01-01

In this thesis, new models and methodologies are introduced for the analysis of dynamic processes characterized by image sequences with spatial temporal overlapping. The spatial temporal overlapping exists in many natural phenomena and should be addressed properly in several Science disciplines such as Microscopy, Material Sciences, Biology, Geostatistics or Communication Networks. This work is related to the Point Process and Random Closed Set theories, within Stochastic Ge...

9. Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review

Science.gov (United States)

Kumamoto, Shin-Ichiro; Kamihigashi, Takashi

2018-03-01

Many phenomena with power laws have been observed in various fields of the natural and social sciences, and these power laws are often interpreted as the macro behaviors of systems that consist of micro units. In this paper, we review some basic mathematical mechanisms that are known to generate power laws. In particular, we focus on stochastic processes including the Yule process and the Simon process as well as some recent models. The main purpose of this paper is to explain the mathematical details of their mechanisms in a self-contained manner.

10. Dimension reduction of Karhunen-Loeve expansion for simulation of stochastic processes

Science.gov (United States)

Liu, Zhangjun; Liu, Zixin; Peng, Yongbo

2017-11-01

Conventional Karhunen-Loeve expansions for simulation of stochastic processes often encounter the challenge of dealing with hundreds of random variables. For breaking through the barrier, a random function embedded Karhunen-Loeve expansion method is proposed in this paper. The updated scheme has a similar form to the conventional Karhunen-Loeve expansion, both involving a summation of a series of deterministic orthonormal basis and uncorrelated random variables. While the difference from the updated scheme lies in the dimension reduction of Karhunen-Loeve expansion through introducing random functions as a conditional constraint upon uncorrelated random variables. The random function is expressed as a single-elementary-random-variable orthogonal function in polynomial format (non-Gaussian variables) or trigonometric format (non-Gaussian and Gaussian variables). For illustrative purposes, the simulation of seismic ground motion is carried out using the updated scheme. Numerical investigations reveal that the Karhunen-Loeve expansion with random functions could gain desirable simulation results in case of a moderate sample number, except the Hermite polynomials and the Laguerre polynomials. It has the sound applicability and efficiency in simulation of stochastic processes. Besides, the updated scheme has the benefit of integrating with probability density evolution method, readily for the stochastic analysis of nonlinear structures.

11. Parameter estimation and change-point detection from Dynamic Contrast Enhanced MRI data using stochastic differential equations.

Science.gov (United States)

Cuenod, Charles-André; Favetto, Benjamin; Genon-Catalot, Valentine; Rozenholc, Yves; Samson, Adeline

2011-09-01

Dynamic Contrast Enhanced imaging (DCE-imaging) following a contrast agent bolus allows the extraction of information on tissue micro-vascularization. The dynamic signals obtained from DCE-imaging are modeled by pharmacokinetic compartmental models which integrate the Arterial Input Function. These models use ordinary differential equations (ODEs) to describe the exchanges between the arterial and capillary plasma and the extravascular-extracellular space. Their least squares fitting takes into account measurement noises but fails to deal with unpredictable fluctuations due to external/internal sources of variations (patients' anxiety, time-varying parameters, measurement errors in the input function, etc.). Adding Brownian components to the ODEs leads to stochastic differential equations (SDEs). In DCE-imaging, SDEs are discretely observed with an additional measurement noise. We propose to estimate the parameters of these noisy SDEs by maximum likelihood, using the Kalman filter. In DCE-imaging, the contrast agent injected in vein arrives in plasma with an unknown time delay. The delay parameter induces a change-point in the drift of the SDE and ODE models, which is estimated also. Estimations based on the SDE and ODE pharmacokinetic models are compared to real DCE-MRI data. They show that the use of SDE provides robustness in the estimation results. A simulation study confirms these results. Copyright © 2011 Elsevier Inc. All rights reserved.

12. Non-parametric Bayesian inference for inhomogeneous Markov point processes

DEFF Research Database (Denmark)

Berthelsen, Kasper Klitgaard; Møller, Jesper; Johansen, Per Michael

is a shot noise process, and the interaction function for a pair of points depends only on the distance between the two points and is a piecewise linear function modelled by a marked Poisson process. Simulation of the resulting posterior using a Metropolis-Hastings algorithm in the "conventional" way...

13. A tutorial on Palm distributions for spatial point processes

DEFF Research Database (Denmark)

Coeurjolly, Jean-Francois; Møller, Jesper; Waagepetersen, Rasmus Plenge

2017-01-01

This tutorial provides an introduction to Palm distributions for spatial point processes. Initially, in the context of finite point processes, we give an explicit definition of Palm distributions in terms of their density functions. Then we review Palm distributions in the general case. Finally, we...

14. Contribution to the stochastically studies of space-time dependable hydrological processes

International Nuclear Information System (INIS)

Kjaevski, Ivancho

2002-12-01

One of the fundaments of today's planning and water economy is Science of Hydrology. Science of Hydrology through the history had followed the development of the water management systems. Water management systems, during the time from single-approach evolved to complex and multi purpose systems. The dynamic and development of the today's society contributed for increasing the demand of clean water, and in the same time, the resources of clean water in the nature are reduced. In this kind of conditions, water management systems should resolve problems that are more complicated during managing of water sources. Solving the problems in water management, enable development and applying new methods and technologies in planning and management with water resources and water management systems like: systematical analyses, operational research, hierarchy decisions, expert systems, computer technology etc. Planning and management of water sources needs historical measured data for hydro metrological processes. In our country there are data of hydro metrological processes in period of 50-70, but in some Europe countries there are data more than 100 years. Water economy trends follow the hydro metrological trend research. The basic statistic techniques like sampling, probability distribution function, correlation and regression, are used about one intended and simple water management problems. Solving new problems about water management needs using of space-time stochastic technique, modem mathematical and statistical techniques during simulation and optimization of complex water systems. We need tree phases of development of the techniques to get secure hydrological models: i) Estimate the quality of hydro meteorological data, analyzing of their consistency, and homogeneous; ii) Structural analyze of hydro meteorological processes; iii) Mathematical models for modeling hydro meteorological processes. Very often, the third phase is applied for analyzing and modeling of hydro

15. On a stochastic process associated to non-abelian gauge fields

International Nuclear Information System (INIS)

Vilela Mendes, R.

1989-01-01

A stochastic process is constructed from a ground state measure that generalizes to non-abelian fields the ground state of abelian (free) gauge fields without fermions. Using a latticized version one shows how the process leads to a well-defined quantum theory in the Schroedinger representation. An analysis of the qualitative behaviour of the theory seems to imply a quasi-free behaviour at short distances and a maximally disordered field strength configuration for the low-momentum component of the ground state. Scaling relations for the mass gap are inferred from the theory of small random perturbations of dynamical systems. (orig.)

16. On time-dependent diffusion coefficients arising from stochastic processes with memory

Science.gov (United States)

Carpio-Bernido, M. Victoria; Barredo, Wilson I.; Bernido, Christopher C.

2017-08-01

Time-dependent diffusion coefficients arise from anomalous diffusion encountered in many physical systems such as protein transport in cells. We compare these coefficients with those arising from analysis of stochastic processes with memory that go beyond fractional Brownian motion. Facilitated by the Hida white noise functional integral approach, diffusion propagators or probability density functions (pdf) are obtained and shown to be solutions of modified diffusion equations with time-dependent diffusion coefficients. This should be useful in the study of complex transport processes.

17. SDE decomposition and A-type stochastic interpretation in nonequilibrium processes

Science.gov (United States)

Yuan, Ruoshi; Tang, Ying; Ao, Ping

2017-12-01

An innovative theoretical framework for stochastic dynamics based on the decomposition of a stochastic differential equation (SDE) into a dissipative component, a detailed-balance-breaking component, and a dual-role potential landscape has been developed, which has fruitful applications in physics, engineering, chemistry, and biology. It introduces the A-type stochastic interpretation of the SDE beyond the traditional Ito or Stratonovich interpretation or even the α-type interpretation for multidimensional systems. The potential landscape serves as a Hamiltonian-like function in nonequilibrium processes without detailed balance, which extends this important concept from equilibrium statistical physics to the nonequilibrium region. A question on the uniqueness of the SDE decomposition was recently raised. Our review of both the mathematical and physical aspects shows that uniqueness is guaranteed. The demonstration leads to a better understanding of the robustness of the novel framework. In addition, we discuss related issues including the limitations of an approach to obtaining the potential function from a steady-state distribution.

18. Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors

International Nuclear Information System (INIS)

Nafidi, A.; Gutiérrez, R.; Gutiérrez-Sánchez, R.; Ramos-Ábalos, E.; El Hachimi, S.

2016-01-01

The aim of this study is to model electric power consumption during a period of economic crisis, characterised by declining gross domestic product. A novel aspect of this study is its use of a Gamma-type diffusion process for short and medium-term forecasting – other techniques that have been used to describe such consumption patterns are not valid in this situation. In this study, we consider a new extension of the stochastic Gamma diffusion process by introducing time functions (exogenous factors) that affect its trend. This extension is defined in terms of Kolmogorov backward and forward equations. After obtaining the transition probability density function and the moments (specifically, the trend function), the inference on the process parameters is obtained by discrete sampling of the sample paths. Finally, this stochastic process is applied to model total net electricity consumption in Spain, when affected by the following set of exogenous factors: Gross Domestic Product (GDP), Gross Fixed Capital Formation (GFCF) and Final Domestic Consumption (FDC). - Highlights: • The aim is modelling and predicting electricity consumption in Spain. • We propose a Gamma-type diffusion process for short and medium-term forecasting. • We compared the fit using diffusion processes with different exogenous factors.

19. Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes

Science.gov (United States)

González Arenas, Zochil; Barci, Daniel G.

2012-12-01

Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward-Takahashi identities.

20. Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes

International Nuclear Information System (INIS)

Arenas, Zochil González; Barci, Daniel G

2012-01-01

Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward–Takahashi identities. (paper)

1. SHAPE FROM TEXTURE USING LOCALLY SCALED POINT PROCESSES

Directory of Open Access Journals (Sweden)

Eva-Maria Didden

2015-09-01

Full Text Available Shape from texture refers to the extraction of 3D information from 2D images with irregular texture. This paper introduces a statistical framework to learn shape from texture where convex texture elements in a 2D image are represented through a point process. In a first step, the 2D image is preprocessed to generate a probability map corresponding to an estimate of the unnormalized intensity of the latent point process underlying the texture elements. The latent point process is subsequently inferred from the probability map in a non-parametric, model free manner. Finally, the 3D information is extracted from the point pattern by applying a locally scaled point process model where the local scaling function represents the deformation caused by the projection of a 3D surface onto a 2D image.

2. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

Science.gov (United States)

Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

2014-05-28

Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

3. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

Energy Technology Data Exchange (ETDEWEB)

Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

2014-05-28

Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

4. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

International Nuclear Information System (INIS)

Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

2014-01-01

Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

5. Mechanistic spatio-temporal point process models for marked point processes, with a view to forest stand data

DEFF Research Database (Denmark)

Møller, Jesper; Ghorbani, Mohammad; Rubak, Ege Holger

We show how a spatial point process, where to each point there is associated a random quantitative mark, can be identified with a spatio-temporal point process specified by a conditional intensity function. For instance, the points can be tree locations, the marks can express the size of trees......, and the conditional intensity function can describe the distribution of a tree (i.e., its location and size) conditionally on the larger trees. This enable us to construct parametric statistical models which are easily interpretable and where likelihood-based inference is tractable. In particular, we consider maximum...

6. Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

Directory of Open Access Journals (Sweden)

Florin-Catalin ENACHE

2015-10-01

Full Text Available The growing character of the cloud business has manifested exponentially in the last 5 years. The capacity managers need to concentrate on a practical way to simulate the random demands a cloud infrastructure could face, even if there are not too many mathematical tools to simulate such demands.This paper presents an introduction into the most important stochastic processes and queueing theory concepts used for modeling computer performance. Moreover, it shows the cases where such concepts are applicable and when not, using clear programming examples on how to simulate a queue, and how to use and validate a simulation, when there are no mathematical concepts to back it up.

7. The ‘hit’ phenomenon: a mathematical model of human dynamics interactions as a stochastic process

Science.gov (United States)

Ishii, Akira; Arakaki, Hisashi; Matsuda, Naoya; Umemura, Sanae; Urushidani, Tamiko; Yamagata, Naoya; Yoshida, Narihiko

2012-06-01

A mathematical model for the ‘hit’ phenomenon in entertainment within a society is presented as a stochastic process of human dynamics interactions. The model uses only the advertisement budget time distribution as an input, and word-of-mouth (WOM), represented by posts on social network systems, is used as data to make a comparison with the calculated results. The unit of time is days. The WOM distribution in time is found to be very close to the revenue distribution in time. Calculations for the Japanese motion picture market based on the mathematical model agree well with the actual revenue distribution in time.

8. Poisson Stochastic Process and Basic Schauder and Sobolev Estimates in the Theory of Parabolic Equations

Science.gov (United States)

Krylov, N. V.; Priola, E.

2017-09-01

We show, among other things, how knowing Schauder or Sobolev-space estimates for the one-dimensional heat equation allows one to derive their multidimensional analogs for equations with coefficients depending only on the time variable with the same constants as in the case of the one-dimensional heat equation. The method is quite general and is based on using the Poisson stochastic process. It also applies to equations involving non-local operators. It looks like no other methods are available at this time and it is a very challenging problem to find a purely analytical approach to proving such results.

9. Strategic WIP Inventory Positioning for Make-to-Order Production with Stochastic Processing Times

Directory of Open Access Journals (Sweden)

Jingjing Jiang

2017-01-01

Full Text Available It is vital for make-to-order manufacturers to shorten the lead time to meet the customers’ requirements. Holding work-in-process (WIP inventory at more stations can reduce the lead time, but it also brings about higher inventory holding cost. Therefore, it is important to seek out the optimal set of stations to hold WIP inventory to minimize the total inventory holding cost, while meeting the required due date for the final product at the same time. Since the problem with deterministic processing times at the stations has been addressed, as a natural extension, in this study, we address the problem with stochastic processing times, which is more realistic in the manufacturing environment. Assuming that the processing times follow normal distributions, we propose a solution procedure using genetic algorithm.

10. Superior memory efficiency of quantum devices for the simulation of continuous-time stochastic processes

Science.gov (United States)

Elliott, Thomas J.; Gu, Mile

2018-03-01

Continuous-time stochastic processes pervade everyday experience, and the simulation of models of these processes is of great utility. Classical models of systems operating in continuous-time must typically track an unbounded amount of information about past behaviour, even for relatively simple models, enforcing limits on precision due to the finite memory of the machine. However, quantum machines can require less information about the past than even their optimal classical counterparts to simulate the future of discrete-time processes, and we demonstrate that this advantage extends to the continuous-time regime. Moreover, we show that this reduction in the memory requirement can be unboundedly large, allowing for arbitrary precision even with a finite quantum memory. We provide a systematic method for finding superior quantum constructions, and a protocol for analogue simulation of continuous-time renewal processes with a quantum machine.

11. Post-Processing in the Material-Point Method

DEFF Research Database (Denmark)

Andersen, Søren; Andersen, Lars Vabbersgaard

The material-point method (MPM) is a numerical method for dynamic or static analysis of solids using a discretization in time and space. The method has shown to be successful in modelling physical problems involving large deformations, which are difficult to model with traditional numerical tools...... such as the finite element method. In the material-point method, a set of material points is utilized to track the problem in time and space, while a computational background grid is utilized to obtain spatial derivatives relevant to the physical problem. Currently, the research within the material-point method......-point method. The first idea involves associating a volume with each material point and displaying the deformation of this volume. In the discretization process, the physical domain is divided into a number of smaller volumes each represented by a simple shape; here quadrilaterals are chosen for the presented...

12. Multivariate Product-Shot-noise Cox Point Process Models

DEFF Research Database (Denmark)

Jalilian, Abdollah; Guan, Yongtao; Mateu, Jorge

We introduce a new multivariate product-shot-noise Cox process which is useful for model- ing multi-species spatial point patterns with clustering intra-specific interactions and neutral, negative or positive inter-specific interactions. The auto and cross pair correlation functions of the process...... can be obtained in closed analytical forms and approximate simulation of the process is straightforward. We use the proposed process to model interactions within and among five tree species in the Barro Colorado Island plot....

13. URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries.

Science.gov (United States)

Drawert, Brian; Engblom, Stefan; Hellander, Andreas

2012-06-22

Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in molecular systems biology. Designing computational software for such applications poses several challenges. Firstly, realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries, including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological phenomena of actual interest. We therefore argue that simulation software needs to be both computationally efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs of increasingly complex biological modeling. We have developed URDME, a flexible software framework for general stochastic reaction-transport modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries, and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a mature geometry and mesh handling external software (Comsol Multiphysics) provides for a stable and interactive environment for model construction. The core simulation routines are logically separated from the model building interface and written in a low-level language for computational efficiency. The connection to the geometry handling software is realized via a Matlab interface which facilitates script computing, data management, and post-processing. For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively hides the complexity of managing the geometry and meshes, this means that newly developed methods may be tested in a realistic setting already at

14. Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks.

Science.gov (United States)

Gomez, Christophe; Hartung, Niklas

2018-01-01

Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.

15. Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods

Science.gov (United States)

Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo

2018-03-01

In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.

16. Analysis and Prediction on Vehicle Ownership Based on an Improved Stochastic Gompertz Diffusion Process

Directory of Open Access Journals (Sweden)

Huapu Lu

2017-01-01

Full Text Available This paper aims at introducing a new improved stochastic differential equation related to Gompertz curve for the projection of vehicle ownership growth. This diffusion model explains the relationship between vehicle ownership and GDP per capita, which has been studied as a Gompertz-like function before. The main innovations of the process lie in two parts: by modifying the deterministic part of the original Gompertz equation, the model can present the remaining slow increase when the S-shaped curve has reached its saturation level; by introducing the stochastic differential equation, the model can better fit the real data when there are fluctuations. Such comparisons are carried out based on data from US, UK, Japan, and Korea with a time span of 1960–2008. It turns out that the new process behaves better in fitting curves and predicting short term growth. Finally, a prediction of Chinese vehicle ownership up to 2025 is presented with the new model, as China is on the initial stage of motorization with much fluctuations in growth.

17. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

International Nuclear Information System (INIS)

Lee, Kwang Ho; Roh, Myung Sub

2013-01-01

There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors

18. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

Energy Technology Data Exchange (ETDEWEB)

Lee, Kwang Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

2013-10-15

There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors.

19. Nonparametric Inference of Doubly Stochastic Poisson Process Data via the Kernel Method.

Science.gov (United States)

Zhang, Tingting; Kou, S C

2010-01-01

Doubly stochastic Poisson processes, also known as the Cox processes, frequently occur in various scientific fields. In this article, motivated primarily by analyzing Cox process data in biophysics, we propose a nonparametric kernel-based inference method. We conduct a detailed study, including an asymptotic analysis, of the proposed method, and provide guidelines for its practical use, introducing a fast and stable regression method for bandwidth selection. We apply our method to real photon arrival data from recent single-molecule biophysical experiments, investigating proteins' conformational dynamics. Our result shows that conformational fluctuation is widely present in protein systems, and that the fluctuation covers a broad range of time scales, highlighting the dynamic and complex nature of proteins' structure.

20. Finding Order in Randomness: Single-Molecule Studies Reveal Stochastic RNA Processing | Center for Cancer Research

Science.gov (United States)

Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to multiple, randomly determined, or stochastic, pathways or outcomes. Regulatory checkpoints have been suggested as a means of ensuring quality control. However, current methods have been unable to tease apart the contributions of these processes at a single gene or on a time scale that could provide mechanistic insight. To begin to investigate the kinetic relationship between transcription and splicing, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues employed a single-molecule RNA imaging approach to monitor production and processing of a human β-globin reporter gene in living cells.

1. PROCESSING UAV AND LIDAR POINT CLOUDS IN GRASS GIS

Directory of Open Access Journals (Sweden)

V. Petras

2016-06-01

Full Text Available Today’s methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM, and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM. Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL, Point Cloud Library (PCL, and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.

2. Scattering analysis of point processes and random measures

International Nuclear Information System (INIS)

Hanisch, K.H.

1984-01-01

In the present paper scattering analysis of point processes and random measures is studied. Known formulae which connect the scattering intensity with the pair distribution function of the studied structures are proved in a rigorous manner with tools of the theory of point processes and random measures. For some special fibre processes the scattering intensity is computed. For a class of random measures, namely for 'grain-germ-models', a new formula is proved which yields the pair distribution function of the 'grain-germ-model' in terms of the pair distribution function of the underlying point process (the 'germs') and of the mean structure factor and the mean squared structure factor of the particles (the 'grains'). (author)

3. Dew point vs bubble point : a misunderstood constraint on gravity drainage processes

Energy Technology Data Exchange (ETDEWEB)

Nenninger, J. [N-Solv Corp., Calgary, AB (Canada); Gunnewiek, L. [Hatch Ltd., Mississauga, ON (Canada)

2009-07-01

This study demonstrated that gravity drainage processes that use blended fluids such as solvents have an inherently unstable material balance due to differences between dew point and bubble point compositions. The instability can lead to the accumulation of volatile components within the chamber, and impair mass and heat transfer processes. Case studies were used to demonstrate the large temperature gradients within the vapour chamber caused by temperature differences between the bubble point and dew point for blended fluids. A review of published data showed that many experiments on in-situ processes do not account for unstable material balances caused by a lack of steam trap control. A study of temperature profiles during steam assisted gravity drainage (SAGD) studies showed significant temperature depressions caused by methane accumulations at the outside perimeter of the steam chamber. It was demonstrated that the condensation of large volumes of purified solvents provided an efficient mechanism for the removal of methane from the chamber. It was concluded that gravity drainage processes can be optimized by using pure propane during the injection process. 22 refs., 1 tab., 18 figs.

4. Singular stochastic differential equations

CERN Document Server

Cherny, Alexander S

2005-01-01

The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

5. A MARKED POINT PROCESS MODEL FOR VEHICLE DETECTION IN AERIAL LIDAR POINT CLOUDS

Directory of Open Access Journals (Sweden)

A. Börcs

2012-07-01

Full Text Available In this paper we present an automated method for vehicle detection in LiDAR point clouds of crowded urban areas collected from an aerial platform. We assume that the input cloud is unordered, but it contains additional intensity and return number information which are jointly exploited by the proposed solution. Firstly, the 3-D point set is segmented into ground, vehicle, building roof, vegetation and clutter classes. Then the points with the corresponding class labels and intensity values are projected to the ground plane, where the optimal vehicle configuration is described by a Marked Point Process (MPP model of 2-D rectangles. Finally, the Multiple Birth and Death algorithm is utilized to find the configuration with the highest confidence.

6. Monitoring and pollution control: A stochastic process approach to model oil spills

International Nuclear Information System (INIS)

1991-01-01

The first chapter analyzes the behavior of a firm in an environment with pollution externalities and technological progress. It is assumed that firms may not purposely violate the pollution control regulations but nonetheless, generate some pollution due to negligence. The model allows firms two possible actions: either increase the level of treated waste or pay an expected penalty if illegal pollution is detected. The results of the first chapter show that in a world with pollution externalities, technological progress does not guarantee increases in the welfare level. The second chapter models the occurrence of an oil spill as a stochastic event. The stochastic model developed allows one to see how each step of the spilling process is affected by each policy measure and to compare the relative efficiency of different measures in reducing spills. The third chapter estimates the parameters that govern oil spill frequency and size distribution. The author models how these parameters depend on two pollution prevention measures: monitoring of transfer operations and assessment of penalties. He shows that these measures reduce the frequency of oil spills

7. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

Science.gov (United States)

Sulis, William H

2017-10-01

Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

8. Comment on "Fault Tolerant analysis for stochastic systems using switching diffusion processes' by Yang, Jiang and Cocquempot

DEFF Research Database (Denmark)

Schiøler, Henrik; Leth, John-Josef

2011-01-01

Results are given in [Yang et. al. 2009] regarding the overall stability of switched diffusion processes based on stability properties of separate processes combined through stochastic switching. This paper argues two main results to be empty, in that the presented hypotheses are logically...

9. Conference on Stochastic Processes and their Applications (16th) Held in Stanford, California on 16-21 August 1987.

Science.gov (United States)

1987-08-21

examples of so-called self-similar processes. 522 -°- °.. 0 * - -= uu~.~w- - v , LOCAL BEHAVIOUR OF SIMPLE STOCHASTIC MODELS by Rudolf Grfibel...theorem en- tails results on the growth of matchings, Steiner trees, traveling-salesman processes as well as triangulations in large areas. These

10. Main Achievements 2003-2004 - Interdisciplinary Research - Applications of theoretical physics - Stochastic processes

International Nuclear Information System (INIS)

2005-01-01

Some specific stochastic, jumping processes have been studied. They are defined in terms of the jump size distribution and the waiting time distribution which are mutually dependent. For the simplest case (the kangaroo process), the corresponding master equation has been completely solved and simple asymptotic expressions for the time-dependent probability distributions have been derived. A generalized version of that process, which takes into account the memory effects, has been proposed and a connection to transport processes, namely to the Boltzmann kinetic theory and diffusion, has been demonstrated. The same process, but defined on the circle instead of the axis, can possess the power law autocorrelation function; a simple formula for this function has been derived. Therefore, the process can serve as a useful model for the colored noises, in particular for the 1/f noise. It has been applied as a model of the driving force in the generalized Langevin equation, an impossible task with the standard kangaroo process. The equation has been solved by means of the Monte Carlo simulations. The resulting velocity and energy distributions exhibit extremely long memory about the initial conditions, despite an apparent fast equilibration of their comprehensive shape. The tails of both distributions fall faster than in the Maxwellian case

11. Pointo - a Low Cost Solution to Point Cloud Processing

Science.gov (United States)

Houshiar, H.; Winkler, S.

2017-11-01

With advance in technology access to data especially 3D point cloud data becomes more and more an everyday task. 3D point clouds are usually captured with very expensive tools such as 3D laser scanners or very time consuming methods such as photogrammetry. Most of the available softwares for 3D point cloud processing are designed for experts and specialists in this field and are usually very large software packages containing variety of methods and tools. This results in softwares that are usually very expensive to acquire and also very difficult to use. Difficulty of use is caused by complicated user interfaces that is required to accommodate a large list of features. The aim of these complex softwares is to provide a powerful tool for a specific group of specialist. However they are not necessary required by the majority of the up coming average users of point clouds. In addition to complexity and high costs of these softwares they generally rely on expensive and modern hardware and only compatible with one specific operating system. Many point cloud customers are not point cloud processing experts or willing to spend the high acquisition costs of these expensive softwares and hardwares. In this paper we introduce a solution for low cost point cloud processing. Our approach is designed to accommodate the needs of the average point cloud user. To reduce the cost and complexity of software our approach focuses on one functionality at a time in contrast with most available softwares and tools that aim to solve as many problems as possible at the same time. Our simple and user oriented design improve the user experience and empower us to optimize our methods for creation of an efficient software. In this paper we introduce Pointo family as a series of connected softwares to provide easy to use tools with simple design for different point cloud processing requirements. PointoVIEWER and PointoCAD are introduced as the first components of the Pointo family to provide a

12. Quantum stochastics

CERN Document Server

Chang, Mou-Hsiung

2015-01-01

The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...

13. On estimation of the intensity function of a point process

NARCIS (Netherlands)

Lieshout, van M.N.M.

2010-01-01

Abstract. Estimation of the intensity function of spatial point processes is a fundamental problem. In this paper, we interpret the Delaunay tessellation field estimator recently introduced by Schaap and Van de Weygaert as an adaptive kernel estimator and give explicit expressions for the mean and

14. Spatio-temporal point process filtering methods with an application

Czech Academy of Sciences Publication Activity Database

Frcalová, B.; Beneš, V.; Klement, Daniel

2010-01-01

Roč. 21, 3-4 (2010), s. 240-252 ISSN 1180-4009 R&D Projects: GA AV ČR(CZ) IAA101120604 Institutional research plan: CEZ:AV0Z50110509 Keywords : cox point process * filtering * spatio-temporal modelling * spike Subject RIV: BA - General Mathematics Impact factor: 0.750, year: 2010

15. A case study on point process modelling in disease mapping

Czech Academy of Sciences Publication Activity Database

Beneš, Viktor; Bodlák, M.; Moller, J.; Waagepetersen, R.

2005-01-01

Roč. 24, č. 3 (2005), s. 159-168 ISSN 1580-3139 R&D Projects: GA MŠk 0021620839; GA ČR GA201/03/0946 Institutional research plan: CEZ:AV0Z10750506 Keywords : log Gaussian Cox point process * Bayesian estimation Subject RIV: BB - Applied Statistics, Operational Research

16. A J–function for inhomogeneous point processes

NARCIS (Netherlands)

M.N.M. van Lieshout (Marie-Colette)

2010-01-01

htmlabstractWe propose new summary statistics for intensity-reweighted moment stationary point processes that generalise the well known J-, empty space, and nearest-neighbour distance dis- tribution functions, represent them in terms of generating functionals and conditional intensities, and relate

17. Leaf optical system modeled as a stochastic process. [solar radiation interaction with terrestrial vegetation

Science.gov (United States)

Tucker, C. J.; Garratt, M. W.

1977-01-01

A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf-irradiance interaction over the spectral interval of 0.40-2.50 micron. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-micron increment between 0.40 micron and 2.50 micron. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.

18. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

Directory of Open Access Journals (Sweden)

Shilong Li

2017-01-01

Full Text Available Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigate the validity condition of this new model. We also discuss actuarial present values of several life annuities under this new interest model. Simulations are done to illustrate the theoretical results and the effect of parameters in interest model on actuarial present values is also analyzed.

19. Rapid core field variations during the satellite era: Investigations using stochastic process based field models

DEFF Research Database (Denmark)

Finlay, Chris; Olsen, Nils; Gillet, Nicolas

We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to tradition...... physical hypotheses can be tested by asking questions of the entire ensemble of core field models, rather than by interpreting any single model.......We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to traditional...... regularization methods based on minimizing the square of second or third time derivative. We invert satellite and observatory data directly by adopting the external field and crustal field modelling framework of the CHAOS model, but apply the stochastic process method of Gillet et al. (2013) to the core field...

20. Stochastic modeling of stock price process induced from the conjugate heat equation

Science.gov (United States)

Paeng, Seong-Hun

2015-02-01

Currency can be considered as a ruler for values of commodities. Then the price is the measured value by the ruler. We can suppose that inflation and variation of exchange rate are caused by variation of the scale of the ruler. In geometry, variation of the scale means that the metric is time-dependent. The conjugate heat equation is the modified heat equation which satisfies the heat conservation law for the time-dependent metric space. We propose a new model of stock prices by using the stochastic process whose transition probability is determined by the kernel of the conjugate heat equation. Our model of stock prices shows how the volatility term is affected by inflation and exchange rate. This model modifies the Black-Scholes equation in light of inflation and exchange rate.

1. Strong approximations and sequential change-point analysis for diffusion processes

DEFF Research Database (Denmark)

2012-01-01

In this paper ergodic diffusion processes depending on a parameter in the drift are considered under the assumption that the processes can be observed continuously. Strong approximations by Wiener processes for a stochastic integral and for the estimator process constructed by the one...

2. Numerical Analysis for Stochastic Partial Differential Delay Equations with Jumps

OpenAIRE

Li, Yan; Hu, Junhao

2013-01-01

We investigate the convergence rate of Euler-Maruyama method for a class of stochastic partial differential delay equations driven by both Brownian motion and Poisson point processes. We discretize in space by a Galerkin method and in time by using a stochastic exponential integrator. We generalize some results of Bao et al. (2011) and Jacob et al. (2009) in finite dimensions to a class of stochastic partial differential delay equations with jumps in infinite dimensions.

3. Application of random-point processes to the detection of radiation sources

International Nuclear Information System (INIS)

Woods, J.W.

1978-01-01

In this report the mathematical theory of random-point processes is reviewed and it is shown how use of the theory can obtain optimal solutions to the problem of detecting radiation sources. As noted, the theory also applies to image processing in low-light-level or low-count-rate situations. Paralleling Snyder's work, the theory is extended to the multichannel case of a continuous, two-dimensional (2-D), energy-time space. This extension essentially involves showing that the data are doubly stochastic Poisson (DSP) point processes in energy as well as time. Further, a new 2-D recursive formulation is presented for the radiation-detection problem with large computational savings over nonrecursive techniques when the number of channels is large (greater than or equal to 30). Finally, some adaptive strategies for on-line ''learning'' of unknown, time-varying signal and background-intensity parameters and statistics are present and discussed. These adaptive procedures apply when a complete statistical description is not available a priori

4. Comparative analysis of cogeneration power plants optimization based on stochastic method using superstructure and process simulator

Energy Technology Data Exchange (ETDEWEB)

Araujo, Leonardo Rodrigues de [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil)], E-mail: leoaraujo@ifes.edu.br; Donatelli, Joao Luiz Marcon [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)], E-mail: joaoluiz@npd.ufes.br; Silva, Edmar Alino da Cruz [Instituto Tecnologico de Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Azevedo, Joao Luiz F. [Instituto de Aeronautica e Espaco (CTA/IAE/ALA), Sao Jose dos Campos, SP (Brazil)

2010-07-01

Thermal systems are essential in facilities such as thermoelectric plants, cogeneration plants, refrigeration systems and air conditioning, among others, in which much of the energy consumed by humanity is processed. In a world with finite natural sources of fuels and growing energy demand, issues related with thermal system design, such as cost estimative, design complexity, environmental protection and optimization are becoming increasingly important. Therefore the need to understand the mechanisms that degrade energy, improve energy sources use, reduce environmental impacts and also reduce project, operation and maintenance costs. In recent years, a consistent development of procedures and techniques for computational design of thermal systems has occurred. In this context, the fundamental objective of this study is a performance comparative analysis of structural and parametric optimization of a cogeneration system using stochastic methods: genetic algorithm and simulated annealing. This research work uses a superstructure, modelled in a process simulator, IPSEpro of SimTech, in which the appropriate design case studied options are included. Accordingly, the cogeneration system optimal configuration is determined as a consequence of the optimization process, restricted within the configuration options included in the superstructure. The optimization routines are written in MsExcel Visual Basic, in order to work perfectly coupled to the simulator process. At the end of the optimization process, the system optimal configuration, given the characteristics of each specific problem, should be defined. (author)

5. Some properties of point processes in statistical optics

International Nuclear Information System (INIS)

Picinbono, B.; Bendjaballah, C.

2010-01-01

The analysis of the statistical properties of the point process (PP) of photon detection times can be used to determine whether or not an optical field is classical, in the sense that its statistical description does not require the methods of quantum optics. This determination is, however, more difficult than ordinarily admitted and the first aim of this paper is to illustrate this point by using some results of the PP theory. For example, it is well known that the analysis of the photodetection of classical fields exhibits the so-called bunching effect. But this property alone cannot be used to decide the nature of a given optical field. Indeed, we have presented examples of point processes for which a bunching effect appears and yet they cannot be obtained from a classical field. These examples are illustrated by computer simulations. Similarly, it is often admitted that for fields with very low light intensity the bunching or antibunching can be described by using the statistical properties of the distance between successive events of the point process, which simplifies the experimental procedure. We have shown that, while this property is valid for classical PPs, it has no reason to be true for nonclassical PPs, and we have presented some examples of this situation also illustrated by computer simulations.

6. Shot-noise-weighted processes : a new family of spatial point processes

NARCIS (Netherlands)

M.N.M. van Lieshout (Marie-Colette); I.S. Molchanov (Ilya)

1995-01-01

textabstractThe paper suggests a new family of of spatial point processes distributions. They are defined by means of densities with respect to the Poisson point process within a bounded set. These densities are given in terms of a functional of the shot-noise process with a given influence

7. Stochastic disturbances and dynamics of thermal processes. With application to municipal solid waste combustion

Energy Technology Data Exchange (ETDEWEB)

Van Kessel, L.B.M.

2003-06-11

with the on-line calorific value sensor from chapter 2 and a validated dynamic model of the process is available, the theory from stochastic processes can be applied to MSWC. This new application field of stochastics is discussed in chapter 4. The results obtained in chapter 2 will be used in this analysis. Also new linear transfer functions for thermal processes will be given and applied to MSWC. Finally, applications of the new developed tools will be discussed. As already mentioned, the validation experiments lead to the conclusion that the dynamics of the combustion process can change when the primary air temperature changes. This was a new result, which has never been reported in literature before. For that reason during the research it was decided to start an extensive study into the influence of the primary air temperature on the combustion process. This has been performed by using laboratory experiments. In chapter 5 the results from this search will be presented. The existing theory for combustion of solid fuels is extended with a qualitative as well as a quantitative description of the influence of primary preheating. The new theory is used to explain observations from real plants and the results from system identification. Furthermore, the value of laboratory experiments to simulate the real combustion process on a grate is discussed.

8. Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain.

Science.gov (United States)

Lopopolo, Alessandro; Frank, Stefan L; van den Bosch, Antal; Willems, Roel M

2017-01-01

Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.

9. Modeling Aggregation Processes of Lennard-Jones particles Via Stochastic Networks

Science.gov (United States)

Forman, Yakir; Cameron, Maria

2017-07-01

We model an isothermal aggregation process of particles/atoms interacting according to the Lennard-Jones pair potential by mapping the energy landscapes of each cluster size N onto stochastic networks, computing transition probabilities from the network for an N-particle cluster to the one for N+1, and connecting these networks into a single joint network. The attachment rate is a control parameter. The resulting network representing the aggregation of up to 14 particles contains 6427 vertices. It is not only time-irreversible but also reducible. To analyze its transient dynamics, we introduce the sequence of the expected initial and pre-attachment distributions and compute them for a wide range of attachment rates and three values of temperature. As a result, we find the configurations most likely to be observed in the process of aggregation for each cluster size. We examine the attachment process and conduct a structural analysis of the sets of local energy minima for every cluster size. We show that both processes taking place in the network, attachment and relaxation, lead to the dominance of icosahedral packing in small (up to 14 atom) clusters.

10. Cyto-Sim: a formal language model and stochastic simulator of membrane-enclosed biochemical processes.

Science.gov (United States)

Sedwards, Sean; Mazza, Tommaso

2007-10-15

Compartments and membranes are the basis of cell topology and more than 30% of the human genome codes for membrane proteins. While it is possible to represent compartments and membrane proteins in a nominal way with many mathematical formalisms used in systems biology, few, if any, explicitly model the topology of the membranes themselves. Discrete stochastic simulation potentially offers the most accurate representation of cell dynamics. Since the details of every molecular interaction in a pathway are often not known, the relationship between chemical species in not necessarily best described at the lowest level, i.e. by mass action. Simulation is a form of computer-aided analysis, relying on human interpretation to derive meaning. To improve efficiency and gain meaning in an automatic way, it is necessary to have a formalism based on a model which has decidable properties. We present Cyto-Sim, a stochastic simulator of membrane-enclosed hierarchies of biochemical processes, where the membranes comprise an inner, outer and integral layer. The underlying model is based on formal language theory and has been shown to have decidable properties (Cavaliere and Sedwards, 2006), allowing formal analysis in addition to simulation. The simulator provides variable levels of abstraction via arbitrary chemical kinetics which link to ordinary differential equations. In addition to its compact native syntax, Cyto-Sim currently supports models described as Petri nets, can import all versions of SBML and can export SBML and MATLAB m-files. Cyto-Sim is available free, either as an applet or a stand-alone Java program via the web page (http://www.cosbi.eu/Rpty_Soft_CytoSim.php). Other versions can be made available upon request.

11. Modelling and performance analysis of clinical pathways using the stochastic process algebra PEPA.

Science.gov (United States)

Yang, Xian; Han, Rui; Guo, Yike; Bradley, Jeremy; Cox, Benita; Dickinson, Robert; Kitney, Richard

2012-01-01

Hospitals nowadays have to serve numerous patients with limited medical staff and equipment while maintaining healthcare quality. Clinical pathway informatics is regarded as an efficient way to solve a series of hospital challenges. To date, conventional research lacks a mathematical model to describe clinical pathways. Existing vague descriptions cannot fully capture the complexities accurately in clinical pathways and hinders the effective management and further optimization of clinical pathways. Given this motivation, this paper presents a clinical pathway management platform, the Imperial Clinical Pathway Analyzer (ICPA). By extending the stochastic model performance evaluation process algebra (PEPA), ICPA introduces a clinical-pathway-specific model: clinical pathway PEPA (CPP). ICPA can simulate stochastic behaviours of a clinical pathway by extracting information from public clinical databases and other related documents using CPP. Thus, the performance of this clinical pathway, including its throughput, resource utilisation and passage time can be quantitatively analysed. A typical clinical pathway on stroke extracted from a UK hospital is used to illustrate the effectiveness of ICPA. Three application scenarios are tested using ICPA: 1) redundant resources are identified and removed, thus the number of patients being served is maintained with less cost; 2) the patient passage time is estimated, providing the likelihood that patients can leave hospital within a specific period; 3) the maximum number of input patients are found, helping hospitals to decide whether they can serve more patients with the existing resource allocation. ICPA is an effective platform for clinical pathway management: 1) ICPA can describe a variety of components (state, activity, resource and constraints) in a clinical pathway, thus facilitating the proper understanding of complexities involved in it; 2) ICPA supports the performance analysis of clinical pathway, thereby assisting

12. StochPy: A Comprehensive, User-Friendly Tool for Simulating Stochastic Biological Processes

NARCIS (Netherlands)

T.R. Maarleveld (Timo); B.G. Olivier (Brett); F.J. Bruggeman (Frank)

2013-01-01

htmlabstractSingle-cell and single-molecule measurements indicate the importance of stochastic phenomena in cell biology. Stochasticity creates spontaneous differences in the copy numbers of key macromolecules and the timing of reaction events between genetically-identical cells. Mathematical models

13. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process.

Science.gov (United States)

Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

2016-06-27

Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

14. Conference on Stochastic Processes and their Applications (16th) Held in Stanford, California on August 17-21, 1987.

Science.gov (United States)

1987-08-01

ESTIMATION FOR STOCHASTIC PROCESSES by C. C. Heyde Australian National University Canberra, Australia ABSTRACT Optimality is a widely and loosely used...Case 240 S. Australia 1211 Geneva 24 Switzerland Christopher C. Heyde Dept. of Statistics, IAS Patricia Jacobs . Australian National University...Universitat Regensburg USA Postfach D-8400 Regensburg Anatole Joffe W. Germany Dept. of Mathematics & Statatistics Frank Kelly Universite de Montreal

15. Stochastic quantization and topological theories

International Nuclear Information System (INIS)

Fainberg, V.Y.; Subbotin, A.V.; Kuznetsov, A.N.

1992-01-01

In the last two years topological quantum field theories (TQFT) have attached much attention. This paper reports that from the very beginning it was realized that due to a peculiar BRST-like symmetry these models admitted so-called Nicolai mapping: the Nicolai variables, in terms of which actions of the theories become gaussian, are nothing but (anti-) selfduality conditions or their generalizations. This fact became a starting point in the quest of possible stochastic interpretation to topological field theories. The reasons behind were quite simple and included, in particular, the well-known relations between stochastic processes and supersymmetry. The main goal would have been achieved, if it were possible to construct stochastic processes governed by Langevin or Fokker-Planck equations in a real Euclidean time leading to TQFT's path integrals (equivalently: to reformulate TQFTs as non-equilibrium phase dynamics of stochastic processes). Further on, if it would appear that these processes correspond to the stochastic quantization of theories of some definite kind, one could expect (d + 1)-dimensional TQFTs to share some common properties with d-dimensional ones

16. Detection of bursts in extracellular spike trains using hidden semi-Markov point process models.

Science.gov (United States)

Tokdar, Surya; Xi, Peiyi; Kelly, Ryan C; Kass, Robert E

2010-08-01

Neurons in vitro and in vivo have epochs of bursting or "up state" activity during which firing rates are dramatically elevated. Various methods of detecting bursts in extracellular spike trains have appeared in the literature, the most widely used apparently being Poisson Surprise (PS). A natural description of the phenomenon assumes (1) there are two hidden states, which we label "burst" and "non-burst," (2) the neuron evolves stochastically, switching at random between these two states, and (3) within each state the spike train follows a time-homogeneous point process. If in (2) the transitions from non-burst to burst and burst to non-burst states are memoryless, this becomes a hidden Markov model (HMM). For HMMs, the state transitions follow exponential distributions, and are highly irregular. Because observed bursting may in some cases be fairly regular-exhibiting inter-burst intervals with small variation-we relaxed this assumption. When more general probability distributions are used to describe the state transitions the two-state point process model becomes a hidden semi-Markov model (HSMM). We developed an efficient Bayesian computational scheme to fit HSMMs to spike train data. Numerical simulations indicate the method can perform well, sometimes yielding very different results than those based on PS.

17. Two-step estimation for inhomogeneous spatial point processes

DEFF Research Database (Denmark)

Waagepetersen, Rasmus; Guan, Yongtao

This paper is concerned with parameter estimation for inhomogeneous spatial point processes with a regression model for the intensity function and tractable second order properties (K-function). Regression parameters are estimated using a Poisson likelihood score estimating function and in a second...... step minimum contrast estimation is applied for the residual clustering parameters. Asymptotic normality of parameter estimates is established under certain mixing conditions and we exemplify how the results may be applied in ecological studies of rain forests....

18. A case study on point process modelling in disease mapping

DEFF Research Database (Denmark)

Møller, Jesper; Waagepetersen, Rasmus Plenge; Benes, Viktor

2005-01-01

of the risk on the covariates. Instead of using the common areal level approaches we base the analysis on a Bayesian approach for a log Gaussian Cox point process with covariates. Posterior characteristics for a discretized version of the log Gaussian Cox process are computed using Markov chain Monte Carlo...... methods. A particular problem which is thoroughly discussed is to determine a model for the background population density. The risk map shows a clear dependency with the population intensity models and the basic model which is adopted for the population intensity determines what covariates influence...... the risk of TBE. Model validation is based on the posterior predictive distribution of various summary statistics....

19. Stochastic geometry for image analysis

CERN Document Server

Descombes, Xavier

2013-01-01

This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are  described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed.  Numerous applications, covering remote sensing images, biological and medical imaging, are detailed.  This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.

20. Stochastic production phase design for an open pit mining complex with multiple processing streams

Science.gov (United States)

2014-08-01

In a mining complex, the mine is a source of supply of valuable material (ore) to a number of processes that convert the raw ore to a saleable product or a metal concentrate for production of the refined metal. In this context, expected variation in metal content throughout the extent of the orebody defines the inherent uncertainty in the supply of ore, which impacts the subsequent ore and metal production targets. Traditional optimization methods for designing production phases and ultimate pit limit of an open pit mine not only ignore the uncertainty in metal content, but, in addition, commonly assume that the mine delivers ore to a single processing facility. A stochastic network flow approach is proposed that jointly integrates uncertainty in supply of ore and multiple ore destinations into the development of production phase design and ultimate pit limit. An application at a copper mine demonstrates the intricacies of the new approach. The case study shows a 14% higher discounted cash flow when compared to the traditional approach.

1. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

Directory of Open Access Journals (Sweden)

Scott Ferrenberg

2016-10-01

Full Text Available Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species and belowground (species active in organic and mineral soil layers arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community and modified Winkler funnels (belowground community and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the

2. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

Science.gov (United States)

Martinez, Alexander S.; Faist, Akasha M.

2016-01-01

Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod

3. A Marked Point Process Framework for Extracellular Electrical Potentials

Directory of Open Access Journals (Sweden)

Carlos A. Loza

2017-12-01

Full Text Available Neuromodulations are an important component of extracellular electrical potentials (EEP, such as the Electroencephalogram (EEG, Electrocorticogram (ECoG and Local Field Potentials (LFP. This spatially temporal organized multi-frequency transient (phasic activity reflects the multiscale spatiotemporal synchronization of neuronal populations in response to external stimuli or internal physiological processes. We propose a novel generative statistical model of a single EEP channel, where the collected signal is regarded as the noisy addition of reoccurring, multi-frequency phasic events over time. One of the main advantages of the proposed framework is the exceptional temporal resolution in the time location of the EEP phasic events, e.g., up to the sampling period utilized in the data collection. Therefore, this allows for the first time a description of neuromodulation in EEPs as a Marked Point Process (MPP, represented by their amplitude, center frequency, duration, and time of occurrence. The generative model for the multi-frequency phasic events exploits sparseness and involves a shift-invariant implementation of the clustering technique known as k-means. The cost function incorporates a robust estimation component based on correntropy to mitigate the outliers caused by the inherent noise in the EEP. Lastly, the background EEP activity is explicitly modeled as the non-sparse component of the collected signal to further improve the delineation of the multi-frequency phasic events in time. The framework is validated using two publicly available datasets: the DREAMS sleep spindles database and one of the Brain-Computer Interface (BCI competition datasets. The results achieve benchmark performance and provide novel quantitative descriptions based on power, event rates and timing in order to assess behavioral correlates beyond the classical power spectrum-based analysis. This opens the possibility for a unifying point process framework of

4. Two-boundary first exit time of Gauss-Markov processes for stochastic modeling of acto-myosin dynamics.

Science.gov (United States)

D'Onofrio, Giuseppe; Pirozzi, Enrica

2017-05-01

We consider a stochastic differential equation in a strip, with coefficients suitably chosen to describe the acto-myosin interaction subject to time-varying forces. By simulating trajectories of the stochastic dynamics via an Euler discretization-based algorithm, we fit experimental data and determine the values of involved parameters. The steps of the myosin are represented by the exit events from the strip. Motivated by these results, we propose a specific stochastic model based on the corresponding time-inhomogeneous Gauss-Markov and diffusion process evolving between two absorbing boundaries. We specify the mean and covariance functions of the stochastic modeling process taking into account time-dependent forces including the effect of an external load. We accurately determine the probability density function (pdf) of the first exit time (FET) from the strip by solving a system of two non singular second-type Volterra integral equations via a numerical quadrature. We provide numerical estimations of the mean of FET as approximations of the dwell-time of the proteins dynamics. The percentage of backward steps is given in agreement to experimental data. Numerical and simulation results are compared and discussed.

5. Framework for adaptive multiscale analysis of nonhomogeneous point processes.

Science.gov (United States)

Helgason, Hannes; Bartroff, Jay; Abry, Patrice

2011-01-01

We develop the methodology for hypothesis testing and model selection in nonhomogeneous Poisson processes, with an eye toward the application of modeling and variability detection in heart beat data. Modeling the process' non-constant rate function using templates of simple basis functions, we develop the generalized likelihood ratio statistic for a given template and a multiple testing scheme to model-select from a family of templates. A dynamic programming algorithm inspired by network flows is used to compute the maximum likelihood template in a multiscale manner. In a numerical example, the proposed procedure is nearly as powerful as the super-optimal procedures that know the true template size and true partition, respectively. Extensions to general history-dependent point processes is discussed.

6. Simple computation of reaction–diffusion processes on point clouds

KAUST Repository

Macdonald, Colin B.; Merriman, Barry; Ruuth, Steven J.

2013-01-01

The study of reaction-diffusion processes is much more complicated on general curved surfaces than on standard Cartesian coordinate spaces. Here we show how to formulate and solve systems of reaction-diffusion equations on surfaces in an extremely simple way, using only the standard Cartesian form of differential operators, and a discrete unorganized point set to represent the surface. Our method decouples surface geometry from the underlying differential operators. As a consequence, it becomes possible to formulate and solve rather general reaction-diffusion equations on general surfaces without having to consider the complexities of differential geometry or sophisticated numerical analysis. To illustrate the generality of the method, computations for surface diffusion, pattern formation, excitable media, and bulk-surface coupling are provided for a variety of complex point cloud surfaces.

7. Simple computation of reaction–diffusion processes on point clouds

KAUST Repository

Macdonald, Colin B.

2013-05-20

The study of reaction-diffusion processes is much more complicated on general curved surfaces than on standard Cartesian coordinate spaces. Here we show how to formulate and solve systems of reaction-diffusion equations on surfaces in an extremely simple way, using only the standard Cartesian form of differential operators, and a discrete unorganized point set to represent the surface. Our method decouples surface geometry from the underlying differential operators. As a consequence, it becomes possible to formulate and solve rather general reaction-diffusion equations on general surfaces without having to consider the complexities of differential geometry or sophisticated numerical analysis. To illustrate the generality of the method, computations for surface diffusion, pattern formation, excitable media, and bulk-surface coupling are provided for a variety of complex point cloud surfaces.

8. Statistical representation of a spray as a point process

International Nuclear Information System (INIS)

Subramaniam, S.

2000-01-01

The statistical representation of a spray as a finite point process is investigated. One objective is to develop a better understanding of how single-point statistical information contained in descriptions such as the droplet distribution function (ddf), relates to the probability density functions (pdfs) associated with the droplets themselves. Single-point statistical information contained in the droplet distribution function (ddf) is shown to be related to a sequence of single surrogate-droplet pdfs, which are in general different from the physical single-droplet pdfs. It is shown that the ddf contains less information than the fundamental single-point statistical representation of the spray, which is also described. The analysis shows which events associated with the ensemble of spray droplets can be characterized by the ddf, and which cannot. The implications of these findings for the ddf approach to spray modeling are discussed. The results of this study also have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single-point statistics such as the droplet number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets. Implications of these findings for large eddy simulations of multiphase flows are also discussed. (c) 2000 American Institute of Physics

9. Phenomenological and ratio bifurcations of a class of discrete time stochastic processes

NARCIS (Netherlands)

Diks, C.G.H.; Wagener, F.O.O.

2011-01-01

Zeeman proposed a classification of stochastic dynamical systems based on the Morse classification of their invariant probability densities; the associated bifurcations are the ‘phenomenological bifurcations’ of L. Arnold. The classification is however not invariant under diffeomorphisms of the

10. Relative importance of deterministic and stochastic processes in driving arbuscular mycorrhizal fungal assemblage during the spreading of a toxic plant.

Directory of Open Access Journals (Sweden)

Guoxi Shi

Full Text Available Both deterministic and stochastic processes are expected to drive the assemblages of arbuscular mycorrhizal (AM fungi, but little is known about the relative importance of these processes during the spreading of toxic plants. Here, the species composition and phylogenetic structure of AM fungal communities colonizing the roots of a toxic plant, Ligularia virgaurea, and its neighborhood plants, were analyzed in patches with different individual densities of L. virgaurea (represents the spreading degree. Community compositions of AM fungi in both root systems were changed significantly by the L. virgaurea spreading, and also these communities fitted the neutral model very well. AM fungal communities in patches with absence and presence of L. virgaurea were phylogenetically random and clustered, respectively, suggesting that the principal ecological process determining AM fungal assemblage shifted from stochastic process to environmental filtering when this toxic plant was present. Our results indicate that deterministic and stochastic processes together determine the assemblage of AM fungi, but the dominant process would be changed by the spreading of toxic plants, and suggest that the spreading of toxic plants in alpine meadow ecosystems might be involving the mycorrhizal symbionts.

11. Weak convergence of marked point processes generated by crossings of multivariate jump processes

DEFF Research Database (Denmark)

Tamborrino, Massimiliano; Sacerdote, Laura; Jacobsen, Martin

2014-01-01

We consider the multivariate point process determined by the crossing times of the components of a multivariate jump process through a multivariate boundary, assuming to reset each component to an initial value after its boundary crossing. We prove that this point process converges weakly...... process converging to a multivariate Ornstein–Uhlenbeck process is discussed as a guideline for applying diffusion limits for jump processes. We apply our theoretical findings to neural network modeling. The proposed model gives a mathematical foundation to the generalization of the class of Leaky...

12. Rare event simulation for processes generated via stochastic fixed point equations

DEFF Research Database (Denmark)

Collamore, Jeffrey F.; Diao, Guoqing; Vidyashankar, Anand N.

2014-01-01

In a number of applications, particularly in financial and actuarial mathematics, it is of interest to characterize the tail distribution of a random variable V satisfying the distributional equation V=_D f(V), for some random function f. This paper is concerned with computational methods for eva...

13. Variational approach for spatial point process intensity estimation

DEFF Research Database (Denmark)

Coeurjolly, Jean-Francois; Møller, Jesper

is assumed to be of log-linear form β+θ⊤z(u) where z is a spatial covariate function and the focus is on estimating θ. The variational estimator is very simple to implement and quicker than alternative estimation procedures. We establish its strong consistency and asymptotic normality. We also discuss its...... finite-sample properties in comparison with the maximum first order composite likelihood estimator when considering various inhomogeneous spatial point process models and dimensions as well as settings were z is completely or only partially known....

14. Two-step estimation for inhomogeneous spatial point processes

DEFF Research Database (Denmark)

Waagepetersen, Rasmus; Guan, Yongtao

2009-01-01

The paper is concerned with parameter estimation for inhomogeneous spatial point processes with a regression model for the intensity function and tractable second-order properties (K-function). Regression parameters are estimated by using a Poisson likelihood score estimating function and in the ...... and in the second step minimum contrast estimation is applied for the residual clustering parameters. Asymptotic normality of parameter estimates is established under certain mixing conditions and we exemplify how the results may be applied in ecological studies of rainforests....

15. Multiple Monte Carlo Testing with Applications in Spatial Point Processes

DEFF Research Database (Denmark)

Mrkvička, Tomáš; Myllymäki, Mari; Hahn, Ute

with a function as the test statistic, 3) several Monte Carlo tests with functions as test statistics. The rank test has correct (global) type I error in each case and it is accompanied with a p-value and with a graphical interpretation which shows which subtest or which distances of the used test function......(s) lead to the rejection at the prescribed significance level of the test. Examples of null hypothesis from point process and random set statistics are used to demonstrate the strength of the rank envelope test. The examples include goodness-of-fit test with several test functions, goodness-of-fit test...

16. Stochastic Signal Processing for Sound Environment System with Decibel Evaluation and Energy Observation

Directory of Open Access Journals (Sweden)

Akira Ikuta

2014-01-01

Full Text Available In real sound environment system, a specific signal shows various types of probability distribution, and the observation data are usually contaminated by external noise (e.g., background noise of non-Gaussian distribution type. Furthermore, there potentially exist various nonlinear correlations in addition to the linear correlation between input and output time series. Consequently, often the system input and output relationship in the real phenomenon cannot be represented by a simple model using only the linear correlation and lower order statistics. In this study, complex sound environment systems difficult to analyze by using usual structural method are considered. By introducing an estimation method of the system parameters reflecting correlation information for conditional probability distribution under existence of the external noise, a prediction method of output response probability for sound environment systems is theoretically proposed in a suitable form for the additive property of energy variable and the evaluation in decibel scale. The effectiveness of the proposed stochastic signal processing method is experimentally confirmed by applying it to the observed data in sound environment systems.

17. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

Energy Technology Data Exchange (ETDEWEB)

Angstmann, C.N.; Donnelly, I.C. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Henry, B.I., E-mail: B.Henry@unsw.edu.au [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Jacobs, B.A. [School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050 (South Africa); DST–NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (South Africa); Langlands, T.A.M. [Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350 (Australia); Nichols, J.A. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia)

2016-02-15

We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.

18. CLINSULF sub-dew-point process for sulphur recovery

Energy Technology Data Exchange (ETDEWEB)

Heisel, M.; Marold, F.

1988-01-01

In a 2-reactor system, the CLINSULF process allows very high sulphur recovery rates. When operated at 100/sup 0/C at the outlet, i.e. below the sulphur solidification point, a sulphur recovery rate of more than 99.2% was achieved in a 2-reactor series. Assuming a 70% sulphur recovery in an upstream Claus furnace plus sulphur condenser, an overall sulphur recovery of more than 99.8% results for the 2-reactor system. This is approximately 2% higher than in conventional Claus plus SDP units, which mostly consist of 4 reactors or more. This means the the CLINSULF SSP process promises to be an improvement both in respect of efficiency and low investment cost.

19. Self-Exciting Point Process Modeling of Conversation Event Sequences

Science.gov (United States)

Masuda, Naoki; Takaguchi, Taro; Sato, Nobuo; Yano, Kazuo

Self-exciting processes of Hawkes type have been used to model various phenomena including earthquakes, neural activities, and views of online videos. Studies of temporal networks have revealed that sequences of social interevent times for individuals are highly bursty. We examine some basic properties of event sequences generated by the Hawkes self-exciting process to show that it generates bursty interevent times for a wide parameter range. Then, we fit the model to the data of conversation sequences recorded in company offices in Japan. In this way, we can estimate relative magnitudes of the self excitement, its temporal decay, and the base event rate independent of the self excitation. These variables highly depend on individuals. We also point out that the Hawkes model has an important limitation that the correlation in the interevent times and the burstiness cannot be independently modulated.

20. Imitation learning of Non-Linear Point-to-Point Robot Motions using Dirichlet Processes

DEFF Research Database (Denmark)

Krüger, Volker; Tikhanoff, Vadim; Natale, Lorenzo

2012-01-01

In this paper we discuss the use of the infinite Gaussian mixture model and Dirichlet processes for learning robot movements from demonstrations. Starting point of this work is an earlier paper where the authors learn a non-linear dynamic robot movement model from a small number of observations....... The model in that work is learned using a classical finite Gaussian mixture model (FGMM) where the Gaussian mixtures are appropriately constrained. The problem with this approach is that one needs to make a good guess for how many mixtures the FGMM should use. In this work, we generalize this approach...... our algorithm on the same data that was used in [5], where the authors use motion capture devices to record the demonstrations. As further validation we test our approach on novel data acquired on our iCub in a different demonstration scenario in which the robot is physically driven by the human...

1. Stochastic LMP (Locational marginal price) calculation method in distribution systems to minimize loss and emission based on Shapley value and two-point estimate method

International Nuclear Information System (INIS)

2016-01-01

LMP (Locational marginal price) calculation is a serious impediment in distribution operation when private DG (distributed generation) units are connected to the network. A novel policy is developed in this study to guide distribution company (DISCO) to exert its control over the private units when power loss and green-house gases emissions are minimized. LMP at each DG bus is calculated according to the contribution of the DG to the reduced amount of loss and emission. An iterative algorithm which is based on the Shapley value method is proposed to allocate loss and emission reduction. The proposed algorithm will provide a robust state estimation tool for DISCOs in the next step of operation. The state estimation tool provides the decision maker with the ability to exert its control over private DG units when loss and emission are minimized. Also, a stochastic approach based on the PEM (point estimate method) is employed to capture uncertainty in the market price and load demand. The proposed methodology is applied to a realistic distribution network, and efficiency and accuracy of the method are verified. - Highlights: • Reduction of the loss and emission at the same time. • Fair allocation of loss and emission reduction. • Estimation of the system state using an iterative algorithm. • Ability of DISCOs to control DG units via the proposed policy. • Modeling the uncertainties to calculate the stochastic LMP.

2. Insights into mortality patterns and causes of death through a process point of view model.

Science.gov (United States)

Anderson, James J; Li, Ting; Sharrow, David J

2017-02-01

Process point of view (POV) models of mortality, such as the Strehler-Mildvan and stochastic vitality models, represent death in terms of the loss of survival capacity through challenges and dissipation. Drawing on hallmarks of aging, we link these concepts to candidate biological mechanisms through a framework that defines death as challenges to vitality where distal factors defined the age-evolution of vitality and proximal factors define the probability distribution of challenges. To illustrate the process POV, we hypothesize that the immune system is a mortality nexus, characterized by two vitality streams: increasing vitality representing immune system development and immunosenescence representing vitality dissipation. Proximal challenges define three mortality partitions: juvenile and adult extrinsic mortalities and intrinsic adult mortality. Model parameters, generated from Swedish mortality data (1751-2010), exhibit biologically meaningful correspondences to economic, health and cause-of-death patterns. The model characterizes the twentieth century epidemiological transition mainly as a reduction in extrinsic mortality resulting from a shift from high magnitude disease challenges on individuals at all vitality levels to low magnitude stress challenges on low vitality individuals. Of secondary importance, intrinsic mortality was described by a gradual reduction in the rate of loss of vitality presumably resulting from reduction in the rate of immunosenescence. Extensions and limitations of a distal/proximal framework for characterizing more explicit causes of death, e.g. the young adult mortality hump or cancer in old age are discussed.

3. Benchmarking of radiological departments. Starting point for successful process optimization

International Nuclear Information System (INIS)

Busch, Hans-Peter

2010-01-01

Continuous optimization of the process of organization and medical treatment is part of the successful management of radiological departments. The focus of this optimization can be cost units such as CT and MRI or the radiological parts of total patient treatment. Key performance indicators for process optimization are cost- effectiveness, service quality and quality of medical treatment. The potential for improvements can be seen by comparison (benchmark) with other hospitals and radiological departments. Clear definitions of key data and criteria are absolutely necessary for comparability. There is currently little information in the literature regarding the methodology and application of benchmarks especially from the perspective of radiological departments and case-based lump sums, even though benchmarking has frequently been applied to radiological departments by hospital management. The aim of this article is to describe and discuss systematic benchmarking as an effective starting point for successful process optimization. This includes the description of the methodology, recommendation of key parameters and discussion of the potential for cost-effectiveness analysis. The main focus of this article is cost-effectiveness (efficiency and effectiveness) with respect to cost units and treatment processes. (orig.)

4. The measurement problem on classical diffusion process: inverse method on stochastic processes

International Nuclear Information System (INIS)

Bigerelle, M.; Iost, A.

2004-01-01

In a high number of diffusive systems, measures are processed to calculate material parameters such as diffusion coefficients, or to verify the accuracy of mathematical models. However, the precision of the parameter determination or of the model relevance depends on the location of the measure itself. The aim of this paper is first to analyse, for a mono-dimensional system, the precision of the measure in relation with its location by an inverse problem algorithm and secondly to examine the physical meaning of the results. Statistical mechanic considerations show that, passing over a time-distance criterion, measurement becomes uncertain whatever the initial conditions. The criterion proves that this chaotic mode is related to the production of anti-entropy at a mesoscopique scale that is in violation to quantum theory about measurement

5. A stochastic post-processing method for solar irradiance forecasts derived from NWPs models

Science.gov (United States)

Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.

2010-09-01

Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.

6. Stochastic analytic regularization

International Nuclear Information System (INIS)

Alfaro, J.

1984-07-01

Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)

7. Stochastic Processes and their Applications : Symposium held in honour of Professor S.K. Srinivasan at the Indian Institute of Technology

CERN Document Server

Gopalan, M; Subramanian, R

1991-01-01

A volume of this nature containing a collection of papers has been brought out to honour a gentleman - a friend and a colleague - whose work has, to a large extent, advanced and popularized the use of stochastic point processes. Professor Srinivasan celebrated his sixt~ first 1:!irth d~ on December 16,1990 and will be retiring as Professor of Applied Mathematics from the Indian Institute of Technolo~, Madras on June 30,1991. In view of his outstanding contributions to the theor~ and applications of stochastic processes over a time span of thirt~ ~ears, it seemed appropriate not to let his birth d~ and retirement pass unnoticed. A s~posium in his honour and the publication of the proceedings appeared to us to be the most natural and sui table ~ to mark the occasion. The Indian Societ~ for ProbabU it~ and Statistics volunteered to organize the S~posium as part of their XII Annual conference in Bomba~. We requested a number of long-time friends, colleagues and former students of Professor Srinivasan to contribut...

8. Stochastic modeling of catalytic processes in nanoporous materials: Beyond mean-field approach

Energy Technology Data Exchange (ETDEWEB)

Garcia, Andres [Iowa State Univ., Ames, IA (United States)

2017-08-05

Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems can be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use

9. ANALYSIS OF EFFECTIVENESS OF METHODOLOGICAL SYSTEM FOR PROBABILITY AND STOCHASTIC PROCESSES COMPUTER-BASED LEARNING FOR PRE-SERVICE ENGINEERS

Directory of Open Access Journals (Sweden)

E. Chumak

2015-04-01

Full Text Available The author substantiates that only methodological training systems of mathematical disciplines with implementation of information and communication technologies (ICT can meet the requirements of modern educational paradigm and make possible to increase the educational efficiency. Due to this fact, the necessity of developing the methodology of theory of probability and stochastic processes computer-based learning for pre-service engineers is underlined in the paper. The results of the experimental study for analysis of the efficiency of methodological system of theory of probability and stochastic processes computer-based learning for pre-service engineers are shown. The analysis includes three main stages: ascertaining, searching and forming. The key criteria of the efficiency of designed methodological system are the level of probabilistic and stochastic skills of students and their learning motivation. The effect of implementing the methodological system of probability theory and stochastic processes computer-based learning on the level of students’ IT literacy is shown in the paper. The expanding of the range of objectives of ICT applying by students is described by author. The level of formation of students’ learning motivation on the ascertaining and forming stages of the experiment is analyzed. The level of intrinsic learning motivation for pre-service engineers is defined on these stages of the experiment. For this purpose, the methodology of testing the students’ learning motivation in the chosen specialty is presented in the paper. The increasing of intrinsic learning motivation of the experimental group students (E group against the control group students (C group is demonstrated.

10. A CASE STUDY ON POINT PROCESS MODELLING IN DISEASE MAPPING

Directory of Open Access Journals (Sweden)

Viktor Beneš

2011-05-01

Full Text Available We consider a data set of locations where people in Central Bohemia have been infected by tick-borne encephalitis (TBE, and where population census data and covariates concerning vegetation and altitude are available. The aims are to estimate the risk map of the disease and to study the dependence of the risk on the covariates. Instead of using the common area level approaches we base the analysis on a Bayesian approach for a log Gaussian Cox point process with covariates. Posterior characteristics for a discretized version of the log Gaussian Cox process are computed using Markov chain Monte Carlo methods. A particular problem which is thoroughly discussed is to determine a model for the background population density. The risk map shows a clear dependency with the population intensity models and the basic model which is adopted for the population intensity determines what covariates influence the risk of TBE. Model validation is based on the posterior predictive distribution of various summary statistics.

11. Corner-point criterion for assessing nonlinear image processing imagers

Science.gov (United States)

Landeau, Stéphane; Pigois, Laurent; Foing, Jean-Paul; Deshors, Gilles; Swiathy, Greggory

2017-10-01

Range performance modeling of optronics imagers attempts to characterize the ability to resolve details in the image. Today, digital image processing is systematically used in conjunction with the optoelectronic system to correct its defects or to exploit tiny detection signals to increase performance. In order to characterize these processing having adaptive and non-linear properties, it becomes necessary to stimulate the imagers with test patterns whose properties are similar to the actual scene image ones, in terms of dynamic range, contours, texture and singular points. This paper presents an approach based on a Corner-Point (CP) resolution criterion, derived from the Probability of Correct Resolution (PCR) of binary fractal patterns. The fundamental principle lies in the respectful perception of the CP direction of one pixel minority value among the majority value of a 2×2 pixels block. The evaluation procedure considers the actual image as its multi-resolution CP transformation, taking the role of Ground Truth (GT). After a spatial registration between the degraded image and the original one, the degradation is statistically measured by comparing the GT with the degraded image CP transformation, in terms of localized PCR at the region of interest. The paper defines this CP criterion and presents the developed evaluation techniques, such as the measurement of the number of CP resolved on the target, the transformation CP and its inverse transform that make it possible to reconstruct an image of the perceived CPs. Then, this criterion is compared with the standard Johnson criterion, in the case of a linear blur and noise degradation. The evaluation of an imaging system integrating an image display and a visual perception is considered, by proposing an analysis scheme combining two methods: a CP measurement for the highly non-linear part (imaging) with real signature test target and conventional methods for the more linear part (displaying). The application to

12. Continuous stochastic approach to birth and death processes and co-operative behaviour of systems far from equilibrium

Energy Technology Data Exchange (ETDEWEB)

Chechetkin, V.R.; Lutovinov, V.S.

1986-09-11

The continuous stochastic formalism for the description of systems with birth and death processes randomly distributed in space is developed with the use of local birth and death operators and local generalization of the corresponding Chapman-Kolmogorov equation. The functional stochastic equation for the evolution of the probability functional is derived and its modifications for evolution of the characteristic functional and the first passage time problem are given. The corresponding evolution equations for equal-time correlators are also derived. The results are generalized then on the exothermic and endothermic chemical reactions. As examples of the particular applications of the results the small fluctuations near stable equilibrium state and fluctuations in mono-molecular reactions, Lotka-Volterra model, Schloegl reaction and brusselator are considered. It is shown that the two-dimensional Lotka-Volterra model may exhibit synergetic phase transition analogous to the topological transition of the Kosterlitz-Thouless-Berezinskii type. At the end of the paper some general consequences from stochastic evolution of the birth and death processes are discussed and the arguments on their importance in evolution of populations, cellular dynamics and in applications to various chemical and biological problems are presented.

13. Trickle or clumped infection process? A stochastic model for the infection process of the parasitic roundworm of humans, Ascaris lumbricoides.

Science.gov (United States)

Walker, Martin; Hall, Andrew; Basáñez, María-Gloria

2010-10-01

The importance of the mode of acquisition of infectious stages of directly-transmitted parasitic helminths has been acknowledged in population dynamics models; hosts may acquire eggs/larvae singly in a "trickle" type manner or in "clumps". Such models have shown that the mode of acquisition influences the distribution and dynamics of parasite loads, the stability of host-parasite systems and the rate of emergence of anthelmintic resistance, yet very few field studies have allowed these questions to be explored with empirical data. We have analysed individual worm weight data for the parasitic roundworm of humans, Ascaris lumbricoides, collected from a three-round chemo-expulsion study in Dhaka, Bangladesh, with the aim of discerning whether a trickle or a clumped infection process predominates. We found that hosts tend to harbour female worms of a similar weight, indicative of a clumped infection process, but acknowledged that unmeasured host heterogeneities (random effects) could not be completely excluded as a cause. Here, we complement our previous statistical analyses using a stochastic infection model to simulate sizes of individual A. lumbricoides infecting a population of humans. We use the intraclass correlation coefficient (ICC) as a quantitative measure of similarity among simulated worm sizes and explore the behaviour of this statistic under assumptions corresponding to trickle or clumped infections and unmeasured host heterogeneities. We confirm that both mechanisms are capable of generating aggregates of similar-sized worms, but that the particular pattern of ICCs described pre- and post-anthelmintic treatment in the data is more consistent with aggregation generated by clumped infections than by host heterogeneities alone. This provides support to the notion that worms may be acquired in clumps. We discuss our results in terms of the population biology of A. lumbricoides and highlight the significance of our modelling approach for the study of the

14. A stochastic process model for life cycle cost analysis of nuclear power plant systems

NARCIS (Netherlands)

Van der Weide, J.A.M.; Pandey, M.D.

2013-01-01

The paper presents a general stochastic model to analyze the life cycle cost of an engineering system that is affected by minor but repairable failures interrupting the operation and a major failure that would require the replacement or renewal of the failed system. It is commonly observed that the

15. Stochastic Greybox Modeling for Control of an Alternating Activated Sludge Process

DEFF Research Database (Denmark)

Halvgaard, Rasmus Fogtmann; Vezzaro, Luca; Grum, M.

We present a stochastic greybox model of a BioDenitro WWTP that can be used for short time horizon Model Predictive Control. The model is based on a simpliﬁed ASM1 model and takes model uncertainty in to account. It estimates unmeasured state variables in the system, e.g. the inlet concentration...

16. Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series

DEFF Research Database (Denmark)

2017-01-01

Continuous and long rainfall series are a necessity in rural and urban hydrology for analysis and design purposes. Local historical point rainfall series often cover several decades, which makes it possible to estimate rainfall means at different timescales, and to assess return periods of extreme...... includes climate changes projected to a specific future period. This paper presents a framework for resampling of historical point rainfall series in order to generate synthetic rainfall series, which has the same statistical properties as an original series. Using a number of key target predictions...... for the future climate, such as winter and summer precipitation, and representation of extreme events, the resampled historical series are projected to represent rainfall properties in a future climate. Climate-projected rainfall series are simulated by brute force randomization of model parameters, which leads...

17. Point process modeling and estimation: Advances in the analysis of dynamic neural spiking data

Science.gov (United States)

Deng, Xinyi

2016-08-01

A common interest of scientists in many fields is to understand the relationship between the dynamics of a physical system and the occurrences of discrete events within such physical system. Seismologists study the connection between mechanical vibrations of the Earth and the occurrences of earthquakes so that future earthquakes can be better predicted. Astrophysicists study the association between the oscillating energy of celestial regions and the emission of photons to learn the Universe's various objects and their interactions. Neuroscientists study the link between behavior and the millisecond-timescale spike patterns of neurons to understand higher brain functions. Such relationships can often be formulated within the framework of state-space models with point process observations. The basic idea is that the dynamics of the physical systems are driven by the dynamics of some stochastic state variables and the discrete events we observe in an interval are noisy observations with distributions determined by the state variables. This thesis proposes several new methodological developments that advance the framework of state-space models with point process observations at the intersection of statistics and neuroscience. In particular, we develop new methods 1) to characterize the rhythmic spiking activity using history-dependent structure, 2) to model population spike activity using marked point process models, 3) to allow for real-time decision making, and 4) to take into account the need for dimensionality reduction for high-dimensional state and observation processes. We applied these methods to a novel problem of tracking rhythmic dynamics in the spiking of neurons in the subthalamic nucleus of Parkinson's patients with the goal of optimizing placement of deep brain stimulation electrodes. We developed a decoding algorithm that can make decision in real-time (for example, to stimulate the neurons or not) based on various sources of information present in

18. Stochastic thermodynamics

Science.gov (United States)

Eichhorn, Ralf; Aurell, Erik

2014-04-01

theory for small deviations from equilibrium, in which a general framework is constructed from the analysis of non-equilibrium states close to equilibrium. In a next step, Prigogine and others developed linear irreversible thermodynamics, which establishes relations between transport coefficients and entropy production on a phenomenological level in terms of thermodynamic forces and fluxes. However, beyond the realm of linear response no general theoretical results were available for quite a long time. This situation has changed drastically over the last 20 years with the development of stochastic thermodynamics, revealing that the range of validity of thermodynamic statements can indeed be extended deep into the non-equilibrium regime. Early developments in that direction trace back to the observations of symmetry relations between the probabilities for entropy production and entropy annihilation in non-equilibrium steady states [5-8] (nowadays categorized in the class of so-called detailed fluctuation theorems), and the derivations of the Bochkov-Kuzovlev [9, 10] and Jarzynski relations [11] (which are now classified as so-called integral fluctuation theorems). Apart from its fundamental theoretical interest, the developments in stochastic thermodynamics have experienced an additional boost from the recent experimental progress in fabricating, manipulating, controlling and observing systems on the micro- and nano-scale. These advances are not only of formidable use for probing and monitoring biological processes on the cellular, sub-cellular and molecular level, but even include the realization of a microscopic thermodynamic heat engine [12] or the experimental verification of Landauer's principle in a colloidal system [13]. The scientific program Stochastic Thermodynamics held between 4 and 15 March 2013, and hosted by The Nordic Institute for Theoretical Physics (Nordita), was attended by more than 50 scientists from the Nordic countries and elsewhere, amongst them

19. Seeking a fingerprint: analysis of point processes in actigraphy recording

Science.gov (United States)

Gudowska-Nowak, Ewa; Ochab, Jeremi K.; Oleś, Katarzyna; Beldzik, Ewa; Chialvo, Dante R.; Domagalik, Aleksandra; Fąfrowicz, Magdalena; Marek, Tadeusz; Nowak, Maciej A.; Ogińska, Halszka; Szwed, Jerzy; Tyburczyk, Jacek

2016-05-01

Motor activity of humans displays complex temporal fluctuations which can be characterised by scale-invariant statistics, thus demonstrating that structure and fluctuations of such kinetics remain similar over a broad range of time scales. Previous studies on humans regularly deprived of sleep or suffering from sleep disorders predicted a change in the invariant scale parameters with respect to those for healthy subjects. In this study we investigate the signal patterns from actigraphy recordings by means of characteristic measures of fractional point processes. We analyse spontaneous locomotor activity of healthy individuals recorded during a week of regular sleep and a week of chronic partial sleep deprivation. Behavioural symptoms of lack of sleep can be evaluated by analysing statistics of duration times during active and resting states, and alteration of behavioural organisation can be assessed by analysis of power laws detected in the event count distribution, distribution of waiting times between consecutive movements and detrended fluctuation analysis of recorded time series. We claim that among different measures characterising complexity of the actigraphy recordings and their variations implied by chronic sleep distress, the exponents characterising slopes of survival functions in resting states are the most effective biomarkers distinguishing between healthy and sleep-deprived groups.

20. Power Scheduling Method for Demand Response based on Home Energy Management System using Stochastic Process

OpenAIRE

Moreno, Pablo; García, Marcelo

2016-01-01

The increase in energy consumption, especially in residential consumers, means that the electrical system should grow at pair, in infrastructure and installed capacity, the energy prices vary to meet these needs, so this paper uses the methodology of demand response using stochastic methods such as Markov, to optimize energy consumption of residential users. It is necessary to involve customers in the electrical system because in this way it can be verified the actual amount of electric charg...

1. Stochastic processes and the non-perturbative structure of the QCD vacuum

International Nuclear Information System (INIS)

Vilela Mendes, R.

1992-01-01

Based on a local Gaussian evaluation of the functional integral representation, a method is developed to obtain ground state functionals. The method is applied to the gluon sector of QCD. For the leading term in the ground state functional, stochastic techniques are used to check consistency of the quantum theory, finiteness of the mass gap and the scaling relation in the continuum limit. The functional also implies strong chromomagnetic fluctuations which constrain the propagators in the fermion sector. (orig.)

2. A scalable and multi-purpose point cloud server (PCS) for easier and faster point cloud data management and processing

Science.gov (United States)

Cura, Rémi; Perret, Julien; Paparoditis, Nicolas

2017-05-01

In addition to more traditional geographical data such as images (rasters) and vectors, point cloud data are becoming increasingly available. Such data are appreciated for their precision and true three-Dimensional (3D) nature. However, managing point clouds can be difficult due to scaling problems and specificities of this data type. Several methods exist but are usually fairly specialised and solve only one aspect of the management problem. In this work, we propose a comprehensive and efficient point cloud management system based on a database server that works on groups of points (patches) rather than individual points. This system is specifically designed to cover the basic needs of point cloud users: fast loading, compressed storage, powerful patch and point filtering, easy data access and exporting, and integrated processing. Moreover, the proposed system fully integrates metadata (like sensor position) and can conjointly use point clouds with other geospatial data, such as images, vectors, topology and other point clouds. Point cloud (parallel) processing can be done in-base with fast prototyping capabilities. Lastly, the system is built on open source technologies; therefore it can be easily extended and customised. We test the proposed system with several billion points obtained from Lidar (aerial and terrestrial) and stereo-vision. We demonstrate loading speeds in the ˜50 million pts/h per process range, transparent-for-user and greater than 2 to 4:1 compression ratio, patch filtering in the 0.1 to 1 s range, and output in the 0.1 million pts/s per process range, along with classical processing methods, such as object detection.

3. Stochastic Modelling Of The Repairable System

Directory of Open Access Journals (Sweden)

Andrzejczak Karol

2015-11-01

Full Text Available All reliability models consisting of random time factors form stochastic processes. In this paper we recall the definitions of the most common point processes which are used for modelling of repairable systems. Particularly this paper presents stochastic processes as examples of reliability systems for the support of the maintenance related decisions. We consider the simplest one-unit system with a negligible repair or replacement time, i.e., the unit is operating and is repaired or replaced at failure, where the time required for repair and replacement is negligible. When the repair or replacement is completed, the unit becomes as good as new and resumes operation. The stochastic modelling of recoverable systems constitutes an excellent method of supporting maintenance related decision-making processes and enables their more rational use.

4. 12th Workshop on Stochastic Models, Statistics and Their Applications

CERN Document Server

Rafajłowicz, Ewaryst; Szajowski, Krzysztof

2015-01-01

This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.

5. Stochastic Mixed-Effects Parameters Bertalanffy Process, with Applications to Tree Crown Width Modeling

Directory of Open Access Journals (Sweden)

Petras Rupšys

2015-01-01

Full Text Available A stochastic modeling approach based on the Bertalanffy law gained interest due to its ability to produce more accurate results than the deterministic approaches. We examine tree crown width dynamic with the Bertalanffy type stochastic differential equation (SDE and mixed-effects parameters. In this study, we demonstrate how this simple model can be used to calculate predictions of crown width. We propose a parameter estimation method and computational guidelines. The primary goal of the study was to estimate the parameters by considering discrete sampling of the diameter at breast height and crown width and by using maximum likelihood procedure. Performance statistics for the crown width equation include statistical indexes and analysis of residuals. We use data provided by the Lithuanian National Forest Inventory from Scots pine trees to illustrate issues of our modeling technique. Comparison of the predicted crown width values of mixed-effects parameters model with those obtained using fixed-effects parameters model demonstrates the predictive power of the stochastic differential equations model with mixed-effects parameters. All results were implemented in a symbolic algebra system MAPLE.

6. Instantaneous stochastic perturbation theory

International Nuclear Information System (INIS)

Lüscher, Martin

2015-01-01

A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

7. Stochastic kinetics

International Nuclear Information System (INIS)

Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

1975-01-01

A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

8. Pricing of American Put Option under a Jump Diffusion Process with Stochastic Volatility in an Incomplete Market

Directory of Open Access Journals (Sweden)

Shuang Li

2014-01-01

Full Text Available We study the pricing of American options in an incomplete market in which the dynamics of the underlying risky asset is driven by a jump diffusion process with stochastic volatility. By employing a risk-minimization criterion, we obtain the Radon-Nikodym derivative for the minimal martingale measure and consequently a linear complementarity problem (LCP for American option price. An iterative method is then established to solve the LCP problem for American put option price. Our numerical results show that the model and numerical scheme are robust in capturing the feature of incomplete finance market, particularly the influence of market volatility on the price of American options.

9. Discrete Approximations of Determinantal Point Processes on Continuous Spaces: Tree Representations and Tail Triviality

Science.gov (United States)

2018-01-01

We prove tail triviality of determinantal point processes μ on continuous spaces. Tail triviality has been proved for such processes only on discrete spaces, and hence we have generalized the result to continuous spaces. To do this, we construct tree representations, that is, discrete approximations of determinantal point processes enjoying a determinantal structure. There are many interesting examples of determinantal point processes on continuous spaces such as zero points of the hyperbolic Gaussian analytic function with Bergman kernel, and the thermodynamic limit of eigenvalues of Gaussian random matrices for Sine_2 , Airy_2 , Bessel_2 , and Ginibre point processes. Our main theorem proves all these point processes are tail trivial.

10. Macrotransport processes: Brownian tracers as stochastic averagers in effective medium theories of heterogeneous media

International Nuclear Information System (INIS)

Brenner, H.

1991-01-01

Macrotransport processes (generalized Taylor dispersion phenomena) constitute coarse-grained descriptions of comparable convective diffusive-reactive microtransport processes, the latter supposed governed by microscale linear constitutive equations and boundary conditions, but characterized by spatially nonuniform phenomenological coefficients. Following a brief review of existing applications of the theory, the author focuses - by way of background information-upon the original (and now classical) Taylor - Aris dispersion problem, involving the combined convective and molecular diffusive transport of a point-size Brownian solute molecule (tracer) suspended in a Poiseuille solvent flow within a circular tube. A series of elementary generalizations of this prototype problem to chromatographic-like solute transport processes in tubes is used to illustrate some novel statistical-physical features. These examples emphasize the fact that a solute molecule may, on average, move axially down the tube at a different mean velocity (either larger or smaller) than that of a solvent molecule. Moreover, this solute molecule may suffer axial dispersion about its mean velocity at a rate greatly exceeding that attributable to its axial molecular diffusion alone. Such chromatographic anomalies represent novel macroscale non-linearities originating from physicochemical interactions between spatially inhomogeneous convective-diffusive-reactive microtransport processes

11. Effluent trading in river systems through stochastic decision-making process: a case study.

Science.gov (United States)

2017-09-01

The objective of this paper is to provide an efficient framework for effluent trading in river systems. The proposed framework consists of two pessimistic and optimistic decision-making models to increase the executability of river water quality trading programs. The models used for this purpose are (1) stochastic fallback bargaining (SFB) to reach an agreement among wastewater dischargers and (2) stochastic multi-criteria decision-making (SMCDM) to determine the optimal treatment strategy. The Monte-Carlo simulation method is used to incorporate the uncertainty into analysis. This uncertainty arises from stochastic nature and the errors in the calculation of wastewater treatment costs. The results of river water quality simulation model are used as the inputs of models. The proposed models are used in a case study on the Zarjoub River in northern Iran to determine the best solution for the pollution load allocation. The best treatment alternatives selected by each model are imported, as the initial pollution discharge permits, into an optimization model developed for trading of pollution discharge permits among pollutant sources. The results show that the SFB-based water pollution trading approach reduces the costs by US$14,834 while providing a relative consensus among pollutant sources. Meanwhile, the SMCDM-based water pollution trading approach reduces the costs by US$ 218,852, but it is less acceptable by pollutant sources. Therefore, it appears that giving due attention to stability, or in other words acceptability of pollution trading programs for all pollutant sources, is an essential element of their success.

12. Stochastic problems in population genetics

CERN Document Server

Maruyama, Takeo

1977-01-01

These are" notes based on courses in Theoretical Population Genetics given at the University of Texas at Houston during the winter quarter, 1974, and at the University of Wisconsin during the fall semester, 1976. These notes explore problems of population genetics and evolution involving stochastic processes. Biological models and various mathematical techniques are discussed. Special emphasis is given to the diffusion method and an attempt is made to emphasize the underlying unity of various problems based on the Kolmogorov backward equation. A particular effort was made to make the subject accessible to biology students who are not familiar with stochastic processes. The references are not exhaustive but were chosen to provide a starting point for the reader interested in pursuing the subject further. Acknowledgement I would like to use this opportunity to express my thanks to Drs. J. F. Crow, M. Nei and W. J. Schull for their hospitality during my stays at their universities. I am indebted to Dr. M. Kimura...

13. Minimal representation of matrix valued white stochastic processes and U–D factorisation of algorithms for optimal control

NARCIS (Netherlands)

Willigenburg, van L.G.; Koning, de W.L.

2013-01-01

Two different descriptions are used in the literature to formulate the optimal dynamic output feedback control problem for linear dynamical systems with white stochastic parameters and quadratic criteria, called the optimal compensation problem. One describes the matrix valued white stochastic

14. Equivalence of functional limit theorems for stationary point processes and their Palm distributions

NARCIS (Netherlands)

Nieuwenhuis, G.

1989-01-01

Let P be the distribution of a stationary point process on the real line and let P0 be its Palm distribution. In this paper we consider two types of functional limit theorems, those in terms of the number of points of the point process in (0, t] and those in terms of the location of the nth point

15. Microbial profile and critical control points during processing of 'robo ...

African Journals Online (AJOL)

STORAGESEVER

2009-05-18

May 18, 2009 ... frying, surface fat draining, open-air cooling, and holding/packaging in polyethylene films during sales and distribution. The product was, however, classified under category III with respect to risk and the significance of monitoring and evaluation of quality using the hazard analysis critical control point.

16. Discussion of "Modern statistics for spatial point processes"

DEFF Research Database (Denmark)

Jensen, Eva Bjørn Vedel; Prokesová, Michaela; Hellmund, Gunnar

2007-01-01

ABSTRACT. The paper ‘Modern statistics for spatial point processes’ by Jesper Møller and Rasmus P. Waagepetersen is based on a special invited lecture given by the authors at the 21st Nordic Conference on Mathematical Statistics, held at Rebild, Denmark, in June 2006. At the conference, Antti...

17. Geometric anisotropic spatial point pattern analysis and Cox processes

DEFF Research Database (Denmark)

Møller, Jesper; Toftaker, Håkon

. In particular we study Cox process models with an elliptical pair correlation function, including shot noise Cox processes and log Gaussian Cox processes, and we develop estimation procedures using summary statistics and Bayesian methods. Our methodology is illustrated on real and synthetic datasets of spatial...

18. A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type

Energy Technology Data Exchange (ETDEWEB)

Hosking, John Joseph Absalom, E-mail: j.j.a.hosking@cma.uio.no [University of Oslo, Centre of Mathematics for Applications (CMA) (Norway)

2012-12-15

We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966-979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197-216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.

19. A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type

International Nuclear Information System (INIS)

Hosking, John Joseph Absalom

2012-01-01

We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966–979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197–216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.

20. Stochastic samples versus vacuum expectation values in cosmology

International Nuclear Information System (INIS)

Tsamis, N.C.; Tzetzias, Aggelos; Woodard, R.P.

2010-01-01

Particle theorists typically use expectation values to study the quantum back-reaction on inflation, whereas many cosmologists stress the stochastic nature of the process. While expectation values certainly give misleading results for some things, such as the stress tensor, we argue that operators exist for which there is no essential problem. We quantify this by examining the stochastic properties of a noninteracting, massless, minimally coupled scalar on a locally de Sitter background. The square of the stochastic realization of this field seems to provide an example of great relevance for which expectation values are not misleading. We also examine the frequently expressed concern that significant back-reaction from expectation values necessarily implies large stochastic fluctuations between nearby spatial points. Rather than viewing the stochastic formalism in opposition to expectation values, we argue that it provides a marvelously simple way of capturing the leading infrared logarithm corrections to the latter, as advocated by Starobinsky

1. Memristor-based neural networks: Synaptic versus neuronal stochasticity

KAUST Repository

Naous, Rawan

2016-11-02

In neuromorphic circuits, stochasticity in the cortex can be mapped into the synaptic or neuronal components. The hardware emulation of these stochastic neural networks are currently being extensively studied using resistive memories or memristors. The ionic process involved in the underlying switching behavior of the memristive elements is considered as the main source of stochasticity of its operation. Building on its inherent variability, the memristor is incorporated into abstract models of stochastic neurons and synapses. Two approaches of stochastic neural networks are investigated. Aside from the size and area perspective, the impact on the system performance, in terms of accuracy, recognition rates, and learning, among these two approaches and where the memristor would fall into place are the main comparison points to be considered.

2. Modeling and identification of ARMG models for stochastic processes: application to on-line computation of the power spectral density

International Nuclear Information System (INIS)

Zwingelstein, Gilles; Thabet, Gabriel.

1977-01-01

Control algorithms for components of nuclear power plants are currently based on external diagnostic methods. Modeling and identification techniques for autoregressive moving average models (ARMA) for stochastic processes are described. The identified models provide a means of estimating the power spectral density with improved accuracy and computer time compared with the classical methods. They are particularly will suited for on-line estimation of the power spectral density. The observable stochastic process y (t) is modeled assuming that it is the output of a linear filter driven by Gaussian while noise w (t). Two identification schemes were tested to find the orders m and n of the ARMA (m,n) models and to estimate the parameters of the recursion equation relating the input and output signals. The first scheme consists in transforming the ARMA model to an autoregressive model. The parameters of this AR model are obtained using least squares estimation techniques. The second scheme consists in finding the parameters of the ARMA by nonlinear programming techniques. The power spectral density of y(t) is instantaneously deduced from these ARMA models [fr

3. Dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations

International Nuclear Information System (INIS)

Do, Duy Minh; Gao, Wei; Song, Chongmin; Tangaramvong, Sawekchai

2014-01-01

This paper presents the non-deterministic dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations. Random ground acceleration from earthquake motion is adopted to illustrate the stochastic process force. The exact change ranges of natural frequencies, random vibration displacement and stress responses of structures are investigated under the interval analysis framework. Formulations for structural reliability are developed considering the safe boundary and structural random vibration responses as interval parameters. An improved particle swarm optimization algorithm, namely randomised lower sequence initialized high-order nonlinear particle swarm optimization algorithm, is employed to capture the better bounds of structural dynamic characteristics, random vibration responses and reliability. Three numerical examples are used to demonstrate the presented method for interval random vibration analysis and reliability assessment of structures. The accuracy of the results obtained by the presented method is verified by the randomised Quasi-Monte Carlo simulation method (QMCSM) and direct Monte Carlo simulation method (MCSM). - Highlights: • Interval uncertainty is introduced into structural random vibration responses. • Interval dynamic reliability assessments of structures are implemented. • Boundaries of structural dynamic response and reliability are achieved

4. Propagator of stochastic electrodynamics

International Nuclear Information System (INIS)

Cavalleri, G.

1981-01-01

The ''elementary propagator'' for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density proportionalω 3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to psipsi* where psi is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics

5. Process for structural geologic analysis of topography and point data

Science.gov (United States)

Eliason, Jay R.; Eliason, Valerie L. C.

1987-01-01

A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

6. BRST stochastic quantization

International Nuclear Information System (INIS)

Hueffel, H.

1990-01-01

After a brief review of the BRST formalism and of the Parisi-Wu stochastic quantization method we introduce the BRST stochastic quantization scheme. It allows the second quantization of constrained Hamiltonian systems in a manifestly gauge symmetry preserving way. The examples of the relativistic particle, the spinning particle and the bosonic string are worked out in detail. The paper is closed by a discussion on the interacting field theory associated to the relativistic point particle system. 58 refs. (Author)

7. A Bayesian MCMC method for point process models with intractable normalising constants

DEFF Research Database (Denmark)

Berthelsen, Kasper Klitgaard; Møller, Jesper

2004-01-01

to simulate from the "unknown distribution", perfect simulation algorithms become useful. We illustrate the method in cases whre the likelihood is given by a Markov point process model. Particularly, we consider semi-parametric Bayesian inference in connection to both inhomogeneous Markov point process models...... and pairwise interaction point processes....

8. Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces

Science.gov (United States)

Liao, Yuxi; She, Xiwei; Wang, Yiwen; Zhang, Shaomin; Zhang, Qiaosheng; Zheng, Xiaoxiang; Principe, Jose C.

2015-12-01

Objective. Representation of movement in the motor cortex (M1) has been widely studied in brain-machine interfaces (BMIs). The electromyogram (EMG) has greater bandwidth than the conventional kinematic variables (such as position, velocity), and is functionally related to the discharge of cortical neurons. As the stochastic information of EMG is derived from the explicit spike time structure, point process (PP) methods will be a good solution for decoding EMG directly from neural spike trains. Previous studies usually assume linear or exponential tuning curves between neural firing and EMG, which may not be true. Approach. In our analysis, we estimate the tuning curves in a data-driven way and find both the traditional functional-excitatory and functional-inhibitory neurons, which are widely found across a rat’s motor cortex. To accurately decode EMG envelopes from M1 neural spike trains, the Monte Carlo point process (MCPP) method is implemented based on such nonlinear tuning properties. Main results. Better reconstruction of EMG signals is shown on baseline and extreme high peaks, as our method can better preserve the nonlinearity of the neural tuning during decoding. The MCPP improves the prediction accuracy (the normalized mean squared error) 57% and 66% on average compared with the adaptive point process filter using linear and exponential tuning curves respectively, for all 112 data segments across six rats. Compared to a Wiener filter using spike rates with an optimal window size of 50 ms, MCPP decoding EMG from a point process improves the normalized mean square error (NMSE) by 59% on average. Significance. These results suggest that neural tuning is constantly changing during task execution and therefore, the use of spike timing methodologies and estimation of appropriate tuning curves needs to be undertaken for better EMG decoding in motor BMIs.

9. Stochastic quantization and gravity

International Nuclear Information System (INIS)

Rumpf, H.

1984-01-01

We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)

10. INHOMOGENEITY IN SPATIAL COX POINT PROCESSES – LOCATION DEPENDENT THINNING IS NOT THE ONLY OPTION

Directory of Open Access Journals (Sweden)

Michaela Prokešová

2010-11-01

Full Text Available In the literature on point processes the by far most popular option for introducing inhomogeneity into a point process model is the location dependent thinning (resulting in a second-order intensity-reweighted stationary point process. This produces a very tractable model and there are several fast estimation procedures available. Nevertheless, this model dilutes the interaction (or the geometrical structure of the original homogeneous model in a special way. When concerning the Markov point processes several alternative inhomogeneous models were suggested and investigated in the literature. But it is not so for the Cox point processes, the canonical models for clustered point patterns. In the contribution we discuss several other options how to define inhomogeneous Cox point process models that result in point patterns with different types of geometric structure. We further investigate the possible parameter estimation procedures for such models.

11. Stochastic modeling

CERN Document Server

Lanchier, Nicolas

2017-01-01

Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the ...

12. Stochastic interest model driven by compound Poisson process andBrownian motion with applications in life contingencies

Directory of Open Access Journals (Sweden)

Shilong Li

2018-03-01

Full Text Available In this paper, we introduce a class of stochastic interest model driven by a compoundPoisson process and a Brownian motion, in which the jumping times of force of interest obeyscompound Poisson process and the continuous tiny fluctuations are described by Brownian motion, andthe adjustment in each jump of interest force is assumed to be random. Based on the proposed interestmodel, we discuss the expected discounted function, the validity of the model and actuarial presentvalues of life annuities and life insurances under different parameters and distribution settings. Ournumerical results show actuarial values could be sensitive to the parameters and distribution settings,which shows the importance of introducing this kind interest model.

13. Lasso and probabilistic inequalities for multivariate point processes

DEFF Research Database (Denmark)

Hansen, Niels Richard; Reynaud-Bouret, Patricia; Rivoirard, Vincent

2015-01-01

Due to its low computational cost, Lasso is an attractive regularization method for high-dimensional statistical settings. In this paper, we consider multivariate counting processes depending on an unknown function parameter to be estimated by linear combinations of a fixed dictionary. To select...... for multivariate Hawkes processes are proven, which allows us to check these assumptions by considering general dictionaries based on histograms, Fourier or wavelet bases. Motivated by problems of neuronal activity inference, we finally carry out a simulation study for multivariate Hawkes processes and compare our...... methodology with the adaptive Lasso procedure proposed by Zou in (J. Amer. Statist. Assoc. 101 (2006) 1418–1429). We observe an excellent behavior of our procedure. We rely on theoretical aspects for the essential question of tuning our methodology. Unlike adaptive Lasso of (J. Amer. Statist. Assoc. 101 (2006...

14. Modelling financial high frequency data using point processes

DEFF Research Database (Denmark)

Hautsch, Nikolaus; Bauwens, Luc

In this chapter written for a forthcoming Handbook of Financial Time Series to be published by Springer-Verlag, we review the econometric literature on dynamic duration and intensity processes applied to high frequency financial data, which was boosted by the work of Engle and Russell (1997...

15. Simulations of Technology-Induced and Crisis-Led Stochastic and Chaotic Fluctuations in Higher Education Processes: A Model and a Case Study for Performance and Expected Employment

Science.gov (United States)

Ahmet, Kara

2015-01-01

This paper presents a simple model of the provision of higher educational services that considers and exemplifies nonlinear, stochastic, and potentially chaotic processes. I use the methods of system dynamics to simulate these processes in the context of a particular sociologically interesting case, namely that of the Turkish higher education…

16. Stochastic theory for classical and quantum mechanical systems

International Nuclear Information System (INIS)

Pena, L. de la; Cetto, A.M.

1975-01-01

From first principles a theory of stochastic processes in configuration space is formulated. The fundamental equations of the theory are an equation of motion which generalizes Newton's second law and an equation which expresses the condition of conservation of matter. Two types of stochastic motion are possible, both described by the same general equations, but leading in one case to classical Brownian motion behavior and in the other to quantum mechanical behavior. The Schroedinger equation, which is derived with no further assumption, is thus shown to describe a specific stochastic process. It is explicitly shown that only in the quantum mechanical process does the superposition of probability amplitudes give rise to interference phenomena; moreover, the presence of dissipative forces in the Brownian motion equations invalidates the superposition principle. At no point are any special assumptions made concerning the physical nature of the underlying stochastic medium, although some suggestions are discussed in the last section

17. Lasso and probabilistic inequalities for multivariate point processes

OpenAIRE

Hansen, Niels Richard; Reynaud-Bouret, Patricia; Rivoirard, Vincent

2012-01-01

Due to its low computational cost, Lasso is an attractive regularization method for high-dimensional statistical settings. In this paper, we consider multivariate counting processes depending on an unknown function parameter to be estimated by linear combinations of a fixed dictionary. To select coefficients, we propose an adaptive $\\ell_{1}$-penalization methodology, where data-driven weights of the penalty are derived from new Bernstein type inequalities for martingales. Oracle inequalities...

18. KNO scaling functions given by Buras and Koba and by Barshay and Yamaguchi, and stochastic Rayleigh and Ornstein-Uhlenbeck processes

International Nuclear Information System (INIS)

Biyajima, M.

1984-01-01

Stochastic backgrounds of the KNO scaling functions given by Buras and Koba and by Barshay and Yamaguchi are investigated. It is found that they are connected with the stochastic Rayleigh process, and the (1+2)- and (1+4)-dimensional Ornstein-Uhlenbeck process. Moreover those KNO scaling functions are transformed into the KNO scaling functions given by the Perina-McGill formula in terms of a nonlinear transformation. Analyses of data by means of them are made. Probability distributions of the former KNO scaling functions are also calculated by the Poisson transformation. (orig.)

19. The S-Process Branching-Point at 205PB

Science.gov (United States)

Tonchev, Anton; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

2017-09-01

Accurate neutron-capture cross sections for radioactive nuclei near the line of beta stability are crucial for understanding s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. We consider photon scattering using monoenergetic and 100% linearly polarized photon beams to obtain the photoabsorption cross section on 206Pb below the neutron separation energy. This observable becomes an essential ingredient in the Hauser-Feshbach statistical model for calculations of capture cross sections on 205Pb. The newly obtained photoabsorption information is also used to estimate the Maxwellian-averaged radiative cross section of 205Pb(n,g)206Pb at 30 keV. The astrophysical impact of this measurement on s-process nucleosynthesis will be discussed. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344.

20. Modeling bias and variation in the stochastic processes of small RNA sequencing.

Science.gov (United States)

Argyropoulos, Christos; Etheridge, Alton; Sakhanenko, Nikita; Galas, David

2017-06-20

The use of RNA-seq as the preferred method for the discovery and validation of small RNA biomarkers has been hindered by high quantitative variability and biased sequence counts. In this paper we develop a statistical model for sequence counts that accounts for ligase bias and stochastic variation in sequence counts. This model implies a linear quadratic relation between the mean and variance of sequence counts. Using a large number of sequencing datasets, we demonstrate how one can use the generalized additive models for location, scale and shape (GAMLSS) distributional regression framework to calculate and apply empirical correction factors for ligase bias. Bias correction could remove more than 40% of the bias for miRNAs. Empirical bias correction factors appear to be nearly constant over at least one and up to four orders of magnitude of total RNA input and independent of sample composition. Using synthetic mixes of known composition, we show that the GAMLSS approach can analyze differential expression with greater accuracy, higher sensitivity and specificity than six existing algorithms (DESeq2, edgeR, EBSeq, limma, DSS, voom) for the analysis of small RNA-seq data. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

1. Modelling the cancer growth process by Stochastic Differential Equations with the effect of Chondroitin Sulfate (CS) as anticancer therapeutics

Science.gov (United States)

Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina

2017-09-01

A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.

2. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

Science.gov (United States)

Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

2017-09-01

Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

3. Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations

Science.gov (United States)

Kaulakys, B.; Alaburda, M.; Ruseckas, J.

2016-05-01

A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.

4. The Hinkley Point decision: An analysis of the policy process

International Nuclear Information System (INIS)

Thomas, Stephen

2016-01-01

In 2006, the British government launched a policy to build nuclear power reactors based on a claim that the power produced would be competitive with fossil fuel and would require no public subsidy. A decade later, it is not clear how many, if any, orders will be placed and the claims on costs and subsidies have proved false. Despite this failure to deliver, the policy is still being pursued with undiminished determination. The finance model that is now proposed is seen as a model other European countries can follow so the success or otherwise of the British nuclear programme will have implications outside the UK. This paper contends that the checks and balances that should weed out misguided policies, have failed. It argues that the most serious failure is with the civil service and its inability to provide politicians with high quality advice – truth to power. It concludes that the failure is likely to be due to the unwillingness of politicians to listen to opinions that conflict with their beliefs. Other weaknesses include the lack of energy expertise in the media, the unwillingness of the public to engage in the policy process and the impotence of Parliamentary Committees. - Highlights: •Britain's nuclear power policy is failing due to high costs and problems of finance. •This has implications for European countries who want to use the same financing model. •The continued pursuit of a failing policy is due to poor advice from civil servants. •Lack of expertise in the media and lack of public engagement have contributed. •Parliamentary processes have not provided proper critical scrutiny.

5. Sequential stochastic optimization

CERN Document Server

Cairoli, Renzo

1996-01-01

Sequential Stochastic Optimization provides mathematicians and applied researchers with a well-developed framework in which stochastic optimization problems can be formulated and solved. Offering much material that is either new or has never before appeared in book form, it lucidly presents a unified theory of optimal stopping and optimal sequential control of stochastic processes. This book has been carefully organized so that little prior knowledge of the subject is assumed; its only prerequisites are a standard graduate course in probability theory and some familiarity with discrete-paramet

6. Modeling surface topography of state-of-the-art x-ray mirrors as a result of stochastic polishing process: recent developments

Science.gov (United States)

Yashchuk, Valeriy V.; Centers, Gary; Tyurin, Yuri N.; Tyurina, Anastasia

2016-09-01

Recently, an original method for the statistical modeling of surface topography of state-of-the-art mirrors for usage in xray optical systems at light source facilities and for astronomical telescopes [Opt. Eng. 51(4), 046501, 2012; ibid. 53(8), 084102 (2014); and ibid. 55(7), 074106 (2016)] has been developed. In modeling, the mirror surface topography is considered to be a result of a stationary uniform stochastic polishing process and the best fit time-invariant linear filter (TILF) that optimally parameterizes, with limited number of parameters, the polishing process is determined. The TILF model allows the surface slope profile of an optic with a newly desired specification to be reliably forecast before fabrication. With the forecast data, representative numerical evaluations of expected performance of the prospective mirrors in optical systems under development become possible [Opt. Eng., 54(2), 025108 (2015)]. Here, we suggest and demonstrate an analytical approach for accounting the imperfections of the used metrology instruments, which are described by the instrumental point spread function, in the TILF modeling. The efficacy of the approach is demonstrated with numerical simulations for correction of measurements performed with an autocollimator based surface slope profiler. Besides solving this major metrological problem, the results of the present work open an avenue for developing analytical and computational tools for stitching data in the statistical domain, obtained using multiple metrology instruments measuring significantly different bandwidths of spatial wavelengths.

7. ALTERNATIVE METHODOLOGIES FOR THE ESTIMATION OF LOCAL POINT DENSITY INDEX: MOVING TOWARDS ADAPTIVE LIDAR DATA PROCESSING

Directory of Open Access Journals (Sweden)

Z. Lari

2012-07-01

Full Text Available Over the past few years, LiDAR systems have been established as a leading technology for the acquisition of high density point clouds over physical surfaces. These point clouds will be processed for the extraction of geo-spatial information. Local point density is one of the most important properties of the point cloud that highly affects the performance of data processing techniques and the quality of extracted information from these data. Therefore, it is necessary to define a standard methodology for the estimation of local point density indices to be considered for the precise processing of LiDAR data. Current definitions of local point density indices, which only consider the 2D neighbourhood of individual points, are not appropriate for 3D LiDAR data and cannot be applied for laser scans from different platforms. In order to resolve the drawbacks of these methods, this paper proposes several approaches for the estimation of the local point density index which take the 3D relationship among the points and the physical properties of the surfaces they belong to into account. In the simplest approach, an approximate value of the local point density for each point is defined while considering the 3D relationship among the points. In the other approaches, the local point density is estimated by considering the 3D neighbourhood of the point in question and the physical properties of the surface which encloses this point. The physical properties of the surfaces enclosing the LiDAR points are assessed through eigen-value analysis of the 3D neighbourhood of individual points and adaptive cylinder methods. This paper will discuss these approaches and highlight their impact on various LiDAR data processing activities (i.e., neighbourhood definition, region growing, segmentation, boundary detection, and classification. Experimental results from airborne and terrestrial LiDAR data verify the efficacy of considering local point density variation for

8. Quantifying the effect of sea level rise and flood defence - a point process perspective on coastal flood damage

Science.gov (United States)

Boettle, M.; Rybski, D.; Kropp, J. P.

2016-02-01

In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal the complex interplay of the involved parameters and allow conclusions of fundamental relevance. For instance, we show that the damage typically increases faster than the sea level rise itself. This in turn can be of great importance for the assessment of sea level rise impacts on the global scale. Our results are accompanied by an assessment of uncertainty, which reflects the stochastic nature of extreme events. While the absolute value of uncertainty about the flood damage increases with rising mean sea levels, we find that it decreases in relation to the expected damage.

9. Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales

KAUST Repository

Yuan, Yuan; Bachl, Fabian E.; Lindgren, Finn; Borchers, David L.; Illian, Janine B.; Buckland, Stephen T.; Rue, Haavard; Gerrodette, Tim

2017-01-01

Distance sampling is a widely used method for estimating wildlife population abundance. The fact that conventional distance sampling methods are partly design-based constrains the spatial resolution at which animal density can be estimated using these methods. Estimates are usually obtained at survey stratum level. For an endangered species such as the blue whale, it is desirable to estimate density and abundance at a finer spatial scale than stratum. Temporal variation in the spatial structure is also important. We formulate the process generating distance sampling data as a thinned spatial point process and propose model-based inference using a spatial log-Gaussian Cox process. The method adopts a flexible stochastic partial differential equation (SPDE) approach to model spatial structure in density that is not accounted for by explanatory variables, and integrated nested Laplace approximation (INLA) for Bayesian inference. It allows simultaneous fitting of detection and density models and permits prediction of density at an arbitrarily fine scale. We estimate blue whale density in the Eastern Tropical Pacific Ocean from thirteen shipboard surveys conducted over 22 years. We find that higher blue whale density is associated with colder sea surface temperatures in space, and although there is some positive association between density and mean annual temperature, our estimates are consistent with no trend in density across years. Our analysis also indicates that there is substantial spatially structured variation in density that is not explained by available covariates.

10. Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales

KAUST Repository

Yuan, Yuan

2017-12-28

Distance sampling is a widely used method for estimating wildlife population abundance. The fact that conventional distance sampling methods are partly design-based constrains the spatial resolution at which animal density can be estimated using these methods. Estimates are usually obtained at survey stratum level. For an endangered species such as the blue whale, it is desirable to estimate density and abundance at a finer spatial scale than stratum. Temporal variation in the spatial structure is also important. We formulate the process generating distance sampling data as a thinned spatial point process and propose model-based inference using a spatial log-Gaussian Cox process. The method adopts a flexible stochastic partial differential equation (SPDE) approach to model spatial structure in density that is not accounted for by explanatory variables, and integrated nested Laplace approximation (INLA) for Bayesian inference. It allows simultaneous fitting of detection and density models and permits prediction of density at an arbitrarily fine scale. We estimate blue whale density in the Eastern Tropical Pacific Ocean from thirteen shipboard surveys conducted over 22 years. We find that higher blue whale density is associated with colder sea surface temperatures in space, and although there is some positive association between density and mean annual temperature, our estimates are consistent with no trend in density across years. Our analysis also indicates that there is substantial spatially structured variation in density that is not explained by available covariates.

11. Robust Algorithms for Detecting a Change in a Stochastic Process with Infinite Memory

Science.gov (United States)

1988-03-01

breakdown point and the additional assumption of 0-mixing on the nominal meas- influence function . The structure of the optimal algorithm ures. Then Huber’s...are i.i.d. sequences of Gaus- For the breakdown point and the influence function sian random variables, with identical variance o2 . Let we will use...algebraic sign for i=0,1. Here z will be chosen such = f nthat it leads to worst case or earliest breakdown. i (14) Next, the influence function measures

12. The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes

Science.gov (United States)

Bouchaud, Jean-Philippe; Sornette, Didier

1994-06-01

The ability to price risks and devise optimal investment strategies in thé présence of an uncertain "random" market is thé cornerstone of modern finance theory. We first consider thé simplest such problem of a so-called "European call option" initially solved by Black and Scholes using Ito stochastic calculus for markets modelled by a log-Brownien stochastic process. A simple and powerful formalism is presented which allows us to generalize thé analysis to a large class of stochastic processes, such as ARCH, jump or Lévy processes. We also address thé case of correlated Gaussian processes, which is shown to be a good description of three différent market indices (MATIF, CAC40, FTSE100). Our main result is thé introduction of thé concept of an optimal strategy in the sense of (functional) minimization of the risk with respect to the portfolio. If the risk may be made to vanish for particular continuous uncorrelated 'quasiGaussian' stochastic processes (including Black and Scholes model), this is no longer the case for more general stochastic processes. The value of the residual risk is obtained and suggests the concept of risk-corrected option prices. In the presence of very large deviations such as in Lévy processes, new criteria for rational fixing of the option prices are discussed. We also apply our method to other types of options, Asian', American', and discuss new possibilities (doubledecker'...). The inclusion of transaction costs leads to the appearance of a natural characteristic trading time scale. L'aptitude à quantifier le coût du risque et à définir une stratégie optimale de gestion de portefeuille dans un marché aléatoire constitue la base de la théorie moderne de la finance. Nous considérons d'abord le problème le plus simple de ce type, à savoir celui de l'option d'achat `européenne', qui a été résolu par Black et Scholes à l'aide du calcul stochastique d'Ito appliqué aux marchés modélisés par un processus Log

13. Development and evaluation of spatial point process models for epidermal nerve fibers.

Science.gov (United States)

Olsbo, Viktor; Myllymäki, Mari; Waller, Lance A; Särkkä, Aila

2013-06-01

We propose two spatial point process models for the spatial structure of epidermal nerve fibers (ENFs) across human skin. The models derive from two point processes, Φb and Φe, describing the locations of the base and end points of the fibers. Each point of Φe (the end point process) is connected to a unique point in Φb (the base point process). In the first model, both Φe and Φb are Poisson processes, yielding a null model of uniform coverage of the skin by end points and general baseline results and reference values for moments of key physiologic indicators. The second model provides a mechanistic model to generate end points for each base, and we model the branching structure more directly by defining Φe as a cluster process conditioned on the realization of Φb as its parent points. In both cases, we derive distributional properties for observable quantities of direct interest to neurologists such as the number of fibers per base, and the direction and range of fibers on the skin. We contrast both models by fitting them to data from skin blister biopsy images of ENFs and provide inference regarding physiological properties of ENFs. Copyright © 2013 Elsevier Inc. All rights reserved.

14. A window on stochastic processes and gamma-ray cosmology through spectral and temporal studies of AGN observed with H.E.S.S

International Nuclear Information System (INIS)

Biteau, J.

2013-01-01

Fifty years after the discovery that quasars are extragalactic sources, their bright cores (AGN) and the jets that some of them exhibit still have plenty of secrets to share, particularly through observations in the gamma-ray band. Above 100 GeV, Cherenkov telescopes such as H.E.S.S. have detected 50 AGN, mostly blazars, objects whose jets are pointed toward the observer. The detection of two faint ones, 1ES 1312-423 and SHBL J001355.9-185406, is described in this thesis. Their multiwavelength spectra are reproduced with a synchrotron self-Compton model. The γ rays emitted by blazars are partly absorbed by the extragalactic background light (EBL), the second most intense cosmological background, which carries the integrated history of star formation. The first detection of this absorption above 100 GeV is performed, enabling the measurement of the EBL peak-amplitude in the optical band at the 20% level. In addition to these spectral studies, the fast flux-variations of blazars are investigated using the outbursts of PKS 2155-304 seen by H.E.S.S.. The observation of a skewed flux distribution and of an R.M.S.-flux correlation are interpreted within a kinematic model, where the emission is a realization of a stochastic process. (author)

15. Stochastic diffusion models for substitutable technological innovations

NARCIS (Netherlands)

Wang, L.; Hu, B.; Yu, X.

2004-01-01

Based on the analysis of firms' stochastic adoption behaviour, this paper first points out the necessity to build more practical stochastic models. And then, stochastic evolutionary models are built for substitutable innovation diffusion system. Finally, through the computer simulation of the

16. Critical Control Points in the Processing of Cassava Tuber for Ighu ...

African Journals Online (AJOL)

Determination of the critical control points in the processing of cassava tuber into Ighu was carried out. The critical control points were determined according to the Codex guidelines for the application of the HACCP system by conducting hazard analysis. Hazard analysis involved proper examination of each processing step ...

17. Distinguishing different types of inhomogeneity in Neyman-Scott point processes

Czech Academy of Sciences Publication Activity Database

Mrkvička, Tomáš

2014-01-01

Roč. 16, č. 2 (2014), s. 385-395 ISSN 1387-5841 Institutional support: RVO:60077344 Keywords : clustering * growing clusters * inhomogeneous cluster centers * inhomogeneous point process * location dependent scaling * Neyman-Scott point process Subject RIV: BA - General Mathematics Impact factor: 0.913, year: 2014

18. The importance of topographically corrected null models for analyzing ecological point processes.

Science.gov (United States)

McDowall, Philip; Lynch, Heather J

2017-07-01

Analyses of point process patterns and related techniques (e.g., MaxEnt) make use of the expected number of occurrences per unit area and second-order statistics based on the distance between occurrences. Ecologists working with point process data often assume that points exist on a two-dimensional x-y plane or within a three-dimensional volume, when in fact many observed point patterns are generated on a two-dimensional surface existing within three-dimensional space. For many surfaces, however, such as the topography of landscapes, the projection from the surface to the x-y plane preserves neither area nor distance. As such, when these point patterns are implicitly projected to and analyzed in the x-y plane, our expectations of the point pattern's statistical properties may not be met. When used in hypothesis testing, we find that the failure to account for the topography of the generating surface may bias statistical tests that incorrectly identify clustering and, furthermore, may bias coefficients in inhomogeneous point process models that incorporate slope as a covariate. We demonstrate the circumstances under which this bias is significant, and present simple methods that allow point processes to be simulated with corrections for topography. These point patterns can then be used to generate "topographically corrected" null models against which observed point processes can be compared. © 2017 by the Ecological Society of America.

19. Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency

Science.gov (United States)

Papalexiou, Simon Michael

2018-05-01

Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.

20. A software framework for process flow execution of stochastic multi-scale integrated models

NARCIS (Netherlands)

Schmitz, Oliver; de Kok, Jean Luc; Karssenberg, Derek

2016-01-01

Dynamic environmental models use a state transition function, external inputs and parameters to simulate the change of real-world processes over time. Modellers specify the state transition function and the external inputs required in the process calculation of each time step in a component model, a

1. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

DEFF Research Database (Denmark)

E. Barndorff-Nielsen, Ole; Benth, Fred Espen; Szozda, Benedykt

This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G* of Potthoff-Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discussed...

2. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

DEFF Research Database (Denmark)

Barndorff-Nielsen, Ole E.; Benth, Fred Espen; Szozda, Benedykt

This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G∗ of Potthoff--Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discusse...

3. Operational Efficiency Forecasting Model of an Existing Underground Mine Using Grey System Theory and Stochastic Diffusion Processes

Directory of Open Access Journals (Sweden)

Svetlana Strbac Savic

2015-01-01

Full Text Available Forecasting the operational efficiency of an existing underground mine plays an important role in strategic planning of production. Degree of Operating Leverage (DOL is used to express the operational efficiency of production. The forecasting model should be able to involve common time horizon, taking the characteristics of the input variables that directly affect the value of DOL. Changes in the magnitude of any input variable change the value of DOL. To establish the relationship describing the way of changing we applied multivariable grey modeling. Established time sequence multivariable response formula is also used to forecast the future values of operating leverage. Operational efficiency of production is often associated with diverse sources of uncertainties. Incorporation of these uncertainties into multivariable forecasting model enables mining company to survive in today’s competitive environment. Simulation of mean reversion process and geometric Brownian motion is used to describe the stochastic diffusion nature of metal price, as a key element of revenues, and production costs, respectively. By simulating a forecasting model, we imitate its action in order to measure its response to different inputs. The final result of simulation process is the expected value of DOL for every year of defined time horizon.

4. Thermal mixtures in stochastic mechanics

Energy Technology Data Exchange (ETDEWEB)

Guerra, F [Rome Univ. (Italy). Ist. di Matematica; Loffredo, M I [Salerno Univ. (Italy). Ist. di Fisica

1981-01-17

Stochastic mechanics is extended to systems in thermal equilibrium. The resulting stochastic processes are mixtures of Nelson processes. Their Markov property is investigated in some simple cases. It is found that in order to inforce Markov property the algebra of observable associated to the present must be suitably enlarged.

5. Stochastic Pi-calculus Revisited

DEFF Research Database (Denmark)

2013-01-01

We develop a version of stochastic Pi-calculus with a semantics based on measure theory. We dene the behaviour of a process in a rate environment using measures over the measurable space of processes induced by structural congruence. We extend the stochastic bisimulation to include the concept of...

6. Application of stochastic dynamic simulation to waste form qualification for the HWVP vitrification process

International Nuclear Information System (INIS)

Kuhn, W.L.; Westsik, J.H. Jr.

1989-01-01

Processing steps during the conversion of high-level nuclear waste into borosilicate glass in the Hanford Waste Vitrification Plant are being simulated on a computer by addressing transient mass balances. The results are being used to address the US Department of Energy's Waste Form Qualification requirements. The simulated addresses discontinuous (batch) operations and perturbations in the transient behavior of the process caused by errors in measurements and control actions. A collection of tests, based on process measurements, is continually checked and used to halt the simulated process when specified conditions are met. An associated set of control actions is then implemented in the simulation. The results for an example simulation are shown. 8 refs

7. Factors influencing lysis time stochasticity in bacteriophage λ

Directory of Open Access Journals (Sweden)

Dennehy John J

2011-08-01

Full Text Available Abstract Background Despite identical genotypes and seemingly uniform environments, stochastic gene expression and other dynamic intracellular processes can produce considerable phenotypic diversity within clonal microbes. One trait that provides a good model to explore the molecular basis of stochastic variation is the timing of host lysis by bacteriophage (phage. Results Individual lysis events of thermally-inducible λ lysogens were observed using a temperature-controlled perfusion chamber mounted on an inverted microscope. Both mean lysis time (MLT and its associated standard deviation (SD were estimated. Using the SD as a measure of lysis time stochasticity, we showed that lysogenic cells in controlled environments varied widely in lysis times, and that the level of lysis time stochasticity depended on allelic variation in the holin sequence, late promoter (pR' activity, and host growth rate. In general, the MLT was positively correlated with the SD. Both lower pR' activities and lower host growth rates resulted in larger SDs. Results from premature lysis, induced by adding KCN at different time points after lysogen induction, showed a negative correlation between the timing of KCN addition and lysis time stochasticity. Conclusions Taken together with results published by others, we conclude that a large fraction of λ lysis time stochasticity is the result of random events following the expression and diffusion of the holin protein. Consequently, factors influencing the timing of reaching critical holin concentrations in the cell membrane, such as holin production rate, strongly influence the mean lysis time and the lysis time stochasticity.

8. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race

NARCIS (Netherlands)

Warnke, T.; Reinhardt, O.; Klabunde, A.; Willekens, F.J.; Uhrmacher, A.

2017-01-01

Individuals’ decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for

9. Stochastic quantization

International Nuclear Information System (INIS)

Klauder, J.R.

1983-01-01

The author provides an introductory survey to stochastic quantization in which he outlines this new approach for scalar fields, gauge fields, fermion fields, and condensed matter problems such as electrons in solids and the statistical mechanics of quantum spins. (Auth.)

10. Chaotic transitions in deterministic and stochastic dynamical systems applications of Melnikov processes in engineering, physics, and neuroscience

CERN Document Server

Simiu, Emil

2002-01-01

The classical Melnikov method provides information on the behavior of deterministic planar systems that may exhibit transitions, i.e. escapes from and captures into preferred regions of phase space. This book develops a unified treatment of deterministic and stochastic systems that extends the applicability of the Melnikov method to physically realizable stochastic planar systems with additive, state-dependent, white, colored, or dichotomous noise. The extended Melnikov method yields the novel result that motions with transitions are chaotic regardless of whether the excitation is deterministic or stochastic. It explains the role in the occurrence of transitions of the characteristics of the system and its deterministic or stochastic excitation, and is a powerful modeling and identification tool. The book is designed primarily for readers interested in applications. The level of preparation required corresponds to the equivalent of a first-year graduate course in applied mathematics. No previous exposure to d...

11. Numerical evaluation of path-integral solutions to Fokker-Planck equations. II. Restricted stochastic processes

International Nuclear Information System (INIS)

Wehner, M.F.

1983-01-01

A path-integral solution is derived for processes described by nonlinear Fokker-Plank equations together with externally imposed boundary conditions. This path-integral solution is written in the form of a path sum for small time steps and contains, in addition to the conventional volume integral, a surface integral which incorporates the boundary conditions. A previously developed numerical method, based on a histogram representation of the probability distribution, is extended to a trapezoidal representation. This improved numerical approach is combined with the present path-integral formalism for restricted processes and is show t give accurate results. 35 refs., 5 figs

12. Different seeds to solve the equations of stochastic point kinetics using the Euler-Maruyama method; Diferentes semillas para solucionar las ecuaciones de la cinetica puntual estocastica empleando el metodo de Euler-Maruyama

Energy Technology Data Exchange (ETDEWEB)

Suescun D, D.; Oviedo T, M., E-mail: daniel.suescun@usco.edu.co [Universidad Surcolombiana, Av. Pastrana Borrero - Carrera 1, Neiva, Huila (Colombia)

2017-09-15

In this paper, a numerical study of stochastic differential equations that describe the kinetics in a nuclear reactor is presented. These equations, known as the stochastic equations of punctual kinetics they model temporal variations in neutron population density and concentrations of deferred neutron precursors. Because these equations are probabilistic in nature (since random oscillations in the neutrons and population of precursors were considered to be approximately normally distributed, and these equations also possess strong coupling and stiffness properties) the proposed method for the numerical simulations is the Euler-Maruyama scheme that provides very good approximations for calculating the neutron population and concentrations of deferred neutron precursors. The method proposed for this work was computationally tested for different seeds, initial conditions, experimental data and forms of reactivity for a group of precursors and then for six groups of deferred neutron precursors at each time step with 5000 Brownian movements per seed. In a paper reported in the literature, the Euler-Maruyama method was proposed, but there are many doubts about the reported values, in addition to not reporting the seed used, so in this work is expected to rectify the reported values. After taking the average of the different seeds used to generate the pseudo-random numbers the results provided by the Euler-Maruyama scheme will be compared in mean and standard deviation with other methods reported in the literature and results of the deterministic model of the equations of the punctual kinetics. This comparison confirms in particular that the Euler-Maruyama scheme is an efficient method to solve the equations of stochastic point kinetics but different from the values found and reported by another author. The Euler-Maruyama method is simple and easy to implement, provides acceptable results for neutron population density and concentration of deferred neutron precursors and

13. Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions - a crime case study

OpenAIRE

Adepeju, M.; Rosser, G.; Cheng, T.

2016-01-01

Many physical and sociological processes are represented as discrete events in time and space. These spatio-temporal point processes are often sparse, meaning that they cannot be aggregated and treated with conventional regression models. Models based on the point process framework may be employed instead for prediction purposes. Evaluating the predictive performance of these models poses a unique challenge, as the same sparseness prevents the use of popular measures such as the root mean squ...

14. Stochastic stability of mechanical systems under renewal jump process parametric excitation

DEFF Research Database (Denmark)

Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

2005-01-01

A dynamic system under parametric excitation in the form of a non-Erlang renewal jump process is considered. The excitation is a random train of nonoverlapping rectangular pulses with equal, deterministic heights. The time intervals between two consecutive jumps up (or down), are the sum of two...

15. Non-homogeneous stochastic birth and death processes with applications to epidemic outbreak data

NARCIS (Netherlands)

van den Broek, J.

2012-01-01

The subject of this thesis is the non-homogeneous birth-death process with some of its special cases and its use in modeling epidemic data. This model describes changes in the size of a population. New population members can appear with a rate, called the birth rate or the reproductive power, and

16. A Fractionally Integrated Wishart Stochastic Volatility Model

NARCIS (Netherlands)

M. Asai (Manabu); M.J. McAleer (Michael)

2013-01-01

textabstractThere has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of

17. Transport properties of stochastic Lorentz models

NARCIS (Netherlands)

Beijeren, H. van

Diffusion processes are considered for one-dimensional stochastic Lorentz models, consisting of randomly distributed fixed scatterers and one moving light particle. In waiting time Lorentz models the light particle makes instantaneous jumps between scatterers after a stochastically distributed

18. Environmental vs Demographic Stochasticity in Population Growth

OpenAIRE

Braumann, C. A.

2010-01-01

Compares the effect on population growth of envinonmental stochasticity (random environmental variations described by stochastic differential equations) with demographic stochasticity (random variations in births and deaths described by branching processes and birth-and-death processes), in the density-independent and the density-dependent cases.

19. Efficient point cloud data processing in shipbuilding: Reformative component extraction method and registration method

Directory of Open Access Journals (Sweden)

Jingyu Sun

2014-07-01

Full Text Available To survive in the current shipbuilding industry, it is of vital importance for shipyards to have the ship components’ accuracy evaluated efficiently during most of the manufacturing steps. Evaluating components’ accuracy by comparing each component’s point cloud data scanned by laser scanners and the ship’s design data formatted in CAD cannot be processed efficiently when (1 extract components from point cloud data include irregular obstacles endogenously, or when (2 registration of the two data sets have no clear direction setting. This paper presents reformative point cloud data processing methods to solve these problems. K-d tree construction of the point cloud data fastens a neighbor searching of each point. Region growing method performed on the neighbor points of the seed point extracts the continuous part of the component, while curved surface fitting and B-spline curved line fitting at the edge of the continuous part recognize the neighbor domains of the same component divided by obstacles’ shadows. The ICP (Iterative Closest Point algorithm conducts a registration of the two sets of data after the proper registration’s direction is decided by principal component analysis. By experiments conducted at the shipyard, 200 curved shell plates are extracted from the scanned point cloud data, and registrations are conducted between them and the designed CAD data using the proposed methods for an accuracy evaluation. Results show that the methods proposed in this paper support the accuracy evaluation targeted point cloud data processing efficiently in practice.

20. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

Directory of Open Access Journals (Sweden)

Hidetoshi Konno

2018-01-01

Full Text Available In neural spike counting experiments, it is known that there are two main features: (i the counting number has a fractional power-law growth with time and (ii the waiting time (i.e., the inter-spike-interval distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii can be modeled by the method of SSPPs. Namely, the first one (i associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP.